[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009098788A1 - 電子源の製造方法 - Google Patents

電子源の製造方法 Download PDF

Info

Publication number
WO2009098788A1
WO2009098788A1 PCT/JP2008/055558 JP2008055558W WO2009098788A1 WO 2009098788 A1 WO2009098788 A1 WO 2009098788A1 JP 2008055558 W JP2008055558 W JP 2008055558W WO 2009098788 A1 WO2009098788 A1 WO 2009098788A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
electron
electron source
manufacturing
ion beam
Prior art date
Application number
PCT/JP2008/055558
Other languages
English (en)
French (fr)
Inventor
Fumihiro Nakahara
Ryozo Nonogaki
Yoshinori Terui
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to JP2009552377A priority Critical patent/JPWO2009098788A1/ja
Priority to EP08722768.2A priority patent/EP2242084B1/en
Priority to US12/866,498 priority patent/US20110036810A1/en
Publication of WO2009098788A1 publication Critical patent/WO2009098788A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/15Cathodes heated directly by an electric current
    • H01J1/16Cathodes heated directly by an electric current characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • H01J1/3044Point emitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching for microworking, e. g. etching of gratings or trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • H01J9/042Manufacture, activation of the emissive part
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • H01J2201/30407Microengineered point emitters
    • H01J2201/30415Microengineered point emitters needle shaped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • H01J2237/06316Schottky emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06341Field emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31749Focused ion beam

Definitions

  • the present invention relates to a method for manufacturing an electron source.
  • a cathode electron source (hereinafter referred to as ZrO / W electron), which is said to be provided with a coating layer of zirconium and oxygen on a needle-shaped electrode of tungsten single crystal. (Hereinafter referred to as ZrO / W electron gun) (see Non-Patent Document 1).
  • a tungsten single crystal needle-like cathode having an axial orientation of ⁇ 100> is provided with a coating layer (hereinafter referred to as a ZrO coating layer) made of zirconium and oxygen.
  • a ZrO coating layer made of zirconium and oxygen.
  • the ZrO / W electron gun has a ⁇ 100> orientation of tungsten that emits an electron beam to a predetermined position of a tungsten filament 3 provided on a conductive terminal 4 fixed to an insulator 5.
  • the acicular cathode 1 is fixed by welding or the like. A part of the cathode 1 is provided with a supply source 2 of zirconium and oxygen. Although not shown, the surface of the cathode 1 is covered with a ZrO coating layer.
  • the cathode 1 Since the cathode 1 is energized and heated by the filament 3 and is generally used at a temperature of about 1800 K, the ZrO coating layer on the surface of the cathode 1 evaporates. However, since zirconium and oxygen diffuse from the supply source 2 and are continuously supplied to the surface of the cathode 1, the ZrO coating layer is maintained as a result.
  • the tip of the cathode 1 of the ZrO / W electron gun is used between the suppressor electrode 8 and the extraction electrode 9 (see FIG. 3).
  • a negative high voltage with respect to the extraction electrode 9 is applied to the cathode 1, and a negative voltage of about several hundred volts is applied to the suppressor electrode 8 with respect to the cathode 1, thereby suppressing thermoelectrons from the filament 3. .
  • the ZrO / W electron gun has a length of 0.1 to 0.2 mA / sr in the length measuring SEM and wafer inspection apparatus used at a low acceleration voltage because the probe current is stable and the spread of the energy width is suppressed. Operated with angular current density.
  • an electron beam exposure apparatus, an Auger spectroscopic apparatus, and the like are operated at a high angular current density of about 0.4 mA / sr because throughput is important. In such applications that place importance on throughput, higher angular current density operation is desired, and operation at an angular current density as high as 1.0 mA / sr may be required.
  • the upper limit is about 1.0 mA / sr angular current density at the time of high angular current density operation, and (2) at this time, it is applied between the cathode and the extraction electrode.
  • the lead-out voltage is as high as 4 kV or more
  • the electric field strength at the tip of the chip is extremely high, 0.4 to 1.0 ⁇ 10 9 V / m, and the failure frequency due to arc discharge is high. There was room for further improvement (see Non-Patent Document 3).
  • the cathode end of the ZrO / W electron gun has a truncated cone shape, and the diameter of the upper surface of the truncated cone serving as the electron emitting portion is 5 ⁇ m or more and 200 ⁇ m or less, so that the electron emission area is widened to reduce the extraction voltage
  • the cathode end part is formed in the truncated cone shape by mechanical polishing.
  • Japanese Patent Application Laid-Open No. H11-228260 also proposes a method of forming a cathode end portion in a conical shape and then removing it in a planar manner by a focused gallium ion beam to form a truncated cone shape.
  • Non-Patent Document 4 In an electron gun having a cathode end made into a truncated cone using mechanical polishing, there may be a problem that the radiation current density becomes non-uniform. Due to this non-uniformity, the on-axis current varies, making it difficult to uniformly irradiate the electron beam. This non-uniformity is believed to be due to damage to the work surface when the single crystal rod is machined. The depth of the processing damaged layer depends on the roughness of the abrasive grains during machining and mechanical polishing, but is known to reach several tens of ⁇ m (see Non-Patent Document 4).
  • Patent Document 2 a method has been proposed for improving the non-uniformity of the current radiation distribution by removing the processing damaged layer by electropolishing after the frustoconical processing of the cathode end by mechanical polishing.
  • Patent Document 2 the effect of improving the non-uniformity of the current radiation distribution when a flat portion having a diameter of 20 ⁇ m is provided is also demonstrated.
  • Patent Document 1 proposes a method of forming a cathode end portion in a conical shape and then removing it in a planar manner by a focused gallium ion beam to form a truncated cone shape.
  • a flat portion having a diameter of 100 ⁇ m is provided on the cathode end portion by mechanical polishing to form a truncated cone shape.
  • Patent Document 2 discloses a method of removing a processing damage layer by electrolytic polishing after frustum processing of the cathode end by mechanical polishing.
  • a flat portion having a diameter of 20 ⁇ m is provided. The effect of improving the non-uniformity of the current radiation distribution is also demonstrated.
  • the present inventors as described above, (1) can efficiently form an electron emission surface with few damaged layers in a short time in an electron source, and (2) non-uniform current emission distribution.
  • the inventors have developed a technique.
  • the present inventors have found that, based on some discoveries, these technologies cannot achieve these three technical requirements in a mutually contradictory relationship in a balanced manner. did.
  • the present invention has been made in view of the above technical problems recognized for the first time in the art, and (1) it is possible to efficiently form an electron emitting surface with few damaged layers in an electron source in a short time. Thus, (2) while improving non-uniformity of the current radiation distribution, and (3) further improving the emission current density, a technology that can realize the three technical requirements that are in a mutually contradictory relationship in a well-balanced manner. The purpose is to provide.
  • a method of manufacturing an electron source having an electron emitting portion at one end of a rod the step of forming the end into a truncated cone shape having a flat surface by a machining method, and the focused ion beam processing method. Or a step of removing a surface layer of a flat surface by a vapor-phase etching method.
  • a focused ion beam processing method or a gas phase etching method is performed after forming an end portion into a truncated cone shape having a flat surface by a machining method capable of efficiently forming an electron emission surface in a short time.
  • the surface layer of the flat surface can be removed to form an electron emission surface with few damaged layers.
  • electropolishing or liquid phase etching is not performed (or focused ion beam processing or gas phase etching is further performed after electropolishing or liquid phase etching), so that sagging occurs on the outer periphery of the electron emission surface. Can be suppressed.
  • an electron emitting surface with few damaged layers and little outer periphery can be formed efficiently in a short time.
  • An electron emitting surface with few damaged layers can be formed in an electron source in a short time.
  • FIG. 4A is an explanatory view showing a comparative example of the rod 1
  • FIG. 4B is an explanatory view showing an embodiment of the rod 1.
  • It is a graph which shows the measurement result (Example 1 and Comparative Example 1) of electric current radiation distribution.
  • 6 is a graph showing a current radiation distribution in Example 2.
  • 10 is a graph showing a current radiation distribution in Comparative Example 2.
  • Cathode 2 Supply source 3: Filament 4: Conductive terminal 5: Insulator 6: Conical part (of the truncated cone part) 7: Flat part (upper surface part of the truncated cone part) 8: Suppressor electrode 9: Extraction electrode 10: Fluorescent plate 11: Aperture 12: Cup-like electrode 13: Micrometer for probe current measurement 14: Filament heating power supply 15: Bias power supply 16: High voltage power supply 17: Emission electron beam
  • Lower limit value to upper limit value Means a value between the lower limit value and the upper limit value.
  • Hot cathode field emission electron gun An electron gun that emits electrons by heating an emitter under an electric field.
  • a tungsten chip is heated to about 2600K to emit electrons by exceeding the potential barrier (about 4.5 eV).
  • zirconium oxide is coated on the tungsten filament to reduce the potential barrier.
  • a lowered (about 2.7 eV) emitter is heated to about 1800 K and electrons are emitted using the Schottky effect.
  • Etching is a type of method used to prepare semiconductor and inorganic compound samples, meaning that surface atoms are selectively removed from the solid surface using chemical and physical reactions. It can be divided into liquid phase etching and gas phase etching.
  • Chemical polishing means a method used for sample preparation of semiconductors and inorganic compounds.
  • the sample is immersed in a polishing solution based on a strong acid or strong alkali to form a thin film while keeping the sample surface smooth.
  • An advantage is that the sample can be prepared without applying mechanical strain.
  • it means that a polishing liquid or the like that does not cause selective dissolution (etching) is used.
  • Mechanical polishing means physical polishing of the sample. There are manual polishing with water-resistant paper, polishing with diamond powder and corundum using a rotary polisher, polishing with corundum powder using a dimple grinder, and polishing with diamond powder using a tripod polisher.
  • Electropolishing This is a method used to process materials such as metals and alloys. It is immersed in an appropriate electrolyte solution, the sample is used as an anode, a platinum plate or stainless steel is used as a cathode, and the material surface is eluted by passing a direct current. It means a method of polishing while keeping the sample surface smooth. It is an advantage that the material can be processed without applying mechanical strain.
  • Focused ion beam processing Means a method of processing a sample by accelerating and focusing ions such as gallium ions at several kV to 40 kV and irradiating the sample. In some cases, processing can be performed while observing a local region with a secondary ion image (some devices can see an SEM image).
  • an electron gun used for an electron beam application apparatus such as a scanning electron microscope, Auger electron spectroscopy, an electron beam exposure machine, a wafer inspection apparatus, and particularly an electron used for an electron gun suitable for an electron beam exposure machine.
  • a method for manufacturing the source will be described.
  • the present embodiment is a method of manufacturing an electron source having an electron emitting portion at one end of a rod-shaped cathode 1, and the cone having a flat portion 7 after the end portion is formed in a conical portion 6 by a machining method. It is an electron source manufacturing method including a step of forming a trapezoidal shape and a step of removing the surface layer of the flat portion 7 by a focused ion beam processing method.
  • a conical portion 6 is provided by mechanical polishing or electrolytic polishing at the end of a rod-like cathode 1 of tungsten or molybdenum single crystal ⁇ 100> orientation, and then polished with a diamond abrasive.
  • the flat part 7 is previously provided at the apex by mechanical polishing using a film or the like.
  • the full angle of the cone portion 6 is 25 ° or more and 95 ° or less.
  • the diameter of the flat portion 7 is preferably 5 to 200 ⁇ m.
  • the diameter of the flat portion 7 is more preferably 10 ⁇ m to 100 ⁇ m.
  • the normal line of the flat electron emission surface formed at the end of the cathode 1 is preferably within 2 ° with respect to the ⁇ 100> orientation, and the angular difference is within 0.5 °. More preferably.
  • the cathode 1 is fixed by welding to a conductive terminal 4 brazed to an insulator 5 via a filament 3 made of tungsten so that it can be heated by energization.
  • the processing damage layer of the flat portion 7 of the cathode 1 is finally deleted by the focused gallium ion beam.
  • the processing damage layer may not be completely deleted by the focused gallium ion beam. is there. Therefore, it is preferable to remove the processing damaged layer by vapor phase etching or liquid phase etching (chemical etching) after the flat portion 7 is formed.
  • the method further includes a step of removing the processing damage layer on the end surface by a liquid phase etching method (chemical etching method) or an electropolishing method between the step of removing the surface layer of the flat portion 7.
  • a liquid phase etching method chemical etching method
  • an electropolishing method between the step of removing the surface layer of the flat portion 7.
  • a vapor phase etching method for example, after evacuation in a vacuum apparatus, oxygen gas is introduced to make the inside of the apparatus 3 ⁇ 10 ⁇ 6 Torr (4 ⁇ 10 ⁇ 4 Pa), and the temperature of the cathode 1 is 1800K to 2000K. Heat to.
  • a chemical etching method for example, a voltage of 6 V is applied between the conductive terminal 4 and the electrode placed in the liquid so that the conical portion 8 of the cathode 1 is immersed in a 1 mol / L sodium hydroxide aqueous solution. To do.
  • the flat portion 7 may be uneven or curved (sagging of the outer periphery) may occur.
  • the focused gallium ion beam is finally used. Therefore, the electron emission characteristic is hardly affected.
  • the cathode 1 is provided with a supply source made of metal and oxygen which has an effect of lowering the work function of the electron emission surface.
  • a supply source made of metal and oxygen which has an effect of lowering the work function of the electron emission surface.
  • a supply source made of metal and oxygen which has an effect of lowering the work function of the electron emission surface.
  • a supply source made of metal and oxygen which has an effect of lowering the work function of the electron emission surface.
  • a supply source made of metal and oxygen which has an effect of lowering the work function of the electron emission surface.
  • a supply source made of metal and oxygen which has an effect of lowering the work function of the electron emission surface.
  • zirconium (Zr) titanium
  • Ti hafnium
  • Sc scandium
  • Y yttrium
  • lanthanoid series elements barium (Ba), strontium (Sr), calcium (Ca).
  • An electron source having a supply source made of a metal oxide containing an element can be preferably applied as
  • the cathode 1 may be etched by oxygen, and irregularities may be formed on the flat portion 7. In this case, however, the cathode 1 is finally flattened again by the focused gallium ion beam. Therefore, it does not affect the electron emission characteristics.
  • the flat part 7 When the flat part 7 is re-flattened by the focused gallium ion beam, the flat part 7 is positioned so as to be parallel to the direction of the ion beam, and the ion beam is uniformly irradiated while being limited to the surface layer of the flat part 7. As a result, it is possible to form a surface with high flatness and no processing damage in a short time. At this time, from the viewpoint of the removal efficiency of the surface layer of the flat portion 7, it is preferable to remove the surface layer of the flat portion 7 by irradiating a focused gallium ion beam in a xenon difluoride gas atmosphere.
  • This negative electrode is disposed between the extraction electrode 9 and the suppressor electrode 8, and a negative high voltage of several kilovolts is applied to the negative electrode 1 with respect to the extraction electrode 9.
  • the suppressor electrode 8 can emit electrons by applying a negative voltage of several hundred volts to the cathode 1 and heating the cathode 1 to 1500 to 1900 K.
  • the hot cathode field emission type electron gun including the electron source of the present embodiment can obtain a uniform radiation current density at a high angular current density of 1 mA / sr or more, and the surplus High reliability due to extremely low current. Furthermore, this electron gun operates in a vacuum of 1 ⁇ 10 ⁇ 8 Torr (1 ⁇ 10 ⁇ 6 Pa) or less, and since tungsten is a base material, the consumption of the cathode is extremely small even during long-term operation. There is little change, and even if the cathode surface is roughened by ion bombardment, it is immediately restored to a smooth surface.
  • an electron source manufacturing method including a forming step and a step of removing a surface layer of the flat portion 7 by a focused ion beam processing method.
  • the end portion is formed into a truncated cone shape having the flat portion 7 by a machining method capable of efficiently forming an electron emission surface in a short time, and then the flat portion 7 is formed by a focused ion beam processing method.
  • a machining method capable of efficiently forming an electron emission surface in a short time
  • the flat portion 7 is formed by a focused ion beam processing method.
  • electropolishing or liquid phase etching is not performed (or focused ion beam processing is further performed after electropolishing or liquid phase etching), so that the occurrence of sagging on the outer periphery of the electron emission surface is suppressed. it can.
  • the flat portion 7 (electron emitting surface) with less damaged layers and less sagging at the outer periphery can be efficiently formed in a short time.
  • (1) In the electron source in a short time In addition to being able to efficiently form the flat part 7 with few damaged layers, (2) improving the non-uniformity of the current radiation distribution, and (3) improving the emission current density, which are mutually contradictory. It is possible to realize the three technical requirements in a well-balanced manner.
  • a liquid phase etching method or an electropolishing method is used between the step of forming the truncated cone shape and the step of removing the surface layer of the flat portion 7 (flat surface). It is preferable to further include a step of removing the processing damage layer on the end surface. In this way, even if the ground surface of the initial mechanical polishing is too rough, the processing damage layer on the end surface is removed to some extent by the liquid phase etching method or the electrolytic polishing method. The processing damage layer of one flat portion 7 can be finally deleted.
  • the step of removing the surface layer of the flat portion 7 (flat surface) described above removes the surface layer of the flat surface by irradiating a focused gallium ion beam in a xenon difluoride gas atmosphere. It is preferable that it is a process. In this way, the removal efficiency of the surface layer of the flat portion 7 by the focused gallium ion beam is improved, and it is possible to form the flat portion 7 with high flatness and little processing damage in a shorter time.
  • the diameter of the flat portion 7 is 10 ⁇ m or more and 100 ⁇ m or less. This is because an electron source with a small amount of total radiation current can be obtained even in a high angular current density operation, which is suitable for an electron beam exposure apparatus, an Auger electron spectrometer, or the like.
  • the method of this embodiment even when the diameter of the flat part 7 is as small as 10 ⁇ m, it is possible to suppress the occurrence of sagging on the outer periphery of the electron emission surface. It can suppress that it falls.
  • the diameter of the flat portion 7 is as large as 100 ⁇ m, it is possible to efficiently form an electron emission surface with few damaged layers in a short time by irradiating the focused gallium ion beam. it can.
  • the above-mentioned electron source is an electron source in which a supply source for diffusing an oxide of a metal element is provided in a tungsten or molybdenum single crystal rod (cathode 1).
  • the metal element is preferably a metal element selected from Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, or a lanthanoid series.
  • the orientation of the rod (cathode 1) is preferably ⁇ 100>.
  • the above-described electron source is preferably an electron source for a hot cathode field emission electron gun.
  • the work function of the tungsten single crystal ⁇ 100> is greatly reduced from 4.5 eV by these metal oxide coating layers, which corresponds to the flat portion 7 formed at the tip of the cathode. Since only a minute crystal plane becomes an electron emission region, when used as an electron source for a hot cathode field emission electron gun, a brighter electron beam than a conventional hot cathode can be obtained, and the lifetime is longer. Has the advantage of being. Also, it has the advantages of being more stable than a cold field emission electron gun, operating at a low vacuum, and being easy to use.
  • the present embodiment is a method for manufacturing an electron source having an electron emitting portion at one end of a cathode 1 (rod), and a cone having a flat portion 7 at the end by machining. It is an electron source manufacturing method including a step of forming a trapezoidal shape and a step of removing the surface layer of the flat portion 7 by a vapor phase etching method.
  • the current emitting distribution can be made more uniform by performing vapor phase etching on the electron emitting portion. Can be provided.
  • the gas used in the gas phase etching in this embodiment is preferably oxygen from the viewpoint of improving the etching efficiency and accuracy, and the oxygen pressure is set to 0.3 ⁇ 10 ⁇ 4 to 8 ⁇ 10 ⁇ 4 Pa.
  • the temperature is preferably 1700K or higher and 1950K or lower.
  • the rod in this embodiment is a diffusion of an oxide of a metal element selected from Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, or a lanthanoid series. It is preferable to have a source.
  • zirconium oxide A method of manufacturing this diffusion source will be described using the case of zirconium oxide.
  • zirconium hydride is pulverized and mixed with isoamyl acetate to form a paste, which is applied to a part of a single crystal rod constituting the cathode 1.
  • isoamyl acetate evaporates, it introduce
  • the inside of the apparatus was placed in an ultrahigh vacuum of 3 ⁇ 10 ⁇ 10 Torr (4 ⁇ 10 ⁇ 8 Pa), and the filament 3 was energized to heat the single crystal rod 1 to 1800 K, and the zirconium hydride was pyrolyzed to form a metal. Zirconium is used. Subsequently, oxygen gas is introduced to make the inside of the apparatus 3 ⁇ 10 ⁇ 6 Torr (4 ⁇ 10 ⁇ 4 Pa) to oxidize metallic zirconium, and a diffusion source made of zirconium oxide is manufactured.
  • the orientation of the rod constituting the cathode 1 is preferably ⁇ 100> for the same reason as in the first embodiment.
  • a conical portion 6 is provided at one end of the rod constituting the cathode 1 in the present embodiment, an electron emitting portion is disposed at the apex thereof, and the electron emitting portion is formed flat, and the same as in the first embodiment.
  • the diameter of the flat portion 7 is preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 70 ⁇ m or less.
  • the electron source according to the present embodiment has a conical portion 6 at one end of the rod constituting the cathode 1, and for the same reason as in the first embodiment, after removing the processing damaged layer by chemical etching. It is preferable to form a flat electron emission portion at the apex of the cone portion 6.
  • the electron emitting portion is machined. After forming by the method, the electron emitting portion may be subjected to vapor phase etching.
  • the gas used in the vapor phase etching in this embodiment is oxygen from the viewpoint of improving the etching efficiency and accuracy, and the oxygen pressure is changed from 0.3 ⁇ 10 ⁇ 4 to 8 ⁇ 10 ⁇ 4.
  • the temperature is Pa and the temperature is 1700K or higher and 1950K or lower.
  • the rod constituting the cathode 1 in the present embodiment is oxidized by a metal element selected from Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, or a lanthanoid series for the same reason as in the first embodiment. It is preferable to have an object diffusion source.
  • the orientation of the rod constituting the cathode 1 in this embodiment is preferably ⁇ 100> for the same reason as in Embodiment 1.
  • One end of the rod constituting the cathode 1 in the present embodiment has a conical portion 6, the electron emitting portion is arranged at the apex thereof, the electron emitting portion is formed flat, and for the same reason as in the first embodiment.
  • the diameter of the flat portion 7 is preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 70 ⁇ m or less.
  • the electron source according to the present embodiment has the conical portion 6 at one end of the rod, and for the same reason as in the first embodiment, after removing the processing damaged layer by chemical etching, the apex of the conical portion 6 is obtained. It is preferable to form a flat electron emission portion.
  • the etching of the surface of the rod constituting the cathode 1 is performed by welding the rod constituting the cathode 1 to a filament and placing it in an ultrahigh vacuum (3 ⁇ 10 ⁇ 10 Torr (4 ⁇ 10 ⁇ 8 Pa)). Subsequently, oxygen gas is introduced and the inside of the apparatus is heated at a temperature of 1800 K to 2000 K at 3 ⁇ 10 ⁇ 6 Torr (4 ⁇ 10 ⁇ 4 Pa). By etching the surface of the single crystal in this way, it is possible to remove machining damage caused when the rod constituting the cathode 1 is conical.
  • the rod functions as the cathode 1, and the surface thereof can be covered with an oxide of metal element selected from Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, or a lanthanoid series and oxygen.
  • zirconium hydride is pulverized, mixed with an organic solvent and pasted into a paste, and applied to a part of the cathode in an oxygen atmosphere of about 1 ⁇ 10 ⁇ 6 Torr.
  • the cathode is heated to thermally decompose ZrH 2 and further oxidize to form a diffusion source of zirconium and oxygen, and the surface of the cathode is coated with zirconium and oxygen.
  • This cathode is arranged between the extraction electrode and the suppressor electrode, a negative high voltage of several kv (kilovolts) is applied to the extraction electrode, and the suppressor electrode 6 has a few hundred kv to the cathode 1. Electrons can be emitted by applying a negative voltage and heating the cathode 1 to 1500-1900K.
  • an electron source manufacturing method including a forming step and a step of removing the surface layer of the flat portion 7 by a vapor phase etching method.
  • the end portion is formed into a truncated cone shape having the flat portion 7 by a machining method capable of efficiently forming an electron emission surface in a short time, and then the flat portion 7 is formed by a vapor phase etching method.
  • the surface layer can be removed to form an electron emitting surface with few damaged layers.
  • electropolishing or liquid phase etching is not performed (or electropolishing or liquid phase etching is performed before forming a flat portion by a machining method), and sagging occurs on the outer periphery of the electron emission surface. Can be suppressed.
  • the flat portion 7 (electron emitting surface) with less damaged layers and less sagging at the outer periphery can be efficiently formed in a short time.
  • (1) In the electron source in a short time In addition to being able to efficiently form the flat part 7 with few damaged layers, (2) improving the non-uniformity of the current radiation distribution, and (3) improving the emission current density, which are mutually contradictory. It is possible to realize the three technical requirements in a well-balanced manner.
  • the end surface is formed by a liquid phase etching method or an electropolishing method between the step of forming the conical shape and the step of forming the flat portion 7 (flat surface).
  • the method further includes a step of removing the processing damaged layer. In this way, even if the grinding surface of the initial conical portion mechanical polishing is too rough, the processing damage layer at the time of conical surface processing can be removed to some extent by the liquid phase etching method or the electrolytic polishing method. Thereafter, a flat portion is formed, and the processing damage layer of the flat portion 7 of the cathode 1 may be finally deleted by vapor phase etching.
  • the step of removing the surface layer of the flat portion 7 (flat surface) described above sets the oxygen pressure to 0.3 ⁇ 10 ⁇ 4 Pa or more and 8 ⁇ 10 ⁇ 4 Pa or less and the temperature to 1700 K.
  • the step is preferably a step of removing the processing damaged layer on the surface of the end portion including the surface layer of the flat portion 7 by performing vapor phase etching under the condition of 1950K or less. In this way, the removal efficiency of the surface layer of the flat portion 7 by vapor-phase etching is improved, and the flat portion 7 having high flatness and less processing damage can be formed in a shorter time.
  • the diameter of the flat portion 7 is 10 ⁇ m or more and 100 ⁇ m or less. This is because an electron source with a small amount of total radiation current can be obtained even in a high angular current density operation, which is suitable for an electron beam exposure apparatus, an Auger electron spectrometer, or the like.
  • the method of this embodiment even when the diameter of the flat part 7 is as small as 10 ⁇ m, it is possible to suppress the occurrence of sagging on the outer periphery of the electron emission surface. It can suppress that it falls.
  • the method of the present embodiment even when the diameter of the flat portion 7 is as large as 100 ⁇ m, an electron emission surface with few damaged layers can be efficiently formed by vapor phase etching.
  • the above-mentioned electron source is an electron source in which a supply source for diffusing an oxide of a metal element is provided in a tungsten or molybdenum single crystal rod (cathode 1).
  • the metal element is preferably a metal element selected from Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, or a lanthanoid series.
  • the orientation of the rod (cathode 1) is preferably ⁇ 100>.
  • the above-described electron source is preferably an electron source for a hot cathode field emission electron gun.
  • the work function of the tungsten single crystal ⁇ 100> is greatly reduced from 4.5 eV by these metal oxide coating layers, which corresponds to the flat portion 7 formed at the tip of the cathode. Since only a minute crystal plane becomes an electron emission region, when used as an electron source for a hot cathode field emission electron gun, a brighter electron beam than a conventional hot cathode can be obtained, and the lifetime is longer. Has the advantage of being. Also, it has the advantages of being more stable than a cold field emission electron gun, operating at a low vacuum, and being easy to use.
  • the focused ion beam processing method is performed after the machining method
  • the gas phase etching method is performed after the machining method. It is not intended to limit the form.
  • a gas phase etching method may be performed, and then a focused ion beam processing method may be further performed. In this way, the damage layer of the flat part 7 of the electron emission surface can be further reduced.
  • the electropolishing or the liquid phase etching may not be performed, but after the electropolishing or the liquid phase etching, the gas phase etching is further performed. Both etching and focused ion beam processing may be performed. Also in this case, the damage layer of the flat part 7 of the electron emission surface can be further reduced as in the case described above.
  • Example 1 ⁇ Example 1> Hereinafter, Example 1 will be described with reference to FIGS.
  • the filament 3 made of tungsten was fixed to the conductive terminal 4 brazed to the insulator 5 by spot welding.
  • a conical portion 6 having a full angle of 90 ° is formed at the end portion of the ⁇ 100> -oriented single crystal tungsten chip using a diamond paste and a polishing machine, and processed into the shape of FIG. Further, the apex of the cone portion 6 was polished with a polishing film coated with a diamond abrasive to form a flat portion 7 having a diameter of 35 ⁇ m as shown in FIG.
  • This rod was attached to the filament 3 by spot welding. This rod functions as the cathode 1.
  • the zirconium hydride was pulverized and mixed with isoamyl acetate to form a paste, which was applied to a part of the cathode 1. And after isoamyl acetate evaporated, it introduce
  • the ion beam is introduced into a focused gallium ion beam device, positioned so that the flat portion 7 is parallel to the direction of the ion beam, and limited to the surface layer of the flat portion 7 to apply an ion beam having an acceleration voltage of 30 kV and a beam current of 5 nA.
  • the flat part 7 was shaved about 2 ⁇ m and flattened again.
  • the tip of the obtained cathode 1 was placed between the suppressor electrode 8 and the extraction electrode 9.
  • the distance between the tip of the cathode 1 and the suppressor electrode 8 is 0.1 mm
  • the distance between the suppressor electrode 8 and the extraction electrode 9 is 0.8 mm
  • the hole diameter of the extraction electrode 9 is 0.8 mm
  • the hole diameter of the suppressor electrode 8 is 0.6 mm. It was.
  • the filament 3 was connected to a filament heating power source 14 and further connected to a high voltage power source 16, and a negative high voltage, that is, an extraction voltage Vex was applied to the extraction electrode 9.
  • the suppressor electrode 8 was connected to a bias power source 15, and a negative voltage and a bias voltage Vb were further applied to the cathode 1 and the filament 3. Thereby, the radiant thermoelectrons from the filament 3 are blocked.
  • the electron beam 17 emitted from the tip of the cathode 1 passes through the hole of the extraction electrode 9 and reaches the fluorescent plate 10. There is an aperture 11 (small hole) in the center of the fluorescent plate 10, and the probe current Ip that has passed through and reached the cup-shaped electrode 12 is measured by a microammeter 13.
  • the angular current density is Ip / ⁇ .
  • the aperture 11 and the cup-shaped electrode 12 can be moved from outside the vacuum system, and the current radiation distribution can be measured.
  • Example 1 In Example 1, except that chemical etching and flattening with a focused gallium ion beam were not performed, the current emission distribution of the electron gun manufactured by the same manufacturing method as that of the example was obtained in the same manner as in the example. The measurement result of this current radiation distribution is shown in FIG.
  • FIG. 5 shows the current radiation distribution converted into the angular current density of Example 1 and Comparative Example 1.
  • the distribution is not gentle but non-uniform, whereas in the example, the gentle and uniform distribution. It can be seen that a high angle current density of 2 mA / sr or more is obtained.
  • Example 1 the conical portion 6 is provided by mechanical polishing at the end of the cathode 1, and then the flat portion 7 is provided in advance at the apex of the cathode 1 by mechanical polishing. At this time, since the end portion of the cathode 1 is formed into a truncated cone shape by using mechanical polishing, a processing surface damage was formed, but this processing damage layer was easily removed because it was deleted in a short time by the focused gallium ion beam. did it.
  • Example 1 by providing the flat portion 7 by mechanical polishing in advance and then processing with a focused gallium ion beam, an electron emission surface with few damaged layers could be efficiently formed in a short time.
  • processing was performed with a focused gallium ion beam, it was possible to suppress the occurrence of sagging at the outer periphery of the electron emission surface, which is likely to occur when processing surface damage is removed by liquid phase etching or the like. Therefore, in Example 1, it became possible to obtain a uniform radiation current density.
  • the electron source according to this embodiment emits an electron beam to a predetermined position of a tungsten filament 3 provided on a conductive terminal 4 fixed to an insulator 5.
  • a needle-like single crystal rod with a tungsten ⁇ 100> orientation is fixed by welding or the like.
  • This rod has a sharp end by electropolishing, and is a cathode 1 from which electrons are mainly emitted from this sharp end.
  • a part of the rod constituting the cathode 1 is provided with a diffusion source 2 of zirconium and oxygen.
  • the surface of the rod constituting the cathode 1 is covered with a ZrO coating layer.
  • the tip of the rod constituting the cathode 1 is disposed between the suppressor electrode 8 and the extraction electrode 9 and used.
  • a negative high voltage with respect to the extraction electrode 9 is applied to the rod, that is, the cathode 1, and a negative suppressor voltage of about several hundred volts is applied to the suppressor electrode 8 with respect to the single crystal rod. Suppresses release.
  • the tip of the rod constituting the cathode 1 is provided with a cone 6 by mechanical polishing at the end of the single crystal rod-shaped cathode 1 of tungsten or molybdenum single crystal ⁇ 100> orientation. It has the flat part 7 formed by carrying out the mechanical polishing of the vertex. The flat part 7 is also an electron emission part.
  • a tungsten filament 3 is fixed to a conductive terminal 4 brazed to an insulator 5 by spot welding.
  • a diamond paste and a polishing machine are used at one end.
  • a conical portion 6 having a full angle of 90 ° is formed and processed into the shape of FIG.
  • the flat part 7 which is an electron emission part is polished with a polishing film coated with a chromium oxide abrasive so that the diameter of the circle at the apex of the conical part 6 is 40 ⁇ m as shown in FIG. It is.
  • the rod constituting the cathode 1 is attached to the filament 3 by laser welding (see FIG. 1).
  • the rod functions as the cathode 1.
  • the filament 3 is attached to the conductive terminal 4 brazed to the insulator 5 by welding.
  • the rod 3 constituting the cathode 1 is heated by energizing the filament 3 in an oxygen atmosphere of 3 ⁇ 10 ⁇ 6 Torr (4 ⁇ 10 ⁇ 8 Pa), thereby etching the surface of the rod constituting the cathode 1. went.
  • a diffusion source 2 shown in FIG. 1 is formed on a part of the rod constituting the cathode 1.
  • the diffusion source 2 was obtained by pulverizing zirconium hydride powder and mixing it with an organic solvent to form a slurry, which was applied to a part of the rod constituting the cathode 1. After isoamyl acetate is evaporated, the hydride is thermally decomposed by heating in an oxygen atmosphere of about 1 ⁇ 10 ⁇ 6 Torr, and further oxidized to form zirconium oxide. Simultaneously with the formation of the diffusion source 2, the surface of the rod constituting the cathode 1 was coated with zirconium and oxygen.
  • (Iii) Measurement For measurement, an electron emission characteristic measuring apparatus having the configuration shown in FIG. 3 was used. As shown in FIG. 3, the tip of the rod constituting the cathode 1 was disposed between the suppressor electrode 8 and the extraction electrode 9. The distance between the tip of the rod constituting the cathode 1 and the suppressor electrode 8 is 0.10 mm, the distance between the suppressor electrode 8 and the extraction electrode 9 is 0.8 mm, the hole diameter of the extraction electrode 9 is 0.8 mm, and the hole diameter of the suppressor electrode 8 is 0. .6 mm. A fluorescent material was applied on the screen electrode so that the pattern of electron emission distribution could be visually observed as the fluorescent plate 10.
  • the filament 3 is connected to a cathode high voltage power supply 16, the cathode high voltage power supply 16 is connected to a filament heating power supply 14, and a negative high voltage (emitter voltage Vex) is applied to the extraction electrode 9.
  • the suppressor electrode 8 is connected to a bias power supply 15 that functions as a suppressor power supply, and a negative voltage and a suppressor voltage Vb are further applied to the rod 1. Thereby, thermionic emission from the filament 3 was blocked.
  • the rod constituting the cathode 1 is heated to 1500 to 1900 K by energization performed on the filament 3, and thereby the emitted electron beam 17 is emitted from the electron emitting portion at the tip of the rod as the cathode 1.
  • the emitted electron beam 17 passes through the hole of the extraction electrode 9 and reaches the fluorescent plate 10 formed of a screen electrode having an aperture 11 (small hole) in the center.
  • the inside of the measuring apparatus is placed in an ultrahigh vacuum of 3 ⁇ 10 ⁇ 10 Torr (4 ⁇ 10 ⁇ 8 Pa), and the cathode 1 is formed on the suppressor electrode 8 while maintaining the rod 1 at 1800K.
  • FIG. 6 is a radiation current distribution converted into an angular current density at a rod constituting the cathode 1 having the shape shown in FIG. 4B provided in the electron source shown in the second embodiment.
  • ⁇ Comparative example 2> As a comparative example, an electron source from which the processing damaged layer was removed by electropolishing was produced. Similarly to the ⁇ 100> orientation, a rectangular parallelepiped shape of 2 mm ⁇ 0.4 mm ⁇ 0.4 mm is cut out and processed into the shape of FIG. 4A by mechanical polishing, and an electron emitting portion 7 is provided at the apex (FIG. 4 ( b)). The apex angle of the cone 6 is 90 °, and the diameter of the electron emitter 9 is 40 ⁇ m.
  • the processing damaged layer was removed by electrolytic polishing.
  • the electrolytic polishing was performed by applying a voltage of 6 V for 10 seconds between the conductive terminal 4 and the electrode placed in the liquid so that the conical portion 6 of the cathode 1 was immersed in a 1 mol / L sodium hydroxide aqueous solution. Chemical etching was performed.
  • FIG. 7 is a radiation current distribution converted into angular current density at the rod constituting the cathode 1 having the shape shown in FIG. 4B provided in the electron source shown in Comparative Example 2.
  • the flat portion 7 (electron emitting surface) with less damaged layers and less sagging at the outer periphery is formed in a short time.
  • a gentle and uniform distribution is recognized, and a high angular current density of 2 mA / sr or more is obtained.
  • the focused ion beam machining method is performed after the machining method
  • the vapor phase etching method is performed after the machining method. It is not intended to limit the form.
  • a gas phase etching method may be performed, and then a focused ion beam processing method may be further performed. In this way, the damage layer of the flat part 7 of the electron emission surface can be further reduced.
  • An electron gun including an electron source manufactured by the method of manufacturing an electron source according to the present invention is a reliable electron gun having a uniform current emission distribution and operating at a large current. It is suitable for use in an electron gun that requires a large current operation, such as a device or an electron beam LSI tester, and is very useful industrially.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

 陰極が円錐台形状を有する電子銃であって放射電流密度が均一な電子銃を、効率よく製造する。  タングステン又はモリブデンの単結晶ニードルに金属元素の酸化物を拡散させるための供給源を設けてなる陰極電子銃の製造方法であって、陰極である単結晶端部に、予め機械加工により平坦面を有する円錐台形状に形成後、集束ガリウムイオンビームにより前記平坦面表層を薄削除し再平坦化する。

Description

電子源の製造方法
 本発明は、電子源の製造方法に関する。
 近年、熱陰極よりも長寿命でより高輝度の電子ビームを得るために、タングステン単結晶の針状電極にジルコニウムと酸素との被覆層を設けたといわれる陰極(電子源(以下、ZrO/W電子源と記す))を用いた電子銃が用いられている(以下、ZrO/W電子銃と記す)(非特許文献1参照)。
 ZrO/W電子銃は、軸方位が<100>方位からなるタングステン単結晶の針状の陰極に、ジルコニウム及び酸素からなる被覆層(以下、ZrO被覆層という)が設けられる。このZrO被覆層によってタングステン単結晶の(100)面の仕事関数は、4.5eVから約2.8eVに低下させられ、この陰極の先端部に形成された(100)面に相当する微小な結晶面のみが電子放出領域となるので、従来の熱陰極よりも高輝度の電子ビームが得られ、しかも長寿命であるという利点を有する。また冷電界放射電子銃よりも安定で、低い真空度でも動作し、使い易いという利点を有している(非特許文献2参照)。
 ZrO/W電子銃は、図1に示すように、絶縁碍子5に固定された導電端子4に設けられたタングステン製のフィラメント3の所定の位置に電子ビームを放射するタングステンの<100>方位の針状の陰極1が溶接等により固着されている。陰極1の一部には、ジルコニウムと酸素の供給源2が設けられている。なお、図示していないが陰極1の表面はZrO被覆層で覆われている。
 陰極1はフィラメント3により通電加熱されて一般に1800K程度の温度下で使用されるので、陰極1の表面のZrO被覆層は蒸発する。しかし、供給源2よりジルコニウム及び酸素が拡散することにより、陰極1の表面に連続的に供給されるので、結果的にZrO被覆層が維持される。
 ZrO/W電子銃の陰極1の先端部はサプレッサー電極8と引き出し電極9の間に配置され使用される(図3参照)。陰極1には引き出し電極9に対して負の高電圧が印加され、更にサプレッサー電極8には陰極1に対して数百ボルト程度の負の電圧が印加され、フィラメント3からの熱電子を抑制する。
 ZrO/W電子銃は低加速電圧で用いられる測長SEMやウェハ検査装置においては、プローブ電流が安定していて且つエネルギー幅の拡がりが抑えられるという理由で0.1~0.2mA/srの角電流密度で動作される。
 一方、電子線露光装置、及びオージェ分光装置等においては、スループットが重視されるために0.4mA/sr程度の高い角電流密度で動作される。このようなスループットを重視する用途では、更に高い角電流密度動作が望まれ、1.0mA/srもの高い角電流密度での動作が要求されることがある。
 しかしながら、ZrO/W電子銃においては、(1)高角電流密度動作時に高々1.0mA/sr程度の角電流密度が上限である点、および(2)この時、陰極と引き出し電極間に印加される引き出し電圧が4kV以上と大きく、チップ先端での電界強度が0.4~1.0×10V/mと著しく高くなり、アーク放電による故障頻度が高くなる点を克服すべきという面でさらなる改善の余地があった(非特許文献3参照)。
 この欠点を解決するために、ZrO/W電子銃の陰極端部を円錐台形状とし、電子放射部となる円錐台上面の直径を5μm以上200μm以下と電子放射面積を広くすることで低い引き出し電圧で高角電流密度動作させる電子銃が提案されている(特許文献1参照)。なお、この特許文献1の実施例によれば、陰極端部を円錐状に形成後、機械研磨によって陰極端部を円錐台形状に形成している。また、この特許文献1では、陰極端部を円錐状に形成後、集束ガリウムイオンビームにより平面的に削除し円錐台状に形成する方法についても提案されている。
 しかし、機械研磨を用いて陰極端部を円錐台状にした電子銃においては、放射電流密度が不均一になるという問題点が生じる場合がある。この不均一性により軸上電流がばらつき、均一に電子線照射を行なうことが困難になる。この不均一性は、単結晶ロッドを機械加工した際の加工表面損傷によるものと考えられている。この加工損傷層の深さは、機械加工、機械研磨時の砥粒の荒さに依存するが、数10μmに及ぶことが知られている(非特許文献4参照)。
 このような問題点に対して、機械研磨による陰極端部の円錐台状加工後、電解研磨により加工損傷層を除去することで、電流放射分布の不均一性を改善する方法が提案されている(特許文献2参照)。この特許文献2の実施例では直径20μmの平坦部を設けた場合の電流放射分布の不均一性を改善する効果についても実証されている。
国際公開WO2004/073010号パンフレット 国際公開WO2006/075715号パンフレット D. Tuggle, J. Vac. Sci. Technol. 16, p1699(1979) M. J. Fransen, "On the Electron-Optical Properties of the ZrO/W Schottky Electron Emitter", ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL. III, p91-166, 1999 by Academic Press. D. W. Tuggle、J. Vac. Sci. Technol. B3(1), p220 (1985) "SURFACE ANALYSIS BY X-RAY TOPOGRAPHY AND ETCHING DURING THE PREPARATION OF SINGLE CRYSTAL SURFACES" U. Linke and W. U. Kopp, Microstructural Sciences, Vol.9, 1981, p299-308
 しかしながら、上記文献記載の従来技術は、以下の点で改善の余地を有していた。
 第一に、特許文献1では、陰極端部を円錐状に形成後、集束ガリウムイオンビームにより平面的に削除し円錐台状に形成する方法についても提案されているが、実施例に記載されているのは、陰極端部を円錐状に形成後、機械研磨によって陰極端部に直径100μmの平坦部を設けて円錐台形状に形成する方法である。
 確かに、陰極端部を円錐状に形成後、集束ガリウムイオンビームにより平面的に削除し円錐台状に形成すれば、特許文献1に記載されているように、損傷層の少ない電子放射面を形成することができ、均一な放射電流密度を得ることが可能となると想定される。ただし、集束ガリウムイオンビームによる加工速度が非常に遅いため、円錐状の陰極端部から直径5μm程度の平坦面を形成するのに、数時間がかかってしまい、実際の量産ラインにおける製造工程を考慮に入れれば、直径10μm以上の平坦面を集束ガリウムイオンビームにより形成することは非常に困難である。
 第二に、特許文献2では、機械研磨による陰極端部の円錐台状加工後、電解研磨により加工損傷層を除去する方法が開示されており、実施例では直径20μmの平坦部を設けた場合の電流放射分布の不均一性を改善する効果についても実証されている。
 しかしながら、この方法では、電解研磨により電子放射面外周にダレが生じてしまうため、電子放射面である円錐台上面の径が小さい場合には、電子放射面が曲面状になり放出電流密度が低下するという欠点がある。
 すなわち、本発明者等は、上記のように、(1)電子源において短時間で損傷層の少ない電子放射面を効率よく形成することができることにくわえて、(2)電流放射分布の不均一性を改善しつつ、さらに(3)放出電流密度を向上させる、という個々の技術的要求を解決するための技術を開発してきた。しかし、本発明者等は、上記のように、幾つかの発見に基づいて、それらの技術によっては、これら3つの互いに相反する関係にある技術的要求をバランスよく実現することができないことを発見した。
 このように、これら3つの技術的要求が互いに相反する関係にあることは、本発明者等が、特許文献1の技術をさらに改良する過程で、集束ガリウムイオンビームによる加工速度が非常に遅いため、円錐状の陰極端部から直径5μm程度の平坦面を形成するのに、数時間がかかってしまうということに気づき、特許文献2の技術をさらに改良する過程で、電解研磨により電子放射面外周にダレが生じてしまうため、電子放射面である円錐台上面の径が小さい場合には、電子放射面が曲面状になり放出電流密度が低下することに気付いた結果、初めて認識された技術的課題である。
 本発明は当技術分野で初めて認識された上記技術的課題に鑑みてなされたものであり、(1)電子源において短時間で損傷層の少ない電子放射面を効率よく形成することができることにくわえて、(2)電流放射分布の不均一性を改善しつつ、さらに(3)放出電流密度を向上させる、という互いに相反する関係にある3つの技術的要求をバランスよく実現することができる技術を提供することを目的とする。
 本発明によれば、ロッドの一端部に電子放射部を有する電子源の製造方法であって、機械加工法により端部を平坦面を有する円錐台形状に形成する工程と、集束イオンビーム加工法または気相エッチング法により平坦面の表層を除去する工程と、を含む、電子源の製造方法が提供される。
 この方法によれば、短時間で電子放射面を効率よく形成することができる機械加工法により端部を平坦面を有する円錐台形状に形成した上で、集束イオンビーム加工法または気相エッチング法により平坦面の表層を除去して損傷層の少ない電子放射面を形成することができる。また、この方法によれば、電解研磨または液相エッチングを行わない(あるいは電解研磨または液相エッチングの後にさらに集束イオンビーム加工または気相エッチングを行う)ため、電子放射面外周にダレが生じてしまうことを抑制できる。
 そのため、この方法によれば、損傷層が少なく外周のダレも少ない電子放射面を短時間で効率よく形成することができるため、(1)電子源において短時間で損傷層の少ない電子放射面を効率よく形成することができることにくわえて、(2)電流放射分布の不均一性を改善しつつ、さらに(3)放出電流密度を向上させる、という互いに相反する関係にある3つの技術的要求をバランスよく実現することが可能になる。
 本発明によれば、(1)電子源において短時間で損傷層の少ない電子放射面を効率よく形成することができることにくわえて、(2)電流放射分布の不均一性を改善しつつ、さらに(3)放出電流密度を向上させる、という互いに相反する関係にある3つの技術的要求をバランスよく実現することが可能になる。
ZrO/W電子銃の構造図である。 陰極の拡大図である。 電子放射特性の評価装置の構成図である。 図4(a)はロッド1の比較例を示す説明図であり、図4(b)はロッド1の実施例を示す説明図である。 電流放射分布の測定結果(実施例1並びに比較例1)を示すグラフである。 実施例2における電流放射分布を示すグラフである。 比較例2における電流放射分布を示すグラフである。
符号の説明
 1:陰極
 2:供給源
 3:フィラメント
 4:導電端子
 5:絶縁碍子
 6:(円錐台部の)円錐部
 7:平坦部(円錐台部の上面部)
 8:サプレッサー電極
 9:引き出し電極
10:蛍光板
11:アパーチャー
12:カップ状電極
13:プローブ電流測定用微小電流計
14:フィラメント加熱電源
15:バイアス電源
16:高圧電源
17:放射電子線
 <用語の説明>
 本明細書および請求の範囲では、下記の通り用語の意味を定義する。
 下限数値~上限数値:下限数値以上かつ上限数値以下を意味する。
 熱陰極電界放出型電子銃:エミッタを電界下で加熱して電子を放出させる方式の電子銃を意味する。従来はタングステンチップを約2600Kに加熱し、ポテンシャル障壁(約4.5eV)を越えさせて電子を放出させるものが使われることが多かったが、最近はタングステンフィラメントに酸化ジルコニウムをコーティングしポテンシャル障壁を下げた(約2.7eV)エミッタを約1800Kに加熱し、ショットキー効果を利用して電子を放出させるものが使われることが多い。
 エッチング: 半導体や無機化合物の試料作製に使われる方法の一種であり、固体表面から表面原子を化学的、物理的反応を利用して選択的に取り除くことを意味する。液相エッチングと気相エッチングとに分けることができる。
 化学研磨:半導体や無機化合物の試料作製に使われる方法を意味する。強酸や強アルカリを基本にした研磨液に試料を浸して試料表面を平滑に保ちながら薄膜化する。機械的なひずみを与えずに試料作製ができるのが利点である。本明細書および請求の範囲では、選択的な溶解(エッチング)が起きないような研磨液等が使われるものを意味する。
 機械研磨:試料の物理的研磨を意味する。耐水ペーパを使った手作業での研磨、回転研磨器を使ったダイヤモンド粉やコランダムによる研磨、ディンプルグラインダを使ったコランダム粉による研磨、トライポットポリッシャを使ったダイヤモンド粉による研磨などがある。
 電解研磨:金属、合金などの材料加工に使われる方法であり、適当な電解質溶液中に浸し、試料を陽極、白金板やステンレス鋼を陰極とし、直流電流を流すことにより材料表面を溶出させ、試料表面を平滑に保ちながら研磨する方法を意味する。機械的なひずみを与えずに材料加工ができるのが利点である。
 集束イオンビーム加工:ガリウムイオンなどのイオンを数kV~40kV程度で加速し集束させて試料に照射して試料を加工する方法を意味する。なお、二次イオン像(SEM像が見られる装置もある)で局所領域を観察しながら加工できる場合もある。
 <実施形態1>
 以下、本発明の具体的な実施態様について、図1~図4を参照しながら説明する。
 本実施形態では、走査型電子顕微鏡、オージェ電子分光、電子線露光機、ウェハ検査装置などの電子線応用機器に用いられる電子銃、ことに電子線露光機用に好適な電子銃に用いられる電子源の製造方法について説明する。
 本実施形態は、ロッド状陰極1の一端部に電子放射部を有する電子源の製造方法であって、機械加工法により端部を円錐部6に形成した上で、さらに平坦部7を有する円錐台形状に形成する工程と、さらに集束イオンビーム加工法によりその平坦部7の表層を除去する工程と、を含む、電子源の製造方法である。
 本実施形態の方法では、まず、タングステンまたはモリブデン単結晶<100>方位のロッド状陰極1の端部に機械研磨または電解研磨によりに円錐部6を設けた後、次いでダイヤモンド研磨剤を被覆した研磨フィルム等を用いた機械研磨により、予め頂点に平坦部7を設ける。
 なお、電子線露光装置やオージェ電子分光装置等に好適な、高い角電流密度動作においても全放射電流量が少ない電子源とするためには、円錐部6の全角は25°以上95°以下で、平坦部7の直径は5~200μmであることが好ましい。なお、平坦部7の直径は10μm~100μmであることがさらに好ましい。更に、同様の理由から、陰極1の端部に形成された平坦な電子放射面の法線は<100>方位と2°以内であることが好ましく、0.5°以内の角度差に収められることがさらに好ましい。
 陰極1は、絶縁碍子5にロウ付けされた導電端子4にタングステン製のフィラメント3を介して溶接により固定され、通電加熱できるようにする。
 陰極1の平坦部7の加工損傷層は最終的には集束ガリウムイオンビームにより削除されるが、初期の研削面が粗すぎる場合には集束ガリウムイオンビームでは加工損傷層を削除しきれない場合がある。従って、平坦部7を形成後、加工損傷層を気相エッチングまたは液相エッチング(化学エッチング)により除去しておくことが好ましい。すなわち、別の表現をすれば、上述の機械加工法により端部を円錐部6に形成した上で、平坦部7(平坦面)を有する円錐台形状に形成する工程と、集束イオンビーム加工法によりその平坦部7の表層を除去する工程と、の間に、液相エッチング法(化学エッチング法)または電解研磨法により端部表面の加工損傷層を除去する工程をさらに含むことが好ましい。
 気相エッチング方法としては、例えば、真空装置内で真空排気後、酸素ガスを導入して装置内を3×10-6Torr(4×10-4Pa)とし、陰極1の温度を1800K~2000Kに加熱して行なう。また、化学エッチング方法としては、例えば、陰極1の円錐部8が1mol/Lの水酸化ナトリウム水溶液に浸漬するようにして、導電端子4と液中に設置した電極間に6Vの電圧を印加して行なう。
 これらの加工損傷層の除去方法により、平坦部7に凹凸が形成されたり曲面状になったりする(外周のダレが発生する)場合があるが、本実施形態では、最終的に集束ガリウムイオンビームにより再度平坦化されるので、電子放射特性にはほとんど影響しない。
 陰極1には、電子放射面の仕事関数を低下させる効果のある金属と酸素からなる供給源が設けられる。とりわけジルコニウム(Zr)、チタン(Ti)、ハフニウム(Hf)、スカンジウム(Sc)、イットリウム(Y)、ランタノイド系列元素、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)の群から選ばれた元素を含有する金属酸化物からなる供給源を有する電子源が、熱陰極電界放出型電子銃のための電子源として好ましく適用できる。
 Zr-Oの系を例にとると、水素化ジルコニウムを粉砕して有機溶剤と混合しペースト状にしたものを陰極の一部に塗布して、3×10-6Torr(4×10-4Pa)程度の酸素雰囲気中で陰極を加熱してZrHを熱分解し、更に酸化してジルコニウムと酸素の供給源を形成する。
 この酸素雰囲気での加熱処理においても、陰極1は酸素によるエッチングを受け、平坦部7に凹凸が形成される場合があるが、この場合も、最終的に集束ガリウムイオンビームにより再度平坦化されるので、電子放射特性には影響しない。
 集束ガリウムイオンビームによって平坦部7を再平坦化する場合、イオンビームの方向に対して平坦部7が平行になるように位置させ、平坦部7の表層に制限して均一にイオンビームを照射することにより、平坦度が高く加工損傷のない面を短時間で形成することが可能となる。このとき、平坦部7の表層の除去効率の面からは、二フッ化キセノンガス雰囲気中にて集束ガリウムイオンビームを照射して平坦部7の表層を除去することが好ましい。
 この陰極を引き出し電極9とサプレッサー電極8の間に配置して、引き出し電極9に対して陰極1に数キロボルトの負の高電圧を印加する。サプレッサー電極8には陰極1に対して数百ボルトの負の電圧を印加すると共に陰極1を1500~1900K に加熱することにより電子放射が行なえる。
 本実施形態の方法によれば、集束ガリウムイオンビームによる電子放射面の加工を用いることで、機械研磨で生じる加工損傷層が除去され、均一な放射電流密度が得られる。そのため、後述する実施例で説明するように、本実施形態の電子源を備える熱陰極電界放出型の電子銃は、1mA/sr以上の高い角電流密度で均一な放射電流密度が得られ、余剰電流が極めて低いため信頼性が高い。さらに、この電子銃は1×10-8Torr(1×10-6Pa)以下の真空中で動作し、タングステンが母材となっているため長期の動作によっても陰極の消耗が極めて小さく特性の変化が少ないし、また、陰極表面がイオン衝撃により荒らされても直ぐに平滑な表面に修復するという特徴を有している。
 <実施形態1の作用効果>
 以下、本実施形態の電子源の製造方法の作用効果について説明する。
 本実施形態によれば、陰極1(ロッド)の一端部に電子放射部を有する電子源の製造方法であって、機械加工法により端部を平坦部7(平坦面)を有する円錐台形状に形成する工程と、集束イオンビーム加工法により平坦部7の表層を除去する工程と、を含む、電子源の製造方法が提供される。
 この方法によれば、短時間で電子放射面を効率よく形成することができる機械加工法により端部を平坦部7を有する円錐台形状に形成した上で、集束イオンビーム加工法により平坦部7の表層を除去して損傷層の少ない電子放射面を形成することができる。また、この方法によれば、電解研磨または液相エッチングを行わない(あるいは電解研磨または液相エッチングの後にさらに集束イオンビーム加工を行う)ため、電子放射面外周にダレが生じてしまうことを抑制できる。
 そのため、本実施形態の方法によれば、損傷層が少なく外周のダレも少ない平坦部7(電子放射面)を短時間で効率よく形成することができるため、(1)電子源において短時間で損傷層の少ない平坦部7を効率よく形成することができることにくわえて、(2)電流放射分布の不均一性を改善しつつ、さらに(3)放出電流密度を向上させる、という互いに相反する関係にある3つの技術的要求をバランスよく実現することが可能になる。
 さらに、本実施形態の方法では、上述の円錐台形状に形成する工程と、上述の平坦部7(平坦面)の表層を除去する工程と、の間に、液相エッチング法または電解研磨法により端部表面の加工損傷層を除去する工程をさらに含むことが好ましい。このようにすれば、初期の機械研磨の研削面が粗すぎたとしても、液相エッチング法または電解研磨法により端部表面の加工損傷層をある程度除去するため、その後の集束ガリウムイオンビームで陰極1の平坦部7の加工損傷層を最終的には削除してしまえる。
 また、本実施形態の方法では、上述の平坦部7(平坦面)の表層を除去する工程が、二フッ化キセノンガス雰囲気中にて集束ガリウムイオンビームを照射して平坦面の表層を除去する工程であることが好ましい。このようにすれば、集束ガリウムイオンビームによる平坦部7の表層の除去効率がよくなり、平坦度が高く加工損傷の少ない平坦部7をより一層短時間で形成することが可能となる。
 さらに、本実施形態の方法では、上述の平坦部7(平坦面)の直径が、10μm以上100μm以下であることが好ましい。このようにすれば、電子線露光装置やオージェ電子分光装置等に好適な、高い角電流密度動作においても全放射電流量が少ない電子源が得られるためである。
 なお、本実施形態の方法によれば、平坦部7の直径が10μmと小さい場合にも、電子放射面外周にダレが生じることを抑制できるため、電子放射面が曲面状になり放出電流密度が低下することを抑制できる。一方、本実施形態の方法によれば、平坦部7の直径が100μmと大きい場合にも、集束ガリウムイオンビームを照射することにより短時間で損傷層の少ない電子放射面を効率よく形成することができる。
 ここで、本実施形態の方法では、上述の電子源が、タングステンまたはモリブデンの単結晶ロッド(陰極1)に金属元素の酸化物を拡散させるための供給源を設けてなる電子源であることが好ましい。また、この金属元素が、Ca、Sr、Ba、Sc、Y、La、Ti、Zr、Hf、またはランタノイド系列から選ばれた金属元素であることが好ましい。さらに、上述のロッド(陰極1)の方位が<100>であることが好ましい。そして、上述の電子源が、熱陰極電界放出型電子銃のための電子源であることが好ましい。
 このようにすれば、これらの金属酸化物の被覆層によってタングステン単結晶<100>の仕事関数は、4.5eVから大きく低下させられ、この陰極の先端部に形成された平坦部7に相当する微小な結晶面のみが電子放出領域となるので、熱陰極電界放出型電子銃のための電子源として用いた場合に、従来の熱陰極よりも高輝度の電子ビームが得られ、しかも長寿命であるという利点を有する。また冷電界放射電子銃よりも安定で、低い真空度でも動作し、使い易いという利点を有している。
 <実施形態2>
 以下、本発明の別の実施態様について、実施形態1とは異なる特有の点を中心に、図1~図4を参照しながら説明する。尚、すべての図面において、実施形態1と同様な構成要素には同様の符号を付し、適宜説明を省略する。
 本実施形態は、実施形態1の場合と同様に、陰極1(ロッド)の一端部に電子放射部を有する電子源の製造方法であって、機械加工法により端部を平坦部7を有する円錐台形状に形成する工程と、気相エッチング法により平坦部7の表層を除去する工程と、を含む、電子源の製造方法である。本実施形態に有っては、電子放射部を機械加工法により形成した後に、電子放射部に気相エッチングをしたことにより、電流放射分布をより均一にすることができ、大電流電子源を提供することができる。
 本実施形態における気相エッチングで用いられるガスは、エッチング効率および精度の向上の面からは、酸素であることが好ましく、酸素圧を0.3×10-4から8×10-4Paとし、温度を1700K以上1950K以下とすることが好ましい。本実施形態におけるロッドは、実施形態1の場合と同様の理由から、Ca、Sr、Ba、Sc、Y、La、Ti、Zr、Hf、またはランタノイド系列から選ばれた金属元素の酸化物の拡散源を有することが好ましい。
 この拡散源の製造方法について、酸化ジルコニウムの場合を用いて説明する。酸化ジルコニウムで形成した拡散源を製造するには、まず、水素化ジルコニウムを粉砕して酢酸イソアミルと混合しペースト状にしたものを陰極1を構成する単結晶ロッドの一部に塗布する。次いで、酢酸イソアミルが蒸発した後、超高真空装置に導入する。続いて装置内を3×10-10Torr(4×10-8Pa)の超高真空中としてフィラメント3に通電して単結晶ロッド1を1800Kに加熱し、水素化ジルコニウムを熱分解して金属ジルコニウムとする。続いて酸素ガスを導入して装置内を3×10-6Torr(4×10-4Pa)として金属ジルコニウムを酸化し、酸化ジルコニウムからなる拡散源が製造される。
 ここで、陰極1を構成するロッドの方位は、実施形態1と同様の理由から<100>であることが好ましい。
 また、本実施形態における陰極1を構成するロッドの一端部には円錐部6を有し、その頂点に電子放射部を配置し、電子放出部を平坦に形成するとともに、実施形態1と同様の理由から、その平坦部7の直径を10μm以上100μm以下とするのが好ましく、さらに好ましくは10μm以上70μm以下が好ましい。さらに、本実施形態にかかる電子源にあっては、陰極1を構成するロッドの一端部に円錐部6を有し、実施形態1と同様の理由から、化学エッチングにより加工損傷層を除去した後に円錐部6の頂点に平坦な電子放射部を形成するのが好ましい。
 もっとも、必ずしも化学エッチングをしなければならないわけではなく、陰極1を構成するタングステン又はモリブデンの単結晶からなるロッドの一端部に電子放射部を有する電子源の製造方法において、電子放射部を機械加工法により形成した後に、電子放射部に気相エッチングをしてもよい。
 繰り返しにはなるが、本実施形態における気相エッチングで用いられるガスは、エッチング効率および精度の向上の面からは、酸素であり、酸素圧を0.3×10-4から8×10-4Paとし、温度を1700K以上1950K以下とすることが好ましい。本実施形態における陰極1を構成するロッドは、実施形態1と同様の理由により、Ca、Sr、Ba、Sc、Y、La、Ti、Zr、Hf、またはランタノイド系列から選ばれた金属元素の酸化物の拡散源を有することが好ましい。本実施形態における陰極1を構成するロッドの方位は、実施形態1と同様の理由により、<100>であることが好ましい。
 本実施形態における陰極1を構成するロッドの一端部には円錐部6を有し、その頂点に電子放射部を配置し、電子放出部を平坦に形成するとともに、実施形態1と同様の理由により、その平坦部7の直径を10μm以上100μm以下とするのが好ましく、さらに10μm以上70μm以下とすることが好ましい。さらに、本実施形態にかかる電子源にあっては、ロッドの一端部に円錐部6を有し、実施形態1と同様の理由により、化学エッチングにより加工損傷層を除去した後に円錐部6の頂点に平坦な電子放射部を形成するのが好ましい。
 このとき、陰極1を構成するロッドの表面へのエッチングは、陰極1を構成するロッドをフィラメントに溶接し、超高真空中(3×10-10Torr(4×10-8Pa))にいれ、続いて酸素ガスを導入して装置内を3×10-6Torr(4×10-4Pa)にて温度1800K~2000Kで加熱することで行うことができる。このように単結晶表面をエッチングすることにより、陰極1を構成するロッドの円錐化時に生じた機械加工損傷の除去を行うことができる。
 ロッドは陰極1として機能し、その表面はCa、Sr、Ba、Sc、Y、La、Ti、Zr、Hf、またはランタノイド系列から選ばれた金属元素の酸化物と酸素により被覆できる。Zr-Oの系を例にとると、水素化ジルコニウムを粉砕して有機溶剤と混合しペースト状にしたものを陰極の一部に塗布して、1×10-6Torr程度の酸素雰囲気中で陰極を加熱してZrHを熱分解し更に酸化してジルコニウムと酸素の拡散源を形成すると共に陰極の表面をジルコニウムと酸素で被覆する。この陰極を引出電極とサプレッサー電極の間に配置して、引出電極に対して陰極に数kv(キロボルト)の負の高電圧を印加し、サプレッサー電極6には陰極1に対して数百kvの負の電圧を印加すると共に陰極1を1500~1900Kに加熱することにより電子放射が行える。
 <実施形態2の作用効果>
 以下、本実施形態の電子源の製造方法の作用効果について説明する。
 本実施形態によれば、陰極1(ロッド)の一端部に電子放射部を有する電子源の製造方法であって、機械加工法により端部を平坦部7(平坦面)を有する円錐台形状に形成する工程と、気相エッチング法により平坦部7の表層を除去する工程と、を含む、電子源の製造方法が提供される。
 この方法によれば、短時間で電子放射面を効率よく形成することができる機械加工法により端部を平坦部7を有する円錐台形状に形成した上で、気相エッチング法により平坦部7の表層を除去して損傷層の少ない電子放射面を形成することができる。また、この方法によれば、電解研磨または液相エッチングを行わない(あるいは電解研磨または液相エッチングが機械加工法による平坦部形成の前に行なわれる)ため、電子放射面外周にダレが生じてしまうことを抑制できる。
 そのため、本実施形態の方法によれば、損傷層が少なく外周のダレも少ない平坦部7(電子放射面)を短時間で効率よく形成することができるため、(1)電子源において短時間で損傷層の少ない平坦部7を効率よく形成することができることにくわえて、(2)電流放射分布の不均一性を改善しつつ、さらに(3)放出電流密度を向上させる、という互いに相反する関係にある3つの技術的要求をバランスよく実現することが可能になる。
 さらに、本実施形態の方法では、上述の円錐形状に形成する工程と、上述の平坦部7(平坦面)を形成する工程と、の間に、液相エッチング法または電解研磨法により端部表面の加工損傷層を除去する工程をさらに含むことが好ましい。このようにすれば、初期の円錐部機械研磨の研削面が粗すぎたとしても、液相エッチング法または電解研磨法により円錐面加工時の加工損傷層をある程度除去できる。その後、平坦部を形成し、気相エッチングで陰極1の平坦部7の加工損傷層を最終的には削除してしまえる。
 また、本実施形態の方法では、上述の平坦部7(平坦面)の表層を除去する工程が、酸素圧を0.3×10-4Pa以上8×10-4Pa以下とし、温度を1700K以上1950K以下とした条件で気相エッチングを行って平坦部7の表層を含む端部表面の加工損傷層を除去する工程であることが好ましい。このようにすれば、気相エッチングによる平坦部7の表層の除去効率がよくなり、平坦度が高く加工損傷の少ない平坦部7をより一層短時間で形成することが可能となる。
 さらに、本実施形態の方法では、上述の平坦部7(平坦面)の直径が、10μm以上100μm以下であることが好ましい。このようにすれば、電子線露光装置やオージェ電子分光装置等に好適な、高い角電流密度動作においても全放射電流量が少ない電子源が得られるためである。
 なお、本実施形態の方法によれば、平坦部7の直径が10μmと小さい場合にも、電子放射面外周にダレが生じることを抑制できるため、電子放射面が曲面状になり放出電流密度が低下することを抑制できる。一方、本実施形態の方法によれば、平坦部7の直径が100μmと大きい場合にも、気相エッチングすることにより短時間で損傷層の少ない電子放射面を効率よく形成することができる。
 ここで、本実施形態の方法では、上述の電子源が、タングステンまたはモリブデンの単結晶ロッド(陰極1)に金属元素の酸化物を拡散させるための供給源を設けてなる電子源であることが好ましい。また、この金属元素が、Ca、Sr、Ba、Sc、Y、La、Ti、Zr、Hf、またはランタノイド系列から選ばれた金属元素であることが好ましい。さらに、上述のロッド(陰極1)の方位が<100>であることが好ましい。そして、上述の電子源が、熱陰極電界放出型電子銃のための電子源であることが好ましい。
 このようにすれば、これらの金属酸化物の被覆層によってタングステン単結晶<100>の仕事関数は、4.5eVから大きく低下させられ、この陰極の先端部に形成された平坦部7に相当する微小な結晶面のみが電子放出領域となるので、熱陰極電界放出型電子銃のための電子源として用いた場合に、従来の熱陰極よりも高輝度の電子ビームが得られ、しかも長寿命であるという利点を有する。また冷電界放射電子銃よりも安定で、低い真空度でも動作し、使い易いという利点を有している。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 例えば、上記実施形態1では、機械加工法の後に集束イオンビーム加工法を行う方法とし、上記実施形態2では、機械加工法の後に気相エッチング法を行う方法としたが、こららの2つの形態に限定する趣旨ではない。例えば、機械加工法の後に、気相エッチング法を行ってから、さらに集束イオンビーム加工法を行う方法としてもよい。このようにすれば、電子放射面の平坦部7の損傷層をさらに少なくすることができる。
 なお、上述のように気相エッチング法および集束イオンビーム加工法を両方ともに行う場合には、電解研磨または液相エッチングを行わなくてもよいが、電解研磨または液相エッチングの後に、さらに気相エッチングおよび集束イオンビーム加工法を両方とも行うことにしてもよい。この場合にも、上述の場合と同様に、電子放射面の平坦部7の損傷層をさらに少なくすることができる。
 以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。
 <実施例1>
 以下、実施例1について、図1~図4を参照して説明する。
 絶縁碍子5にロウ付けされた導電端子4にタングステン製のフィラメント3をスポット溶接により固定した。<100>方位の単結晶タングステンチップの端部にダイヤモンドペーストと研磨盤を用いて全角が90°の円錐部6を形成し、図4(a)の形状に加工する。更に円錐部6の頂点をダイヤモンド研磨剤で被覆した研磨フィルムで研磨して、図4(b)に示すように直径35μmの平坦部7を形成した。このロッドをフィラメント3にスポット溶接により取り付けた。このロッドは陰極1として機能する。
 その後、陰極1の円錐部6が1mol/Lの水酸化ナトリウム水溶液に浸漬するようにして、導電端子4と液中に設置した電極間に6Vの電圧を10秒印加して化学エッチングを行なった。
 次いで、水素化ジルコニウムを粉砕して酢酸イソアミルと混合しペースト状にしたものを陰極1の一部に塗布した。そして、酢酸イソアミルが蒸発した後、超高真空装置に導入した。続いて装置内を3×10-10Torr(4×10-8Pa)の超高真空中としてフィラメント3に通電して単結晶ロッド1を1800Kに加熱し、水素化ジルコニウムを熱分解して金属ジルコニウムとする。続いて酸素ガスを導入して装置内を3×10-6Torr(4×10-4Pa)として金属ジルコニウムを酸化し、酸化ジルコニウムからなるジルコニウムと酸素の拡散源2を形成した。
 続いて、集束ガリウムイオンビーム装置に導入し、イオンビームの方向に対して平坦部7が平行になるように位置させ、平坦部7表層に制限して加速電圧30kV、ビーム電流5nAのイオンビームを均一に照射することにより、平坦部7を2μm程度削り再平坦化した。
 得られた陰極1の先端はサプレッサー電極8と引き出し電極9との間に配置した。なお、陰極1の先端とサプレッサー電極8の距離は0.1mm、サプレッサー電極8と引き出し電極9の距離は0.8mm、引き出し電極9の孔径は0.8mm、サプレッサー電極8の孔径は0.6mmとした。
 さらに、フィラメント3はフィラメント加熱電源14に接続し、さらに高圧電源16 に接続し、引き出し電極9に対して負の高電圧、即ち引き出し電圧Vexを印加した。また、サプレッサー電極8をバイアス電源15に接続し、陰極1とフィラメント3に対してさらに負の電圧、バイアス電圧Vbを印加した。これによりフィラメント3からの放射熱電子を遮る。陰極1の先端から放射した電子ビーム17は引き出し電極9の孔を通過して、蛍光板10に到達する。蛍光板10の中央にはアパーチャー11(小孔)が有り、通過してカップ状電極12に到達したプローブ電流Ipは微小電流計13により測定される。なおアパーチャー11と陰極1の先端との距離とアパーチャー11の内径から算出される立体角をωとすると角電流密度はIp/ωとなる。また、アパーチャー11とカップ状電極12は真空系外から動かせられるようになっており、電流放射分布を測定することができる。
 さらに測定装置内を3×10-10Torr(4×10-8Pa)の超高真空中として、単結晶ロッド1を1800Kに維持したまま、サプレッサー電極8に単結晶ロッド1に対してサプレッサー電圧Vb=-300Vの電圧を印加した。続いて、単結晶ロッド1にエミッタ電圧Vex=-4000Vの高電圧を印加して数時間保持し、放出電流が安定したところで、アパーチャー11を動かしたときのプローブ電流Ipの変化を測定し、電流放射分布を求めた。この電流放射分布の測定結果を図5に示す。
 <比較例1>
 実施例1において、化学エッチングおよび集束ガリウムイオンビームによる平坦化を行なわない以外は、実施例と同じ製造方法で作製した電子銃を、実施例と同様の方法で電流放射分布を求めた。この電流放射分布の測定結果を図5に示す。
 <実施例1および比較例1の結果の考察>
 図5に実施例1と比較例1の角電流密度に換算した電流放射分布を示すが、比較例では分布がなだらかではなく不均一性が認められるのに対し、実施例ではなだらかで均一な分布が認められ、かつ2mA/sr以上の高角電流密度が得られていることが分かる。
 実施例1では、陰極1の端部に機械研磨によりに円錐部6を設けた後、機械研磨により予め陰極1の頂点に平坦部7を設けている。このとき、機械研磨を用いて陰極1の端部を円錐台状にしているので、加工表面損傷が形成されたが、この加工損傷層は集束ガリウムイオンビームにより短時間で削除されたため容易に除去できた。
 すなわち、予め機械研磨により平坦部7を設けた後に集束ガリウムイオンビームで加工することで、短時間で損傷層の少ない電子放射面を効率よく形成することができた。しかも、集束ガリウムイオンビームで加工したために、液相エッチングなどで加工表面損傷を除去する場合に生じやすい電子放射面外周でのダレの発生も抑制できた。そのため、実施例1では、均一な放射電流密度を得ることが可能となったのである。
 別の表現をすれば、(1)電子源において短時間で損傷層の少ない平坦部7を効率よく形成することができることにくわえて、(2)電流放射分布の不均一性を改善しつつ、さらに(3)放出電流密度を向上させる、という互いに相反する関係にある3つの技術的要求をバランスよく実現することが可能になったのである。
 <実施例2>
 以下、実施例2について、図1~図4、図6~図7を参照して説明する。
 (i)電子源
 本実施例にかかる電子源は、図1に示すように、絶縁碍子5に固定された導電端子4に設けられたタングステン製のフィラメント3の所定の位置に電子線を放出するタングステン<100>方位で針状の単結晶のロッドが溶接等により固着されたものである。このロッドは、電解研磨により先鋭端を有し、主にこの先鋭端から電子が放出される陰極1である。陰極1を構成するロッドの一部にはジルコニウムと酸素の拡散源2が設けられ、図示は省略したが、陰極1を構成するロッドの表面はZrO被覆層で覆われている。
 陰極1を構成するロッドの先端部は、図3に示すように、サプレッサー電極8と引出電極9の間に配置され使用される。ロッドすなわち陰極1には引出電極9に対して負の高電圧が印加され、サプレッサー電極8には単結晶ロッドに対して数百ボルト程度の負のサプレッサー電圧が印加され、フィラメント3からの熱電子放出を抑制する。
 陰極1を構成するロッド先端部は、図2に示すように、タングステン又はモリブデン単結晶<100>方位の単結晶ロッド状陰極1の端部に機械研磨によりに円錐部6を設け、円錐部6の頂点を機械研磨することにより形成された平坦部7を有する。なお、平坦部7は電子放出部でもある。
 (ii)電子源の製造方法
 電子源の製造方法について、図1を用いて説明する。
 図1に示すように、絶縁碍子5にロウ付けされた導電端子4にタングステン製のフィラメント3をスポット溶接により固定する。
 <100>方位のタングステン単結晶を、陰極1を構成するロッドとして、放電加工により2mm×0.4mm×0.4mmの直方体形状に切り出した後、一端部にダイヤモンドペーストと研磨盤を用いて頂角全角が90°の円錐部6を形成して図4(a)の形状に加工する。電子放出部である平坦部7は、酸化クロム研磨剤を被覆した研磨フィルムにより研磨をすることにより、図4(b)に示すように、円錐部6の頂点の円の直径を40μmにしたものである。
 この陰極1を構成するロッドをフィラメント3にレーザー溶接により取り付ける(図1参照)。ロッドは陰極1として機能するものである。フィラメント3は、絶縁碍子5にロウ付けされた導電端子4に溶接により取り付けられたものである。
 その後、3×10-6Torr(4×10-8Pa)の酸素雰囲気中でフィラメント3に通電して陰極1を構成するロッドを加熱し、これにより陰極1を構成するロッドの表面のエッチングを行った。
 陰極1を構成するロッドの一部に、図1に示す拡散源2を形成した。拡散源2は、水素化ジルコニウム粉末を粉砕して有機溶剤と混合しスラリー状にしたものを陰極1を構成するロッドの一部に塗布した。酢酸イソアミルが蒸発した後、1×10-6Torr程度の酸素雰囲気中で加熱して水素化物を熱分解し、更に酸化して酸化ジルコニウムからなるものである。この拡散源2形成と同時に、ジルコニウムと酸素で、陰極1を構成するロッドの表面を被覆した。
 (iii)測定
 測定にあっては、図3に示した構成の電子放出特性測定装置を用いた。図3に示すように、陰極1を構成するロッドの先端をサプレッサー電極8と引出電極9との間に配置した。陰極1を構成するロッドの先端とサプレッサー電極8の距離は0.10mm、サプレッサー電極8と引出電極9の距離は0.8mm、引出電極9の孔径は0.8mm、サプレッサー電極8の孔径は0.6mmである。スクリーン電極上には蛍光材を塗布して蛍光板10として電子放出分布のパターンが目視により観察できるようにした。
 フィラメント3は、図3に示すように、陰極用高圧電源16に接続され、陰極用高圧電源16はフィラメント加熱電源14に接続され、引出電極9に対して負の高電圧(エミッタ電圧Vex)が印加される。サプレッサー電極8はサプレッサー電源として働くバイアス電源15に接続され、ロッド1に対して更に負の電圧、サプレッサー電圧Vbが印加される。これにより、フィラメント3からの熱電子放出を遮った。
 フィラメント3に行われた通電によって、陰極1を構成するロッドは1500~1900Kに昇温し、これにより、陰極1たるロッドの先端部の電子放出部から放出電子線17を放出させる。放出電子線17は、引出電極9の孔を通過して、中央にはアパーチャー11(小孔)を有するスクリーン電極からなる蛍光板10に到達する。
 測定にあっては、測定装置内を3×10-10Torr(4×10-8Pa)の超高真空中にし、ロッド1を1800Kに維持したまま、サプレッサー電極8に、陰極1を構成するロッドに対するサプレッサー電圧Vb=-300Vとなるように電圧を印加し、続いて陰極1を構成するロッドにエミッタ電圧Vex=-4000Vとなるように高電圧を印加して数時間保持し、放出電流が安定したところで行った。
 (iv)電子源の全放出電流Itの測定
 電子源からの全放出電流Itは、陰極用高圧電源16とアース間に置かれた電流計(不図示)により測定した。
 (v)プローブ電流Ip(角電流密度)のエミッタ電圧Vex依存性の測定
アパーチャー11を通過してカップ状電極12に到達したプローブ電流Ipは、プローブ電流測定用微小電流計13により測定した。
 (vi)電子源の放射電流分布の測定)
 アパーチャー11および陰極1を構成するロッドの先端の距離と、アパーチャー11の内径とから算出される立体角をωとすると角電流密度は、Ip/ωとなる。アパーチャー11とカップ状電極12は真空系外から動かすことができ、放射電流分布を測定することができる。
 図6に、X軸に放射角度、Y軸にVex=-4000V時の角電流密度Ip’をとった電流放射分布を示した。図6は、実施例2で示した電子源に備わる図4(b)で示した形状からなる陰極1を構成するロッドでの角電流密度に換算した放射電流分布である。
 <比較例2>
 比較例として、電解研磨により加工損傷層を除去した電子源を作製した。<100>方位の同様に2mm×0.4mm×0.4mmの直方体形状に切り出して機械研磨により図4(a)の形状に加工し、頂点には電子放出部7を設けた(図4(b))。円錐部6の頂角全角は90°であり、電子放出部9の直径は40μmである。
 機械研磨後に、電解研磨によって加工損傷層を除去した。電解研磨の条件としては、陰極1の円錐部6が1mol/Lの水酸化ナトリウム水溶液に浸漬するようにして、導電端子4と液中に設置した電極間に6Vの電圧を10秒印加して化学エッチングを行なった。
 図7に、X軸に放射角度、Y軸にVex=-4000V時の角電流密度Ip’をとった電流放射分布を示した。図7は、比較例2で示した電子源に備わる図4(b)で示した形状からなる陰極1を構成するロッドでの角電流密度に換算した放射電流分布である。
 <実施例2および比較例2の結果の考察>
 実施例2にかかる電子源と比較例2の電子源は、図6、7に示すように、ともに均一な放射電流分布を有していた。しかしながら、比較例2の図7では、角電流密度が低かった。この理由は、電解研磨により電子放射面外周にダレが生じてしまうため、電子放射面である円錐台上面の径が小さい場合には、電子放射面が曲面状になり放出電流密度が低下するためであると考えられる。
 すなわち、実施例2にかかる電子源の製造方法では、機械研磨の後に、気相エッチングを行っているために、損傷層が少なく外周のダレも少ない平坦部7(電子放射面)を短時間で効率よく形成することが出来た結果、なだらかで均一な分布が認められ、かつ2mA/sr以上の高角電流密度が得られていることが分かる。別の表現をすれば、(1)電子源において短時間で損傷層の少ない平坦部7を効率よく形成することができることにくわえて、(2)電流放射分布の不均一性を改善しつつ、さらに(3)放出電流密度を向上させる、という互いに相反する関係にある3つの技術的要求をバランスよく実現することが可能になったのである。
 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 例えば、上記実施例1では、機械加工法の後に集束イオンビーム加工法を行う方法とし、上記実施例2では、機械加工法の後に気相エッチング法を行う方法としたが、こららの2つの形態に限定する趣旨ではない。例えば、機械加工法の後に、気相エッチング法を行ってから、さらに集束イオンビーム加工法を行う方法としてもよい。このようにすれば、電子放射面の平坦部7の損傷層をさらに少なくすることができる。
 本発明の電子源の製造方法により作製した電子源を備える電子銃は、電流放射分布が均一であり、大電流で動作して信頼性の高い電子銃であるので、電子線露光機、ウェハ検査装置、電子線LSIテスターなどの大電流動作を必要とする電子銃に用いて好適であり、産業上非常に有用である。

Claims (7)

  1.  ロッドの一端部に電子放射部を有する電子源の製造方法であって、機械加工法により前記端部を平坦面を有する円錐台形状に形成する工程と、集束イオンビーム加工法または気相エッチング法により前記平坦面の表層を除去する工程と、を含む、電子源の製造方法。
  2.  前記円錐台形状に形成する工程と、前記平坦面の表層を集束イオンビーム加工法により除去する工程と、の間に、液相エッチング法または電解研磨法により前記端部表面の加工損傷層を除去する工程をさらに含む、請求項1記載の電子源の製造方法。
  3.  前記平坦面の表層を除去する工程が、二フッ化キセノンガス雰囲気中にて集束ガリウムイオンビームを照射して前記平坦面の表層を除去する工程である、請求項1記載の電子源の製造方法。
  4.  前記平坦面の表層を除去する工程が、酸素圧を0.3×10-4Pa以上8×10-4Pa以下とし、温度を1700K以上1950K以下とした条件で気相エッチングを行って前記平坦面の表層を含む前記端部表面の加工損傷層を除去する工程である、請求項1記載の電子源の製造方法。
  5.  前記平坦面の直径が、10μm以上100μm以下である、請求項1記載の電子源の製造方法。
  6.  前記電子源が、方位<100>のタングステンまたはモリブデンの単結晶ロッドに金属元素の酸化物を拡散させるための供給源を設けてなる電子源である、請求項1記載の電子源の製造方法。
  7.  前記金属元素が、Ca、Sr、Ba、Sc、Y、La、Ti、Zr、Hf、またはランタノイド系列から選ばれた金属元素である、請求項6記載の電子源の製造方法。
PCT/JP2008/055558 2008-02-07 2008-03-25 電子源の製造方法 WO2009098788A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009552377A JPWO2009098788A1 (ja) 2008-02-07 2008-03-25 電子源の製造方法
EP08722768.2A EP2242084B1 (en) 2008-02-07 2008-03-25 Method of manufacturing an electron source
US12/866,498 US20110036810A1 (en) 2008-02-07 2008-03-25 Manufacturing method of electron source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008027796 2008-02-07
JP2008-027796 2008-02-07

Publications (1)

Publication Number Publication Date
WO2009098788A1 true WO2009098788A1 (ja) 2009-08-13

Family

ID=40951876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055558 WO2009098788A1 (ja) 2008-02-07 2008-03-25 電子源の製造方法

Country Status (4)

Country Link
US (1) US20110036810A1 (ja)
EP (1) EP2242084B1 (ja)
JP (1) JPWO2009098788A1 (ja)
WO (1) WO2009098788A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201032B2 (en) 2016-08-08 2021-12-14 Asml Netherlands B.V. Electron emitter and method of fabricating same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9231681B2 (en) 2013-01-21 2016-01-05 Intel Corporation Apparatus, system and method of wireless backhaul and access communication via a common antenna array
EP2779205B1 (en) * 2013-03-15 2017-10-18 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH High throughput scan deflector and method of manufacturing thereof
EP2779201A1 (en) 2013-03-15 2014-09-17 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH High brightness electron gun, system using the same, and method of operating the same
CN112563132B (zh) * 2020-11-13 2024-06-04 北京遥测技术研究所 一种表面异质结构的快速减薄抛光方法
US11848169B1 (en) * 2023-01-21 2023-12-19 Dazhi Chen Field-emission type electron source and charged particle beam device using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084020A (ja) * 1996-09-09 1998-03-31 Hitachi Ltd 加工方法および半導体検査方法
JP2000338020A (ja) * 1999-06-01 2000-12-08 Seiko Instruments Inc 透過電子顕微鏡用試料作成方法
JP2004179038A (ja) * 2002-11-28 2004-06-24 Sumitomo Metal Mining Co Ltd 透過電子顕微鏡用試料の固定方法および試料台
WO2004073010A1 (ja) 2003-02-17 2004-08-26 Denki Kagaku Kogyo Kabushiki Kaisha 電子銃
JP2005302265A (ja) * 2004-03-15 2005-10-27 Sony Corp ソリッドイマージョンレンズ、集光レンズ、光学ピックアップ装置、光記録再生装置及びソリッドイマージョンレンズの形成方法
WO2006075715A1 (ja) 2005-01-14 2006-07-20 Denki Kagaku Kogyo Kabushiki Kaisha 電子源の製造方法
JP2008177017A (ja) * 2007-01-18 2008-07-31 Sumitomo Electric Ind Ltd 電子源用チップ及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911631A (ja) * 1982-07-12 1984-01-21 Nec Corp 半導体装置の製造方法
JP3582855B2 (ja) * 1994-07-22 2004-10-27 電気化学工業株式会社 熱電界放射陰極及びその製造方法
US6905623B2 (en) * 2000-12-15 2005-06-14 Credence Systems Corporation Precise, in-situ endpoint detection for charged particle beam processing
US20040134418A1 (en) * 2002-11-08 2004-07-15 Taisuke Hirooka SiC substrate and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084020A (ja) * 1996-09-09 1998-03-31 Hitachi Ltd 加工方法および半導体検査方法
JP2000338020A (ja) * 1999-06-01 2000-12-08 Seiko Instruments Inc 透過電子顕微鏡用試料作成方法
JP2004179038A (ja) * 2002-11-28 2004-06-24 Sumitomo Metal Mining Co Ltd 透過電子顕微鏡用試料の固定方法および試料台
WO2004073010A1 (ja) 2003-02-17 2004-08-26 Denki Kagaku Kogyo Kabushiki Kaisha 電子銃
JP2005302265A (ja) * 2004-03-15 2005-10-27 Sony Corp ソリッドイマージョンレンズ、集光レンズ、光学ピックアップ装置、光記録再生装置及びソリッドイマージョンレンズの形成方法
WO2006075715A1 (ja) 2005-01-14 2006-07-20 Denki Kagaku Kogyo Kabushiki Kaisha 電子源の製造方法
JP2008177017A (ja) * 2007-01-18 2008-07-31 Sumitomo Electric Ind Ltd 電子源用チップ及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D. TUGGLE, J. VAC. SCI. TECHNOL., vol. 16, 1979, pages 1699
D. W. TUGGLE, J. VAC. SCI. TECHNOL., vol. B3, no. 1, 1985, pages 220
See also references of EP2242084A4 *
U. LINKE; W. U. KOPP: "Surface Analysis by X-ray Topography and Etching During the Preparation of Single Crystal Surfaces", MICROSTRUCTURAL SCIENCES, vol. 9, 1981, pages 299 - 308

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201032B2 (en) 2016-08-08 2021-12-14 Asml Netherlands B.V. Electron emitter and method of fabricating same
US11688579B2 (en) 2016-08-08 2023-06-27 Asml Netherlands B.V. Electron emitter and method of fabricating same

Also Published As

Publication number Publication date
US20110036810A1 (en) 2011-02-17
EP2242084B1 (en) 2015-10-07
JPWO2009098788A1 (ja) 2011-05-26
EP2242084A4 (en) 2011-03-23
EP2242084A1 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP4971342B2 (ja) 電子源
WO2009098788A1 (ja) 電子源の製造方法
JP4792404B2 (ja) 電子源の製造方法
JP4167917B2 (ja) 電子エミッタを形成する方法
WO2021079855A1 (ja) エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
JP4210131B2 (ja) 電子源及び電子源の使用方法
JP2009205800A (ja) 電子源
JP2005190758A (ja) 電子源
JP5363413B2 (ja) 電子源
EP1596418B1 (en) Electron gun
JP2008004411A (ja) 電子源
WO2011040326A1 (ja) 電子源用ロッド、電子源及び電子機器
JP4032057B2 (ja) 電子源の製造方法
JP2005332677A (ja) 電子源の製造方法と使用方法
JP2006032195A (ja) 電子放射源
JP4874758B2 (ja) 電子源
JP2010238670A (ja) 電子放射陰極の製造方法
JP2001319559A (ja) 電子放射陰極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009552377

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008722768

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12866498

Country of ref document: US