[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007123074A1 - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
WO2007123074A1
WO2007123074A1 PCT/JP2007/058246 JP2007058246W WO2007123074A1 WO 2007123074 A1 WO2007123074 A1 WO 2007123074A1 JP 2007058246 W JP2007058246 W JP 2007058246W WO 2007123074 A1 WO2007123074 A1 WO 2007123074A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
stator core
oil return
motor
area
Prior art date
Application number
PCT/JP2007/058246
Other languages
English (en)
French (fr)
Inventor
Masahide Higuchi
Yasukazu Nabetani
Azusa Ujihara
Hideki Mori
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to ES07741682.4T priority Critical patent/ES2594654T3/es
Priority to KR1020087024661A priority patent/KR101156261B1/ko
Priority to AU2007242125A priority patent/AU2007242125B2/en
Priority to US12/297,505 priority patent/US20090100861A1/en
Priority to EP07741682.4A priority patent/EP2009285B1/en
Publication of WO2007123074A1 publication Critical patent/WO2007123074A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0284Constructional details, e.g. reservoirs in the casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps

Definitions

  • the present invention relates to a compressor used in, for example, an air conditioner or a refrigerator.
  • a compressor includes a hermetic container, a compression element disposed in the hermetic container, and a motor disposed in the hermetic container and driving the compression element via a shaft.
  • An oil reservoir portion in which lubricating oil was accumulated was formed at the bottom of the closed container (see Japanese Patent Publication No. 2003-262192).
  • a compressor according to the present invention provides:
  • a compression element disposed in the sealed container
  • a motor disposed in the sealed container and driving the compression element via a shaft;
  • the stator core of the motor has a plurality of oil return passages penetrating one surface of the stator core on the oil reservoir portion side and the other surface of the stator core on the opposite side of the oil reservoir portion,
  • the hydraulic diameter of each of the oil return passages is 5 mm or more, and the ratio of the total area of the plurality of oil return passages to the area of a virtual circle whose diameter is the maximum outer diameter of the stator core is 5% to 15 It is characterized by%.
  • the hydraulic diameter of each of the oil return passages is 5 mm or more, and a virtual circle whose diameter is the maximum outer diameter of the stator core. Since the ratio of the total area of the plurality of oil return passages to the area is 5% to 15%, the lubricating oil accumulated on the other surface side of the stator core is passed through the plurality of oil return passages to the stator core. It is possible to return to the oil sump portion on the one surface side, and it is possible to prevent the oil sump portion from being cut off. At the same time, the cross-sectional area of the stator core can be ensured, and motor efficiency can be maintained. In particular, when diacid carbon is used as the refrigerant, a lubricating oil having a high viscosity is used, but the lubricating oil can be effectively returned to the oil reservoir.
  • the stator core is disposed on a radially outer side of the rotor of the motor, and the oil return passage is on an outer peripheral side of the stator core.
  • the oil return passage is on the outer peripheral side of the stator core, it adheres to the lubricating oil blown radially outward by the rotor or the inner surface of the sealed container. Lubricating oil can be effectively guided to the oil return passage, and the oil level of the oil reservoir can be more reliably prevented.
  • the refrigerant in the sealed container is carbon dioxide.
  • the refrigerant in the sealed container is carbon dioxide
  • high-viscosity lubricating oil is used.
  • the oil reservoir is effectively lubricated. Oil can be returned.
  • each of the oil return portions is provided on the other surface of the stator core.
  • the hydraulic diameter of the passage is 5 mm or more, and the ratio of the total area of the plurality of oil return passages to the area of a virtual circle whose diameter is the maximum outer diameter of the stator core is 5% to 15%. While the motor efficiency is maintained, it is possible to prevent the oil reservoir from being cut off.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of a compressor of the present invention.
  • FIG. 2 is a plan view of the main part of the compressor.
  • FIG. 3 is a cross-sectional view of the vicinity of the compressor motor.
  • FIG. 4 is an enlarged view of part A in FIG.
  • FIG. 5 is a graph showing the relationship between oil level breakage and motor efficiency, hydraulic diameter and area ratio.
  • FIG. 6A is a graph showing the relationship between the area ratio and the motor efficiency reduction rate.
  • FIG. 6B is a graph showing the relationship between the area ratio and the oil level height reduction rate.
  • FIG. 7A is a graph showing the relationship between hydraulic diameter and motor efficiency reduction rate.
  • FIG. 7B is a graph showing the relationship between hydraulic diameter and oil level height reduction rate.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of a compressor according to the present invention.
  • the compressor includes a hermetic container 1, a compression element 2 disposed in the hermetic container 1, and a motor 3 disposed in the hermetic container 1 and driving the compression element 2 via a shaft 12. ing.
  • This compressor is a so-called vertical high-pressure dome-type rotary compressor, in which the compression element 2 is placed down and the motor 3 is placed up in the sealed container 1.
  • the rotor 6 of the motor 3 drives the compression element 2 via the shaft 12.
  • the compression element 2 sucks refrigerant gas from the accumulator 10 through the suction pipe 11.
  • This refrigerant gas is obtained by controlling a condenser, an expansion mechanism, and an evaporator (not shown) constituting an air conditioner as an example of a refrigeration system together with the compressor.
  • the refrigerant gas is carbon dioxide and has a high pressure of about 12 MPa in the sealed container 1.
  • a refrigerant such as R410A or R22 may be used as the refrigerant.
  • the compressor discharges the compressed high-temperature and high-pressure refrigerant gas from the compression element 2 so as to fill the inside of the sealed container 1, and the gap between the stator 5 of the motor 3 and the rotor 6 is filled.
  • the motor 3 is cooled through the gap, and then discharged from the discharge pipe 13 provided on the upper side of the motor 3 to the outside.
  • An oil reservoir 9 in which lubricating oil is stored is formed at a lower portion of the high-pressure region in the closed container 1. This lubricating oil moves from the oil reservoir 9 through the oil passage (not shown!) Provided in the shaft 12 to a sliding part such as a bearing of the compression element 2 or the motor 3. To lubricate the sliding part.
  • a lubricating oil having a high viscosity is used as the lubricating oil.
  • a lubricating oil of 5 to 300 cSt at a viscosity of 0 ° C is used.
  • This lubricating oil is, for example, a polyalkylene glycol oil (such as polyethylene glycol or polypropylene glycol), an ether oil, an ester oil, or a mineral oil.
  • the compression element 2 includes a cylinder 21 attached to the inner surface of the hermetic container 1, an upper end plate member 50 and a lower end plate attached to the upper and lower open ends of the cylinder 21, respectively. Member 60.
  • a cylinder chamber 22 is formed by the cylinder 21, the upper end plate member 50 and the lower end plate member 60.
  • the upper end plate member 50 includes a disk-shaped main body 51 and a boss 52 provided upward in the center of the main body 51.
  • the main body 51 and the boss 52 are inserted through the shaft 12.
  • the main body 51 is provided with a discharge port 5 la communicating with the cylinder chamber 22.
  • a discharge valve 31 is attached to the main body 51 so that the main body 51 is positioned on the opposite side of the cylinder 21.
  • the discharge valve 31 is, for example, a reed valve, and opens and closes the discharge port 51a.
  • a cup-type muffler cover 40 is attached to the main body 51 so as to cover the discharge valve 31 on the side opposite to the cylinder 21.
  • the muffler cover 40 is fixed to the main body 51 by a fixing member 35 (such as a bolt).
  • the muffler cover 40 is passed through the boss portion 52 described above.
  • a muffler chamber 42 is formed by the muffler cover 40 and the upper end plate member 50. To do. The muffler chamber 42 and the cylinder chamber 22 are communicated with each other through the discharge port 51a.
  • the muffler cover 40 has a hole 43.
  • the hole 43 communicates the muffler chamber 42 with the outside of the muffler cover 40.
  • the lower end plate member 60 includes a disk-shaped main body 61 and a boss 62 provided downward in the center of the main body 61.
  • the main body 61 and the boss 62 are inserted into the shaft 12!
  • one end of the shaft 12 is supported by the upper end plate member 50 and the lower end plate member 60. That is, the shaft 12 is cantilevered. One end (support end side) of the shaft 12 enters the inside of the cylinder chamber 22.
  • An eccentric pin 26 is provided on the support end side of the shaft 12 so as to be positioned in the cylinder chamber 22 on the compression element 2 side.
  • the eccentric pin 26 is fitted to the roller 27.
  • the roller 27 is disposed in the cylinder chamber 22 so as to be capable of revolving, and is configured so as to perform a compression action by the revolving motion of the roller 27.
  • one end of the shaft 12 is supported by the housing 7 of the compression element 2 on both sides of the eccentric pin 26.
  • the housing 7 includes the upper end plate member 50 and the lower end plate member 60.
  • the cylinder chamber 22 is partitioned by a blade 28 provided integrally with the roller 27. That is, in the chamber on the right side of the blade 28, the suction pipe 11 opens on the inner surface of the cylinder chamber 22 to form a suction chamber (low pressure chamber) 22a. On the other hand, in the chamber on the left side of the blade 28, the discharge port 51a (shown in FIG. 1) opens on the inner surface of the cylinder chamber 22 to form a discharge chamber (high pressure chamber) 22b.
  • Semi-cylindrical bushes 25, 25 are in intimate contact with both surfaces of the blade 28 for sealing.
  • the blade 28 and the bushes 25, 25 are lubricated with the lubricating oil.
  • the eccentric pin 26 rotates eccentrically with the shaft 12, and the roller 27 fitted to the eccentric pin 26 is connected to the outer peripheral surface of the roller 27 by the inner peripheral surface of the cylinder chamber 22. Revolves in contact with.
  • the refrigerant gas discharged from the discharge port 51 a is discharged to the outside of the muffler cover 40 via the muffler chamber 42.
  • the motor 3 includes the rotor 6 and the stator 5 disposed on the radially outer side of the rotor 6 via an air gap.
  • the rotor 6 includes a rotor main body 610 and a magnet 620 embedded in the rotor main body 610.
  • the rotor body 610 has a cylindrical shape, and is made of laminated electromagnetic steel plates, for example.
  • the shaft 12 is attached to the central hole of the rotor body 610.
  • the magnet 620 is a flat permanent magnet.
  • the six magnets 620 are arranged in the circumferential direction of the rotor main body 610 at equally spaced center angles.
  • the stator 5 includes a stator core 510 and a coil 520 wound around the stator core 510. In FIG. 3, a part of the coil 520 is omitted.
  • the stator core 510 has an annular portion 511, and nine teeth 512 that protrude from the inner peripheral surface of the annular portion 511 radially inward and are arranged at equal intervals in the circumferential direction.
  • the stator core 510 also has a plurality of laminated steel plate forces.
  • the coil 520 is a so-called concentrated winding which is wound around each of the teeth 512 and is not wound around the plurality of teeth 512.
  • the motor 3 is a so-called 6-pole 9-slot.
  • the rotor 6 is rotated together with the shaft 12 by an electromagnetic force generated in the stator 5 by passing a current through the coil 520.
  • the stator core 510 passes through one surface (lower surface) 510a of the stator core 510 on the oil reservoir 9 side and the other surface (upper surface) 5 10b of the stator core 510 on the opposite side of the oil reservoir 9.
  • the oil return passage 530 is on the outer peripheral side of the stator core 510.
  • the oil return passage 530 is formed by a so-called core cut such as a concave groove or a D cut surface formed on the outer peripheral surface of the stator core 510. That is, the oil return passage 530 is a space surrounded by the inner surface of the core cut and the inner peripheral surface lb of the sealed container 1.
  • the oil return passage 530 is disposed on the radially outer side of each of the teeth 512, and there are nine as the number of the teeth 512.
  • the oil return passage 530 is formed in a substantially rectangular shape when viewed from the direction of the central axis la of the sealed container 1.
  • the hydraulic diameter of each of the oil return passages 530 is 5 mm or more, and the plurality of the above-mentioned plurality of areas with respect to the area of a virtual circle whose diameter is the maximum outer diameter of the stator core 510
  • area ratio The ratio of the total area of the oil return passage 530 (hereinafter referred to as area ratio) is 5% to 15%.
  • the hydraulic diameter of the oil return passage 530 is, as shown in FIG. 4, the area of the oil return passage 530 on the other surface 510b as S, and the oil return on the other surface 510b.
  • S the area of the oil return passage 530 on the other surface 510b
  • L the circumference of the passage 530
  • FIG. 4 is an enlarged view of part A in FIG.
  • the area S of the oil return passage 530 is an area surrounded by the inner surface of the concave groove of the stator core 510 and the inner peripheral surface lb of the hermetic container 1 as indicated by oblique lines in FIG. .
  • the circumferential length L of the oil return passage 530 is calculated by combining the length of the inner surface of the upper groove of the stator core 510 and the length of the inner circumferential surface lb of the sealed container 1 as shown by the thick line in FIG. It is the obtained value.
  • the virtual circle whose diameter is the maximum outer diameter of the stator core 510 coincides with the inner peripheral surface lb of the hermetic container 1 as shown in FIG. In other words, the area of this imaginary circle coincides with the cross-sectional area inside the sealed container 1 on the other surface 510b.
  • the total area of the plurality of oil return passages 530 refers to the total number of areas S of the oil return passages 530 on the other surface 510b.
  • the hydraulic diameter of each oil return passage 530 is 5 mm or more, and the area ratio is 5% to 15%. Therefore, the lubricating oil that flows to the downstream side (upper side) of the motor 3 together with the refrigerant gas and accumulates on the other surface 510b side of the stator core 510 passes through the plurality of oil return passages 530 to the stator core. The oil can be returned to the oil reservoir 9 on the one surface 510a side of 510, and the oil level of the oil reservoir 9 can be prevented from running out. And this oil level cut prevention Thus, the lubricating oil in the oil reservoir 9 can be effectively sent to the sliding part such as the bearing of the compression element 2 and the motor 3 through the shaft 12, and the reliability of the compressor can be improved. improves.
  • the sectional area of the stator core 510 can be secured, and the motor efficiency can be maintained.
  • each oil return passage 530 when the hydraulic diameter of each oil return passage 530 is smaller than 5 mm, the planar shape of the oil return passage 530 becomes, for example, a slit shape, and the lubricating oil is mixed with the stator core due to viscosity. The oil adheres to the other surface 510b of 510, does not move down the oil return passage 530, and does not move to the oil reservoir 9 described above. That is, there is a problem of running out of oil.
  • the hydraulic diameter of each oil return passage 530 when the hydraulic diameter of each oil return passage 530 is larger than 15 mm, the effective surface area of the annular portion 511 of the stator core 510 becomes small, resulting in a problem that the motor efficiency is lowered.
  • the area ratio is smaller than 5%, the quantity of the oil return passage 530 decreases, and the lubricating oil cannot be effectively returned to the oil reservoir 9 and the oil level is cut. There's a problem.
  • the area ratio is larger than 15%, the quantity and area of the oil return passage 530 are increased, and the surface area of the stator core 510 is decreased, resulting in a problem that the motor efficiency is lowered.
  • the hydraulic diameter of each of the oil return passages 530 is preferably 20 mm or less (more preferably 15 mm or less), and the cross-sectional area of the stator core 510 can be more reliably ensured. Efficiency can be maintained more reliably.
  • the oil return passage 530 is on the outer peripheral side of the stator core 510, the oil return passage 530 is formed on the lubricating oil blown radially outward by the port 6 or the inner peripheral surface lb of the sealed container 1.
  • the adhering lubricating oil can be effectively guided to the oil return passage 530, and the oil level of the oil reservoir 9 can be more reliably prevented.
  • FIG. 5 shows the relationship between the oil level breakage and motor efficiency, and the hydraulic diameter and area ratio.
  • the horizontal axis shows the hydraulic diameter of each oil return passage, and the vertical axis shows the area ratio (ratio of the total area of the oil return passage to the stator core outer diameter area).
  • First region Zl that is, hydraulic diameter is 5mn! ⁇ 15mm and area ratio is 5% ⁇ 15
  • FIGS. 6A, 6B, 7A, and 7B are shown in FIGS. 6A, 6B, 7A, and 7B.
  • FIG. 6A shows the relationship between the area ratio (ratio of the total area of the oil return passage to the stator core outer diameter area) and the motor efficiency reduction rate.
  • the vertical axis shows the motor efficiency decrease rate, and the lower the vertical axis, the lower the motor efficiency. As shown in FIG. 6A, when the area ratio is larger than 15%, the motor efficiency is extremely lowered.
  • FIG. 6B shows the relationship between the area ratio (ratio of the total area of the oil return passage to the stator core outer diameter area) and the oil level height reduction rate.
  • the vertical axis shows the oil level drop rate, and the lower the vertical axis, the lower the oil level.
  • the area ratio is less than 5%, the oil level is extremely lowered.
  • the area ratio (ratio of the total area of the oil return passage Z outer diameter area of the stator core) needs to be smaller than 15%.
  • the area ratio should be greater than 5%.
  • FIG. 7A shows the relationship between the hydraulic diameter of each oil return passage and the motor efficiency reduction rate.
  • the vertical axis shows the motor efficiency decrease rate, and the lower the vertical axis, the lower the motor efficiency.
  • the hydraulic diameter is larger than 15mm, there will be a problem with motor efficiency. come.
  • FIG. 7B shows the relationship between the hydraulic diameter of each oil return passage and the oil level height reduction rate.
  • the vertical axis shows the oil level drop rate, and the lower the vertical axis, the lower the oil level. As shown in Fig. 7B, if the hydraulic diameter is smaller than 5mm, the oil level is extremely lowered.
  • the hydraulic diameter should be less than 15mm.
  • the hydraulic diameter needs to be larger than 5mm.
  • the compression element 2 may be a rotary type in which a roller and a blade are separate bodies.
  • a scroll type or a reciprocating type may be used.
  • the compression element 2 may be a two-cylinder type having two cylinder chambers.
  • the coil 520 may be distributed over the plurality of teeth 512 as well as any distributed winding! /.
  • the compression element 2 may be disposed on the upper side and the motor 3 may be disposed on the lower side.
  • the oil return passage 530 may be provided on the inner peripheral side of the stator core 510, or may be provided in a central portion between the inner peripheral surface and the outer peripheral surface of the stator core 510. Further, the oil return passages 530 may be provided at any positions in the circumferential direction of the stator core 510, and may be provided at equal pitches or unequal pitches.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

 モータ3のステータコア510は、一面510aと他面510bとを貫通する複数の油戻り通路530を有する。上記ステータコア510の上記他面510bにおいて、上記各油戻り通路530の水力直径は、5mm以上であり、かつ、上記ステータコア510の最大外径を直径とする仮想円の面積に対する上記複数の油戻り通路530の総面積の割合は、5%~15%である。したがって、上記ステータコア510の上記他面510b側に溜まった潤滑油を、上記複数の油戻り通路530を介して、油溜まり部9に戻すことができて、上記油溜まり部9の油面切れを防止できる。同時に、上記ステータコア510の断面積を確保できて、モータ効率を維持できる。

Description

明 細 書
圧縮機
技術分野
[0001] この発明は、例えば空気調和機や冷蔵庫等に用いられる圧縮機に関する。
背景技術
[0002] 従来、圧縮機としては、密閉容器と、この密閉容器内に配置された圧縮要素と、上 記密閉容器内に配置され、上記圧縮要素をシャフトを介して駆動するモータとを備え 、上記密閉容器の底部には、潤滑油が溜められた油溜まり部が形成されていた (特 開 2003— 262192号公報参照)。
発明の開示
発明が解決しょうとする課題
[0003] しかしながら、上記従来の圧縮機では、上記モータの上部と下部とを貫通する通路 力 S小さいので、上記モータの上部に溜まった潤滑油は、上記モータよりも下側にある 上記油溜まり部に戻りに《なって、上記油溜まり部の油面切れが発生する問題があ つた。この油面切れによって、上記油溜まり部の潤滑油を、上記シャフトを介して、上 記圧縮要素や上記モータのベアリング等の摺動部へ、有効に送ることができず、圧 縮機の信頼性が低下していた。特に、冷媒として二酸ィ匕炭素を用いる場合、潤滑油 として高い粘度の潤滑油を用いることになるため、上記潤滑油は、上記油溜まり部に 、一層戻りにくくなつていた。
[0004] そこで、この発明の課題は、モータ効率を維持したまま、上記油溜まり部の油面切 れを防止する圧縮機を提供することにある。
課題を解決するための手段
[0005] 上記課題を解決するため、この発明の圧縮機は、
油溜まり部を有する密閉容器と、
この密閉容器内に配置された圧縮要素と、
上記密閉容器内に配置され、上記圧縮要素をシャフトを介して駆動するモータと を備え、 上記モータのステータコアは、上記油溜まり部側にある上記ステータコアの一面と 上記油溜まり部と反対側にある上記ステータコアの他面とを貫通する複数の油戻り通 路を有し、
上記ステータコアの上記他面において、
上記各油戻り通路の水力直径は、 5mm以上であり、かつ、上記ステータコアの最 大外径を直径とする仮想円の面積に対する上記複数の油戻り通路の総面積の割合 は、 5%〜 15%であることを特徴としている。
[0006] この発明の圧縮機によれば、上記ステータコアの上記他面において、上記各油戻り 通路の水力直径は、 5mm以上であり、かつ、上記ステータコアの最大外径を直径と する仮想円の面積に対する上記複数の油戻り通路の総面積の割合は、 5%〜15% であるので、上記ステータコアの上記他面側に溜まった潤滑油を、上記複数の油戻り 通路を介して、上記ステータコアの上記一面側の上記油溜まり部に戻すことができて 、上記油溜まり部の油面切れを防止できる。同時に、上記ステータコアの断面積を確 保できて、モータ効率を維持できる。特に、冷媒として二酸ィ匕炭素を用いる場合、高 い粘度の潤滑油を用いることになるが、上記油溜まり部に、有効に、潤滑油を戻すこ とがでさる。
[0007] また、一実施形態の圧縮機では、上記ステータコアは、上記モータのロータの径方 向外側に配置され、上記油戻り通路は、上記ステータコアの外周側にある。
[0008] この実施形態の圧縮機によれば、上記油戻り通路は、上記ステータコアの外周側 にあるので、上記ロータによって径方向外側に飛ばされた潤滑油や、上記密閉容器 の内面に付着した潤滑油を、有効に、上記油戻り通路に導くことができて、上記油溜 まり部の油面切れを一層確実に防止できる。
[0009] また、一実施形態の圧縮機では、上記密閉容器内の冷媒は、二酸化炭素である。
[0010] この実施形態の圧縮機によれば、上記密閉容器内の冷媒は、二酸化炭素であるの で、高い粘度の潤滑油を用いることになるが、上記油溜まり部に、有効に、潤滑油を 戻すことができる。
発明の効果
[0011] この発明の圧縮機によれば、上記ステータコアの上記他面において、上記各油戻り 通路の水力直径は、 5mm以上であり、かつ、上記ステータコアの最大外径を直径と する仮想円の面積に対する上記複数の油戻り通路の総面積の割合は、 5%〜15% であるので、モータ効率を維持したまま、上記油溜まり部の油面切れを防止できる。 図面の簡単な説明
[0012] [図 1]本発明の圧縮機の一実施形態を示す縦断面図である。
[図 2]圧縮機の要部の平面図である。
[図 3]圧縮機のモータ付近の横断面図である。
[図 4]図 3の A部の拡大図である。
[図 5]油面切れおよびモータ効率と、水力直径および面積比との関係を示すグラフで ある。
[図 6A]面積比とモータ効率低下率との関係を示すグラフである。
[図 6B]面積比と油面高さ低下率との関係を示すグラフである。
[図 7A]水力直径とモータ効率低下率との関係を示すグラフである。
[図 7B]水力直径と油面高さ低下率との関係を示すグラフである。
発明を実施するための最良の形態
[0013] 以下、この発明を図示の実施の形態により詳細に説明する。
[0014] 図 1は、この発明の圧縮機の一実施形態である縦断面図を示している。この圧縮機 は、密閉容器 1と、この密閉容器 1内に配置された圧縮要素 2と、上記密閉容器 1内 に配置され、上記圧縮要素 2をシャフト 12を介して駆動するモータ 3とを備えている。
[0015] この圧縮機は、いわゆる縦型の高圧ドーム型のロータリ圧縮機であって、上記密閉 容器 1内に、上記圧縮要素 2を下に、上記モータ 3を上に、配置している。このモータ 3のロータ 6によって、上記シャフト 12を介して、上記圧縮要素 2を駆動するようにして いる。
[0016] 上記圧縮要素 2は、アキュームレータ 10から吸入管 11を通して冷媒ガスを吸入す る。この冷媒ガスは、この圧縮機とともに、冷凍システムの一例としての空気調和機を 構成する図示しない凝縮器、膨張機構、蒸発器を制御することによって得られる。
[0017] この冷媒ガスは、二酸化炭素であり、上記密閉容器 1内で、約 12MPaの高圧にな る。なお、冷媒として、 R410Aや R22等の冷媒を用いてもよい。 [0018] 上記圧縮機は、圧縮した高温高圧の冷媒ガスを、上記圧縮要素 2から吐出して密 閉容器 1の内部に満たすと共に、上記モータ 3のステータ 5と上記ロータ 6との間の隙 間を通して、上記モータ 3を冷却した後、上記モータ 3の上側に設けられた吐出管 13 から外部に吐出するようにして 、る。
[0019] 上記密閉容器 1内の高圧領域の下部には、潤滑油が溜められた油溜まり部 9が形 成されている。この潤滑油は、上記油溜まり部 9から、上記シャフト 12に設けられた( 図示しな!、)油通路を通って、上記圧縮要素 2や上記モータ 3のベアリング等の摺動 部に移動して、この摺動部を潤滑する。
[0020] 冷媒として二酸ィ匕炭素を用いる場合、潤滑油として高い粘度の潤滑油を用いる。こ の潤滑油としては、粘度力 0°Cにおいて 5〜300cStの潤滑油を用いる。この潤滑 油は、例えば、(ポリエチレングリコールやポリプロピレングリコール等の)ポリアルキレ ングリコール油や、エーテル油や、エステル油や、鉱油である。
[0021] 上記圧縮要素 2は、上記密閉容器 1の内面に取り付けられるシリンダ 21と、このシリ ンダ 21の上下の開口端のそれぞれに取り付けられている上側の端板部材 50および 下側の端板部材 60とを備える。上記シリンダ 21、上記上側の端板部材 50および上 記下側の端板部材 60によって、シリンダ室 22を形成する。
[0022] 上記上側の端板部材 50は、円板状の本体部 51と、この本体部 51の中央に上方へ 設けられたボス部 52とを有する。上記本体部 51および上記ボス部 52は、上記シャフ ト 12に挿通されている。上記本体部 51には、上記シリンダ室 22に連通する吐出口 5 laが設けられている。
[0023] 上記本体部 51に関して上記シリンダ 21と反対側に位置するように、上記本体部 51 に吐出弁 31が取り付けられている。この吐出弁 31は、例えば、リード弁であり、上記 吐出口 51aを開閉する。
[0024] 上記本体部 51には、上記シリンダ 21と反対側に、上記吐出弁 31を覆うように、カツ プ型のマフラカバー 40が取り付けられている。このマフラカバー 40は、(ボルト等の) 固定部材 35によって、上記本体部 51に固定されている。上記マフラカバー 40は、上 記ボス部 52に揷通されている。
[0025] 上記マフラカバー 40および上記上側の端板部材 50によって、マフラ室 42を形成 する。上記マフラ室 42と上記シリンダ室 22とは、上記吐出口 51aを介して、連通され ている。
[0026] 上記マフラカバー 40は、孔部 43を有する。この孔部 43は、上記マフラ室 42と上記 マフラカバー 40の外側とを連通する。
[0027] 上記下側の端板部材 60は、円板状の本体部 61と、この本体部 61の中央に下方へ 設けられたボス部 62とを有する。上記本体部 61および上記ボス部 62は、上記シャフ 卜 12【こ挿通されて!/ヽる。
[0028] 要するに、上記シャフト 12の一端部は、上記上側の端板部材 50および上記下側の 端板部材 60に支持されている。すなわち、上記シャフト 12は、片持ちである。上記シ ャフト 12の一端部(支持端側)は、上記シリンダ室 22の内部に進入している。
[0029] 上記シャフト 12の支持端側には、上記圧縮要素 2側の上記シリンダ室 22内に位置 するように、偏心ピン 26を設けている。この偏心ピン 26は、ローラ 27に嵌合している。 このローラ 27は、上記シリンダ室 22内で、公転可能に配置され、このローラ 27の公 転運動で圧縮作用を行うようにして!/、る。
[0030] 言い換えると、上記シャフト 12の一端部は、上記偏心ピン 26の両側において、上 記圧縮要素 2のハウジング 7で支持されている。このハウジング 7は、上記上側の端板 部材 50および上記下側の端板部材 60を含む。
[0031] 次に、上記シリンダ室 22の圧縮作用を説明する。
[0032] 図 2に示すように、上記ローラ 27に一体に設けたブレード 28で上記シリンダ室 22内 を仕切っている。すなわち、上記ブレード 28の右側の室は、上記吸入管 11が上記シ リンダ室 22の内面に開口して、吸入室 (低圧室) 22aを形成している。一方、上記ブ レード 28の左側の室は、(図 1に示す)上記吐出口 51aが上記シリンダ室 22の内面 に開口して、吐出室(高圧室) 22bを形成している。
[0033] 上記ブレード 28の両面には、半円柱状のブッシュ 25, 25が密着して、シールを行 つている。上記ブレード 28と上記ブッシュ 25, 25との間は、上記潤滑油で潤滑を行 つている。
[0034] そして、上記偏心ピン 26が、上記シャフト 12と共に、偏心回転して、上記偏心ピン 2 6に嵌合した上記ローラ 27が、このローラ 27の外周面を上記シリンダ室 22の内周面 に接して、公転する。
[0035] 上記ローラ 27が、上記シリンダ室 22内で公転するに伴って、上記ブレード 28は、こ のブレード 28の両側面を上記ブッシュ 25, 25によって保持されて進退動する。する と、上記吸入管 11から低圧の冷媒ガスを上記吸入室 22aに吸入して、上記吐出室 2 2bで圧縮して高圧にした後、(図 1に示す)上記吐出口 5 laから高圧の冷媒ガスを吐 出する。
[0036] その後、図 1に示すように、上記吐出口 51aから吐出された冷媒ガスは、上記マフラ 室 42を経由して、上記マフラカバー 40の外側に排出される。
[0037] 図 1と図 3に示すように、上記モータ 3は、上記ロータ 6と、このロータ 6の径方向外側 にエアギャップを介して配置された上記ステータ 5とを有する。
[0038] 上記ロータ 6は、ロータ本体 610と、このロータ本体 610に埋設された磁石 620とを 有する。上記ロータ本体 610は、円筒形状であり、例えば積層された電磁鋼板からな る。上記ロータ本体 610の中央の孔部には、上記シャフト 12が取り付けられている。 上記磁石 620は、平板状の永久磁石である。 6つの上記磁石 620力 上記ロータ本 体 610の周方向に等間隔の中心角度で、配列されている。
[0039] 上記ステータ 5は、ステータコア 510と、このステータコア 510に巻かれたコイル 520 とを有する。なお、図 3では、上記コイル 520を一部省略して、描いている。
[0040] 上記ステータコア 510は、環状部 511と、この環状部 511の内周面カも径方向内側 に突出すると共に周方向に等間隔に配列された 9つのティース 512とを有する。上記 ステータコア 510は、積層された複数の鋼板力もなる。上記コイル 520は、上記各ティ ース 512にそれぞれ巻かれて複数の上記ティース 512に渡って巻かれていない、い わゆる集中巻きである。
[0041] 上記モータ 3は、いわゆる 6極 9スロットである。上記コイル 520に電流を流して上記 ステータ 5に発生する電磁力によって、上記ロータ 6を、上記シャフト 12と共に、回転 させる。
[0042] 上記ステータコア 510は、上記油溜まり部 9側にある上記ステータコア 510の一面( 下面) 510aと上記油溜まり部 9と反対側にある上記ステータコア 510の他面(上面) 5 10bとを貫通する複数の油戻り通路 530を有する。 [0043] 上記油戻り通路 530は、上記ステータコア 510の外周側にある。上記油戻り通路 5 30は、上記ステータコア 510の外周面に形成された凹溝や Dカット面等のいわゆるコ ァカットによって、形成されている。つまり、上記油戻り通路 530は、上記コアカットの 内面と上記密閉容器 1の内周面 lbとで囲まれた空間である。
[0044] 上記油戻り通路 530は、上記各ティース 512の径方向外側に、配設され、上記ティ ース 512の数と同じ 9つある。上記油戻り通路 530は、上記密閉容器 1の中心軸 la方 向からみて、略長方形に形成されている。
[0045] 上記ステータコア 510の上記他面 510bにおいて、上記各油戻り通路 530の水力 直径は、 5mm以上であり、かつ、上記ステータコア 510の最大外径を直径とする仮 想円の面積に対する上記複数の油戻り通路 530の総面積の割合 (以下、面積比とい う)は、 5%〜15%である。
[0046] 上記油戻り通路 530の水力直径とは、図 4に示すように、上記他面 510b上での上 記油戻り通路 530の面積を Sとし、上記他面 510b上での上記油戻り通路 530の周長 を Lとしたとき、 4SZLであらわされる。図 4は、図 3の A部の拡大図である。
[0047] 上記油戻り通路 530の面積 Sは、図 4の斜線で示すように、上記ステータコア 510 の上記凹溝の内面と上記密閉容器 1の上記内周面 lbとで囲まれた面積である。上 記油戻り通路 530の周長 Lは、図 4の太線で示すように、上記ステータコア 510の上 記凹溝の内面の長さと上記密閉容器 1の上記内周面 lbの長さとをカ卩えた値である。
[0048] 上記ステータコア 510の最大外径を直径とする仮想円とは、図 3に示すように、上記 密閉容器 1の上記内周面 lbに一致する。つまり、この仮想円の面積とは、上記他面 5 10b上での上記密閉容器 1内側の断面積に一致する。上記複数の油戻り通路 530 の総面積とは、上記他面 510b上での上記各油戻り通路 530の面積 Sの総数をいう。
[0049] 上記構成の圧縮機によれば、上記ステータコア 510の上記他面 510bにおいて、上 記各油戻り通路 530の水力直径は、 5mm以上であり、かつ、上記面積比は、 5%〜 15%であるので、冷媒ガスとともに上記モータ 3の下流側(上側)に流れて上記ステ ータコア 510の上記他面 510b側に溜まった潤滑油を、上記複数の油戻り通路 530 を介して、上記ステータコア 510の上記一面 510a側の上記油溜まり部 9に戻すこと ができて、上記油溜まり部 9の油面切れを防止できる。そして、この油面切れの防止 によって、上記油溜まり部 9の潤滑油を、上記シャフト 12を介して、上記圧縮要素 2や 上記モータ 3のベアリング等の摺動部へ、有効に送ることができて、圧縮機の信頼性 が向上する。
[0050] 同時に、上記ステータコア 510の断面積を確保できて、モータ効率を維持できる。
特に、冷媒として二酸ィ匕炭素を用いる場合、高い粘度の潤滑油を用いることになるが 、上記油溜まり部 9に、有効に、潤滑油を戻すことができる。
[0051] ここで、上記ステータコア 510の上記他面 510b上のみで、上記各油戻り通路 530 の水力直径が 5mmを満たすことで、潤滑油は、自重により粘性に打ち勝って、上記 油戻り通路 530を下降して、上記油溜まり部 9に移動する。
[0052] これに対して、上記各油戻り通路 530の水力直径が 5mmよりも小さいと、上記油戻 り通路 530の平面形状が例えばスリット状になって、潤滑油は、粘性によって上記ス テータコア 510の上記他面 510bに付着し、上記油戻り通路 530を下降しないで、上 記油溜まり部 9に移動しない。つまり、油面切れを起こす問題がある。一方、上記各 油戻り通路 530の水力直径が 15mmよりも大きいと、上記ステータコア 510の上記環 状部 511の有効表面積が小さくなつて、モータ効率が低下する問題がある。
[0053] また、上記面積比が 5%よりも小さいと、上記油戻り通路 530の数量が少なくなつて 、潤滑油を上記油溜まり部 9に有効に戻すことができず、油面切れを起こす問題があ る。一方、上記面積比が 15%よりも大きいと、上記油戻り通路 530の数量や面積が 大きくなり、上記ステータコア 510の表面積が小さくなつて、モータ効率が低下する問 題がある。
[0054] なお、本発明では、上記各油戻り通路 530の水力直径は、 20mm以下であるのが 好ましく(さらに好ましくは 15mm以下)、上記ステータコア 510の断面積を一層確実 に確保できて、モータ効率を一層確実に維持できる。
[0055] また、上記油戻り通路 530は、上記ステータコア 510の外周側にあるので、上記口 ータ 6によって径方向外側に飛ばされた潤滑油や、上記密閉容器 1の上記内周面 lb に付着した潤滑油を、有効に、上記油戻り通路 530に導くことができて、上記油溜ま り部 9の油面切れを一層確実に防止できる。
[0056] 次に、図 5に、油面切れおよびモータ効率と、水力直径および面積比との関係を示 す。横軸に、各油戻り通路の水力直径を示し、縦軸に、面積比 (ステータコア外径面 積に対する油戻り通路の総面積の割合)を示す。
[0057] 第 1領域 Zl、つまり、水力直径が 5mn!〜 15mmであり、かつ、面積比が 5%〜15
%であるとき、油面切れおよびモータ効率ともに、問題がない。
[0058] 第 2領域 Z2、つまり、水力直径が 15mmよりも大きぐかつ、面積比が 5%〜15%で あるとき、モータ効率に少しの問題がある力 油面切れに問題がない。
[0059] 第 3領域 Z3、つまり、水力直径が 5mm以上であり、かつ、面積比が 15%よりも大き いとき、油面切れに問題がないが、モータ効率に問題がある。
[0060] 第 4領域 Z4、つまり、水力直径が 5mmよりも小さいとき、および、面積比が 5%よりも 小さいときの少なくとも一方では、モータ効率に問題がないが、油面切れに問題があ る。
[0061] 次に、図 5のグラフの根拠を、図 6A、図 6B、図 7Aおよび図 7Bに示す。
[0062] 図 6Aは、面積比 (ステータコア外径面積に対する油戻り通路の総面積の割合)と、 モータ効率低下率との関係を示す。縦軸に、モータ効率低下率を示し、縦軸の下側 ほどモータ効率が低下している。そして、図 6Aから分力るように、面積比が 15%より も大きいと、モータ効率が極端に低下している。
[0063] 図 6Bは、面積比 (ステータコア外径面積に対する油戻り通路の総面積の割合)と、 油面高さ低下率との関係を示す。縦軸に、油面高さ低下率を示し、縦軸の下側ほど 油面高さが低下している。そして、図 6Bから分かるように、面積比が 5%よりも小さい と、油面高さが極端に低下している。
[0064] 言い換えると、油戻り通路総面積が大きいとモータ効率が低下する為に、面積比( 油戻り通路の総面積の割合 Zステータコア外径面積)は、 15%より小さな値が必要 である。また、油戻り通路総面積が小さいと油戻り性が悪くなるために、油面を確保で きない。したがって、面積比(油戻り通路の総面積の割合 Zステータコア外径面積) は、 5%より大きな値が必要である。
[0065] 図 7Aは、各油戻り通路の水力直径と、モータ効率低下率との関係を示す。縦軸に 、モータ効率低下率を示し、縦軸の下側ほどモータ効率が低下している。そして、図 7A力も分力るように、水力直径が 15mmよりも大きいと、モータ効率に問題が生じて くる。
[0066] 図 7Bは、各油戻り通路の水力直径と、油面高さ低下率との関係を示す。縦軸に、 油面高さ低下率を示し、縦軸の下側ほど油面高さが低下している。そして、図 7Bから 分力るように、水力直径が 5mmよりも小さいと、油面高さが極端に低下している。
[0067] 言い換えると、水力直径が大きいと上記ステータコア 510の環状部 511の表面積が 小さくなりモータ効率が低下する。したがって、水力直径は、 15mmより小さな値が必 要である。また、水力直径が小さいと油戻り性が悪くなるために、油面を確保できない 。したがって、水力直径は、 5mmより大きな値が必要である。
[0068] なお、この発明は上述の実施形態に限定されない。例えば、上記圧縮要素 2として 、ローラとブレードが別体であるロータリタイプでもよい。上記圧縮要素 2として、ロー タリタイプ以外に、スクロールタイプやレシプロタイプを用いてもよい。上記圧縮要素 2 として、 2つのシリンダ室を有する 2シリンダタイプでもよい。上記コイル 520を、上記 複数のティース 512にわたつて卷 、た、 、わゆる分布巻きとしてもよ!/、。
[0069] また、上記圧縮要素 2が上、上記モータ 3が下に配置されていてもよい。上記油戻り 通路 530を、上記ステータコア 510の内周側に設けてもよぐまたは、上記ステータコ ァ 510の内周面と外周面との間の中央部に設けてもよい。また、上記各油戻り通路 5 30は、上記ステータコア 510の周方向にどの位置に設けてもよぐまた、等ピッチまた は不等ピッチに設けてもよい。

Claims

請求の範囲
[1] 油溜まり部 (9)を有する密閉容器 (1)と、
この密閉容器 ( 1)内に配置された圧縮要素 (2)と、
上記密閉容器 (1)内に配置され、上記圧縮要素 (2)をシャフト(12)を介して駆動 するモータ(3)と
を備え、
上記モータ(3)のステータコア(510)は、上記油溜まり部(9)側にある上記ステータ コア(510)の一面(510a)と上記油溜まり部(9)と反対側にある上記ステータコア(51 0)の他面(510b)とを貫通する複数の油戻り通路(530)を有し、
上記ステータコア(510)の上記他面(510b)において、
上記各油戻り通路(530)の水力直径は、 5mm以上であり、かつ、上記ステータコ ァ(510)の最大外径を直径とする仮想円の面積に対する上記複数の油戻り通路(5 30)の総面積の割合は、 5%〜 15%であることを特徴とする圧縮機。
[2] 請求項 1に記載の圧縮機にお!ヽて、
上記ステータコア(510)は、上記モータ(3)のロータ(6)の径方向外側に配置され 上記油戻り通路(530)は、上記ステータコア(510)の外周側にあることを特徴とす る圧縮機。
[3] 請求項 1に記載の圧縮機にお!ヽて、
上記密閉容器 (1)内の冷媒は、二酸化炭素であることを特徴とする圧縮機。
PCT/JP2007/058246 2006-04-19 2007-04-16 圧縮機 WO2007123074A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES07741682.4T ES2594654T3 (es) 2006-04-19 2007-04-16 Compresor
KR1020087024661A KR101156261B1 (ko) 2006-04-19 2007-04-16 압축기
AU2007242125A AU2007242125B2 (en) 2006-04-19 2007-04-16 Compressor
US12/297,505 US20090100861A1 (en) 2006-04-19 2007-04-16 Compressor
EP07741682.4A EP2009285B1 (en) 2006-04-19 2007-04-16 Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-116226 2006-04-19
JP2006116226A JP5050393B2 (ja) 2006-04-19 2006-04-19 圧縮機

Publications (1)

Publication Number Publication Date
WO2007123074A1 true WO2007123074A1 (ja) 2007-11-01

Family

ID=38624974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058246 WO2007123074A1 (ja) 2006-04-19 2007-04-16 圧縮機

Country Status (8)

Country Link
US (1) US20090100861A1 (ja)
EP (1) EP2009285B1 (ja)
JP (1) JP5050393B2 (ja)
KR (1) KR101156261B1 (ja)
CN (1) CN101415948A (ja)
AU (1) AU2007242125B2 (ja)
ES (1) ES2594654T3 (ja)
WO (1) WO2007123074A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063470A (ja) * 2019-10-15 2021-04-22 ダイキン工業株式会社 ロータリ圧縮機

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758484B2 (ja) * 2008-01-24 2011-08-31 ダイキン工業株式会社 圧縮機
KR101462929B1 (ko) 2008-04-29 2014-11-19 엘지전자 주식회사 밀폐형 압축기
FR2998340A1 (fr) * 2012-11-19 2014-05-23 Danfoss Commercial Compressors Compresseur a spirale a vitesse variable.
KR101940682B1 (ko) 2015-04-07 2019-01-22 엘지이노텍 주식회사 스테이터 및 이를 포함하는 모터
JP6648785B2 (ja) * 2018-07-11 2020-02-14 株式会社富士通ゼネラル 圧縮機
CN112483430A (zh) 2019-09-12 2021-03-12 开利公司 离心压缩机和制冷装置
CN110863990B (zh) * 2019-11-19 2021-06-04 珠海格力节能环保制冷技术研究中心有限公司 压缩机、空调器
CN112855535A (zh) * 2019-11-27 2021-05-28 上海海立电器有限公司 压缩机气缸及包括其的压缩机
EP4148276A4 (en) * 2020-06-30 2023-11-08 Daikin Industries, Ltd. COMPRESSOR
JP7469405B2 (ja) 2022-08-25 2024-04-16 愛知電機株式会社 電動機および圧縮機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57129287A (en) * 1981-02-04 1982-08-11 Hitachi Ltd Enclosed compressor
JPH0865961A (ja) * 1994-08-23 1996-03-08 Toshiba Corp 密閉形圧縮機
JP2003262192A (ja) 2002-03-07 2003-09-19 Daikin Ind Ltd 密閉型圧縮機

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419144A (en) * 1992-11-30 1995-05-30 Mitsubishi Denki Kabushiki Kaisha Refrigeration device using hydrofluorocarbon refrigerant
US5355695A (en) * 1992-11-30 1994-10-18 Mitsubishi Denki Kabushiki Kaisha Refrigeration device using hydrofluorocarbon refrigerant
JP4005169B2 (ja) * 1997-04-11 2007-11-07 東芝キヤリア株式会社 圧縮機
TW552352B (en) * 1999-06-29 2003-09-11 Sanyo Electric Co Sealed rotary compressor
JP3936105B2 (ja) * 1999-08-11 2007-06-27 東芝キヤリア株式会社 圧縮機
JP2001073945A (ja) * 1999-08-31 2001-03-21 Sanyo Electric Co Ltd 密閉型電動圧縮機
US6590310B2 (en) * 2001-02-21 2003-07-08 Kabushiki Kaisha Moric Stator coil structure for revolving-field electrical machine and method of manufacturing same
EP1235327A3 (en) * 2001-02-21 2004-07-07 Kabushiki Kaisha Moric Stator coil structure for rotary electrical machine and method of manufacturing the same
TW568996B (en) * 2001-11-19 2004-01-01 Sanyo Electric Co Defroster of refrigerant circuit and rotary compressor for refrigerant circuit
ES2278678T3 (es) * 2001-11-27 2007-08-16 Rexroth Indramat Gmbh Motor de ca, sincronico, de campo de desplazamiento.
JP2003269335A (ja) * 2002-03-13 2003-09-25 Daikin Ind Ltd 回転式圧縮機
US6822364B2 (en) * 2002-07-30 2004-11-23 Asmo Co., Ltd. Brushless motor
JP2004201428A (ja) * 2002-12-19 2004-07-15 Matsushita Electric Ind Co Ltd 電動機
US6799956B1 (en) * 2003-04-15 2004-10-05 Tecumseh Products Company Rotary compressor having two-piece separator plate
US7116023B2 (en) * 2004-03-23 2006-10-03 Emerson Electric Co. End cap for interconnecting winding coils of a segmented stator to reduce phase-on-phase conditions and associated methods
US7628933B2 (en) * 2005-08-19 2009-12-08 Glenn D. Short Lubricating oil compositions using polyalkylene glycol derivatives

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57129287A (en) * 1981-02-04 1982-08-11 Hitachi Ltd Enclosed compressor
JPH0865961A (ja) * 1994-08-23 1996-03-08 Toshiba Corp 密閉形圧縮機
JP2003262192A (ja) 2002-03-07 2003-09-19 Daikin Ind Ltd 密閉型圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2009285A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063470A (ja) * 2019-10-15 2021-04-22 ダイキン工業株式会社 ロータリ圧縮機
US11835045B2 (en) 2019-10-15 2023-12-05 Daikin Industries, Ltd. Rotary compressor

Also Published As

Publication number Publication date
AU2007242125B2 (en) 2010-05-27
ES2594654T3 (es) 2016-12-21
EP2009285A1 (en) 2008-12-31
EP2009285B1 (en) 2016-09-14
AU2007242125A1 (en) 2007-11-01
KR20080099347A (ko) 2008-11-12
JP5050393B2 (ja) 2012-10-17
KR101156261B1 (ko) 2012-06-13
CN101415948A (zh) 2009-04-22
JP2007285266A (ja) 2007-11-01
US20090100861A1 (en) 2009-04-23
EP2009285A4 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
WO2007123074A1 (ja) 圧縮機
JP4225353B2 (ja) ステータ、モータおよび圧縮機
TWI284700B (en) Horizontal compressor
CN102138004A (zh) 旋转式二级压缩机
US20100074774A1 (en) Compressor
AU2007305528B2 (en) Compressor motor and compressor
JP3992071B1 (ja) 圧縮機
JP2008038862A (ja) 圧縮機
JP2008184931A (ja) モータおよび圧縮機
JP2008141805A (ja) 圧縮機
JP2009002352A (ja) 圧縮機
KR20090012848A (ko) 로터리식 압축기
KR101337079B1 (ko) 로터리식 2단 압축기
JP5157148B2 (ja) 圧縮機
EP1580433A2 (en) Multistage rotary compressor
JP2019035391A (ja) 圧縮機
JP4779937B2 (ja) 圧縮機
JP4548411B2 (ja) 圧縮機
KR101738454B1 (ko) 밀폐형 압축기
CN208024565U (zh) 压缩机
JP5688903B2 (ja) 冷凍サイクル装置
KR20090012854A (ko) 로터리식 2단 압축기
JP2008038766A (ja) 圧縮機
KR20090012852A (ko) 로터리식 2단 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741682

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780011876.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087024661

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2007741682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007741682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12297505

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007242125

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007242125

Country of ref document: AU

Date of ref document: 20070416

Kind code of ref document: A