[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010061652A1 - Pfcコンバータ - Google Patents

Pfcコンバータ Download PDF

Info

Publication number
WO2010061652A1
WO2010061652A1 PCT/JP2009/059749 JP2009059749W WO2010061652A1 WO 2010061652 A1 WO2010061652 A1 WO 2010061652A1 JP 2009059749 W JP2009059749 W JP 2009059749W WO 2010061652 A1 WO2010061652 A1 WO 2010061652A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
switching element
inductor
current value
pfc converter
Prior art date
Application number
PCT/JP2009/059749
Other languages
English (en)
French (fr)
Inventor
鵜野良之
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN2009801408890A priority Critical patent/CN102187560B/zh
Priority to JP2010540402A priority patent/JP5141774B2/ja
Publication of WO2010061652A1 publication Critical patent/WO2010061652A1/ja
Priority to US13/106,908 priority patent/US8228696B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to an AC-DC converter that inputs an AC power supply and outputs a DC voltage, and more particularly to a PFC converter that improves the power factor.
  • a general switching power supply device that uses a commercial AC power supply as an input power supply rectifies and smoothes the commercial AC power supply and converts it to a DC voltage, which is then switched by a DC-DC converter. Is greatly distorted. This is the cause of the harmonic current.
  • a PFC converter is provided after the full-wave rectifier circuit and before the smoothing circuit by the smoothing capacitor.
  • This PFC converter is composed of a chopper circuit, and operates so that the input current waveform is similar to the input voltage waveform, that is, in the form of a sine wave having the same phase. Therefore, the harmonic current is suppressed to a certain level or less.
  • a configuration example of the PFC converter disclosed in Patent Document 1 will be described with reference to FIG.
  • a series circuit of an inductor L1, a switching element Q1 that is a MOSFET, and a current detection resistor R is provided at both ends of the diode bridge B1 that rectifies the AC power supply voltage of the AC input power supply Vac. It is connected.
  • a series circuit of a diode D1 and a smoothing capacitor C1 is connected to both ends of the switching element Q1, and a load RL is connected to both ends of the smoothing capacitor C1.
  • the switching element Q1 is turned on / off by PWM control of the control circuit 10.
  • the current detection resistor R detects an input current flowing through the diode bridge B1.
  • the control circuit 10 includes an error amplifier 111, a multiplier 112, an error amplifier 113, a voltage controlled oscillator (VCO) 115, and a PWM comparator 116.
  • VCO voltage controlled oscillator
  • the error amplifier 111 obtains an error between the voltage of the smoothing capacitor C1 and the reference voltage E1.
  • the multiplier 112 multiplies the error voltage signal and the rectified voltage by the diode bridge B1.
  • the error amplifier 113 generates an error between the multiplication result of the multiplier 112 and the current signal flowing through the diode bridge B1 and outputs the error to the PWM comparator 116.
  • the VCO 115 generates a triangular wave signal having a frequency corresponding to the voltage value after rectification of the AC power supply voltage.
  • the PWM comparator 116 the triangular wave signal from the VCO 115 is input to the-terminal, and the signal from the error amplifier 113 is input to the + terminal. That is, the PWM comparator 116 applies a duty pulse corresponding to the current flowing through the diode bridge B1 and the output voltage to the switching element Q1.
  • the duty pulse is a pulse width control signal that continuously compensates for fluctuations in the AC power supply voltage and the DC load voltage at a constant period.
  • the AC power supply current waveform is controlled to be similar to and in phase with the AC power supply voltage waveform, and the harmonics and the power factor are improved.
  • Patent Document 2 is disclosed as a digitally controlled PFC converter. Also in the case of digital control, the current flowing through the inductor is detected, and the switching element is switched by PWM control according to the current value.
  • JP 2004-282958 A Japanese Patent Laid-Open No. 7-177746
  • An object of the present invention is to provide a PFC converter capable of detecting current flowing through an inductor at high speed and with high accuracy so that proper harmonics and power factor can be improved and an accurate operation state can be detected. It is in.
  • a rectifying circuit for rectifying an AC voltage input from an AC input power supply, a series circuit including an inductor and a switching element connected to the next stage of the rectifying circuit, and a rectifying / smoothing connected in parallel to the switching element
  • a PFC converter comprising: a circuit; and switching control means for controlling on / off of the switching element so that an input current input from the AC input power source is similar to the AC voltage,
  • a current detection circuit for detecting a current flowing through the switching element or the inductor during an on period of the switching element;
  • First current detection means for sampling a detection signal of a current flowing through the switching element or the inductor at the center of the ON period of the switching element and detecting it as a first current value;
  • Second current detection means for sampling a detection signal of a current flowing through the inductor at the center of the off period of the switching element and detecting it as a second current value;
  • the first current value is an average value of currents flowing through the switching element and the inductor during the ON period of the switching element.
  • the second current value is an average value of the current flowing through the inductor during the OFF period of the switching element. Therefore, the increase / decrease state of the current flowing through the inductor can be detected substantially by this two-point sampling, and control corresponding to the increase / decrease state can be performed at high speed.
  • the current increase / decrease state detection means considers the current continuous mode when the first current value and the second current value are equal, and when the second current value is smaller than the first current value. Considered as a discontinuous current mode.
  • the current increase / decrease state detection unit determines a steady state and a transient state based on a change between the first current values or a change between the second current values at different periods.
  • the steady state and the transient state can be determined at a high speed with a very small amount of calculation processing, and the control according to the state can be performed at a high speed.
  • an increase / decrease state of the current flowing through the inductor can be detected based on the first current value and the second current value, and control corresponding to the increase / decrease state can be performed at high speed.
  • the current continuous mode and the current discontinuous mode can be performed with a very small amount of calculation processing. Can be determined at high speed, and control according to the mode can be performed at high speed.
  • the determination between the steady state and the transient state can be performed at a high speed with a very small amount of calculation processing. It is possible to perform control according to the mode at high speed.
  • FIG. 1 is a circuit diagram of a PFC converter according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing various control methods of the PFC converter 101 by the digital signal processing circuit 13.
  • FIG. It is a wave form diagram of the voltage and current of the PFC converter 101 in the unit of a switching cycle in the state in which control is performed in the current continuous mode. It is a figure which shows about the method of calculating
  • 6A is a waveform diagram of the inductor current in the continuous current mode, and FIG.
  • FIG. 6B is a waveform diagram of the inductor current in the current discontinuous mode.
  • FIG. 7A is a waveform diagram of the inductor current in the continuous current mode and in the steady state
  • FIG. 7B is a waveform diagram of the inductor current in the current continuous mode and in the transient state.
  • 8A is a waveform diagram of the inductor current in the current discontinuous mode and in the steady state
  • FIG. 8B is a waveform diagram of the inductor current in the current continuous mode and in the transient state.
  • FIG. 2 is a circuit diagram of the PFC converter 101 according to the embodiment of the present invention.
  • reference signs P ⁇ b> 11 and P ⁇ b> 12 are input ports of the PFC converter 101
  • reference signs P ⁇ b> 21 and P ⁇ b> 22 are output ports of the PFC converter 101.
  • An AC input power supply Vac which is a commercial AC power supply, is input to the input ports P11 to P12, and a load circuit 20 is connected to the output ports P21 to P22.
  • the load circuit 20 is, for example, a DC-DC converter and a circuit of an electronic device that is supplied with power by the DC-DC converter.
  • a diode bridge B1 which is a rectifier circuit for full-wave rectifying the AC voltage of the AC input power supply Vac is provided.
  • a series circuit of an inductor L1, a switching element Q1, and a current detecting resistor R1 is connected to the output side of the diode bridge B1.
  • a rectifying / smoothing circuit including a diode D1 and a smoothing capacitor C1 is connected in parallel to both ends of the switching element Q1.
  • the inductor L1, the switching element Q1, the diode D1, and the smoothing capacitor C1 constitute a so-called boost chopper circuit.
  • An input voltage detection circuit 11 is provided between both ends on the output side of the diode bridge B1.
  • An output voltage detection circuit 12 is provided between the output ports P21 and P22.
  • the digital signal processing circuit 13 is constituted by a DSP, and controls the PFC converter 101 by digital signal processing. That is, the digital signal processing circuit 13 receives the output signal of the input voltage detection circuit 11 and detects the phase of the voltage of the AC input power supply by a method described later. Further, the output signal of the output voltage detection circuit 12 is inputted to detect the output voltage. Further, the switching element Q1 is turned on / off at a predetermined switching frequency.
  • the processing unit related to the switching control signal for the switching element Q1 of the digital signal processing circuit 13 corresponds to the “switching control means” according to the present invention.
  • the current detection resistor R1 corresponds to a “current detection circuit” according to the present invention.
  • the processing section related to current detection of the digital signal processing circuit 13 corresponds to the “first current detection means” and the “second current detection means” according to the present invention.
  • the digital signal processing circuit 13 is provided with a port for communicating with the load circuit 20, and for example, performs data communication or signal input / output, and indicates the state of the converter with respect to the load circuit (electronic device). Always transmit, transmit input voltage, output voltage, output current, etc., or receive the load status from the load circuit side and reflect it in switching control.
  • FIG. 3 is a diagram showing various control methods of the PFC converter 101 by the digital signal processing circuit 13.
  • 3A, 3B, and 3C are current waveforms in one cycle of the AC input power supply.
  • the waveform IL is a waveform of a current flowing through the inductor L1 in the PFC converter 101 shown in FIG. Ip is an envelope of the peak value (peak current), and Ia is an envelope of the average value (average current).
  • FIG. 3A is a waveform diagram in the current continuous mode
  • FIG. 3B is a waveform diagram in the current discontinuous mode
  • FIG. 3C is a waveform diagram in the current critical mode.
  • the current flowing through the inductor L1 of the PFC converter 101 does not become zero except near the zero cross of the AC input power supply.
  • a period in which the current value becomes 0 occurs every time the excitation energy is accumulated / released in the inductor L1 of the PFC converter 101.
  • the critical mode shown in FIG. 3C the current value becomes 0 each time the excitation energy is accumulated / released in the inductor L1, and the state of the current value 0 does not continue.
  • FIG. 4 is a voltage / current waveform diagram of the PFC converter 101 in units of switching periods in a state where control is performed in the continuous current mode.
  • the digital signal processing circuit 13 performs switching control so that the input current to the PFC converter 101, that is, the average value of the current flowing through the inductor L1, is similar to the full-wave rectified waveform. In this way, when an input current similar to the input voltage flows, harmonics are suppressed and the power factor is improved.
  • FIG. 4A shows a current waveform of the average value Ii of the current flowing through the inductor L1 in a half cycle unit of the commercial power supply frequency
  • FIG. 4B shows a switching cycle of a part of the time axis.
  • a waveform diagram of the current IL flowing through the inductor L1 in units, (C) is a waveform diagram of the drain-source voltage Vds of the switching element Q1.
  • the current IL flows through the inductor L1, and the current IL increases with a slope determined according to the voltage across the inductor L1 and the inductance of the inductor L1. Thereafter, the current IL decreases with an inclination determined by the voltage across the inductor L1 and its inductance during the OFF period Toff of the switching element Q1. As described above, the current IL flowing through the inductor L1 with the width of the current ripple ⁇ IL varies in the switching cycle.
  • FIG. 5 is a diagram illustrating a method for obtaining an average value of the current flowing through the inductor L1 in order to perform the average current control in the current continuous mode.
  • the current value (peak value) flowing through the inductor L1 at the turn-off timing of the switching element Q1 is represented by ILp
  • the current value (minimum value) flowing through the inductor L1 at the turn-on timing of the switching element Q1 is represented by ILb
  • the on period Ton of the switching element Q1 the on period Ton of the switching element Q1.
  • the average value (average current) of the current flowing through the inductor L1 is expressed by the following relationship.
  • the drop voltage of the resistor R1 at the center timing of the ON period Ton of the switching element Q1 is sampled.
  • This sampling value is a value proportional to the average current value ILav of the current flowing through the inductor L1 during the ON period Ton of the switching element Q1.
  • the voltage drop of the resistor R1 at the center timing of the off period Toff of the switching element Q1 is sampled.
  • This sampling value is a value proportional to the average current value ILav of the current flowing through the inductor L1 during the OFF period Toff of the switching element Q1.
  • the switching control signal given to the gate of the switching element Q1 is generated by the digital signal processing circuit 13, the central timing ts1 of the on period Ton and the central timing ts2 of the off period Toff are also digital signal processed.
  • the circuit 13 knows (under control). Therefore, for example, the voltage drop of the current detection resistor R1 can be sampled at the above timing without inputting a timing signal from the outside.
  • FIG. 6A is a waveform diagram of the inductor current in the continuous current mode
  • FIG. 6B is a waveform diagram of the inductor current in the current discontinuous mode.
  • the current critical mode is a special state of the continuous current mode, and the relationship between the first and second current values is the same as in the continuous current mode.
  • “current continuous mode” includes “current critical mode”.
  • FIG. 7A is a waveform diagram of the inductor current in the continuous current mode and steady state
  • FIG. 7B is a waveform diagram of the inductor current in the continuous current mode and transient state.
  • the average current flowing through the inductor L1 during the ON period Ton of the switching element Q1 and the inductor L1 flows during the OFF period Toff of the switching element Q1. It is equal to the average current.
  • the first current value ILav1 is obtained a plurality of times, and the switching element Q1 is turned off in different periods.
  • the second current value ILav2 is obtained by sampling at the central timing (ts21, ts22,%) Of the period Toff, and when the first current value and the second current value at a plurality of timings are equal, It is determined to be a continuous mode and a steady state.
  • the average current flowing through the inductor L1 during the ON period Ton of the switching element Q1 increases by ⁇ IL1. Further, the average current flowing through the inductor L1 during the OFF period Toff of the switching element Q1 is increased by ⁇ IL2.
  • the first current value is obtained a plurality of times by sampling at the central timing (ts11, ts12,%) Of the on-period Ton in different periods of the switching element Q1, and the first current values are obtained from each other. If it changes and it has changed, it will determine with it being in a transient state.
  • the second current value is obtained a plurality of times by sampling at the central timing (ts21, ts22,%) Of the off period Toff in different periods of the switching element Q1, and the second current values are obtained from each other. If it changes and it has changed, it will determine with it being in a transient state.
  • FIG. 8A is a waveform diagram of the inductor current in the current discontinuous mode and steady state
  • FIG. 8B is a waveform diagram of the inductor current in the current continuous mode and transient state.
  • the average current value ILav1 of the current flowing in the inductor L1 during the ON period Ton of the switching element Q1 and the inductor L1 flows during the OFF period Toff of the switching element Q1. It differs from the average current value ILav2 of the current.
  • the average current value ILav1 of the current flowing through the inductor L1 during the ON period Ton of the switching element Q1 is constant in different switching cycles.
  • the average current value ILav2 of the current flowing through the inductor L1 during the OFF period Toff of the switching element Q1 is constant.
  • the first current value is obtained a plurality of times by sampling at the central timing (ts11, ts12,%) Of the ON period Ton in different periods of the switching element Q1, or the switching element Q1 is different.
  • the second current value is obtained a plurality of times by sampling at the center timing (ts21, ts22,%) Of the off period Toff in the cycle, and the first current values or the second current values are compared, If it has not changed, it is determined that it is in a steady state.
  • the switching element Q1 is turned off based on the average current flowing through the inductor L1 during the on period Ton of the switching element Q1.
  • the average current flowing through the inductor L1 during the period Toff decreases.
  • the change in the average current in one cycle appears in the same manner as in the case shown in FIG.
  • the average currents of the currents flowing through the inductor L1 in the ON period Ton of the switching element Q1 are compared with each other in different switching periods, they change as indicated by ⁇ IL1. Even if the average currents of the currents flowing through the inductor L1 during the OFF period Toff of the switching element Q1 are compared, they are similarly changed as indicated by ⁇ IL2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 インダクタに流れる電流を高速且つ高精度に検出して、適正な高調波及び力率の改善、並びに正確な動作状態の検知を行えるようにしたPFCコンバータを構成する。  スイッチング素子のオン期間Tonの中央タイミングts1でサンプリングすることによって第1の電流値ILav1を求め、スイッチング素子のオフ期間Toffの中央タイミングts2でサンプリングすることによって第2の電流値ILav2を求める。そして、例えばILav1=ILav2であれば電流連続モード、ILav1≠ILav2であれば電流不連続モードと判定する。

Description

PFCコンバータ
 この発明は、交流電源を入力して直流電圧を出力するAC-DCコンバータに関し、特に力率を改善するPFCコンバータに関するものである。
 日本や欧州などでは用途や入力電力などに応じてクラス分けされた高調波電流規制が行われている。これらに対応するため、規制に該当する一般家電製品の電源ではPFC(力率改善回路)コンバータと呼ばれる回路を付加し、高調波電流を抑える工夫をしている。
 商用交流電源を入力電源とする一般的なスイッチング電源装置は、商用交流電源を整流平滑して直流電圧に変換した後、それをDC-DCコンバータでスイッチングするので入力電流は不連続となり、正弦波から大きく歪む。このことが高調波電流の原因である。
 そこで、この高調波電流を抑制することを目的として、全波整流回路の後段で且つ平滑コンデンサによる平滑回路の手前にPFCコンバータが設けられている。
 このPFCコンバータはチョッパ回路で構成され、入力電流波形が入力電圧波形に相似形となるように、すなわち同位相の正弦波状になるように動作する。そのため高調波電流が一定レベル以下に抑えられる。
 ここで特許文献1に示されているPFCコンバータの構成例を、図1を基に説明する。
 図1に示す力率改善回路において、交流入力電源Vacの交流電源電圧を整流するダイオードブリッジB1の出力両端には、インダクタL1と、MOSFETであるスイッチング素子Q1と電流検出抵抗Rとの直列回路が接続されている。スイッチング素子Q1の両端には、ダイオードD1と平滑コンデンサC1との直列回路が接続され、平滑コンデンサC1の両端には、負荷RLが接続されている。スイッチング素子Q1は、制御回路10のPWM制御によりオン/オフするようになっている。電流検出抵抗Rは、ダイオードブリッジB1に流れる入力電流を検出する。
 制御回路10は、誤差増幅器111、乗算器112、誤差増幅器113、電圧制御発振器(VCO)115、及びPWMコンパレータ116を備えている。
 誤差増幅器111は、平滑コンデンサC1の電圧と基準電圧E1との誤差を求める。乗算器112は、誤差電圧信号とダイオードブリッジB1による整流電圧とを乗算する。誤差増幅器113は、乗算器112による乗算結果とダイオードブリッジB1に流れる電流信号との誤差を生成してPWMコンパレータ116へ出力する。
 VCO115は、交流電源電圧の整流後の電圧値に応じた周波数の三角波信号を生成する。
 PWMコンパレータ116は、VCO115からの三角波信号が-端子に入力され、誤差増幅器113からの信号が+端子に入力される。すなわち、PWMコンパレータ116は、ダイオードブリッジB1に流れる電流と出力電圧とに応じたデューティパルスをスイッチング素子Q1に与える。このデューティパルスは、交流電源電圧および直流負荷電圧の変動に対して一定周期で連続的に補償するパルス幅制御信号である。
 このような構成により、交流電源電流波形が交流電源電圧波形に相似形且つ同位相となるように制御されて、高調波及び力率が改善される。
 一方、ディジタル制御のPFCコンバータとして特許文献2が開示されている。
 ディジタル制御の場合もインダクタに流れる電流を検出して、その電流値に応じたPWM制御によりスイッチング素子をスイッチングすることになる。
特開2004-282958号公報 特開平7-177746号公報
 ところで、PFCコンバータの目的である高調波抑制及び力率改善を適正に行うためには、インダクタに流れる電流を高速且つ高精度に検出する必要がある。また、PFCコンバータの動作状態を検知して、それに応じた処理を行う上でもインダクタに流れる電流を高速且つ高精度に検出する必要がある。
 特許文献1のPFCコンバータのようにアナログ回路によりスイッチング制御を行う従来のPFCコンバータにおいては、インダクタに流れる電流を必ずしも高速に検出することができない。また、特許文献2のPFCコンバータのようにディジタル制御を行うものでは、もともと必要な演算処理量が多く、応答速度と精度とはトレードオフの関係にある。そのため、精度を保ちつつ応答性を高めるのには限界があった。
 そこで、この発明の目的は、インダクタに流れる電流を高速且つ高精度に検出して、適正な高調波及び力率の改善、並びに正確な動作状態の検知を行えるようにしたPFCコンバータを提供することにある。
 前記課題を解決するために、この発明は次のように構成する。
(1)交流入力電源から入力される交流電圧を整流する整流回路と、前記整流回路の次段に接続された、インダクタ及びスイッチング素子を含む直列回路と、前記スイッチング素子に並列接続された整流平滑回路と、前記交流入力電源から入力される入力電流が前記交流電圧に対して相似形となるように前記スイッチング素子をオン/オフ制御するスイッチング制御手段と、を備えたPFCコンバータであって、
 前記スイッチング素子のオン期間に前記スイッチング素子または前記インダクタに流れる電流を検出する電流検出回路と、
 前記スイッチング素子のオン期間の中央で、前記スイッチング素子または前記インダクタに流れる電流の検出信号をサンプリングして第1の電流値として検出する第1の電流検出手段と、
 前記スイッチング素子のオフ期間の中央で、前記インダクタに流れる電流の検出信号をサンプリングして第2の電流値として検出する第2の電流検出手段と、
 前記第1の電流値と前記第2の電流値とを比較して電流増減状態を検知する手段と、
を設けたことを特徴とする。
 前記第1の電流値はスイッチング素子のオン期間にスイッチング素子及びインダクタに流れる電流の平均値である。また、前記第2の電流値はスイッチング素子のオフ期間にインダクタに流れる電流の平均値である。そのため、この実質的に二点サンプリングによってインダクタに流れる電流の増減状態を検知でき、それに応じた制御を高速に行うことができる。
(2)前記電流増減状態検知手段は、前記第1の電流値と前記第2の電流値とが等しいとき電流連続モードと見なし、前記第2の電流値が前記第1の電流値より小さいとき電流不連続モードと見なす。
 この構成により、電流連続モードと電流不連続モードとの判定を、非常に少ない演算処理量で高速に行うことができ、モードに応じた制御を高速に行える。
(3)前記電流増減状態検知手段は、異なった周期での前記第1の電流値同士の変化分または前記第2の電流値同士の変化分に基づいて定常状態と過渡状態の判定を行う。
 この構成により、定常状態と過渡状態との判定を、非常に少ない演算処理量で高速に行うことができ、状態に応じた制御を高速に行える。
 この発明によれば、前記第1の電流値と前記第2の電流値を基に、インダクタに流れる電流の増減状態を検知でき、それに応じた制御を高速に行うことができる。
 また、前記第1の電流値と前記第2の電流値を基に、電流連続モードと電流不連続モードとの判定を行うことにより、非常に少ない演算処理量で電流連続モードと電流不連続モードとの判定を高速に行うことができ、モードに応じた制御を高速に行える。
 また、前記第1の電流値と前記第2の電流値を基に、定常状態と過渡状態との判定を行うことにより、非常に少ない演算処理量で定常状態と過渡状態との判定を高速に行うことができ、モードに応じた制御を高速に行える。
特許文献1に示されているPFCコンバータの回路図である。 この発明の実施形態に係るPFCコンバータの回路図である。 ディジタル信号処理回路13によるPFCコンバータ101の各種制御方式について示す図である。 電流連続モードで制御が行われている状態におけるスイッチング周期の単位でのPFCコンバータ101の電圧・電流の波形図である。 電流連続モードで平均電流制御を行うために、インダクタL1に流れる電流の平均値を求める方法について示す図である。 図6(A)は電流連続モードでのインダクタ電流の波形図、図6(B)は電流不連続モードでのインダクタ電流の波形図である。 図7(A)は電流連続モードで且つ定常状態でのインダクタ電流の波形図、図7(B)は電流連続モードで且つ過渡状態でのインダクタ電流の波形図である。 図8(A)は電流不連続モードで且つ定常状態でのインダクタ電流の波形図、図8(B)は電流連続モードで且つ過渡状態でのインダクタ電流の波形図である。
 この発明の実施形態に係るPFCコンバータについて図2~図8を参照して説明する。
 図2はこの発明の実施形態に係るPFCコンバータ101の回路図である。図2において符号P11,P12はPFCコンバータ101の入力ポート、符号P21,P22はPFCコンバータ101の出力ポートである。入力ポートP11-P12には商用交流電源である交流入力電源Vacが入力され、出力ポートP21-P22には負荷回路20が接続される。
 負荷回路20は例えばDC-DCコンバータおよびそのDC-DCコンバータによって電源供給を受ける電子機器の回路である。
 PFCコンバータ101の入力段には交流入力電源Vacの交流電圧を全波整流する整流回路であるダイオードブリッジB1を設けている。このダイオードブリッジB1の出力側にはインダクタL1およびスイッチング素子Q1、さらに電流検出用抵抗R1の直列回路を接続している。スイッチング素子Q1の両端にはダイオードD1および平滑コンデンサC1で構成される整流平滑回路を並列接続している。このインダクタL1、スイッチング素子Q1、ダイオードD1および平滑コンデンサC1によっていわゆる昇圧チョッパ回路を構成している。
 ダイオードブリッジB1の出力側の両端間には入力電圧検出回路11を設けている。また出力ポートP21-P22間に出力電圧検出回路12を設けている。ディジタル信号処理回路13はDSPで構成していて、ディジタル信号処理によってこのPFCコンバータ101を制御する。すなわち、ディジタル信号処理回路13は入力電圧検出回路11の出力信号を入力し、後述する方法によって交流入力電源の電圧の位相を検知する。また出力電圧検出回路12の出力信号を入力して出力電圧を検知する。さらにスイッチング素子Q1を所定のスイッチング周波数でオン/オフする。
 前記ディジタル信号処理回路13の、スイッチング素子Q1に対するスイッチング制御信号に関する処理部が、この発明に係る「スイッチング制御手段」に相当する。また、前記電流検出用抵抗R1が、この発明に係る「電流検出回路」に相当する。さらに、前記ディジタル信号処理回路13の、電流検出に関する処理部が、この発明に係る「第1の電流検出手段」及び「第2の電流検出手段」に相当する。
 ディジタル信号処理回路13は負荷回路20との間で通信を行うためのポートを備えていて、たとえばデータの通信または信号の入出力を行い、負荷回路(電子機器)に対してコンバータの状態等を常に送信したり、入力電圧、出力電圧、出力電流等を送信したり、負荷回路側から負荷状態等を受信してスイッチング制御に反映したりする。
 図3はディジタル信号処理回路13によるPFCコンバータ101の各種制御方式について示す図である。図3の(A)(B)(C)はそれぞれ交流入力電源の1周期における電流波形である。ここで、波形ILは、図2に示したPFCコンバータ101におけるインダクタL1に流れる電流の波形である。Ipはそのピーク値(ピーク電流)の包絡線、Iaは平均値(平均電流)の包絡線である。但し、図示の都合上、PFCコンバータ101のスイッチング周波数を極端に低くした場合について、すなわちインダクタL1に流れる電流波形が三角波状に目に見えるような周波数で表している。
 図3(A)は電流連続モード、図3(B)は電流不連続モード、図3(C)は電流臨界モードでのそれぞれの波形図である。このように図3(A)に示す電流連続モードではPFCコンバータ101のインダクタL1に流れる電流は、交流入力電源のゼロクロス付近を除いて0になることがない。また図3(B)に示した電流不連続モードではPFCコンバータ101のインダクタL1に励磁エネルギーが蓄積・放出されるごとに電流値が0になる期間が生じる。また図3(C)に示した臨界モードではインダクタL1への励磁エネルギーの蓄積・放出のごとに電流値が0となり、且つ電流値0の状態が連続することがない。
 図4は、電流連続モードで制御が行われている状態におけるスイッチング周期の単位でのPFCコンバータ101の電圧・電流の波形図である。
 ディジタル信号処理回路13は、PFCコンバータ101に対する入力電流、すなわちインダクタL1に流れる電流の平均値、が全波整流波形に相似形となるようにスイッチング制御を行う。このようにして入力電圧と相似形の入力電流が流れることにより、高調波が抑制され、力率が改善される。
 図4において(A)は商用電源周波数の半周期単位での、インダクタL1に流れる電流の平均値Iiの電流波形、(B)はその一部の時間軸を拡大して表した、スイッチング周期の単位でのインダクタL1に流れる電流ILの波形図、(C)はスイッチング素子Q1のドレイン-ソース間電圧Vdsの波形図である。
 スイッチング素子Q1のオン期間TonではインダクタL1に電流ILが流れ、インダクタL1の両端間電圧およびインダクタL1のインダクタンスに応じて定まる傾きで電流ILは上昇する。その後、スイッチング素子Q1のオフ期間Toffで、インダクタL1の両端電圧とそのインダクタンスによって定まる傾きで電流ILは下降する。このように電流リップルΔILの幅でインダクタL1に流れる電流ILがスイッチング周期で変動する。
 図5は、電流連続モードで平均電流制御を行うために、インダクタL1に流れる電流の平均値を求める方法について示す図である。
 スイッチング素子Q1のターンオフタイミングでインダクタL1に流れる電流値(ピーク値)をILp、スイッチング素子Q1のターンオンタイミングでインダクタL1に流れる電流値(最低値)をILbで表すと、スイッチング素子Q1のオン期間TonにインダクタL1に流れる電流の平均値(平均電流)は次の関係で表される。
 ILav=(ILp+ILb)/2  …(1)
 一方、スイッチング素子Q1のオフ期間ToffにインダクタL1に流れる電流は直線的に減少するので、スイッチング素子Q1のオフ期間Toffの中央タイミングにおけるインダクタL1の電流値は上記平均電流値ILavに等しい。
 そこで、スイッチング素子Q1のオン期間Tonの中央のタイミングでの抵抗R1の降下電圧をサンプリングする。このサンプリング値が、スイッチング素子Q1のオン期間TonにインダクタL1に流れる電流の平均電流値ILavに比例した値である。また、スイッチング素子Q1のオフ期間Toffの中央のタイミングでの抵抗R1の降下電圧をサンプリングする。このサンプリング値が、スイッチング素子Q1のオフ期間ToffにインダクタL1に流れる電流の平均電流値ILavに比例した値である。
 前記スイッチング素子Q1のゲートに対して与えるスイッチング制御信号はディジタル信号処理回路13が生成するものであるので、前記オン期間Tonの中央のタイミングts1及び前記オフ期間Toffの中央のタイミングts2もディジタル信号処理回路13が把握している(管理下にある)。そのため、例えば外部からタイミング信号を入力することなく、前記のタイミングで電流検出用抵抗R1の降下電圧をサンプリングすることができる。
 次に、図2に示したディジタル信号処理回路13による「電流増減状態検知手段」の第1の処理内容を、図6を参照して説明する。
 図6(A)は電流連続モードでのインダクタ電流の波形図、図6(B)は電流不連続モードでのインダクタ電流の波形図である。
 電流連続モードであれば、既に述べたとおり図6(A)に示すように、スイッチング素子Q1のオン期間TonにインダクタL1に流れる電流の平均電流値ILav1と、スイッチング素子Q1のオフ期間ToffにインダクタL1に流れる電流の平均電流値ILav2とは等しい。従って、先ず、スイッチング素子Q1のオン期間Tonの中央タイミングts1でサンプリングすることによって第1の電流値ILav1を求め、スイッチング素子Q1のオフ期間Toffの中央タイミングts2でサンプリングすることによって第2の電流値ILav2を求め、ILav1=ILav2であるとき、電流連続モードであると判定する。
 なお、電流臨界モードは電流連続モードの特殊な状態であり、上記第1・第2の電流値の関係は電流連続モードの場合と同様である。以降の記述では「電流連続モード」は「電流臨界モード」を含んでいる。
 一方、電流不連続モードであれば、図6(B)に示すように、スイッチング素子Q1のオン期間TonにインダクタL1に流れる電流の平均電流値ILav1と、スイッチング素子Q1のオフ期間ToffにインダクタL1に流れる電流の平均電流値ILav2とは異なる。従って、先ず、スイッチング素子Q1のオン期間Tonの中央タイミングts1でサンプリングすることによって第1の電流値ILav1を求め、スイッチング素子Q1のオフ期間Toffの中央タイミングts2でサンプリングすることによって第2の電流値ILav2を求め、ILav1≠ILav2であるとき、電流不連続モードであると判定する。
 次に、図2に示したディジタル信号処理回路13による「電流増減状態検知手段」の第2の処理内容を、図7を参照して説明する。
 図7(A)は電流連続モードで且つ定常状態でのインダクタ電流の波形図、図7(B)は電流連続モードで且つ過渡状態でのインダクタ電流の波形図である。
 定常状態では、図7(A)に示すように、どのスイッチング周期においても、スイッチング素子Q1のオン期間TonにインダクタL1に流れる電流の平均電流と、スイッチング素子Q1のオフ期間ToffにインダクタL1に流れる電流の平均電流とは等しい。従って、スイッチング素子Q1の異なった周期におけるオン期間Tonの中央タイミング(ts11,ts12,・・・)でサンプリングすることによって第1の電流値ILav1を複数回求め、スイッチング素子Q1の異なった周期におけるオフ期間Toffの中央タイミング(ts21,ts22,・・・)でサンプリングすることによって第2の電流値ILav2を求め、複数のタイミングでの第1の電流値と第2の電流値が等しいとき、電流不連続モードで且つ定常状態であると判定する。
 一方、例えば入力電源電圧の投入開始時など、過渡状態では、図7(B)に示すように、異なったスイッチング周期において、スイッチング素子Q1のオン期間TonにインダクタL1に流れる電流の平均電流同士を比較すると、変化していることになる。スイッチング素子Q1のオフ期間ToffにインダクタL1に流れる電流の平均電流同士を比較しても、変化していることになる。
 図7(B)に示した例のように、隣接するスイッチング周期で比較すると、スイッチング素子Q1のオン期間TonにインダクタL1に流れる電流の平均電流はΔIL1だけ増加している。また、スイッチング素子Q1のオフ期間ToffにインダクタL1に流れる電流の平均電流はΔIL2だけ増加している。
 従って、スイッチング素子Q1の、異なった周期におけるオン期間Tonの中央タイミング(ts11,ts12,・・・)でサンプリングすることによって第1の電流値を複数回求め、これらの第1の電流値同士を比較し、変化していれば過渡状態であると判定する。または、スイッチング素子Q1の、異なった周期におけるオフ期間Toffの中央タイミング(ts21,ts22,・・・)でサンプリングすることによって第2の電流値を複数回求め、これらの第2の電流値同士を比較し、変化していれば過渡状態であると判定する。
 次に、図2に示したディジタル信号処理回路13による「電流増減状態検知手段」の第3の処理内容を、図8を参照して説明する。
 図8(A)は電流不連続モードで且つ定常状態でのインダクタ電流の波形図、図8(B)は電流連続モードで且つ過渡状態でのインダクタ電流の波形図である。
 電流不連続モードであれば、図8(A)に示すように、スイッチング素子Q1のオン期間TonにインダクタL1に流れる電流の平均電流値ILav1と、スイッチング素子Q1のオフ期間ToffにインダクタL1に流れる電流の平均電流値ILav2とは異なる。また、定常状態であれば、異なったスイッチング周期において、スイッチング素子Q1のオン期間TonにインダクタL1に流れる電流の平均電流値ILav1は一定である。同様に、異なったスイッチング周期において、スイッチング素子Q1のオフ期間ToffにインダクタL1に流れる電流の平均電流値ILav2は一定である。
 従って、先ず、スイッチング素子Q1の、異なった周期におけるオン期間Tonの中央タイミング(ts11,ts12,・・・)でサンプリングすることによって第1の電流値を複数回求め、またはスイッチング素子Q1の、異なった周期におけるオフ期間Toffの中央タイミング(ts21,ts22,・・・)でサンプリングすることによって第2の電流値を複数回求め、第1の電流値同士または第2の電流値同士を比較し、変化していなければ定常状態であると判定する。そして、スイッチング素子Q1のオン期間Tonの中央タイミング(ts11,ts12,・・・)でサンプリングすることによって求めた第1の電流値ILav1と、スイッチング素子Q1のオフ期間Toffの中央タイミング(ts21,ts22,・・・)でサンプリングすることによって求めた第2の電流値ILav2とが異なった値であるとき、電流不連続モードであると判定する。
 一方、電流連続モードで且つ電流減少方向の過渡状態であれば、図8(B)に示すように、スイッチング素子Q1のオン期間TonにインダクタL1に流れる電流の平均電流より、スイッチング素子Q1のオフ期間ToffにインダクタL1に流れる電流の平均電流が低下する。この1周期における平均電流の変化は、図8(A)に示した場合と同様に現れる。しかし、異なったスイッチング周期において、スイッチング素子Q1のオン期間TonにインダクタL1に流れる電流の平均電流同士を比較すると、ΔIL1で示すように変化している。スイッチング素子Q1のオフ期間ToffにインダクタL1に流れる電流の平均電流同士で比較しても、ΔIL2で示すように同様に変化している。
 従って、前述の電流連続モードと電流不連続モードの判定を行うとともに、過度状態の有無の判定を行うことによって、電流不連続モードで且つ定常状態であるのか、電流連続モードで過渡状態であるのかを判別する。
 101…PFCコンバータ
 11…入力電圧検出回路
 12…出力電圧検出回路
 13…ディジタル信号処理回路
 20…負荷回路
 B1…ダイオードブリッジ
 C1…平滑コンデンサ
 D1…ダイオード
 Q1…スイッチング素子
 R1…電流検出用抵抗
 Toff…オフ期間
 Ton…オン期間
 ts1,ts2…中央タイミング
 Vac…交流入力電源

Claims (3)

  1.  交流入力電源から入力される交流電圧を整流する整流回路と、前記整流回路の次段に接続された、インダクタ及びスイッチング素子を含む直列回路と、前記スイッチング素子に並列接続された整流平滑回路と、前記交流入力電源から入力される入力電流が前記交流電圧に対して相似形となるように前記スイッチング素子をオン/オフ制御するスイッチング制御手段と、を備えたPFCコンバータであって、
     前記スイッチング素子のオン期間に前記スイッチング素子または前記インダクタに流れる電流を検出する電流検出回路と、
     前記スイッチング素子のオン期間の中央で、前記スイッチング素子または前記インダクタに流れる電流の検出信号をサンプリングして第1の電流値として検出する第1の電流検出手段と、
     前記スイッチング素子のオフ期間の中央で、前記インダクタに流れる電流の検出信号をサンプリングして第2の電流値として検出する第2の電流検出手段と、
     前記第1の電流値と前記第2の電流値とを比較して電流増減状態を検知する電流増減状態検知手段と、
    を設けたPFCコンバータ。
  2.  前記電流増減状態検知手段は、前記第1の電流値と前記第2の電流値とが等しいとき電流連続モードと見なし、前記第2の電流値が前記第1の電流値より小さいとき電流不連続モードと見なす、請求項1または2に記載のPFCコンバータ。
  3.  前記電流増減状態検知手段は、異なった周期での、前記第1の電流値同士の変化分または前記第2の電流値同士の変化分に基づいて定常状態と過渡状態の判定を行う、請求項1または2に記載のPFCコンバータ。
PCT/JP2009/059749 2008-11-25 2009-05-28 Pfcコンバータ WO2010061652A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801408890A CN102187560B (zh) 2008-11-25 2009-05-28 Pfc变换器
JP2010540402A JP5141774B2 (ja) 2008-11-25 2009-05-28 Pfcコンバータ
US13/106,908 US8228696B2 (en) 2008-11-25 2011-05-13 Power factor correction converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008299061 2008-11-25
JP2008-299061 2008-11-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/106,908 Continuation US8228696B2 (en) 2008-11-25 2011-05-13 Power factor correction converter

Publications (1)

Publication Number Publication Date
WO2010061652A1 true WO2010061652A1 (ja) 2010-06-03

Family

ID=42225534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059749 WO2010061652A1 (ja) 2008-11-25 2009-05-28 Pfcコンバータ

Country Status (4)

Country Link
US (1) US8228696B2 (ja)
JP (1) JP5141774B2 (ja)
CN (1) CN102187560B (ja)
WO (1) WO2010061652A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232780B2 (en) 2009-05-15 2012-07-31 Murata Manufacturing Co., Ltd. Power factor correction converter
KR20150044501A (ko) 2013-10-16 2015-04-27 삼성전기주식회사 Pfc 제어회로, 액티브 pfc 회로 및 pfc 제어 방법
JP2015162989A (ja) * 2014-02-27 2015-09-07 トヨタ自動車株式会社 昇圧コンバータ及びその制御方法
US11031870B2 (en) 2019-02-04 2021-06-08 Fuji Electric Co., Ltd. Drive signal generating circuit and power supply circuit
US11101730B2 (en) 2019-02-04 2021-08-24 Fuji Electric Co., Ltd. Drive signal generating circuit and power supply circuit

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102187560B (zh) * 2008-11-25 2013-12-11 株式会社村田制作所 Pfc变换器
JP5104946B2 (ja) * 2009-03-18 2012-12-19 株式会社村田製作所 Pfcコンバータ
DE112009004573T5 (de) * 2009-03-24 2012-09-06 Murata Manufacturing Co., Ltd. Schaltnetzteil
US20120106211A1 (en) * 2010-11-03 2012-05-03 Texas Instruments Incorporated Power factor and line distortion method and apparatus
US8261171B2 (en) * 2011-01-27 2012-09-04 Lsi Corporation Systems and methods for diversity combined data detection
JP2012217247A (ja) * 2011-03-31 2012-11-08 Semiconductor Components Industries Llc 電源回路
US9496782B2 (en) * 2011-12-22 2016-11-15 B/E Aerospace, Inc. Digitally-controlled power factor correction circuits, methods and articles of manufacture
CN103227562B (zh) * 2012-01-31 2015-03-25 群光电能科技股份有限公司 改变功率因数的方法
US8937469B2 (en) 2012-10-09 2015-01-20 Delta-Q Technologies Corp. Digital controller based detection methods for adaptive mixed conduction mode power factor correction circuit
US8654553B1 (en) * 2013-03-15 2014-02-18 Flextronics Ap, Llc Adaptive digital control of power factor correction front end
US9490694B2 (en) 2014-03-14 2016-11-08 Delta-Q Technologies Corp. Hybrid resonant bridgeless AC-DC power factor correction converter
EP2947963B1 (en) * 2014-05-20 2019-09-11 Nxp B.V. Controller
CN107005157B (zh) * 2014-10-24 2019-06-14 德克萨斯仪器股份有限公司 Dc-dc转换器和相关联的方法和控制器
CN104779786A (zh) * 2015-03-20 2015-07-15 四川长虹电器股份有限公司 变频空调pfc直流检测控制方法
USD796431S1 (en) 2015-06-12 2017-09-05 Delta-Q Technologies Corp. Battery charger
USD806647S1 (en) 2015-08-11 2018-01-02 Delta-Q Technologies Corp. Battery charger
JP6702112B2 (ja) * 2015-09-28 2020-05-27 サンケン電気株式会社 スイッチング電源装置及びled点灯回路
CN107222088B (zh) * 2016-03-22 2019-10-15 台达电子工业股份有限公司 控制模块、切换式电源供应装置及峰值电流模式控制方法
TWI595342B (zh) * 2016-03-22 2017-08-11 台達電子工業股份有限公司 控制模組、切換式電源供應裝置及切換式電源供應裝置之峰值電流模式控制方法
USD815592S1 (en) 2016-05-18 2018-04-17 Delta-Q Technologies Corp. Battery charger
USD854497S1 (en) 2016-12-05 2019-07-23 Delta-Q Technologies Corp. Battery charger
EP3577678B1 (en) * 2017-02-03 2023-01-18 Gatan Inc. Harmonic line noise correction for electron energy loss spectrometer
US10892681B2 (en) 2017-03-10 2021-01-12 Rohm Co., Ltd. DC-DC converter operable to perform current-mode control output feedback control
US10720787B2 (en) 2017-07-26 2020-07-21 Delta-Q Technologies Corp. Combined charger and power converter
US10879813B2 (en) 2018-09-21 2020-12-29 Delta-Q Technologies Corp. Bridgeless single-stage AC/DC converter
US11418125B2 (en) 2019-10-25 2022-08-16 The Research Foundation For The State University Of New York Three phase bidirectional AC-DC converter with bipolar voltage fed resonant stages
USD1004541S1 (en) 2020-05-05 2023-11-14 Delta-Q Technologies Corp. Battery charger
CN113765335B (zh) * 2021-11-09 2022-02-22 深圳市永联科技股份有限公司 一种信号采样方法及相关装置
USD1022880S1 (en) 2021-11-29 2024-04-16 Delta-Q Technologies Corp. Battery charger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014143A (ja) * 1998-06-17 2000-01-14 Tdk Corp スイッチング電源装置
JP2004229369A (ja) * 2003-01-21 2004-08-12 Toyota Industries Corp 出力電流検出回路および出力電流検出機能を備えたスイッチング電源装置
JP2006087261A (ja) * 2004-09-17 2006-03-30 Diamond Electric Mfg Co Ltd デジタルコンバータ及びその制御方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683529A (en) * 1986-11-12 1987-07-28 Zytec Corporation Switching power supply with automatic power factor correction
US5134355A (en) * 1990-12-31 1992-07-28 Texas Instruments Incorporated Power factor correction control for switch-mode power converters
US5146398A (en) * 1991-08-20 1992-09-08 Led Corporation N.V. Power factor correction device provided with a frequency and amplitude modulated boost converter
US5391976A (en) * 1993-07-28 1995-02-21 At&T Corp. Power factor control arrangement for an OLS based on quarter cycle averaged power flow
US5867379A (en) * 1995-01-12 1999-02-02 University Of Colorado Non-linear carrier controllers for high power factor rectification
DE69525441T2 (de) * 1995-03-16 2002-07-11 Franklin Electric Co Inc Leistungsfaktorkorrektur
KR0152252B1 (ko) * 1995-11-16 1999-05-01 김광호 5핀을 갖는 능동역률보정집적회로
KR0154776B1 (ko) * 1995-12-28 1998-12-15 김광호 역률 보상 회로
US5738525A (en) * 1996-06-18 1998-04-14 Versacom, Inc. Cable attenuation simulator for training CATV technicians
US5804950A (en) * 1996-06-20 1998-09-08 Micro Linear Corporation Input current modulation for power factor correction
US5742151A (en) * 1996-06-20 1998-04-21 Micro Linear Corporation Input current shaping technique and low pin count for pfc-pwm boost converter
US6388429B1 (en) * 2000-03-09 2002-05-14 Hengchun Mao Controller for power factor corrector and method of operation thereof
JP2002203988A (ja) 2000-12-28 2002-07-19 Toshiba Lsi System Support Kk 発光素子駆動回路
US6469917B1 (en) * 2001-08-16 2002-10-22 Green Power Technologies Ltd. PFC apparatus for a converter operating in the borderline conduction mode
CN100448151C (zh) * 2001-11-29 2008-12-31 三垦电气株式会社 开关电源装置
JP3988724B2 (ja) * 2002-01-08 2007-10-10 サンケン電気株式会社 力率改善コンバータ及びその制御方法
JP4363067B2 (ja) 2003-03-18 2009-11-11 サンケン電気株式会社 力率改善回路
US7990740B1 (en) * 2004-03-19 2011-08-02 Marvell International Ltd. Method and apparatus for controlling power factor correction
US7812576B2 (en) * 2004-09-24 2010-10-12 Marvell World Trade Ltd. Power factor control systems and methods
CN2930084Y (zh) * 2006-07-17 2007-08-01 海信集团有限公司 有源功率因数校正器
US8130522B2 (en) * 2007-06-15 2012-03-06 The Regents Of The University Of Colorado, A Body Corporate Digital power factor correction
JP5152185B2 (ja) * 2007-06-29 2013-02-27 株式会社村田製作所 スイッチング電源装置
US8040114B2 (en) * 2008-11-07 2011-10-18 Power Integrations, Inc. Method and apparatus to increase efficiency in a power factor correction circuit
TWI362813B (en) * 2008-11-24 2012-04-21 Holtek Semiconductor Inc Switch-mode power supply
JPWO2010061654A1 (ja) * 2008-11-25 2012-04-26 株式会社村田製作所 Pfcコンバータ
JP5273158B2 (ja) * 2008-11-25 2013-08-28 株式会社村田製作所 Pfcコンバータ
CN102187560B (zh) * 2008-11-25 2013-12-11 株式会社村田制作所 Pfc变换器
CN102422519B (zh) * 2009-05-15 2014-05-14 株式会社村田制作所 Pfc变换器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014143A (ja) * 1998-06-17 2000-01-14 Tdk Corp スイッチング電源装置
JP2004229369A (ja) * 2003-01-21 2004-08-12 Toyota Industries Corp 出力電流検出回路および出力電流検出機能を備えたスイッチング電源装置
JP2006087261A (ja) * 2004-09-17 2006-03-30 Diamond Electric Mfg Co Ltd デジタルコンバータ及びその制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232780B2 (en) 2009-05-15 2012-07-31 Murata Manufacturing Co., Ltd. Power factor correction converter
KR20150044501A (ko) 2013-10-16 2015-04-27 삼성전기주식회사 Pfc 제어회로, 액티브 pfc 회로 및 pfc 제어 방법
JP2015162989A (ja) * 2014-02-27 2015-09-07 トヨタ自動車株式会社 昇圧コンバータ及びその制御方法
US11031870B2 (en) 2019-02-04 2021-06-08 Fuji Electric Co., Ltd. Drive signal generating circuit and power supply circuit
US11101730B2 (en) 2019-02-04 2021-08-24 Fuji Electric Co., Ltd. Drive signal generating circuit and power supply circuit

Also Published As

Publication number Publication date
CN102187560A (zh) 2011-09-14
JPWO2010061652A1 (ja) 2012-04-26
US20110211377A1 (en) 2011-09-01
JP5141774B2 (ja) 2013-02-13
CN102187560B (zh) 2013-12-11
US8228696B2 (en) 2012-07-24

Similar Documents

Publication Publication Date Title
JP5141774B2 (ja) Pfcコンバータ
US8395366B2 (en) Power factor correction converter including input current detecting circuit
US8427853B2 (en) Power factor correction converter including operation mode determination unit
US7919950B2 (en) Power factor correction converter
JP5182375B2 (ja) Pfcコンバータ
JP5104947B2 (ja) スイッチング電源装置
US8274800B2 (en) DC-DC switching power supply with power factor correction
JP5316823B2 (ja) Pfcコンバータ
WO2015049716A1 (ja) 力率改善回路
EP2387817A1 (en) Pfc with high efficiency at low load
US8907648B2 (en) Power factor correction circuit, control circuit therefor and method for driving load circuit through power factor correction
JP2012217247A (ja) 電源回路
JP2011152017A (ja) スイッチング電源装置
US11601043B2 (en) Control method and control circuit for an AC-DC power supply
KR20170080518A (ko) 역률 보상 회로 및 역률 보상 회로의 구동 방법
JP6895502B2 (ja) 調光回路及び調光制御方法
JP6911677B2 (ja) 交流−直流変換装置
JP4702497B1 (ja) 多出力スイッチング電源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140889.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828902

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010540402

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09828902

Country of ref document: EP

Kind code of ref document: A1