[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008038787A1 - Method for forming silicon oxide film, plasma processing apparatus and storage medium - Google Patents

Method for forming silicon oxide film, plasma processing apparatus and storage medium Download PDF

Info

Publication number
WO2008038787A1
WO2008038787A1 PCT/JP2007/069041 JP2007069041W WO2008038787A1 WO 2008038787 A1 WO2008038787 A1 WO 2008038787A1 JP 2007069041 W JP2007069041 W JP 2007069041W WO 2008038787 A1 WO2008038787 A1 WO 2008038787A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
oxide film
silicon oxide
processing
gas
Prior art date
Application number
PCT/JP2007/069041
Other languages
English (en)
French (fr)
Inventor
Yoshiro Kabe
Takashi Kobayashi
Toshihiko Shiozawa
Junichi Kitagawa
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to KR1020097006183A priority Critical patent/KR101102690B1/ko
Priority to CN2007800359879A priority patent/CN101517716B/zh
Priority to US12/443,044 priority patent/US8003484B2/en
Publication of WO2008038787A1 publication Critical patent/WO2008038787A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28211Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a gaseous ambient using an oxygen or a water vapour, e.g. RTO, possibly through a layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28247Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon passivation or protection of the electrode, e.g. using re-oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31654Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself
    • H01L21/31658Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe
    • H01L21/31662Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe of silicon in uncombined form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/512Disposition of the gate electrodes, e.g. buried gates
    • H10D64/513Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates

Definitions

  • Silicon oxide film forming method Silicon oxide film forming method, plasma processing apparatus, and storage medium
  • the present invention relates to a method for forming a silicon oxide film, a plasma processing apparatus, and a storage medium.
  • the present invention relates to a silicon oxide film forming method, a plasma processing apparatus, and a storage medium that can be applied to, for example, forming a silicon oxide film as an insulating film in the manufacturing process of various semiconductor devices.
  • a silicon oxide film such as SiO is formed as an insulating film such as a gate insulating film of a transistor.
  • a silicon oxide film such as SiO is formed as an insulating film such as a gate insulating film of a transistor.
  • the forming method is roughly classified into a thermal oxidation process using an oxidation furnace RTP (Rapid Themal Process) apparatus and a plasma oxidation process using a plasma processing apparatus.
  • RTP Rapid Themal Process
  • a plasma oxidation process using a plasma processing apparatus For example, in a wet oxidation process using an oxidation furnace, one of the thermal oxidation processes, a silicon substrate is heated to a temperature of over 800 ° C, and oxygen and hydrogen are combusted to produce water vapor (HO).
  • a silicon oxide film is formed by oxidizing the silicon surface by exposing the silicon substrate to an oxidizing atmosphere using a generator device.
  • a treatment gas containing argon gas and oxygen gas and having a flow rate ratio of oxygen of about 1% is used as the plasma oxidation treatment.
  • a good quality silicon oxide film can be formed easily by controlling the film thickness by applying the plasma-induced oxidation treatment to the silicon surface by the plasma generated by the mouth-wave-excited plasma formed at a pressure of 3 Pa in the chamber. (For example, Patent Document 1).
  • Patent Document 1 WO2004 / 008519
  • the thermal oxidation treatment is considered to be a method capable of forming a high-quality silicon oxide film.
  • treatment at a high temperature exceeding 800 ° C. is necessary, there is a problem that the thermal budget is increased and the silicon substrate is distorted by thermal stress.
  • the plasma oxidation process of Patent Document 1 above since the process temperature is around 400 ° C, problems such as an increase in thermal budget and substrate distortion in the thermal oxidation process are avoided.
  • the power to do S In addition, the condition of O flow rate 1% in processing gas, processing pressure 133.3Pa (
  • a high oxidation rate can be obtained by performing plasma treatment under the condition of “low pressure and low oxygen concentration conditions”.
  • the silicon oxide film obtained by the plasma oxidation process has a variation in insulation characteristics depending on the plasma oxidation process conditions, and a MOS capacitor using the silicon oxide film formed by the plasma oxidation process as an insulation film In the manufacture of these devices, there was a risk that an initial breakdown voltage failure would occur, leading to a decrease in yield.
  • an object of the present invention is to provide a silicon oxide film having a high quality film that has excellent insulation resistance without impairing the advantages of plasma oxidation treatment under low pressure and low oxygen concentration conditions, and can improve the manufacturing yield of semiconductor devices. It is in providing the method of forming.
  • the present invention forms plasma of a processing gas in a processing chamber of a plasma processing apparatus under a first processing condition in which the ratio of oxygen in the processing gas is 1% or less and the pressure is 0.133 to 133Pa. Then, the plasma oxidizes silicon on the surface of the object to form a silicon oxide film, and the oxygen ratio in the processing gas is 20% following the first oxidation treatment step and the first oxidation treatment step.
  • the plasma of the processing gas is formed under the second processing conditions of the pressure force 00 to; 1333 Pa, and the surface of the object to be processed is oxidized by the plasma to form a further silicon oxide film. And a second oxidation treatment step for improving the quality of the silicon oxide film.
  • a method for forming a silicon oxide film comprising:
  • the present invention is the method for forming a silicon oxide film, wherein the processing time of the second oxidation treatment step is;
  • the present invention relates to the second oxidation treatment step with respect to the total thickness of the silicon oxide film formed in the first oxidation treatment step and the second oxidation treatment step.
  • a silicon oxide film forming method in which the thickness ratio of the silicon oxide film formed in this way is 0.;! To 5%.
  • the ratio of oxygen in the processing gas in the first oxidation treatment step is 0.
  • the ratio of oxygen in the processing gas in the second oxidation treatment step is 20%. This is a method of forming a silicon oxide film of ⁇ 50%.
  • the present invention is the method for forming a silicon oxide film, wherein, in the first oxidation treatment step, the treatment gas contains hydrogen in a ratio of 0.;! To 10%.
  • the present invention is a method for forming a silicon oxide film having a processing temperature of 200 to 800 ° C.
  • the plasma is a microwave-excited plasma formed by the processing gas and a microwave introduced into the processing chamber by a planar antenna having a plurality of slots. It is a forming method.
  • the present invention relates to a processing chamber capable of being evacuated for processing a silicon object, a processing gas supply unit for supplying a processing gas into the processing chamber, and generating plasma of the processing gas in the processing chamber
  • a plasma supply source that oxidizes silicon on the surface of the object to be processed to form a silicon oxide film
  • an exhaust device that adjusts the pressure in the processing chamber, the processing gas supply unit, the plasma supply source, and
  • a control unit that controls the exhaust device, and the control unit controls the processing gas supply unit, the plasma supply source, and the exhaust device so that a ratio of oxygen in the processing gas is 1 in the processing chamber.
  • the plasma of the processing gas is formed under the first processing condition of not more than% and the pressure is 0.133 to 133 Pa, and the plasma oxidizes silicon on the surface of the object to form a silicon oxide film.
  • 1 oxidation treatment step Following the first oxidation treatment step, a plasma of the treatment gas is formed under the second treatment condition of oxygen concentration in the treatment gas of 20% or more and a pressure force of 00 to 1333 Pa.
  • a plasma treatment characterized by performing a second oxidation treatment step to oxidize the surface of the object to be treated by plasma to form a further silicon oxide film and to improve the film quality of the silicon oxide film.
  • the present invention provides a computer-readable storage medium storing a computer program for causing a computer to execute a method for forming a silicon oxide film, and the method for forming a silicon oxide film includes a plasma processing apparatus.
  • a plasma of the processing gas is formed under the first processing condition of oxygen having a ratio of Sl% or less and a pressure of 0.133 to 133 Pa in a processing gas.
  • a storage medium characterized by comprising:
  • the first oxidation treatment step for forming the silicon oxide film under the first treatment conditions in which the proportion of oxygen in the treatment gas is 1% or less and the pressure is 133 Pa or less is performed.
  • the second treatment condition in which the ratio of oxygen in the treatment gas is 20% or more and the pressure force is 0 to 1333 Pa is referred to as “high pressure / high oxygen concentration condition”.
  • the second oxidation treatment step for forming a silicon oxide film is carried out by! /, U).
  • the first oxidation process and the second oxidation process enable the first treatment such as high oxidation rate in plasma oxidation, rounding of the shoulder and bottom edges of the pattern, and suppression of surface orientation dependency. It is possible to form a silicon oxide film having an excellent withstand voltage without impairing the advantages of the plasma oxidation treatment under conditions.
  • FIG. 1 is a schematic cross-sectional view showing an example of a plasma processing apparatus suitable for carrying out the method of the present invention.
  • FIG. 2 is a drawing showing the structure of a planar antenna plate.
  • FIG. 3 is a flowchart showing an example of a process procedure of the method for forming a silicon oxide film of the present invention.
  • FIGS. 4 (a) to (i) are schematic views of a wafer cross section showing an example of application to element isolation by STI.
  • FIG. 5 is a graph showing the results showing the results of the TZDB test.
  • FIG. 6 is a graph showing the relationship between the process time and the oxygen emission intensity in the plasma.
  • FIG. 7 is a schematic diagram showing a longitudinal section near the wafer surface on which a pattern is formed.
  • FIG. 8 is a graph showing the relationship between processing pressure and the density of radicals in plasma.
  • FIG. 9 is a graph showing the relationship between the process gas flow rate ratio and the density of radicals in the plasma.
  • FIG. 1 is a cross-sectional view schematically showing an example of a plasma processing apparatus suitable for implementing the silicon oxide film forming method of the present invention.
  • This plasma processing apparatus includes a planar antenna having a plurality of slots, in particular, RLSA (Radial Line Slot Antenna), which generates plasma by introducing microwaves into the processing chamber.
  • the RLSA microwave plasma processing device generates microwave plasma with high density and low electron temperature, and is suitable for forming insulating films in various semiconductor devices such as gate insulating films of transistors. It is done.
  • the plasma processing apparatus 100 is an airtight and grounded, substantially cylindrical chamber.
  • a circular opening 10 is formed in a substantially central portion of the bottom wall la of the chamber 11, and an exhaust chamber 11 that communicates with the opening 10 and protrudes downward is provided in the bottom wall la. Yes.
  • a susceptor 2 made of ceramics such as A1N for horizontally supporting a semiconductor wafer (hereinafter referred to as “wafer”) W as a substrate to be processed.
  • the wafer W has a concavo-convex pattern on the surface and is made of silicon.
  • the susceptor 2 is supported by a support member 3 made of ceramic such as a cylindrical A1N extending upward from the center of the bottom of the exhaust chamber 11.
  • a guide ring 4 for guiding the wafer W is provided on the outer edge of the susceptor 2.
  • a resistance heating type heater 5 is embedded in the susceptor 2, and the heater 5 is heated by the heater power supply 6 to heat the susceptor 2, and the wafer W that is an object to be processed is heated by the heat. To do.
  • the processing temperature of the heater 5 can be controlled in a range from room temperature to 800 ° C., for example.
  • a cylindrical liner 7 made of quartz is provided on the inner periphery of the chamber 11.
  • a quartz baffle plate 8 having a large number of exhaust holes 8 a is provided in an annular shape, and the baffle plate 8 is supported by a plurality of support columns 9.
  • the susceptor 2 is provided with wafer support pins (not shown) for supporting the wafer W and moving it up and down so as to protrude and retract with respect to the surface of the susceptor 2.
  • An annular gas introduction member 15 is provided on the side wall of the chamber 11, and gas radiation holes are evenly formed.
  • a gas supply system 16 is connected to the gas introduction member 15.
  • the gas introduction member may be arranged in a shower shape.
  • the gas supply system 16 includes, for example, an Ar gas supply source 17, an O gas supply source 18, and an H gas supply source 19, and these gases are supplied to the gas supply system 16.
  • Each gas reaches the gas introduction member 15 through the gas line 20 and is uniformly introduced into the chamber 11 from the gas radiation hole of the gas introduction member 15.
  • Each of the gas lines 20 is provided with a mass flow controller 21 and opening / closing valves 22 before and after the mass flow controller 21. It should be noted that other rare gases such as Kr, He, Ne, Xe, etc. may be used instead of Ar gas, and no rare gas may be included as will be described later! /.
  • An exhaust pipe 23 is connected to the side surface of the exhaust chamber 11, and an exhaust device 24 including a high-speed vacuum pump is connected to the exhaust pipe 23! /. Then, by operating the exhaust device 24, the gas force in the chamber 11 is uniformly discharged into the space 11 a of the exhaust chamber 11 and is exhausted through the exhaust pipe 23. As a result, the inside of the chamber 11 can be depressurized at a high speed to a predetermined degree of vacuum, for example, 0.133 Pa! /.
  • a loading / unloading port 25 for loading / unloading the wafer W to / from the transfer chamber (not shown) adjacent to the plasma processing apparatus 100 and the loading / unloading port 25 are opened and closed on the side wall of the chamber 11.
  • a gate valve 26 is provided!
  • the upper portion of the chamber 11 is an opening, and a ring-shaped support 27 is provided along the peripheral edge of the opening.
  • the support 27 has a dielectric such as quartz or AlO.
  • a microwave transmitting plate 28 made of ceramics and transmitting microwaves is hermetically provided through a seal member 29. Therefore, the inside of the chamber 11 is kept airtight.
  • a disk-shaped planar antenna plate 31 is provided above the microwave transmission plate 28 so as to face the susceptor 2.
  • the planar antenna plate 31 is connected to the upper end of the side wall of the chamber 11. It has been stopped.
  • the planar antenna plate 31 is a conductive material force having a diameter force of 00 to 400 mm and a thickness of 0.1 to several mm (for example, lmm). is there.
  • the planar antenna plate 31 is made of, for example, a copper plate or an aluminum plate having a silver or gold-plated surface, and a plurality of microwave radiation holes 32 (slots) are formed in pairs and penetrating in a predetermined pattern. Being!
  • the microwave radiation holes 32 have, for example, a long groove shape as shown in FIG. 2.
  • the adjacent microwave radiation holes 32 are arranged in a “choose” shape, and the plurality of microwave radiation holes 32 are arranged. 32 are arranged concentrically.
  • the length and arrangement interval of the microwave radiation holes 32 are determined according to the wavelength (g) of the microwave, and for example, the distance between the microwave radiation holes 32 is arranged to be g / 4 or g. In FIG. 2, the interval between adjacent microwave radiation holes 32 formed concentrically is indicated by.
  • the microwave radiation hole 32 may have another shape such as a circular shape or an arc shape. Furthermore, the arrangement form of the microwave radiation holes 32 is not particularly limited, and the microwave radiation holes 32 may be arranged concentrically, for example, spirally or radially.
  • a slow wave material 33 made of a resin such as quartz, polytetrafluoroethylene, or polyimide having a dielectric constant larger than that of vacuum.
  • the slow wave material 33 has a function of adjusting the plasma by shortening the wavelength of the microwave because the wavelength of the microwave becomes longer in vacuum. It should be noted that the flat antenna plate 31 and the microphone mouth wave transmission plate 28 and the slow wave material 33 and the flat antenna plate 31 are arranged in close contact with each other! /!
  • a shield lid 34 made of a metal material such as aluminum, stainless steel, or copper is provided on the upper surface of the chamber 11 so as to cover the planar antenna plate 31 and the slow wave material 33.
  • the upper surface of the chamber 11 and the shield lid 34 are sealed by a seal member 35.
  • the shield lid 34 and the planar antenna plate 31 constitute a waveguide, and propagate microwaves uniformly and radially.
  • a cooling water flow path 34a is formed in the shield lid 34, and the cooling lid 34, the slow wave material 33, the planar antenna plate 31, and the microwave transmission plate 28 are cooled by passing cooling water therethrough. It is supposed to be.
  • the shield lid 34 is grounded.
  • An opening 36 is formed at the center of the upper wall of the shield lid 34, and a waveguide 37 is connected to the opening.
  • a microwave generator 39 is connected to the end of the waveguide 37 via a matching circuit 38.
  • a microwave having a frequency of 2.45 GHz generated by the microwave generator 39 is propagated to the planar antenna plate 31 through the waveguide 37.
  • the microwave frequency 8.35 GHz, 1.98 GHz, or the like can be used.
  • the waveguide 37 includes a coaxial waveguide 37a having a circular cross section extending upward from the opening 36 of the shield lid 34, and a mode converter 40 at the upper end of the coaxial waveguide 37a. And a rectangular waveguide 37b extending in the horizontal direction.
  • the mode converter 40 between the rectangular waveguide 37b and the coaxial waveguide 37a has a function of converting the microphone mouth wave propagating in the TE mode in the rectangular waveguide 37b into the TEM mode.
  • An inner conductor 41 extends in the center of the coaxial waveguide 37a, and a lower end portion of the inner conductor 41 is connected and fixed to the center of the planar antenna plate 31. As a result, the microwave is uniformly and efficiently propagated to the planar antenna plate 31 via the inner conductor 41 of the coaxial waveguide 37a.
  • Each component of the plasma processing apparatus 100 is connected to and controlled by a process controller 50 having a CPU.
  • the process controller 50 includes a keyboard that is used by a process manager to input commands to manage the plasma processing apparatus 100, a display that displays the operating status of the plasma processing apparatus 100, and the like.
  • One interface 51 is connected.
  • the process controller 50 stores a control program (software) for realizing various processes executed by the plasma processing apparatus 100 under the control of the process controller 50 and a recipe in which processing condition data is recorded.
  • the stored storage unit 52 is connected.
  • the plasma processing is performed under the control of the process controller 50 by calling an arbitrary recipe from the storage unit 52 according to an instruction from the user interface 51 and causing the process controller 50 to execute it.
  • the desired processing in apparatus 100 is performed.
  • the recipes such as the control program and processing condition data may be stored in a computer-readable storage medium 50a such as a CD-ROM, hard disk, flexible disk, flash memory, or the like. From other devices, eg It is also possible to transmit the data as needed via a service line and use it online.
  • the plasma processing apparatus 100 configured as described above can form a high-quality film by damage-free plasma processing even at a low temperature of 800 ° C. or lower, more preferably 500 ° C. or lower, and plasma. Excellent uniformity and process uniformity.
  • This plasma processing apparatus 100 is, for example, a case where a silicon oxide film is formed as a gate insulating film of a transistor, or a shallow trench isolation (Shallow Trench isolation) which is used as an element isolation technique in a manufacturing process of a semiconductor device. It can be suitably used when an oxide film is formed in the trench in Isolation (STI).
  • STI shallow trench isolation
  • FIG. 3 is a flowchart showing an outline of a silicon oxide film forming method according to an embodiment of the present invention.
  • the first oxidation treatment process is performed under the first treatment condition that is a low pressure / low oxygen concentration condition.
  • the first oxidation treatment step is performed.
  • the second oxidation treatment step which is a higher pressure and higher oxygen concentration condition than the first treatment condition, is performed. The details of the first and second oxidation treatment steps will be described below.
  • the gate valve 26 is opened, and a silicon wafer W having a recess such as a trench formed therein is loaded into the chamber 11 from the loading / unloading port 25, and placed on the susceptor 2 (Step S). l). From the Ar gas supply source 17 and the O gas supply source 18 of the gas supply system 16
  • the ratio of oxygen in the processing gas is more preferably set to 0.2 to 1%, for example, preferably 1% or less.
  • Process gas flow rate is Ar gas: 50-5000mL / min, O
  • the processing pressure is preferably from 90 to 133 Pa or less; more preferably 133 Pa.
  • the treatment temperature can be selected from the range of 200 ° C to 800 ° C, with 400 ° C to 500 ° C being preferred.
  • H gas can be introduced from the H gas supply source 19 at a predetermined ratio.
  • the microwave from the microwave generator 39 is guided to the waveguide 37 through the matching circuit 38.
  • Microwaves are sequentially supplied to the planar antenna plate 31 through the rectangular waveguide 37b, the mode converter 40, and the coaxial waveguide 37a, and are supplied from the planar antenna plate 31 through the microwave transmission plate 28 to the chamber 1. Radiated into the space above the wafer W inside.
  • the microwave propagates in the TE mode in the rectangular waveguide 37b, and the TE mode microwave is converted into the TEM mode by the mode converter 40, and the inside of the coaxial waveguide 37a is directed toward the planar antenna plate 31.
  • the power of the microwave generator 39 is preferably 0.41-4.19 W / cm 2 and preferably 0.5 to 5 kW.
  • An electromagnetic field is formed in the chamber 1 by the microphone mouth wave radiated from the planar antenna plate 31 to the chamber 1 through the microwave transmitting plate 28, and Ar gas, O gas, and the like are turned into plasma.
  • This microwave plasma is a high-density plasma of approximately 1 X 10 10 to 5 X 10 12 / cm 3 or more by radiating microwaves from a large number of microwave radiation holes 32 of the planar antenna plate 31.
  • the electron temperature is about 0.5 to 2 eV, and the plasma density uniformity is ⁇ 5% or less. Therefore, it is possible to form a thin and uniform oxide film by performing an oxidation process at a low temperature and a high oxidation rate for a short time, and high quality silicon in which the damage to the oxide film due to ions in the plasma is small. There is an advantage that an oxide film can be formed.
  • the first oxidation treatment step described above has a high oxidation rate peculiar to the first treatment condition having a low pressure and a low oxygen concentration as compared with the second treatment condition in the subsequent second oxidation treatment step. Take full advantage of this. Therefore, the first oxidation treatment step is performed immediately before the silicon oxide film to be formed grows to the target oxide film thickness, for example, about 95% of the target film thickness, preferably about 99%, more preferably 99.9 Repeat until the film thickness reaches about 9%.
  • plasma is formed under the second treatment conditions, and a second oxidation treatment step in which silicon on the surface of the wafer W is oxidized by plasma to form a silicon oxide film. (Step S3).
  • Ar gas and O gas are introduced from the Ar gas supply source 17 and the O gas supply source 18 of the gas supply system 16 at a predetermined flow rate.
  • the proportion of oxygen in the processing gas is, for example, 20 to 100%, preferably 20 to 50%, more preferably 20 to 30%.
  • the processing gas flow rate is Ar gas: 0 to 5000 mL / min, O gas: 10
  • the ratio of oxygen to the total gas flow rate can be selected to be the above value.
  • processing pressure is preferably 400 Pa or more and 1333 Pa or less force S, and more preferably 400 to 667 Pa force S.
  • the treatment temperature can be selected from the range of 200 ° C to 800 ° C, with 400 ° C to 500 ° C being preferred.
  • H gas is introduced from the H gas supply source 19 at a predetermined ratio.
  • a force of 2 to 10% S is preferable, 0.;! To 5% is more preferable 0;;! To 2% is desirable.
  • addition of H is optional.
  • the microwave from the microwave generator 39 is guided to the waveguide 37 through the matching circuit 38.
  • Microwaves are sequentially supplied to the planar antenna plate 31 through the rectangular waveguide 37b, the mode converter 40, and the coaxial waveguide 37a, and are supplied from the planar antenna plate 31 through the microwave transmission plate 28 to the chamber 1. Radiated into the space above the wafer W inside.
  • the microwave propagates in the TE mode in the rectangular waveguide 37b, and the TE mode microwave is converted into the TEM mode by the mode converter 40, and the inside of the coaxial waveguide 37a is directed toward the planar antenna plate 31.
  • the power of the microwave generator 39 is preferably 0.41-4.19 W / cm 2 and preferably 0.5 to 5 kW.
  • step S4 is completed, and the substrate is unloaded.
  • the second oxidation treatment step is performed under conditions of high pressure and high oxygen concentration for comparison with the first treatment condition of the preceding first oxidation treatment step.
  • This second oxidation process is a process whose main purpose is to improve the quality of the silicon oxide film formed in the first oxidation process rather than to increase the silicon oxide film.
  • the time of the second oxidation processing step is shorter after the plasma generated in the chamber 11 is stabilized, for example, 600 seconds or less. It is preferably 1 to 60 seconds, more preferably 1 to 10 seconds, and from the viewpoint of stabilizing the plasma, it is desirably 5 to 10 seconds.
  • the silicon oxide film formed in the second oxidation treatment step is compared with the target film thickness, that is, the film thickness of the silicon oxide film formed in the first oxidation treatment step and the second oxidation treatment step.
  • the film thickness ratio should be 5% or less, preferably;! ⁇ 0.1%.
  • FIG. 4 (a) to 4 (i) illustrate the steps from the formation of the trench in S to the subsequent oxide film formation.
  • a silicon oxide film 102 such as SiO is formed on the silicon substrate 101 by a method such as thermal oxidation.
  • siliconized film 102 for example, silicon (SiN) or the like by CVD (Chemical Vapor Deposition).
  • a nitride film 103 is formed. Further, in FIG. 4D, after applying a photoresist on the silicon nitride film 103, the resist layer 104 is formed by patterning using a photolithography technique.
  • FIG. 4 (f) shows a state in which the resist layer 104 is removed by performing so-called ashing processing using oxygen-containing plasma using a processing gas containing oxygen, for example.
  • trench 105 is formed by selectively etching silicon substrate 101 using silicon nitride film 103 and silicon oxide film 102 as a mask. This etching can be performed by halogen or halogen compound such as CI, HBr, SF, CF.
  • FIG. 4 (h) shows a process of forming a silicon oxide film in the trench 105 of the wafer W after etching in STI.
  • the plasma includes a first oxidation treatment step according to a first treatment condition at a low pressure and a low oxygen concentration, and a second oxidation treatment step according to a second treatment condition at a high pressure and a high oxygen concentration.
  • An oxidation treatment is performed.
  • the silicon oxide films 11la and 111b can be formed with a uniform film thickness on the inner surface (side wall portion and bottom portion) of the trench 105 without depending on the plane orientation of silicon. Such an effect is obtained mainly by the OD) radical being dominant in the plasma in the first oxidation treatment step performed under the first treatment condition of low pressure and low oxygen concentration.
  • an insulating film such as SiO is formed in the trench 105 by the CVD method, for example, according to the procedure of element isolation region formation by STI.
  • the silicon nitride film 103 is used as a stopper layer for C
  • the element isolation structure can be formed by removing the silicon nitride film 103 and the upper portion of the buried insulating film by etching.
  • Figure 5 shows a test MOS-capacitor using a silicon oxide film formed on an EPI substrate (single crystal substrate) by plasma oxidation treatment under conditions A and B below, and an insulation film reliability evaluation test. It is the result of having carried out (TZDB test).
  • the film thickness (Tox) of the silicon oxide film to be measured for TZDB was 11.5 nm
  • the cell area (S) was 5 mm 2
  • the measurement location (N) was 112 points.
  • Second oxidation treatment process high pressure and high oxygen concentration plasma oxidation treatment conditions
  • Processing time 10 seconds, 30 seconds, 60 seconds and 700 seconds
  • the treatment time of the second oxidation treatment step was 10 seconds or less in order to improve the yield.
  • the time for the first oxidation process with a high oxidation rate, low pressure and low oxygen concentration should be as long as possible, and the process time for the second oxidation process should be as long as possible.
  • the yield is improved, the shorter the better.
  • stabilizing the plasma for a certain period of time after igniting the plasma with the microwave power turned on (ON) and starting the second oxidation treatment step will maintain the reproducibility of the process. preferable.
  • Figure 6 shows the relationship between the process time and the emission spectrum (OES) of oxygen radicals in the plasma at a wavelength of 777 nm. From Fig. 6, it can be seen that it takes about 5 seconds to stabilize the emission of oxygen radical after the microwave power is turned on at the process time of 34 seconds. From the above, the process time of the second oxidation treatment step is, for example, 600 seconds or less, preferably 1 to 60 seconds, more preferably 1 to; 10 seconds, desirably 5 to 10 seconds.
  • OES emission spectrum
  • plasma oxidation treatment is performed under the above conditions A, B, and C below, and the oxidation rate in the plasma oxidation treatment, the shape of the pattern shoulder, the plane orientation dependency in the formation of the silicon oxide film, Elapsed time breakdown test (TDDB test), etching resistance, ESR (electron spin resonance) analysis of Si—O bond deficiency E ', roughness of SiO / Si interface
  • Table 1 shows the above TZDB test (Time Z (/ ero breakdown test) result!
  • Test item High oxygen concentration High strength
  • Concentrated acidity ((Low force) Pressure Low pressure (Treatment) Te2 tsu ⁇ High-slow (slightly)
  • acid
  • Oxidizing tray Sharp angle (shape) Round and round shape o () ⁇
  • Patter shoulder shape ⁇ - Some degree of dependence () ( ⁇ Less significant o)
  • Face good X High walk high yield) Low yield test ⁇ (() ⁇ Yield) (TBZD X High-walking, high-walking low-yielding test ⁇ Trial () Lasting)
  • the pattern of the shoulder pattern of the pattern is that the surface of the single crystal silicon 101 on which the concavo-convex pattern 110 is formed as shown in FIG. It was measured by observing whether or not the shape of the silicon 101 in the portion 112 was rounded.
  • the plane orientation dependency of silicon oxide film formation is shown in ⁇ ⁇ 7.
  • the difference in oxidation rate between the (100) plane and the (110) plane of silicon was determined from the film thicknesses of the a part and b part.
  • the ratio (aspect ratio) between the depth of the concave portion of the pattern 110 and the opening width was 2.5.
  • a MOS capacitor (not shown) was prepared and evaluated using the silicon oxide film formed under the above conditions A to C, as in the TZDB test.
  • HF dilute hydrofluoric acid
  • the evaluation was based on the amount of decrease in the thickness of the oxide film. The amount of decrease in film thickness due to wet etching is small!
  • the amount of Si-O bond deficiency E 'in the silicon oxide film was measured with an ESR (electron spin resonance) analyzer for the silicon oxide film formed under the above conditions A to C.
  • the detection limit of the defect amount E ′ of Si—O bond is about 5 ⁇ 10 16 [spins / cm 3 ] or less.
  • the roughness of the SiO 2 / Si interface (root mean square roughness; Rms) is AFM (atomic force microscopy).
  • FIG. 8 shows radicals in plasma generated in the plasma processing apparatus 100.
  • the plasma formation conditions were a processing pressure of 133.3 Pa (lTorr) and a processing temperature of 400.
  • C microwave power 1500 W (1.25 W / cm 2 ), Ar flow rate 300 to 500 mL / min (sccm), O flow rate;! To 200 mL / min (sccm) [O gas flow rate ratio, where (O
  • 0 ( 3 P) density is the O gas flow rate ratio in the process gas [( ⁇ / Ar + O) X 10
  • O O density is determined by the flow rate ratio in the process gas.
  • the pressure in the low oxygen concentration condition, OO) and O (density is highest plasma is formed of 3 P)
  • the power to be s In the first oxidation treatment step, by oxidizing silicon with such radical-based plasma, effects such as a high oxidation rate, roundness of the pattern shoulder 112, and suppression of surface orientation dependency are exhibited. Further, in the second oxidation process at high pressure and high oxygen concentration, as understood from FIGS. 8 and 9, the plasma mainly composed of 0 ( 3 P) radicals.
  • the silicon oxide film formed in the first oxidation process is exposed.
  • the silicon oxide film is modified to improve the low yield in the initial withstand voltage test and the poor film quality, and form a dense (high etching resistance) silicon oxide bond defect (low E ') silicon oxide film. I will be dismissed.
  • the present invention can be variously modified without being limited to the above embodiments.
  • a plasma processing apparatus such as an ICP plasma system, an ECR plasma system, a surface reflected wave plasma system, or a magnetron plasma system may be used! / ,.
  • the present invention is applied to an application where there is a high need to form a high-quality oxide film along the uneven pattern as illustrated in FIG. 7, for example, an oxide film inside a trench in STI.
  • the present invention can be applied to formation and oxide film formation on the side wall of a polysilicon gate electrode of a transistor.
  • the present invention is also applicable to the case where a silicon oxide film as a gate insulating film or the like is formed in the manufacturing process of a three-dimensional transistor having, for example, a fin structure or a groove gate structure, where unevenness is formed and the plane orientation differs depending on the part. Is applicable.
  • it can be applied to the formation of a tunnel oxide film such as a flash memory.
  • As the silicon substrate single crystal silicon, polycrystalline silicon, or amorphous silicon may be used.
  • the method for forming the silicon oxide film as the insulating film has been described.
  • the silicon oxide film formed by the method of the present invention is further nitrided to obtain a silicon oxynitride film (SiON film).
  • the nitriding method is not limited, but it is preferable to perform plasma nitriding using a mixed gas containing Ar gas and N2 gas, for example.
  • the present invention can be suitably used when a silicon oxide film is formed in the manufacture of various semiconductor devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)

Description

明 細 書
シリコン酸化膜の形成方法、プラズマ処理装置、および記憶媒体 技術分野
[0001] 本発明は、シリコン酸化膜の形成方法、プラズマ処理装置、および記憶媒体に関し
、詳細には、例えば、各種半導体装置の製造過程で絶縁膜としてのシリコン酸化膜 を形成する場合などに適用可能なシリコン酸化膜の形成方法、プラズマ処理装置、 および記憶媒体に関する。
背景技術
[0002] 各種半導体装置の製造過程では、例えばトランジスタのゲート絶縁膜等の絶縁膜と して SiOなどのシリコン酸化膜の形成が行なわれている。このようなシリコン酸化膜を
2
形成する方法としては、酸化炉ゃ RTP (Rapid Themal Process)装置を用いる熱酸化 処理と、プラズマ処理装置を用いるプラズマ酸化処理とに大別される。例えば、熱酸 化処理の一つである酸化炉によるウエット酸化処理では、 800°C超の温度にシリコン 基板を加熱し、酸素と水素を燃焼して水蒸気(H O)を生成する WVG (Water Vapor
2
Generator)装置を用いてシリコン基板を酸化雰囲気に曝すことによりシリコン表面を 酸化させてシリコン酸化膜を形成する。
[0003] 一方、プラズマ酸化処理としては、アルゴンガスと酸素ガスを含み、酸素の流量比 率が約 1 %の処理ガスが用いられる。 133. 3Paのチャンバ一内圧力で形成されたマ イク口波励起プラズマをシリコン表面に作用させてプラズマ酸化処理を行なうことによ り、膜厚のコントロールが容易で良質なシリコン酸化膜を形成できる (例えば、特許文 献 1)。
特許文献 1: WO2004/008519号
[0004] 熱酸化処理は、良質なシリコン酸化膜を形成できる方法であると考えられている。し かし、 800°C超の高温による処理が必要であることから、サーマルバジェットが増大し 、熱応力によってシリコン基板に歪みなどを生じさせてしまうという問題があった。 一方、上記特許文献 1のプラズマ酸化処理では、処理温度が 400°C前後であるた め、熱酸化処理におけるサーマルバジェットの増大や基板の歪みなどの問題を回避 すること力 Sできる。また、処理ガス中の O流量 1 %、処理圧力 133. 3Pa程度の条件(
2
説明の便宜上、「低圧力、低酸素濃度条件」という)でプラズマ処理を行なうことによつ て、高い酸化レートが得られる。
[0005] し力、し、プラズマ酸化処理によって得られたシリコン酸化膜は、プラズマ酸化処理条 件によって絶縁特性に変動がみられ、プラズマ酸化処理によるシリコン酸化膜を絶縁 膜として使用する MOSキャパシタ等のデバイスの製造において、初期耐圧不良が発 生し、歩留りの低下を招く等のおそれがあった。
発明の開示
[0006] 従って本発明の目的は、低圧力、低酸素濃度条件でのプラズマ酸化処理の長所を 損なうことなぐ絶縁耐性に優れ、半導体装置の製造の歩留りを向上させ得る良質な 膜質のシリコン酸化膜を形成する方法を提供することにある。
[0007] 本発明は、プラズマ処理装置の処理室内で、処理ガス中の酸素の割合が 1 %以下 で、かつ圧力が 0. 133〜133Paの第 1の処理条件で該処理ガスのプラズマを形成 し、該プラズマにより、被処理体表面のシリコンを酸化してシリコン酸化膜を形成する 第 1の酸化処理工程と、前記第 1の酸化処理工程に引き続き、処理ガス中の酸素の 割合が 20%以上で、かつ圧力力 00〜; 1333Paの第 2の処理条件で該処理ガスの プラズマを形成し、該プラズマにより、前記被処理体表面を酸化して更なるシリコン酸 化膜を形成しかつ前記シリコン酸化膜の膜質を改善する第 2の酸化処理工程と、を 備えたことを特徴とする、シリコン酸化膜の形成方法である。
[0008] 本発明は、前記第 2の酸化処理工程の処理時間は、;!〜 600秒である、シリコン酸 化膜の形成方法である。
[0009] 本発明は、前記第 1の酸化処理工程および前記第 2の酸化処理工程において形 成された前記シリコン酸化膜の合計膜厚に対して、前記第 2の酸化処理工程にお!/、 て形成された前記シリコン酸化膜の膜厚の割合が 0.;!〜 5%である、シリコン酸化膜 の形成方法である。
[0010] 本発明は、前記第 1の酸化処理工程における前記処理ガス中の酸素の割合が 0.
2〜; 1 %である、シリコン酸化膜の形成方法である。
[0011] 本発明は、前記第 2の酸化処理工程における前記処理ガス中の酸素の割合が 20 〜 50%である、シリコン酸化膜の形成方法である。
[0012] 本発明は、前記第 1の酸化処理工程において、前記処理ガスは、水素を 0. ;!〜 10 %の割合で含む、シリコン酸化膜の形成方法である。
[0013] 本発明は、処理温度が 200〜800°Cである、シリコン酸化膜の形成方法である。
[0014] 本発明は、前記プラズマは、前記処理ガスと、複数のスロットを有する平面アンテナ により前記処理室内に導入されるマイクロ波とによって形成されるマイクロ波励起ブラ ズマである、シリコン酸化膜の形成方法である。
[0015] 本発明は、シリコン製の被処理体を処理するための真空排気可能な処理室と、処 理室内に処理ガスを供給する処理ガス供給部と、処理室内で処理ガスのプラズマを 発生させ、前記被処理体表面のシリコンを酸化してシリコン酸化膜を形成するプラズ マ供給源と、前記処理室内の圧力を調整する排気装置と、前記処理ガス供給部、前 記プラズマ供給源、および前記排気装置を制御する制御部とを備え、前記制御部は 処理ガス供給部、前記プラズマ供給源、および前記排気装置を制御して、前記処理 室内で、前記処理ガス中の酸素の割合が 1 %以下で、かつ圧力が 0. 133~133Pa の第 1の処理条件で該処理ガスのプラズマを形成し、該プラズマにより、前記被処理 体表面のシリコンを酸化してシリコン酸化膜を形成する第 1の酸化処理工程と、前記 第 1の酸化処理工程に引き続き、前記処理ガス中の酸素の割合が 20%以上で、か つ圧力力 00〜; 1333Paの第 2の処理条件で該処理ガスのプラズマを形成し、該プ ラズマにより、前記被処理体表面を酸化して更なるシリコン酸化膜を形成し、かつ、前 記シリコン酸化膜の膜質を改善する第 2の酸化処理工程と、を行なうことを特徴とする プラズマ処理装置である。
[0016] 本発明は、コンピュータに、シリコン酸化膜の形成方法を実行させるためのコンビュ ータプログラムを格納したコンピュータ読取り可能な記憶媒体におレ、て、前記シリコン 酸化膜の形成方法は、プラズマ処理装置の処理室内で、処理ガス中の酸素の割合 力 Sl %以下で、かつ圧力が 0. 133〜133Paの第 1の処理条件で該処理ガスのプラ ズマを形成し、該プラズマにより、被処理体表面のシリコンを酸化してシリコン酸化膜 を形成する第 1の酸化処理工程と、前記第 1の酸化処理工程に引き続き、処理ガス 中の酸素の割合が 20%以上で、かつ圧力力 00〜; 1333Paの第 2の処理条件で該 処理ガスのプラズマを形成し、該プラズマにより、前記被処理体表面を酸化して更な るシリコン酸化膜を形成し、かつ、前記シリコン酸化膜の膜質を改善する第 2の酸化 処理工程と、を備えたことを特徴とする記憶媒体である。
[0017] 本発明によれば、処理ガス中の酸素の割合が 1 %以下で、かつ圧力が 133Pa以下 の第 1の処理条件でシリコン酸化膜を形成する第 1の酸化処理工程を行なう。第 1の 酸化処理工程に引き続き、処理ガス中の酸素の割合が 20%以上で、かつ圧力力 0 0〜 1333Paの第 2の処理条件 (説明の便宜上、「高圧力 ·高酸素濃度条件」と!/、う) でシリコン酸化膜を形成する第 2の酸化処理工程、を行なう。この第 1の酸化処理ェ 程および第 2の酸化処理工程により、プラズマ酸化処理における高酸化レート、バタ ーン肩部および底縁部の丸み形成、面方位依存性の抑制など、第 1の処理条件に おけるプラズマ酸化処理の長所を損なうことなぐ絶縁耐圧に優れたシリコン酸化膜 を形成すること力できる。
すなわち、第 2の酸化処理工程で、高圧力'高酸素濃度でのプラズマ処理を行なう ことにより、第 1の処理条件によるプラズマ酸化処理の短所であった初期耐圧試験に おける低い歩留りや、膜質不良が改善され、緻密で Si— O結合欠陥の少ないシリコ ン酸化膜が得られる。
従って、この方法により得られたシリコン酸化膜を絶縁膜として使用する半導体装 置に良好な電気的特性を付与できる。
図面の簡単な説明
[0018] [図 1]図 1は、本発明方法の実施に適したプラズマ処理装置の一例を示す概略断面 図。
[図 2]図 2は、平面アンテナ板の構造を示す図面。
[図 3]図 3は、本発明のシリコン酸化膜の形成方法の工程手順の一例を示すフロー図 である。
[図 4]図 4 (a)〜(i)は、 STIによる素子分離への適用例を示すウェハ断面の模式図で ある。
[図 5]図 5は、 TZDB試験の結果を示す結果を示すグラフである。
[図 6]図 6は、プロセス時間とプラズマ中の酸素発光強度との関係を示すグラフである [図 7]図 7は、パターンが形成されたウェハ表面付近の縦断面を示す模式図である。
[図 8]図 8は、処理圧力とプラズマ中のラジカルの密度との関係を示すグラフである。
[図 9]図 9は、処理ガス流量比率とプラズマ中のラジカルの密度との関係を示すグラフ である。
発明を実施するための最良の形態
[0019] 以下、図面を参照しながら、本発明の好ましい形態について説明する。
図 1は、本発明のシリコン酸化膜の形成方法の実施に適したプラズマ処理装置の 一例を模式的に示す断面図である。このプラズマ処理装置は、複数のスロットを有す る平面アンテナ、特に RLSA (Radial LineSlot Antenna;ラジアルラインスロットアンテ ナ)を含み、このアンテナによって処理室内にマイクロ波を導入してプラズマを発生さ せることにより、高密度かつ低電子温度のマイクロ波プラズマを発生させる RLSAマイ クロ波プラズマ処理装置となっており、例えば、トランジスタのゲート絶縁膜をはじめと する各種半導体装置における絶縁膜の形成に好適に用いられる。
[0020] このプラズマ処理装置 100は、気密に構成され、接地された略円筒状のチャンバ一
(処理室) 1を有している。チャンバ一 1の底壁 laの略中央部には円形の開口部 10が 形成されており、底壁 laにはこの開口部 10と連通し、下方に向けて突出する排気室 11が設けられている。
[0021] チャンバ一 1内には被処理基板である半導体ウェハ(以下、「ウェハ」と記す) Wを 水平に支持するための A1N等のセラミックスからなるサセプタ 2が設けられて!/、る。な お、ウェハ Wは表面に凹凸パターンを有し、シリコン製となっている。サセプタ 2は、 排気室 11の底部中央から上方に延びる円筒状の A1N等のセラミックスからなる支持 部材 3により支持されている。サセプタ 2の外縁部にはウェハ Wをガイドするためのガ イドリング 4が設けられている。また、サセプタ 2には抵抗加熱型のヒータ 5が埋め込ま れており、このヒータ 5はヒータ電源 6から給電されることによりサセプタ 2を加熱して、 その熱で被処理体であるウェハ Wを加熱する。このとき、ヒータ 5は例えば室温から 8 00°Cまでの範囲で処理温度が制御可能となっている。なお、チャンバ一 1の内周に は、石英からなる円筒状のライナー 7が設けられている。また、サセプタ 2の外周側に は、チャンバ一 1内を均一排気するため、多数の排気孔 8aを有する石英製のバッフ ルプレート 8が環状に設けられ、このバッフルプレート 8は、複数の支柱 9により支持さ れている。
[0022] サセプタ 2には、ウェハ Wを支持して昇降させるためのウェハ支持ピン(図示せず) がサセプタ 2の表面に対して突没可能に設けられている。
[0023] チャンバ一 1の側壁には環状をなすガス導入部材 15が設けられており、均等にガ ス放射孔が形成されている。このガス導入部材 15にはガス供給系 16が接続されてい る。ガス導入部材はシャワー状に配置してもよい。このガス供給系 16は、例えば Arガ ス供給源 17、 Oガス供給源 18、 Hガス供給源 19を有しており、これらのガスが、そ
2 2
れぞれガスライン 20を介してガス導入部材 15に至り、ガス導入部材 15のガス放射孔 からチャンバ一 1内に均一に導入される。ガスライン 20の各々には、マスフローコント ローラ 21およびその前後の開閉バルブ 22が設けられている。なお、 Arガスに代えて 他の希ガス、例えば Kr、 He、 Ne、 Xeなどのガスを用いてもよぐまた、後述するよう に希ガスは含まなくてもよ!/、。
[0024] 上記排気室 11の側面には排気管 23が接続されており、この排気管 23には高速真 空ポンプを含む排気装置 24が接続されて!/、る。そしてこの排気装置 24を作動させる ことによりチャンバ一 1内のガス力 排気室 11の空間 11a内へ均一に排出され、排気 管 23を介して排気される。これによりチャンバ一 1内を所定の真空度、例えば 0. 133 Paまで高速に減圧することが可能となって!/、る。
[0025] チャンバ一 1の側壁には、プラズマ処理装置 100に隣接する搬送室(図示せず)と の間でウェハ Wの搬入出を行うための搬入出口 25と、この搬入出口 25を開閉するゲ ートバルブ 26とが設けられて!/、る。
[0026] チャンバ一 1の上部は開口部となっており、この開口部の周縁部に沿ってリング状 の支持部 27が設けられている。この支持部 27に誘電体、例えば石英や Al O等の
2 3 セラミックスからなり、マイクロ波を透過するマイクロ波透過板 28がシール部材 29を介 して気密に設けられている。したがって、チャンバ一 1内は気密に保持される。
[0027] マイクロ波透過板 28の上方には、サセプタ 2と対向するように、円板状の平面アン テナ板 31が設けられている。この平面アンテナ板 31はチャンバ一 1の側壁上端に係 止されている。平面アンテナ板 31は、例えば 8インチサイズのウェハ Wに対応する場 合には、直径力 00〜400mm、厚みが 0. 1〜数 mm (例えば lmm)の導電性材料 力、らなる円板である。平面アンテナ板 31は、具体的には、例えば表面が銀または金 メツキされた銅板またはアルミニウム板からなり、多数のマイクロ波放射孔 32 (スロット) が対をなして所定のパターンで貫通して形成されて!/、る。このマイクロ波放射孔 32は 、例えば図 2に示すように長溝状をなし、典型的には隣接するマイクロ波放射孔 32同 士が「丁」字状に配置され、これら複数のマイクロ波放射孔 32が同心円状に配置され ている。マイクロ波放射孔 32の長さや配列間隔は、マイクロ波の波長( g)に応じて 決定され、例えばマイクロ波放射孔 32の間隔は、 g/4、 またはえ gとなるよ うに配置される。なお、図 2においては、同心円状に形成された隣接するマイクロ波 放射孔 32同士の間隔を で示している。
また、マイクロ波放射孔 32は、円形状、円弧状等の他の形状であってもよい。さらに 、マイクロ波放射孔 32の配置形態は特に限定されず、同心円状のほか、例えば、螺 旋状、放射状に配置することもできる。
[0028] この平面アンテナ板 31の上面には、真空よりも大きい誘電率を有する例えば石英、 ポリテトラフルォロエチレン、ポリイミドなどの樹脂からなる遅波材 33が設けられて!/、る 。この遅波材 33は、真空中ではマイクロ波の波長が長くなることから、マイクロ波の波 長を短くしてプラズマを調整する機能を有している。なお、平面アンテナ板 31とマイク 口波透過板 28との間、また、遅波材 33と平面アンテナ板 31との間は、それぞれ密着 して配置されて!/、る力 離間して配置されて!/、てもよ!/、。
[0029] チャンバ一 1の上面には、これら平面アンテナ板 31および遅波材 33を覆うように、 例えばアルミニウムやステンレス鋼、銅等の金属材からなるシールド蓋体 34が設けら れている。チャンバ一 1の上面とシールド蓋体 34とはシール部材 35によりシールされ ている。シールド蓋体 34と平面アンテナ板 31は導波路を構成し、マイクロ波を均一 に放射状に伝搬させる。シールド蓋体 34には、冷却水流路 34aが形成されており、 そこに冷却水を通流させることにより、シールド蓋体 34、遅波材 33、平面アンテナ板 31、マイクロ波透過板 28を冷却するようになっている。なお、シールド蓋体 34は接地 されている。 [0030] シールド蓋体 34の上壁の中央には開口部 36が形成されており、この開口部には 導波管 37が接続されている。この導波管 37の端部には、マッチング回路 38を介して マイクロ波発生装置 39が接続されている。これにより、マイクロ波発生装置 39で発生 した例えば周波数 2. 45GHzのマイクロ波が導波管 37を介して上記平面アンテナ板 31へ伝搬されるようになっている。なお、マイクロ波の周波数としては、 8. 35GHz, 1 . 98GHz等を用いることもできる。
[0031] 導波管 37は、上記シールド蓋体 34の開口部 36から上方へ延出する断面円形状 の同軸導波管 37aと、この同軸導波管 37aの上端部にモード変換器 40を介して接続 された水平方向に延びる矩形導波管 37bとを有している。矩形導波管 37bと同軸導 波管 37aとの間のモード変換器 40は、矩形導波管 37b内を TEモードで伝播するマ イク口波を TEMモードに変換する機能を有している。同軸導波管 37aの中心には内 導体 41が延在しており、この内導体 41の下端部は、平面アンテナ板 31の中心に接 続固定されている。これにより、マイクロ波は、同軸導波管 37aの内導体 41を介して 平面アンテナ板 31へ均一に効率よく伝播される。
[0032] プラズマ処理装置 100の各構成部は、 CPUを備えたプロセスコントローラ 50に接 続されて制御される構成となっている。プロセスコントローラ 50には、工程管理者がプ ラズマ処理装置 100を管理するためにコマンドの入力操作等を行うキーボードや、プ ラズマ処理装置 100の稼働状況を可視化して表示するディスプレイ等からなるユー ザ一インターフェース 51が接続されている。
[0033] また、プロセスコントローラ 50には、プラズマ処理装置 100で実行される各種処理を プロセスコントローラ 50の制御にて実現するための制御プログラム(ソフトウェア)や 処理条件データ等が記録されたレシピが格納された記憶部 52が接続されている。
[0034] そして、必要に応じて、ユーザーインターフェース 51からの指示等にて任意のレシ ピを記憶部 52から呼び出してプロセスコントローラ 50に実行させることで、プロセスコ ントローラ 50の制御下で、プラズマ処理装置 100での所望の処理が行われる。また、 前記制御プログラムや処理条件データ等のレシピは、コンピュータ読み取り可能な記 憶媒体 50a、例えば CD— ROM、ハードディスク、フレキシブルディスク、フラッシュメ モリーなどに格納された状態のものを利用したり、あるいは、他の装置から、例えば専 用回線を介して随時伝送させてオンラインで利用したりすることも可能である。
[0035] このように構成されたプラズマ処理装置 100は、 800°C以下、より好ましくは 500°C 以下の低い温度でもダメージフリーなプラズマ処理により、良質な膜を形成できるとと もに、プラズマ均一性に優れており、プロセスの均一性を実現できる。
[0036] このプラズマ処理装置 100は、例えば、トランジスタのゲート絶縁膜としてのシリコン 酸化膜を形成する場合や、半導体装置の製造過程で素子分離技術として利用され ているシヤロートレンチアイソレーション(Shallow Trench Isolation; STI)においてトレ ンチ内に酸化膜を形成する場合などに、好適に利用可能なものである。
[0037] 次に、プラズマ処理装置 100を用いたシリコン酸化膜形成方法について説明する。
図 3は本発明の一実施形態に係るシリコン酸化膜形成方法の概要を示すフロー図で ある。本実施形態のシリコン酸化膜の形成方法では、まずステップ S2において、低 圧力'低酸素濃度条件である第 1の処理条件により第 1の酸化処理工程を行ない、 次に、ステップ S3において、第 1の処理条件よりも高圧力、高酸素濃度条件である第 2の酸化処理工程を実施する。以下、第 1および第 2の酸化処理工程の詳細につい て説明を行なう。
[0038] まず、ゲートバルブ 26を開にして搬入出口 25から例えばトレンチなどの凹部が形 成されたシリコン製のウェハ Wをチャンバ一 1内に搬入し、サセプタ 2上に載置する( ステップ S l)。そして、ガス供給系 16の Arガス供給源 17および Oガス供給源 18から
2
、 Arガスおよび Oガスを所定の流量でガス導入部材 15を介してチャンバ
2 一 1内に導 入し、チャンバ一内圧力およびサセプタ温度を第 1の処理条件に調整する。この第 1 の処理条件として、処理ガス中の酸素の割合は、例えば 1 %以下が好ましぐ 0. 2〜 1 %とすること力より好ましい。処理ガスの流量は、 Arガス: 50〜5000mL/min、 O
2 ガス: 0. 5〜50mL/minの範囲から、全ガス流量に対する酸素の割合が上記値と なるように選択することカでさる。
また、処理圧力は、 133Pa以下が好ましぐ 90〜; 133Paがより好ましい。 また、処理温度は 200°C〜800°Cの範囲から選択でき、 400°C〜500°Cが好まし い。
[0039] また、 Arガス供給源 17および Oガス供給源 18からの Arガスおよび Oガスに.カロ え、 Hガス供給源 19から Hガスを所定比率で導入することができる。 Hガスを供給
2 2 2 することにより、プラズマ酸化処理における酸化レートを向上させることができる。 これは、 Hガスを供給することで OHラジカルが生成され、これが酸化レート向上に
2
寄与するためである。この場合、 Hの割合は、処理ガス全体の量に対して 0. ;!
2 〜 10
%となるようにすることが好ましぐ 0. ;!〜 5%がより好ましぐ 0. ;!〜 2%が望ましい。
[0040] 次いで、マイクロ波発生装置 39からのマイクロ波を、マッチング回路 38を経て導波 管 37に導く。マイクロ波は、矩形導波管 37b、モード変換器 40、および同軸導波管 3 7aを順次通って平面アンテナ板 31に供給され、平面アンテナ板 31からマイクロ波透 過板 28を経てチャンバ一 1内におけるウェハ Wの上方空間に放射される。マイクロ波 は、矩形導波管 37b内では TEモードで伝搬し、この TEモードのマイクロ波はモード 変換器 40で TEMモードに変換されて、同軸導波管 37a内を平面アンテナ板 31に 向けて伝搬されていく。この際、マイクロ波発生装置 39のパワーは、 0. 41-4. 19W /cm2が好ましぐまた 0. 5〜5kWとすることが好ましい。
[0041] 平面アンテナ板 31からマイクロ波透過板 28を経てチャンバ一 1に放射されたマイク 口波によりチャンバ一 1内で電磁界が形成され、 Arガス、 Oガス等がプラズマ化し、こ
2
のようにして形成されたプラズマによりウェハ Wに形成された凹部内に露出したシリコ ン表面を酸化する。このようにして、第 1の酸化処理工程が行われる(ステップ S2)。 このマイクロ波プラズマは、マイクロ波が平面アンテナ板 31の多数のマイクロ波放 射孔 32から放射されることにより、略 1 X 1010~5 X 1012/cm3あるいはそれ以上の 高密度のプラズマとなり、その電子温度は、 0. 5〜2eV程度、プラズマ密度の均一性 は、 ± 5%以下である。従って、低温かつ高い酸化レートで短時間の酸化処理を行つ て薄く均一な酸化膜を形成することができ、し力、も酸化膜へのプラズマ中のイオン等 によるダメージが小さぐ良質なシリコン酸化膜を形成できるというメリットがある。
[0042] 以上の第 1の酸化処理工程は、後に続く第 2の酸化処理工程における第 2の処理 条件と比較して低圧力'低酸素濃度である第 1の処理条件に特有の高酸化レートと いう長所を最大限に生かす。このため第 1の酸化処理工程は、形成されるシリコン酸 化膜の膜厚が目的とする酸化膜厚に成長する直前、例えば目的膜厚の 95%程度、 好ましくは 99%程度、より好ましくは 99. 9%程度の膜厚に達するまで行なう。 [0043] 次に前記第 1の酸化処理工程に引き続き、第 2の処理条件でプラズマを形成し、プ ラズマによりウェハ W表面のシリコンを酸化してシリコン酸化膜を形成する第 2の酸化 処理工程を行なう(ステップ S3)。第 2の酸化処理工程では、ガス供給系 16の Arガス 供給源 17および Oガス供給源 18から、 Arガスおよび Oガスを所定の流量でガス導
2 2
入部材 15を介してチャンバ一 1内に導入し、チャンバ一内圧力およびサセプタ温度 を第 2の処理条件に調整する。
[0044] この第 2の処理条件として、処理ガス中の酸素の割合は、例えば 20〜; 100%が好 ましぐ 20〜50%力 り好ましく、 20〜30%が望ましい。処理ガスの流量は、 Arガス : 0〜5000mL/min、 Oガス: 10
2 〜5000mL/minの範囲から、全ガス流量に対 する酸素の割合が上記値となるように選択することができる。
また、処理圧力は、 400Pa以上 1333Pa以下力 S好ましく、 400〜667Pa力 Sより好ま しい。
また、処理温度は 200°C〜800°Cの範囲から選択でき、 400°C〜500°Cが好まし い。
[0045] また、第 2の処理条件においても、 Arガス供給源 17および Oガス供給源 18からの
2
Arガスおよび Oガスに加え、 Hガス供給源 19から Hガスを所定比率で導入するこ
2 2 2
とができる。この場合、 Hの割合は、処理ガス全体の量に対して 0. ;!
2 〜 10%となるよ うにすること力 S好ましく、 0. ;!〜 5%がより好ましぐ 0. ;!〜 2%が望ましい。ただし、第 1の酸化処理工程に比べ短時間で行なわれる第 2の酸化処理工程では酸化レートを 向上させる必要性が少ないため、 Hの添加は任意である。
2
[0046] 次いで、マイクロ波発生装置 39からのマイクロ波を、マッチング回路 38を経て導波 管 37に導く。マイクロ波は、矩形導波管 37b、モード変換器 40、および同軸導波管 3 7aを順次通って平面アンテナ板 31に供給され、平面アンテナ板 31からマイクロ波透 過板 28を経てチャンバ一 1内におけるウェハ Wの上方空間に放射される。マイクロ波 は、矩形導波管 37b内では TEモードで伝搬し、この TEモードのマイクロ波はモード 変換器 40で TEMモードに変換されて、同軸導波管 37a内を平面アンテナ板 31に 向けて伝搬されていく。この際、マイクロ波発生装置 39のパワーは、 0. 41-4. 19W /cm2が好ましぐまた 0. 5〜5kWとすることが好ましい。 以上の第 2の酸化処理工程 (ステップ S4)が終了して、基板が搬出される。
[0047] このように第 2の酸化処理工程は、先行する第 1の酸化処理工程の第 1の処理条件 との比較にお!/、て高圧力 ·高酸素濃度の条件で行なわれる。この第 2の酸化処理ェ 程は、シリコン酸化膜の増膜というよりも、第 1の酸化処理工程において形成されたシ リコン酸化膜の膜質改善を主目的とする工程である。
従って、処理工程時間全体を短縮化する観点から、第 2の酸化処理工程の工程時 間は、チャンバ一 1内で生成したプラズマが安定化した後は短い方が好ましぐ例え ば 600秒以下、好ましくは 1〜60秒、より好ましくは 1〜; 10秒であり、プラズマの安定 化させる観点から、望ましくは 5〜; 10秒である。
また、 目的とする膜厚、すなわち、第 1の酸化処理工程および第 2の酸化処理工程 において形成されるシリコン酸化膜の膜厚に対して、第 2の酸化処理工程において 形成される前記シリコン酸化膜の膜厚の比は 5%以下、好ましくは;!〜 0. 1 %とする。
[0048] 低圧力かつ低酸素濃度の第 1の処理条件で行なわれる第 1の酸化処理工程と、高 圧力かつ高酸素濃度の第 2の処理条件で行なわれる第 2の酸化処理工程と、を組み 合わせる 2ステップのプラズマ酸化処理によって、絶縁耐性に優れたシリコン酸化膜 を高い酸化レートで形成することができる。従って、この方法により得られたシリコン酸 化膜を絶縁膜として使用する半導体装置に良好な電気的特性を付与できる。
[0049] 次に、図 4を参照しながら、本発明のシリコン酸化膜の形成方法を STIにおけるトレ ンチ内部の酸化膜形成へ適用した例について説明を行なう。図 4 (a)〜図 4 (i)は、 S ΤΙにおけるトレンチの形成とその後で行なわれる酸化膜形成までの工程を図示して いる。
[0050] まず、図 4 (a)および図 4 (b)において、シリコン基板 101に例えば熱酸化などの方 法により SiOなどのシリコン酸化膜 102を形成する。次に、図 4 (c)では、シリコン酸
2
化膜 102上に、例えば CVD (Chemical Vapor Deposition)により Si Nなどのシリコン
3 4
窒化膜 103を形成する。さらに、図 4 (d)では、シリコン窒化膜 103の上に、フォトレジ ストを塗布した後、フォトリソグラフィー技術によりパターユングしてレジスト層 104を形 成する。
[0051] 次に、レジスト層 104をエッチングマスクとし、例えばハロゲン系のエッチングガスを 用いてシリコン窒化膜 103とシリコン酸化膜 102を選択的にエッチングすることにより 、レジスト層 104のパターンに対応してシリコン基板 101を露出させる(図 4 (e) )。つま り、シリコン窒化膜 103により、トレンチのためのマスクパターンが形成される。図 4 (f) は、例えば酸素などを含む処理ガスを用いた酸素含有プラズマにより、いわゆるアツ シング処理を実施し、レジスト層 104を除去した状態を示す。
[0052] 図 4 (g)では、シリコン窒化膜 103およびシリコン酸化膜 102をマスクとして、シリコン 基板 101に対し選択的にエッチングを実施することにより、トレンチ 105を形成する。 このエッチングは、例えば CI、 HBr、 SF 、 CFなどのハロゲンまたはハロゲン化合
2 6 4
物や、 oなどを含むエッチングガスを使用して行なうことができる。
2
[0053] 図 4 (h)は、 STIにおけるエッチング後のウェハ Wのトレンチ 105に対し、シリコン酸 化膜を形成する工程を示している。ここでは、低圧力'低酸素濃度での第 1の処理条 件による第 1の酸化処理工程と、高圧力'高酸素濃度での第 2の処理条件による第 2 の酸化処理工程とを含むプラズマ酸化処理が行なわれる。このように条件を変えて 2 ステップのプラズマ酸化処理を行なうことにより、トレンチ 105の肩部 105aのシリコン 1 01に丸みを持たせることができる。トレンチ 105の肩部 105aのシリコン 101に丸み形 状を導入することによって、この部位が鋭角に形成されている場合と比較して、リーク 電流の発生を抑制することができる。同様にトレンチ 105の底縁部 105bにも丸み形 状を形成すること力できる。また、シリコンの面方位に依存することなぐトレンチ 105 の内面(側壁部、底部)に均一な膜厚でシリコン酸化膜 11 la, 111bを形成できる。こ のような効果は、低圧力'低酸素濃度の第 1の処理条件で行なわれる第 1の酸化処 理工程において、主にプラズマ中で O D )ラジカルが支配的となることによって得ら
2
れるものと考えられる。
[0054] なお、本発明のシリコン酸化膜の形成方法によってシリコン酸化膜 111を形成した 後は、 STIによる素子分離領域形成の手順に従い、例えば CVD法によりトレンチ 10 5内に SiOなどの絶縁膜を埋込んだ後、シリコン窒化膜 103をストッパー層として C
2
MPによって研磨を行ない平坦化する。平坦化した後は、エッチングによってシリコン 窒化膜 103および埋込み絶縁膜の上部を除去することにより、素子分離構造を形成 できる。 [0055] 次に、本発明の効果を確認した試験結果について説明を行なう。
図 5は、下記の条件 Aおよび条件 Bのプラズマ酸化処理によって EPI基板(単結晶 基板)上に形成されたシリコン酸化膜を用いて、試験用 MOS—キャパシタを作製し、 絶縁膜信頼性評価試験 (TZDB試験)を実施した結果である。なお、 TZDB測定対 象のシリコン酸化膜の膜厚 (Tox)は 11. 5nm、セル面積(S)は 5mm2、測定箇所(N )は 112ポイントとした。
[0056] <条件 A;本発明方法〉 · · · 2ステップ処理
第 1の酸化処理工程:低圧力 ·低酸素濃度プラズマ酸化処理条件
Ar流 500mL/ min (sccm)
O流直:5ITLL min (sccm)
2
H ^] 5mL/ min (sccm)
2
Oガス比率:約 1 %
2
処理圧力: 133· 3Pa (lTorr)
マイクロ波パワー: 2· 3W/cm2 (2750W)
処理温度: 400°C
処理時間: 235秒
[0057] 第 2の酸化処理工程:高圧力 ·高酸素濃度プラズマ酸化処理条件
Ar流 l 20mL/ min (sccm)
O流直: 37mL/ miiusccm)
2
H流直:3ITLL min (sccm)
2
Oガス比率:約 23%
2
処理圧力: 666· 5Pa (5Torr)
マイクロ波パワー: 2· 3W/cm2 (2750W)
処理温度: 400°C
処理時間: 10秒、 30秒、 60秒および 700秒
[0058] <条件 B;比較方法〉 · · ·低圧力 ·低酸素濃度プラズマ酸化処理のみ H流量:5ITLL min (sccm)
2
Oガス比率:約 1 %
2
処理圧力: 133· 3Pa (lTorr)
マイクロ波パワー: 2· 3W/cm2 (2750W)
処理温度: 400°C
処理時間: 235秒
[0059] 図 5より、低圧力'低酸素濃度のみでのプラズマ処理(つまり、条件 Aの高圧力'高 酸素濃度条件での処理時間がゼロ)による条件 Bでシリコン酸化膜を形成した比較方 法に比べて、低圧力 ·低酸素濃度 +高圧力 ·高酸素濃度による 2ステップの条件 Aで プラズマ処理を行なった本発明方法の場合、歩留り [合格基準;〉 15MV/cm]が 向上して初期耐圧が改善されていることがわかる。
[0060] また、歩留りを改善するには、第 2の酸化処理工程の処理時間が 10秒以下で十分 な効果が得られることも確認された。シリコン酸化膜形成の合計時間を短縮化するた めには、酸化レートの高い低圧力'低酸素濃度による第 1の酸化処理工程の時間を 出来るだけ長くとり、第 2の酸化処理工程の工程時間は、歩留り改善効果が得られる 範囲で短いほどよい。その一方で、マイクロ波パワーをオン(ON)にしてプラズマを着 火し、第 2の酸化処理工程を開始してから、一定時間プラズマを安定化させることが プロセスの再現性を維持する上で好ましい。図 6に波長 777nmにおけるプラズマ中 の酸素ラジカルの発光スペクトル(OES)とプロセス時間との関係を示す。この図 6か ら、プロセス時間 34秒の時点でマイクロ波パワーをオン(ON)にしてから、酸素ラジカ ルの発光が安定化するまでに約 5秒程度の時間を要することわかる。以上のことから 、第 2の酸化処理工程の工程時間は、例えば 600秒以下、好ましくは 1〜60秒、より 好ましくは 1〜; 10秒、望ましくは 5〜; 10秒である。
[0061] 次に、上記条件 A、条件 Bおよび下記の条件 Cでプラズマ酸化処理を行ない、プラ ズマ酸化処理における酸化レート、パターン肩部の形状、シリコン酸化膜形成におけ る面方位依存性、経時絶縁破壊試験 (TDDB試験)、エッチング耐性、 ESR (電子ス ピン共鳴)分析による膜中の Si— O結合の欠損量 E'、 SiO /Si界面のラフネスにつ
2
いて調べた。これらの結果を表 1に示した。なお、表 1には、上記 TZDB試験(Time Z ero絶縁破壊試験)の結果につ!/、ても併記した。
[0062] <条件 C;比較方法〉 · · ·高圧力 ·高酸素濃度プラズマ酸化処理のみ
Ar流 l20mL/ min(sccm)、
O流直: 37mL/ miiusccm)
2
H流直:3ITLL min(sccm)
2
Oガス比率:約 23%
2
処理圧力: 666· 5Pa(5Torr)
マイクロ波パワー: 2· 3W/cm2(2750W)
処理温度: 400°C
処理時間: 1500秒
[0063] [表 1]
条件条件牛 c B A
試験項目高酸素濃度高力)濃酸プ素度 ( (力低)圧低圧 (処理)テ2スッ' · 高遅(やや)()酸厶 〇い化いトレー 鋭角(状)丸丸状部状 o() 〇()パタ肩み形形み形のン χー 多少な方依存性 ()( 〇少な位 o)()面いいい X 高歩歩高歩留り)低留り験 〇( () 〇留り)試( TBZD X 高歩高歩低歩験留り 〇試 ()留)(留 〇(りり) TDDB
グ耐性チンエッ
高低 o() ()いい
希酸処 (理)フッ
析分 ESR
検高限挨 〇(出界) ( 〇(出限)界)以下以下い X結損量'合欠 ()Sのi O Ε—
ネ界面ラ S0Siスiフ2
粗 ((坦 〇坦)) ο平)(平い X
性坦 (平)
.
O o
ノ ターン肩部の形状は、図 7に示すような凹凸パターン 110が形成された単結晶シ リコン 101の表面を前記条件 A〜Cによりプラズマ酸化処理してシリコン酸化膜 111 を形成し、パターン肩部 112のシリコン 101の形状が丸みを帯びてレ、るかどうかを観 察することにより測定した。また、シリコン酸化膜形成の面方位依存性は、阅 7に示す a部と b部の膜厚から、シリコンの(100)面と(110)面の酸化レートの違!/、を測定する ことにより求めた。なお、パターン 110の凹部の深さと開口幅との比(アスペクト比)は 2. 5であった。
[0065] TDDB試験は、前記 TZDB試験と同様に、上記条件 A〜Cにより形成したシリコン 酸化膜を用いて MOSキャパシタ(図示省略)を作成し、評価した。
エッチング耐性は、上記条件 A〜Cにより形成したシリコン酸化膜を希フッ酸 (HF: H 0 = 1 : 100)溶液に 10秒間浸漬してウエットエッチング処理をした場合のシリコン
2
酸化膜の膜厚の減少量に基づき評価した。ウエットエッチングによる膜厚の減少量が 少な!/、ほど緻密で良質な膜であることを示して!/、る。
[0066] シリコン酸化膜中の Si— O結合の欠損量 E'は、上記条件 A〜Cにより形成したシリ コン酸化膜について、 ESR (電子スピン共鳴)分析装置により測定した。なお、 Si— O 結合の欠損量 E'の検出限界は約 5 X 1016[spins/cm3]以下である。
SiO /Si界面のラフネス(自乗平均平方根粗さ; Rms)は、 AFM (原子間力顕微
2
鏡)分析によって測定した。
[0067] 表 1より、低圧力'低酸素濃度 +高圧力'高酸素濃度による条件 Aの 2ステップのプ ラズマ処理を行なった本発明方法の場合、低圧力 ·低酸素濃度による条件 Bのブラ ズマ酸化処理の長所である高酸化レート、パターン肩部 112の丸み形成、面方位依 存性の抑制という特長を維持しつつ、しかも、第 2の酸化処理工程で、高圧力'高酸 素濃度でのプラズマ処理を行なうことにより、条件 Bのプラズマ酸化処理の短所であ つた初期耐圧試験における低歩留りや、膜質不良が改善され、緻密(高エッチング耐 性)で Si— O結合欠陥の少な!/、 (低 E' )のシリコン酸化膜が得られることが示された。
[0068] このように、低圧力'低酸素濃度 +高圧力'高酸素濃度による 2ステップのプラズマ 処理によってシリコン酸化膜を形成することにより、低圧力 ·低酸素濃度条件でのブラ ズマ酸化処理の長所を生かしつつ、その短所を補うことが確認できた。そこで、このよ うな効果が得られる理由につレ、て考察する。
[0069] 図 8は、プラズマ処理装置 100内で生成するプラズマ中のラジカルである〇( )
2 および o (3p )の原子密度と処理圧力との関係について示している。プラズマ形成条
2
件は、 Ar流量 500mL/min (sccm)、 O流量 5mL/min (sccm) [Oガス混合比 率約 1 %]、処理温度 400°C、マイクロ波パワー 1500W (1. 25W/cm2)で処理圧 力を 90〜667Paの間で変化させた。
この図 8より、 O O )密度は、約 133· 3Pa前後でピークとなり、処理圧力が高くな
2
るに従い O (3P )密度に比べて速やかに減少する傾向がみられる。
2
[0070] 図 9は、プラズマ中の O D )密度および 0 (3P )密度と処理ガスの流量比率との関
2 2
係について示している。プラズマ形成条件は、処理圧力 133. 3Pa (lTorr)、処理温 度 400。C、マイクロ波パワー 1500W (1. 25W/cm2)とし、 Ar流量 300〜500mL/ min (sccm)、 O流量;!〜 200mL/min (sccm) [Oガス流量比率;ここでは、 (O
2 2 2
/Ar+ O ) X 100として 0. 2〜40%]の間で変化させた。
2
この図 9より、 0 (3P )密度は、処理ガス中の Oガス流量比率 [ (〇 /Ar + O ) X 10
2 2 2 2
0]による影響をほとんど受けないが、 O O )密度は、処理ガス中の o流量比率が
2 2
低い程高ぐ 1 %前後に急峻なピークが存在することがわかる。
[0071] 図 8および図 9から、プラズマ処理装置 100において、 133. 3Pa、 O濃度 1 %の低
2
圧力、低酸素濃度条件では、 O O )や O (3P )の密度が最も高いプラズマが形成さ
2 2
れること力 sわ力、る。第 1の酸化処理工程では、このようなラジカル主体のプラズマによ つてシリコンを酸化することにより、高酸化レート、パターン肩部 112の丸み形成、面 方位依存性の抑制という効果が奏される。また、高圧力'高酸素濃度の第 2の酸化処 理工程では、図 8および図 9から理解されるように、 0 (3P )ラジカル主体のプラズマ
2
に第 1の酸化処理工程で形成されたシリコン酸化膜が曝される。これにより、シリコン 酸化膜が改質され、初期耐圧試験における低歩留りや、膜質不良が改善され、緻密 (高エッチング耐性)で Si— O結合欠陥の少ない (低 E' )のシリコン酸化膜が形成され るあのと考免られる。
[0072] 以上、本発明の実施形態を述べたが、本発明は上記実施形態に制約されることは なぐ種々の変形が可能である。例えば図 1では、 RLSA方式のプラズマ処理装置 1 00を例に挙げた力 例えば ICPプラズマ方式、 ECRプラズマ方式、表面反射波ブラ ズマ方式、マグネトロンプラズマ方式等のプラズマ処理装置であってもよ!/、。
[0073] また、本発明は、図 7に例示されるような凹凸パターンに沿って高品質な酸化膜形 成をする必要性が高いアプリケーション、例えば STIにおけるトレンチ内部の酸化膜 形成やトランジスタのポリシリコンゲート電極側壁の酸化膜形成などに適用できる。ま た、凹凸が形成されて部位により面方位が相違するシリコン表面例えばフィン構造や 溝ゲート構造の 3次元トランジスタの製造過程でゲート絶縁膜等としてのシリコン酸化 膜を形成する場合にも、本発明を適用可能である。さらに、フラッシュメモリーなどのト ンネル酸化膜の形成などにも適用可能である。またシリコン基板として、単結晶シリコ ンを用いてもよく、多結晶シリコン、アモルファスシリコンを用いてもよい。
[0074] また、上記実施形態では、絶縁膜としてシリコン酸化膜を形成する方法に関して述 ベたが、本発明方法により形成されたシリコン酸化膜をさらに窒化処理してシリコン酸 窒化膜 (SiON膜)を形成することもできる。この場合、窒化処理の方法は問わないが 、例えば Arガスと N2ガスを含む混合ガスを用いてプラズマ窒化処理をすることが好 ましい。
産業上の利用可能性
[0075] 本発明は、各種半導体装置の製造において、シリコン酸化膜を形成する場合など に好適に利用できる。

Claims

請求の範囲
[1] プラズマ処理装置の処理室内で、処理ガス中の酸素の割合が 1 %以下で、かつ圧 力が 0. 133〜133Paの第 1の処理条件で該処理ガスのプラズマを形成し、該プラス' マにより、被処理体表面のシリコンを酸化してシリコン酸化膜を形成する第 1の酸化 処理工程と、
前記第 1の酸化処理工程に引き続き、処理ガス中の酸素の割合が 20%以上で、か つ圧力力 00〜; 1333Paの第 2の処理条件で該処理ガスのプラズマを形成し、該プ ラズマにより、前記被処理体表面を酸化して更なるシリコン酸化膜を形成しかつ前記 シリコン酸化膜の膜質を改善する第 2の酸化処理工程と、
を備えたことを特徴とする、シリコン酸化膜の形成方法。
[2] 前記第 2の酸化処理工程の処理時間は、;!〜 600秒である、請求項 1に記載のシリ コン酸化膜の形成方法。
[3] 前記第 1の酸化処理工程および前記第 2の酸化処理工程において形成された前 記シリコン酸化膜の合計膜厚に対して、前記第 2の酸化処理工程において形成され た前記シリコン酸化膜の膜厚の割合が 0.;!〜 5%である、請求項 1に記載のシリコン 酸化膜の形成方法。
[4] 前記第 1の酸化処理工程における前記処理ガス中の酸素の割合が 0. 2〜; 1 %であ る、請求項 1に記載のシリコン酸化膜の形成方法。
[5] 前記第 2の酸化処理工程における前記処理ガス中の酸素の割合が 20〜50%であ る、請求項 1に記載のシリコン酸化膜の形成方法。
[6] 前記第 1の酸化処理工程において、前記処理ガスは、水素を 0.;!〜 10%の割合 で含む、請求項 1に記載のシリコン酸化膜の形成方法。
[7] 処理温度が 200〜800°Cである、請求項 1に記載のシリコン酸化膜の形成方法。
[8] 前記プラズマは、前記処理ガスと、複数のスロットを有する平面アンテナにより前記 処理室内に導入されるマイクロ波とによって形成されるマイクロ波励起プラズマである
、請求項 1記載のシリコン酸化膜の形成方法。
[9] シリコン製の被処理体を処理するための真空排気可能な処理室と、
前記処理室内に処理ガスを供給する処理ガス供給部と、 前記処理室内で前記処理ガスのプラズマを発生させ、前記被処理体表面のシリコ ンを酸化してシリコン酸化膜を形成するプラズマ供給源と、
前記処理室内の圧力を調整する排気装置と、
前記処理ガス供給部、前記プラズマ供給源、および前記排気装置を制御する制御 部とを備え、
前記制御部は前記処理ガス供給部、前記プラズマ供給源、および前記排気装置を 制御して、
前記処理室内で、前記処理ガス中の酸素の割合が 1 %以下で、かつ圧力が 0. 13 3〜133Paの第 1の処理条件で該処理ガスのプラズマを形成し、該プラズマにより、 被処理体表面のシリコンを酸化してシリコン酸化膜を形成する第 1の酸化処理工程と 前記第 1の酸化処理工程に引き続き、前記処理ガス中の酸素の割合が 20%以上 で、かつ圧力力 00〜; 1333Paの第 2の処理条件で該処理ガスのプラズマを形成し 、該プラズマにより、前記被処理体表面を酸化して更なるシリコン酸化膜を形成し、か つ、前記シリコン酸化膜の膜質を改善する第 2の酸化処理工程と、
を行なうことを特徴とするプラズマ処理装置。
[10] コンピュータに、シリコン酸化膜の形成方法を実行させるためのコンピュータプログ ラムを格納したコンピュータ読取り可能な記憶媒体において、
シリコン酸化膜の形成方法は、
プラズマ処理装置の処理室内で、処理ガス中の酸素の割合が 1 %以下で、かつ圧 力が 0. 133〜133Paの第 1の処理条件で該処理ガスのプラズマを形成し、該プラス' マにより、被処理体表面のシリコンを酸化してシリコン酸化膜を形成する第 1の酸化 処理工程と、
前記第 1の酸化処理工程に引き続き、処理ガス中の酸素の割合が 20%以上で、か つ圧力力 00〜; 1333Paの第 2の処理条件で該処理ガスのプラズマを形成し、該プ ラズマにより、前記被処理体表面を酸化して更なるシリコン酸化膜を形成し、かつ、前 記シリコン酸化膜の膜質を改善する第 2の酸化処理工程と、
を備えたことを特徴とする記憶媒体。
PCT/JP2007/069041 2006-09-29 2007-09-28 Method for forming silicon oxide film, plasma processing apparatus and storage medium WO2008038787A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020097006183A KR101102690B1 (ko) 2006-09-29 2007-09-28 실리콘 산화막의 형성 방법, 플라즈마 처리 장치 및 기억 매체
CN2007800359879A CN101517716B (zh) 2006-09-29 2007-09-28 硅氧化膜的形成方法、等离子体处理装置
US12/443,044 US8003484B2 (en) 2006-09-29 2007-09-28 Method for forming silicon oxide film, plasma processing apparatus and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-267742 2006-09-29
JP2006267742A JP5089121B2 (ja) 2006-09-29 2006-09-29 シリコン酸化膜の形成方法およびプラズマ処理装置

Publications (1)

Publication Number Publication Date
WO2008038787A1 true WO2008038787A1 (en) 2008-04-03

Family

ID=39230219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069041 WO2008038787A1 (en) 2006-09-29 2007-09-28 Method for forming silicon oxide film, plasma processing apparatus and storage medium

Country Status (6)

Country Link
US (1) US8003484B2 (ja)
JP (1) JP5089121B2 (ja)
KR (1) KR101102690B1 (ja)
CN (1) CN101517716B (ja)
TW (1) TW200834729A (ja)
WO (1) WO2008038787A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261217A (ja) * 2005-03-15 2006-09-28 Canon Anelva Corp 薄膜形成方法
JP5357487B2 (ja) 2008-09-30 2013-12-04 東京エレクトロン株式会社 シリコン酸化膜の形成方法、コンピュータ読み取り可能な記憶媒体およびプラズマ酸化処理装置
KR101120133B1 (ko) * 2009-05-13 2012-03-23 가천대학교 산학협력단 탄성기질의 표면 상에서의 나노구조의 조절성 제조
JP2011071353A (ja) * 2009-09-25 2011-04-07 Hitachi Kokusai Electric Inc 半導体装置の製造方法
CN108766887B (zh) * 2018-05-25 2019-07-30 中国科学院微电子研究所 基于两步微波等离子体氧化的凹槽mosfet器件的制造方法
CN108666206B (zh) * 2018-05-25 2019-08-16 中国科学院微电子研究所 基于两步微波等离子体氧化的碳化硅氧化方法
WO2020054038A1 (ja) * 2018-09-13 2020-03-19 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、及びプログラム
US11049731B2 (en) * 2018-09-27 2021-06-29 Applied Materials, Inc. Methods for film modification
JP7500450B2 (ja) * 2021-01-21 2024-06-17 東京エレクトロン株式会社 プラズマ処理装置
CN113410126B (zh) * 2021-06-18 2024-03-08 上海华虹宏力半导体制造有限公司 热氧化工艺中自动调控硅氧化膜厚度的方法和系统
JP7530878B2 (ja) * 2021-09-30 2024-08-08 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008519A1 (ja) * 2002-07-17 2004-01-22 Tokyo Electron Limited 酸化膜形成方法および電子デバイス材料
JP2006019413A (ja) * 2004-06-30 2006-01-19 Canon Inc 処理方法及び装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225036A (en) * 1988-03-28 1993-07-06 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device
JP2768685B2 (ja) * 1988-03-28 1998-06-25 株式会社東芝 半導体装置の製造方法及びその装置
US5756402A (en) * 1992-12-28 1998-05-26 Kabushiki Kaisha Toshiba Method of etching silicon nitride film
US6214736B1 (en) * 1998-10-15 2001-04-10 Texas Instruments Incorporated Silicon processing method
JP2000349285A (ja) 1999-06-04 2000-12-15 Hitachi Ltd 半導体集積回路装置の製造方法および半導体集積回路装置
JP4739215B2 (ja) * 2004-08-31 2011-08-03 東京エレクトロン株式会社 酸化膜の形成方法、制御プログラム、コンピュータ記憶媒体およびプラズマ処理装置
JP5032056B2 (ja) * 2005-07-25 2012-09-26 株式会社東芝 不揮発性半導体メモリ装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008519A1 (ja) * 2002-07-17 2004-01-22 Tokyo Electron Limited 酸化膜形成方法および電子デバイス材料
JP2006019413A (ja) * 2004-06-30 2006-01-19 Canon Inc 処理方法及び装置

Also Published As

Publication number Publication date
US8003484B2 (en) 2011-08-23
JP2008091409A (ja) 2008-04-17
CN101517716A (zh) 2009-08-26
CN101517716B (zh) 2011-08-17
KR20090043598A (ko) 2009-05-06
KR101102690B1 (ko) 2012-01-05
US20100093185A1 (en) 2010-04-15
TW200834729A (en) 2008-08-16
JP5089121B2 (ja) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5089121B2 (ja) シリコン酸化膜の形成方法およびプラズマ処理装置
JP5073482B2 (ja) シリコン酸化膜の製造方法、その制御プログラム、記憶媒体及びプラズマ処理装置
CN101405846B (zh) 等离子体氧化处理方法及装置
JP5231233B2 (ja) プラズマ酸化処理方法、プラズマ処理装置、及び、記憶媒体
CN101652842B (zh) 等离子体氧化处理方法和等离子体处理装置
WO2006106665A1 (ja) 基板の窒化処理方法および絶縁膜の形成方法
JP5231232B2 (ja) プラズマ酸化処理方法、プラズマ処理装置、及び、記憶媒体
WO2008038788A1 (en) Method for forming silicon oxide film, plasma processing apparatus and storage medium
JP4739215B2 (ja) 酸化膜の形成方法、制御プログラム、コンピュータ記憶媒体およびプラズマ処理装置
JP5271702B2 (ja) シリコン酸化膜の形成方法およびシリコン酸化膜の形成装置
CN102165568A (zh) 硅氧化膜的形成方法和装置
JP5291467B2 (ja) プラズマ酸化処理方法、記憶媒体、及び、プラズマ処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780035987.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828782

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12443044

Country of ref document: US

Ref document number: KR

Ref document number: 1020097006183

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828782

Country of ref document: EP

Kind code of ref document: A1