WO2009128125A1 - 多脚歩行式移動装置の足部機構 - Google Patents
多脚歩行式移動装置の足部機構 Download PDFInfo
- Publication number
- WO2009128125A1 WO2009128125A1 PCT/JP2008/057247 JP2008057247W WO2009128125A1 WO 2009128125 A1 WO2009128125 A1 WO 2009128125A1 JP 2008057247 W JP2008057247 W JP 2008057247W WO 2009128125 A1 WO2009128125 A1 WO 2009128125A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- foot
- swing
- grounding
- base member
- grounding piece
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/0091—Shock absorbers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J17/00—Joints
- B25J17/02—Wrist joints
- B25J17/0258—Two-dimensional joints
- B25J17/0266—Two-dimensional joints comprising more than two actuating or connecting rods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/003—Programme-controlled manipulators having parallel kinematics
- B25J9/0033—Programme-controlled manipulators having parallel kinematics with kinematics chains having a prismatic joint at the base
- B25J9/0039—Programme-controlled manipulators having parallel kinematics with kinematics chains having a prismatic joint at the base with kinematics chains of the type prismatic-spherical-spherical
Definitions
- the present invention relates to a foot mechanism which is attached to a leg unit of a multi-leg walking type moving apparatus and grounded.
- a conventional multi-legged walking type mobile device for example, a biped walking type robot, generally has an upper body unit 110 and leg units 13 and 13 attached to the lower part of the upper body unit 110 as shown in FIG. Yes.
- the leg unit 13 includes a hip joint part 5, a knee joint part 7 connected to the hip joint part 5 via a thigh link 6, an ankle joint part 9 connected to the knee joint part 7 via a lower leg link 8, and an ankle
- the foot part mechanism 101 is connected to the joint part 9.
- the hip joint portion 5 includes a swing shaft 51 around the Z axis, a swing shaft 52 around the X axis, and a swing shaft 53 around the Y axis.
- the knee joint portion 7 includes a swing shaft 71 around the Y axis.
- the ankle joint portion 9 includes a swing shaft 91 around the X axis and a swing shaft 92 around the Y axis. That is, the leg unit 13 has 6 degrees of freedom.
- the X-axis direction, the Y-axis direction, and the Z-axis direction refer to the front-rear direction (forward +), the lateral direction (right side +), and the vertical direction (upward +) of the biped walking robot 112. (same as below).
- Each of the swing shafts 51 to 53, 71, 91, 92 is constituted by a drive motor that rotates around the respective shaft.
- Each drive motor is driven and controlled by a control unit 111 stored in the upper body unit 110.
- the control unit 111 drives a gait generator (not shown) that generates gait data in response to an externally requested operation, and the drive motors of the joints 5, 7, and 9 based on the gait data.
- a walking control unit (not shown) for controlling.
- the gait generator generates gait data including the target angles, target angular velocities, and the like of the drive motors in the joints 5, 7, and 9.
- the walking control unit swings the leg unit 13 in a predetermined walking pattern by driving and controlling the drive motors of the joints 5, 7, and 9 according to the gait data.
- the bipedal walking robot 112 realizes bipedal walking.
- the ZMP norm can be applied to maintain the standing balance of the biped robot as described above.
- ZMP Zero Moment Point
- the ZMP norm is a norm that the robot can walk stably without falling if the ZMP is inside a support polygon formed by connecting three or more grounding points with lines.
- an actual ZMP during walking (hereinafter referred to as an actual ZMP) matches a target ZMP in a predetermined walking pattern, Standing balance can be maintained.
- the foot mechanisms of conventional multi-legged walking robots often have a single flat bottom.
- the sole is a single plane, as shown in FIG. 15 (quoting FIG. 2 of Non-Patent Document 2), the entire sole may not touch the ground, such as riding on the convex portion P when walking on rough terrain. In this case, the area of the support polygon SP is small, and it is difficult to maintain a standing balance.
- the following two dynamic functions are expected from the bottom of the robot by ensuring a good contact and fixation with the ground.
- the torque generation function is indispensable for realizing the standing balance maintenance of the biped walking robot, and the frictional force generation function is indispensable for the robot to obtain a propulsive force without sliding on the floor surface.
- Non-Patent Document 1 points out the advantage of using a three-point support structure for the sole instead of a single plane. That is, by providing a three-point support structure for the sole, the ground contact property is improved even on rough terrain, and the torque generation function (a) is satisfied. Furthermore, a triangle having three contact points as vertices can always be used as the support polygon SP without depending on the shape of the rough terrain, and the acquisition of the information of c) is facilitated.
- the foot mechanism 301 described in Patent Document 1 mainly includes a base portion 302, and a flange portion 331 fixedly disposed near the rear end of the base portion 302.
- the joint portions (drive motors) 332 and 332 provided at the lower end of the base portion 302 extend substantially side by side from the joint portions 332 and 332 and can swing up and down with respect to the base portion 302. And a pair of foot tip portions 333 and 333 arranged.
- a triaxial force sensor 334 for obtaining floor reaction force information is provided on the lower surfaces of the distal ends of the heel portion 331 and the toe portions 333 and 333.
- the joint portions 332 and 332 are appropriately driven and controlled based on the detection values from the respective triaxial force sensors 334 so that the heel portion 331 and the toe portions 333 and 333 are always grounded at three points even on rough terrain. It has become.
- a foot mechanism described in Non-Patent Document 2 has been proposed as a similar mechanism that is a four-point support structure instead of three points.
- the foot mechanism 201 described in Non-Patent Document 2 has support members 203 that passively move up and down at the four corners of the foot mechanism 201 as shown in FIG. 16 (quoting FIG. 3 of Non-Patent Document 2). Therefore, it follows the unevenness of the road surface.
- Each support member 203 is provided with a switch (not shown) that senses grounding. When the switch senses the grounding of all four support members 203, each support member 203 is locked. As a result, the support polygon is quickly formed and held.
- Patent Document 1 and Non-Patent Document 2 can be grounded only at points, the function of generating a frictional force (b) is not necessarily realized sufficiently. Furthermore, a force sensor having more axes than necessary to obtain the information (d) was required, and the mechanism was complicated, expensive and fragile.
- the present inventor employs a three-point support structure and includes three uniaxial force sensors that detect a force only in the normal direction of the virtual sole plane defined as a plane passing through all three grounding points.
- a foot mechanism has been proposed that can obtain the information of d) with a force sensor having a minimum number of axes (see Patent Document 2).
- Patent Document 2 a simple, inexpensive and hard-to-break mechanism is realized, but it is still point grounding, and the function of generating a frictional force in the a) is not sufficient.
- Non-patent document 3 can be cited as an approach other than the three-point support structure.
- a foot mechanism that secures high grounding property by using a remote center mechanism and a connecting differential mechanism in combination, and satisfies the functions of a) and b).
- the foot mechanism is a mechanism in which one remote center mechanism and a coupled differential mechanism having a large number of independent ground planes in one foot follow each other while deforming adaptively to uneven terrain. Since the center mechanism and the coupled differential mechanism do not have a fixing function in themselves, in order to satisfy the functions of a) and b) above, a free joint is used when adaptively following rough terrain, and a fixed structure is used after grounding.
- a brake mechanism that becomes a joint must be provided in the movable part of the remote center mechanism and the connecting differential mechanism.
- a large number of displacement sensors are arranged in a large number of movable parts of the remote center mechanism and the connecting differential mechanism, and the current posture of all the movable parts of the foot mechanism is measured. There must be.
- a force sensor with more axes than necessary is required, as in the case of a robot having a foot mechanism constituted by a single plane.
- the foot mechanism of Non-Patent Document 3 can satisfy all of the conditions a), b), c), and d) by carefully designing the mechanism and sensor. It must be a complex structure.
- JP 2004-90194 A Japanese Patent Application No. 2007-288103 Michihiko Shoji, Higashi Shishi, Takayuki Takahashi, Eiji Nakano: Foot structure for improving the standing ability of biped robots, Journal of Biomechanism Society, Vol.25, No.1, pp.36-42, 2001.
- the present invention has been made in view of the above circumstances.
- the object of the present invention is to be able to satisfy the conditions a), b) and c) on rough terrain at the same time, and to be simple, inexpensive and difficult to break.
- An object of the present invention is to provide a foot mechanism of a multi-leg walking type moving device.
- the present invention provides (1) a foot mechanism that is attached to the lower end of a leg unit in a multi-leg walking type moving device and is grounded, and a base member that is attached to the lower end of the leg unit;
- the grounding piece receives a floor reaction force via the grounding surface, the grounding piece is connected so as to be able to passively swing around the swing center located near the grounding surface.
- the base member is configured to be regarded as rigid with respect to a direction other than the normal direction of the plane including each of the swing centers. Is to provide.
- “foot” refers to a portion corresponding to an ankle to toe in humans
- leg refers to a portion corresponding to an ankle to pelvis in humans (hereinafter the same).
- the present invention is the above configuration, wherein (2) the swing mechanism is composed of three rigid rods each provided with a rotatable joint at each end, and each rod has one end connected to the rotatable joint.
- a triangular pyramid ridge line that is attached to the upper surface of the grounding piece and the other end is attached to the lower surface of the base member via the rotatable joint, and has the rocking center as a vertex in a reference posture. It is arrange
- the foot part mechanism of the multileg walking type moving apparatus characterized by the above-mentioned is provided.
- the “rotary joint” refers to a mechanical element that can rotate about three axes or two axes, such as a universal joint or a ball joint (hereinafter the same).
- the swing mechanism in the configuration (1), (3) the swing mechanism includes three rigid rods each having an elastic member attached to both ends, and one end of each rod is interposed through the elastic member. Are attached to the upper surface of the grounding piece and the other end is attached to the lower surface of the base member via the elastic member to form a ridge line of a triangular pyramid having the rocking center as a vertex in a reference posture.
- the foot part mechanism of the multi-leg walking type moving device is provided.
- the swing mechanism is composed of one rigid rod provided with a rotatable joint at one end, and the rod has one end of the grounding piece.
- a foot mechanism of a multi-legged walking type movement device which is attached to the upper surface via the rotatable joint and the other end is fixed to the lower surface of the base member.
- the present invention provides, in any one of the above-described configurations, (5) a translation / swivel mechanism that is provided for each grounding piece and that couples the swing mechanism to the base member so as to translate and / or pivot.
- the grounding piece receives a floor reaction force through the grounding surface, the grounding piece is connected so as to be able to passively translate and / or swivel along a plane including the swing centers.
- the foot part mechanism of the multi-leg walking type moving device is further provided.
- the present invention further includes (6) a biasing unit that biases the grounding piece in a direction to return to the predetermined posture when the grounding piece swings and / or translates from the predetermined posture.
- the foot part mechanism of the multi-leg walking type moving device is provided.
- the swing mechanism is composed of three laminated rubbers in which a plurality of rubber plates and metal plates are alternately laminated, and each laminated rubber has one end Is attached to the upper surface of the grounding piece, and the other end is attached to the lower surface of the base member, and is arranged so as to constitute a triangular pyramid ridge line having the rocking center as a vertex in a reference posture.
- the foot part mechanism of the multi-leg walking type moving device is provided.
- the foot mechanism of the present invention has a structure in which the soles are grounded at the grounding surfaces of the three grounding pieces that are dispersedly arranged so that the soles are not arranged in a straight line. Furthermore, each grounding piece can passively swing around the center of swinging located near the grounding surface in response to the floor reaction force, and can naturally follow the floor surface.
- the foot mechanism of the present invention is substantially equivalent to the foot mechanism having the three-point support structure. Accordingly, the ground contact property is improved even on rough terrain, and the torque generation function of a) is satisfied. Furthermore, a triangle that has three swing centers fixed to the base member as vertices is always used as a support polygon without depending on the shape of the rough terrain and the swinging state of the grounding piece. This makes it easy to obtain the information of c). This is an advantage not found in the foot mechanism of Non-Patent Document 3.
- a brake mechanism is required to satisfy the torque generation function of a), and a large number of displacement sensors are required to acquire the information of c). According to the above, the above a) and c) are realized without any necessity.
- the foot mechanism of the present invention even if there are undulations or protrusions on the floor surface, the three grounding surfaces are independently in contact with the floor surface in the vicinity of each swing center. Can be imitated.
- the foot mechanism of the present invention is substantially equivalent to the three-point support structure, but is grounded to the floor surface by three-surface contact instead of three-point contact.
- a foot mechanism of a multi-legged walking type moving device that satisfies the functions (a) and (c) and the frictional force generation function of (a) and is simple, inexpensive, and difficult to break.
- the swinging center of the grounding piece is positioned in the vicinity of the grounding surface, so that the standing leg (the foot is grounded) from the free leg (the foot is not grounded). It is possible to make a passive transition without turning the swinging mechanism and without causing a slip with the floor surface at the already grounded point.
- the foot mechanism of the present invention can be adapted to the foot mechanism of Patent Document 2. That is, the “grounding point” in the foot mechanism of the three-point support structure of Patent Document 2 is made to coincide with the “swing center” in the foot mechanism of the present invention, and the “virtual sole plane” of Patent Document 2 is It can coincide with the “plane including all three swing centers” in the foot mechanism of the invention.
- the effect of obtaining the information (d) by the force sensor having the minimum number of axes which is an advantage of the foot mechanism of Patent Document 2
- only the foot mechanism of Patent Document 2 can be introduced.
- the function of generating a frictional force (b), which could not be realized sufficiently, can be realized as an advantage of the foot mechanism of the present invention. That is, when the foot mechanism of the present invention is adapted to the foot mechanism of Patent Document 2, it can satisfy all of the above a), a), c), and d) even on rough terrain, Necessary and sufficient information for maintaining the balance of position by automatic control can be acquired with a minimum number of sensors.
- the swinging mechanism and the translation / turning mechanism can be naturally returned to the equilibrium state at the time of transition from the standing leg to the free leg.
- the foot mechanism 1 includes a base member 2 attached to a lower end of a leg unit 13, which will be described later, and grounding pieces 3, 3, 3 each having a flat grounding surface 3a. And a rocking mechanism 4 that is provided for each grounding piece 3 and that pivotably connects the grounding piece 3 to the base member 2.
- the base member 2 includes a columnar main body 21 connected to the lower end of the leg unit 13, intermediate portions 22, 22, 22 extending from the main body 21, and a columnar tip provided at the tip of each intermediate portion 22. And a compression spring 25 that urges the slide piece 24 in the sliding direction and against the floor reaction force.
- Each intermediate part 22 is formed in a rod shape and extends from the main body part 21 downward in different directions.
- the distal end portion 23 has an accommodation hole 23 a for accommodating the shaft portion 24 a of the slide piece 24.
- a detector 26 for detecting the slide amount of the slide piece is disposed in the accommodation hole 23a.
- the detector 26 is a potentiometer, a laser displacement meter, a gap sensor, or the like.
- tip part 23 is compatible with the foot
- the slide piece 24 includes a shaft portion 24a and a plate portion 24b provided so as to be orthogonal to the tip of the shaft portion 24a.
- the shaft portion 24 a is accommodated and guided in the accommodation hole 23 a of the distal end portion 23.
- the slide direction of each slide piece 24 coincides with the normal direction of a plane including all the swing centers C described later.
- the compression spring 25 is disposed between the lower surface of the tip portion 23 and the upper surface of the plate portion 24 b of the slide piece 24.
- the swing mechanism 4 is composed of three rigid rods 42 each having a ball joint portion 41a at one end and a ball joint portion 41b at the other end.
- Each rod 42 is attached to the lower surface 24c of the plate portion 24b of the slide piece 24 via the ball joint portion 41a. At the same time, each rod 42 is attached to the upper surface 3b of the grounding piece 3 via the ball joint portion 41b.
- the ball joint portion 41a is attached to the slide piece 24 which are not aligned on a straight line.
- the ball joint portion 41b is attached to the grounding piece 3 that are not aligned in a straight line.
- Each rod 42 forms a ridge line of a triangular pyramid that is sharpened toward the grounding piece 3 side. As shown in FIG.
- each rod 42 has the triangular pyramid apex T in the vicinity of the grounding surface 3a of the grounding piece 3 when the upper surface 3b of the grounding piece 3 and the lower surface 24c of the slide piece 24 are parallel to each other. It is arranged to be located.
- the foot mechanism 1 configured as described above is a bipedal walking robot 12 having an upper body unit 10 and leg units 13, 13.
- the main body 21 is connected and attached.
- the leg unit 13 of the biped walking robot 12 includes a hip joint part 5, a knee joint part 7, an ankle joint part 9, a thigh link 6 connecting the hip joint part 5 and the knee joint part 7, and the knee joint part 7 and the ankle joint.
- the lower leg link 8 is connected to the portion 9.
- the hip joint portion 5 includes a swing shaft 51 around the Z axis, a swing shaft 52 around the X axis, and a swing shaft 53 around the Y axis.
- the knee joint portion 7 includes a swing shaft 71 around the Y axis.
- the ankle joint portion 9 includes a swing shaft 91 around the X axis and a swing shaft 92 around the Y axis. Thereby, the leg unit 13 has 6 degrees of freedom.
- Each of the swing shafts 51 to 53, 71, 91, 92 is constituted by a drive motor that rotates around the respective shaft.
- Each drive motor includes a rotary encoder that detects the amount of rotation.
- Each drive motor is driven and controlled by a control unit 11 stored in the upper body unit 10.
- control unit 11 includes a gait generator 11a, a calculator 11b, a corrector 11c, and a drive motor controller 11d.
- the gait generator 11a includes target angles, target angular velocities, target ZMPs, and the like of the swing shafts 51 to 53, 71, 91, and 92 in the leg unit 13 in response to a request operation signal input from the outside. Gait data is generated and output to the correction unit 11c.
- the calculation unit 11b receives an angle signal of each drive motor from a rotary encoder provided in the drive motor of each joint portion 5, 7, 9 in the leg unit 13. Based on the angle signal, the calculation unit 11b calculates joint state data related to the angles, angular velocities, etc. of the drive motors of the joints 5, 7, 9 and outputs them to the drive motor control unit 11d.
- the floor reaction force detection value is input from the floor reaction force detector 26 in the foot mechanism 1 to the calculation unit 11b.
- the calculation unit 11b calculates an actual ZMP based on the floor reaction force detection value from each floor reaction force detector 26 and outputs it to the correction unit 11c.
- the correction unit 11c includes the swing shafts 51 to 53 such that the actual ZMP input from the calculation unit 11b matches the target ZMP input from the gait generation unit 11a or is within the support polygon. , 71, 91, 92, gait data such as target angles and target speeds are corrected. The corrected gait data is input to the drive motor control unit 11d.
- the drive motor control unit 11d Based on the difference between the corrected gait data from the correction unit 11c and the joint state data from the calculation unit 11b, the drive motor control unit 11d generates control signals for the drive motors of the joint units 5, 7, and 9. Generate.
- the drive motor control unit 11d controls the drive of each drive motor by outputting the control signal to each drive motor.
- the foot mechanism 1 configured as described above is configured such that the soles are grounded by the grounding surfaces 3a of the three grounding pieces 3 that are dispersedly arranged so that the soles are not arranged in a straight line. Yes. Furthermore, each grounding piece can passively swing around the swinging center C located in the vicinity of the grounding surface in response to the floor reaction force, and can naturally follow the floor surface.
- the foot mechanism 1 of the present invention is substantially equivalent to the foot mechanism having the three-point support structure. Accordingly, the ground contact property is improved even on rough terrain, and the torque generation function (a) is satisfied. Further, it does not depend on the shape of the rough terrain and does not depend on the state of rocking of the grounding piece 3, and always supports a triangle having three rocking centers C fixed to the base member 2 as vertices. It is possible to obtain a square shape, and it becomes easy to acquire the information of c).
- the foot mechanism 1 includes the detector 26 that is compatible with the foot mechanism described in Patent Document 2, so that only the floor reaction force acting in the normal direction of the plane including each swing center C is obtained. Each can be acquired. As a result, information on the actual ZMP based on the local coordinate axis fixed to the plane including each oscillation center C, that is, the information on the above (d) can be easily obtained.
- the foot mechanism 1 even if the floor has an undulation as shown in FIG. 5A and the floor has a protrusion P as shown in FIG.
- the floor surface can be imitated so as to be in contact with the floor surface in the vicinity of the moving center C. That is, the foot mechanism 1 is substantially equivalent to the three-point support structure, but is grounded to the floor surface by three-surface contact instead of three-point contact.
- the frictional force generation function of the above a) is satisfied simultaneously with the above a), c) and d).
- the swinging center C of the grounding piece 3 is positioned in the vicinity of the grounding surface 3a, so that when the transition is made from the free leg to the standing leg, as shown schematically in FIG.
- the amount of movement of the piece 3 in the direction along the floor surface is small, and it can follow the floor surface smoothly. If the swing center C is far from the ground surface 3a, the amount of movement of the ground piece 103 in the direction along the floor surface increases as shown in FIG. become.
- the ground pieces 103 interfere with each other as shown in FIG. 6B.
- FIG. 6C there is a case where the swing mechanism is scratched and the copying operation cannot be performed.
- grounding piece 3 is passively oscillated, no driving means is required and the structure is simple.
- the foot mechanism 1 is configured to be compatible with the foot mechanism described in Patent Document 2. That is, the foot mechanism 1 matches the “grounding point” in the foot mechanism of the three-point support structure of Patent Document 2 with the “swing center C” in the foot mechanism of the present invention.
- the “plantar plane” is configured to coincide with the “plane including all three swing centers C” in the foot mechanism of the present invention.
- the foot mechanism 1 can satisfy all of the above a), b), c), and d) even on rough terrain, and to maintain the standing balance of the biped robot 12 by automatic control.
- the foot mechanism of the multi-legged walking type mobile device that can acquire necessary and sufficient information with only the minimum number of detectors 26 and is simple, inexpensive, and difficult to break.
- the compression spring 25 relieves the impact when touching the ground, it is possible to protect each drive part and each joint part of the multi-leg walking type moving device.
- the area and shape of the three ground planes 3a can be appropriately selected as long as they do not interfere with each other at the time of swinging. As shown in FIG. 7A, the area of each ground plane 3a may be different. As shown in FIGS. 7B and 7C, the shape of each ground plane 3a may be different.
- the shape of the base member 2 may be any shape as long as it does not contact the floor and does not interfere with the swing of the grounding piece 3. Furthermore, the base member 2 may not include the slide piece 24 as shown in FIG. In this case, one end of the swing mechanism 4 is attached to the lower surface of the tip portion 23a of the base member 2a. In this case, a known floor reaction force detector 26 a such as a pressure sensor may be provided between each tip 23 a and the swing mechanism 4, for example.
- the swing mechanism 4 has one end of one rigid rod 42 attached to the lower surface 24c of the slide piece 24 and the other end attached to the upper surface 3b of the ground piece 3 via a ball joint or universal joint 41c.
- the swing mechanism 4a attached to can also be used. In this case, it is necessary to arrange the ball joint or universal joint 41c so that the swing center C of the grounding piece 3 is located as close to the grounding surface 3a as possible.
- the swing mechanism 4 has one end of three rods 42 attached to the lower surface 24c of the slide piece 24 via an elastic member 41d such as a spring and the other end connected to an elastic member 41e such as a spring.
- the swinging mechanism 4b attached to the upper surface 3b of the grounding piece 3 may be used.
- a spring 43 can be provided between the surfaces 24c and 3b to which the swing mechanism 4 is attached.
- the base member 2 may be provided with a translation / turning mechanism 27 that can passively translate and / or turn the surface to which the swing mechanism 4 is attached along the surface.
- the translation / swivel mechanism 27 is, for example, a circular box 24d connected to the lower end of the shaft 24a of the slide piece 24 and having an opening 24e at the bottom, a translation plate 28 accommodated in the circular box 24d, The three rigid rods 29 attached to the lower surface 28a of the translation plate 28 and the bottom surface 24f of the circular box 24d via ball joints or universal joints 29a and 29b, respectively.
- the grounding piece 3 is attached to the lower surface 28 a of the translation plate 28 via the swing mechanism 4.
- the translation plate 28 can passively translate and / or swivel along the lower surface 28a. Therefore, the grounding piece 3 attached to the translation plate 28 can likewise translate and / or pivot in a passive manner.
- the foot mechanism 1 has a small amount of movement in the direction along the floor surface of the grounding piece 3 and can smoothly follow the floor surface.
- This slight slip on the floor surface is also absorbed, and it is possible to imitate without slipping at all.
- the translation / revolution mechanism 27 uses three rigid rods 29 attached to the lower surface 28a of the translation plate 28 and the bottom surface 24f of the circular box 24d via springs 29c and 29d, respectively.
- the translation / swivel mechanism 27a may be configured.
- the swing mechanism 4 is composed of three laminated rubbers 44 formed by alternately laminating a plurality of rubber plates and metal plates, one end of which is attached to the lower surface 24 c of the slide piece 24.
- the swing mechanism 4d may include a plate 45 to which the other end of the laminated rubber 44 is attached, and a spacer 46 disposed between the plate 45 and the grounding piece 3.
- the laminated rubber 44 is arranged so as to form a triangular pyramid ridge line having the swing center C as a vertex T in a state where the upper surface 3b of the ground piece 3 and the lower surface 24c of the slide piece 24 are parallel to each other. Yes.
- the grounding piece 3 can swing around the swing center C as shown in FIG. 13B, and as shown in FIG. 13C, it translates in a plane parallel to the lower surface 24c of the slide piece 24. Can exercise.
- the three ground planes 3a may be sealed by being connected to each other with a flexible material such as a waterproof cloth or rubber in order to prevent dust and water. Further, not only the ground contact surface 3a but also the swing mechanism 4, the translation / swivel mechanism 27, and the base member may be sealed.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Toys (AREA)
- Manipulator (AREA)
Abstract
不整地においても、トルク発生機能および摩擦力発生機能を発揮することができるとともに、支持多角形の形状および足部機構に対する位置関係に関する情報を取得することができる、単純かつ安価で壊れにくい多脚歩行式移動装置の足部機構を提供する。 本発明の足部機構(1)は、脚ユニットの下端に取り付けられるベース部材(2)と、それぞれ接地面(3a)を備えた3つの接地片(3)であって、それぞれが一直線上に並ばないものと、接地片(3)ごとに設けられて接地片(3)をベース部材(2)に揺動可能に連結する揺動機構(4)とを含んでいる。揺動機構(4)は、接地片(3)が接地面(3a)を介して床反力を受けた際、接地片(3)が接地面(3a)近傍に位置する揺動中心まわりに受動的に揺動し得るように、接地片(3)をベース部材(2)に連結する。ベース部材(2)は、各揺動中心を含んでなる平面の法線方向以外に関して剛体的とみなせるように構成されている。
Description
本発明は、多脚歩行式移動装置の脚ユニットに取り付けられて接地する、足部機構に関するものである。
従来の多脚歩行式移動装置、例えば二脚歩行式ロボットは一般に、図14に示す如く、上体ユニット110と、上体ユニット110の下部に取り付けられた脚ユニット13、13とを有している。脚ユニット13は、股関節部5と、大腿リンク6を介して股関節部5に連結された膝関節部7と、下腿リンク8を介して膝関節部7に連結された足首関節部9と、足首関節部9に連結された足部機構101とにより、構成されている。
股関節部5は、Z軸まわりの揺動軸51と、X軸まわりの揺動軸52と、Y軸まわりの揺動軸53とにより構成されている。膝関節部7は、Y軸まわりの揺動軸71からなっている。足首関節部9は、X軸まわりの揺動軸91と、Y軸まわりの揺動軸92とにより、構成されている。つまり、脚ユニット13は6自由度を有している。
なお、ここでのX軸方向、Y軸方向およびZ軸方向とは、二脚歩行式ロボット112の前後方向(前方+)、横方向(向かって右側+)、上下方向(上方+)を指す(以下同じ)。
なお、ここでのX軸方向、Y軸方向およびZ軸方向とは、二脚歩行式ロボット112の前後方向(前方+)、横方向(向かって右側+)、上下方向(上方+)を指す(以下同じ)。
各揺動軸51~53、71、91、92は、それぞれの軸周りに回転する駆動モータにより構成されている。各駆動モータは、上体ユニット110内に格納された制御ユニット111によって駆動制御される。
制御ユニット111は、外部からの要求動作に対応して歩容データを生成する歩容生成部(不図示)と、この歩容データに基づいて各関節部5、7、9の駆動モータを駆動制御する歩行制御部(不図示)と、を備えている。
歩容生成部は、各関節部5、7、9における駆動モータの目標角度、目標角速度等を含む歩容データを生成する。歩行制御部は、その歩容データに従って各関節部5、7、9の駆動モータを駆動制御することにより、所定の歩行パターンで脚ユニット13を揺動させる。これにより、二脚歩行式ロボット112は、二脚歩行を実現している。
上記のような二脚歩行式ロボットの立位バランス保持に関し、ZMP規範が適用され得る。ここで、「ZMP(Zero Moment Point)」とは、ロボットの足底が受ける床反力の圧力中心であり、足底が平面である場合には足底が床面から受けるモーメント(の水平成分)がゼロになる点のことである。ZMP規範とは、このZMPが、3点以上の接地点を線で結ぶことで形成される支持多角形の内側にあれば、ロボットは転倒せずに安定に歩行し得るとする規範である。
このZMP規範に基づき、歩行中における実際のZMP(以下、実ZMPと称する)を、所定の歩行パターンにおける目標ZMPに一致させるようにロボットの状態を制御することにより、多脚歩行式移動装置の立位バランスを保持することができる。
ところで、従来の多脚歩行式ロボットの足部機構は、その足底が単一平面で構成されていることが多い。足底が単一平面であると、図15(非特許文献2の図2を引用)に示す如く、不整地歩行の際、凸部Pに乗り上げる等、足底全体が接地しない場合がある。この場合、支持多角形SPの面積が小さくなり、立位バランスを保持することが困難となっていた。
一般に、ロボットの足底には、地面との良好な接触固定状態を確保することによる次の二つの力学的な機能が期待される。
ア)脚のアクチュエータによって接地点まわりにトルクを発生できるようにすること(トルク発生機能)
イ)歩行の推進力の反作用として必要とされる床面との摩擦力を発生できるようにすること(摩擦力発生機能)
トルク発生機能は、二脚歩行式ロボットの立位バランス保持を実現するために不可欠であり、摩擦力発生機能は、ロボットが床面を滑らずに推進力を得るために不可欠である。
ア)脚のアクチュエータによって接地点まわりにトルクを発生できるようにすること(トルク発生機能)
イ)歩行の推進力の反作用として必要とされる床面との摩擦力を発生できるようにすること(摩擦力発生機能)
トルク発生機能は、二脚歩行式ロボットの立位バランス保持を実現するために不可欠であり、摩擦力発生機能は、ロボットが床面を滑らずに推進力を得るために不可欠である。
さらに、ロボットの立位バランス保持を自動制御によって行なう場合には、次の二つの情報を取得できることが望ましい。
ウ)支持多角形SPの形状および足部機構との位置関係
エ)支持多角形SP内におけるZMPの位置
ウ)支持多角形SPの形状および足部機構との位置関係
エ)支持多角形SP内におけるZMPの位置
しかしながら、前述したような、単一平面で構成される足底で不整地歩行を行なう図15のような状況においては、前記ア)、イ)の力学的機能が共に実現されず、またウ)、エ)の情報の取得も困難である。このように、上記4つの要件を満たさなくなるために、図15のような状況においては、ロボットは歩行および立位バランス保持が困難となるのである。
この問題に対し、例えば、非特許文献1では、足底を単一平面ではなく3点支持構造とすることの利点が指摘されている。つまり、足底を3点支持構造とすることで、不整地においても接地性が向上し、前記ア)のトルク発生機能が満足される。さらに、不整地の形状に依存せず、3つの接地点を頂点とする三角形を常に支持多角形SPとすることができ、前記ウ)の情報の取得が容易となる。
このような3点支持構造の利点から、特許文献1記載の足部機構が提案されている。
特許文献1記載の足部機構301は主に、図17(特許文献1の図2を引用)に示す如く、ベース部302と、ベース部302の後端付近に固定配置された踵部331と、ベース部302の下端に設けられた関節部(駆動モータ)332、332と、関節部332、332から実質的に前方に向かって並んで延び、ベース部302に対して上下に揺動可能に配置された一対の足先部333、333と、から構成されている。踵部331および足先部333、333の先端の下面には、床反力情報を得るための3軸力センサ334が設けられている。各3軸力センサ334からの検出値に基づき、関節部332、332が適宜駆動制御されることにより、不整地においても、踵部331と足先部333、333とで常に3点接地するようになっている。
特許文献1記載の足部機構301は主に、図17(特許文献1の図2を引用)に示す如く、ベース部302と、ベース部302の後端付近に固定配置された踵部331と、ベース部302の下端に設けられた関節部(駆動モータ)332、332と、関節部332、332から実質的に前方に向かって並んで延び、ベース部302に対して上下に揺動可能に配置された一対の足先部333、333と、から構成されている。踵部331および足先部333、333の先端の下面には、床反力情報を得るための3軸力センサ334が設けられている。各3軸力センサ334からの検出値に基づき、関節部332、332が適宜駆動制御されることにより、不整地においても、踵部331と足先部333、333とで常に3点接地するようになっている。
また、3点ではなく4点支持構造であるが類似の機構として、非特許文献2記載の足部機構が提案されている。
非特許文献2記載の足部機構201は、図16(非特許文献2の図3を引用)に示す如く、足部機構201の4隅に受動的に上下動する支持部材203を有していて、路面の凹凸に倣うようになっている。各支持部材203には、それぞれ接地を感知するスイッチ(不図示)が設けられている。スイッチが4つの支持部材203全ての接地を感知すると、各支持部材203がロックされる。これにより、速やかに支持多角形が構成され、保持される。
非特許文献2記載の足部機構201は、図16(非特許文献2の図3を引用)に示す如く、足部機構201の4隅に受動的に上下動する支持部材203を有していて、路面の凹凸に倣うようになっている。各支持部材203には、それぞれ接地を感知するスイッチ(不図示)が設けられている。スイッチが4つの支持部材203全ての接地を感知すると、各支持部材203がロックされる。これにより、速やかに支持多角形が構成され、保持される。
しかしながら、特許文献1および非特許文献2の足部機構では、点でしか接地できないために、前記イ)の摩擦力発生機能は必ずしも十分に実現されない。さらに、前記エ)の情報を得るために必要以上の軸数の力センサを必要とし、複雑かつ高価で壊れやすい機構であった。
そこで、本発明者は、3点支持構造を採用するとともに、3つの接地点すべてを通る平面として定義される仮想足底平面の法線方向のみの力を検出する1軸力センサを3つ備えることにより、最小の軸数の力センサで前記エ)の情報を得ることができる足部機構を提案した(特許文献2参照)。これによって、単純かつ安価で壊れにくい機構が実現されるが、依然として点接地であり、前記イ)の摩擦力発生機能は十分ではなかった。
3点支持構造以外のアプローチとしては非特許文献3が挙げられる。ここでは、リモートセンター機構と連結差動機構の併用によって高い接地性を確保し、前記ア)、イ)の機能を満足する足部機構が提案されている。しかし、当該足部機構は、一つの足部において一つのリモートセンター機構と多数の独立した接地面を持つ連結差動機構がそれぞれ不整地に対して適応的に変形しながら倣う機構であり、リモートセンター機構と連結差動機構は、それ自体には固定機能を持たないため、前記ア)、イ)の機能を満足させるには、不整地に適応的に倣う時は自由関節、接地後は固定関節となるようなブレーキ機構を、リモートセンター機構と連結差動機構の可動部分に設けなければならない。
加えて、前記ウ)の情報を取得するためには、リモートセンター機構と連結差動機構の多数の可動部分に多数の変位センサを配置し、足部機構の全可動部分の現在姿勢を計測しなければならない。さらに、前記エ)の情報を取得するためには、単一平面で構成された足部機構を持つロボットと同様に、必要以上の軸数の力センサを必要とする。
以上、非特許文献3の足部機構は、機構とセンサを注意深く設計することにより、前記ア)、イ)、ウ)、エ)の条件をすべて満たすことが可能であるが、反面、非常に複雑な構造とならざるを得ない。
特開2004-90194号公報
特願2007-288103
庄司道彦、王志東、高橋隆行、中野栄二:二脚ロボットの佇立能力向上のための足構造、バイオメカニズム学会誌、Vol.25, No.1, pp.36-42, 2001.
橋本健二、菅原雄介、林昭宏、川瀬正幹、太田章博、田中智明、遠藤信綱、沢戸瑛昌、林憲玉、高西淳夫:2足歩行ロボットの不正地適応能力向上を図った足部機構の開発(第3報:新保持機構開発による不整地歩行の実現)、第24回日本ロボット学会学術講演会講演論文集、2F15, 2006.
尾形勝、広瀬茂男:歩行ロボットの足首機構の研究(機能と形態に関する基本的考察)、第9回ロボティクス・シンポジア講演論文集、pp. 1-7, 1A1, 2004.
加えて、前記ウ)の情報を取得するためには、リモートセンター機構と連結差動機構の多数の可動部分に多数の変位センサを配置し、足部機構の全可動部分の現在姿勢を計測しなければならない。さらに、前記エ)の情報を取得するためには、単一平面で構成された足部機構を持つロボットと同様に、必要以上の軸数の力センサを必要とする。
以上、非特許文献3の足部機構は、機構とセンサを注意深く設計することにより、前記ア)、イ)、ウ)、エ)の条件をすべて満たすことが可能であるが、反面、非常に複雑な構造とならざるを得ない。
本発明は上記事情に鑑みてなされたものであり、その目的とするところは、不整地においても前記ア)、イ)、ウ)の条件を同時に満たすことができるとともに、単純かつ安価で壊れにくい多脚歩行式移動装置の足部機構を提供することにある。
上記課題を解決するために本発明は、(1)多脚歩行式移動装置における脚ユニットの下端に取り付けられて接地する足部機構であって、前記脚ユニットの下端に取り付けられるベース部材と、それぞれ接地面を備えた3つの接地片であって、それぞれが一直線上に並ばないものと、前記接地片ごとに設けられて前記接地片を前記ベース部材に揺動可能に連結する揺動機構であって、前記接地片が前記接地面を介して床反力を受けた際、当該接地片が当該接地面近傍に位置する揺動中心まわりに受動的に揺動し得るように連結するものと、を含み、前記ベース部材は、前記各揺動中心を含んでなる平面の法線方向以外に関して剛体的とみなせるように構成されていることを特徴とする多脚歩行式移動装置の足部機構を提供するものである。
ここで、「足」とは人間でいう足首からつま先までに対応する部分を指し、「脚」とは人間でいう足首から骨盤までに対応する部分を指す(以下、同じ)。
ここで、「足」とは人間でいう足首からつま先までに対応する部分を指し、「脚」とは人間でいう足首から骨盤までに対応する部分を指す(以下、同じ)。
また本発明は、上記構成において、(2)前記揺動機構は、両端にそれぞれ回転自在関節部が設けられた3本の剛体ロッドからなり、前記各ロッドは、一端が前記回転自在関節部を介して前記接地片の上面に取り付けられているとともに他端が前記回転自在関節部を介して前記ベース部材の下面に取り付けられていて、基準姿勢において前記揺動中心を頂点とする三角錐の稜線を構成するように配置されていることを特徴とする多脚歩行式移動装置の足部機構を提供するものである。
ここで、「回転自在関節」とは、ユニバーサルジョイントあるいはボールジョイント等の、3軸まわりあるいは2軸まわりに回転自在な機械要素を指す(以下、同じ)。
ここで、「回転自在関節」とは、ユニバーサルジョイントあるいはボールジョイント等の、3軸まわりあるいは2軸まわりに回転自在な機械要素を指す(以下、同じ)。
また本発明は、上記構成(1)において、(3)前記揺動機構は、両端にそれぞれ弾性部材が取り付けられた3本の剛体ロッドからなり、前記各ロッドは、一端が前記弾性部材を介して前記接地片の上面に取り付けられているとともに他端が前記弾性部材を介して前記ベース部材の下面に取り付けられていて、基準姿勢において前記揺動中心を頂点とする三角錐の稜線を構成するように配置されていることを特徴とする多脚歩行式移動装置の足部機構を提供するものである。
また本発明は、上記構成(1)において、(4)前記揺動機構は、一端に回転自在関節部が設けられた1本の剛体ロッドからなり、前記ロッドは、前記一端が前記接地片の上面に前記回転自在関節部を介して取り付けられているとともに他端が前記ベース部材の下面に固定されていることを特徴とする多脚歩行式移動装置の足部機構を提供するものである。
また本発明は、上記構成のいずれかにおいて、(5)前記接地片ごとに設けられて前記揺動機構を前記ベース部材に並進および/または旋回可能に連結する並進/旋回機構であって、前記接地片が前記接地面を介して床反力を受けた際、当該接地片が、前記各揺動中心を含んでなる平面に沿って受動的に並進および/または旋回し得るように連結するものをさらに含んでいることを特徴とする多脚歩行式移動装置の足部機構を提供するものである。
また本発明は、上記構成のいずれかにおいて、(6)前記接地片が所定姿勢から揺動および/または並進した場合に前記所定姿勢へ復帰させる方向に付勢する付勢手段をさらに含んでいることを特徴とする多脚歩行式移動装置の足部機構を提供するものである。
また本発明は、上記構成(1)において、(7)前記揺動機構は、ゴム板および金属板を交互に複数枚積層してなる3本の積層ゴムからなり、前記各積層ゴムは、一端が前記接地片の上面に取り付けられているとともに他端が前記ベース部材の下面に取り付けられていて、基準姿勢において前記揺動中心を頂点とする三角錐の稜線を構成するように配置されていることを特徴とする多脚歩行式移動装置の足部機構を提供するものである。
本発明の足部機構は、足底が単一平面ではなく、一直線上に並ばないように分散配置された3つの接地片の各接地面で接地する構成となっている。さらに、それぞれの接地片が、接地面近傍に位置する揺動中心まわりに、床反力を受けて受動的に揺動し、自然に床面に倣うことができる。
このとき、前記3つの接地片それぞれに対応する前記3つの揺動中心は、全て前記ベース部材に対して固定された接地点と見なすことができる。すなわち、本発明の足部機構は、前記3点支持構造を持つ足部機構と実質的に同等である。したがって、不整地においても接地性が向上し、前記ア)のトルク発生機能が満足される。さらに、不整地の形状に依存せず、また接地片の揺動の状態にも依存せず、ベース部材に対して固定された3つの揺動中心を頂点とする三角形を常に支持多角形とすることができ、前記ウ)の情報の取得が容易となる。
これは、非特許文献3の足部機構にはない利点である。非特許文献3の足部機構においては、前記ア)のトルク発生機能を満足するためにブレーキ機構を、前記ウ)の情報を取得するために多数の変位センサを必要としていたが、本発明によれば、いずれも要さずに前記ア)、ウ)が実現される。
これは、非特許文献3の足部機構にはない利点である。非特許文献3の足部機構においては、前記ア)のトルク発生機能を満足するためにブレーキ機構を、前記ウ)の情報を取得するために多数の変位センサを必要としていたが、本発明によれば、いずれも要さずに前記ア)、ウ)が実現される。
また、本発明の足部機構によれば、床面に起伏や突起があっても、前記3つの接地面がそれぞれ独立に、各揺動中心の近傍で床面に接するように、床面に倣うことができる。つまり、本発明の足部機構は3点支持構造と実質的に同等でありながら、3点接触ではなく3面接触で床面に接地する。その結果、本発明によれば、前記ア)、ウ)と同時に、前記イ)の摩擦力発生機能も満足される、単純かつ安価で壊れにくい多脚歩行式移動装置の足部機構が提供される。
また、本発明の足部機構によれば、前記接地片の揺動中心を接地面近傍に位置させていることにより、遊脚(足部が接地していない状態)から立脚(足部が接地している状態)への遷移時に、揺動機構を挫くことなく、また既接地点に床面との滑りを生じさせることなく、かつ受動的に移行することが可能である。
また、本発明の足部機構は、特許文献2の足部機構と適合し得る。すなわち、特許文献2の3点支持構造の足部機構における「接地点」を、本発明の足部機構における「揺動中心」と一致させ、特許文献2の「仮想足底平面」を、本発明の足部機構における「3つの揺動中心の全てを含む平面」と一致させることができる。
これにより、前述したように、特許文献2の足部機構の利点である、最小の軸数の力センサによって前記エ)の情報を得る効果を導入でき、さらに、特許文献2の足部機構のみでは十分に実現できなかった前記イ)の摩擦力発生機能が、本発明の足部機構の利点として実現され得る。
つまり、本発明の足部機構は、特許文献2の足部機構と適合させた場合、不整地においても前記ア)、イ)、ウ)、エ)をすべて満たすことができるとともに、ロボットの立位バランス保持を自動制御によって行なうために必要十分な情報を最小限のセンサのみで取得することができる。
これにより、前述したように、特許文献2の足部機構の利点である、最小の軸数の力センサによって前記エ)の情報を得る効果を導入でき、さらに、特許文献2の足部機構のみでは十分に実現できなかった前記イ)の摩擦力発生機能が、本発明の足部機構の利点として実現され得る。
つまり、本発明の足部機構は、特許文献2の足部機構と適合させた場合、不整地においても前記ア)、イ)、ウ)、エ)をすべて満たすことができるとともに、ロボットの立位バランス保持を自動制御によって行なうために必要十分な情報を最小限のセンサのみで取得することができる。
また、前記構成(6)にかかる足部機構によれば、立脚から遊脚への遷移時に、前記揺動機構および前記並進/旋回機構を、自然に平衡状態に復帰させることが可能である。
C 揺動中心
R 床反力
1 足部機構
2 ベース部材
3 接地片
3a 接地面
4 揺動機構
13 脚ユニット
26 検出器(床反力検出器)
R 床反力
1 足部機構
2 ベース部材
3 接地片
3a 接地面
4 揺動機構
13 脚ユニット
26 検出器(床反力検出器)
以下、図面を参照して本発明の好ましい実施形態につき説明する。
図1に示すように、本実施形態にかかる足部機構1は、後述する脚ユニット13の下端に取り付けられるベース部材2と、それぞれ平坦な接地面3aを備えた接地片3、3、3と、各接地片3に対して設けられ、接地片3をベース部材2に揺動可能に連結する揺動機構4と、を有している。
ベース部材2は、脚ユニット13の下端に連結される円柱状の本体部21と、本体部21からのびる中間部22、22、22と、各中間部22の先端に設けられた円柱状の先端部23と、各先端部23にスライド可能に保持されたスライド片24と、スライド片24をスライド方向であって床反力に逆らう方向に付勢する圧縮ばね25と、から構成されている。
各中間部22は、棒状に形成されており、本体部21から下方に向かって互いに異なる方向にのびている。
先端部23は、図2に示す如く、スライド片24の軸部24aを収容する収容孔23aを有している。収容孔23a内には、スライド片のスライド量を検出するための検出器26が配置される。検出器26は、ポテンショメータやレーザー変位計、ギャップセンサ等である。なお、先端部23における当該構成は、特許文献2に記載の足部機構と適合する。
スライド片24は、軸部24aと、軸部24aの先端で直交するように設けられたプレート部24bとからなっている。軸部24aは、先端部23の収容孔23aに収容されて案内される。各スライド片24のスライド方向は、後述する揺動中心C全てを含む平面の法線方向と一致するようになっている。
圧縮ばね25は、先端部23の下面と、スライド片24のプレート部24bの上面との間に配置される。
検出器26によって検出されたスライド片24のスライド量、つまり圧縮ばね25の収縮量とフックの法則とに基づき、スライド方向、つまり後述する揺動中心C全てを含む平面の法線方向に作用する床反力のみが算出される。
揺動機構4は、一端にボールジョイント部41a、他端にボールジョイント部41bが設けられてなる3本の剛体ロッド42からなっている。
各ロッド42は、ボールジョイント部41aを介して、スライド片24のプレート部24bの下面24cに取り付けられている。それと同時に、各ロッド42は、ボールジョイント部41bを介して、接地片3の上面3bに取り付けられている。ここで、ボールジョイント部41aのスライド片24に対する取付け箇所は、一直線上に並ばない3箇所となっている。同様に、ボールジョイント部41bの接地片3に対する取付け箇所も、一直線上に並ばない3箇所となっている。各ロッド42は、接地片3側に向かって尖る三角錐の稜線を構成する。そして、各ロッド42は、図2Aに示す如く、接地片3の上面3bとスライド片24の下面24cとが平行である状態において、上記三角錐の頂点Tが接地片3の接地面3a近傍に位置するように、配置されている。
揺動機構4によってベース部材2に連結された接地片3は、接地面3aを介して床反力Rを受けると、図2Bに示す如く、接地面3a近傍に位置する揺動中心Cまわりに受動的に揺動する。
上記のように構成された足部機構1は、図3に示す如く、上体ユニット10および脚ユニット13、13を有する二脚歩行式ロボット12において、各脚ユニット13の下端にベース部材2の本体部21が連結されて、取り付けられる。
二脚歩行式ロボット12の脚ユニット13は、股関節部5、膝関節部7、足首関節部9、股関節部5と膝関節部7とを連結する大腿リンク6、および膝関節部7と足首関節部9とを連結する下腿リンク8、から構成されている。
股関節部5は、Z軸まわりの揺動軸51と、X軸まわりの揺動軸52と、Y軸まわりの揺動軸53とにより構成されている。膝関節部7は、Y軸まわりの揺動軸71からなっている。足首関節部9は、X軸まわりの揺動軸91と、Y軸まわりの揺動軸92とにより、構成されている。これにより、脚ユニット13は6自由度を有することとなる。
各揺動軸51~53、71、91、92は、それぞれの軸周りに回転する駆動モータにより構成されている。各駆動モータは、その回転量を検出するロータリエンコーダを備えている。各駆動モータは、上体ユニット10内に格納された制御ユニット11によって駆動制御される。
制御ユニット11は、図4に示す如く、歩容生成部11aと、演算部11bと、補正部11cと、駆動モータ制御部11dと、を備えている。
歩容生成部11aは、外部から入力される要求動作信号に対応して、脚ユニット13における各揺動軸51~53、71、91、92の目標角度、目標角速度、および目標ZMP等を含む歩容データを生成し、補正部11cに出力する。
演算部11bは、脚ユニット13における各関節部5、7、9の駆動モータに備えられたロータリエンコーダから、各駆動モータの角度信号が入力される。演算部11bは、その角度信号に基づき、各関節部5、7、9の駆動モータの角度、角速度等に関する関節状態データを算出し、駆動モータ制御部11dにそれを出力する。
演算部11bにはさらに、足部機構1における床反力検出器26から、床反力検出値が入力される。演算部11bは、各床反力検出器26からの床反力検出値に基づいて、実ZMPを算出し、補正部11cにそれを出力する。
補正部11cは、演算部11bから入力された実ZMPが、歩容生成部11aから入力された目標ZMPに一致するように、または支持多角形内に収まるように、各揺動軸51~53、71、91、92の目標角度、目標各速度等の歩容データを補正する。補正後の歩容データは、駆動モータ制御部11dに入力される。
駆動モータ制御部11dは、補正部11cからの補正後の歩容データと、演算部11bからの関節状態データとの差に基づいて、各関節部5、7、9の駆動モータに対する制御信号を生成する。駆動モータ制御部11dは、その制御信号を各駆動モータに出力することで、各駆動モータを駆動制御する。
以上のように構成された足部機構1は、足底が単一平面ではなく、一直線上に並ばないように分散配置された3つの接地片3の各接地面3aで接地する構成となっている。さらに、それぞれの接地片が、接地面近傍に位置する揺動中心Cまわりに、床反力を受けて受動的に揺動し、自然に床面に倣うことができる。
このとき、各接地片3に対応する各揺動中心Cは、全てベース部材2に対して固定された接地点と見なすことができる。すなわち、本発明の足部機構1は、前記3点支持構造を持つ足部機構と実質的に同等である。したがって、不整地においても接地性が向上し、前記ア)のトルク発生機能が満足される。さらに、不整地の形状に依存せず、また接地片3の揺動の状態にも依存せず、ベース部材2に対して固定された3つの揺動中心Cを頂点とする三角形を常に支持多角形とすることができ、前記ウ)の情報の取得が容易となる。
また、足部機構1は、特許文献2に記載の足部機構と適合する検出器26を備えていることにより、各揺動中心Cを含む平面の法線方向に作用する床反力のみをそれぞれ取得することができる。その結果、各揺動中心Cを含む平面に固定されたローカル座標軸に基づく実ZMP、つまり前記エ)の情報を容易に取得することができる。
また、足部機構1によれば、図5Aに示す如く床に起伏があっても、また図5Bに示す如く床に突起Pがあっても、3つの接地面3aがそれぞれ独立に、各揺動中心Cの近傍で床面に接するように、床面に倣うことができる。つまり、足部機構1は3点支持構造と実質的に同等でありながら、3点接触ではなく3面接触で床面に接地する。その結果、足部機構1によれば、前記ア)、ウ)、エ)と同時に、前記イ)の摩擦力発生機能も満足される。
また、足部機構1によれば、接地片3の揺動中心Cを接地面3a近傍に位置させていることにより、遊脚から立脚への遷移時に、図6Aに模式的に示す如く、接地片3の床面に沿った方向への移動量が少なく、床面に滑らかに倣うことができる。
もし仮に、揺動中心Cが接地面3aから遠い位置にあれば、図6Bに示す如く、接地片103の床面に沿った方向への移動量が多くなり、床面上をすべりながら倣うことになる。接地片103の配置によっては、図6Bに示す如く、接地片103が相互に干渉する。あるいは,図6Cに示す如く、揺動機構を挫いてしまい、倣い動作ができない場合もあり得る。
もし仮に、揺動中心Cが接地面3aから遠い位置にあれば、図6Bに示す如く、接地片103の床面に沿った方向への移動量が多くなり、床面上をすべりながら倣うことになる。接地片103の配置によっては、図6Bに示す如く、接地片103が相互に干渉する。あるいは,図6Cに示す如く、揺動機構を挫いてしまい、倣い動作ができない場合もあり得る。
また、接地片3は受動的に揺動するため、駆動手段が不要であり、シンプルな構成である。
また、前述したように、足部機構1は、特許文献2に記載の足部機構と適合する構成となっている。すなわち、足部機構1は、特許文献2の3点支持構造の足部機構における「接地点」を、本発明の足部機構における「揺動中心C」と一致させ、特許文献2の「仮想足底平面」を、本発明の足部機構における「3つの揺動中心Cの全てを含む平面」と一致させた構成となっている。
これにより、特許文献2の足部機構の利点である、最小の軸数の力センサによって前記エ)の情報を得る効果を導入でき、さらには特許文献2の足部機構のみでは十分に実現できなかった前記イ)の摩擦力発生機能が実現される。
つまり、足部機構1は、不整地においても前記ア)、イ)、ウ)、エ)をすべて満たすことができるとともに、二脚歩行式ロボット12の立位バランス保持を自動制御によって行なうために必要十分な情報を最小限の検出器26のみで取得することができる、単純かつ安価で壊れにくい多脚歩行式移動装置の足部機構となる。
これにより、特許文献2の足部機構の利点である、最小の軸数の力センサによって前記エ)の情報を得る効果を導入でき、さらには特許文献2の足部機構のみでは十分に実現できなかった前記イ)の摩擦力発生機能が実現される。
つまり、足部機構1は、不整地においても前記ア)、イ)、ウ)、エ)をすべて満たすことができるとともに、二脚歩行式ロボット12の立位バランス保持を自動制御によって行なうために必要十分な情報を最小限の検出器26のみで取得することができる、単純かつ安価で壊れにくい多脚歩行式移動装置の足部機構となる。
また、足部機構1によれば、接地した際の衝撃を圧縮ばね25が緩和するため、多脚歩行式移動装置の各駆動部や各関節部を保護することができる。
[変形例]
以上、本発明の実施形態について具体的に説明したが、本発明は次のように変形して実施することができる。
以上、本発明の実施形態について具体的に説明したが、本発明は次のように変形して実施することができる。
3つの接地面3aについて、揺動の際に互いに干渉しない限り、面積および形状は適宜選択され得る。図7Aに示す如く、各接地面3aの面積は異なっていてもよい。図7B、図7Cに示す如く、各接地面3aの形状も異なってよい。
ベース部材2の形状は、床面に接地せず、かつ接地片3の揺動に対して干渉しないような形状であれば、どのような形状であってもよい。
さらに、ベース部材2は、図8に示す如く、スライド片24を備えていないものでもよい。この場合、ベース部材2aの先端部23aの下面に揺動機構4の一端が取り付けられる。また、この場合、圧力センサ等の公知の床反力検出器26aを、例えば各先端部23aと揺動機構4の間に設けてもよい。
さらに、ベース部材2は、図8に示す如く、スライド片24を備えていないものでもよい。この場合、ベース部材2aの先端部23aの下面に揺動機構4の一端が取り付けられる。また、この場合、圧力センサ等の公知の床反力検出器26aを、例えば各先端部23aと揺動機構4の間に設けてもよい。
揺動機構4は、例えば図9に示す如く、1本の剛体ロッド42の一端をスライド片24の下面24cに取り付けるとともに、他端をボールジョイントあるいはユニバーサルジョイント41cを介して接地片3の上面3bに取り付けた揺動機構4aとすることもできる。この場合、接地片3の揺動中心Cが極力接地面3aの近傍に位置するように、ボールジョイントあるいはユニバーサルジョイント41cを配置する必要がある。
揺動機構4は、例えば図10Aに示す如く、3本のロッド42の一端をばね等の弾性部材41dを介してスライド片24の下面24cに取り付けるとともに、他端をばね等の弾性部材41eを介して接地片3の上面3bに取り付けた揺動機構4bとすることもできる。
また、図10Bに示す如く、揺動機構4が取り付けられる面24c、3b間にばね43を設けることもできる。
これらのばね等の弾性部材により、接地片3が床反力から開放されたとき、接地片3を基準姿勢(この場合接地片の上面3bがスライド片24の下面24cに平行となる姿勢)に自然に復帰させることができる。
また、図10Bに示す如く、揺動機構4が取り付けられる面24c、3b間にばね43を設けることもできる。
これらのばね等の弾性部材により、接地片3が床反力から開放されたとき、接地片3を基準姿勢(この場合接地片の上面3bがスライド片24の下面24cに平行となる姿勢)に自然に復帰させることができる。
また、図11に示す如く、揺動機構4が取り付けられる面をその面に沿って受動的に並進および/または旋回運動させ得る並進/旋回機構27を、ベース部材2に設けてもよい。並進/旋回機構27は例えば、スライド片24の軸24aの下端に接続された円形箱24dであって底部に開口部24eを備えたものと、円形箱24d内に収容される並進板28と、並進板28の下面28aおよび円形箱24dの底面24fにそれぞれボールジョイントあるいはユニバーサルジョイント29a、29bを介して取り付けられた3本の剛体ロッド29と、から構成することができる。接地片3は、揺動機構4を介して、並進板28の下面28aに取り付けられる。
このように構成した場合、図11Bに示す如く、並進板28がその下面28aに沿って受動的に並進および/または旋回運動することができる。それゆえ、並進板28に取り付けられた接地片3は、同様に受動的に並進および/または旋回運動することができる。前述したように、足部機構1は、接地片3の床面に沿った方向への移動量が少なく、床面に滑らかに倣うことができるが、並進/旋回機構27をさらに設けることにより、この僅かな床面上での滑りも吸収し、全く滑ることなく倣うことが可能となる。
なお、並進/旋回機構27は例えば、図12に示す如く、並進板28の下面28aおよび円形箱24dの底面24fにそれぞればね29c、29dを介して取り付けられた3本の剛体ロッド29を用いて構成した並進/旋回機構27aとすることもできる。
また、揺動機構4を、図13に示す如く、ゴム板および金属板を交互に複数枚積層してなる3本の積層ゴム44であって一端がスライド片24の下面24cに取り付けられたものと、積層ゴム44の他端が取り付けられたプレート45と、プレート45と接地片3との間に配置されたスペーサ46とからなる揺動機構4dとしてもよい。ここで、積層ゴム44は、接地片3の上面3bとスライド片24の下面24cとが平行である状態において、揺動中心Cを頂点Tとする三角錐の稜線を構成するように配置されている。
揺動機構4dによれば、図13Bに示す如く、接地片3が、揺動中心Cまわりに揺動し得るとともに、図13Cに示す如く、スライド片24の下面24cに平行な面内において並進運動することができる。
また、3つの接地面3aについて、防塵・防水のために、防水布やゴム等の柔軟な素材で互いに連結してシーリングしてもよい。また、接地面3aだけではなく、揺動機構4、並進/旋回機構27、ベース部材も含めてシーリングしてもよい。
Claims (7)
- 多脚歩行式移動装置における脚ユニットの下端に取り付けられて接地する足部機構であって、
前記脚ユニットの下端に取り付けられるベース部材と、
それぞれ接地面を備えた3つの接地片であって、それぞれが一直線上に並ばないものと、
前記接地片ごとに設けられて前記接地片を前記ベース部材に揺動可能に連結する揺動機構であって、前記接地片が前記接地面を介して床反力を受けた際、当該接地片が当該接地面近傍に位置する揺動中心まわりに受動的に揺動し得るように連結するものと、を含み、
前記ベース部材は、前記各揺動中心を含んでなる平面の法線方向以外に関して剛体的とみなせるように構成されていることを特徴とする多脚歩行式移動装置の足部機構。 - 前記揺動機構は、両端にそれぞれ回転自在関節部が設けられた3本の剛体ロッドからなり、
前記各ロッドは、一端が前記回転自在関節部を介して前記接地片の上面に取り付けられているとともに他端が前記回転自在関節部を介して前記ベース部材の下面に取り付けられていて、基準姿勢において前記揺動中心を頂点とする三角錐の稜線を構成するように配置されていることを特徴とする請求項1に記載の多脚歩行式移動装置の足部機構。 - 前記揺動機構は、両端にそれぞれ弾性部材が取り付けられた3本の剛体ロッドからなり、前記各ロッドは、一端が前記弾性部材を介して前記接地片の上面に取り付けられているとともに他端が前記弾性部材を介して前記ベース部材の下面に取り付けられていて、基準姿勢において前記揺動中心を頂点とする三角錐の稜線を構成するように配置されていることを特徴とする請求項1に記載の多脚歩行式移動装置の足部機構。
- 前記揺動機構は、一端に回転自在関節部が設けられた1本の剛体ロッドからなり、
前記ロッドは、前記一端が前記接地片の上面に前記回転自在関節部を介して取り付けられているとともに他端が前記ベース部材の下面に固定されていることを特徴とする請求項1に記載の多脚歩行式移動装置の足部機構。 - 前記接地片ごとに設けられて前記揺動機構を前記ベース部材に並進および/または旋回可能に連結する並進/旋回機構であって、前記接地片が前記接地面を介して床反力を受けた際、当該接地片が、前記各揺動中心を含んでなる平面に沿って受動的に並進および/または旋回し得るように連結するものをさらに含んでいることを特徴とする請求項1~4のいずれか1項に記載の多脚歩行式移動装置の足部機構。
- 前記接地片が所定姿勢から揺動および/または並進した場合に前記所定姿勢へ復帰させる方向に付勢する付勢手段をさらに含んでいることを特徴とする請求項1~5のいずれか1項に記載の多脚歩行式移動装置の足部機構。
- 前記揺動機構は、ゴム板および金属板を交互に複数枚積層してなる3本の積層ゴムからなり、
前記各積層ゴムは、一端が前記接地片の上面に取り付けられているとともに他端が前記ベース部材の下面に取り付けられていて、基準姿勢において前記揺動中心を頂点とする三角錐の稜線を構成するように配置されていることを特徴とする請求項1に記載の多脚歩行式移動装置の足部機構。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010508041A JP5268119B2 (ja) | 2008-04-14 | 2008-04-14 | 多脚歩行式移動装置の足部機構 |
PCT/JP2008/057247 WO2009128125A1 (ja) | 2008-04-14 | 2008-04-14 | 多脚歩行式移動装置の足部機構 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/057247 WO2009128125A1 (ja) | 2008-04-14 | 2008-04-14 | 多脚歩行式移動装置の足部機構 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009128125A1 true WO2009128125A1 (ja) | 2009-10-22 |
Family
ID=41198836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/057247 WO2009128125A1 (ja) | 2008-04-14 | 2008-04-14 | 多脚歩行式移動装置の足部機構 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5268119B2 (ja) |
WO (1) | WO2009128125A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8544853B2 (en) | 2009-03-05 | 2013-10-01 | Muscle Corporation | Two-legged walking transportation device |
KR101353528B1 (ko) * | 2012-10-11 | 2014-01-17 | 주식회사 칼라카나 | 디딤면의 형상에 따라 가변하는 가변부를 구비한 인간형 로봇 |
CN109397337A (zh) * | 2018-11-30 | 2019-03-01 | 荆门它山之石电子科技有限公司 | 一种机器人腿减震机构 |
CN111070241A (zh) * | 2019-12-19 | 2020-04-28 | 南京涵铭置智能科技有限公司 | 一种机器人减震移动机构 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06135358A (ja) * | 1992-10-29 | 1994-05-17 | Mitsubishi Heavy Ind Ltd | 不整地歩行型運搬機械の脚先接地機構 |
JPH07116983A (ja) * | 1993-10-25 | 1995-05-09 | Toshiba Mach Co Ltd | パラレルリンクマニピュレータ |
JP2005034965A (ja) * | 2003-07-17 | 2005-02-10 | National Institute Of Advanced Industrial & Technology | 操作力発生装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3569768B2 (ja) * | 2002-09-03 | 2004-09-29 | 独立行政法人 科学技術振興機構 | 二脚歩行式移動装置 |
KR100571829B1 (ko) * | 2004-02-06 | 2006-04-17 | 삼성전자주식회사 | 구조체, 발 구조 및 이를 채용한 로봇 |
JP4976084B2 (ja) * | 2006-09-07 | 2012-07-18 | ニッタ株式会社 | 位置誤差吸収装置 |
JP2008093822A (ja) * | 2006-09-12 | 2008-04-24 | Atsuo Takanishi | 多点接地型足部支持機構及びそれを備えた2足歩行ロボットの脚部並びにその制御構造 |
JP5322147B2 (ja) * | 2007-11-06 | 2013-10-23 | 学校法人立命館 | 多脚歩行式移動装置の足部機構 |
-
2008
- 2008-04-14 JP JP2010508041A patent/JP5268119B2/ja active Active
- 2008-04-14 WO PCT/JP2008/057247 patent/WO2009128125A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06135358A (ja) * | 1992-10-29 | 1994-05-17 | Mitsubishi Heavy Ind Ltd | 不整地歩行型運搬機械の脚先接地機構 |
JPH07116983A (ja) * | 1993-10-25 | 1995-05-09 | Toshiba Mach Co Ltd | パラレルリンクマニピュレータ |
JP2005034965A (ja) * | 2003-07-17 | 2005-02-10 | National Institute Of Advanced Industrial & Technology | 操作力発生装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8544853B2 (en) | 2009-03-05 | 2013-10-01 | Muscle Corporation | Two-legged walking transportation device |
KR101353528B1 (ko) * | 2012-10-11 | 2014-01-17 | 주식회사 칼라카나 | 디딤면의 형상에 따라 가변하는 가변부를 구비한 인간형 로봇 |
CN109397337A (zh) * | 2018-11-30 | 2019-03-01 | 荆门它山之石电子科技有限公司 | 一种机器人腿减震机构 |
CN111070241A (zh) * | 2019-12-19 | 2020-04-28 | 南京涵铭置智能科技有限公司 | 一种机器人减震移动机构 |
CN111070241B (zh) * | 2019-12-19 | 2021-01-29 | 南京涵铭置智能科技有限公司 | 一种机器人减震移动机构 |
Also Published As
Publication number | Publication date |
---|---|
JP5268119B2 (ja) | 2013-08-21 |
JPWO2009128125A1 (ja) | 2011-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5427231B2 (ja) | 二脚歩行式移動装置 | |
JP2520019B2 (ja) | 脚式移動ロボットの駆動制御装置 | |
TW499349B (en) | Legged mobile robot, leg structure of legged mobile robot, and mobile leg unit for legged mobile robot | |
JP4513320B2 (ja) | ロボット装置、並びにロボット装置の運動制御方法 | |
US8042627B2 (en) | Walking robot | |
JP5539040B2 (ja) | 脚式移動ロボット | |
JP5506618B2 (ja) | ロボットの制御装置 | |
US8868240B2 (en) | Walking robot and pose control method thereof | |
US5311109A (en) | Locomotion control system for legged mobile robot | |
US20090321150A1 (en) | Walking robot and method of controlling the same | |
US9079624B2 (en) | Walking robot and method of controlling balance thereof | |
JP2001322076A (ja) | 脚式移動ロボットの床形状推定装置 | |
JP2011152633A (ja) | ロボットの制御装置 | |
JP2004223712A (ja) | 歩行式ロボット及びその位置移動方法 | |
WO2003022533A1 (fr) | Detecteur de reactions du sol integre a un robot marcheur mobile | |
JP5268119B2 (ja) | 多脚歩行式移動装置の足部機構 | |
WO2002040226A1 (en) | Biped robot | |
JP4078857B2 (ja) | 脚式移動ロボットの足及び脚式移動ロボット | |
JP2013094935A (ja) | ロボットアーム装置 | |
JP2016074060A (ja) | 遠隔作業自動機及びその作業方法 | |
KR100661330B1 (ko) | 레그식 이동 로봇 | |
JP5322147B2 (ja) | 多脚歩行式移動装置の足部機構 | |
JP2017144512A (ja) | Zmpの算出方法及び装置 | |
JP2006068872A (ja) | 脚式移動ロボット | |
JP5040693B2 (ja) | 脚式ロボット、及びその制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08740335 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010508041 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08740335 Country of ref document: EP Kind code of ref document: A1 |