[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008038649A1 - Dispositif de balayage optique - Google Patents

Dispositif de balayage optique Download PDF

Info

Publication number
WO2008038649A1
WO2008038649A1 PCT/JP2007/068636 JP2007068636W WO2008038649A1 WO 2008038649 A1 WO2008038649 A1 WO 2008038649A1 JP 2007068636 W JP2007068636 W JP 2007068636W WO 2008038649 A1 WO2008038649 A1 WO 2008038649A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
torsion beam
substrate
optical scanning
scanning device
Prior art date
Application number
PCT/JP2007/068636
Other languages
English (en)
French (fr)
Inventor
Jun Akedo
Jaehyuk Park
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to US12/443,023 priority Critical patent/US8411343B2/en
Priority to JP2008536388A priority patent/JP5582518B2/ja
Publication of WO2008038649A1 publication Critical patent/WO2008038649A1/ja
Priority to US13/780,008 priority patent/US8755102B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors

Definitions

  • the present invention relates to an optical scanner that performs scanning by scanning a light beam, and more particularly to an optical scanning device configured to deflect a light beam by swinging a minute mirror supported by a torsion beam. It is.
  • An optical scanner that scans a light beam such as a laser beam in recent years is used as an optical device such as a barcode reader, a laser printer, a head mounted display, or an input device such as an infrared camera. .
  • an optical device such as a barcode reader, a laser printer, a head mounted display, or an input device such as an infrared camera.
  • a configuration that swings a micromirror using silicon micromachining technology has been proposed.
  • those described in JP-A-7-65098 Patent Document 1
  • the light irradiated from the light source 100 is reflected by the mirror unit 101 to irradiate the detected object 102, and the mirror unit 101 is vibrated to oscillate the detected object 102.
  • a drive source 103 that performs two bending motions, each of which is mounted in a cantilever shape with one end as a fixed end, and the free end sides of the two drive sources 103 are connected to each other.
  • the two driving sources 103 are driven by a bimorph structure to which a piezoelectric material is attached and vibrate in opposite phases, thereby torsionally deforming. Torsional vibration is induced in member 105, and torsional deformation occurs. By driving at the resonance frequency of the member 105, it is made possible to vibrate the mirror portion 101 with a large amplitude.
  • the optical scanner described in Japanese Patent Laid-Open No. 4 95917 has two elastic modes, a bending deformation mode and a torsional deformation mode.
  • One surface of the vibrator 110 having the deformation mode is set as a mirror surface 111, and this vibrator 110 is vibrated at the resonance frequency of each of the two modes and projected toward the mirror surface 111 of the vibrator 110.
  • light If the beam is reflected by the mirror surface 111, light is scanned in two directions, and the vibrator 110 is vibrated in one mode, a one-dimensional scanning light scanner is obtained.
  • Patent Document 3 JP-A-10-197819
  • the optical scanner includes a plate-like micromirror 121 for reflecting light, a pair of rotary supports 12 2 that are positioned in a straight line and support both sides of the micromirror 121, A straight line connecting the pair of rotary supports 122, including a frame part 123 that surrounds the periphery of the mirror 121 and a piezoelectric element 124 that translates the frame part 123.
  • the center of gravity of the mirror 121 is located at a place other than.
  • the piezoelectric element 124 When a voltage is applied to the piezoelectric element 124, the piezoelectric element 124 expands and contracts, vibrates in the Z-axis direction, and this vibration is transmitted to the frame portion 123.
  • the micro mirror 121 causes relative movement with respect to the driven frame portion 123, and when the vibration component in the Z-axis direction is transmitted to the micro mirror 121, the microphone opening mirror 1 is an axis formed by the X-axis rotating support body 2. Therefore, a rotational moment is generated in the micromirror 121 around the X-axis rotation support 122. In this way, the translational motion applied to the frame 3 by the piezoelectric element 124 is converted into a rotational motion around the X-axis rotating support 2 of the micromirror 1.
  • the beam parts 133, 133 extend in opposite directions from both sides of the movable part 132 and are connected to the two arm parts 134, 134 of the fixed part 136.
  • the arm portions 134 and 134 of the 136 are provided with piezoelectric thin films 135 and 135, respectively, and an optical scanning device in which these piezoelectric thin films 135 and 135 are driven by the same signal including a high-order vibration frequency is disclosed in Japanese Patent Laid-Open No. 10-143. — It is described in Japanese Patent No. 104543 (refer to Patent Document 4; hereinafter referred to as “Prior Art 4”).
  • Patent Document 1 Japanese Patent Laid-Open No. 7-65098
  • Patent Document 2 JP-A-4 95917
  • Patent Document 3 Japanese Patent Laid-Open No. 10-197819
  • Patent Document 4 Japanese Patent Laid-Open No. 10-104543
  • the optical scanning device When the above-described optical scanning device as the prior art is used to realize a small and portable laser projector, the optical scanning device is arranged in a compact manner with a laser light source and other optical systems. It is necessary to make the design as small as possible. For this reason, it is possible to miniaturize the above optical scanning device with a Si micromachine jung, etc., but on the other hand, in the case of a laser projector system with one mirror scanning, this is small because the mirror size determines the optical aperture width. If it becomes too large, the spot size on the projection plane cannot be reduced, and as a result, the resolution of the image is greatly reduced.
  • the mirror size is required to be at least lmm ⁇ , and depending on the application, an area of 5mm square or more is required.
  • the size of the structural part causing the torsional resonance of the optical scanning device is at least 5 mm square, and in some cases larger than 1 cm, because the hinge length supporting this mirror part is added to the mirror size.
  • downsizing of the apparatus has been hindered.
  • the scanning angle of the optical scanning device can be as large as 30 ° or more, and in the case of a low-speed scanning optical scanning device with a resonance frequency of 100 Hz or less used for vertical scanning in two-dimensional scanning, it is compact in terms of device design. It becomes a serious problem that hinders globalization (hereinafter referred to as “Issue 1”).
  • this resonance frequency f is the resonance frequency of vibrator 1 f is expressed by the following equation.
  • Equation 1 represents the resonance frequency fB in the bending deformation mode and the resonance frequency fT in the torsional deformation mode, and the spring constant k in the bending deformation mode. Is expressed by the following equation.
  • is the Young's modulus
  • w is the width of the elastic deformation (length in the heel direction)
  • t is the thickness of the inertia deformation
  • L Length in the X direction
  • L is the length of the elastic deformation part (length in the Z direction).
  • G is the transverse elastic modulus
  • / 3 is the coefficient related to the cross-sectional shape.
  • w is the length of the long side of the cross section of the elastic deformation part
  • t is the length of the short side of the cross section.
  • Equation (1) It can be seen from Equation (1) that the resonance frequency of the vibrator changes as the spring constant k changes.
  • the necessity of two-dimensional scanning and the size of the optical scanning device itself are reduced in order to reduce the size. It is necessary to design with various combinations such as reflecting mirrors to change the optical path, as well as reducing this. Whenever each mirror is reflected, the total amount of light is reduced and projected. The brightness of images and light beams will decrease, and especially when applied to portable devices, increasing the amount of light from the light source and, in turn, securing the power supply capacity will become a major problem! 3 ”! /, U.).
  • the above-described conventional optical scanning device 4 has a drawback that the swing angle of the movable portion 132 cannot be increased.
  • FIG. 23 is the same as in the case of the prior art 4, and has a configuration in which a piezoelectric film is formed on two narrow cantilever portions supporting two torsion beams protruding from the frame portion.
  • the driving efficiency of the mirror section scanning angle was investigated by simulation calculation.
  • FIG. 24 shows the deflection angle of a mirror having a structure in which a piezoelectric film is formed on two narrow cantilever portions that support two torsion beams from the frame portion shown in FIG.
  • the drive voltage was IV
  • the electrical characteristics of the piezoelectric material were the typical parameters of PZT-5A
  • the scanner body material was SUS304.
  • the deflection angle of the mirror part was as small as 0.63 degrees.
  • An object of the present invention is to provide an optical scanning device that can reduce the overall size of the optical scanning device while ensuring a mirror size.
  • Another object of the present invention is to provide an optical scanning device that can efficiently generate torsional vibrations in a mirror portion. Means for solving the problem
  • FIG. 1 shows a basic configuration of an optical scanning apparatus that is an object of the present invention.
  • the substrate 10 is formed in a shape that is hollowed out by leaving a mirror portion 11 and a torsion beam portion 12 by, for example, etching or pressing a plate material.
  • the mirror portion 11 1 is connected to the substrate 10.
  • the torsion beam portions 12 and 12 are supported from both sides, and the outer ends of the torsion beam portions 12 and 12 are each supported by the cantilever beam portion 14.
  • the substrate 10 refers to the frame structure portion of the apparatus excluding the mirror portion 11 and the torsion beam portion 12, and includes the cantilever portion 14 (hereinafter, the substrate 10 is referred to as the frame structure portion). is there.).
  • a portion of the substrate 10 excluding the cantilever portion 14 is referred to as a substrate body 20.
  • a thin film such as an aerosol deposition method (hereinafter may be abbreviated as “AD method”), a sputtering method or a sol-gel method is formed on a part of the substrate 10 away from the connection portion between the substrate 10 and the torsion beam portion 12.
  • a piezoelectric film 15 for optical scanning drive is formed by using a forming technique or by attaching a piezoelectric thin plate of a bulk material, and an upper electrode 17 on the optical scanning drive piezoelectric film 15 and a substrate 10 as a lower electrode from a power source 16.
  • the piezoelectric film 15 for optical scanning drive vibrates, induces a plate wave or vibration in the substrate 10, and generates a torsional vibration in the mirror part 11 by using this to produce a simple structure.
  • the force S can be generated efficiently torsional vibration in the mirror section 11.
  • the optical scanning driving piezoelectric film 15 becomes a driving source for vibrating the substrate 10.
  • the mirror unit 11 vibrates, so that the light reflected by the mirror unit 11 is constant. Vibrates at the swing angle.
  • the present invention surrounds the torsion beam portion 12 as shown in FIG. 2 (b). In such a way, the force that extends the mirror part 11 or the inner part of the mirror part 11 is cut in parallel with the axial direction of the torsion beam part 12. By inserting the groove, the torsion beam portion 12 is extended to the inside of the mirror portion 11 so that the mirror size can be made large without substantially changing the total length of the mirror portion 11 and the torsion beam portion 12.
  • the amount of reflected light is lost by the area of the notch that separates the mirror part 11 and the torsion beam part 12, but this notch width is good if it is not mechanically connected. It is easy to make the product smaller than the entire mirror area, and the reduction in light intensity is not a problem. For example, if it is set to 10% or less of the light spot diameter projected on the mirror surface, the light amount loss is practically negligible.
  • Fig. 2 (a) shows a conventional device.
  • the present invention provides a distribution in the axial spring constant of the torsion beam portion 12 that supports the mirror portion 11, that is, in the longitudinal direction.
  • the length of the torsion beam 12 can be designed to be shorter at both the resonance frequency and the scanning angle than when the spring constant of the torsion beam 12 has no distribution.
  • changes in the spring constant of the torsion beam part include those in which the spring constant changes by changing the shape of the torsion beam part.
  • the present invention uses a material that plastically deforms a torsion beam portion 12 that supports the mirror portion 11 such as a metal material such as stainless steel or a resin material.
  • a material that plastically deforms a torsion beam portion 12 that supports the mirror portion 11 such as a metal material such as stainless steel or a resin material.
  • the present invention reduces the rigidity of the two cantilever portions by forming one piezoelectric film (body) as a vibration source in the frame portion, and efficiently mirrors
  • the problem of induction of unnecessary vibration modes and amplitude reduction due to unevenness of the vibration sources is solved.
  • the piezoelectric element of the driving source is separated.
  • the area of the membrane can be set freely regardless of the width of the cantilever part. A large torsional vibration part can efficiently input a large driving force, and further, formation of an electrode for driving a piezoelectric film is facilitated, and the yield in industrial production can be improved.
  • FIG. 6 shows the deflection angle of the mirror unit 11 of the apparatus shown in FIG.
  • the drive voltage was IV
  • the electrical characteristics of the piezoelectric body were PZT-5A, which is a typical parameter
  • the material of the scanner frame body was SUS304.
  • the resonance frequency of the conventional technique 4 shown in FIG. 16 and the resonance frequency of the present invention shown in FIG. 5 is almost the same, but the deflection angle of the mirror 11 is 0.63 degrees in the conventional technique 4, whereas According to the present invention shown in FIG. 5, it was confirmed that the swing was 2.69 degrees (8 0.7 degrees in terms of 30 V), which was about 4.3 times larger.
  • the vibration source characteristics, mounting position, adhesion, and film mounting Due to the variation in state, asymmetric two-dimensional vibration is easily induced in the torsion beam supporting the mirror part on the substrate part with respect to the vertical axis, and the scanning accuracy of the optical beam is reduced due to the torsional vibration of the mirror.
  • the torsional vibration can be efficiently induced in the mirror part, and the light beam scanning jitter can be reduced and the product variation can be greatly appreciated.
  • the weight and twist of the mirror portion 11 are mainly used. It is necessary to largely shift the resonance frequency (fm) of the mirror part 11 determined by the spring constant of the beam part 12 and the resonance frequency (fb) including the divided vibration mode of the frame part itself.
  • the piezoelectric film 15 of the optical scanning device When the piezoelectric film 15 of the optical scanning device is driven so as to match the resonance frequency (fm) of the torsional vibration of the mirror unit 11, if the resonance mode is also induced in the substrate 10, the vibration generated by the vibration source The energy is distributed to the torsional vibration of the mirror part 11 and the two-dimensional divided vibration of the substrate 10 from the energy conservation law. Accordingly, the amplitude of the torsional vibration (twisting angle) of the mirror section 11 is reduced by the amount of vibration energy from the driving source consumed by the two-dimensional divided vibration of the substrate 10, and the optical scanning device can be driven efficiently. I can't.
  • the optical scanning device has a basic structure in which a thin plate-like substrate 10 shown in FIG. 1 is cantilevered by a support member 13 on the side opposite to the mirror portion 11.
  • a support member 13 on the side opposite to the mirror portion 11.
  • a narrow substrate connecting beam 23 is attached to a rigid substrate fixing frame 22 arranged so as to surround the entire optical scanning device supported in a cantilever manner.
  • the optical scanning device is fixed at a position away from the support portion by the support member 13.
  • the resonance state of the optical scanning device itself changes depending on the fixed position of the substrate connecting beam 23, and the scanning angle and resonance frequency of the mirror unit 11 are affected.
  • Fig. 9 and Fig. 10 show this situation.
  • Fig. 9-a when the mirror part 11 twists and resonates!
  • the scanning amplitude of the mirror 11 is about 55 ° when it is not fixed. This is a significant decrease of about 17 °. This is because fixing a portion with a large vibration amplitude at the outer edge of the optical staggering device and suppressing the vibration changes the vibration mode of the entire optical scanning device substrate 10, resulting in efficient twisting vibration of the mirror unit 11. This is because it is impossible to convey energy.
  • the edge portion of the optical scanning device substrate 10 (reference numeral 24 in FIG. If the connection is fixed with the substrate connecting beam 23 as shown in Fig. 9d, the scanning amplitude of the mirror 11 is The scanning amplitude is about 55 °, rather than not fixed to the base plate fixing frame 22. In this case, since the vibration mode of the entire optical scanning device substrate 10 is not changed, a resonance state almost equivalent to that when the optical scanning device substrate 10 is not fixed can be maintained, and the optical scanning device substrate 10 fixed mirror portion 11 by the substrate connecting beam 23 can be maintained. The influence on the scanning amplitude is minimal.
  • the optical scanning device is fixed by the substrate connecting beam 23 at the outer edge of the optical scanning device at the position where the vibration node or vibration amplitude is the smallest at the mirror resonance and is far from the optical scanning device support member 13. Then, it is possible to stably support the optical stray device that does not attenuate the scanning amplitude of the mirror unit 11 against disturbance vibration.
  • the scanning wobble force Wp -p is about 30 to 40 seconds, and it is necessary to correct it with an f ⁇ lens or the like and lower the value by 1 digit.
  • the scanning wobble is Force Wp-p: A value that is one digit lower than 5 seconds.
  • a highly stable beam scanning speed can be realized without a correction lens system, making it easy to reduce the size and cost. From the above measurement results, it is apparent that the optical scanning device according to the present invention has a high light beam scanning accuracy that can be used in a laser printer or the like.
  • the present invention has the following excellent effects. (1) By providing a distribution in the spring constant in the length direction of the torsion beam part that supports the mirror part, compared with the case where there is no distribution in the spring constant of the torsion beam part, both in the resonance frequency and the scanning angle.
  • the length of the torsion beam can be designed to be short.
  • FIG. 1 is a perspective view showing a basic configuration of an optical scanning device as an object of the present invention.
  • FIG. 2 is a plan view illustrating Example 1 according to the present invention
  • FIG. 2 (a) shows a conventional optical scanning device
  • FIG. 2 (b) shows an optical scanning device of Example 1.
  • FIG. 2 (a) shows a conventional optical scanning device
  • FIG. 2 (b) shows an optical scanning device of Example 1.
  • FIG. 3 is a schematic diagram illustrating a state in which a distribution is provided in the axial spring constant of a torsion beam portion that supports a mirror portion.
  • FIG. 4 is a perspective view for explaining Example 6 according to the present invention, in which the torsion beam part supporting the mirror part is plastically deformed, and the mirror part is angled with respect to the substrate supporting the torsion beam part. At the position It shows the adjusted and fixed state.
  • FIG. 6 is a view showing a deflection angle of the mirror unit of the apparatus shown in FIG.
  • FIG. 7 is a diagram showing resonance frequencies of a substrate and a mirror part of the optical scanning device according to the present invention.
  • FIG. 8] is a plan view of an apparatus in which a substrate fixing frame is arranged so as to surround a substrate body and a cantilever portion according to the present invention.
  • FIG. 9 is a diagram for explaining the mirror deflection angle when the position of the substrate connecting beam connecting the substrate and the substrate fixing frame is changed.
  • FIG. 10 is an explanatory diagram for explaining the state of the resonance amplitude of the edge portion of the substrate when the mirror portion is torsionally resonating in a state where the substrate and the substrate fixing frame are not connected by the substrate connecting beam.
  • FIG. 11 is a plan view for explaining Example 2 according to the present invention.
  • FIG. 14 is a plan view for explaining Example 3 according to the present invention.
  • FIG. 17 A perspective view for explaining a fourth embodiment according to the present invention.
  • FIG. 20 is a diagram for explaining a prior art 2.
  • Gan 24 Shows the deflection angle of the mirror part of the apparatus shown in FIG.
  • FIG. 2 is a plan view for explaining the first embodiment according to the present invention.
  • FIG. 2 (a) shows a conventional optical scanning device
  • FIG. 2 (b) shows the optical scanning device of the first embodiment. ing.
  • the supporting member for supporting the substrate 10 and the power source for applying a voltage to the optical scanning driving piezoelectric film 15 are omitted.
  • the mirror part 11 is stretched so as to surround the torsion beam part 12, or the torsion beam part is cut in parallel to the axial direction of the torsion beam part 12 inside the mirror part 11.
  • 1 Extend 2 to the inside of the mirror part 11 and change the distance between the mirror part 11 and the substrate 10 without changing the size and resonance frequency of the mirror part 11 from that of Figure 2 (a).
  • the torsional resonance frequency (500 to 600 Hz) and the scanning angle (100 °) of the mirror unit 11 are almost changed in the experiment.
  • the length connecting the outer ends of the two torsion beam parts 12 and 12 that support the mirror part 11 on both sides can be reduced by approximately 25% from 16 mm to 12 mm. It was effective for the compact design of the scanning device.
  • FIG. 11 is a plan view for explaining the second embodiment according to the present invention, in which the supporting member for supporting the substrate 10, the piezoelectric film for optical scanning drive, the power source and the like are omitted!
  • the spring constant of the torsion beam part 12 is given a panel-like zigzag structure as shown in the upper right of the figure, and both the resonance frequency and the scanning angle.
  • the length of the straight line connecting both ends of each torsion beam portion 12 is considered to be constant, the length of the torsion beam portion 12 itself is substantially increased, thereby reducing the resonance frequency and simultaneously increasing the scanning angle. It becomes possible.
  • the length of the straight line connecting both ends of the torsion beam 12 can be reduced to about 1/3 from 3 mm to lmm ( In addition, the scanning angle could be increased by about 20% (see), and the overall size of the optical scanning device could be reduced.
  • each torsion beam portion 12 when the straight line length connecting both ends of each torsion beam portion 12 is considered to be constant at lmm, the zigzag structure becomes longer, and the beam tends to have the same length as the length. show. For example, it is possible to reduce the resonance frequency and simultaneously increase the scanning angle.
  • the straight line connecting both ends of the torsion beam part is considered to be constant at lmm, the actual length of the torsion beam with a zigzag structure is changed from l mm (see A) to 3 mm (see B), 4.6 mm. (See C).
  • the scanning angle By increasing the length, the scanning angle could be increased by about 33% and 51%, respectively, and the overall size of the optical scanning device could be reduced.
  • the resonance frequency can be finely adjusted while having a high scanning angle of 40 ° or more.
  • FIG. 13 is an embodiment in which the resonance frequency can be finely adjusted up and down by moving the position of the zigzag structure.
  • the resonance frequency is shifted by moving the zigzag structure position of the center part to the cantilever part side from the center. It is possible to reduce the scanning angle at the same time. Further, by moving the zigzag structure position of the center portion from the center to the mirror portion 11 side, it is possible to increase the resonance frequency and simultaneously increase the scanning angle. With this method, the resonance frequency can be finely adjusted while having a high scanning angle of 50 ° or more.
  • the torsion angle of each part of the torsion beam part 12 per unit length of the length connecting both ends of each torsion beam part 12 is smaller than that of a simple rod-like torsion beam structure, and the material of the torsion beam part 12
  • the material is a metal or the like, fatigue characteristics are improved, and when a brittle material such as a Si single crystal is used, the mirror can resonate at a large scanning angle that is greater than the brittle fracture limit.
  • FIG. 14 is a plan view for explaining the third embodiment according to the present invention, in which the supporting member for supporting the substrate 10, the piezoelectric film for optical scanning drive, the power source and the like are omitted.
  • Fig. 14 shows how the distribution of the spring constant is given by giving a distribution to the width of a part of the torsion beam part 12 to partially increase the mechanical rigidity and to make the entire length of the torsion beam part 12 constant.
  • the torsional resonance frequency of the mirror part 11 is increased.
  • the experimental data in Fig. 14 shows the resonance frequency and scanning angle data when the length of the straight torsion beam 12 having a constant width is changed. Comparing the two, if the substrate 10 of the torsion beam portion 12 and the vicinity of the support portion are triangular, and the distribution of the width of the torsion beam portion 12 is distributed, the resonance frequency is maintained at a substantially constant scanning angle. It was confirmed that the frequency can be increased by approximately 30% from 8.6kHz to 12kHz (see arrow). In this case, a high resonance frequency that cannot be achieved even when the length of the torsion beam portion 12 is shortened to the limit can be realized by making the vicinity of the substrate 10 support portion of the torsion beam portion 12 a triangle and distributing the beam width. It ’ s power.
  • the transmission efficiency of vibration energy transmitted from the side force of the substrate 10 is enhanced by the triangular shape effect in the vicinity of the support portion of the cantilever portion 12 of the torsion beam portion 12.
  • the scan angle is In order to increase the resonance frequency while being kept almost constant, it is desirable that the height of the triangle is less than half the total length of the torsion beam portion 12.
  • FIG. 17 is a perspective view for explaining Example 4 according to the present invention.
  • the distribution of the spring constant in the length direction of the torsion beam portion 12 is determined by the material of the torsion beam portion 12 that supports the mirror portion 11.
  • the resonance frequency or the scanning angle is changed by changing in the length direction.
  • the resonance frequency is increased while the scanning angle is kept almost constant by partially increasing the mechanical rigidity of the material of the torsion beam part 12 in the length direction by 0.7 times the material of the substrate 10 It becomes possible.
  • the material of the torsion beam part 12 is partially reduced in the longitudinal direction by 0.8 times the mechanical rigidity of the material of the substrate 10, so that the resonance frequency is kept substantially constant and scanning is performed.
  • the angle can be increased.
  • FIG. 18 is a perspective view for explaining a modification of the fourth embodiment according to the present invention.
  • the distribution of the spring constant in the length direction of the torsion beam portion 12 is the torsion beam portion 12 that supports the mirror portion 11.
  • a material different from the material of the torsion beam portion 12 is integrally provided in the upper part, thereby changing the resonance frequency or the running angle.
  • the material of the torsion beam part 12 is different from the material of the torsion beam part 12 on the torsion beam part 12 that supports the mirror part 11, and the material of the material having high mechanical rigidity (TiN, W, By integrally providing A12 03), it is possible to increase the resonance frequency while the scanning angle is kept substantially constant. In particular, by adjusting the thickness of the material having high mechanical rigidity, the resonance frequency can be finely adjusted. Further, the position and size of a material different from the material of the torsion beam part 12 on a part of the torsion beam part 12 also finely adjusts the resonance frequency.
  • the material different from the torsion beam part 12 formed on the torsion beam part 12 is preferably a thick film formed by the AD method.
  • Shot peening is a cold working method in which hard spheres with a particle size of 20 Hm to 1.3 mm, called a shot material, are accelerated and sprayed by a projection device and collide with a workpiece at high speed. It is.
  • the shot-peeled torsion beam part 12 has a certain roughness on the surface, but the surface layer part is work-hardened and a high compressive residual stress is applied, so that the torsion beam part 12 is partially applied.
  • the material of the shot peening material and the position and size of the shot peening also finely adjust the resonance frequency.
  • FIG. 4 is a perspective view for explaining a sixth embodiment according to the present invention.
  • the torsion beam portion 12 that supports the mirror portion 11 is made of a plastically deformable material such as a metal material such as stainless steel or a resin material, and is plastic.
  • a plastically deformable material such as a metal material such as stainless steel or a resin material
  • the light enters the mirror part 11 without using a reflection mirror and scans it.
  • FIG. 4 it was confirmed that the resonance state can be realized even if the deflection angle of the mirror portion 11 with respect to the substrate 10 is changed to 0 ° and 90 ° by plastic deformation of the metal torsion beam portion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Micromachines (AREA)
  • Facsimile Heads (AREA)

Description

明 細 書
光走査装置
技術分野
[0001] 本発明は、光ビームの走査によりスキャンを行う光スキャナに関し、特に捻れ梁(ト ーシヨンバー)に支持された微小なミラーを揺動させて光ビームを偏向させる構成の 光走査装置に関するものである。
背景技術
[0002] 近年におけるレーザ光等の光ビームを走査する光スキャナは、バーコードリーダ、 レーザープリンタ、ヘッドマウントディスプレー等の光学機器、あるいは赤外線カメラ 等入力デバイスの光取り入れ装置として用いられてレ、る。この種の光スキャナとして、 シリコンマイクロマシユング技術を利用した微小ミラーを揺動させる構成のものが提案 されている。例えば、特開平 7— 65098 (特許文献 1)に記載のものが知られている( 以下「従来技術 1」という。)。この光スキャナは、図 19に示すように、光源 100から照 射される光をミラー部 101で反射して被検出体 102に照射し、該ミラー部 101を振動 させることによって被検出体 102の所定方向に光を走査する光スキャナにおいて、片 持ち梁状に各一端を固定端として併設された 2個の曲げ運動を行う駆動源 103と、 該 2個の駆動源 103の自由端側同士を連結する連結部材 104と、該連結部材 104 の中央部から延出されたねじり変形部材 105と、該ねじり変形部材 105に設けられた ミラー部 101とを備え、該ミラー部 101の重心がねじり変形部材 105のねじり中心軸 上に位置せしめられていることを特徴とし、例えば、該 2個の駆動源 103が圧電材料 を貼り付けたバイモルフ構造で駆動され、逆位相で振動することで、ねじり変形部材 105に捻り振動を誘起し、ねじり変形部材 105の共振周波数で駆動することにより、 大きな振幅で該ミラー部 101を振動させることを可能にしている。
[0003] また、特開平 4 95917 (特許文献 2、以下「従来技術 2」という。)に記載の光スキ ャナは、図 20に示すように、曲げ変形モードとねじれ変形モードの 2つの弾性変形モ ードをもつ振動子 110の一面をミラー面 111とし,この振動子 110を 2つのモードのそ れぞれの共振周波数で振動させ,振動子 110のミラー面 111に向けて投射された光 ビームをそのミラー面 111で反射させて 2方向に光を走査し、振動子 110を一方のモ ードで振動させれば一次元走査光スキャナとなる。
また、シリコンマイクロマシユング技術を利用した微小ミラーを揺動させるための光ス キヤナとして特開平 10— 197819号公報(特許文献 3)に記載のものが知られている (以下「従来技術 3」という。)。
この光スキャナは、図 21に示すように、光を反射するための板状のマイクロミラー 12 1と、一直線上に位置してマイクロミラー 121の両側を支持する一対の回転支持体 12 2と、一対の回転支持体 122が接続され、ミラー 121の周辺を囲う枠部 123と、枠部 1 23に並進運動を加える圧電素子 124とを備え、かつ、一対の回転支持体 122を結 ぶ直線上以外の場所にミラー 121の重心を位置させた構成となっている。
圧電素子 124に電圧を加えると、圧電素子 124は伸縮を行い、 Z軸方向に振動し、 この振動は枠部 123に伝達される。マイクロミラー 121は、駆動された枠部 123に対 して相対運動を起こし、 Z軸方向の振動成分がマイクロミラー 121に伝えられると、マ イク口ミラー 1は X軸回転支持体 2で成す軸線に対して左右非対称の質量成分を持 つので、 X軸回転支持体 122を中心にマイクロミラー 121に回転モーメントが生じる。 このようにして、圧電素子 124によって枠部 3に加えられた並進運動は、マイクロミラ 一 1の X軸回転支持体 2を中心とした回転運動に変換される。
また、図 22に示すように、振動子 131において可動部 132の両側からはり部 133、 133が互いに反対方向にのび、固定部 136の 2つの腕部 134、 134につながってお り、固定部 136の腕部 134、 134にはそれぞれ圧電薄膜 135、 135が設けられ、これ らの圧電薄膜 135、 135は高次振動周波数を含む同じ信号により駆動されるようにし た光走査装置が特開平 10— 104543号公報 (特許文献 4参照。以下「従来技術 4」と いう。)に記載されている。
特許文献 1 :特開平 7— 65098号公報
特許文献 2:特開平 4 95917号公報
特許文献 3:特開平 10— 197819号公報
特許文献 4:特開平 10— 104543号公報
発明の開示 発明が解決しょうとする課題
[0005] 上記、先行技術である光走査装置を用いて、小型 ·携帯型のレーザープロジェクタ 一などを実現しょうとする場合、上記光走査装置をレーザー光源や他の光学系とコン パクトに配置する必要があり、できうる限り、小型の設計にすることが重要となる。この ため、上記光走査装置を Siマイクロマシンユングなどで、微小化することは可能だが 、一方で、 1ミラー走査によるレーザープロジェクター方式の場合、ミラーサイズが光 学的な開口幅を決めるため、これが小さくなりすぎると投影面上でのスポットサイズが 小さくできず、結果、画像の解像度が大きく低下する。このため、ミラーサイズは、少 なくとも lmm φ以上必要とされ、用途によっては 5mm角以上の面積が必要とされる 。この場合、光走査装置の捻れ共振を生じさせる構造部分の大きさは、ミラーサイズ にこのミラー部を支えるヒンジ長さが加わるため、少なくとも 5mm角以上、場合によつ ては lcm以上の大きなものとなり、装置の小型化を阻害してきた。このことは、光走査 装置の走査角を 30° 以上と大きく取ったり、また、 2次元走査の垂直走査に用いられ る共振周波数 100Hz以下の低速走査の光走査装置の場合、装置設計上、コンパク ト化を阻害する、深刻な問題となる(以下「課題 1」という。)。
[0006] また、捻れヒンジの長さが比較的短くなる 10kHz以上に共振周波数をもつ光走査 装置の設計に於いても、これを大きな駆動力で共振させ、 20° 以上の大きな振れ角 でミラー部を走査した場合、単位長さあたりの捻れ梁の捻れ角度が大きくなるため、 捻れ梁の材料が金属材料などの場合、金属疲労により急激に性能劣化を起こすとい う問題点があった。また、捻れ梁が Si単結晶などの脆性材料の場合、大きな走査角 度を実現するためには、単位長さあたりの捻れ角度に制限があるため、ヒンジ長さを 比較的長く設計する必要があり、どうしてもミラー共振構造部あるいは光走査装置全 体の大きさを小さくすることは、設計上困難であった (以下「課題 2」という。)。
この共振周波数 fは、例えば、従来技術 1のねじり変形部(捻れ梁部)のばね定数を k,回転軸 (Y軸または Z軸)のまわりのモーメントを Iとすると,振動子 1における共振 周波数 fは次式で表される。
[数 1]
Figure imgf000006_0001
[0007] 弾性変形部の曲げ変形モード( θ B方向)におけるばね定数を kB、ねじれ変形モ ード( θ T方向)におけるばね定数を kTとする。これらのばね定数 kB、 kTを式 1の ばね定数 kと置きかえると、式 1は曲げ変形モードにおける共振周波数 fB、ねじれ変 形モードにおける共振周波数 fTを表すものとなり、曲げ変形モードにおけるばね定 数 k は次式で表される。
B
[数 2]
(2)
[0008] ここで Εはヤング率, wは弾性変形部の幅 (Υ方向の長さ) , tは弹性変形部の厚さ(
X方向の長さ) , Lは弾性変形部の長さ(Z方向の長さ)である。
[0009] ねじれ変形モードにおけるばね定数 k は次式で表される。
τ
KT =≤^L (t < w) (3)
1 12L
[0010] ここで Gは横弾性係数, /3は断面形状に関する係数である。式 3において,より一 般的には wは弾性変形部の断面の長辺の長さを、 tは同断面の短辺の長さを表す。
[0011] ばね定数 kが変化することにより,振動子の共振周波数が変化することが式(1)から 分かる。
[0012] また、実際上のレーザープロジェクターやバーコードリーダーなど、上記光走査装 置を用いたデバイスでは、 2次元走査の必要性や、小型化するために上記光走査装 置自身の大きさを小さくするだけでなぐこれに光路変更のため反射ミラーなどを様 々に組合せた設計を行う必要がある力 各部ミラーごとに反射するたびに、その吸収 率だけ全体の光量が低下し、投影される画像や光ビームの輝度が低下することにな り、特に携帯型のデバイスに応用するに際して、光源光量の増加、ひいては、電源容 量の確保が大きな問題になって!/、た (以下「課題 3」と!/、う。 )。 [0013] また、上記した従来技術 4の光走査装置では、可動部 132の振れ角が大きくとれな いという欠点があった。
すなわち、フレーム部から出た 2本の捻じれ梁を支持する 2本の幅の細い片持ち梁 部分に圧電膜を形成すると、この部分の剛性が増加し、圧電膜に誘起された振動が 、効率よく捻り梁部に伝達されず、結果、ミラーの捻じれ振動が小さくなる。また、 2つ の片持ち梁部とその上に形成される圧電膜とで構成される振動源部分の振動特性を 正確に一致させないと、ミラーの捻じれ振動の振動振幅が抑制されるのと同時に、捻 じれ振動以外の振動モードが重畳し、正確なレーザービームの走査が実現できなレ、 。さらに、ミラーの駆動力を増加させるため圧電膜部分の面積を大きくするには、上 記片持ち梁部の幅を大きくする必要が有り、このため同片持ち梁部に 2次元的な不 要の振動モードを発生させ、ミラーの捻じれ振動の振動振幅が抑制されるのと同時 に、捻じれ振動以外の振動モードが重畳し、正確なレーザービームの走査が実現で きないなどの問題がある。また、上記片持ち梁の幅が細く制限されるため、この部位 に形成された圧電膜を駆動するための上部電極の形成は、幅が細レ、ため容易でなく 、量産時の歩留まりに大きく影響するなどの問題点があった (以下「課題 4」という。)。
[0014] 図 23は、従来技術 4の場合と同様のもので、フレーム部から出た 2本の捻じれ梁を 支持する 2本の幅の細い片持ち梁部分に圧電膜を形成する構成となっており、ミラー 部走査角度の駆動効率をシミュレーション計算により調べたものである。 y=0の面を 対称面とし,半分のみモデル化した。
図 24に、図 23に示すフレーム部から出た 2本の捻じれ梁を支持する 2本の幅の細 い片持ち梁部分に圧電膜を形成する構成のミラーの振れ角を示す。駆動電圧は IV とし、圧電体の電気特性は、典型的なパラメータである PZT— 5Aの特性、スキャナ 一フレーム本体の材質は SUS304の特性を用いた。ミラー部の振れ角は、 0. 63度 と小さいものであった。
[0015] 本発明は、ミラーサイズを確保しつつ光走査装置全体の大きさを小さくすることがで きる光走査装置を提供することを目的とする。
また、本発明は、効率的にミラー部に捻れ振動を発生することができる光走査装置 を提供することを目的とする。 課題を解決するための手段
[0016] 上記目的を達成するための本発明の光走査装置の基本的事項について図を参照 しながら以下に説明する。
まず、図 1に本発明の対象となる光走査装置の基本構成を示す。
図 1において、基板 10は、例えば、板材をエッチングあるいはプレス加工等により、 ミラー部 11及び捻れ梁部 12を残して中抜きされた形状に作製されており、ミラー部 1 1は基板 10に連結された捻れ梁部 12、 12により両側から支持され、また、捻れ梁部 12、 12の外側端はそれぞれ片持ち梁部 14に支持される構造となっている。
また、基板 10は、例えば、その一端が支持部材 13に片持ち状に支持されている。 本明細書において、基板 10とは、ミラー部 11、捻れ梁部 12を除く装置のフレーム 構造部を指しており、片持ち梁部 14を含むものである(以下、基板 10をフレーム構造 部ということがある。)。なお、基板 10のうち、片持ち梁部 14を除いた部分を基板本体 20という。
基板 10と捻れ梁部 12との連結部から離れた基板 10の一部に、エアロゾルデポジ シヨン法(以下、「AD法」と略す場合がある。)、スパッタリング法あるいはゾル—ゲル 法等の薄膜形成技術を用いて、あるいはバルク材の圧電薄板を張り付けて、光走査 駆動用圧電膜 15を形成し、電源 16から光走査駆動用圧電膜 15上の上部電極 17及 び下部電極としての基板 10に電圧を印加すると光走査駆動用圧電膜 15が圧電振 動し、基板 10に板波あるいは振動を誘起し、これを利用してミラー部 11に捻れ振動 を生じさせることにより、簡単な構造で効率的にミラー部 11に捻れ振動を発生するこ と力 Sできる。
この場合、光走査駆動用圧電膜 15が基板 10を振動させる駆動源となる。 駆動源である光走査駆動用圧電膜 15に電圧を印加した状態でミラー部 11に光源 1 8から光ビームを照射すると、ミラー部 11が振動するため、ミラー部 11で反射した光 は一定の振れ角で振動する。
[0017] 図 1に示す本発明の対象となる光走査装置の基本構成において、まず上記課題 1 を解決するため、本発明は、図 2 (b)に示すように、捻れ梁部 12を囲むようにミラー部 11を伸ばす力、、あるいは、ミラー部 11の内側に捻れ梁部 12の軸方向と平行に切り込 みを入れることで、捻れ梁部 12をミラー部 11内側まで伸ばし、実質、ミラー部 11と捻 れ梁部 12の全長を代えることなぐミラーサイズを大きく取れるようにする。このときミラ 一部 11と捻れ梁部 12を切り分ける切り込み部の面積分だけ、反射光量を損失するこ とになるが、この切り込み幅は、機械的に連結されていなければ良ぐこの部分の面 積をミラー面積全体に比較して小さくすることは容易で、光量減少は問題にならない 。例えば、このミラー面上に投影される光スポット径の 10%以下に設定して於けば、 実用上、光量損失は殆ど無視できる。
なお、図 2 (a)は従来装置を示している。
[0018] また、課題 2を解決するため、本発明は、図 3に示すように、ミラー部 11を支持する 捻れ梁部 12の軸方向のばね定数に分布を持たせること、すなわち、長手方向にお いてばね定数を変化させることで、捻れ梁部 12のばね定数に分布を持たない場合と 比較し、共振周波数と走査角度双方において、捻れ梁部 12の長さを短く設計できる なお、本明細書において、捻れ梁部のばね定数の変化には、捻れ梁部の形状を変 えることによりばね定数が変化するものも含まれる。
[0019] また、課題 3を解決するため、本発明は、図 4に示すように、ミラー部 11を支持する 捻り梁部 12をステンレスなどの金属材料や樹脂材料の様な塑性変形する素材で構 成し、塑性変形をさせて、捻り梁部 12を支持する基板 10に対して、ミラー部 11を角 度をつけた位置で調整、固定することにより、反射ミラーを使うことなぐミラー部 11に 入射し、走査する光ビームに偏向角を与えることができ、構造上、上記光走査装置を 小型に設計できる。
[0020] また、課題 4を解決するため、本発明は、振動源である圧電膜 (体)をフレーム部に 1つ形成することにより、 2つの片持ち梁部の剛性を下げ、効率よくミラーの捻じれ振 動を誘起すると同時に、ミラーを駆動する振動源を一つにすることで、上記、振動源 の不均等などに起因する不要な振動モードの誘起ならびに振幅低下の問題を解消 する。また、このように振動源となる圧電膜形成部分とミラーならびにミラー部を支持 する捻れ梁部から構成されるミラー捻れ振動部を上記 2つの片持ち梁部で分離する ことにより、駆動源の圧電膜の面積を片持ち梁部の幅に関係なく自由に設定でき、ミ ラー捻れ振動部により効率的に大きな駆動力を投入することが可能となり、さらに、圧 電膜駆動用の電極形成も容易になり、工業的生産における歩留まりを向上すること が可能となる。
図 5は、本発明に係る振動源である圧電膜 15を基板 10に 1つ形成する構成の光走 查装置を、 y=0の面を対称面とし,半分のみモデル化した平面図である。
光走査装置の基本構成となるミラー部 11の寸法や捻れ梁部 12の寸法、捻れ梁部 12のミラー部 11への取り付け位置 (ミラー部の重心位置)、基板 10の形状ならびに その支持方法、さらに圧電膜 15の厚みや膜面積の合計値も同じにしてある。違いは 、圧電膜 15の形成位置だけである。
図 6に、図 5に示す装置のミラー部 11の振れ角を示す。駆動電圧は IVとし、圧電体 の電気特性は、典型的なパラメータである PZT— 5Aの特性、スキャナーフレーム本 体の材質は SUS304の特性を用いた。基本的に、図 16に示す従来技術 4と図 5に 示す本発明の共振周波数はほぼ同じだが、ミラー部 11の振れ角は、従来技術 4のも のでは 0.63度であるのに対し、図 5に示す本発明によるものでは 2.69度 (30V換算で 8 0.7度)と、 4.3倍程度大きく振れることが確認された。
尚、ミラーの走査振幅を大きくするために、基板に配置される振動源を複数もう於け ることも可能である力 この場合、振動源の特性や取り付け位置、接着、成膜による取 り付け状態のバラツキのため、基板部にミラー部を支持する捻れ梁に垂直方向の対 称軸に対し非対称な 2次元振動が誘起され易くなり、ミラーの捻れ振動による光ビー ムの走査精度は低下する。これに対し本発明では、振動源が一つでも効率よくミラー 部に捻れ振動を誘起し、光ビームの走査ジッターの低減と製品のバラツキを大幅に 才卬えること力 Sできる。
図 1に示す本発明のようなミラー部 11から離れた位置で発生させた振動エネルギ 一を効率よくミラー部 11の捻り振動になるエネルギーとして伝達するには、主にミラー 部 11の重量と捻り梁部 12のバネ定数で決定されるミラー部 11の共振周波数 (fm)と フレーム部自体の分割振動モードも含めた共振周波数 (fb)とを大きくずらす必要が 有る。ミラー部 11の捻れ振動の共振周波数 (fm)に合うように光走査装置の圧電膜 1 5を駆動したとき、基板 10にも共振モードが誘起されると、振動源で発生された振動 エネルギーは、エネルギー保存則からミラー部 11の捻れ振動と基板 10の 2次元分割 振動に分配されることになる。従って、基板 10の 2次元分割振動に駆動源からの振 動エネルギーが消費された分だけ、ミラー部 11の捻れ振動の振幅 (捻れ角度)は小 さくなり、効率よく光走査装置を駆動することができない。また、基板 10に不要な 2次 元分割振動が誘起されると、その先端に位置するミラー部 11にも捻れ梁部 12を回転 軸とする純粋なねじれ振動以外の振動モードが重畳される場合もあり、直進走査性 にすぐれた高精度の光走査を実現することができない。これに対して、本発明では、 図 7に示すようにミラー部に誘起される高次まで含む捻れ共振周波数 a (fm (n) : n = 0, 1 , 2, · · · · )が基板 10に誘起される高次まで含む共振周波数 b (fb (n) : n = 0, 1 , 2, · · · · )と重ならないように設計される。
[0022] 本発明による光走査装置は、基本構造として、図 1に示す薄板状の基板 10がミラー 部 11と反対側で、支持部材 13により片持ち支持された構造になっており、このため 光走査装置の全体に上下の外乱振動が加わると、光走査装置全体が振動し、ミラー 部 11で反射、走査される光ビームは、この振動の影響を受け不安定に振動し、正確 な光走査が保証できない問題点があった。従って、携帯機器などでの実用的な応用 を想定すると、この光走査装置全体が片持ち構造で不安定なことを改善する必要が る。
そこで、本発明では、図 8に示すように、片持ち支持されている光走査装置全体を 囲むように配置された剛性の高い基板固定フレーム 22に、幅の細い基板接続用梁 2 3で、光走査装置を支持部材 13による支持部から離れた位置で固定する。
このとき、基板接続用梁 23の固定位置によって光走査装置自体の共振状態が変 化し、ミラー部 11の走査角度や共振周波数が影響を受ける。
[0023] 図 9、図 10は、この様子を調べたもので、図 9— aに示すように、ミラー部 11が捻り共 振して!/、る時に振動の腹に近!/、振動振幅が大き!/、片持ち梁部 14の付け根で、基板 接続用梁 23により光走査装置を固定すると、ミラー部 11の走査振幅は、固定されて いない場合の約 55° の走査振幅に対し、約 17° と大幅に低下する。これは、光走 查装置の外縁部で振動振幅の大きな箇所を固定し、その振動を抑制すると、光走査 装置基板 10全体の振動モードを変化させ、結果、ミラー部 11の捻れ振動に効率よく エネノレギーを伝えられなくなるためである。
これに対して、図 10に示す基板接続用梁 23で接続されていない状況で、ミラー部 11が捻り共振して!/、る時に、光走査装置基板 10の縁部分(図 10の符号 24で示され た箇所)の Z軸方向の振動振幅が最小となる節 25近傍の箇所で、図 9 dに示すよう に基板接続用梁 23で接続固定した場合は、ミラー部 11の走査振幅は、約 55° と基 板固定フレーム 22に固定しない場合よりもむしろ若干大きな走査振幅となる。この場 合は、光走査装置基板 10全体の振動モードを変化させないので、固定していない 場合とほぼ等価な共振状態を維持でき、基板接続用梁 23による光走査装置基板 10 固定のミラー部 11の走査振幅への影響は、最小となる。
従って、光走査装置の外縁部で、ミラー共振時に振動の節あるいは、振動振幅が 最も小さく、かつなるベく光走査装置支持部材 13から遠い箇所で、基板接続用梁 23 により光走査装置を固定すると、ミラー部 11の走査振幅を減衰させることなぐ光走 查装置を外乱振動に対し安定に支持することができる。
[0024] 以上の本発明による光走査装置の光ビームの走査ジッタと走査ゥォブル (ビーム走 查速度の安定性)を、エーエルティー株式会社製: MEMSスキャナ計測システム [A LT 9A44]で評価したところ、従来のシリコン製 MEMS光スキャナー(日本信号製 )が走査ジッタが、 Jp_p : 0.2〜0.3%であるのに対し、本発明の光走査装置は、金属材 料で構成されているにもかかわらず、走査共振周波数 6kHz、 16kHz, 24kHzに対 し、 Jp_p : 0.06%以下と一桁小さぐ従来ポリゴンミラー方式に相当する高精度な光ビ ーム走査を実現できている。また、従来ポリゴンミラー方式では、走査ゥォブル力 Wp -p : 30〜40秒程度有り、 f Θレンズなどで補正をかけ、値を 1桁下げる必要が有る 1S 本発明による光走査装置では、走査ゥォブル力 Wp-p : 5秒以下と、一桁低い 値となっており、補正レンズ系なしで高安定なビーム走査速度を実現できており、小 型、低コスト化を容易に可能とする。以上の測定結果から、本発明による光走査装置 は、レーザプリンターなどに使用できる高い光ビーム走査精度が得られていることが 明らかである。
発明の効果
[0025] 本発明は、以下のような優れた効果を奏する。 (1)ミラー部を支持する捻れ梁部の長さ方向におけるばね定数に分布を持たせること により、捻れ梁部のばね定数に分布を持たない場合と比較し、共振周波数と走査角 度双方において、捻れ梁部の長さを短く設計できる。
(2)ミラー部を支持する捻れ梁部の実質長を捻れ梁部両端のミラー部端面と基板と の間隔より長くすることから実現することにより、ミラー部と捻れ梁部の全長を代えるこ となぐミラーサイズを大きく取ることができる。
(3)ミラー部を初期セット位置から捻れ梁部の支持軸回りに回動し、捻れ梁部に塑性 変形を与えることによりミラー部を任意の位置にセットすることにより、ミラー部を角度 をつけた位置で調整、固定でき、反射ミラーを使うことなぐミラー部に入射し、走査す る光ビームに偏向角を与えることができ、構造上、上記光走査装置を小型に設計で きる。
(4)ミラー部の重量と捻り梁のパネ定数で決定されるミラー部の共振周波数と基板の 共振周波数とを大きくずらすことにより、ミラー部から離れた位置で発生させた振動ェ ネルギーを効率よくミラー部の捻り振動になるエネルギーとして伝達することができる
(5)基板本体及び片持ち梁部を囲むように基板固定フレームを配置して基板本体の 固定端部側で固定するとともに、基板本体と基板固定フレームとを支持部材力 離 れた位置で、かつ、基板振動の最小振幅の近傍において基板接続用梁で接続する ことにより、ミラー部の走査振幅を減衰させることなぐ光走査装置を外乱振動に対し 安定に支持することができる。
図面の簡単な説明
[図 1]本発明の対象となる光走査装置の基本構成を示す斜視図である。
[図 2]本発明に係る実施例 1を説明する平面図であり、図 2 (a)は従来の光走査装置 を、図 2 (b)は実施例 1の光走査装置を示す。
[図 3]ミラー部を支持する捻れ梁部の軸方向のばね定数に分布を持たせた状態を説 明する模式図である。
[図 4]本発明に係る実施例 6を説明する斜視図であり、ミラー部を支持する捻り梁部を 塑性変形をさせて、捻り梁部を支持する基板に対してミラー部を角度をつけた位置で 調整、固定した状態を示すものである。
園 5]本発明に係る圧電膜を基板本体に 1つ形成する構成の光走査装置を、 y=0の 面を対称面とし、半分のみモデル化した平面図である。
[図 6]図 5に示す装置のミラー部の振れ角を示す図である。
[図 7]本発明に係る光走査装置の基板及びミラー部の共振周波数を示す図である。 園 8]本発明に係る基板本体及び片持ち梁部を囲むように基板固定フレームを配置 した装置の平面図である。
[図 9]基板と基板固定フレームとを接続する基板接続用梁の位置を変化させた場合 のミラー振れ角を説明する図である。
[図 10]基板と基板固定フレームとが基板接続用梁で接続されていない状況で、ミラー 部が捻り共振している時の基板の縁部分の共振振幅の状態を説明する説明図であ
[図 11]本発明に係る実施例 2を説明する平面図である。
園 12]本発明に係る実施例 2の変形例を説明する平面図である。
園 13]本発明に係る実施例 2の変形例を説明する平面図である。
[図 14]本発明に係る実施例 3を説明する平面図である。
園 15]捻れ梁部の捻りによる偏向角の増加とミラー部の走査角度との関係を示す図 である。
園 16]捻れ梁部の捻りによる偏向角の増加とミラー部の捻れ共振周波数との関係を 示す図である。
園 17]本発明に係る実施例 4を説明する斜視図である。
園 18]本発明に係る実施例 4の変形例を説明する斜視図である。
園 19]従来技術 1を説明する図である。
[図 20]従来技術 2を説明する図である。
園 21]従来技術 3を説明する図である。
園 22]従来技術 4を説明する図である。
[図 23]従来技術 4の場合と同様のものであって、 y=0の面を対称面とし、半分のみモ デル化した図である。 園 24]図 23に示す構成の装置のミラー部の振れ角を示す。
符号の説明
10 基板
11 ミラー部
12 捻れ梁部
13 支持部材
14 片持ち梁部
15 光走査駆動用圧電膜
16 電源
17 上部電極
18 光源
20 基板本体
22 基板固定フレーム
23 基板接続用梁
24 基板の縁部分
25 基板振動の振幅最小位置
発明を実施するための最良の形態
[0028] 本発明に係る光走査装置を実施するための最良の形態を実施例に基づいて図面 を参照して以下に説明する。
実施例 1
[0029] 図 2は、本発明に係る実施例 1を説明する平面図であり、図 2 (a)は従来の光走査 装置を、図 2 (b)は実施例 1の光走査装置を示している。図 2においては、基板 10を 支持する支持部材および光走査駆動用圧電膜 15に電圧を印加する電源は省略さ れている。
図 2 (b)において、捻れ梁部 12を囲むようにミラー部 11を伸ばすか、あるいは、ミラ 一部 11の内側に捻れ梁部 12の軸方向と平行に切り込みを入れることで、捻れ梁部 1 2をミラー部 11内側まで伸ばし、実質、ミラー部 11の大きさや共振周波数を図 2 (a) のものと変化させることなぐミラー部 11と基板 10との間隔を図 2 (a)のものと比較して 短くでき、その結果、光走査装置全体の小型化を図ることができるようにしたものであ 実験では、ミラー部 11の捻れ共振周波数(500〜600Hz)と走査角度(100° )を 殆ど変更することなぐ図 2に示されるように、ミラー部 11を両側で支持する 2つの捻 れ梁部 12、 12の外側端を結ぶ長さを 16mmから 12mmへと約 25%小さくすることが でき、光走査装置の小型設計に有効であった。
実施例 2
[0030] 図 11は、本発明に係る実施例 2を説明する平面図であり、基板 10を支持する支持 部材および光走査駆動用圧電膜、電源等は省略されて!/、る。
図 11において、上記ばね定数の分布の与え方として、図右上に示すように、捻れ 梁部 12の一部をパネ状のジグザグ構造にし、共振周波数と走査角度双方において 捻れ梁部 12のばね定数に分布を持たない図中央上の場合と比較し、 2つの捻れ梁 部 12、 12の外側端を結ぶ長さを短く設計できるようにした実施例である。
この場合、各捻れ梁部 12の両端を結ぶ直線長さを一定に考えると、実質上の捻れ 梁部 12自体の長さが長くなることで、共振周波数を低減し、同時に走査角度を増加 することが可能となる。また、図 11下方の図表に示すように、同一の共振周波数で考 えると、この実施例では、捻れ梁部 12の両端を結ぶ直線長さを 3mmから lmmへと 約 1/3にでき(國を参照)、その上で、走査角度は、 20%程度増加でき(·参照)、 光走査装置の全体サイズを小型化することができた。
[0031] 図 12に示すように各捻れ梁部 12の両端を結ぶ直線長さを lmmで一定に考えると 、ジグザグ構造が長くなることで、梁の長さは長くなることと同一な傾向を見せる。例え ば、共振周波数を低減し、同時に走査角度を増加することが可能となる。この実施例 では、捻れ梁部の両端を結ぶ直線長さを lmmで一定に考えると、ジグザグ構造の捻 れ梁の実質長さを lmm (A参照)から 3mm (B参照)、 4. 6mm (C参照)、長くするこ とで、走査角度はそれぞれ 33%、 51 %程度増加でき、光走査装置の全体サイズを 小型化することができた。
また、 40° 以上の高い走査角度を持っていながら共振周波数を微細に調節するこ とが可能である。 [0032] 図 13の場合は、ジグザグ構造の位置を移動することで、共振周波数を微細に上下 で調節することができるようにした実施例である。
この場合、各捻れ梁部 12の両端を結ぶ長さ及び各捻れ梁部の実質長が一定で、 センター部分のジグザグ構造の位置を中心がら片持ち梁部側に移動することで、共 振周波数を低減し、同時に走査角度を低減することが可能となる。また、センター部 分のジグザグ構造の位置を中心からミーラ部 11側に移動することで、共振周波数を 増加し、同時に走査角度を増加することが可能となる。この手法で 50° 以上の高い 走査角度を持っていながら共振周波数を微細に調節することができる。
また、このとき、各捻れ梁部 12の両端を結ぶ長さの単位長さあたり捻れ梁部 12の 各部の捻れ角度は、単純な棒状の捻れ梁構造の場合より小さくなり、捻れ梁部の材 質が金属などの場合は、疲労特性が改善され、また、 Si単結晶などの脆性材料の場 合は、脆性破壊限界以上の大きな走査角度でミラー部を共振させることができる。 実施例 3
[0033] 図 14は、本発明に係る実施例 3を説明する平面図であり、基板 10を支持する支持 部材および光走査駆動用圧電膜、電源等は省略されて!/、る。
図 14は、上記ばね定数の分布の与えたかたとして、捻れ梁部 12の一部の幅に分 布を持たせることで、部分的に機械的剛性を高め、捻れ梁部 12の全長を一定にした まま、ミラー部 11の捻れ共振周波数を増加させた実施例である。
図 14の実験データでは、比較のために幅が一定のストレートな捻れ梁部 12の長さ を変えたときの共振周波数と走査角度データを示してある。両者を比較すると、上記 捻れ梁部 12の基板 10支持部近傍を三角形にして捻れ梁部 12の幅に分布を持たせ た場合は、走査角度はほぼ一定に保たれている状態で、共振周波数を 8.6kHzから 12kHzまで約 30%増加できる事が確認できた(矢印参照。)。この場合、捻れ梁部 1 2の長さを極限まで短くした場合でも達成できない高い共振周波数を上記捻れ梁部 12の基板 10支持部近傍を三角形にして梁の幅に分布を持たせて実現できているの 力 sわ力、る。
捻れ梁部 12の片持ち梁部 14支持部近傍に三角形の形象效果によって基板 10側 力、ら伝達する振動エネルギーの伝達效率が強化される。これによつて、走査角度は ほぼ一定に保たれている状態で共振周波数を増加できるためには、三角形の高さが 捻れ梁部 12の全長の半分以下が望ましい。
実施例 4
[0034] 図 17は、本発明に係る実施例 4を説明する斜視図であり、捻れ梁部 12の長さ方向 におけるばね定数の分布は、ミラー部 11を支持する捻れ梁部 12の材質を長さ方向 において変化させることで、共振周波数或は走査角度を変化させた実施例である。 基板 10の材質に対して、部分的に捻れ梁部 12の材質を長さ方向において機械的 剛性を 0.7倍高めることで、走査角度はほぼ一定に保たれている状態で、共振周波数 を増加することが可能となる。
また、基板 10の材質に対して、部分的に捻れ梁部 12の材質を長さ方向において 機械的剛性を 0.8倍弱くしすることで、共振周波数はほぼ一定に保たれている状態で 、走査角度を増加することが可能となる。
[0035] 図 18は、本発明に係る実施例 4の変形例を説明する斜視図であり、捻れ梁部 12の 長さ方向におけるばね定数の分布は、ミラー部 11を支持する捻れ梁部 12上の一部 に捻れ梁部 12の材質とは異なる材料を一体的に設けることで、共振周波数或は走 查角度を変化させた実施例である。
捻れ梁部 12の材質に対して、ミラー部 11を支持する捻れ梁部 12上の一部に捻れ 梁部 12の材質とは異なる材料として、機械的剛性が高い材質の材料(TiN, W、 A12 03)を一体的に設けることで、走査角度はほぼ一定に保たれている状態で、共振周 波数を増加することが可能となる。特に、機械的剛性が高い材質の材料の厚みを調 節することで、共振周波数を増加する側に微細に調節することようになる。また、捻れ 梁部 12上の一部に捻れ梁部 12の材質とは異なる材料の位置及び大きさも共振周波 数を微細に調節することようになる。
捻れ梁部 12上に形成される捻れ梁部 12とは異なる材料は、 AD法により形成され た厚膜が望ましい。
実施例 5
[0036] ショットピーニングとは、ショット材と呼ばれる粒径 20 H m〜1.3mm程度の硬質な小球 を、投射装置により加速して噴射させ、被加工部品に高速で衝突させる冷間加工法 である。ショットピーユングされた捻れ梁部 12は、表面にはある粗さが形成されるが、 表層部は加工硬化され、高い圧縮残留応力が付与されろことで、捻れ梁部 12に部 分的に機械的剛性を高めることで、走査角度はほぼ一定に保たれている状態で、共 振周波数を増加することが可能となる。また、ショットピーニング材の材料及びショット ピーユングされる位置及び大きさも共振周波数を微細に調節することようになる。 実施例 6
図 4は、本発明に係る実施例 6を説明する斜視図であり、ミラー部 11を支持する捻り 梁部 12をステンレスなどの金属材料や樹脂材料の様な塑性変形する素材で構成し 、塑性変形をさせて、捻り梁部 12を支持する基板 10に対して、ミラー部 11を角度を つけた位置で調整、固定することにより、反射ミラーを使うことなぐミラー部 11に入射 し、走査する光ビームに偏向角を与える実施例である。実験では、図 4に示すように、 金属捻れ梁部の塑性変形により、ミラー部 11の基板 10に対する偏向角度を 0° 力も 90° まで変化させても、共振状態を実現できることが確認された。
また、図 15、図 16に示すように、上記捻れ梁部 12の捻りによる偏向角の増加は、ミ ラー部 11の捻れ共振周波数に殆ど影響を与えないが、走査角度は、上記偏向角の 増加に伴って減少する。

Claims

請求の範囲
[1] 基板と、基板に連結された捻れ梁部と、捻れ梁部により支持されるミラー部と、基板 を振動させる駆動源と、ミラー部に光を投射する光源とを備え、ミラー部は駆動源によ つて基板に加えられる振動に応じて共振振動し、光源からミラー部に投射される光の 反射光の方向力 ラー部の振動に応じて変化する光走査装置において、ミラー部を 支持する捻れ梁部の長さ方向におけるばね定数に分布を持たせることを特徴とする 光走査装置。
[2] 捻れ梁部の長さ方向におけるばね定数の分布は、ミラー部を支持する捻れ梁部の 実質長を捻れ梁部両端のミラー部端面と基板との間隔より長くすることからなることを 特徴とする請求項 1記載の光走査装置。
[3] 捻れ梁部の長さ方向におけるばね定数の分布は、ミラー部を支持する捻れ梁部の 幅あるいは厚みを長さ方向において変化させることからなることを特徴とする請求項 1 記載の光走査装置。
[4] 捻れ梁部の長さ方向におけるばね定数の分布は、ミラー部を支持する捻れ梁部の 材質を長さ方向において変化させることからなることを特徴とする請求項 1記載の光 走査装置。
[5] 捻れ梁部の長さ方向におけるばね定数の分布は、ミラー部を支持する捻れ梁部上 の一部に捻れ梁部の材質とは異なる部材を一体的に設ける、または捻れ梁部上に 長さ方向に材質の変化する部材を一体的に設けることからなることを特徴とする請求 項 1記載の光走査装置。
[6] 捻れ梁部上の一部に一体的に設ける捻れ梁部の材質とは異なる部材は、エアロゾ ルデポジッシヨン法により形成された厚膜であることを特徴とする請求項 5記載の光走 查装置。
[7] 捻れ梁部の長さ方向におけるばね定数の分布は、ミラー部を支持する捻れ梁部に 加えるショットピーユング加工に変化を持たせることからなることを特徴とする請求項 1 または請求項 2に記載の光走査装置。
[8] 基板と、基板に連結された捻れ梁部と、捻れ梁部により支持されるミラー部と、基板 を振動させる駆動源と、ミラー部に光を投射する光源とを備え、ミラー部は駆動源によ つて基板に加えられる振動に応じて共振振動し、光源からミラー部に投射される光の 反射光の方向力 ラー部の振動に応じて変化する光走査装置において、ミラー部を 初期セット位置から捻れ梁部の支持軸回りに回動し、捻れ梁部に塑性変形を与える ことによりミラー部を任意の位置にセットすることを特徴とする光走査装置。
[9] ミラー部の重量と捻り梁のパネ定数で決定されるミラー部の共振周波数と基板の共 振周波数とを大きくずらすことを特徴とする請求項 1乃至請求項 8のいずれか 1項に 記載の光走査装置。
[10] 基板本体及び片持ち梁部を囲むように基板固定フレームを配置して基板本体の固 定端部側で固定するとともに、基板本体と基板固定フレームとを支持部材から離れた 位置で、かつ、基板振動の最小振幅の近傍において基板接続用梁で接続することを 特徴とする請求項 1乃至請求項 9のいずれか 1項に記載の光走査装置。
PCT/JP2007/068636 2006-09-27 2007-09-26 Dispositif de balayage optique WO2008038649A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/443,023 US8411343B2 (en) 2006-09-27 2007-09-26 Optical scanning device
JP2008536388A JP5582518B2 (ja) 2006-09-27 2007-09-26 光走査装置
US13/780,008 US8755102B2 (en) 2006-09-27 2013-02-28 Optical scanning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-261604 2006-09-27
JP2006261604 2006-09-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/443,023 A-371-Of-International US8411343B2 (en) 2006-09-27 2007-09-26 Optical scanning device
US13/780,008 Continuation US8755102B2 (en) 2006-09-27 2013-02-28 Optical scanning device

Publications (1)

Publication Number Publication Date
WO2008038649A1 true WO2008038649A1 (fr) 2008-04-03

Family

ID=39230085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068636 WO2008038649A1 (fr) 2006-09-27 2007-09-26 Dispositif de balayage optique

Country Status (3)

Country Link
US (2) US8411343B2 (ja)
JP (1) JP5582518B2 (ja)
WO (1) WO2008038649A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104821A1 (en) * 2008-02-20 2009-08-27 Canon Kabushiki Kaisha Oscillating structure and oscillator device using the same
WO2011074256A1 (ja) * 2009-12-16 2011-06-23 キヤノン電子株式会社 振動素子、光走査装置、アクチュエータ装置、映像投影装置及び画像形成装置
WO2012020788A1 (ja) * 2010-08-11 2012-02-16 シナノケンシ株式会社 光走査装置
JP5240953B2 (ja) * 2009-02-18 2013-07-17 独立行政法人産業技術総合研究所 光ビーム走査装置
WO2015152309A1 (ja) * 2014-03-31 2015-10-08 学校法人早稲田大学 マイクロ駆動装置及びそれを用いたマイクロデバイス
JP6827601B1 (ja) * 2020-02-19 2021-02-10 三菱電機株式会社 光反射装置およびそれを備えた測距装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061833A1 (ja) * 2009-11-19 2011-05-26 パイオニア株式会社 駆動装置
US9759993B2 (en) * 2010-04-21 2017-09-12 Shahyaan Desai Composite scanning mirror systems
JP2014182227A (ja) * 2013-03-18 2014-09-29 Seiko Epson Corp 光スキャナー、画像表示装置およびヘッドマウントディスプレイ
JP2014182226A (ja) * 2013-03-18 2014-09-29 Seiko Epson Corp 光スキャナー、アクチュエーター、画像表示装置およびヘッドマウントディスプレイ
JP2014182225A (ja) 2013-03-18 2014-09-29 Seiko Epson Corp 光スキャナー、アクチュエーター、画像表示装置およびヘッドマウントディスプレイ
DE102013217111A1 (de) * 2013-08-28 2015-03-19 Robert Bosch Gmbh Mikromechanisches Bauteil und Verfahren zur Herstellung eines mikromechanischen Bauteils
JP6369742B2 (ja) * 2014-02-26 2018-08-08 北陽電機株式会社 微小機械装置
WO2017141529A1 (ja) * 2016-02-17 2017-08-24 三菱電機株式会社 ミラー駆動装置、ミラー駆動装置の制御方法およびミラー駆動装置の製造方法
JP7181448B2 (ja) * 2018-03-30 2022-12-01 ミツミ電機株式会社 アクチュエータ及び光走査装置
DE102019218468A1 (de) * 2019-11-28 2021-06-02 Robert Bosch Gmbh Mikromechanisches Bauteil und Herstellungsverfahren für ein mikromechanisches Bauteil
JP7447660B2 (ja) * 2020-04-23 2024-03-12 船井電機株式会社 振動ミラー素子および光走査装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06175060A (ja) * 1992-10-08 1994-06-24 Fuji Electric Co Ltd ねじり振動子および光偏向子
JP2000292735A (ja) * 1999-04-02 2000-10-20 Olympus Optical Co Ltd 光スキャナ
WO2004017119A1 (ja) * 2002-08-14 2004-02-26 Fujitsu Limited トーションバーを備えるマイクロ揺動素子
JP2005181394A (ja) * 2003-12-16 2005-07-07 Canon Inc ねじり振動子、光偏向器および画像形成装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US554956A (en) * 1896-02-18 Radial car-truck
US2920529A (en) 1952-05-23 1960-01-12 Blythe Richard Electronic control of optical and near-optical radiation
FR2444283A1 (fr) * 1978-12-14 1980-07-11 Onera (Off Nat Aerospatiale) Perfectionnements aux dispositifs vibrants pour le traitement d'un faisceau optique
US6729545B2 (en) 1990-05-29 2004-05-04 Symbol Technologies, Inc. Integrated scanner on a common substrate having an omnidirectional mirror
US5245463A (en) 1990-08-07 1993-09-14 Omron Corporation Optical scanner
JP2570237B2 (ja) 1990-08-07 1997-01-08 オムロン株式会社 光スキャナ、振動装置、光学装置及び光ビ−ムプリンタ
US5828051A (en) 1991-02-12 1998-10-27 Omron Corporation Optical scanner and bar code reader employing same
JP3246106B2 (ja) 1993-08-24 2002-01-15 株式会社デンソー 光スキャナ
JP2981600B2 (ja) 1996-01-17 1999-11-22 オムロン株式会社 光スキャナおよびそれを用いた光センサ装置
JPH10104543A (ja) 1996-09-30 1998-04-24 Omron Corp 光走査装置および方法
JP3129219B2 (ja) 1997-01-14 2001-01-29 日本電気株式会社 光スキャナ
US5745278A (en) 1997-02-05 1998-04-28 Raytheon Optical Systems, Inc. Innovative deformable mirror actuator configuration
JP3896657B2 (ja) 1997-11-17 2007-03-22 ブラザー工業株式会社 光走査装置
JP2000089153A (ja) * 1998-09-16 2000-03-31 Minolta Co Ltd 光偏向装置
JP3552601B2 (ja) 1998-11-16 2004-08-11 日本ビクター株式会社 光偏向子及びこれを用いた表示装置
JP2001004952A (ja) 1999-06-24 2001-01-12 Victor Co Of Japan Ltd 光偏向子
JP4027313B2 (ja) 2001-07-05 2007-12-26 インターナショナル・ビジネス・マシーンズ・コーポレーション マイクロシステム・スイッチ
US7593029B2 (en) * 2001-08-20 2009-09-22 Ricoh Company, Ltd. Optical scanning device and image forming apparatus using the same
US6676020B2 (en) 2001-11-30 2004-01-13 Hewlett-Packard Development Company, L.P. Radiation director apparatus and method using piezoelectric movement
JP4307171B2 (ja) * 2002-07-19 2009-08-05 キヤノン株式会社 マイクロ可動体
JP4409186B2 (ja) 2003-02-25 2010-02-03 日本信号株式会社 プレーナ型電磁アクチュエータ及びその製造方法
JP3767577B2 (ja) 2003-05-29 2006-04-19 三菱電機株式会社 スキャン装置
JP2005092174A (ja) * 2003-08-12 2005-04-07 Fujitsu Ltd マイクロ揺動素子
US7659918B2 (en) * 2003-10-08 2010-02-09 Texas Instruments Incorporated Apparatus and methods for adjusting the rotational frequency of a scanning device
US7708415B2 (en) 2003-10-20 2010-05-04 Bae Systems Plc Mirror structure having piezoelectric element bonded to a mirror substrate
JP3759598B2 (ja) 2003-10-29 2006-03-29 セイコーエプソン株式会社 アクチュエータ
US7149067B2 (en) * 2003-12-18 2006-12-12 Eaton Corportion Automatic voltage device and network protector incorporating same
JP4691704B2 (ja) 2005-04-13 2011-06-01 独立行政法人産業技術総合研究所 光走査装置
US20070064293A1 (en) * 2005-09-16 2007-03-22 Texas Instruments Incorporated Method of adjusting the resonant frequency of an assembled torsional hinged device
KR100695170B1 (ko) 2006-01-25 2007-03-14 삼성전자주식회사 압전 액츄에이터를 사용하는 마이크로 미러
US7916373B2 (en) * 2007-08-09 2011-03-29 Alcatel-Lucent Usa Inc. Tapered reinforcing struts for micromachined structures
US7605966B2 (en) 2008-01-21 2009-10-20 Stanley Electric Co., Ltd. Optical deflector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06175060A (ja) * 1992-10-08 1994-06-24 Fuji Electric Co Ltd ねじり振動子および光偏向子
JP2000292735A (ja) * 1999-04-02 2000-10-20 Olympus Optical Co Ltd 光スキャナ
WO2004017119A1 (ja) * 2002-08-14 2004-02-26 Fujitsu Limited トーションバーを備えるマイクロ揺動素子
JP2005181394A (ja) * 2003-12-16 2005-07-07 Canon Inc ねじり振動子、光偏向器および画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK J.-H. ET AL.: "Pratical High-Speed Metal-Based Optical Microscanning Devices with Low Production Cost", MICRO ELECTRO MECHANICAL SYSTEMS 2006, January 2006 (2006-01-01), pages 730 - 733, XP010914349 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100302612A1 (en) * 2008-02-20 2010-12-02 Canon Kabushiki Kaisha Oscillating structure and oscillator device using the same
WO2009104821A1 (en) * 2008-02-20 2009-08-27 Canon Kabushiki Kaisha Oscillating structure and oscillator device using the same
JP5240953B2 (ja) * 2009-02-18 2013-07-17 独立行政法人産業技術総合研究所 光ビーム走査装置
US9327968B2 (en) 2009-12-16 2016-05-03 Canon Denshi Kabushiki Kaisha Vibrating element, optical scanning device, actuator device, video projection apparatus, and image forming apparatus
CN102666367A (zh) * 2009-12-16 2012-09-12 佳能电子株式会社 振动元件、光扫描装置、致动装置、视频投影装置及图像形成装置
JPWO2011074256A1 (ja) * 2009-12-16 2013-04-25 キヤノン電子株式会社 振動素子、光走査装置、アクチュエータ装置、映像投影装置及び画像形成装置
JP5587912B2 (ja) * 2009-12-16 2014-09-10 キヤノン電子株式会社 振動素子、光走査装置、アクチュエータ装置、映像投影装置及び画像形成装置
WO2011074256A1 (ja) * 2009-12-16 2011-06-23 キヤノン電子株式会社 振動素子、光走査装置、アクチュエータ装置、映像投影装置及び画像形成装置
WO2012020788A1 (ja) * 2010-08-11 2012-02-16 シナノケンシ株式会社 光走査装置
WO2015152309A1 (ja) * 2014-03-31 2015-10-08 学校法人早稲田大学 マイクロ駆動装置及びそれを用いたマイクロデバイス
JPWO2015152309A1 (ja) * 2014-03-31 2017-04-13 学校法人早稲田大学 マイクロ駆動装置及びそれを用いたマイクロデバイス
US10222608B2 (en) 2014-03-31 2019-03-05 Waseda University Micro drive device and micro device using same
JP6827601B1 (ja) * 2020-02-19 2021-02-10 三菱電機株式会社 光反射装置およびそれを備えた測距装置
WO2021166096A1 (ja) * 2020-02-19 2021-08-26 三菱電機株式会社 光反射装置およびそれを備えた測距装置

Also Published As

Publication number Publication date
JP5582518B2 (ja) 2014-09-03
US8755102B2 (en) 2014-06-17
US20100079837A1 (en) 2010-04-01
JPWO2008038649A1 (ja) 2010-01-28
US8411343B2 (en) 2013-04-02
US20130176607A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
WO2008038649A1 (fr) Dispositif de balayage optique
JP5229704B2 (ja) 光走査装置
JP5476589B2 (ja) 光走査装置
JP5240953B2 (ja) 光ビーム走査装置
JP4982814B2 (ja) 光ビーム走査装置
JP5458837B2 (ja) 光走査装置
JP5500016B2 (ja) 光偏向器、光走査装置、画像形成装置及び画像投影装置
JP2012198298A (ja) 光偏向装置並びにこれを備えた光走査装置、画像投影装置、画像読取装置および画像形成装置
JP2012042666A (ja) 光偏向器、光走査装置、画像形成装置及び画像投影装置
JP4766353B2 (ja) 光ビーム走査装置
JP5098319B2 (ja) 光スキャナ装置
JPH10104543A (ja) 光走査装置および方法
JP2009122293A (ja) 揺動体装置、光偏向器、及びそれを用いた光学機器
JP4620789B1 (ja) 光走査装置
JP3381196B2 (ja) 光スキャナ
WO2021193669A1 (ja) 光学反射素子、および光学反射システム
JP2013003473A (ja) マイクロスキャナ及び光学機器
JP2014089252A (ja) 光走査装置
JP2012128293A (ja) マイクロスキャナおよびそれを備えた光学機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008536388

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12443023

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828409

Country of ref document: EP

Kind code of ref document: A1