[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009098815A1 - 液体原料気化器及びそれを用いた成膜装置 - Google Patents

液体原料気化器及びそれを用いた成膜装置 Download PDF

Info

Publication number
WO2009098815A1
WO2009098815A1 PCT/JP2008/072233 JP2008072233W WO2009098815A1 WO 2009098815 A1 WO2009098815 A1 WO 2009098815A1 JP 2008072233 W JP2008072233 W JP 2008072233W WO 2009098815 A1 WO2009098815 A1 WO 2009098815A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
raw material
vaporizer
radiant heat
gas
Prior art date
Application number
PCT/JP2008/072233
Other languages
English (en)
French (fr)
Inventor
Tsuneyuki Okabe
Shigeyuki Okura
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to KR1020107013745A priority Critical patent/KR101176737B1/ko
Priority to CN2008801264743A priority patent/CN101939827B/zh
Publication of WO2009098815A1 publication Critical patent/WO2009098815A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment

Definitions

  • the present invention relates to a liquid source vaporizer that generates a source gas by vaporizing a liquid source and a film forming apparatus using the same.
  • an organic metal compound or the like is formed in a film forming chamber in which the substrate to be processed is placed.
  • CVD chemical vapor deposition
  • an organic raw material gas is supplied and this organic raw material gas is reacted with another gas such as oxygen or ammonia to form a film. Since many organic raw materials used in such a CVD method are liquid or solid at room temperature, a vaporizer for vaporizing the organic raw materials is required.
  • the above organic raw material is introduced into a vaporizer after having been liquefied beforehand using a solvent.
  • a conventional vaporizer that vaporizes such a liquid raw material to generate a raw material gas
  • a vaporization surface having a large number of holes is provided in the vaporization chamber, and the vaporization surface is heated by a resistance heater while the liquid is discharged from the nozzle.
  • a raw material discharged into droplets (mist) is vaporized by being placed on the flow of a carrier gas and sprayed on a vaporization surface.
  • a vaporizer in order to increase the vaporization efficiency, it is desirable to spray the liquid raw material on the vaporization surface as droplets having the smallest possible diameter.
  • the smaller the diameter of the droplet the more likely it will pass through the hole without contacting the vaporization surface.
  • the droplets that could not be vaporized in this way enter the film formation chamber on the carrier gas stream and cause generation of particles. For example, if a liquid source droplet that could not be vaporized entered the deposition chamber and oxygen remained in the deposition chamber, the droplet would oxidize into fine particles that would adhere to the substrate. There is a problem that abnormal film formation and film quality defects occur.
  • the raw material gas generated by the vaporizer is supplied to the film forming chamber through a filter having minute holes, and this filter is heated by a resistance heater or the like to vaporize the raw material gas.
  • the droplets that could not be broken were vaporized through the filter. According to this, even if the vaporization efficiency of the vaporizer itself is somewhat poor, it is possible to prevent the liquid droplets that could not be vaporized from entering the film forming chamber as they are.
  • a gas-permeable member having fine pores such as a solid packing having a pore or a porous material is disposed, and the gas-permeable member is heated by a resistance heater or a heat medium.
  • Some of them are vaporized through droplets of a liquid source (see, for example, Patent Documents 1 and 2). According to this, since the possibility that the droplet contacts the breathable member increases, the vaporization efficiency can be improved.
  • JP 2005-347598 A Japanese Patent Laid-Open No. 10-85581
  • air-permeable members such as solid fillers, porous bodies, and filters that have been used to vaporize liquid raw material droplets have been heated by heat conduction from a resistance heater.
  • the amount of heat could not be supplied uniformly over the entire member.
  • the breathable members for example, there are portions where the temperature is low, such as a portion where the amount of heat does not reach sufficiently because they are separated from the resistance heater, so there is a possibility that the droplets are not vaporized and clogged.
  • the surface of the air-permeable member since the surface of the air-permeable member has a large number of holes, its surface area is wide, and the air-permeable member originally has high heat dissipation. In addition, the surface is exposed to low temperature source gas or liquid source droplets. For this reason, in the whole breathable member, the temperature of the region where the heat from the resistance heater is difficult to be transmitted further decreases. Further, when a liquid material droplet adheres to the surface of the air-permeable member and is vaporized, heat is removed from the air-permeable member by the heat of vaporization at that time. At this time, in the region where heat is not easily transmitted, the heat energy corresponding to the heat of vaporization cannot be sufficiently replenished, resulting in a temperature difference in the breathable member.
  • the temperature in the central region of the solid filling is higher than the outer peripheral region near the resistance heater. It is difficult to make the temperature of the entire solid packing uniform, such as lowering the temperature. In such a case, the temperature of the central region does not reach the temperature at which the liquid raw material can be vaporized, and vaporization failure may occur and the solid packing may be clogged.
  • an object of the present invention is to make the temperature of the entire breathable member uniform when vaporizing liquid raw material droplets through the breathable member.
  • An object of the present invention is to provide a liquid source vaporizer that can prevent clogging without being vaporized and a film forming apparatus using the same.
  • a liquid material supply unit that discharges liquid material in the form of droplets, and a vaporization that generates the material gas by vaporizing the liquid material in the form of droplets.
  • an introduction port for introducing the liquid material in the form of liquid droplets from the liquid material supply unit into the vaporization unit, and a breathable member disposed in the vaporization unit and made of a material heated by radiant heat
  • a radiant heat heater that irradiates the entire outer surface of the mist trap portion and the breathable member with heat rays and heats the breathable member by the radiant heat, and the liquid material in the form of droplets is passed through the heated breathable member.
  • a raw material gas is introduced from a liquid raw material vaporizer that vaporizes a liquid raw material to generate a raw material gas, and a film forming process is performed on the substrate to be processed.
  • a film forming apparatus including a film forming chamber, wherein the liquid source vaporizer includes a liquid source supply unit that discharges the liquid source in the form of droplets, and a source gas that vaporizes the droplet-like liquid source A vaporizer configured to generate gas, an inlet for introducing the liquid material in the form of liquid droplets from the liquid material supply unit into the vaporization unit, and a vent configured by a material disposed in the vaporization unit and heated by radiant heat A mist trap portion made of a heat-permeable member, a radiant heat heater that irradiates the entire outer surface of the air-permeable member with heat rays, and heats the air-permeable member by the radiant heat, and the droplet-like shape on the heated air-permeable member Mind through liquid ingredients Film forming apparatus is provided which is characterized in that a delivery port delivering the generated raw material gas to the outside by.
  • the mist trap part that captures and vaporizes the liquid material in the form of liquid droplets is constituted by the breathable member heated by radiant heat, and the radiant heat heater applies the heat rays to the entire outer surface of the breathable member. Since irradiation is performed, the entire breathable member can be heated uniformly. As a result, the temperature of the air-permeable member can be made uniform throughout, so that all the liquid droplets can be vaporized evenly by simply passing the liquid material in the form of liquid droplets through the air-permeable member. Thereby, while being able to improve vaporization efficiency more than before, since the vaporization defect by a partial temperature fall can be prevented, clogging of a breathable member can be prevented.
  • the introduction port and the delivery port of the vaporization section are provided to face each other, and the air-permeable member has a cylindrical shape arranged from the introduction port side to the delivery port side, and the introduction port side It is preferable that the end of the outlet is closed and the end on the outlet side communicates with the outlet.
  • the air-permeable member in a cylindrical shape, the surface area of the air-permeable member can be increased with a more compact size. Therefore, a sufficient amount of liquid material can be vaporized by vaporizing more liquid droplets.
  • by closing the end portion on the introduction port side it is possible to guide the liquid material droplet supplied from the introduction port to the outer side surface of the breathable member surrounded by the radiant heat heater.
  • the radiant heater is preferably arranged so as to surround the outer surface of the breathable member.
  • a radiant heater is composed of, for example, a carbon heater that can be easily processed into a desired shape. According to this, since the whole surface of the air-permeable member can be heated from the radiant heat heater at a time, the heating efficiency can be further increased.
  • a cylindrical partition member that partitions the vaporization space in which the liquid material in the form of liquid droplets circulates and the installation space of the radiant heat heater is surrounded by the gas permeable member between the gas permeable member and the radiant heat heater. It is preferable that the partition member is formed of a non-breathable member that transmits heat rays irradiated by the radiant heater. Such a partition member is made of, for example, quartz. By providing such a partition member, it is possible to prevent particles from adhering to the surface of the radiant heat heater and to improve the vaporization efficiency of the liquid material in the form of droplets.
  • the temperature of the breathable member is controlled, and the radiant heater is controlled based on the temperature of the breathable member measured by the temperature sensor, whereby the temperature of the breathable member is set to a predetermined temperature.
  • a control unit that adjusts to the above may be provided.
  • the temperature of the breathable member can be accurately adjusted by directly measuring and monitoring the temperature of the breathable member with the temperature sensor and controlling the radiant heat heater based on the measured temperature. For this reason, the temperature of the whole breathable member can always be kept at a predetermined temperature.
  • the inner surface of the housing constituting the outer frame of the vaporizing portion is mirror-finished so as to reflect the heat rays from the radiant heat heater and to go to the outer surface of the breathable member.
  • the heat rays from the radiant heat heater can be efficiently collected on the breathable member, so that the heating efficiency of the breathable member can be increased.
  • a liquid source vaporizer connected to another liquid source vaporizer for generating a source gas by vaporizing a liquid source. Irradiate the entire outer surface of the breathable member with an introduction port for introducing the raw material gas generated by the liquid raw material vaporizer, a mist trap part made of a breathable member made of a material heated by radiant heat And a radiant heat heater that heats the breathable member by the radiant heat, and a delivery port that sends the source gas from the other liquid source vaporizer introduced from the inlet to the outside through the heated breathable member;
  • a liquid raw material vaporizer is provided.
  • the other liquid raw material vaporizer by passing the raw material gas generated by the other liquid raw material vaporizer through the breathable member heated by the radiant heat from the radiant heat heater, the other liquid raw material vaporizer cannot be vaporized.
  • the liquid droplets can also be vaporized by the liquid raw material vaporizer according to the present invention.
  • a raw material gas is introduced from a liquid raw material vaporizer that vaporizes a liquid raw material to generate a raw material gas, and a film forming process is performed on the substrate to be processed.
  • a film forming apparatus including a film forming chamber, wherein the liquid raw material vaporizer includes a first liquid raw material vaporizer that vaporizes a liquid raw material to generate a raw material gas, and a second liquid raw material vaporizer connected thereto.
  • the second liquid raw material vaporizer comprises an inlet for introducing the raw material gas generated by the first liquid raw material vaporizer, and a breathable member composed of a material heated by radiant heat.
  • a mist trap section a radiant heat heater that irradiates the entire outer surface of the breathable member with heat rays, and heats the breathable member by the radiant heat, and the first liquid raw material vaporizer introduced from the inlet.
  • the raw material gas Film forming apparatus characterized by comprising a delivery port delivering the outside through the air-permeable member which is is provided.
  • the raw material gas generated by the first liquid raw material vaporizer is passed through the gas permeable member of the second liquid raw material vaporizer heated by the radiant heat from the radiant heat heater. Droplets that could not be vaporized by one liquid source vaporizer can also be vaporized by the second liquid source vaporizer. Thereby, it is possible to prevent liquid material droplets from entering the film forming chamber and the like together with the material gas.
  • the entire breathable member can be directly heated by the radiant heat generated by the radiant heat heater. For this reason, since it can heat uniformly over the whole air permeable member, all the droplets can be vaporized uniformly. As a result, the vaporization efficiency can be improved as compared with the conventional case, and the vaporization failure due to a partial temperature drop can be prevented, so that the air-permeable member can be prevented from being clogged.
  • FIG. 1 is a diagram for explaining a schematic configuration example of a film forming apparatus according to the first embodiment.
  • a film forming apparatus 100 shown in FIG. 1 forms a metal oxide film on a substrate to be processed, for example, a semiconductor wafer (hereinafter simply referred to as “wafer”) W by a CVD method, for example, an HTB (hafnium tarbutoxy).
  • Wafer semiconductor wafer
  • HTB hafnium tarbutoxy
  • Liquid source supply source 110 for supplying a liquid source containing Hf such as side), a carrier gas supply source 120 for supplying an inert gas such as Ar as a carrier gas, and a liquid source supplied from the liquid source supply source 110
  • a liquid source vaporizer 300 that generates a source gas by vaporizing
  • a film formation chamber 200 that forms, for example, an HfO 2 film on the wafer W using the source gas generated by the liquid source vaporizer 300
  • a control unit 140 that controls each unit is provided.
  • the liquid source supply source 110 and the liquid source vaporizer 300 are connected by a liquid source supply pipe 112, and the carrier gas supply source 120 and the liquid source vaporizer 300 are connected by a carrier gas supply pipe 122.
  • the vaporizer 300 and the film forming chamber 200 are connected by a source gas supply pipe 132.
  • the liquid source supply pipe 112 is provided with a liquid source flow rate control valve 114
  • the carrier gas supply pipe 122 is provided with a carrier gas flow rate control valve 124
  • the source gas supply pipe 132 is provided with a source gas flow rate control valve 134. Is provided.
  • the liquid raw material flow rate control valve 114, the carrier gas flow rate control valve 124 and the raw material gas flow rate control valve 134 are configured such that their opening degrees are adjusted by a control signal from the control unit 140.
  • the control unit 140 measures the flow rate of the liquid raw material flowing through the liquid raw material supply pipe 112, the flow rate of the carrier gas flowing through the carrier gas supply pipe 122, and the flow rate of the raw material gas flowing through the raw material gas supply pipe 132. Accordingly, it is preferable to output a control signal.
  • the film formation chamber 200 includes, for example, a substantially cylindrical side wall member 210, and a susceptor on which the wafer W is horizontally placed in an internal space surrounded by the side wall member 210, the top wall member 212, and the bottom wall member 214.
  • 222 is comprised.
  • the side wall member 210, the top wall member 212, and the bottom wall member 214 are made of a metal such as aluminum or stainless steel.
  • the susceptor 222 is supported by a plurality of cylindrical support members 224 (only one is shown here).
  • a heater 226 is embedded in the susceptor 222, and the temperature of the wafer W placed on the susceptor 222 can be adjusted by controlling the power supplied from the power source 228 to the heater 226.
  • An exhaust port 230 is formed in the bottom wall member 214 of the film forming chamber 200, and an exhaust unit 232 is connected to the exhaust port 230. Then, the inside of the film formation chamber 200 can be adjusted to a predetermined degree of vacuum by the exhaust unit 232.
  • a shower head 240 is attached to the top wall member 212 of the film forming chamber 200.
  • a raw material gas supply pipe 132 is connected to the shower head 240, and the raw material gas generated by the liquid raw material vaporizer 300 is introduced into the shower head 240 via the raw material gas supply pipe 132.
  • the shower head 240 has an internal space 242 and a number of gas discharge holes 244 communicating with the internal space 242.
  • the source gas introduced into the internal space 242 of the shower head 240 via the source gas supply pipe 132 is discharged toward the wafer W on the susceptor 222 from the gas discharge hole 244.
  • the source gas from the liquid source vaporizer 300 is supplied as follows.
  • the liquid source from the liquid source supply source 110 is supplied to the liquid source vaporizer 300 via the liquid source supply pipe 112 and the carrier gas from the carrier gas supply source 120 is supplied via the carrier gas supply pipe 122.
  • a liquid source supply unit 300A which will be described later, of the liquid source vaporizer 300 forms a liquid material together with a carrier gas in the form of droplets and is discharged into the vaporization unit 300B.
  • the droplets are vaporized in the vaporization unit 300B to generate a source gas Is done.
  • the source gas generated in the liquid source vaporizer 300 is supplied to the film forming chamber 200 via the source gas supply pipe 132, and a desired process is performed on the wafer W in the film forming chamber 200.
  • the liquid source vaporizer 300 of the film forming apparatus 100 as described above cannot completely vaporize the liquid source, some of the liquid source droplets are mixed into the source gas and enter the source gas supply pipe 132. There is a risk of being sent out and flowing into the film forming chamber 200. As described above, the liquid material droplets flowing into the film forming chamber 200 may cause deterioration in the quality of the film formed on the wafer W as particles. Further, when the vaporization efficiency of the liquid source deteriorates in the liquid source vaporizer 300, the flow rate of the source gas supplied to the film formation chamber 200 is insufficient, and a desired film formation is performed when, for example, an HfO 2 film is formed on the wafer W. There is a risk that the rate cannot be obtained.
  • liquid source vaporizer 300 According to the present embodiment, all of the liquid source droplets can be efficiently vaporized to generate a sufficient amount of high-quality source gas for the film forming process in the film forming chamber 200. Configure as you can. A specific configuration example of such a liquid raw material vaporizer 300 will be described below.
  • FIG. 2 is a longitudinal sectional view showing a schematic configuration example of the liquid raw material vaporizer 300 according to the first embodiment.
  • the liquid raw material vaporizer 300 is roughly divided into a liquid raw material supply unit 300A for supplying the liquid raw material in the form of droplets to the subsequent stage, and a vaporization unit 300B for vaporizing the liquid raw material supplied from the liquid raw material supply unit 300A. It is composed of
  • the liquid source supply unit 300A is provided with a liquid source channel 310 extending vertically from the upper surface to the inside, and a carrier gas channel 312 extending horizontally from the side to the inside.
  • a liquid source supply pipe 112 is connected to one end of the liquid source channel 310, and a carrier gas supply pipe 122 is connected to one end of the carrier gas channel 312.
  • the other end of the liquid material flow path 310 is provided with a discharge nozzle 314 for discharging the liquid material in the form of droplets.
  • the discharge nozzle 314 is tapered, for example (not shown in FIG. 2), and is disposed so that the discharge port 316 at the tip thereof faces the vaporization space 350 in the vaporization unit 300B.
  • the diameter of the discharge port 316 of the discharge nozzle 314 is determined according to the target size of the liquid material droplets supplied into the vaporization unit 300B. In order to reliably vaporize the liquid material in the form of droplets in the vaporization unit 300B, it is preferable that the droplet size is small, and therefore it is preferable that the diameter of the discharge port 316 is also small. However, if the droplet size becomes too small, the flow rate of the raw material gas obtained by vaporizing the droplet may be insufficient. It is preferable to determine the diameter of the discharge port 316 in consideration of these points.
  • a synthetic resin such as a polyimide resin having resistance to an organic solvent or a metal such as stainless steel or titanium is preferable. If the discharge nozzle 314 is made of synthetic resin, heat can be prevented from being conducted from the surroundings to the liquid raw material before being discharged. In particular, the use of polyimide resin makes it difficult for liquid raw material residues (precipitates) to adhere to the discharge nozzle 314, thereby preventing nozzle clogging.
  • a carrier gas injection unit 318 is disposed inside the liquid source supply unit 300A so as to surround the tip of the discharge nozzle 314.
  • the carrier gas injection unit 318 is connected to the other end of the carrier gas channel 312 and is configured to eject the carrier gas from the carrier gas channel 312 together with the liquid material toward the vaporization space 350 of the vaporization unit 300B. ing.
  • the carrier gas injection unit 318 is formed in a cup shape surrounding the tip of the discharge nozzle 314, and the carrier gas injection port 320 is formed at the bottom thereof.
  • the carrier gas outlet 320 is formed in the vicinity of the outlet 316 at the tip of the outlet nozzle 314 so as to surround the outlet 316.
  • the carrier gas can be ejected from around the ejection port 316, and the liquid material droplets ejected from the ejection port 316 are surely made to fly toward the vaporization unit 300B and provided in the vaporization unit 300B. Can be guided to the mist trap unit 360 described later.
  • the vaporizing unit 300B includes a substantially cylindrical housing 330, a mist trap unit 360 including a cylindrical air-permeable member 362 provided in a vaporization space 350 formed in the center, and a periphery of the air-permeable member 362.
  • a radiant heat heater 370 that uniformly heats the breathable member 362 by radiant heat;
  • a cylindrical sleeve member 342 as a member.
  • An inlet 338 for taking in liquid droplets supplied from the liquid raw material supply unit 300A is formed at the upstream end of the housing 330, and the liquid raw material droplets are vaporized at the downstream end.
  • An outlet 340 is formed through which the raw material gas generated by vaporization is sent out.
  • the mist trap part 360 includes a cylindrical air-permeable member 362 disposed from the inlet 338 to the outlet 340. One end of the air-permeable member 362 is closed, and the other end is attached so as to open and cover the delivery port 340.
  • the vaporization space 350 is partitioned into the inner space 366 and the outer space 368 of the air-permeable member 362 by the mist trap part 360.
  • liquid material droplets from the inlet 338 are sprayed together with the carrier gas.
  • the liquid raw material droplets circulate into the outer space 368 and are sprayed and vaporized on the outer surface of the heated air-permeable member 362 to enter the inner space 366 as raw material gas, and are sent out from the outlet 340. Will be.
  • FIG. 3 is a cross-sectional perspective view for explaining a configuration example of the vaporizing unit 300B shown in FIG.
  • FIG. 4 is a perspective view showing an arrangement example of the radiant heater 370. In FIG. 3, the radiation heater 370 is not shown.
  • the housing 330 of the vaporizing section 300B includes a cylindrical side wall member 331, an upstream end wall member 332 and a downstream end wall provided to close the upstream end and the downstream end of the side wall member 331, respectively. It consists of a member 334.
  • the introduction port 338 is formed in the upstream end wall member 332, and the delivery port 340 is formed in the downstream end wall member 334.
  • the side wall member 331, the upstream side end wall member 332, and the downstream side end wall member 334 constituting the housing 330 are each made of a metal such as aluminum or stainless steel.
  • Each of the upstream end wall member 332 and the downstream end wall member 334 is attached to the side wall member 331 by fastening members 336 such as a plurality of bolts, for example, as shown in FIG.
  • the inner surface of the side wall member 331 is mirror-finished so that heat rays (for example, electromagnetic waves such as far infrared rays) from the radiant heat heater 370 are directed to the vaporization space 350 at the center of the housing 330. Thereby, the heat rays from the radiant heat heater 370 can be efficiently collected in the air-permeable member 362 in the vaporization space 350, so that the heating efficiency of the air-permeable member 362 can be increased.
  • the sleeve member 342 is provided inside the housing 330 so as to form a double tube structure coaxial with the side wall member 331.
  • the sleeve member 342 is attached so as to be pressed between the upstream end wall member 332 and the downstream end wall member 334.
  • flanges formed at both ends of the sleeve member 342 are inserted into counterbore 344 and 346 formed inside the upstream end wall member 332 and the downstream end wall member 334, respectively. Is positioned.
  • the contact portions of the sleeve member 342, the upstream end wall member 332, and the downstream end wall member 334 are each sealed by a seal member 348 such as a metal O-ring. Thereby, the vaporization space 350 inside the sleeve member 342 and the installation space of the outside radiant heater 370 are sealed.
  • the vaporization space 350 inside the sleeve member 342 and the arrangement space of the external radiant heater 370 are partitioned, so that, for example, the components of the liquid raw material thermally decomposed in the vaporization space 350 Or the like can be prevented from adhering to the surface of the radiant heat heater 370.
  • particles may adhere to the inside of the sleeve member 342, but can be easily removed by cleaning only the sleeve member 342.
  • the sleeve member 342 has a cylindrical shape, and particles can be made difficult to adhere by processing the inner surface thereof smoothly.
  • the mist trap part 360 is provided in the vaporization space 350 formed in the sleeve member 342. As described above, the mist trap part 360 includes the cylindrical air-permeable member 362. A disc-shaped closing member 364 that closes the opening end face is provided at the upstream end of the air-permeable member 362, and the downstream end is open and surrounds the delivery port 340. And are attached so as to be joined to the downstream end wall member 334. Thus, the downstream end of the air-permeable member 362 communicates with the delivery port 340.
  • the mist trap unit 360 captures and vaporizes liquid source liquid droplets introduced together with the carrier gas from the introduction port 338 with the air-permeable member 362.
  • the raw material gas enters the inner space 366 of the air-permeable member 362 together with the carrier gas and is sent out from the delivery port 340.
  • the downstream end of the air-permeable member 362 may be joined with the heat insulating member interposed therebetween without directly joining the downstream end wall member 334. According to this, since the heat of the mist trap part 360 can be prevented from escaping to the downstream side end wall member 334, the heating efficiency can be increased.
  • the air permeable member 362 has air permeability through which a raw material gas captured by vaporization of liquid material droplets is allowed to pass without passing therethrough.
  • a material that is heated by heat rays from the radiant heater 370 for example, a material that absorbs electromagnetic waves such as infrared rays and easily rises in temperature is used.
  • metals such as ceramics, such as silicon carbide (SiC) which has a porous structure, or stainless steel, are mentioned, for example.
  • the closing member 364 is made of a ceramic such as silicon carbide (SiC) or a metal such as stainless steel, like the air-permeable member 362.
  • the thickness of the air-permeable member 362 is preferably determined in consideration of not only the heat capacity but also the vaporization efficiency and the heating temperature. As the thickness of the air-permeable member 362 is reduced, the heat capacity of the air-permeable member 362 is reduced, so that the heating efficiency can be improved and the time required for heating can be shortened. However, as the thickness of the air-permeable member 362 is reduced, the surface area of the air-permeable member 362 is also reduced, and the vaporization efficiency of the liquid liquid material in the form of liquid is reduced. However, a decrease in vaporization efficiency can be suppressed by increasing the heating temperature. Therefore, the thickness of the air-permeable member 362 is preferably as thin as possible within a range where sufficient vaporization efficiency can be obtained.
  • the length of the breathable member 362 is shorter than the length of the side wall member 331, and the diameter of the breathable member 362 is smaller than that of the sleeve member 342.
  • the upstream end portion (end portion on the closing member 364 side) of the air permeable member 362 is slightly separated from the upstream end wall member 332, and the side surface of the air permeable member 362 is inside the sleeve member 342.
  • a flow path is formed in which the liquid droplets and the carrier gas discharged toward the inlet 338 are directed from the upstream side of the air-permeable member 362 toward the side surface (outer space 368).
  • the sleeve member 342 is made of a material that transmits, for example, heat rays (for example, electromagnetic waves such as far infrared rays) from the radiant heat heater 370.
  • heat rays for example, electromagnetic waves such as far infrared rays
  • Examples of such a material include transparent quartz and alumina.
  • the radiant heat heater 370 that emits heat rays in this way, for example, a carbon heater such as QCH-HEATER (registered trademark) can be used.
  • the radiant heat heater 370 is not limited to this, and a halogen heater or a nichrome heater may be used.
  • Such a radiant heat heater 370 is given to the air-permeable member 362 by controlling the power (heater power) irradiated from the radiant heat heater 370 by controlling the power supplied from the heater power source 374, for example. The amount of heat can be controlled.
  • the radiant heat heater 370 is disposed so as to cover the side surface (outer surface) of the air-permeable member 362 from the outside of the sleeve member 342.
  • QCH-HEATER registered trademark
  • the radiant heat heater 370 is configured in a zigzag manner. According to such a radiant heat heater 370, the entire side surface (outer surface) of the air permeable member 362 of the air permeable member 362 can be irradiated with the heat rays from the radiant heat heater 370. Can be uniformly heated.
  • the end of the radiant heater 370 extends from the through hole 372 formed in the downstream end wall member 334 to the outside of the housing 330 of the vaporization unit 300 ⁇ / b> B and is connected to the heater power supply 374. .
  • the air permeable member 362 is provided with a temperature sensor 376 such as a thermocouple. These heater power supply 374 and temperature sensor 376 are connected to the control unit 140.
  • the control unit 140 can control the radiant heater 370 by controlling the electric power of the heater power supply 374 according to the temperature from the temperature sensor 376, and can control the air-permeable member 362 to a predetermined temperature.
  • each unit of the film forming apparatus 100 is controlled by a control unit 140 to operate.
  • the radiant heat heater 370 of the liquid raw material vaporizer 300 is heated to heat the air-permeable member 362 to a predetermined temperature.
  • heat rays are radiated from the radiant heater 370 around the air-permeable member 362, and the entire air-permeable member 362 is uniformly heated to a predetermined temperature.
  • the temperature of the breathable member 362 is measured by the temperature sensor 376, and the power of the radiant heat heater 370 is adjusted via the heater power supply 374 based on the measured temperature.
  • the temperature of the air permeable member 362 is maintained at a predetermined temperature.
  • the temperature of the air-permeable member 362 is maintained at a temperature (for example, 100 to 300 ° C.) higher than the vaporization temperature of the liquid raw material, for example.
  • the opening degree of the liquid material flow rate control valve 114 is adjusted so that the liquid material having a predetermined flow rate is supplied from the liquid material supply source 110 to the liquid material vaporizer 300 via the liquid material supply pipe 112.
  • the opening degree of the carrier gas flow control valve 124 is adjusted so that the carrier gas having a predetermined flow rate is supplied from the carrier gas supply source 120 to the liquid raw material vaporizer 300 via the carrier gas supply pipe 122.
  • the liquid material droplets discharged from the discharge nozzle 314 are sprayed together with the carrier gas from the inlet 338 toward the mist trap portion 360 of the vaporization space 350. At this time, the droplet and the carrier gas are guided to the side surface along the flow path (outer space 368) from the upstream side of the mist trap part 360, and thus are sprayed on the outer surface of the air-permeable member 362 of the mist trap part 360. become.
  • the air-permeable member 362 is adjusted to a predetermined temperature that is higher than the vaporization temperature of the liquid raw material uniformly by the radiant heat from the radiant heat heater 370. For this reason, even if the droplet of the liquid material is sprayed on any part of the surface of the air-permeable member 362, the droplet can be sufficiently vaporized.
  • the liquid material droplets are sprayed and vaporized onto the air-permeable member 362, and flow into the inner space 366 as raw material gas, and are sent together with the carrier gas to the raw material gas supply pipe 132 through the delivery port 340.
  • the source gas sent to the source gas supply pipe 132 is supplied to the film forming chamber 200, introduced into the internal space 242 of the shower head 240, and discharged toward the wafer W on the susceptor 222 from the gas discharge hole 244. Then, a predetermined film such as an HfO 2 film is formed on the wafer W.
  • the flow rate of the source gas introduced into the film forming chamber 200 can be adjusted by controlling the opening degree of the source gas flow rate control valve 134 provided in the source gas supply pipe 132.
  • the mist trap part 360 that captures and vaporizes the liquid material in the form of droplets is constituted by the breathable member 362 that is heated by radiant heat.
  • the entire breathable member 362 can be directly heated by the radiant heat from the radiant heat heater 370.
  • the temperature of the air-permeable member 362 can be made uniform throughout, the liquid material can be uniformly vaporized only by spraying the liquid material of the liquid droplets onto the air-permeable member 362. Can do. Thereby, vaporization efficiency can be improved more than before.
  • the sleeve member 342 that partitions the vaporization space 350 through which the liquid material in the form of liquid droplets flows and the space in which the radiant heater 370 is disposed it is possible to prevent particles from adhering to the surface of the radiant heater 370.
  • the vaporization efficiency of the liquid raw material droplets can be improved. That is, since a flow path surrounded by the radiant heat heater 370 is formed between the inner surface of the sleeve member 342 and the outer side surface of the air-permeable member 362, liquid droplets of the liquid material passing through the flow path are emitted from the radiant heat heater 370. While the heat rays act directly, the atmosphere of the entire flow path is also heated by the radiant heat heater 370. Thereby, the vaporization efficiency of the liquid raw material droplets can be further improved.
  • the temperature of the air permeable member 362 is measured in real time by the temperature sensor 376, and the radiant heat heater 370 is controlled based on the measured temperature, so that the temperature of the air permeable member 362 is always adjusted to maintain the set temperature. it can. For this reason, during the film forming process, the temperature of the entire air-permeable member 362 is always kept uniform, and the liquid material in the form of liquid droplets sprayed on the air-permeable member 362 is surely vaporized. Can be stably supplied.
  • the power of the radiant heat heater 370 is adjusted so that the temperature of the air-permeable member 362 is optimized in accordance with the conditions of the liquid source supply unit 300A, for example, the type and amount of the liquid source, the size of the droplets, and the like. Also good. Thereby, vaporization efficiency can be improved irrespective of the conditions of the liquid raw material supply unit 300A.
  • the mist trap portion is configured by the cylindrical air-permeable member 362 whose one end is closed.
  • the present invention is not necessarily limited thereto.
  • the mist trap part 360 may be configured by a conical air-permeable member 362 that protrudes upstream.
  • the entire mist trap portion 360 may be constituted by the air-permeable member 362, or the tip portion may be opened and the closing member 364 may be attached.
  • the radiant heater 370 may be disposed along the outer surface of the air-permeable member 362.
  • the closing member 364 that closes one end of the air-permeable member 362 may be formed of a member having air permeability similarly to the air-permeable member 362. However, the closing member 364 is formed of a member that does not have air permeability.
  • the closing member 364 is formed of a member that does not have air permeability.
  • the present invention is not necessarily limited thereto, and may be formed in a cylindrical shape other than the cylindrical shape.
  • it may be formed in a rectangular tube shape.
  • the vaporizing unit 300B may be configured without providing the sleeve member 342.
  • FIG. 5 is a diagram for explaining a schematic configuration example of the film forming apparatus 102 according to the second embodiment.
  • the liquid raw material vaporizer 302 used for the film forming apparatus 102 is configured by the first liquid raw material vaporizer 304 and the second liquid raw material vaporizer 308 connected to this by a connection pipe 306 will be described. Since the configuration of the film forming apparatus 102 according to the second embodiment other than the liquid source vaporizer 302 is the same as that of the film forming apparatus 100 according to the first embodiment shown in FIG. Constituent elements having the same reference numerals are given and detailed descriptions thereof are omitted.
  • the liquid source vaporizer 302 includes a first liquid source vaporizer 304 that generates a source gas by vaporizing a liquid source supplied from the liquid source supply source 110, and a first liquid source vaporizer. And a second liquid source vaporizer 308 connected to the discharge port of the source gas generated in 304 via a connection pipe 306, and the source gas discharged from the discharge port of the second liquid source vaporizer 308 is used as a raw material. It is configured to be supplied to the film forming chamber 200 via the gas supply pipe 132.
  • FIG. 6 shows a configuration example of the second liquid source vaporizer 308 according to the second embodiment.
  • the second liquid raw material vaporizer 308 is a liquid raw material vaporizer composed of only the vaporization unit 300B of the liquid raw material vaporizer 300 according to the first embodiment. Therefore, since the second liquid raw material vaporizer 308 has the same configuration as the vaporization unit 300B shown in FIG. 2, components having the same functional configuration are denoted by the same reference numerals and detailed description thereof is omitted. .
  • the first liquid raw material vaporizer 304 is a liquid raw material vaporizer that generates a raw material gas by vaporizing the liquid raw material supplied from the liquid raw material supply source 110, regardless of its configuration or type.
  • the liquid raw material vaporizer may be used.
  • the raw material gas generated by the first liquid raw material vaporizer 304 is added to the air-permeable member 362 whose temperature has been increased uniformly uniformly by the radiant heat in the second liquid raw material vaporizer 308.
  • the liquid droplets that could not be vaporized by the first liquid raw material vaporizer 304 can be vaporized by the second liquid raw material vaporizer 308. Accordingly, it is possible to prevent liquid source droplets from flowing into the film forming chamber 200 and the like together with the source gas. Further, since the vaporization failure due to a partial temperature decrease of the air-permeable member 362 can be prevented, the air-permeable member 362 can be prevented from being clogged.
  • the liquid source vaporizer according to the present invention is a liquid source vaporizer used for MOCVD apparatus, plasma CVD apparatus, ALD (atomic layer deposition) apparatus, LP-CVD (batch type, vertical type, horizontal type, minibatch type) and the like. It is also applicable to.
  • the present invention is applicable to a liquid source vaporizer that vaporizes a liquid source to generate a source gas and a film forming apparatus using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 液体原料の液滴を通気性部材を通して気化させる際に,通気性部材全体の温度を均一にして,液滴が気化しきれずに通気性部材が目詰まりを起こすことを防止する。  液体原料気化器(300)は,液体原料を液滴状にして気化空間(350)に吐出する液体原料供給部(300A)と,気化部(300B)と,液体原料供給部からの液滴状の液体原料を気化部内に導入する導入口(338)と,気化部内に配置され,輻射熱によって加熱される材料で構成された通気性部材(362)からなるミストトラップ部(360)と,通気性部材の外側表面の全体に熱線を照射し,その輻射熱によって通気性部材を加熱する輻射熱ヒータ(370)と,加熱された通気性部材に液滴状の液体原料を通して気化させることによって生成した原料ガスを外部に送出する送出口(340)とを備える。

Description

液体原料気化器及びそれを用いた成膜装置
 本発明は,液体原料を気化させて原料ガスを生成する液体原料気化器及びそれを用いた成膜装置に関する。
 半導体基板やガラス基板などの被処理基板の表面上に,誘電体,金属,半導体などの薄膜を成膜する方法として,上記被処理基板が載置されている成膜室に有機金属化合物などの有機原料ガスを供給し,この有機原料ガスと酸素やアンモニアなどの他のガスとを反応させて成膜する化学気相成長(CVD:Chemical Vapor Deposition)法が知られている。このようなCVD法で用いられる有機原料は,常温で液体あるいは固体であるものが多いため,有機原料を気化させるための気化器が必要になる。
 通常,上記有機原料は,予め溶媒を用いて液体状にされてから気化器に導入される。このような液体原料を気化させて原料ガスを生成する従来の気化器としては,例えば気化室内に多数の孔を有する気化面を設け,この気化面を抵抗加熱ヒータで加熱しつつ,ノズルから液体原料を吐出して液滴(ミスト)状にしたものをキャリアガスの流れに乗せて気化面に吹き付けることによって気化させるものがある。
 このような気化器においては,気化効率を高めるために液体原料をできるだけ小径な液滴にして気化面に吹き付けることが望ましい。ところが,液滴の径を小さくするほど,気化面に接触せずにその孔を通り抜けてしまう虞がある。このように気化しきれなかった液滴は,キャリアガスの気流に乗って成膜室内に浸入してパーティクル発生の要因になる。例えば気化しきれなかった液体原料の液滴が成膜室内に浸入した際にその成膜室に酸素が残留していると,その液滴が酸化して微細なパーティクルとなり,これが基板に付着すると異常成膜や膜質不良が生じるという問題がある。
 このため,従来は,気化器で生成された原料ガスを微小な孔を有するフィルタを通して成膜室に供給させるようにし,このフィルタを抵抗加熱ヒータなどで加熱して,原料ガスに含まれる気化しきれなかった液滴をフィルタを通して気化させるようにしていた。これによれば,気化器自体の気化効率が多少悪くても,気化しきれなかった液滴がそのまま成膜室内に浸入することを防ぐことができる。
 また,気化効率を高めるため,細孔を有する固体充填物や多孔質体のような微小な孔を有する通気性部材を配置し,この通気性部材を抵抗加熱ヒータや熱媒体などで加熱して,液体原料の液滴を通して気化させるものもある(例えば特許文献1,2参照)。これによれば,液滴が通気性部材に接触する可能性も増えるので,気化効率を高めることができる。
特開2005-347598号公報 特開平10-85581号公報
 しかしながら,従来,液体原料の液滴を気化するために使用されていた固体充填物,多孔質体,フィルタなどの通気性部材は,抵抗加熱ヒータからの熱伝導によって加熱していたので,通気性部材全体に渡って均一に熱量を供給することができなかった。通気性部材のうち例えば抵抗加熱ヒータから離れていて熱量が十分届かない部分など温度が低い部分が存在するので,液滴が気化されずに目詰まりを起こす虞があった。
 特に,通気性部材の表面には多数の孔が形成されていることからその表面積は広く,元来,通気性部材は放熱性が高いものである。しかもその表面は,温度の低い原料ガスや液体原料の液滴に晒されている。このため,通気性部材全体のうち抵抗加熱ヒータからの熱が伝わりにくい領域はさらに温度が低下してしまう。また,通気性部材の表面に液体原料の液滴が付着して気化されると,そのときの気化熱によって通気性部材から熱が奪われることになる。このとき,熱が伝わりにくい領域ではその気化熱分の熱エネルギーを十分に補充することができず,結果として通気性部材の中で温度差が生じてしまう。
 例えば特許文献1に記載の気化器では,固体充填物はその外側の抵抗加熱ヒータからの熱伝導によって加熱されるため,固体充填物のうち抵抗加熱ヒータに近い外周領域に比べて中央領域の温度が低くなるなど,固体充填物全体の温度を均一にすることは困難である。このような場合,中央領域の温度が液体原料を気化させることができる温度に達せず,気化不良が発生して固体充填物が目詰まりする虞がある。
 これに対して,特許文献2に記載の気化器では,多孔質体にて目詰まりを起こすことなく液体原料を効率よく気化させるために,多孔質体内の一部を通る流路を設け,この流路に熱媒体を流通させることによって多孔質体の内部から加熱している。しかしながら,これだけでは目詰まりを防止する点で十分とは言えない。すなわち,熱媒体を流通させる流路は多孔質体内の一部に配置されているだけであるため,多孔質体全体にわたって均一に熱を伝えることはできない。このため部分的に気化不良が発生し,多孔質体が目詰まりする虞は払拭しきれない。また,多孔質体全体にわたって均一に熱を伝えるためには,多孔質体全体に隈無く流路を形成すればよいとも考えられる。しかし,そのようにすれば構造が複雑となるばかりか,流路を形成した分だけ原料ガスが通過できる領域が減少し,多孔質体における圧力損失が大きくなってしまう。これでは,所定の流量の原料ガスを得ることができなくなる。
 そこで,本発明はこのような問題に鑑みてなされたもので,その目的とするところは,液体原料の液滴を通気性部材を通して気化させる際に,通気性部材全体の温度を均一にすることができ,気化しきれずに目詰まりを起こすことを防止できる液体原料気化器およびそれを用いた成膜装置を提供することにある。
 上記課題を解決するために,本発明のある観点によれば,液体原料を液滴状にして吐出する液体原料供給部と,前記液滴状の液体原料を気化させて原料ガスを生成する気化部と,前記液体原料供給部からの前記液滴状の液体原料を前記気化部内に導入する導入口と,前記気化部内に配置され,輻射熱によって加熱される材料で構成された通気性部材からなるミストトラップ部と,前記通気性部材の外側表面の全体に熱線を照射し,その輻射熱によって前記通気性部材を加熱する輻射熱ヒータと,加熱された前記通気性部材に前記液滴状の液体原料を通して気化させることによって生成した原料ガスを外部に送出する送出口とを備えたことを特徴とする液体原料気化器が提供される。
 上記課題を解決するために,本発明の別の観点によれば,液体原料を気化させて原料ガスを生成する液体原料気化器から原料ガスを導入して被処理基板に対して成膜処理を行う成膜室を備える成膜装置であって,前記液体原料気化器は,前記液体原料を液滴状にして吐出する液体原料供給部と,前記液滴状の液体原料を気化させて原料ガスを生成する気化部と,前記液体原料供給部からの前記液滴状の液体原料を前記気化部内に導入する導入口と,前記気化部内に配置され,輻射熱によって加熱される材料で構成された通気性部材からなるミストトラップ部と,前記通気性部材の外側表面の全体に熱線を照射し,その輻射熱によって前記通気性部材を加熱する輻射熱ヒータと,加熱された前記通気性部材に前記液滴状の液体原料を通して気化させることによって生成した原料ガスを外部に送出する送出口とを備えたことを特徴とする成膜装置が提供される。
 このような本発明によれば,液滴状の液体原料を捕捉して気化させるミストトラップ部を輻射熱によって加熱される通気性部材で構成し,輻射熱ヒータによって通気性部材の外側表面全体に熱線を照射するので,通気性部材全体を均一に加熱することができる。これにより全体に渡って通気性部材の温度を均一にすることができるので,通気性部材に液滴状の液体原料を通すだけで,液滴を満遍なくすべて気化させることができる。これにより,従来以上に気化効率を向上させることができるとともに,部分的な温度低下による気化不良を防止できるため,通気性部材の目詰まりを防止することができる。さらに,通気性部材の外側表面全体を直接加熱できるので,通気性部材を液滴状の液体原料が通る際に,液滴の気化熱によりどの部分で熱が奪われても,素早く熱エネルギーを補充することができる。
 また,上記気化部の前記導入口と前記送出口とは対向して設け,前記通気性部材は,前記導入口側から前記送出口側にわたって配置された筒状の形状をなし,前記導入口側の端部は閉じられるとともに,前記送出口側の端部は前記送出口に連通するように構成するのが好ましい。このように,通気性部材を筒状に形成することで,よりコンパクトなサイズで通気性部材の表面の面積をより大きくとれるので,より多くの液滴状の液体原料を気化させて十分な量の原料ガスを生成できるとともに,所定の温度まで加熱する時間を短くできるなど,加熱効率を高めることもできる。また,導入口側の端部は閉じられることにより,導入口から供給される液体原料の液滴を輻射熱ヒータに囲まれる通気性部材の外側側面に導くことができる。
 この場合,上記輻射熱ヒータは,前記通気性部材の外側表面を囲むように配置することが好ましい。このような輻射熱ヒータは,例えば所望の形状に加工し易いカーボンヒータにより構成される。これによれば,輻射熱ヒータから通気性部材の表面全体を一度に加熱できるので,加熱効率をより高めることができる。
 さらに,上記通気性部材と前記輻射熱ヒータとの間に,前記液滴状の液体原料が流通する気化空間と前記輻射熱ヒータの配設空間とを仕切る筒状の仕切部材を前記通気性部材を囲むように設け,前記仕切部材は,前記輻射熱ヒータが照射する熱線を透過させる通気性のない部材で構成することが好ましい。このような仕切部材は例えば石英で構成する。このような仕切部材を設けることによって,輻射熱ヒータの表面にパーティクルが付着することを防止できるとともに,液滴状の液体原料の気化効率を向上させることができる。すなわち,仕切部材の内側表面とミストトラップ部の外側側面との間に輻射熱ヒータに囲まれる流路が形成されるので,この流路を通る液滴状の液体原料に輻射熱ヒータからの熱線が直接作用するとともに,通気性部材が加熱されれば流路全体の雰囲気も加熱される。これにより,液滴状の液滴の気化効率をより向上させることができる。
 この場合,さらに通気性部材の導入口側の端部を閉じることで,導入口から供給される液体原料の液滴のすべてをミストトラップ部と仕切部材との間に形成される輻射熱ヒータに囲まれた流路に導くことができる。これにより,すべての液体原料の液滴に輻射熱ヒータの熱線を作用させることができるとともに,輻射熱ヒータで直接加熱される通気性部材の外側表面に効率よく導くことができる。従って,気化効率をより一層向上させることができる。
 また,前記通気性部材の温度を測定する温度センサと,前記温度センサによって測定された前記通気性部材の温度に基づいて前記輻射熱ヒータを制御することにより,前記通気性部材の温度を所定の温度に調節する制御部とを設けるようにしてもよい。温度センサによって通気性部材の温度を直接測定して監視し,その測定された温度に基づいて,輻射熱ヒータを制御することで,通気性部材の温度を正確に調整することができる。このため,通気性部材全体の温度を所定の温度に常に保持することができる。
 また,上記気化部の外枠を構成するハウジングの内側面は,前記輻射熱ヒータからの熱線を反射して前記通気性部材の外側表面に向かうように鏡面加工することが好ましい。これにより,輻射熱ヒータからの熱線を効率よく通気性部材に集めることができるので,通気性部材の加熱効率を高めることができる。
 上記課題を解決するために,本発明の別の観点によれば,液体原料を気化させて原料ガスを生成する他の液体原料気化器に接続される液体原料気化器であって,前記他の液体原料気化器で生成された原料ガスを導入する導入口と,輻射熱によって加熱される材料で構成された通気性部材からなるミストトラップ部と,前記通気性部材の外側表面の全体に熱線を照射し,その輻射熱によって前記通気性部材を加熱する輻射熱ヒータと,前記導入口から導入した前記他の液体原料気化器からの原料ガスを,加熱された前記通気性部材を通して外部に送出する送出口とを備えたことを特徴とする液体原料気化器が提供される。
 このような本発明によれば,輻射熱ヒータからの輻射熱によって加熱された通気性部材に他の液体原料気化器で生成された原料ガスを通すことにより,他の液体原料気化器で気化しきれなかった液滴も,本発明にかかる液体原料気化器で気化させることができる。
 上記課題を解決するために,本発明の別の観点によれば,液体原料を気化させて原料ガスを生成する液体原料気化器から原料ガスを導入して被処理基板に対して成膜処理を行う成膜室を備える成膜装置であって,前記液体原料気化器は,液体原料を気化させて原料ガスを生成する第1の液体原料気化器とこれに接続された第2の液体原料気化器により構成され,前記第2の液体原料気化器は,前記第1の液体原料気化器で生成された原料ガスを導入する導入口と,輻射熱によって加熱される材料で構成された通気性部材からなるミストトラップ部と,前記通気性部材の外側表面の全体に熱線を照射し,その輻射熱によって前記通気性部材を加熱する輻射熱ヒータと,前記導入口から導入した前記第1の液体原料気化器からの原料ガスを,加熱された前記通気性部材を通して外部に送出する送出口とを備えたことを特徴とする成膜装置が提供される。
 このような本発明によれば,輻射熱ヒータからの輻射熱によって加熱された第2の液体原料気化器の通気性部材に,第1の液体原料気化器で生成された原料ガスを通すことにより,第1の液体原料気化器で気化しきれなかった液滴も,第2の液体原料気化器で気化させることができる。これにより,成膜室などに原料ガスとともに液体原料の液滴が入り込むことを防止できる。
 本発明によれば,液体原料の液滴を通気性部材に通す際に,輻射熱ヒータによる輻射熱によって通気性部材の全体を直接加熱することができる。このため,通気性部材全体に渡って均一に加熱することができるので,液滴を満遍なくすべて気化させることができる。これにより,従来よりも気化効率を向上させることができるとともに,部分的な温度低下による気化不良を防止できるため,通気性部材の目詰まりを防止することができる。
本発明の第1実施形態にかかる成膜装置の構成例を示す図である。 同実施形態にかかる液体原料気化器の構成例を示す縦断面図である。 図2に示す気化部の一部の構成例を示す断面斜視図である。 図2に示す輻射熱ヒータの配設例を示す斜視図である。 本発明の第2実施形態にかかる成膜装置の構成例を示す図である。 同実施形態にかかる液体原料気化器の構成例を示す縦断面図である。
符号の説明
100,102   成膜装置
110   液体原料供給源
112   液体原料供給配管
114   液体原料流量制御バルブ
120   キャリアガス供給源
122   キャリアガス供給配管
124   キャリアガス流量制御バルブ
132   原料ガス供給配管
134   原料ガス流量制御バルブ
140   制御部
200   成膜室
210   側壁部材
212   天壁部材
214   底壁部材
222   サセプタ
224   支持部材
226   ヒータ
228   電源
230   排気口
232   排気手段
240   シャワーヘッド
242   内部空間
244   ガス吐出孔
300   液体原料気化器
300A   液体原料供給部
300B   気化部
302,304,308   液体原料気化器
306   接続配管
310   液体原料流路
312   キャリアガス流路
314   吐出ノズル
316   吐出口
318   キャリアガス噴射部
320   キャリアガス噴出口
330   ハウジング
331   側壁部材
332   上流側端壁部材
334   下流側単壁部材
336   締結部材
338   導入口
340   送出口
342   スリーブ部材
344,346   ザグリ
348   シール部材
350   気化空間
360   ミストトラップ部
362   通気性部材
364   閉じ部材
366   内側空間
368   外側空間(流路)
370   輻射熱ヒータ
372   貫通孔
374   ヒータ電源
376   温度センサ
 W   ウエハ
 以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。
(第1実施形態にかかる成膜装置)
 まず,本発明の第1実施形態にかかる成膜装置について図面を参照しながら説明する。図1は第1実施形態にかかる成膜装置の概略構成例を説明するための図である。図1に示す成膜装置100は,被処理基板例えば半導体ウエハ(以下,単に「ウエハ」という)W上にCVD法により金属酸化物膜を成膜するものであり,例えばHTB(ハフニウムタートブトキサイド)などのHfを含有する液体原料を供給する液体原料供給源110と,Arなどの不活性ガスをキャリアガスとして供給するキャリアガス供給源120と,液体原料供給源110から供給される液体原料を気化させて原料ガスを生成する液体原料気化器300と,液体原料気化器300が生成した原料ガスを用いてウエハWに例えばHfO膜を形成する成膜室200と,成膜装置100の各部を制御する制御部140を備えている。
 液体原料供給源110と液体原料気化器300は,液体原料供給配管112で接続されており,キャリアガス供給源120と液体原料気化器300は,キャリアガス供給配管122で接続されており,液体原料気化器300と成膜室200は,原料ガス供給配管132で接続されている。そして,液体原料供給配管112には液体原料流量制御バルブ114が備えられ,キャリアガス供給配管122にはキャリアガス流量制御バルブ124が備えられ,原料ガス供給配管132には原料ガス流量制御バルブ134が備えられている。これら液体原料流量制御バルブ114,キャリアガス流量制御バルブ124及び原料ガス流量制御バルブ134は,制御部140からの制御信号によってそれぞれの開度が調整されるように構成されている。制御部140は,液体原料供給配管112を流れる液体原料の流量,キャリアガス供給配管122を流れるキャリアガスの流量,及び原料ガス供給配管132を流れる原料ガスの流量を測定して,その測定結果に応じて制御信号を出力することが好ましい。
 成膜室200は,例えば略円筒状の側壁部材210を有し,この側壁部材210と天壁部材212と底壁部材214に囲まれた内部空間に,ウエハWが水平に載置されるサセプタ222を備えて構成される。側壁部材210と天壁部材212と底壁部材214は,例えばアルミニウム,ステンレス鋼などの金属で構成される。サセプタ222は,円筒状の複数の支持部材224(ここでは,1本のみ図示)により支持されている。また,サセプタ222にはヒータ226が埋め込まれており,電源228からこのヒータ226に供給される電力を制御することによってサセプタ222上に載置されたウエハWの温度を調整することができる。
 成膜室200の底壁部材214には排気口230が形成されており,この排気口230には排気手段232が接続されている。そして排気手段232によって成膜室200内を所定の真空度に調節することができる。
 成膜室200の天壁部材212には,シャワーヘッド240が取り付けられている。このシャワーヘッド240には原料ガス供給配管132が接続されており,この原料ガス供給配管132を経由して,液体原料気化器300で生成された原料ガスがシャワーヘッド240内に導入される。シャワーヘッド240は,内部空間242と,この内部空間242に連通する多数のガス吐出孔244を有している。原料ガス供給配管132を介してシャワーヘッド240の内部空間242に導入された原料ガスは,ガス吐出孔244からサセプタ222上のウエハWに向けて吐出される。
 この成膜装置100では,液体原料気化器300からの原料ガスが次のようにして供給される。液体原料気化器300に液体原料供給源110からの液体原料が液体原料供給配管112を介して供給されるとともに,キャリアガス供給源120からのキャリアガスがキャリアガス供給配管122を介して供給されると,液体原料気化器300の後述する液体原料供給部300Aによってキャリアガスとともに液体原料が液滴状となって気化部300Bに吐出され,その液滴が気化部300Bで気化されて原料ガスが生成される。液体原料気化器300で生成された原料ガスは,原料ガス供給配管132を介して成膜室200に供給され,成膜室200内のウエハWに対して所望のプロセス処理が施される。
 上記のような成膜装置100の液体原料気化器300において液体原料を完全に気化させることができなかった場合,液体原料の液滴の一部が原料ガスに混入して原料ガス供給配管132に送出され,成膜室200内に流入する虞がある。このように成膜室200内に流入した液体原料の液滴は,パーティクルとしてウエハW上に形成される膜の膜質を低下させる要因となり得る。また,液体原料気化器300において液体原料の気化効率が悪化した場合,成膜室200に供給される原料ガスの流量が不足し,ウエハWに例えばHfO膜を形成する際に所望の成膜レートが得られなくなる虞がある。
 そこで,本実施形態にかかる液体原料気化器300では,液体原料の液滴のすべてを効率よく気化させて,成膜室200における成膜処理に十分な量の良質な原料ガスを生成することができるように構成する。このような液体原料気化器300の具体的な構成例を以下に説明する。
(第1実施形態にかかる液体原料気化器の構成例)
 次に,本発明の第1実施形態にかかる液体原料気化器300の構成例について図面を参照しながら説明する。図2は,第1実施形態にかかる液体原料気化器300の概略構成例を示す縦断面図である。この液体原料気化器300は,大きく分けて,液体原料を液滴状にして後段に供給する液体原料供給部300Aと,この液体原料供給部300Aから供給される液体原料を気化させる気化部300Bとから構成されている。
 まず液体原料供給部300Aの構成例について説明する。この液体原料供給部300Aには,上面から内部に垂直方向に延びる液体原料流路310が設けられており,側面から内部に水平方向に延びるキャリアガス流路312が設けられている。液体原料流路310の一端には液体原料供給配管112が接続されており,キャリアガス流路312の一端にはキャリアガス供給配管122が接続されている。
 液体原料流路310の他端には,液体原料を液滴状にして吐出する吐出ノズル314が備えられている。この吐出ノズル314は,例えば先細りに構成され(図2ではこの構成の図示を省略する),その先端の吐出口316が気化部300B内の気化空間350に向くように配置される。
 吐出ノズル314の吐出口316の直径は,気化部300B内に供給される液体原料の液滴の目標サイズに応じて決定される。気化部300B内において,液滴状の液体原料を確実に気化させるためには,液滴のサイズは小さい方が有利であるため,吐出口316の直径も小さいことが好ましい。ただし,液滴のサイズが小さくなり過ぎると,液滴を気化して得られる原料ガスの流量が不足する虞がある。これらの点を考慮して,吐出口316の直径を決定することが好ましい。
 吐出ノズル314の構成材料としては,有機溶媒に対する耐性を有するポリイミド樹脂などの合成樹脂又はステンレス鋼やチタンなどの金属が好ましい。吐出ノズル314を合成樹脂で構成すれば,吐出される前の液体原料に周囲から熱が伝導しないようにすることができる。とりわけポリイミド樹脂を用いることで,液体原料の残渣(析出物)が吐出ノズル314に付着し難くなり,ノズルの目詰まりを防止することもできる。
 また,液体原料供給部300Aの内部には,吐出ノズル314の先端を囲むようにキャリアガス噴射部318が配設されている。キャリアガス噴射部318は上記キャリアガス流路312の他端に接続されており,キャリアガス流路312からのキャリアガスを液体原料とともに気化部300Bの気化空間350に向けて噴出するように構成されている。
 具体的には,キャリアガス噴射部318は吐出ノズル314の先端を囲むカップ状に形成されており,その底部にキャリアガス噴出口320が形成されている。キャリアガス噴出口320は,吐出ノズル314の先端の吐出口316の近傍にこの吐出口316を囲むように形成されている。これによって吐出口316の周りからキャリアガスを噴出することができるようになり,吐出口316から吐出される液体原料の液滴を確実に気化部300Bに向けて飛行させ,気化部300B内に設けられた後述のミストトラップ部360に誘導することができる。
 次に,気化部300Bの構成例について説明する。気化部300Bは,略円筒状のハウジング330と,この中心部に形成された気化空間350に設けられた円筒状の通気性部材362からなるミストトラップ部360と,この通気性部材362の周囲を囲むように配設され,輻射熱により通気性部材362を均一に加熱する輻射熱ヒータ370と,輻射熱ヒータ370と通気性部材362との間に輻射熱ヒータ370の配設空間と気化空間350とを仕切る仕切部材としての円筒状のスリーブ部材342とを備える。
 以下,気化部300Bの各部の構成をより詳細に説明する。ハウジング330の上流側の端部には液体原料供給部300Aから供給される液体原料の液滴を取り込む導入口338が形成されており,下流側の端部には液体原料の液滴が気化空間で気化して生成された原料ガスを送出する送出口340が形成されている。ミストトラップ部360は導入口338から送出口340にわたって配置された円筒状の通気性部材362からなる。通気性部材362は,その一端が閉じられており,他端は開口して送出口340を覆うように取り付けられている。これにより,ミストトラップ部360によって気化空間350は,通気性部材362の内側空間366と外側空間368とに仕切られる。
 このようなミストトラップ部360には,導入口338からの液体原料の液滴がキャリアガスとともに吹き付けられる。このとき,液体原料の液滴は,外側空間368に回り込み,加熱された通気性部材362の外側表面に吹き付けられて気化し,原料ガスとなって内側空間366へ入り込み,送出口340から送出されることになる。
 このような気化部300Bの構成例を図3,図4を参照しながら,さらに詳細に説明する。図3は図2に示す気化部300Bの構成例を説明するための断面斜視図である。図4は輻射熱ヒータ370の配設例を示す斜視図である。なお,図3では輻射熱ヒータ370の図示を省略している。気化部300Bのハウジング330は,円筒状の側壁部材331とこの側壁部材331の上流側の端部と下流側の端部を閉じるようにそれぞれ設けられた上流側端壁部材332と下流側端壁部材334からなる。
 上記導入口338は,上流側端壁部材332に形成され,上記送出口340は,下流側端壁部材334に形成される。ハウジング330を構成する側壁部材331,上流側端壁部材332,下流側端壁部材334はそれぞれ,例えばアルミニウム,ステンレス鋼などの金属で構成される。上流側端壁部材332と下流側端壁部材334はそれぞれ,例えば図2に示すように複数のボルトなどの締結部材336にて側壁部材331に取り付けられている。なお,輻射熱ヒータ370からの熱線(例えば遠赤外線などの電磁波)がハウジング330の中心部の気化空間350へ向かうように,側壁部材331の内側表面は鏡面加工が施されている。これにより,輻射熱ヒータ370からの熱線を効率よく気化空間350内の通気性部材362に集めることができるので,通気性部材362の加熱効率を高めることができる。
 上記スリーブ部材342は,ハウジング330の内側に側壁部材331と同軸の二重管構造をなすように設けられている。スリーブ部材342は上流側端壁部材332と下流側端壁部材334の間に押さえ込むように取り付けられている。そして,例えば図2に示すように,スリーブ部材342の両端に形成されたフランジがそれぞれ,上流側端壁部材332と下流側端壁部材334の内側に形成されているザグリ344,346に挿入されて位置決めされる。
 スリーブ部材342と,上流側端壁部材332及び下流側端壁部材334との接触部分はそれぞれ例えば金属製のOリングなどのシール部材348によりシールされている。これにより,スリーブ部材342の内側の気化空間350と,外側の輻射熱ヒータ370の配設空間とはシールされる。
 このようなスリーブ部材342を設けることにより,スリーブ部材342の内側の気化空間350と,外側の輻射熱ヒータ370の配設空間とが仕切られるため,例えば気化空間350で熱分解された液体原料の成分などのパーティクルが輻射熱ヒータ370の表面に付着することを防止できる。このため,手間のかかる輻射熱ヒータ370の表面の洗浄などが不要となり,メンテナンスの回数も減らすことができる。この場合,スリーブ部材342の内側にパーティクルが付着する可能性もあるが,スリーブ部材342のみを洗浄することによって簡単に除去できる。なお,スリーブ部材342は筒状であり,その内側表面を滑らかに加工することによってパーティクルが付着し難くすることもできる。
 ミストトラップ部360は,スリーブ部材342内に形成される気化空間350に設けられる。ミストトラップ部360は,上述したように円筒状の通気性部材362からなる。この通気性部材362の上流側の端部にはその開口端面を閉じる円板状の閉じ部材364が設けられており,下流側の端部は開口したまま,送出口340の周りを囲んだ状態で下流側端壁部材334に接合するように取り付けらている。こうして,通気性部材362の下流側の端部は送出口340に連通するようになっている。
 このミストトラップ部360は,導入口338からキャリアガスとともに導入された液体原料の液滴を通気性部材362で捕捉して気化させるものである。液体原料の液滴が気化すると原料ガスとなってキャリアガスとともに通気性部材362の内側空間366に入り込み,送出口340から送出される。なお,通気性部材362の下流側の端部を下流側端壁部材334に直接接合せずに,断熱部材を挟んで接合するようにしてもよい。これによれば,ミストトラップ部360の熱が下流側端壁部材334に逃げることを防ぐことができるので,加熱効率を高めることができる。
 ここで,通気性部材362について説明する。通気性部材362は,液体原料の液滴を通すことなく捕捉して,これが気化して生成した原料ガスを通す通気性を有するものである。また,通気性部材362の構成材料としては,輻射熱ヒータ370による熱線によってそのものが加熱される特性,例えば赤外線などの電磁波を吸収してそのものの温度が上昇しやすい特性を有するものを用いる。このような特性を有するものとしては,例えばポーラス構造を有する炭化ケイ素(SiC)などのセラミックス又はステンレス鋼などの金属が挙げられる。なお,閉じ部材364は通気性部材362と同様に例えば炭化ケイ素(SiC)などのセラミックス又はステンレス鋼などの金属で構成される。
 通気性部材362の厚みは,熱容量のみならず,気化効率や加熱温度などをも考慮して決定することが好ましい。通気性部材362の厚みを薄くするほど,通気性部材362の熱容量が小さくなるので,加熱効率を向上させることができ,また加熱に必要な時間も短縮できる。ところが,通気性部材362の厚みを薄くするほど,通気性部材362の表面積も少なくなるので,液滴状の液体原料の気化効率が低下する。但し,加熱温度を高くすることで気化効率の低下を抑えることができる。従って,通気性部材362の厚みは,十分な気化効率が得られる範囲で,できる限り薄い方が好ましい。
 なお,通気性部材362の長さは側壁部材331の長さよりも短く形成されており,通気性部材362の径はスリーブ部材342よりも小さく形成されている。このため,通気性部材362の上流側の端部(閉じ部材364側の端部)は,上流側端壁部材332から少し離れ,通気性部材362の側面はスリーブ部材342よりも内側になる。これにより,導入口338に向けて吐出された液滴とキャリアガスが通気性部材362の上流側から側面(外側空間368)に向かう流路が形成される。
 このように通気性部材362とスリーブ部材342との間に流路を形成することにより,この流路(外側空間368)を通る液滴を効率よく通気性部材362の側面に導くことができるので,その液滴のほとんどは通気性部材362の外側表面に吹き付けられて気化する。さらに,この流路は輻射熱ヒータ370の内側に形成されるので,この流路を通る液滴の一部は輻射熱ヒータ370からの熱線を直接受けてその輻射熱により気化する。このように流路を輻射熱ヒータ370の内側に形成することにより,ミストトラップ部360の通気性部材362を通る前に気化させることもできる。
 なお,スリーブ部材342は輻射熱ヒータ370からの例えば熱線(例えば遠赤外線などの電磁波)を透過する材料で構成される。このような材料としては,例えば透明の石英やアルミナなどが挙げられる。これにより,輻射熱ヒータ370からの熱線がスリーブ部材342を透過してほとんど減衰することなく通気性部材362に照射されるので,その輻射熱によって通気性部材362をスリーブ部材342の外側から効率よく加熱することができる。このように熱線を発する輻射熱ヒータ370としては,例えばQCH-HEATER(登録商標)などのカーボンヒータを用いることができる。なお,輻射熱ヒータ370としては,これに限られるものではなく,ハロゲンヒータ,ニクロムヒータを用いてもよい。このような輻射熱ヒータ370は,例えばヒータ電源374から供給される電力を制御して,輻射熱ヒータ370から照射される熱線の強さ(ヒータパワー)を制御することにより,通気性部材362に与えられる熱量を制御できる。
 ここで,輻射熱ヒータ370の配設例について説明する。輻射熱ヒータ370は例えば図4に示すように,スリーブ部材342の外側から通気性部材362の側面(外側表面)を覆うように配置される。図4では,輻射熱ヒータ370としてQCH-HEATER(登録商標)を用いて,つづら折り状に構成したものである。このような輻射熱ヒータ370によれば,通気性部材362の通気性部材362の側面(外側表面)全体に輻射熱ヒータ370からの熱線を照射できるので,その輻射熱により,全体に渡って通気性部材362の温度を均一に加熱することができる。
 輻射熱ヒータ370の端部は,図2に示すように下流側端壁部材334に形成されている貫通孔372から気化部300Bのハウジング330の外に延出して,ヒータ電源374に接続されている。また,通気性部材362には熱電対などの温度センサ376が設けられている。これらヒータ電源374,温度センサ376は,制御部140に接続されている。制御部140は,温度センサ376からの温度に応じて,ヒータ電源374の電力を制御することにより輻射熱ヒータ370を制御し,通気性部材362を所定の温度に加熱制御することができる。
(成膜装置の動作)
 次に,本実施形態にかかる成膜装置100の動作について説明する。成膜装置100は制御部140により各部が制御され,動作するようになっている。液体原料気化器300によって原料ガスを生成するにあたり,液体原料気化器300の輻射熱ヒータ370を発熱させて通気性部材362を所定の温度に加熱する。このとき,輻射熱ヒータ370からは熱線が通気性部材362の周りに放射され,通気性部材362はその全体がむらなく所定の温度に加熱される。そして,温度センサ376により通気性部材362の温度が測定され,その測定温度に基づいてヒータ電源374を介して輻射熱ヒータ370のパワーが調整される。こうして,通気性部材362の温度を所定の温度に保持する。このときの通気性部材362の温度は,例えば液体原料の気化温度よりも高い温度(例えば100~300℃)に保持される。
 続いて,所定の流量の液体原料が液体原料供給配管112を介して液体原料供給源110から液体原料気化器300に供給されるように,液体原料流量制御バルブ114の開度を調整する。これとともに,所定の流量のキャリアガスがキャリアガス供給配管122を介してキャリアガス供給源120から液体原料気化器300に供給されるように,キャリアガス流量制御バルブ124の開度を調整する。
 液体原料供給配管112を介して液体原料気化器300に供給された液体原料は,液体原料流路310を経由して吐出ノズル314に達し,吐出口316から液滴状となって吐出される。また,液体原料とともに液体原料気化器300に供給されたキャリアガスは,キャリアガス流路312を経由してキャリアガス噴射部318に達し,キャリアガス噴出口320から気化部300Bの気化空間350に向けて噴射される。このように噴射されたキャリアガスは,吐出ノズル314の吐出口316近傍を通過するため,吐出口316から連続的に吐出された液体原料の液滴をその流れに乗せて気化部300B内に供給することができる。
 吐出ノズル314から吐出された液体原料の液滴は,キャリアガスとともに導入口338から気化空間350のミストトラップ部360に向けて吹き付けられる。このとき,その液滴とキャリアガスはミストトラップ部360の上流側から流路(外側空間368)に沿って側面に導かれるので,ミストトラップ部360の通気性部材362の外側表面に吹き付けられることになる。
 通気性部材362は輻射熱ヒータ370からの輻射熱によって全体的に均一に液体原料の気化温度よりも高い所定の温度に調整されている。このため,液体原料の液滴は通気性部材362の表面のいずれの箇所に吹き付けられても,その液滴を十分に気化させることができる。
 このように液体原料の液滴は通気性部材362に吹き付けられて気化し,原料ガスとなって内側空間366に流入し,キャリアガスとともに送出口340を介して原料ガス供給配管132に送出される。原料ガス供給配管132に送出された原料ガスは,成膜室200に供給され,シャワーヘッド240の内部空間242に導入され,ガス吐出孔244からサセプタ222上のウエハWに向けて吐出される。そして,ウエハW上に所定の膜例えばHfO膜が形成される。なお,成膜室200に導入される原料ガスの流量は原料ガス供給配管132に備えられた原料ガス流量制御バルブ134の開度を制御することによって調整できる。
 以上のように第1実施形態にかかる液体原料気化器300によれば,液滴状の液体原料を捕捉して気化させるミストトラップ部360を輻射熱によって加熱される通気性部材362で構成し,この通気性部材362の周囲を囲むように輻射熱ヒータ370を設けることにより,輻射熱ヒータ370からの輻射熱によって通気性部材362の全体を直接加熱できる。このため,全体に渡って通気性部材362の温度を均一にすることができるので,このような通気性部材362に液滴状の液体原料が吹き付けられるだけで,液滴を満遍なくすべて気化させることができる。これにより,従来以上に気化効率を向上させることができる。また,部分的な温度低下による気化不良を防止できるため,通気性部材362の目詰まりを防止することができる。従って,通気性部材362の寿命を延ばすことができ,ひいては気化部300のメンテナンスサイクルを延ばすことができる。これにより,成膜装置100におけるスループットを向上させることもできる。
 また,液滴状の液体原料が流通する気化空間350と,輻射熱ヒータ370の配設空間とを仕切るスリーブ部材342を設けることによって,輻射熱ヒータ370の表面にパーティクルが付着することを防止できるとともに,液体原料の液滴の気化効率を向上させることができる。すなわち,スリーブ部材342の内側表面と通気性部材362の外側側面との間に輻射熱ヒータ370に囲まれる流路が形成されるので,この流路を通る液体原料の液滴に輻射熱ヒータ370からの熱線が直接作用するとともに,流路全体の雰囲気も輻射熱ヒータ370によって加熱される。これにより,液体原料の液滴の気化効率をより向上させることができる。
 また,温度センサ376によって通気性部材362の温度をリアルタイムで測定し,その測定された温度に基づいて輻射熱ヒータ370を制御するので,通気性部材362の温度が常に設定温度を保持するように調整できる。このため成膜処理中,通気性部材362全体の温度を常に均一に保って,通気性部材362に吹き付けられた液滴状の液体原料を確実に気化させて,成膜室200に対して所望の流量の原料ガスを安定的に供給できる。
 また,液体原料供給部300Aの条件,例えば液体原料の種類や量,液滴の大きさなどに応じて通気性部材362の温度が最適になるように輻射熱ヒータ370のパワーを調整するようにしてもよい。これにより,液体原料供給部300Aの条件に拘わらず,気化効率を向上させることができる。
 なお,第1実施形態においては,ミストトラップ部を一端が閉じられた円筒状の通気性部材362で構成した場合について説明したが,必ずしもこれに限定されるもではない。例えばミストトラップ部360を上流側に凸となる円錐状の通気性部材362で構成してもよい。この場合,ミストトラップ部360全体を通気性部材362で構成してもよく,先端部分を開口して閉じ部材364を取り付けるようにしてもよい。また,輻射熱ヒータ370は通気性部材362の外側表面に沿って配置するようにしてもよい。
 また,通気性部材362の一端を閉じる閉じ部材364は,通気性部材362と同様に通気性を有する部材で構成してもよいが,この閉じ部材364を通気性を有しない部材で構成することによって,導入口338から気化空間350に供給される液体原料の液滴のすべてを輻射熱ヒータ370の内側に形成される通気性部材362とスリーブ部材342との間の流路(外側空間368)に導くことができる。これにより,すべての液体原料の液滴に輻射熱ヒータ370の熱線を作用させることができるとともに,輻射熱ヒータ370で直接加熱される通気性部材362の外側表面に効率よく導くことができる。従って,気化効率をより一層向上させることができる。
 また,ハウジング330,スリーブ部材342,通気性部材362は,円筒状に形成した場合について説明したが,必ずしもこれに限定されるものではなく,円筒以外の筒状に形成してもよい。例えば角筒状に形成してもよい。また,気化部300Bはスリーブ部材342を設けずに構成してもよい。
(第2実施形態にかかる成膜装置)
 次に,本発明の第2実施形態にかかる成膜装置について図面を参照しながら説明する。図5は第2実施形態にかかる成膜装置102の概略構成例を説明するための図である。ここでは,成膜装置102に利用する液体原料気化器302を第1の液体原料気化器304とこれに接続配管306で接続された第2の液体原料気化器308により構成した場合について説明する。なお,第2実施形態にかかる成膜装置102における液体原料気化器302以外の構成については図1に示す第1実施形態にかかる成膜装置100と同様であるため,図5では同一機能構成を有する構成要素には同一符号を付してそれらの詳細な説明を省略する。
 第2実施形態にかかる液体原料気化器302は,液体原料供給源110から供給される液体原料を気化させて原料ガスを生成する第1の液体原料気化器304と,第1の液体原料気化器304で生成された原料ガスの吐出口に接続配管306を介して接続される第2の液体原料気化器308とを備え,第2の液体原料気化器308の吐出口から吐出した原料ガスを原料ガス供給配管132を介して成膜室200に供給するように構成されたものである。
 第2実施形態にかかる第2の液体原料気化器308の構成例を図6に示す。第2の液体原料気化器308は,第1実施形態にかかる液体原料気化器300のうちの気化部300Bのみの構成からなる液体原料気化器である。したがって,第2の液体原料気化器308は,図2に示す気化部300Bと同様の構成であるため,同一機能構成を有する構成要素には同一符号を付してそれらの詳細な説明を省略する。
 一方の第1の液体原料気化器304は,液体原料供給源110から供給される液体原料を気化させて原料ガスを生成する液体原料気化器であれば,その構成や種類などは問わず,従来の液体原料気化器であってもよい。
 このような本発明によれば,第2の液体原料気化器308において輻射熱によって全体的に均一に温度を上昇させた通気性部材362に,第1の液体原料気化器304で生成された原料ガスを通すことにより,第1の液体原料気化器304で気化しきれなかった液滴も,第2の液体原料気化器308で気化させることができる。これにより,成膜室200などに原料ガスとともに液体原料の液滴が流入することを防止できる。また,通気性部材362の部分的な温度低下による気化不良を防止できるため,通気性部材362の目詰まりを防止することができる。
 以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例又は修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。
 例えば本発明にかかる液体原料気化器は,MOCVD装置,プラズマCVD装置,ALD(原子層成膜)装置,LP-CVD(バッチ式,縦型,横型,ミニバッチ式)などに用いられる液体原料気化器にも適用可能である。
 本発明は,液体原料を気化して原料ガスを生成する液体原料気化器及びそれを用いた成膜装置に適用可能である。
 

Claims (11)

  1. 液体原料を液滴状にして吐出する液体原料供給部と,
     前記液滴状の液体原料を気化させて原料ガスを生成する気化部と,
     前記液体原料供給部からの前記液滴状の液体原料を前記気化部内に導入する導入口と,
     前記気化部内に配置され,輻射熱によって加熱される材料で構成された通気性部材からなるミストトラップ部と,
     前記通気性部材の外側表面の全体に熱線を照射し,その輻射熱によって前記通気性部材を加熱する輻射熱ヒータと,
     加熱された前記通気性部材に前記液滴状の液体原料を通して気化させることによって生成した原料ガスを外部に送出する送出口と,
    を備えたことを特徴とする液体原料気化器。
  2. 前記気化部の前記導入口と前記送出口とは対向して設け,
     前記通気性部材は,前記導入口側から前記送出口側にわたって配置された筒状の形状をなし,前記導入口側の端部は閉じられるとともに,前記送出口側の端部は前記送出口に連通するように構成したことを特徴とする請求項1に記載の液体原料気化器。
  3. 前記輻射熱ヒータは,前記通気性部材の外側表面を囲むように配置したことを特徴とする請求項2に記載の液体原料気化器。
  4. 前記輻射熱ヒータは,カーボンヒータにより構成されることを特徴とする請求項3に記載の液体原料気化器。
  5. 前記通気性部材と前記輻射熱ヒータとの間に,前記液滴状の液体原料が流通する気化空間と前記輻射熱ヒータの配設空間とを仕切る筒状の仕切部材を前記通気性部材を囲むように設け,
     前記仕切部材は,前記輻射熱ヒータが照射する熱線を透過させる通気性のない部材で構成したことを特徴とする請求項3に記載の液体原料気化器。
  6. 前記仕切部材は石英で構成したことを特徴とする請求項5に記載の液体原料気化器。
  7. 前記通気性部材の温度を測定する温度センサと,
     前記温度センサによって測定された前記通気性部材の温度に基づいて前記輻射熱ヒータを制御することにより,前記通気性部材の温度を所定の温度に調節する制御部と,
    を設けたことを特徴とする請求項1に記載の液体原料気化器。
  8. 前記気化部の外枠を構成するハウジングの内側面は,前記輻射熱ヒータからの熱線を反射して前記通気性部材の外側表面に向かうように鏡面加工したことを特徴とする請求項7に記載の液体原料気化器。
  9. 液体原料を気化させて原料ガスを生成する他の液体原料気化器に接続される液体原料気化器であって,
     前記他の液体原料気化器で生成された原料ガスを導入する導入口と,
     輻射熱によって加熱される材料で構成された通気性部材からなるミストトラップ部と,
     前記通気性部材の外側表面の全体に熱線を照射し,その輻射熱によって前記通気性部材を加熱する輻射熱ヒータと,
     前記導入口から導入した前記他の液体原料気化器からの原料ガスを,加熱された前記通気性部材を通して外部に送出する送出口と,
    を備えたことを特徴とする液体原料気化器。
  10. 液体原料を気化させて原料ガスを生成する液体原料気化器から原料ガスを導入して被処理基板に対して成膜処理を行う成膜室を備える成膜装置であって,
     前記液体原料気化器は,
     前記液体原料を液滴状にして吐出する液体原料供給部と,
     前記液滴状の液体原料を気化させて原料ガスを生成する気化部と,
     前記液体原料供給部からの前記液滴状の液体原料を前記気化部内に導入する導入口と,
     前記気化部内に配置され,輻射熱によって加熱される材料で構成された通気性部材からなるミストトラップ部と,
     前記通気性部材の外側表面の全体に熱線を照射し,その輻射熱によって前記通気性部材を加熱する輻射熱ヒータと,
     加熱された前記通気性部材に前記液滴状の液体原料を通して気化させることによって生成した原料ガスを外部に送出する送出口と,
    を備えたことを特徴とする成膜装置。
  11. 液体原料を気化させて原料ガスを生成する液体原料気化器から原料ガスを導入して被処理基板に対して成膜処理を行う成膜室を備える成膜装置であって,
     前記液体原料気化器は,液体原料を気化させて原料ガスを生成する第1の液体原料気化器とこれに接続された第2の液体原料気化器により構成され,
     前記第2の液体原料気化器は,
     前記第1の液体原料気化器で生成された原料ガスを導入する導入口と,
     輻射熱によって加熱される材料で構成された通気性部材からなるミストトラップ部と,
     前記通気性部材の外側表面の全体に熱線を照射し,その輻射熱によって前記通気性部材を加熱する輻射熱ヒータと,
     前記導入口から導入した前記第1の液体原料気化器からの原料ガスを,加熱された前記通気性部材を通して外部に送出する送出口と,
    を備えたことを特徴とする成膜装置。
     
PCT/JP2008/072233 2008-02-07 2008-12-08 液体原料気化器及びそれを用いた成膜装置 WO2009098815A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020107013745A KR101176737B1 (ko) 2008-02-07 2008-12-08 액체 원료 기화기 및 이를 이용한 성막 장치
CN2008801264743A CN101939827B (zh) 2008-02-07 2008-12-08 液体原料气化器及使用该液体原料气化器的成膜装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-027997 2008-02-07
JP2008027997A JP2009188266A (ja) 2008-02-07 2008-02-07 液体原料気化器及びそれを用いた成膜装置

Publications (1)

Publication Number Publication Date
WO2009098815A1 true WO2009098815A1 (ja) 2009-08-13

Family

ID=40951898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072233 WO2009098815A1 (ja) 2008-02-07 2008-12-08 液体原料気化器及びそれを用いた成膜装置

Country Status (4)

Country Link
JP (1) JP2009188266A (ja)
KR (1) KR101176737B1 (ja)
CN (1) CN101939827B (ja)
WO (1) WO2009098815A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011100462T5 (de) * 2010-02-05 2012-11-22 Msp Corp. Feintröpfchen-Zerstäuber für die Flüssigprekursor-Verdampfung
JP5885564B2 (ja) * 2012-03-30 2016-03-15 株式会社ブイテックス 気化装置
CN103422075B (zh) * 2012-05-14 2015-09-02 中芯国际集成电路制造(上海)有限公司 形成膜层的方法
CN105214568B (zh) 2014-06-10 2018-04-20 万华化学集团股份有限公司 一种加热器、该加热器的用途和应用该加热器制备异氰酸酯的方法
KR102244073B1 (ko) * 2014-09-16 2021-04-26 삼성디스플레이 주식회사 표시 장치의 제조 장치 및 이를 이용한 표시 장치의 제조 방법
JP6321767B1 (ja) * 2016-12-14 2018-05-09 日本特殊陶業株式会社 呼気センサ
SG11202007413VA (en) * 2018-03-23 2020-09-29 Kokusai Electric Corp Vaporizer, substrate processing apparatus and method of manufacturing semiconductor device
KR102449994B1 (ko) * 2021-02-22 2022-10-04 (주)탑크루 배기 배관의 유해가스 가열용 히팅 모듈 및 배기 배관에 주입되는 열전달 가스 가열용 히팅 모듈
JP2024531516A (ja) * 2021-09-01 2024-08-29 インテグリス・インコーポレーテッド 気化器アセンブリ
JP7569030B1 (ja) 2024-05-07 2024-10-17 株式会社リンテック 気化器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317271A (ja) * 1989-01-23 1991-01-25 Anelva Corp Cvd装置
JPH06181177A (ja) * 1991-07-19 1994-06-28 Leybold Ag 液体蒸発装置
JPH10337464A (ja) * 1997-06-04 1998-12-22 Ckd Corp 液体原料の気化装置
JP2005109349A (ja) * 2003-10-01 2005-04-21 Tokyo Electron Ltd 気化器及び成膜装置
JP2007100207A (ja) * 2005-09-09 2007-04-19 Lintec Co Ltd 低温度で液体原料を気化させることのできる液体原料の気化方法および該方法を用いた気化器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200173175Y1 (ko) * 1996-10-17 2000-03-02 김영환 액상반응원료의 기화장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317271A (ja) * 1989-01-23 1991-01-25 Anelva Corp Cvd装置
JPH06181177A (ja) * 1991-07-19 1994-06-28 Leybold Ag 液体蒸発装置
JPH10337464A (ja) * 1997-06-04 1998-12-22 Ckd Corp 液体原料の気化装置
JP2005109349A (ja) * 2003-10-01 2005-04-21 Tokyo Electron Ltd 気化器及び成膜装置
JP2007100207A (ja) * 2005-09-09 2007-04-19 Lintec Co Ltd 低温度で液体原料を気化させることのできる液体原料の気化方法および該方法を用いた気化器

Also Published As

Publication number Publication date
KR101176737B1 (ko) 2012-08-23
CN101939827B (zh) 2013-01-16
JP2009188266A (ja) 2009-08-20
KR20100116170A (ko) 2010-10-29
CN101939827A (zh) 2011-01-05

Similar Documents

Publication Publication Date Title
WO2009098815A1 (ja) 液体原料気化器及びそれを用いた成膜装置
WO2010038515A1 (ja) 気化器およびそれを用いた成膜装置
TW202113141A (zh) 成膜材料混合氣體形成裝置及成膜裝置
US7077911B2 (en) MOCVD apparatus and MOCVD method
US6838114B2 (en) Methods for controlling gas pulsing in processes for depositing materials onto micro-device workpieces
JP6724005B2 (ja) 基板処理装置、半導体装置の製造方法及び気化システム
JP4973071B2 (ja) 成膜装置
WO2009122966A1 (ja) 液体原料気化器及びそれを用いた成膜装置
JP4324619B2 (ja) 気化装置、成膜装置及び気化方法
KR20190125939A (ko) 기판 처리 장치 및 방법
JP5619164B2 (ja) Cvd方法およびcvd反応炉
JP5179823B2 (ja) 気化器及び成膜装置
US6424800B1 (en) Bubbler
US20090229525A1 (en) Vaporizer and film forming apparatus
JP2009246173A (ja) 気化器およびそれを用いた成膜装置
CN100414674C (zh) 气体反应装置和半导体处理装置
CN114277357A (zh) 气化系统、基板处理装置以及半导体装置的制造方法
JP6907406B2 (ja) 気化器、基板処理装置及び半導体装置の製造方法
JP5203843B2 (ja) 気化器およびそれを用いた成膜装置
WO2022018965A1 (ja) 気化器
JP4404674B2 (ja) 薄膜製造装置
JP7258970B2 (ja) 気化システム、基板処理装置および半導体装置の製造方法
JP4603228B2 (ja) Mocvd装置及びmocvd方法
CN115613005A (zh) 雾化装置与薄膜沉积系统
JPH01312075A (ja) 光化学反応装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880126474.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872112

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107013745

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08872112

Country of ref document: EP

Kind code of ref document: A1