[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007108537A1 - 冷凍装置、及び冷凍装置の分析装置 - Google Patents

冷凍装置、及び冷凍装置の分析装置 Download PDF

Info

Publication number
WO2007108537A1
WO2007108537A1 PCT/JP2007/056032 JP2007056032W WO2007108537A1 WO 2007108537 A1 WO2007108537 A1 WO 2007108537A1 JP 2007056032 W JP2007056032 W JP 2007056032W WO 2007108537 A1 WO2007108537 A1 WO 2007108537A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
circuit
loss
state
heat exchanger
Prior art date
Application number
PCT/JP2007/056032
Other languages
English (en)
French (fr)
Inventor
Tsuyoshi Yonemori
Yoshinari Sasaki
Takahiro Yamaguchi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to CN2007800089687A priority Critical patent/CN101400955B/zh
Priority to AU2007228009A priority patent/AU2007228009B2/en
Priority to EP07739473.2A priority patent/EP2003410A4/en
Priority to US12/225,485 priority patent/US8132419B2/en
Publication of WO2007108537A1 publication Critical patent/WO2007108537A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to a refrigeration apparatus having a function of analyzing the state of a refrigeration apparatus, and an analysis apparatus for a refrigeration apparatus.
  • a refrigeration apparatus including a refrigerant circuit that performs a vapor compression refrigeration cycle has a function of analyzing the state of the refrigeration apparatus.
  • This type of refrigeration apparatus is configured to analyze the state of the refrigeration apparatus, for example, by comparing the operating state in which the detected force of the temperature sensor or the pressure sensor is grasped with the normal operating state.
  • Patent Document 1 discloses an air conditioner that analyzes the state of a refrigeration apparatus using a Mollier diagram showing the relationship between pressure and entraumi to diagnose normality and abnormality of components.
  • the outdoor unit includes a compressor, a four-way valve, and an outdoor heat exchanger
  • the indoor unit includes an indoor heat exchanger as constituent devices.
  • the diagnosis device (controller) for the air conditioner includes a numerical value conversion means, a first input means, a first characteristic calculation means, a second characteristic calculation means, a characteristic diagnosis means, and a result display means.
  • the numerical value conversion means converts the temperature and pressure voltage values detected by the temperature sensor and the pressure sensor into numerical values.
  • the refrigerant amount of the outdoor unit and the indoor unit, the length of the connection pipe, and the like are input to the first input means.
  • the first characteristic calculation means creates a normal Mollier diagram based on the information obtained by the first input means and the numerical value conversion means.
  • the second characteristic calculation means creates a Mollier diagram during operation.
  • the characteristic diagnosis unit compares the Mollier diagram when the first characteristic calculation unit is normal and the Mollier diagram when the second characteristic calculation unit is operating, and identifies the failure location or the cause of the failure.
  • the result display means displays the contents of the diagnosis by the characteristic diagnosis means.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-133011
  • the comparative force between the Mollier diagram in the normal operating state and the Mollier diagram at the time of analysis is detected because of the difference between the normal operating state and the analysis at the time of analysis, the refrigerant discharged or the suction This is the pressure difference and temperature difference between the normal operating state and the analysis time for the refrigerant.
  • the numerical values that represent the difference between these normal operating conditions and analysis do not correspond only to the status of individual component devices. In addition, these figures have different units, so it is difficult to relate them to each other. Therefore, it was difficult to analyze the status of each component device individually.
  • the state of the components of the refrigeration apparatus other than the component equipment cannot be analyzed.
  • the present invention has been made in view of the strong point, and an object of the present invention is to provide a function capable of individually analyzing the states of circuit components connected to the refrigerant circuit and constituting the refrigerant circuit. It is providing the refrigeration apparatus which has.
  • a first invention is a refrigerant circuit configured by connecting circuit components including a compressor (30), a pressure reducing means (36, 39), and a plurality of heat exchangers (34, 37) ( 20) and a refrigeration apparatus (10) that performs a refrigeration cycle by circulating the refrigerant in the refrigerant circuit (20).
  • the refrigeration apparatus (10) detects the temperature and entropy of the refrigerant at the inlet and outlet of the compressor (30), the decompression means (36, 39), and the heat exchanger (34, 37).
  • the magnitude of the refrigerant energy change that occurs in each of the circuit components is calculated individually. And a change amount calculating means (52).
  • the second invention is the fluidic part (12, 14, 28, 75, 76b) in which the fluid exchanging heat with the refrigerant flows in the heat exchanger (34, 37) in the first invention, At least one of the circuit component and the fluid component (12, 14, 28, 75, 76b) Diagnostic means (54) for diagnosing the state of the part to be diagnosed based on the calculated value calculated by the calculating means (52).
  • the fan (12, 14) force for sending air to the heat exchanger (34, 37) is the fluid component (12, 14, 28, 75). , 76b), and the diagnosis means (54) uses the fan (12, 14) as the diagnosis target part and based on the calculated value calculated by the change amount calculation means (52) Diagnose the condition of 12,14).
  • the change amount calculation means (52) determines the magnitude of the refrigerant energy change generated in each of the circuit component parts.
  • the diagnosis means (54) diagnoses the state of the diagnosis target component based on the calculated value calculated as the loss value by the change amount calculation means (52).
  • the change amount calculating means (52) individually calculates a plurality of types of loss values generated in the heat exchangers (34, 37), and
  • the diagnosis means (54) is configured to determine the loss generated in each of the heat exchangers (34, 37) based on the calculated values for each of the plurality of types of losses calculated by the change amount calculation means (52). Diagnose the condition.
  • a sixth invention is the main circuit according to the fourth or fifth invention, wherein the refrigerant circuit (20) is provided with a compressor (30) for compressing the refrigerant to a high pressure of the refrigeration site. 66) and a plurality of branch circuits (67) connected in parallel to the main circuit (66), and a flow rate calculation means (56) for calculating the refrigerant flow rate of each of the branch circuits (67).
  • the change amount calculation means (52) calculates a value of loss generated in the circuit component using the refrigerant flow rate of each branch circuit (67) calculated by the flow rate calculation means (56).
  • the refrigerant circuit (20) includes a plurality of branch circuits (67) provided with the heat exchangers (34, 37).
  • the change amount calculating means (52) is a refrigerant flow rate of the branch circuit (67) for calculating the value of the loss generated in the heat exchanger (34, 37) of the branch circuit (67) by the flow rate calculating means (56). Calculate using.
  • the loss storage means for storing, as a loss reference value, the magnitude of the loss generated in each circuit component in a normal operating state. 53), and the diagnostic means (54) is calculated by the change amount calculating means (52). Based on the value and the loss reference value stored in the loss storage means (53), the state of the diagnosis target component is diagnosed!
  • the diagnostic means (54) calculates the calculated value calculated by the change amount calculating means (52) and the loss memory for each loss generated in each circuit component.
  • the state of the part to be diagnosed is diagnosed by comparing with the loss reference value stored in the means (53).
  • the loss storage means (53) stores a loss reference value of a normal operation state for a plurality of operation conditions
  • the diagnosis means ( 5 4) uses the loss reference value of the operation condition corresponding to the operation condition at the time of diagnosis among the loss reference values stored in the loss storage means (53) for the diagnosis of the state of the diagnosis target component.
  • the diagnosis means (54) is based on a change over time of the calculated value calculated by the change amount calculating means (52). Diagnose the condition of the parts to be diagnosed.
  • a twelfth aspect of the present invention is the display apparatus according to any one of the second to eleventh aspects, further comprising display means (55) for displaying a diagnosis result relating to the state of the diagnostic target part by the diagnostic means (54). .
  • the refrigerant circuit (20) includes inlets of the compressor (30) and the heat exchangers (34, 37).
  • a temperature sensor (45) and a pressure sensor (45) are connected to one end side and the other end side of each of the compressor (30) and each heat exchanger (34, 37).
  • 46) is provided for each pair, while the refrigerant state detection means (51) is a heat exchanger that uses the temperature and entropy of the refrigerant at the inlet of the pressure reduction means (36,39) as a radiator.
  • the refrigerant temperature and entropy at the outlet of the decompression means (36, 39) are set to the same values as those at the inlet of the heat exchanger (34, 37) serving as an evaporator.
  • each circuit component is based on the calculated value calculated by the change amount calculating means (52).
  • Display means (55) for displaying the state of energy change of the generated refrigerant is provided.
  • a fifteenth aspect of the invention includes a compressor (30), a pressure reducing means (36, 39), and a plurality of heat exchangers (34, 37).
  • a refrigerant circuit (20) configured by connecting circuit components including the refrigerant, and connected to a refrigeration apparatus (10) for performing a refrigeration cycle by circulating refrigerant in the refrigerant circuit (20).
  • the object is the analyzer (60) of the refrigeration apparatus that analyzes the state of (0). Then, the analyzer (60) of the refrigeration apparatus calculates the temperature and entropy of the refrigerant at the respective inlets and outlets of the compressor (30), the decompression means (36, 39), and the heat exchanger (34, 37).
  • the magnitude of the refrigerant energy change generated in each of the circuit components is calculated individually.
  • the refrigeration apparatus (10) includes a fluid component (12, 12) through which a fluid that exchanges heat with the refrigerant in the heat exchanger (34, 37) flows. 14, 28, 75, 76b), and at least one of the circuit components and fluid parts (12, 14, 28, 75, 76b) is used as a diagnostic target part.
  • a diagnostic means (54) for diagnosing the state of the part to be diagnosed is provided, and the display means (55) is a diagnostic object by the diagnostic means (54) as an analysis result of the state of the refrigeration apparatus (10). Displays diagnostic results for component status.
  • the display means (55) calculates the change amount calculating means (52) as an analysis result of the state of the refrigeration apparatus (10). Displays the state of refrigerant energy change that occurs in each circuit component based on the calculated value
  • An eighteenth aspect of the invention is directed to any one of the fifteenth to seventeenth aspects of the invention, wherein the compressor (30), the pressure reducing means (36, 39), and the heat exchangers (34, 37) are provided with respective inlets.
  • a first configuration provided in the refrigeration apparatus (10) with at least a refrigerant state detection sensor (65) for detecting the refrigerant state of the refrigerant circuit (20) necessary for detecting the temperature and entropy of the refrigerant at the outlet Part (47) and a second component part (48) provided at least with the display means (55) and installed at a position away from the refrigeration apparatus (10), the first component part (47) And the second component (48) are connected to each other via a communication line (63).
  • a nineteenth invention is the refrigerant circuit according to any one of the fifteenth to seventeenth inventions (20) Necessary to detect the refrigerant temperature and entropy at the inlet and outlet of the compressor (30), pressure reducing means (36, 39), and heat exchanger (34, 37), respectively.
  • the refrigerant state detection sensor (65) includes a plurality of temperature sensors (65), one of which is a heat exchanger (34, 37).
  • the refrigerant state detection means (51) is attached to a heat exchanger (34, 37) serving as a radiator, while the other one is attached to a heat exchanger (34, 37) serving as an evaporator.
  • the high pressure of the refrigeration cycle is calculated based on the measured value of the temperature sensor (65), and the refrigeration is performed based on the measured value of the temperature sensor (65) attached to the heat exchanger (34, 37) serving as the evaporator.
  • the temperature and entropy of the refrigerant at the respective inlets and outlets of the compressor (30), the pressure reducing means (36, 39), and the heat exchanger (34, 37) are calculated.
  • the change amount calculation means (52) uses the temperature and entropy of the refrigerant detected by the refrigerant state detection means (51) to use the compressor (30), the pressure reduction means (36, 39), and The magnitude of the refrigerant energy change that occurs in each of the circuit components including multiple heat exchangers (34, 37) (hereinafter these components are referred to as main components) is calculated individually.
  • main components the magnitude of the refrigerant energy change that occurs in each circuit component.
  • the magnitude of the energy change of the refrigerant generated in each circuit component is shown in Fig. 2. It is represented by the area of the region. That is, it is possible to calculate the magnitude of the refrigerant energy change that occurs in each circuit component from the area of each region.
  • the magnitude of the change in refrigerant energy generated in each circuit component is expressed by using the fact that the magnitude of the change in refrigerant energy generated in each circuit component is represented in the Ts diagram. Is calculated individually.
  • the diagnostic means (54) includes at least one of the circuit component and the fluid component (12, 14, 28, 75, 76b) as a diagnosis target component, The condition of the parts to be diagnosed is diagnosed based on the magnitude of the refrigerant energy change that occurs in
  • the magnitude of the refrigerant energy change generated in the circuit component represents, for example, the magnitude of the loss generated in the circuit component, and corresponds to the state of the circuit component.
  • the magnitude of the refrigerant energy change that occurs in the compressor (30) as a circuit component represents the amount of loss that occurs in the compressor (30). This corresponds to the state of deterioration of sliding members such as bearings in the compressor (30) and the state of deterioration of refrigerating machine oil.
  • the magnitude of the refrigerant energy change that occurs in the circuit component is such that the fluid that exchanges heat with the refrigerant that circulates through the heat exchanger (34, 37) that passes through only the state of the circuit component. It corresponds also to the state of parts (12, 14, 28, 75, 76b).
  • the magnitude of the refrigerant energy change that occurs in the heat exchanger (34, 37) as a circuit component mainly represents the amount of loss associated with the circulation of the refrigerant, so the heat exchanger (34 37)
  • the operating condition of the fan which is the fluid component (12, 14, 28, 75, 76b) corresponding to the heat exchanger (34, 37) and the filter condition It corresponds to.
  • the magnitude of the refrigerant energy change generated in each circuit component corresponds to the state of the circuit component and the state of the fluid component (12, 14, 28, 75, 76b). Therefore, according to the second aspect of the invention, the state of the circuit component and the state of the fluid component (12, 14, 28, 75, 76b) are based on the magnitude of the refrigerant energy change occurring in each circuit component. Diagnosed individually.
  • the diagnostic means (54) uses the fans (12, 14) for sending air to the heat exchangers (34, 37) as the parts to be diagnosed.
  • the status of the fans (12, 14) is diagnosed based on the magnitude of the refrigerant energy change that occurs in each of the circuit components.
  • the change amount calculation means (52) calculates the magnitude of the refrigerant energy change occurring in each circuit component as the value of the loss generated in each circuit component.
  • the diagnosis means (54) diagnoses the state of the diagnosis target component based on the value of the loss generated in each circuit component.
  • the loss generated in the heat exchanger (34, 37) among the circuit components is Multiple types of loss values are calculated.
  • the loss values for each of the multiple types of losses are used for diagnosing the state of the part to be diagnosed.
  • the loss of the evaporator and radiator is subdivided into loss due to heat exchange, loss due to frictional heat generation, and pressure loss due to flow path resistance. That is, in the fifth invention, the loss of the heat exchanger (34, 37) is subdivided into a plurality of types of loss, and the value of the subdivided loss is used for diagnosis of the state of the diagnosis target component.
  • the refrigerant circuit (20) includes a main circuit (66) and a plurality of branch circuits (67).
  • the refrigeration cycle of the refrigerant circuit (20) in which the refrigerant of the main circuit (66) is distributed to the plurality of branch circuits (67) can be represented by a T-s diagram for each branch circuit (67). It is.
  • the area of the area corresponding to the circuit component provided in that branch circuit (67) is the amount of loss generated in the circuit component of that branch circuit (67). Is expressed as a value per unit flow rate of the refrigerant.
  • the area of the area corresponding to the circuit components provided in the main circuit (66) is the main circuit (66) due to the loss generated in the circuit components of the main circuit (66).
  • the size corresponding to the flow rate of the refrigerant flowing into the branch circuit (67) is expressed as a value per unit flow rate of the refrigerant.
  • the value of the loss generated in the circuit components of the main circuit (66) and the branch circuit (67) is the value of the branch circuit (67) calculated by the flow rate calculation means (56). Calculated using refrigerant flow rate. For example, the value of the loss that occurs in the circuit components of the branch circuit (67) is calculated based on the area of the area corresponding to the loss in the T-s diagram of the branch circuit (67). ) Is calculated by multiplying the flow rate of the refrigerant in the branch circuit (67) calculated.
  • the value of the loss generated in the circuit components of the main circuit (66) is calculated by the flow rate calculation means (56) in the area of the area corresponding to the loss in the T s diagram of each branch circuit (67). It is calculated as the sum of the product of the branch circuit (67) multiplied by the refrigerant flow rate.
  • the refrigerant distributed from the main circuit (66) is used as the heat exchanger of each branch circuit (67).
  • the diagnosis means (54) determines the state of the component to be diagnosed based on the value of the loss in the normal operation state and the value of the loss at the time of diagnosis for the loss generated in each circuit component. Diagnose. In other words, the state of the part to be diagnosed is diagnosed based on the value of loss in the normal operating state.
  • the diagnosis of the state of the part to be diagnosed is calculated by the change amount calculating means (52) for each loss occurring in each circuit component and the loss stored in the loss storing means (53). This is done by comparing with the reference value. Therefore, the difference between the normal operating state and the time of diagnosis is clearly grasped for each loss occurring in each circuit component.
  • the loss reference value of the operation condition corresponding to the operation condition at the time of diagnosis is used among the loss reference values stored in the loss storage means (53) for the diagnosis of the state of the part to be diagnosed. .
  • the loss reference value at the closest operating condition at the time of diagnosis is selected from the loss reference values of multiple operating conditions, It is used for diagnosing the condition of the parts to be diagnosed as a loss reference value for normal operating conditions.
  • the change over time of the calculated value calculated by the change amount calculating means (52) is used for diagnosing the state of the part to be diagnosed.
  • the refrigeration apparatus (10) that compares the stored loss value of the normal operation state with the loss value at the time of diagnosis
  • the installation environment of (10) for example, the volume of the space where the temperature is adjusted
  • the installation environment where the refrigeration apparatus (10) is actually installed may not be the same. If the installation environment is not the same, the difference in the installation environment is included in the difference in loss values between the normal operating state and the diagnosis.
  • the change over time of the calculated value by the change amount calculating means (52) is used for diagnosing the state of the diagnosis target component, only the loss value in the same installation environment is used. Used to diagnose the condition of
  • the refrigeration apparatus (10) is provided with display means (55).
  • the display means (55) displays a diagnosis result regarding the state of the diagnosis target component diagnosed by the diagnosis means (54). It is.
  • the user of the refrigeration apparatus (10) can grasp the state of the part to be diagnosed by checking the display on the display means (55).
  • the refrigerant temperature is detected as the same value as the refrigerant temperature at the inlet of the pressure reducing means (36, 39) and the value at the outlet of the heat exchanger (34, 37) serving as the entropy force heat radiator. Further, the temperature and entropy of the refrigerant at the outlet of the decompression means (36, 39) are detected as the same value as the value at the inlet of the heat exchanger (34, 37) serving as an evaporator. That is, the temperature of the refrigerant at the outlet and the inlet of the decompression means (36, 39) and the pressure sensor are not provided on each of the one end side and the other end side of the decompression means (36, 39). Entropy is detected.
  • the display means (55) displays the state of energy change of the refrigerant generated in each circuit component based on the calculated value.
  • the state of the refrigerant energy change occurring in each circuit component is displayed as information for diagnosing the refrigeration apparatus (10).
  • the state of the energy change of the refrigerant generated in the circuit component corresponds to the state of the circuit component. Therefore, for example, a person who has specialized knowledge about the refrigeration apparatus (10) observes the state of change in the energy of the refrigerant generated in each circuit component displayed on the display means (55), so that It is possible to diagnose the condition.
  • the refrigeration apparatus analysis device (60) includes the refrigerant state detection means (51) and the change amount calculation means (52), which are the same as in the first invention! RU
  • the change amount calculation means (52) uses the refrigerant temperature and entropy detected by the refrigerant state detection means (51) to determine the magnitude of the refrigerant energy change generated in each of the circuit components including the main components. Calculate separately. Then, the analysis result of the state of the refrigeration apparatus (10) based on the calculated value calculated by the change amount calculating means (52) is displayed on the display means (55).
  • the magnitude of the refrigerant energy change that occurs in each is calculated individually.
  • the diagnostic means (54) includes at least one of a circuit component and a fluid component (12, 14, 28, 75, 76b) as a diagnosis target component, and each of the circuit components. Diagnose the condition of the parts to be diagnosed based on the magnitude of the refrigerant energy change that occurs.
  • Display means (55) Displays the diagnosis result on the state of the diagnosis target part by the diagnosis means (54) as the analysis result of the state of the refrigeration apparatus (10).
  • the magnitude of the refrigerant energy change generated in the circuit component corresponds to the state of the circuit component and the state of the fluid component (12, 14, 28, 75, 76b). Accordingly, the state of the circuit component and the state of the fluid component (12, 14, 28, 75, 76b) are individually diagnosed based on the magnitude of the refrigerant energy change occurring in each circuit component.
  • the display means (55) indicates the state of energy change of the refrigerant generated in each circuit component based on the calculated value calculated by the change amount calculating means (52). ) Is displayed as an analysis result. Therefore, as in the fourteenth aspect of the invention, for example, a person who has specialized knowledge about the refrigeration apparatus (10) is in a state of energy change of the refrigerant generated in each circuit component displayed on the display means (55). By observing, it is possible to diagnose the state of circuit components.
  • the analyzer (60) of the refrigeration apparatus is composed of a first component (47) and a second component (48) connected to each other via a communication line (63).
  • the second component (48) is provided with display means (55) for displaying the analysis result of the state of the refrigeration apparatus (10) based on the calculated value calculated by the change amount calculating means (52). Therefore, it is possible to check the state of the circuit components at a position away from the refrigeration apparatus (10).
  • the refrigerant state detection sensor (65) is attached to the refrigerant circuit (20) when analyzing the state of the circuit components. Then, using the measurement value of the refrigerant state detection sensor (65), the refrigerant state detection means (51) detects the temperature and entropy of the refrigerant at the outlet and inlet of each main component device, and the change amount calculation means (52) Calculates the value of the loss that occurs in each circuit component individually.
  • a person who has specialized knowledge about the refrigeration apparatus (10) carries the analysis apparatus of the refrigeration apparatus (10), for example, at the place where the refrigeration apparatus (10) is installed. It is possible to analyze the state of circuit components.
  • the refrigerant state detection sensor (65) includes a plurality of temperature sensors (65). Then, the high pressure of the refrigeration cycle is calculated based on the measured value of the temperature sensor (65) attached to the heat exchanger (34,37) serving as a radiator, The low pressure is calculated based on the measured value of the temperature sensor (65) attached to the heat exchanger (34, 37) serving as an evaporator.
  • the refrigerant state detection sensor (65) does not include a pressure sensor, the refrigerant temperature and entropy at the outlet and inlet of each main component device are calculated.
  • the magnitude of a change in the energy of the refrigerant generated in each circuit component is represented in the TS diagram created using the refrigerant temperature and entropy at the outlet and the inlet of the main component equipment.
  • the magnitude of the change in refrigerant energy that occurs in each circuit component is calculated individually.
  • the magnitude of the refrigerant energy change that occurs in the circuit component represents, for example, the amount of loss that occurs in the circuit component, and corresponds to the state of the circuit component. That is, according to the present invention, the state of the circuit component can be individually analyzed.
  • the refrigerant energy change that occurs in each circuit component corresponding to the state of the circuit component and the state of the fluid component (12, 14, 28, 75, 76b) By using this size, the state of circuit components and the state of fluid components (12, 14, 28, 75, 76b) are individually diagnosed. Since the diagnosis is performed in the same unit without using physical quantities in different units, the state of the circuit components and the state of the fluid components (12, 14, 28, 75, 76b) can be grasped quantitatively. Is done. Therefore, it is possible to accurately diagnose the state of the circuit components and the state of the fluid components (12, 14, 28, 75, 76b).
  • the diagnosis means (54) uses a loss value for each of a plurality of types of subdivided losses for the loss caused by the heat exchange (34, 37). Diagnose the condition of the parts to be diagnosed. Therefore, since the state of the diagnosis target component can be grasped in more detail, the diagnosis of the state of the diagnosis target component can be performed more accurately.
  • the state of the diagnosis target component is diagnosed on the basis of the loss value of the normal operation state. For this reason, it is possible to grasp the state of the diagnosis target part at the time of diagnosis as a difference from the normal operation state, so that the diagnosis of the state of the diagnosis target part can be accurately performed. It can be carried out.
  • the calculated value calculated by the change amount calculating means (52) for each loss occurring in each circuit component is compared with the loss reference value stored in the loss storing means (53). Therefore, the difference between normal operating conditions and diagnosis is clearly identified for each loss that occurs in each circuit component.
  • the refrigeration system (10) is small as a whole, and the difference between the normal operating state and the time of diagnosis is clearly grasped even if the loss occurs. . Therefore, it is possible to more accurately diagnose the state of the part to be diagnosed.
  • the loss reference value of the same operating condition as the operating state at the time of diagnosis is used for the diagnosis of the state of the part to be diagnosed, or the loss reference value of the closest operating condition at the time of diagnosis if there is no same Is used. Therefore, the difference between the operating condition of the loss reference value and the operating condition at the time of diagnosis is reduced out of the difference in the loss value between the normal operating state and the time of diagnosis. And the difference in the loss value between the normal operating state and the diagnosis will more accurately represent the difference in the state of the diagnosis target part between the normal operation state and the diagnosis, so Can be performed more accurately.
  • the change over time of the calculated value by the change amount calculating means (52) is used for diagnosing the state of the part to be diagnosed, only the loss value of the same installation environment can It is used for diagnosis of the condition. Accordingly, since the loss value used for diagnosing the state of the diagnosis target part does not include a difference in the installation environment, the state of the diagnosis target part can be accurately performed.
  • the first component on the refrigeration apparatus (10) side including the display means (55) including the display means (55)
  • a person who has specialized knowledge about the refrigeration apparatus (10) carries the analyzer (60) of the refrigeration apparatus (10), so that the refrigeration apparatus (10) It is possible to analyze the state of the circuit components at the place where is installed. Therefore, a person who has specialized knowledge about the refrigeration apparatus (10) can check the state of the circuit components on the spot in place of the user of the refrigeration apparatus (10).
  • the analyzer (60) of the refrigeration apparatus (10) includes a refrigerant state detection sensor (65)! /, So that it detects the refrigerant temperature and entropy at the outlet and inlet of each major component device. It is possible to analyze the state of circuit components even for a refrigeration system (10) that is not equipped with a sensor.
  • the refrigerant state detection sensor (65) does not include a pressure sensor, the refrigerant temperature and entropy at the outlet and inlet of each main component device are calculated. . Therefore, the state of the circuit components can be easily analyzed by the temperature sensor (65) that can be easily attached.
  • FIG. 1 is a schematic configuration diagram of a refrigeration apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a T s diagram divided into regions so as to correspond to circuit components for calculating a loss value in the first embodiment of the present invention.
  • FIG. 3 is a chart showing changes in refrigerant state up to the inlet force outlet of the evaporator.
  • FIG. 4 (A) is a Ts diagram in a normal operating state
  • FIG. 4 (B) is an example of a Ts diagram at the time of diagnosis.
  • FIG. 5 is a chart showing the correlation between the loss generated in the compressor and the degree of decrease in the capacity of the compressor.
  • FIG. 6 (A) is a T s diagram in a normal operating state
  • FIG. 6 (B) is an example of a T s diagram at the time of diagnosis.
  • FIG. 7 is a chart showing the correlation between the loss in the evaporator and the degree of decrease in the fan air volume.
  • Fig. 8 is a T s diagram of normal operation, and Fig. 8 (B) is a T s diagram at the time of diagnosis. It is an example.
  • FIG. 9 is a chart showing the correlation between the loss in the evaporator and the degree of increase in the pressure loss of the refrigerant in the evaporator.
  • FIG. 10 is a chart showing a correlation between the loss in the condenser and the degree of decrease in the fan air volume.
  • FIG. 11 is a chart showing a distribution of loss generated in each circuit component.
  • FIG. 12 is a chart showing an example of area division of the Ts diagram.
  • FIG. 13 is a TS diagram divided into each region so as to correspond to a circuit component for calculating a loss value in a modification of the first embodiment of the present invention.
  • FIG. 14 is a schematic configuration diagram of a refrigeration apparatus according to Embodiment 2 of the present invention.
  • FIG. 15 is a circuit diagram for explaining Equations 6 to 9 in Embodiment 2 of the present invention.
  • FIG. 16 is a Ts diagram divided into each region so as to correspond to the circuit component for calculating the value of loss in Embodiment 2 of the present invention
  • FIG. Fig. 16 (T) is a TS diagram corresponding to the circuit
  • Fig. 16 (B) is a TS diagram corresponding to the bypass pipe.
  • FIG. 17 is a schematic configuration diagram of a refrigeration apparatus according to a modification of Embodiment 2 of the present invention.
  • FIG. 18 is a schematic configuration diagram of an outdoor unit of a refrigeration apparatus according to a modification of Embodiment 2 of the present invention.
  • FIG. 19 is a schematic configuration diagram of a refrigeration apparatus according to Embodiment 3 of the present invention.
  • FIG. 20 is a Ts diagram divided into each region so as to correspond to a circuit component for calculating a loss value in the third embodiment of the present invention.
  • FIG. 21 is a schematic configuration diagram of a diagnostic apparatus for a refrigeration apparatus according to Embodiment 4 of the present invention.
  • FIG. 22 is a schematic configuration diagram of a diagnostic apparatus for a refrigeration apparatus according to Embodiment 5 of the present invention.
  • FIG. 23 is a chart showing changes over time in losses of circuit components in a refrigeration apparatus according to a third modification of the other embodiment.
  • FIG. 24 is a diagram showing a method for displaying a loss of circuit component parts in a display unit according to a sixth modification of the other embodiment.
  • FIG. 25 is a diagram showing another example of the display method of the loss of circuit component parts in the display unit according to the sixth modification of the other embodiment.
  • FIG. 26 is a diagram showing another example of the display method of the loss of circuit component parts in the display unit according to the sixth modified example of the other embodiment.
  • FIG. 27 is a diagram showing another example of the display method of the loss of circuit component parts in the display unit according to the sixth modified example of the other embodiment.
  • FIG. 28 is a diagram showing another example of the display method of the loss of circuit component parts in the display unit according to the sixth modified example of the other embodiment.
  • FIG. 29 is a diagram showing another example of the display method of the loss of circuit component parts in the display unit according to the sixth modified example of the other embodiment.
  • Air conditioning equipment (refrigeration equipment)
  • Embodiment 1 is a refrigeration apparatus (10) according to the present invention.
  • the refrigeration apparatus (10) is an air conditioner including an outdoor unit (11) and an indoor unit (13), and includes a cooling operation (cooling operation) and a heating operation (heating operation). It is configured to switch between and.
  • the present invention is applicable to a refrigeration apparatus (10) including a refrigerant circuit (20) that performs a refrigeration cycle.
  • the refrigeration apparatus other than the air conditioner according to the first embodiment includes a refrigeration apparatus (refrigerator and freezer) for cooling food, a refrigeration apparatus in which an air conditioner and a refrigerator or freezer are combined, and a heat exchanger It can be applied to a refrigeration apparatus with a humidity control function that uses the heat of the circulating refrigerant for heating or cooling the adsorbent, such as a refrigeration apparatus having a hot water supply function such as a so-called Ecocute (registered trademark).
  • An outdoor circuit (21) is provided in the outdoor unit (11).
  • An indoor circuit (22) is provided in the indoor unit (13).
  • a refrigerant circuit that performs a vapor compression refrigeration cycle by connecting an outdoor circuit (21) and an indoor circuit (22) with a liquid side connecting pipe (23) and a gas side connecting pipe (24). (20) is composed.
  • the refrigerant circuit (20) is filled with, for example, a fluorocarbon refrigerant as the refrigerant.
  • the outdoor circuit (21) of the outdoor unit (11) is provided with a compressor (30), an outdoor heat exchanger (34) as a heat source side heat exchanger, and an expansion valve (36) as a decompression means as main components.
  • a four-way selector valve (33) is provided.
  • These main components and the four-way selector valve (33) constitute circuit components, which are also connected to the refrigerant piping constituting the circuit components. Are connected to each other.
  • the circuit components are components that constitute the refrigerant circuit (20) and through which the refrigerant flows.
  • One end of the outdoor circuit (21) is provided with a liquid side shut-off valve (25) to which the liquid side communication pipe (23) is connected.
  • the other end of the outdoor circuit (21) is provided with a gas side shut-off valve (26) to which a gas side communication pipe (24) is connected.
  • the compressor (30) is configured as a hermetic and high-pressure dome type compressor.
  • the discharge side of the compressor (30) is connected to the first port (P1) of the four-way switching valve (33) via the discharge pipe (40).
  • the suction side of the compressor (30) is connected to the third port (P3) of the four-way switching valve (33) via the suction pipe (41).
  • the outdoor heat exchanger (34) is configured as a cross-fin type fin-and-tube heat exchanger.
  • an outdoor fan (12) for sending outdoor air circulating inside to the outdoor heat exchanger (34) is provided.
  • heat is exchanged between the outdoor air sent by the outdoor fan (12) and the circulating refrigerant.
  • the outdoor fan (12) constitutes a fluid component through which air that exchanges heat with refrigerant in the outdoor heat exchanger (34) flows.
  • One end of the outdoor heat exchanger (34) is connected to the fourth port (P4) of the four-way selector valve (33).
  • the other end of the outdoor heat exchanger (34) is connected to the liquid side shut-off valve (25) via the liquid pipe (42).
  • the liquid pipe (42) is provided with an expansion valve (36) having a variable opening.
  • the gas-side shutoff valve (26) is connected to the second port (P2) of the four-way selector valve (33).
  • the four-way selector valve (33) is in the first state in which the first port (P1) and the second port (P2) communicate with each other and the third port (P3) and the fourth port (P4) communicate with each other. (The state indicated by the solid line in Fig. 1), the first port (P1) and the fourth port (P4) communicate with each other, and the second port (P2) and the third port (P3) communicate with each other.
  • the second state (the state indicated by the broken line in FIG. 1) can be switched.
  • the outdoor circuit (21) includes one end side of the compressor (30), the other end side of the compressor (30), and an outdoor heat exchanger.
  • One set of temperature sensor (45) and one pressure sensor (46) are provided on one end side of (34) and the other end side of the outdoor heat exchanger (34).
  • the suction pipe (41) is provided with a pair of suction temperature sensors (45a) and a suction pressure sensor (46a).
  • the discharge pipe (40) is provided with a pair of discharge temperature sensors (45b) and a discharge pressure sensor (46b).
  • a pair of outdoor gas temperature sensors (45c) and an outdoor gas pressure are provided.
  • a sensor (46c) is provided.
  • a pair of outdoor liquid temperature sensors (45d) and an outdoor liquid pressure sensor (46d) are provided.
  • An outdoor temperature sensor (18) is provided in the vicinity of the outdoor fan (12).
  • the indoor circuit (22) of the indoor unit (13) is provided with an indoor heat exchanger (37) as a use side heat exchanger as a main component.
  • the indoor heat exchanger (37) constitutes a circuit component, and is connected to the outdoor circuit (21) via a refrigerant pipe that also constitutes the circuit component.
  • the indoor heat exchange (37) is configured as a cross-fin fin 'and' tube heat exchange.
  • an indoor fan (14) for sending indoor air flowing through the indoor heat exchanger (37).
  • a filter (28) is provided between the indoor fan (14) and the indoor heat exchanger (37).
  • heat is exchanged between the indoor air sent by the indoor fan (14) and the circulating refrigerant.
  • the indoor fan (14) and the filter (28) constitute a fluid component through which air that exchanges heat with the refrigerant flows in the indoor heat exchanger (37).
  • the indoor circuit (22) is provided with one set of temperature sensor (45) and pressure sensor (46) on one end side and the other end side of the indoor heat exchanger (37). Specifically, a pair of indoor liquid temperature sensors (45e) and an indoor liquid pressure sensor (46e) are provided between the liquid side end of the indoor circuit (22) and the indoor heat exchanger (37). RU A pair of indoor gas temperature sensors (45f) and an indoor liquid pressure sensor (46f) are provided between the indoor heat exchanger (37) and the gas side end of the indoor circuit (22). An indoor temperature sensor (19) is provided in the vicinity of the indoor fan (14).
  • This refrigeration system (10) controls the operating capacity of the compressor (30) and the opening of the expansion valve (36) in order to adjust the air conditioning capacity, and also diagnoses the components of the refrigeration system (10). It has a mouth ring (50).
  • the parts to be diagnosed by the controller (50) are the circuit parts including the main components and the fluid parts (12, 14, 28). This controller (50) diagnoses the state of the component to be diagnosed based on a thermodynamic analysis (etasergi analysis) that analyzes the loss generated in each circuit component.
  • the controller (50) A refrigerant state detection unit (51) which is an output unit, a loss calculation unit (52) which is a change amount calculation unit, a loss storage unit (53) which is a loss storage unit, and a diagnosis unit (54) which is a diagnosis unit And a display unit (55) which is a display means.
  • parts that can be diagnosed by the controller (50) by using thermodynamic analysis are refrigerant components such as circuit components and fluid parts (12, 14, 28) in which the refrigerant energy changes.
  • the external force of the circuit (20) is a component that indirectly affects the energy change of the refrigerant.
  • the outdoor fan (12) and the indoor fan (14) cause a change in refrigerant energy by sending air to the heat exchangers (34, 37).
  • the filter (28) is clogged, the air volume of the air sent to the heat exchanger (34, 37) changes to affect the energy change of the refrigerant.
  • the refrigerant state detector (51) determines the inlet of the compressor (30), the outlet of the compressor (30), and the outdoor heat exchanger (34) from the measured values obtained by the temperature sensors (45). 8 inlets, outlet of outdoor heat exchanger (34), inlet of expansion valve (36), outlet of expansion valve (36), inlet of indoor heat exchanger (37), and outlet of indoor heat exchanger (37) The position of the refrigerant is configured to detect the temperature of the refrigerant.
  • the refrigerant state detector (51) determines the inlet of the compressor (30), the outlet of the compressor (30) from the measured values obtained by the paired temperature sensor (45) and pressure sensor (46).
  • the refrigerant temperature and entropy at the inlet of the expansion valve (36) are detected as the same values as those at the outlet of the outdoor heat exchanger (34).
  • the refrigerant temperature and entropy at the outlet of the expansion valve (36) are detected as the same values as those at the inlet of the indoor heat exchanger (37).
  • the refrigerant temperature and entropy at the inlet of the expansion valve (36) are detected as the same values as at the outlet of the indoor heat exchanger ⁇ (37), and the outlet of the expansion valve (36)
  • the refrigerant temperature and entropy at are detected as the same values as at the inlet of the outdoor heat exchanger (34).
  • the loss calculation unit (52) compresses circuit components (compressor (30), expansion valve (36), outdoor heat exchanger (34), indoor heat exchange (37), indoor heat exchange (37) and Piping to and from the machine (30) and outdoor heat It is configured to individually calculate the value of the loss that occurs in the pipe between the commutation (34) and the compressor (30).
  • the loss value is calculated using the refrigerant temperature and the entropy detected by the refrigerant state detection unit (51).
  • the loss storage unit (53) stores a loss value generated in each circuit component (loss calculation target component) in a normal operation state as a loss reference value for each loss generated in each circuit component. Yes. As a loss reference value for each loss in each circuit component, a value calculated by simulation calculation is stored.
  • the loss storage unit (53) stores loss reference values for a plurality of operating conditions having different operating conditions combining the indoor temperature and the outdoor temperature. As a combination of operating conditions, apply the circulating amount of refrigerant.
  • the diagnosis unit (54) diagnoses the state of the diagnosis target component using the circuit component, the outdoor fan (12), and the indoor fan (14) as the diagnosis target components. Diagnosis of the state of the part to be diagnosed is performed by comparing the calculated value calculated by the loss calculation unit (52) with the loss reference value stored in the loss storage unit (53) for each loss generated in each circuit component.
  • the display section (55) can be configured to display the result of diagnosis in the diagnosis section (54).
  • the refrigeration apparatus (10) can perform cooling operation and heating operation, and the operation is switched by the four-way switching valve (33).
  • the four-way selector valve (33) is set to the second state.
  • the outdoor heat exchanger (34) serves as a condenser (radiator)
  • the indoor heat exchange (37) serves as an evaporator.
  • a refrigeration cycle is performed.
  • the opening degree of the expansion valve (36) is appropriately adjusted.
  • the refrigerant discharged from the compressor (30) is condensed by exchanging heat with outdoor air in the outdoor heat exchanger (34).
  • the refrigerant condensed in the outdoor heat exchange (34) is depressurized when passing through the expansion valve (36), and then evaporates by exchanging heat with the indoor air in the indoor heat exchange (37).
  • the refrigerant evaporated in the indoor heat exchanger (37) is sucked into the compressor (30) and compressed.
  • the four-way selector valve (33) is set to the first state.
  • the outdoor heat exchanger (34) serves as an evaporator and the indoor heat exchanger (37) serves as a condenser (heat radiator).
  • a refrigeration cycle is performed. Even in the heating operation, the opening degree of the expansion valve (36) is appropriately adjusted.
  • the refrigerant discharged from the compressor (30) is condensed by exchanging heat with the room air in the room heat exchanger (37).
  • the refrigerant condensed in the indoor heat exchange (37) is depressurized when passing through the expansion valve (36), and then evaporates by exchanging heat with the outdoor air in the outdoor heat exchange (34).
  • the refrigerant evaporated in the outdoor heat exchanger (34) is sucked into the compressor (30) and compressed.
  • the operation when the controller (50) diagnoses the state of the component to be diagnosed will be described.
  • the diagnosis of the state of the diagnosis target component is performed during the cooling operation or the heating operation. In the following, the case of making a diagnosis during cooling operation will be described.
  • the refrigerant state detection unit (51) uses the compressor (30) based on the measurement values obtained by the paired temperature sensor (45) and pressure sensor (46). Inlet, compressor (30) outlet, outdoor heat exchanger (34) inlet, outdoor heat exchanger (34) outlet, expansion valve (36) inlet, expansion valve (36) outlet, indoor heat exchange The temperature and entropy of the refrigerant at the eight positions of the inlet of the heat exchanger (37) and the outlet of the indoor heat exchanger (37) are detected.
  • the refrigerant temperature and entropy at the inlet of the compressor (30) are detected from the measurement values obtained by the suction temperature sensor (45a) and the suction pressure sensor (46a).
  • the refrigerant temperature and entropy at the outlet of the compressor (30) are detected by the measured value force obtained by the discharge temperature sensor (45b) and the discharge pressure sensor (46b).
  • the refrigerant temperature and entropy at the inlet of the outdoor heat exchanger (34) are detected from the measured values obtained by the outdoor gas temperature sensor (45c) and the outdoor gas pressure sensor (46c).
  • the refrigerant temperature and entropy at the outlet of the outdoor heat exchanger (34) and the inlet of the expansion valve (36) are detected from the measured values obtained by the outdoor liquid temperature sensor (45d) and the outdoor liquid pressure sensor (46d). .
  • the temperature and entropy of the refrigerant at the outlet of the indoor heat exchanger (37) are also detected as measured values obtained by the indoor gas temperature sensor (45f) and the indoor liquid pressure sensor (46f).
  • the refrigerant at the outlet of the expansion valve (36) and the inlet of the indoor heat exchanger (37) is in a gas-liquid two-phase state. Therefore, the temperature of the refrigerant is measured by the measured value of the indoor liquid temperature sensor (45e), and the detected force The entropy of the refrigerant is detected only by the measured values of the indoor liquid temperature sensor (45e) and the indoor liquid pressure sensor (46e). Can not do it. Therefore, the refrigerant entropy at the outlet of the expansion valve (36) and the inlet of the indoor heat exchanger (37) is detected as the enthalpy of the refrigerant being equal to the outlet of the outdoor heat exchanger (34).
  • the loss calculation unit (52) uses the refrigerant temperature and the entropy detected by the refrigerant state detection unit (51) to compress the compressor (30), the expansion valve (36), and the outdoor heat exchange.
  • the value of loss generated in each circuit component such as the heat exchanger (34) and indoor heat exchanger (37) is calculated individually.
  • Fig. 2 shows a T s diagram created by using the refrigerant temperature and entropy at the outlet and inlet of each main component device. The value of these losses that occur in each circuit component is calculated for each region (c, d, e, f, gl, g2, hl, h2, i, j, k) divided based on this T s diagram. It is known to correspond to the area.
  • Point A (l) shown in FIG. 2 is a point determined from the refrigerant temperature and entropy at the inlet of the compressor (30).
  • Point B (l) is a point determined from the refrigerant temperature and entropy at the outlet of the compressor (30).
  • Point C (l) is a point determined from the refrigerant temperature and entropy at the inlet of the outdoor heat exchanger (34).
  • Point D (l) is the point at which the refrigerant temperature and entropy at the outlet of the outdoor heat exchanger (34) (inlet of the expansion valve (36)) are also determined.
  • Point E (l) is a point determined from the refrigerant temperature and entropy at the inlet of the indoor heat exchanger (37) (outlet of the expansion valve (36)).
  • Point F (l) is determined from the refrigerant temperature and entropy at the outlet of the indoor heat exchanger (37).
  • Point C (2) is a point located on an isobaric line that has the same entropy as point C (l) and passes through point D (l).
  • Point D (2) is the point where the isoenthalpy line passing through point D (l) and the isobaric line passing through point C (l) intersect.
  • Point D (3) is the point where the isoenthalpy line passing through point D (l) and the isobaric line passing through point B (l) intersect.
  • Point E (2) is the point where the isoenthalpy line passing through point E (l) and the isobaric line passing through point F (l) intersect.
  • Point F (2) is located on the isobaric line that has the same entropy as point F (l) and passes through point E (l).
  • the point G (l) is a point where the isobaric line passing through the point C (l) and the saturated vapor line intersect.
  • Point G (2) is the point where the isobaric line passing through point C (2) and the saturated vapor line intersect.
  • Point G (3) is the point where the isobaric line passing through point B (l) and the saturated vapor line intersect.
  • Point H (l) is an isobar and saturated liquid line passing through point D (l). Is the point where Point H (2) is where the isobar passing through point D (2) and the saturated liquid line intersect.
  • Point H (3) is where the isobar passing through point D (3) and the saturated liquid line intersect.
  • Point 1 (1) is the point where the isoenthalpy line passing through point D (l) and the saturated liquid line intersect.
  • Point J (l) is the point where the isobaric line passing through point F (l) and the saturated vapor line intersect.
  • Point J (2) is the point where the isobaric line passing through point F (2) and the saturated vapor line intersect.
  • Th is the temperature of the air sent to the outdoor heat exchanger (34) (measured value of the outdoor air temperature sensor (18)), and Tc is the temperature of the air sent to the indoor heat exchanger (37) (room temperature). Represent each sensor (19) measurement value!
  • the area (a) shown in Fig. 2 represents the work of the reverse Carnot cycle.
  • the area (b) represents the amount of heat absorbed in the indoor heat exchange (37).
  • the area (c) represents the loss associated with heat exchange in the indoor heat exchanger (37).
  • the area (d) represents the loss associated with heat exchange in outdoor heat exchange (34).
  • the region (e) represents the friction loss when the refrigerant passes through the expansion valve (36).
  • the area D represents the loss due to mechanical friction in the compressor (30).
  • the area (gl) represents the loss due to frictional heat generation in the indoor heat exchanger (37).
  • the area (g2) Represents the pressure loss in the indoor heat exchange (37), the area (hi) represents the loss due to frictional heat generation in the outdoor heat exchange (34), and the area (h2) represents the outdoor heat exchange.
  • This represents the pressure loss in (34).
  • the region of 0 represents the loss and pressure loss due to heat penetration from the indoor heat exchange (37) to the compressor (30).
  • the region (k) is from the compressor (30) to the outdoor heat exchanger (34). Represents pressure loss
  • FIG. 3 The state of the refrigerant from the inlet to the outlet of the evaporator is represented by the Ts diagram as shown in Fig. 3.
  • point E (l) is a point determined from the refrigerant temperature (T1) and the entropy (si) at the evaporator inlet
  • point F (l) is the refrigerant temperature (T2) at the evaporator outlet.
  • entropy (s 2), and point E (2) is the point where the isoenthalpy line passing through point E (l) and the isobaric line passing through point F (l) intersect.
  • equation 1 ds is the amount of increase in specific entropy
  • dq is the amount of heat that the refrigerant absorbs from the outside
  • dq (fr) is the amount of frictional heat generated by pressure loss
  • T is the evaporation temperature
  • Equation 2 Q is the amount of heat absorbed by the refrigerant in the evaporator, and Q (fr) is the amount of frictional heat generated by pressure loss in the evaporator.
  • the value of ⁇ Tds in Equation 2 corresponds to the area of the area under the curve connecting point E (l) and point F (l) in FIG. Therefore, from this region, the region (gl) excluding the region (b) corresponding to the heat absorption amount Q of the refrigerant in the evaporator becomes the region corresponding to the frictional heat generation amount Q (fr) in the evaporator. Then, by calculating the area of the region (gl), it is possible to calculate the value of frictional heat generation in the evaporator as one loss of the evaporator.
  • the frictional heating value Q (fr) in the evaporator is equivalent to the decrease in the heat absorption amount in the evaporator due to frictional heating due to pressure loss.
  • the region (g2) in Fig. 2 corresponds to the pressure loss of the evaporator. And evaporating by calculating the area of the region (g2) It is possible to calculate the pressure loss value in the evaporator as one loss of the evaporator.
  • the loss calculation unit (52) calculates the loss values corresponding to the regions (c) to (k) for each region (c, d, e, f, gl, g2, hl, h2, i, j , k).
  • the loss value may be calculated as an enthalpy represented by the area of each region (c, d, e, f, gl, g2, hl, h2, i, j, k), or the refrigerant circulation amount in the enthalpy It may be calculated as energy (work) multiplied by. Since the refrigerant flow rate of all circuit components is the same, even when the loss value is expressed as an enthalpy, it is possible to relatively represent the magnitude of the loss that occurs in each circuit component.
  • the diagnosis unit (54) selects the loss reference value of the operation condition corresponding to the operation condition at the time of diagnosis among the loss reference values of the plurality of operation conditions stored in the loss storage unit (53). As the corresponding operating conditions, the room temperature and the outdoor temperature are the same as those at the time of diagnosis, or the closest ones at the time of diagnosis if there is no same.
  • the diagnosis unit (54) compares the calculated value calculated by the loss calculation unit (52) with the loss reference value of the loss storage unit (53) of the selected operating condition for each loss generated in each circuit component. Diagnose the status of the parts to be diagnosed.
  • the diagnosis unit (54) diagnoses that the compressor oil (30) is deteriorated in the refrigeration machine oil or the sliding member such as the bearing is in progress, or the circuit resistance of the electrical component is increasing. To do.
  • the diagnosis unit (54) determines that the compressor (30) is in a failure state when the value of the loss at the time of diagnosis is, for example, 10% or more larger than that in a normal operation state.
  • the diagnosis unit (54) diagnoses that the air volume of the air passing through the indoor heat exchange (37) is decreasing. Then, the diagnosis unit (54) causes the indoor fan (14) to become obsolete as a cause of a decrease in the air volume of the air passing through the indoor heat exchange (37), and the filter of the indoor fan (14). Diagnose that clogged (28) is clogged! /, Is in a state where the fins of the indoor heat exchanger (37) are dirty, or are crushed, and the fins in the indoor heat exchanger (37) are crushed. .
  • Figure 7 shows the simulation results.
  • Figure 7 shows the simulation calculation results for three cases (10% reduction, 20% reduction, and 30% reduction) in which the degree of fan airflow reduction is changed based on a predetermined value.
  • the larger the degree of fan airflow reduction the greater the loss value in the evaporator.
  • the fan damage progresses, the fan air flow decreases.
  • the loss value in the evaporator increases, it can be confirmed from Fig. 7 that the fan damage and failure progresses.
  • the pressure loss value (value corresponding to the region of (g2)) in the indoor heat exchanger (37) at the time of diagnosis is larger than the normal operating state (as shown in Fig. 8).
  • the diagnosis unit (54) is in a state where the interior of the indoor heat exchanger (37) is dirty, a state where the piping of the indoor heat exchanger (37) is crushed, or the interior of the indoor heat exchanger (37). Diagnose that there are many foreign objects.
  • the diagnosis unit (54) performs the same diagnosis even when the value of frictional heat generation in the indoor heat exchange (37) (value corresponding to the (gl) region) is larger than the normal operating state. Do.
  • Figure 9 shows the simulation results.
  • Figure 9 shows the results of simulation calculations for three cases (0. OlMPa drop, 0.02 MPa drop, 0.03 MPa drop) in which the degree of pressure drop of the refrigerant in the evaporator was changed based on the specified value. Show.
  • the greater the degree of refrigerant pressure drop in the evaporator the greater the loss in the evaporator. Since the refrigerant pressure drop in the evaporator represents an increase in the refrigerant pressure loss in the evaporator, the loss in the evaporator is large!
  • the figure shows that the refrigerant pressure loss in the evaporator increases. Confirmed from 9.
  • the diagnosis unit (54) diagnoses that the air volume of the air passing through the outdoor heat exchanger (34) has decreased. Then, the diagnosis unit (54) causes the outdoor fan (12) to be deteriorated as the cause of the decrease in the air volume of the air passing through the outdoor heat exchanger (34), the outdoor heat exchanger (34) Diagnose that the air conditioner is dirty, or the fins of the outdoor heat exchanger (34) are clogged with flaws.
  • FIG. 10 shows the results of the simulation calculation.
  • Figure 10 shows the results of simulation calculations for three cases (10% reduction, 20% reduction, 30% reduction) in which the degree of fan airflow reduction is changed based on a predetermined value.
  • the value of the loss in the condenser increases as the air flow rate of the fan decreases.
  • the fan airflow decreases. Therefore, it can be confirmed from Fig. 10 that the fan damage and malfunction progresses as the loss value in the condenser increases.
  • the indoor heat exchange at the time of diagnosis (37) The value of loss up to the force compressor (30) (value corresponding to the area of (G)) is larger than in normal operating conditions In such a case, the amount of heat entering the pipe between the indoor heat exchanger (37) and the compressor (30) is large, or This means that the pressure loss of the refrigerant in the pipe is increasing. Therefore, the diagnostic part (54) has a large amount of foreign matter adhering to the inside of the pipe in a state where the heat insulating material of the pipe is deteriorated, the pipe is condensed, the pipe is crushed, or the like. Diagnose a connected state.
  • the diagnosis unit (54) diagnoses that the heat insulating material of the pipe is deteriorated.
  • the value of pressure loss from the compressor (30) to the outdoor heat exchanger (34) at the time of diagnosis (value corresponding to the region of (k)) is larger than that in normal operation. This means that the refrigerant pressure loss in the pipe between the compressor (30) and the outdoor heat exchanger (34) is increasing. Therefore, the diagnosis unit (54) diagnoses that the pipe is crushed or that there are many foreign substances adhering to the inside of the pipe.
  • the display unit (55) displays the state of the diagnosis target component diagnosed by the diagnosis unit (54).
  • the display unit (55) may also display the value of loss generated in each circuit component. For example, as shown in FIG. 11, the display unit (55) displays the distribution of loss values generated in each circuit component. As a result, the user can infer the state of each circuit component, so that it is possible to detect the deterioration of the component and deterioration over time at an early stage.
  • the area division of the Ts diagram shown in FIG. 2 is merely an example.
  • the area (a) represents the work of reverse Carnot cycle.
  • Region (b) represents the amount of heat absorbed in indoor heat exchange (37).
  • the area (c) represents the loss caused by the indoor heat exchange (37).
  • a region of (2) represents a loss generated in the outdoor heat exchanger (34).
  • a region (e) represents a friction loss when the refrigerant passes through the expansion valve (36).
  • the area represents the loss due to mechanical friction in the compressor (30), in this case the refrigerant temperature and entropy at the four positions. Therefore, it is not necessary to provide the outdoor gas temperature sensor (45c) and outdoor gas pressure sensor (46c), and the indoor gas temperature sensor (45f) and indoor liquid pressure sensor (46f). .
  • the temperature (Tc) of the air sent to the indoor heat exchanger (37) is higher than the temperature (Th) of the air sent to the outdoor heat exchanger (34).
  • the T-s diagram is expressed as shown in Fig. 12 (B).
  • the work of the reverse Carnot cycle represented by the region (a) becomes a negative value, and the region (c) and the region (d) overlap.
  • the loss calculation unit (52) calculates the area force in the area (c) and the value of the loss generated in the indoor heat exchange (37), and calculates the loss generated in the outdoor heat exchanger (34) from the area in the area (d). Calculate the value.
  • the magnitude of the refrigerant energy change that occurs in each circuit component is shown in the Ts diagram created using the refrigerant temperature and entropy at the outlet and inlet of the main components.
  • the magnitude of the change in refrigerant energy generated in each circuit component is calculated individually.
  • the magnitude of the refrigerant energy change that occurs in the circuit component represents, for example, the magnitude of the loss that occurs in the circuit component, and corresponds to the state of the circuit component. That is, according to the first embodiment, the state of the circuit component can be individually analyzed.
  • Embodiment 1 by using the magnitude of the refrigerant energy change generated in each circuit component corresponding to the state of the circuit component and the state of the fluid component (12, 14, 28), The status of circuit components and fluid components (12, 14, 28) are individually diagnosed. Since the diagnosis is performed in the same unit without using physical quantities of different units, the state of the circuit components and the state of the fluid components (12, 14, 28) can be quantitatively grasped. Accordingly, it is possible to accurately diagnose the state of the circuit component parts and the state of the fluid parts (12, 14, 28).
  • the circuit configuration unit corresponding to all the regions represented by the T-s diagram
  • the state of the part to be diagnosed is diagnosed based on the value of loss in the normal operation state. For this reason, since the state of the diagnosis target component at the time of diagnosis can be grasped as a difference from the normal operation state, it is possible to accurately diagnose the state of the diagnosis target component.
  • the calculated value calculated by the loss calculation unit (52) for each loss generated in each circuit component is compared with the loss reference value stored in the loss storage unit (53). Therefore, the difference between the normal operating state and the time of diagnosis is clearly grasped for each loss occurring in each circuit component.
  • the refrigeration system (10) is small as a whole, and the difference between the normal operating state and the time of diagnosis can be clearly grasped even if the loss. Therefore, it is possible to more accurately diagnose the state of the diagnosis target component.
  • the diagnostic means (54) includes the outdoor heat exchanger (34) and the indoor heat exchanger.
  • the loss reference value of the same operating condition as the operating state at the time of diagnosis in which the loss calculation unit (52) calculates the calculated value or the same thing is used for the diagnosis of the state of the diagnosis target component. Otherwise, the loss reference value of the closest operating condition at the time of diagnosis is used. Therefore, the difference between the operating condition of the loss reference value and the operating condition at the time of diagnosis is reduced among the difference in loss value between the normal operating state and the time of diagnosis. And the value of loss between normal operating condition and diagnosis Since the difference more accurately represents the difference in the state of the diagnosis target component between the normal operation state and the time of diagnosis, the diagnosis of the state of the diagnosis target component can be performed more accurately.
  • a modification of the first embodiment will be described.
  • a so-called supercritical cycle is performed in the refrigerant circuit (20).
  • a supercritical cycle is a refrigeration cycle in which the high pressure is set higher than the critical pressure of the refrigerant.
  • the refrigerant circuit (20) is filled with, for example, diacid carbon as a refrigerant.
  • the compressor (30) compresses carbon dioxide with a pressure higher than its critical pressure.
  • the area (a) represents the work of the reverse Carnot cycle.
  • the area (b) represents the endothermic amount in the indoor heat exchange (37).
  • the area (c) represents the loss generated in the indoor heat exchanger (37).
  • the area (d) represents the loss that occurs in the outdoor heat exchanger (34).
  • the region (e) represents the friction loss when the refrigerant passes through the expansion valve (36).
  • the region (£) represents a loss due to mechanical friction in the compressor (30).
  • Embodiment 2 of the present invention will be described.
  • Embodiment 2 is a refrigeration apparatus (10) according to the present invention.
  • the refrigeration apparatus (10) of Embodiment 2 is an air conditioner including two indoor units, a first indoor unit (13a) and a second indoor unit (13b).
  • the number of indoor units (13) is merely an example.
  • differences from the first embodiment will be described.
  • the outdoor circuit (21) of the outdoor unit (11) includes a compressor (30), an outdoor heat exchanger (34) as a heat source side heat exchanger, and a first outdoor expansion valve (36a) and a decompression means.
  • 2 Outdoor expansion valve (36 b) is provided as the main component, and in addition, a four-way switching valve (33) and an internal heat exchanger (15) are provided.
  • These main components, the four-way selector valve (33) and the internal heat exchanger (15) constitute circuit components, and are connected to each other by refrigerant piping that also constitutes the circuit components!
  • the outdoor circuit (21) of the outdoor unit (11) includes a compressor (30), an outdoor heat exchanger (34) as a heat source side heat exchanger, and a first outdoor expansion valve (36a) and a decompression means.
  • 2 Outdoor expansion valve (36 b) is provided as the main component, and in addition, a four-way switching valve (33) and an internal heat exchanger (15) are provided.
  • the liquid pipe (42) extending the outdoor heat exchange (34) force is branched into two, an indoor connection pipe (17) and a bypass pipe (16).
  • the indoor connection pipe (17) is connected to the liquid side shutoff valve (25).
  • the bypass pipe (16) is connected to the suction pipe (41).
  • the first outdoor expansion valve (36a) is provided in the liquid pipe (42), and the second outdoor expansion valve (36b) is provided in the bypass pipe (16).
  • the internal heat exchange (15) includes a first flow path (15a) provided in the middle of the indoor connection pipe (17) and a second flow path (15b) provided in the middle of the bypass pipe (16). Get ready! The second flow path (15b) is located closer to the suction pipe (41) than the second outdoor expansion valve (36b).
  • the first channel (15a) and the second channel (15b) are arranged adjacent to each other, and the refrigerant in the first channel (15a) and the second channel (15b) ) Is configured to exchange heat with the refrigerant.
  • the outdoor circuit (21) is provided with a temperature sensor (45a) and a pressure sensor (46a) on the inlet side of the compressor (30), and a temperature sensor (45b) on the outlet side of the compressor (30). And a pressure sensor (46b).
  • the liquid pipe (42) is provided with a first outdoor liquid temperature sensor (45c), and the indoor connection pipe (17) is provided with a second outdoor liquid temperature sensor (45d).
  • a third outdoor liquid temperature sensor (45i) is provided upstream of the second flow path (15b), and a first outdoor gas temperature sensor (45b) is provided downstream of the second flow path (15b).
  • 45j) is provided.
  • a second outdoor gas temperature sensor (45k) is provided between the second port (P2) of the four-way selector valve (33) and the gas side closing valve (26).
  • the first indoor unit (13a) is provided with a first indoor circuit (22a), and the second indoor unit (13b) is provided with a second indoor circuit (22b).
  • the first indoor circuit (22a) and the second indoor circuit (22b) have the same configuration.
  • Each indoor circuit (22a, 22b) is provided with an indoor expansion valve (39a, 39b) as a decompression means and an indoor heat exchange (37a, 37b) as a use side heat exchange as main components. ing. Room The inner expansion valve (39a, 39b) and the indoor heat exchanger (37a, 37b) constitute circuit components.
  • Indoor fans (14a, 14b) are provided in the vicinity of the indoor heat exchangers (37a, 37b).
  • a filter (28) is provided between the indoor fan (14a, 14b) and the indoor heat exchanger (37a, 37b).
  • the indoor fan (14) and the filter (28) constitute fluid components (12, 14, 28) through which air exchanges heat with refrigerant in the indoor heat exchanger (37).
  • an indoor liquid temperature sensor (45e) is provided on the liquid side of the indoor heat exchanger (37a), and an indoor gas temperature sensor (45f) is provided on the gas side of the indoor heat exchanger (37a).
  • an indoor liquid temperature sensor (45g) is provided on the liquid side of the indoor heat exchanger (37b)
  • an indoor gas temperature sensor (37b) is provided on the gas side of the indoor heat exchanger (37b).
  • the controller (50) diagnoses the state of the components of the refrigeration apparatus (10) based on the thermodynamic analysis that analyzes the loss generated in each circuit component.
  • the parts to be diagnosed to be diagnosed by the controller (50) are circuit components including main components and fluid components (12, 14, 28, 75, 76b).
  • the controller (50) may be configured to perform a thermodynamic analysis on each of branch circuits (67) described later.
  • the controller (50) includes a refrigerant state detection unit (51), a loss calculation unit (52), a loss storage unit (53), a diagnosis unit (54), and a display unit (55) similar to those in the first embodiment. In addition, it has a flow rate calculation unit (56).
  • the flow rate calculation unit (56) constitutes a flow rate calculation means.
  • the flow rate calculation unit (56) is configured to calculate the refrigerant flow rate of each indoor circuit (22) and the refrigerant flow rate of the bypass pipe (16) as the refrigerant flow rate of a branch circuit (67) described later.
  • a branch circuit 67
  • the flow rate calculation unit (56) calculates the ratio (G / G) of the refrigerant flow rate G in the first indoor circuit (22a) to the refrigerant circulation amount G in the refrigerant circuit (20), the second indoor circuit. (22b) refrigerant flow rate G is refrigerant
  • the refrigerant circulation amount G (the refrigerant flow rate discharged by the compressor (30)) in the channel (20) is calculated. And each The refrigerant circulation amount G of the refrigerant circuit (20) is set to the ratio of the indoor circuit (22) or bypass pipe (16) to the refrigerant circulation amount G of the refrigerant circuit (20) (G / G, G / G, G / G). 1st chamber by hanging
  • Refrigerant flow rate G is calculated respectively.
  • the ratio of the refrigerant flow rate G in the first indoor circuit (22a) to the refrigerant circulation amount G in the refrigerant circuit (20) (G / G) is calculated using Equation 3 shown below. Also, the ratio (G / G) of the refrigerant flow rate G in the second indoor circuit (22b) to the refrigerant circulation rate G in the refrigerant circuit (20), using Equation 4 below.
  • Refrigerant flow rate G in bypass pipe (16) becomes refrigerant circulation amount G in refrigerant circuit (20)
  • Equations 3 to 5 is the refrigerant enthalpy downstream of the indoor heat exchanger (37a) of the first indoor circuit (22a), and h is the downstream of the indoor heat exchanger (37b) of the second indoor circuit (22b).
  • Enthalpy, h is the refrigerant enthalpy downstream of the internal heat exchanger (15) of the bypass pipe (16),
  • h is a bypass pipe where the refrigerant in the first indoor circuit (22a) and the refrigerant in the second indoor circuit (22b) merge.
  • h is the refrigerant of the first indoor circuit (22a) and the second
  • G is the first time of one of the two circuits (91, 92) that join.
  • the refrigerant flow rate in the channel (91), G is the refrigerant flow rate in the other second circuit (92), and Gt is the first circuit (91) and the first circuit (91).
  • Enthalpy h is the refrigerant enthalpy of the second circuit (92), ht is the refrigerant entrant of the junction circuit (93)
  • the refrigerant circulation amount G of the refrigerant circuit (20) is calculated using Expression 10 shown below.
  • W is the input power of the compressor (30)
  • h is the refrigerant discharged from the compressor (30).
  • Enthalpy, h represents the enthalpy of the refrigerant sucked by the compressor (30).
  • the four-way selector valve (33) is set to the second state.
  • the outdoor heat exchanger (34) serves as a condenser (radiator)
  • the indoor heat exchange (37) serves as an evaporator.
  • a refrigeration cycle is performed.
  • the first outdoor expansion valve (36a) is set to fully open, and the opening degrees of the second outdoor expansion valve (36b) and the indoor expansion valves (39a, 39b) are adjusted as appropriate.
  • the main circuit (66) is configured from the junction point of the bypass pipe (16) in the suction pipe (41) to the branch point of the bypass pipe (16) in the liquid pipe (42). .
  • the main circuit (66) is a part force where all of the refrigerant returning to the compressor (30) finishes joining.
  • the compressor (30) force is a range up to the point where the discharged refrigerant first branches.
  • the bypass pipe (16) and each indoor circuit (22a, 22b) constitute a branch circuit (67).
  • the branch circuit (67) is connected in parallel to the main circuit (66)!
  • the refrigerant discharged from the compressor (30) is also condensed by exchanging heat with outdoor air in the outdoor heat exchanger (34).
  • the refrigerant condensed by the outdoor heat exchange (34) branches into the indoor connection pipe (17) and the bypass pipe (16).
  • the refrigerant flowing into the indoor connection pipe (17) flows through the first flow path (15a) of the internal heat exchange (15).
  • the refrigerant flowing into the bypass pipe (16) is depressurized by the second outdoor expansion valve (36b) and flows into the second flow path (15b) of the force internal heat exchange (15).
  • heat exchange is performed between the refrigerant in the first flow path (15a) and the refrigerant in the second flow path (15b). This heat exchange cools the refrigerant in the first channel (15a) and cools the second channel (15b).
  • the medium is heated.
  • each indoor circuit (22a, 22b) The refrigerant that has flowed through the first flow path (15a) is distributed to each indoor circuit (22a, 22b).
  • the refrigerant In each indoor circuit (22), the refrigerant is depressurized when passing through the indoor expansion valve (39), and then is evaporated by exchanging heat with indoor air in the indoor heat exchanger (37).
  • the refrigerant evaporated in the indoor heat exchanger (37) joins with the refrigerant flowing through the bypass pipe (16), and is sucked into the compressor (30) and compressed.
  • the four-way selector valve (33) is set to the first state.
  • the outdoor heat exchanger (34) serves as an evaporator and the indoor heat exchanger (37) serves as a condenser (heat radiator).
  • a refrigeration cycle is performed.
  • the second outdoor expansion valve (36b) is set to be fully closed, and the opening degrees of the first outdoor expansion valve (36a) and the indoor expansion valves (39a, 39b) are adjusted as appropriate.
  • the indoor circuit (22), the liquid side connecting pipe (23) and the gas side connecting pipe (24) constitute the main circuit (66).
  • Each indoor circuit (22a, 22b) constitutes a branch circuit (67).
  • the refrigerant discharged from the compressor (30) is distributed to each indoor circuit (22a, 22b).
  • the refrigerant condenses by exchanging heat with room air through indoor heat exchange (37).
  • the refrigerant condensed in the indoor heat exchange (37) is depressurized when passing through the indoor expansion valve (39) and the first outdoor expansion valve (36a), and then exchanges heat with outdoor air in the outdoor heat exchanger (34). And evaporate.
  • the refrigerant evaporated in the outdoor heat exchanger (34) is sucked into the compressor (30) and compressed.
  • the operation when the controller (50) diagnoses the state of the component to be diagnosed will be described.
  • the diagnosis of the state of the diagnosis target component is performed during the cooling operation or the heating operation. In the following, the case of making a diagnosis during cooling operation will be described.
  • thermodynamic analysis is performed on each of the controller (50) force each of the indoor circuits (22a, 22b) and the bypass pipe (16).
  • thermodynamic analysis of each indoor circuit (22a, 22b) will be explained.
  • thermodynamic analysis of the first indoor circuit (22a) will be explained.
  • thermodynamic analysis of the second indoor circuit (22b) The description is omitted.
  • the refrigerant state detection unit (51) includes an inlet and outlet of the compressor (30), an inlet and outlet of the outdoor heat exchanger (34), and internal heat.
  • the temperature and entropy of the refrigerant at 10 positions of the inlet and outlet of the exchanger (15), the inlet and outlet of the indoor expansion valve (39), and the inlet and outlet of the indoor heat exchanger (37) are detected.
  • the refrigerant temperature and entropy are equal between the outlet of the compressor (30) and the outdoor heat exchanger (34), and the outlet of the outdoor heat exchanger (34) Equal to the inlet of the heat exchanger (15), and equal to the outlet of the inner heat exchanger (15) and the inlet of the indoor expansion valve (39), and the outlet of the indoor expansion valve (39) to the indoor It is assumed that it is the same as the entrance to the heat exchanger (37).
  • the entropy is calculated at the outlet of the outdoor heat exchanger (34) and the outlet of the internal heat exchanger (15) assuming that the refrigerant pressure is equal to the outlet of the compressor (30), and the indoor heat exchanger (37 ), The entropy is calculated assuming that the refrigerant pressure is at the inlet of the compressor (30) and so on.
  • the loss calculation unit (52) uses the refrigerant temperature and the entropy detected by the refrigerant state detection unit (51) to generate the compressor (30), the outdoor heat exchanger (34), the internal The value of the loss generated in each circuit component (main component equipment) of the heat exchanger (15), indoor expansion valve (39), and indoor heat exchanger (37) is calculated individually.
  • Fig. 16 (A) shows the T-s diagram created by the thermodynamic analysis of the first indoor circuit (22a).
  • point A (l) corresponds to the refrigerant state at the inlet of the compressor (30)
  • point B (l) is the outlet of the compressor (30) (outside of the outdoor heat exchanger (34)
  • Point (1) corresponds to the refrigerant state at the outlet of the outdoor heat exchanger (34) (inlet of the internal heat exchanger (15))
  • point D (l) corresponds to the internal refrigerant state.
  • point E (l) is the inlet of indoor heat exchanger (37) (outlet of indoor expansion valve (39))
  • the point F (l) corresponds to the state of the refrigerant at the outlet of the indoor heat exchanger (37).
  • G (l) is a point where the isobaric line passing through the point B (l) and the saturated vapor line intersect.
  • Point H (l) is the point where the isobaric line passing through point D (l) and the saturated liquid line intersect.
  • Point 1 (1) is the point where the isoenthalpy line passing through point D (l) and the saturated liquid line intersect.
  • Point J (l) is the point where the isobaric line passing through point F (l) and the saturated vapor line intersect.
  • the area (a) represents the work of the reverse Carnot cycle
  • the area (b) represents the endothermic amount in the indoor heat exchanger (37)
  • the area of (2) represents the loss in the indoor heat exchanger (37)
  • the area of (d) represents the loss in the outdoor heat exchange (34)
  • the area of (e) represents the refrigerant passing through the indoor expansion valve (39).
  • (£) represents the loss due to mechanical friction in the compressor (30)
  • (1) represents the loss in internal heat exchange (15)
  • (m) represents the room. This represents the amount of heat entering the pipe between the heat exchanger (37) and the compressor (30)
  • the area (r) represents the heat exchange loss in the pipe between the indoor heat exchanger (37) and the compressor (30). ing.
  • each area of the area r) represents the magnitude of the loss corresponding to the refrigerant flow rate flowing into the indoor circuit (22) out of the refrigerant flow rate in the main circuit (66) as a value per unit flow rate of the refrigerant. ing.
  • the refrigerant state detection section (51) includes the inlet and outlet of the compressor (30), the inlet and outlet of the outdoor heat exchanger (34), and the second outdoor unit. It detects the temperature and entropy of the refrigerant at eight positions, the inlet and outlet of the expansion valve (36b) and the inlet and outlet of the internal heat exchanger (15).
  • the refrigerant temperature and entropy are equal between the outlet of the compressor (30) and the inlet of the outdoor heat exchanger (34), and the outlet of the outdoor heat exchanger (34).
  • the inlet of the second outdoor expansion valve (36b) are equal, and the outlet of the second outdoor expansion valve (36b) and the inlet of the internal heat exchanger (15) are the same.
  • the entropy is calculated as if the refrigerant pressure is at the outlet of the compressor (30), etc., and at the inlet and outlet of the internal heat exchange (15) The entropy is calculated as if the pressure of the compressor is at the inlet of the compressor (30).
  • Fig. 16 (B) shows the T s diagram created by the thermodynamic analysis of the bypass pipe (16).
  • point A (l) corresponds to the refrigerant state at the inlet of the compressor (30)
  • point B (l) is the outlet of the compressor (30) (outside of the outdoor heat exchanger (34)).
  • Point D (l) corresponds to the refrigerant state at the outlet of the outdoor heat exchanger (34) (inlet of the second outdoor expansion valve (36b)) and point E (l) Corresponds to the refrigerant state at the inlet of the internal heat exchanger (15) (outlet of the second outdoor expansion valve (36b)), and point F (l) corresponds to the refrigerant state at the outlet of the internal heat exchanger (15) is doing.
  • G (l), points H (l), 1 (1), and point J (l) are the same as the thermodynamic analysis of the indoor circuit (22).
  • the region (b) represents the amount of heat absorbed in the internal heat exchanger (15)
  • the region (c) represents the loss in the internal heat exchanger (15)
  • (d ) Area represents the loss in the outdoor heat exchanger (34)
  • (e) area represents the friction loss when the refrigerant passes through the second outdoor expansion valve (36b)
  • (1) area represents the compressor.
  • (30) represents the loss due to mechanical friction
  • the area (m) represents the amount of heat entering the pipe between the internal heat exchanger (15) and the compressor (30)
  • the area (r) represents the internal heat exchanger (15 ) And the heat exchange loss in the pipe between the compressor (30).
  • the area (d), the area (£), the area (m), and the area (r) representing the loss of circuit components of the main circuit (66) are the refrigerant flow rate of the main circuit (66).
  • the amount of loss corresponding to the refrigerant flow rate in the bypass pipe (16) is expressed as a value per unit flow rate of the refrigerant.
  • the loss calculation unit (52) calculates the loss generated in each circuit component based on the thermodynamic analysis of each indoor circuit (22a, 22b) and the thermodynamic analysis of the bypass pipe (16). The value of is calculated. Specifically, for the circuit components of each indoor circuit (22a, 22b) and bypass pipe (16) that are branch circuits (67), the loss calculation unit (52) calculates the loss value. In the T s diagram of the branch circuit (67) provided with, calculate the area of the region corresponding to the loss caused by the circuit components. The area of this region expresses the magnitude of the loss that occurs in the circuit component as a value per unit flow rate of the refrigerant.
  • the loss calculation unit (52) multiplies the area of the region corresponding to the circuit component by the refrigerant flow rate of the branch circuit (67) calculated by the flow rate calculation unit (56), thereby generating the circuit of the branch circuit (67).
  • the value of component loss is calculated as the workload.
  • the loss calculation unit (52) calculates the loss in the circuit component that calculates the loss value in the T s diagram of each branch circuit (67). Corresponding to The area of each region is calculated.
  • the area of the area corresponding to the circuit component is that of the circuit component corresponding to the refrigerant flow rate of the branch circuit (67) out of the refrigerant flow rate of the main circuit (66).
  • the magnitude of the loss is expressed as a value per unit flow rate of the refrigerant.
  • the loss calculation unit (52) multiplies the area of the calculated T-s diagram of each branch circuit (67) by the refrigerant flow rate of each branch circuit (67) calculated by the flow rate calculation unit (56). By summing up, the loss value of the circuit components of the main circuit (66) is calculated as work (see Equation 11).
  • Equation 11 R represents the loss value of the circuit components of the main circuit (66), and A is the circuit component of the main circuit (66) in the T s diagram of the branch circuit (67).
  • G represents the area of the area corresponding to the loss generated, and G represents the refrigerant flow rate in the branch circuit (67) for which the value of A was calculated.
  • the diagnosis unit (54) is a loss of the operation condition corresponding to the operation condition at the time of the diagnosis among the plurality of operation condition loss reference values stored in the loss storage unit (53). Select the reference value. Then, the diagnosis unit (54) compares the calculated value calculated by the loss calculation unit (52) with the loss reference value of the selected operating condition for each loss generated in each circuit component. Diagnose the condition and the condition of fluid parts (12, 14, 28, 75, 76b).
  • the refrigeration apparatus (10) of this modified example includes two outdoor units, a first outdoor unit (11a) and a second outdoor unit (lib).
  • the first outdoor unit (11a) and the second outdoor unit (lib) are connected in parallel to each other.
  • the number of outdoor units (11) is merely an example.
  • the first outdoor unit (11a) contains the first outdoor circuit (21a), and the second outdoor unit (lib) contains the second outdoor circuit (21b).
  • the first outdoor circuit (21a) and the second outdoor circuit (21b) have the same configuration.
  • each outdoor circuit (21) has the same configuration as the outdoor circuit of the second embodiment, except that two compressors (30a, 3 Ob) are provided.
  • the two compressors (30a, 30b) are connected in parallel to each other.
  • One of the two compressors (30a) is a variable capacity compressor
  • the other second compressor (30b) is a constant capacity compressor.
  • the refrigeration apparatus (10) of this modification includes three indoor units: a first indoor unit (13a), a second indoor unit (13b), and a third indoor unit (13c).
  • the first indoor unit (13a) contains the first indoor circuit (22a)
  • the second indoor unit (13b) contains the second indoor circuit (22b)
  • the third indoor unit (13c) contains the second indoor circuit (22a).
  • Temperature sensors 45m, 45n, 45p, 45q) are provided on the circuit (21) side!
  • each outdoor circuit (21) has a bypass pipe (16 ) And the junction of the bypass pipe (16) in the liquid pipe (42) constitute the main circuit (66).
  • the bypass pipe (16) and each indoor circuit (22a, 22b, 22c) constitute a branch circuit (67).
  • Each indoor circuit (22a, 22b, 22c) is connected in parallel to the main circuit (66) of the first outdoor circuit (21a) and to the main circuit (66) of the second outdoor circuit (21b). It has been.
  • each outdoor circuit (21) constitutes the main circuit (66), and each indoor circuit (22a, 22b, 22c ) Form a branch circuit (67).
  • Each indoor circuit (22a, 22b, 22c) is connected in parallel to the first outdoor circuit (21a) and to the second outdoor circuit (21b).
  • the controller (50) includes a refrigerant state detection unit (51) and a loss calculation unit similar to those in the second embodiment.
  • the flow rate calculation unit (56) of this modified example uses the refrigerant flow rate (G 1, G 2, G 3) of each indoor circuit (22) according to the formula created using Formula 8 and Formula 9 as in Embodiment 2 above.
  • Each outdoor circuit (21) uses the refrigerant flow rate (G 1, G 2, G 3) of each indoor circuit (22) according to the formula created using Formula 8 and Formula 9 as in Embodiment 2 above.
  • Each outdoor circuit (21) uses the refrigerant flow rate (G 1, G 2, G 3) of each indoor circuit (22) according to the formula created using Formula 8 and Formula 9 as in Embodiment 2 above.
  • the refrigerant flow rate (G 1, G 2) of the bypass pipe (16) is calculated.
  • the flow rate calculation unit (56) performs the refrigerant flow rate (G 1, G 2) of each indoor circuit (22).
  • Equation 12 G represents the refrigerant flow rate at which the first outdoor circuit (21a) force also flows, and G represents the refrigerant flow rate at which the second mA mB outdoor circuit (21b) force flows out.
  • These refrigerant flow rates (G 1, G 2) are calculated by the flow rate calculation unit (56) using the following formulas 13 and 14. mA mB
  • G is the refrigerant flow rate discharged from the first compressor (30a), G
  • Inv Std represents the refrigerant flow rate discharged from the second compressor (30b). These refrigerant flow rates (G 1, G 2) are calculated by the flow rate calculation unit (56) using Equation 10 above.
  • the controller (50) performs thermodynamic analysis on each of the indoor circuits (22a, 22b, 22c) and each of the bypass pipes (16) of the outdoor circuits (21a, 21b).
  • the operation of the controller (50) in the thermodynamic analysis for each indoor circuit (22) and the operation of the controller (50) in the thermodynamic analysis for the bypass pipe (16) of each outdoor circuit (21) are the same as those in the second embodiment. Is the same.
  • the T-s diagram created by the thermodynamic analysis of each indoor circuit (22) is represented by Fig. 16 (A) and is created by the thermodynamic analysis of the bypass pipe (16) of the outdoor circuit (21).
  • the T s diagram is represented by Fig. 16 (B).
  • the operation of calculating the value of loss generated in the circuit components of the main circuit (66) in the loss calculation unit (52) is different from that of the second embodiment. Since the operation for calculating the value of the loss generated in the circuit components of the branch circuit (67) is the same as that in the second embodiment, the description thereof is omitted. In the following, the operation for calculating the value of the loss generated in the circuit components of the first outdoor circuit (21a) among the circuit components of the main circuit (66) will be described.
  • the loss calculation unit (52) is a circuit component of the main circuit (66), specifically the loss that occurs in the compressor (30), outdoor heat exchanger (34), and first outdoor expansion valve (36a). The value of is calculated using Equation 15 shown below.
  • R represents the loss value of the circuit component of the main circuit (66)
  • B represents the circuit component of the main circuit (66) in the T s diagram of the indoor circuit (22).
  • G represents the area of the region corresponding to the loss, and G represents the first outdoor circuit (2
  • Y la represents the flow rate of refrigerant flowing in (G 1, G 2, G 3), and C represents the first outdoor circuit (21a)
  • Equation 15 the value of the loss generated in the compressor (30) is calculated as the sum of the loss generated in the first compressor (30a) and the loss generated in the second compressor (30b).
  • the loss calculation unit (52) calculates the value of the loss generated in the compressor (30) as the refrigerant flow rate G discharged from the first compressor (30a),
  • Embodiment 3 of the present invention is a refrigeration apparatus (10) according to the present invention.
  • This refrigeration apparatus (10) is configured as a refrigeration apparatus having a hot water supply function.
  • the refrigeration apparatus (10) includes a water circulation circuit (75) through which water flows, and water in the water circulation circuit (75) in the refrigerant circuit (20). It has a hot water supply heat exchanger (76) for heat exchange with the refrigerant.
  • the water circulation circuit (75) constitutes fluid components (12, 14, 28, 75, 76b). Tap water circulates in the water distribution circuit (75).
  • the refrigerant circuit (20) is filled with carbon dioxide as a refrigerant.
  • This refrigeration apparatus (10) is configured such that a supercritical cycle is performed in the refrigerant circuit (20), as in the modification of the first embodiment.
  • the hot water supply heat exchanger (76) includes a first channel (76a) provided in the refrigerant circuit (20) and a second channel (76b) provided in the water circulation circuit (75). ing.
  • the second flow path (76b) constitutes a fluid component (12, 14, 28, 75, 76b).
  • the first flow path (76a) and the second flow path (76b) are arranged adjacent to each other.
  • the heat exchange for hot water supply (76) is such that the inlet of the first flow path (76a) and the outlet of the second flow path (76b) are on the same side and the outlet of the first flow path (76a) and the second flow path. It is constructed in the counterflow type with the inlet of the passage (76b) on the same side.
  • the T s diagram of the refrigeration cycle in the refrigerant circuit (20) of Embodiment 3 is shown in FIG.
  • the boundary line between the region (a), the region (e), and the region (D) for the region (d) indicates that the water temperature (Tin) at the inlet of the second channel (76b) It is inclined by the temperature difference from the water temperature (Tout) at the outlet of the flow path (76b) Since the hot water supply heat exchanger (76) is configured in a counterflow type, the embodiment 1 and the above This is because, unlike Embodiment 2, the temperature of the fluid (water) with which the refrigerant in the first flow path (76a) exchanges heat decreases as it approaches the outlet.
  • the area (a) represents the work of the reverse Carnot cycle.
  • the area (b) represents the amount of heat absorbed in the indoor heat exchange (37).
  • the area (c) represents the loss that occurs in the indoor heat exchanger (37).
  • the area (d) represents the loss that occurs in the first flow path (76a).
  • the region (e) represents the friction loss when the refrigerant passes through the expansion valve (36).
  • the region D represents the loss due to mechanical friction in the compressor (30).
  • the controller (50) diagnoses the water distribution circuit (75) and the hot water supply heat exchanger (76) in addition to the components to be diagnosed of Embodiment 1 and Embodiment 2 above. It is a target part.
  • the loss generated in the first flow path (76a) reflects the state of heat exchange in the hot water heat exchanger (76), and the second flow path (76b ) And water distribution circuit (75).
  • the diagnosis unit (54) diagnoses the state of the second channel (76b) and the state of the water circulation circuit (75) based on the value of the loss generated in the first channel (76a).
  • Embodiment 4 of the present invention will be described.
  • the fourth embodiment is an analyzer (60) of the refrigeration apparatus (10) according to the present invention.
  • the analyzer (60) is configured to analyze the state of the refrigeration apparatus (10) as in the first embodiment, the second embodiment, and the third embodiment, and diagnose the state of its component parts. .
  • the analyzer (60) of Embodiment 4 of the present invention includes a first component (47) and a second component (48) connected to each other via a communication line (63). Talk!
  • the first component (47) includes a refrigerant state detection sensor (65).
  • Refrigerant state detection sensor 65.
  • the refrigerant state detection sensor (65) is located at the same position as the refrigerant circuit (20) of the first embodiment.
  • the six temperature sensors (45), and six pressure sensors (46) force are configured.
  • the second component section (48) includes a refrigerant state detection section (51), a loss calculation section (52), a loss storage section (53), a diagnosis section (54), and a display section (55)! /
  • the second component (48) is configured as an electronic computer and is provided in a building different from the refrigeration apparatus (10).
  • the refrigerant state detection unit (51), loss calculation unit (52), loss storage unit (53), diagnosis unit (54), and display unit (55) are substantially the same as those in the first embodiment. Therefore, description of these configurations and operations is omitted.
  • the analyzer (60) of the fourth embodiment includes a diagnosis target component (circuit component or fluid component (12, 14, 28, 75, 76b) for each of the connected refrigeration apparatuses (10). ) It is configured to diagnose the state of).
  • the measured value of the refrigerant state detection sensor (65) is transmitted from the first component (47) to the second component (48).
  • the refrigerant state detector (51) uses the measured value of the temperature sensor (45) and the measured value of the pressure sensor (46) transmitted from the first component (47) to Detect refrigerant temperature and entropy at component outlets and inlets.
  • the display unit (55) displays the diagnosis result relating to the state of the diagnosis target component.
  • the diagnosis result displayed on the display unit (55) is confirmed on behalf of the user of the refrigeration apparatus (10) by a person who has specialized knowledge about the refrigeration apparatus (10), for example. For this reason, since the state of the diagnosis target component can be grasped more accurately, an abnormality of the refrigeration apparatus (10) can be reliably detected. In addition, it is possible to prevent a failure of the refrigeration apparatus (10).
  • the display unit (55) may display the value of the loss generated in each circuit component together! /.
  • the state of the refrigeration apparatus (10) is determined by counting the error code transmitted to the refrigeration apparatus (10). I was diagnosed.
  • conventional diagnostic devices cannot perform force diagnosis for items for which error codes are set in advance. One cause may be counted for multiple items. In other words, items that are not abnormal may be counted as abnormal. Therefore, it has been difficult to make an accurate diagnosis.
  • the person who viewed the display unit (55) previously set the item as in the past. Diagnosis can be made for various items.
  • the value of loss generated in each circuit component corresponds to the state of the circuit component and the state of fluid components (12, 14, 28, 75, 76b). Accordingly, since the state of the component corresponding to the loss value is accurately grasped, it is possible to perform an accurate diagnosis as compared with the conventional case in which it is not determined that a circuit component without abnormality is abnormal.
  • the refrigerant state detection unit (51) of the refrigerant state detection unit (51), the loss calculation unit (52), the loss storage unit (53), the diagnosis unit (54), and the display unit (55) It is provided in the first component (47).
  • the refrigerant state detector (51) and the loss calculator (52) may be provided in the first component (47), and the refrigerant state detector (51), the loss calculator (52), and the loss memory
  • the section (53) and the diagnosis section (54) may be provided in the first component section (47).
  • Embodiment 5 of the present invention will be described.
  • the fifth embodiment is an analyzer (60) of the refrigeration apparatus (10) according to the present invention.
  • the analyzer (60) is configured to analyze the state of the refrigeration apparatus (10) as in the first embodiment, the second embodiment, and the third embodiment, and diagnose the state of its component parts. .
  • the analyzer (60) of the fifth embodiment of the present invention includes a calculator (70) and a refrigerant state detection sensor (65).
  • the calculation unit (70) includes a refrigerant state detection unit (51), a loss calculation unit (52), a loss storage unit (53), a diagnosis unit (54), and a display unit (55).
  • the calculation unit (70) is configured as an electronic computer.
  • the refrigerant state detection sensor (65) includes five temperature sensor forces.
  • the first temperature sensor (65a) is attached to the suction side of the compressor (30)
  • a second temperature sensor (65b) is attached to the discharge side of the compressor (30)
  • a third temperature sensor (65c) is attached to the liquid side of the outdoor heat exchanger (34)
  • a fourth temperature sensor (65d) is attached. Attached to the outdoor heat exchanger (34) 5
  • a temperature sensor (65e) is attached to the indoor heat exchanger (37).
  • Each temperature sensor (65) is connected to the calculation unit (70) via the lead wire (64).
  • the refrigerant state detection unit (51) determines the inlet and outlet of the compressor (30), the inlet and outlet of the expansion valve (36) from the measured values of the five temperatures measured by the temperature sensors (65).
  • the refrigerant is configured to detect the temperature and entropy of the refrigerant at eight positions of the inlet and outlet of the outdoor heat exchanger (34) and the inlet and outlet of the indoor heat exchanger (37).
  • the refrigerant temperature and entropy at the inlet of the outdoor heat exchanger (34) are detected as the same values as those at the outlet of the compressor (30).
  • the refrigerant temperature and entropy at the inlet of the expansion valve (36) are detected as the same values as those at the outlet of the outdoor heat exchanger (34).
  • the refrigerant temperature and entropy at the outlet of the expansion valve (36) are detected as the same values as those at the inlet of the indoor heat exchanger (37).
  • the refrigerant temperature and entropy at the outlet of the indoor heat exchanger (37) are detected as the same values as those at the inlet of the compressor (30).
  • the loss calculation unit (52), the loss storage unit (53), the diagnosis unit (54), and the display unit (55) are substantially the same as those in the first embodiment. Description is omitted.
  • the operation when the analyzer (60) diagnoses the state of the part to be diagnosed will be described. Diagnosis of the condition of the parts to be diagnosed can be performed during cooling operation or heating operation. In the following, the case of making a diagnosis during cooling operation will be described. Since the operations of the loss storage unit (53), the diagnosis unit (54), and the display unit (55) are substantially the same as those of the first embodiment, the operation of the refrigerant state detection unit (51) Only explained.
  • the refrigerant state detection unit (51) detects the measurement value of the fourth temperature sensor (65d) as the refrigerant condensation temperature in the outdoor heat exchanger (34), and determines the refrigerant saturation pressure at the condensation temperature. The saturation pressure is calculated and detected as the high pressure of the refrigeration cycle.
  • the refrigerant state detector (51) detects the measured value of the fifth temperature sensor (65e) as the refrigerant evaporation temperature in the indoor heat exchanger (37), and calculates the refrigerant saturation pressure at the evaporation temperature. The saturation pressure is detected as a constant pressure of the refrigeration cycle.
  • the refrigerant state detection unit (51) calculates the entropy of the refrigerant at the inlet of the compressor (30) using the measurement value of the first temperature sensor (65a) and the low pressure of the refrigeration cycle. . This allows pressure The refrigerant temperature and entropy at the inlet of the compressor (30) are ascertained.
  • the refrigerant state detection unit (51) calculates the entropy of the refrigerant at the outlet of the compressor (30) using the measurement value of the second temperature sensor (65b) and the high pressure pressure of the refrigeration cycle. . Thereby, the temperature and entropy of the refrigerant at the outlet of the compressor (30) are grasped.
  • the refrigerant state detector (51) uses the measured value of the third temperature sensor (65c) and the high-pressure pressure of the refrigeration cycle, so that the outlet of the outdoor heat exchanger (34) serving as a condenser is Calculate the entropy and enthalpy of the refrigerant. As a result, the refrigerant temperature and entropy at the outlet of the outdoor heat exchanger (34) can be grasped.
  • the refrigerant state detector (51) uses the measured value of the fifth temperature sensor (65e) as the temperature of the refrigerant at the inlet of the indoor heat exchanger (37) serving as the evaporator. Then, the refrigerant state detection unit (51) calculates the entropy of the refrigerant at the inlet of the indoor heat exchanger (37) using the refrigerant enthalpy at the outlet of the outdoor heat exchanger (34). Thereby, the temperature and entropy of the refrigerant at the inlet of the indoor heat exchanger (37) are grasped.
  • Embodiment 5 a person who has specialized knowledge about the refrigeration apparatus (10) carries the analysis apparatus (60) of the refrigeration apparatus (10) so that the refrigeration apparatus (10) is installed. Thus, it is possible to diagnose the state of the part to be diagnosed at a certain place. Therefore, a person who has specialized knowledge about the refrigeration apparatus (10) can accurately diagnose the state of the part to be diagnosed on the spot in place of the user of the refrigeration apparatus (10).
  • the analysis device (60) of the refrigeration system (10) includes a refrigerant state detection sensor (65)! /, So that it detects the temperature and entropy of the refrigerant at the outlet and inlet of each major component device. It is possible to diagnose the state of the part to be diagnosed even for the refrigeration apparatus (10) that is not equipped with a sensor.
  • Embodiment 5 even if the refrigerant state detection sensor (65) does not include a pressure sensor, the temperature and entropy of the refrigerant at the outlet and inlet of each main component device are calculated. Therefore, it is possible to easily diagnose the state of the part to be diagnosed by the temperature sensor (65) that is easily attached.
  • the refrigerant state detection unit (51) of the fifth embodiment includes the controller (50) of the refrigeration apparatus (10) of the first to third embodiments and the analysis apparatus (60) of the fourth embodiment. It is also applicable to. In this case, five temperatures are attached to the position where the temperature sensor (65) is attached in the fifth embodiment. It is possible to detect the temperature and entropy of the refrigerant at the outlet and inlet of each main component simply by providing the degree sensor (45).
  • the analyzer (60) does not include the refrigerant state detection sensor (65).
  • the analysis device (60) is connected to the refrigeration device (10) via a lead wire.
  • the refrigeration apparatus (10) is provided with the same temperature sensor (45) and pressure sensor (46) as in the first embodiment.
  • the state of the diagnosis target component is diagnosed for the connected refrigeration apparatus (10).
  • the measured values of the temperature sensor (45) and the pressure sensor (46) are transmitted to the calculation unit (70) as well as the refrigeration apparatus (10) force.
  • the refrigerant state detection unit (51) uses the measurement value of the temperature sensor (45) and the measurement value of the pressure sensor (46) transmitted from the refrigeration apparatus (10) V, and uses each measurement value of the refrigeration apparatus (10). Detect refrigerant temperature and entropy at the outlet and inlet of components.
  • the above embodiment may be configured as in the following modification.
  • the diagnosis unit (54) may diagnose the state of the part to be diagnosed based on the distribution status of the loss values generated in each circuit component. Specifically, the diagnosis unit (54) diagnoses the state of the part to be diagnosed based on the ratio of the loss generated in each circuit component to the total loss.
  • the loss storage unit (53) stores an average loss distribution in a normal operation state. For example, the diagnosis unit (54) indicates that the compressor (30) is in a faulty state if the loss ratio due to mechanical friction in the compressor (30) at the time of diagnosis is more than 10% greater than that in normal operation. It is determined that As a result, the total value of the total loss at the time of diagnosis is significantly different from the total value of the normal operating state, so it is difficult to compare each loss that occurs in each major component device. Diagnosis is also possible.
  • the diagnosis unit (54) is configured to diagnose the state of the component to be diagnosed by comprehensively analyzing the change pattern of the loss distribution of the normal operating state force. A little.
  • the diagnosis unit (54) may diagnose the state of the diagnosis target component based on the temporal change of the loss value generated in each circuit component.
  • the diagnosis unit (54) for example, includes a time-dependent change pattern of the loss of the circuit component when the air-conditioning load is increased, and a time-change pattern of the loss of the circuit component when the diagnosis target component tends to deteriorate.
  • the state of the diagnosis target component is diagnosed by identifying.
  • the diagnosis unit (54) when the work amount of the reverse Carnot cycle is relatively large, causes the refrigerant circulation amount to increase due to an increase in the air conditioning load. Since the loss value has increased due to the increase in the number of parts, it is not judged that the component to be diagnosed tends to deteriorate even if the loss of the circuit components increases.
  • the diagnosis unit (54) indicates that the air conditioning load has not increased when the work in the reverse Carnot cycle has hardly changed. Since the circulation amount of the refrigerant is increased and the loss is increased, it is determined that the portion corresponding to the circuit component having the increased loss value is in a deterioration tendency. In this case, the diagnosis unit (54) can detect that the window of the indoor space is open based on the change in the air conditioning load, and can display it on the display unit (55) so as to close the window. is there.
  • time-dependent change pattern of the loss of circuit components when starting the refrigeration system (10) and the time-dependent change of the loss of circuit components during defrost operation that melts ice attached to the evaporator are also included. It can be used for diagnosing the state of the part to be diagnosed.
  • a temperature sensor (45) and a pressure sensor (46) for directly detecting the temperature and entropy of the refrigerant at the inlet and outlet of the expansion valve (36) may be provided! Specifically, a temperature sensor (45) and a pressure sensor (46) are provided between the outdoor heat exchanger (34) and the expansion valve (36), and between the expansion valve (36) and the gas side end of the outdoor circuit (21). Is provided. As a result, the state of the refrigerant pipe connecting the outdoor heat exchanger (34) and the expansion valve (36) and the refrigerant pipe connecting the expansion valve (36) and the indoor heat exchanger (37) can also be diagnosed. Diagnosis becomes possible.
  • four temperature sensors (45) and four pressure sensors (46) are provided. It may be. Specifically, unlike Embodiment 1 above, between the outdoor heat exchanger (34) and the four-way switching valve (33), between the gas side end of the indoor circuit (22) and the indoor heat exchanger (37). Do not have a temperature sensor (45) and pressure sensor (46)!
  • the pressure sensor (46) measures the pressure of the high-pressure refrigerant and measures the pressure of the low-pressure refrigerant.
  • the suction pressure sensor (46a) and the discharge pressure sensor (46b) are provided in the refrigerant circuit (20).
  • the measured values of the discharge pressure sensor (46b) are used to calculate the entropy at the inlet and outlet of the heat exchanger (34, 37), which is a radiator, and evaporation is performed using the measured value of the suction pressure sensor (46a). Calculate the entropy at the inlet and outlet of the heat exchanger (34,37) that will be the heat exchanger.
  • the temperature is applied to the heat exchanger (34, 37) serving as a radiator without providing the discharge pressure sensor (46b).
  • a sensor may be provided, and the high pressure of the refrigeration cycle may be calculated using the measured value of the temperature sensor.
  • the low pressure of the refrigeration cycle is calculated using the measured value of the temperature sensor. Good.
  • a loss storage operation for calculating the loss reference value stored in the loss storage unit (53) may be performed.
  • the loss memory operation is performed when the refrigeration apparatus (10) is in a normal operation state (for example, immediately after installation of the refrigeration apparatus (10) or before product shipment).
  • the value of loss generated in each circuit component calculated by the loss calculation unit (52) is stored in the loss storage unit (53).
  • the display unit (55) may display a loss value for each circuit component or a diagram of a loss value for each circuit component. For example, as shown in FIG. 24, the display unit (55) displays a pie chart showing the ratio of the loss value (instantaneous value) for each circuit component (main component device) with the total loss as 100%. Moyo.
  • the display unit (55) is normal for each circuit component (main component device) as shown in FIG.
  • a radar chart showing the rate of increase / decrease in the loss value (instantaneous value) may be displayed with the state of normal operation as 50%.
  • the display unit (55) may convert the loss value (instantaneous value) for each circuit component (main component device) into electric power and display it. Furthermore, it may be converted into an amount and displayed.
  • the display unit (55) may include a lighting unit corresponding to each circuit component (main component device).
  • the loss value (instantaneous value) of each circuit component is quantized into a plurality of values, and the state of each circuit component is represented by the state of the lighting section.
  • the lighting unit is configured to turn off when normal and turn on when abnormal.
  • the loss value of each circuit component into three values configure the lighting section so that it lights in green when normal, lights yellow when warning, and lights red when abnormal. Note that if the loss of circuit components is in a predetermined state close to the state where it is determined to be a failure, it is determined that a warning has occurred.
  • the display unit (55) may show the change over time in the loss value for each circuit component (main component device) in a separate chart. Further, as shown in FIG. 29, the display unit (55) may display the change over time in the value of loss for each circuit component (main component device) on the same chart. In this case, the outside air temperature, room temperature, cooling capacity, etc. may be displayed together.
  • the controller (50) may not have the diagnosis unit (54).
  • the analyzer (60) may not have the diagnostic unit (54).
  • the display unit (55) displays the loss state of the circuit component based on the calculated value calculated by the change amount calculating means (52). Specifically, the value of loss for each circuit component and the value of loss for each circuit component are displayed as a chart.
  • the state of loss of circuit components is displayed as information to diagnose the state of the refrigeration system (10).
  • the loss state of the circuit component corresponds to the state of the circuit component and the state of the fluid component (12, 14, 28, 75, 76b).
  • Circuit configuration displayed on the display (55) by a person with specialized knowledge It is possible to diagnose the state of circuit components and fluid parts (12, 14, 28, 75, 76b) from the state of product loss.
  • the magnitude of the change in the energy of the refrigerant generated in each circuit component for which the thermodynamic analysis power is also calculated is calculated as the value of the loss generated in each circuit component.
  • the magnitude of the change may be calculated as the use of power, the required power, and the power distribution corresponding to each circuit component.
  • a power calculation unit (52) that calculates the use of power, required power, or power distribution in each circuit component is provided as a change amount calculation means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

 圧縮機(30)、減圧手段(36,39)、及び複数の熱交換器(34,37)を含む回路構成部品が接続されて構成された冷媒回路(20)を備え、冷媒回路(20)で冷媒を循環させて冷凍サイクルを行う冷凍装置(10)において、圧縮機(30)、減圧手段(36,39)、及び熱交換器(34,37)のそれぞれの出口と入口における冷媒の温度及びエントロピを検出する冷媒状態検出手段(51)と、冷媒状態検出手段(51)が検出する冷媒の温度及びエントロピを用いて各回路構成部品で生じる冷媒のエネルギー変化の大きさを個別に算出する変化量算出手段(52)とを設ける。

Description

明 細 書
冷凍装置、及び冷凍装置の分析装置
技術分野
[0001] 本発明は、冷凍装置の状態を分析する機能を有する冷凍装置、及び冷凍装置の 分析装置に関するものである。
背景技術
[0002] 従来より、蒸気圧縮冷凍サイクルを行う冷媒回路を備える冷凍装置について、冷凍 装置の状態を分析する機能を有するものが知られている。この種の冷凍装置は、例 えば温度センサや圧力センサの検出値等力 把握される運転状態を正常な運転状 態と比較することによって冷凍装置の状態を分析するように構成されている。
[0003] 具体的に、特許文献 1には、圧力とェンタルビとの関係を示すモリエル線図を用い て冷凍装置の状態を分析して構成機器の正常、異常を診断する空調機が開示され ている。この空調機は、構成機器として、室外ユニットが圧縮機、四方弁、及び室外 熱交翻を備え、室内ユニットが室内熱交翻を備えている。また、この空調機の診 断装置 (コントローラ)は、数値変換手段、第 1入力手段、第 1特性演算手段、第 2特 性演算手段、特性診断手段、及び結果表示手段を備えている。
[0004] この空調機では、診断装置から診断開始命令が出されると、まず数値変換手段が 温度センサや圧力センサで検知された温度、圧力の電圧値を数値に変換する。また 、第 1入力手段には、室外ユニットと室内ユニットの冷媒量ゃ接続配管の長さなどが 入力される。次に、第 1特性演算手段は、第 1入力手段と数値変換手段とで得られた 情報に基づいて正常時のモリエル線図を作成する。次に、第 2特性演算手段は、運 転時のモリエル線図を作成する。次に、特性診断手段は、第 1特性演算手段の正常 時のモリエル線図と第 2特性演算手段の運転時のモリエル線図とを比較して、故障 箇所又は故障要因を特定する。そして、結果表示手段は、特性診断手段による診断 の内容を表示する。
特許文献 1:特開 2001— 133011号公報
発明の開示 発明が解決しょうとする課題
[0005] し力しながら、従来の冷凍装置では、正常な運転状態のモリエル線図と診断時のモ リエル線図の比較力 冷凍サイクルの状態を全体的に分析することはできる力 個々 の構成機器の状態を詳細に分析することは困難であった。
[0006] 具体的に、正常な運転状態のモリエル線図と分析時のモリエル線図の比較力 検 出されるのは、空調能力についての正常な運転状態と分析時との差、吐出冷媒又は 吸入冷媒につ 、ての正常な運転状態と分析時との圧力差や温度差などである。そし て、これらの正常な運転状態と分析時の差を表す数値は、個々の構成機器の状態の みに対応するものではない。また、これらの数値は単位が異なるものがあるので、互 いに関連付けることが難しい。従って、個々の構成機器の状態を個別に分析すること が困難であった。
[0007] また、従来の冷凍装置では、構成機器以外の冷凍装置の構成部品 (例えば、構成 機器同士をつなぐ冷媒配管)の状態を分析することができな力つた。
[0008] 本発明は、力かる点に鑑みてなされたものであり、その目的は、冷媒回路に接続さ れて冷媒回路を構成する回路構成部品の状態を個別に分析することができる機能を 有する冷凍装置を提供することである。
課題を解決するための手段
[0009] 第 1の発明は、圧縮機 (30)、減圧手段 (36,39)、及び複数の熱交換器 (34,37)を含 む回路構成部品が接続されて構成された冷媒回路 (20)を備え、該冷媒回路 (20)で 冷媒を循環させて冷凍サイクルを行う冷凍装置(10)を対象とする。そして、この冷凍 装置(10)は、上記圧縮機 (30)、減圧手段 (36,39)、及び熱交換器 (34,37)のそれぞ れの入口と出口における冷媒の温度及びエントロピを検出する冷媒状態検出手段 (5 1)と、上記冷媒状態検出手段 (51)が検出する冷媒の温度及びエントロピを用いて、 上記回路構成部品の各々で生じる冷媒のエネルギー変化の大きさを個別に算出す る変化量算出手段 (52)とを備えて!/、る。
[0010] 第 2の発明は、第 1の発明において、上記熱交換器 (34,37)において冷媒と熱交換 する流体が流通する流体用部品(12,14,28,75,76b)と、上記回路構成部品及び上記 流体用部品(12,14,28,75,76b)の少なくとも 1つを診断対象部品として、上記変化量 算出手段 (52)が算出する算出値に基づいて該診断対象部品の状態を診断する診 断手段 (54)とを備えている。
[0011] 第 3の発明は、第 2の発明において、上記熱交換器 (34,37)に空気を送るためのフ アン(12,14)力 上記流体用部品(12,14,28,75,76b)を構成しており、上記診断手段( 54)は、上記ファン(12,14)を上記診断対象部品として、上記変化量算出手段 (52)が 算出する算出値に基づいて該ファン (12,14)の状態を診断する。
[0012] 第 4の発明は、第 2又は第 3の発明において、上記変化量算出手段 (52)は、上記 回路構成部品の各々で生じる冷媒のエネルギー変化の大きさを該回路構成部品の 各々で生じる損失の値として算出し、上記診断手段 (54)は、上記変化量算出手段 (5 2)が上記損失の値として算出する算出値に基づいて上記診断対象部品の状態を診 断する。
[0013] 第 5の発明は、第 4の発明において、上記変化量算出手段 (52)は、各熱交換器 (3 4,37)で生じる複数種類の損失の値を個別に算出し、上記診断手段 (54)は、上記各 熱交換器 (34,37)で生じる損失については、上記変化量算出手段 (52)が算出する 複数種類の損失毎の算出値に基づいて上記診断対象部品の状態を診断する。
[0014] 第 6の発明は、第 4又は第 5の発明において、上記冷媒回路 (20)が、冷媒を冷凍サ イタルの高圧圧力にまで圧縮する圧縮機 (30)が設けられた主回路 (66)と、該主回路 (66)に対して並列に接続する複数の分岐回路 (67)とを備える一方、上記各分岐回 路 (67)の冷媒流量を算出する流量算出手段 (56)を備え、上記変化量算出手段 (52 )は、上記流量算出手段 (56)が算出する各分岐回路 (67)の冷媒流量を用いて上記 回路構成部品で生じる損失の値を算出する。
[0015] 第 7の発明は、第 6の発明において、上記冷媒回路 (20)では、上記熱交換器 (34,3 7)が設けられた分岐回路 (67)が複数存在しており、上記変化量算出手段 (52)は、 上記分岐回路 (67)の熱交換器 (34,37)で生じる損失の値を、上記流量算出手段 (56 )が算出する該分岐回路 (67)の冷媒流量を用いて算出する。
[0016] 第 8の発明は、第 4乃至第 7の何れ力 1つの発明において、正常な運転状態におい て上記各回路構成部品で生じる損失の大きさを損失基準値として記憶する損失記憶 手段 (53)を備え、上記診断手段 (54)は、上記変化量算出手段 (52)が算出する算出 値と上記損失記憶手段 (53)が記憶する損失基準値とに基づ!/、て上記診断対象部品 の状態を診断する。
[0017] 第 9の発明は、第 8の発明において、上記診断手段 (54)が、上記各回路構成部品 で生じる損失毎に上記変化量算出手段 (52)が算出する算出値と上記損失記憶手段 (53)が記憶する損失基準値とを比較することによって上記診断対象部品の状態を診 断する。
[0018] 第 10の発明は、第 8又は第 9の発明において、上記損失記憶手段 (53)が、複数の 運転条件について正常な運転状態の損失基準値を記憶しており、上記診断手段 (5 4)は、上記診断対象部品の状態の診断に上記損失記憶手段 (53)が記憶する損失 基準値のうち診断時の運転条件に対応する運転条件の損失基準値を用いる。
[0019] 第 11の発明は、第 2乃至第 7の何れ力 1つの発明において、上記診断手段 (54)が 、上記変化量算出手段 (52)が算出する算出値の経時変化に基づいて上記診断対 象部品の状態を診断する。
[0020] 第 12の発明は、第 2乃至第 11の何れ力 1つの発明において、上記診断手段 (54) による上記診断対象部品の状態に関する診断結果を表示する表示手段 (55)を備え ている。
[0021] 第 13の発明は、第 1乃至第 12の何れ力 1つの発明において、上記冷媒回路 (20) では、上記圧縮機 (30)及び各熱交換器 (34,37)のそれぞれの入口と出口の冷媒の 温度と圧力を測定するために、該圧縮機 (30)及び各熱交換器 (34,37)のそれぞれの 一端側と他端側とに温度センサ (45)と圧力センサ (46)が 1組ずつ設けられる一方、 上記冷媒状態検出手段 (51)は、上記減圧手段 (36,39)の入口における冷媒の温度 とエントロピを放熱器となる熱交^^ (34,37)の出口における値と同じ値とし、該減圧 手段 (36,39)の出口における冷媒の温度とエントロピを蒸発器となる熱交 (34,37 )の入口における値と同じ値とするように構成されて 、る。
[0022] 第 14の発明は、第 1の発明において、冷凍装置(10)を診断するための情報として 、上記変化量算出手段 (52)が算出する算出値に基づいて上記各回路構成部品で 生じる冷媒のエネルギー変化の状態を表示する表示手段 (55)を備えて 、る。
[0023] 第 15の発明は、圧縮機 (30)、減圧手段 (36,39)、及び複数の熱交換器 (34,37)を 含む回路構成部品が接続されて構成された冷媒回路 (20)を備え、該冷媒回路 (20) で冷媒を循環させて冷凍サイクルを行う冷凍装置(10)に接続されて、該冷凍装置(1 0)の状態を分析する冷凍装置の分析装置 (60)を対象とする。そして、この冷凍装置 の分析装置 (60)は、上記圧縮機 (30)、減圧手段 (36,39)、及び熱交換器 (34,37)の それぞれの入口と出口における冷媒の温度及びエントロピを検出する冷媒状態検出 手段 (51)と、上記冷媒状態検出手段 (51)が検出する冷媒の温度及びエントロピを用 いて、上記回路構成部品の各々で生じる冷媒のエネルギー変化の大きさを個別に 算出する変化量算出手段 (52)と、上記変化量算出手段 (52)が算出する算出値に基 づく冷凍装置(10)の状態の分析結果を表示する表示手段 (55)とを備えて!/、る。
[0024] 第 16の発明は、第 15の発明において、上記冷凍装置(10)には、上記熱交換器 (3 4,37)において冷媒と熱交換する流体が流通する流体用部品(12,14,28,75,76b)が 設けられる一方、上記回路構成部品及び上記流体用部品(12,14,28,75,76b)の少な くとも 1つを診断対象部品として、上記変化量算出手段 (52)が算出する算出値に基 づ!ヽて該診断対象部品の状態を診断する診断手段 (54)を備え、上記表示手段 (55) は、上記冷凍装置(10)の状態の分析結果として、上記診断手段 (54)による診断対 象部品の状態に関する診断結果を表示する。
[0025] 第 17の発明は、第 15又は第 16の発明において、上記表示手段 (55)が、上記冷 凍装置(10)の状態の分析結果として、上記変化量算出手段 (52)が算出する算出値 に基づいて上記各回路構成部品で生じる冷媒のエネルギー変化の状態を表示する
[0026] 第 18の発明は、第 15乃至第 17の何れか 1つの発明において、上記圧縮機 (30)、 減圧手段 (36,39)、及び熱交 (34,37)のそれぞれの入口と出口における冷媒の 温度及びエントロピを検出するために必要となる上記冷媒回路 (20)の冷媒の状態を 検出する冷媒状態検出センサ (65)を少なくとも備えて冷凍装置 (10)に設けられる第 1構成部 (47)と、上記表示手段 (55)を少なくとも備えて冷凍装置(10)から離れた位 置に設置される第 2構成部 (48)とによって構成され、上記第 1構成部 (47)と第 2構成 部 (48)とが互いに通信回線 (63)で接続されて!、る。
[0027] 第 19の発明は、第 15乃至第 17の何れか 1つの発明において、上記冷媒回路 (20) に取り付けられて、上記圧縮機 (30)、減圧手段 (36,39)、及び熱交換器 (34,37)のそ れぞれの入口と出口における冷媒の温度及びエントロピを検出するために必要とな る上記冷媒回路 (20)の冷媒の状態を検出する冷媒状態検出センサ (65)を備え、上 記冷媒状態検出手段 (51)は、上記圧縮機 (30)、減圧手段 (36,39)、及び熱交換器( 34,37)のそれぞれの入口と出口における冷媒の温度及びエントロピの算出に、上記 冷媒状態検出センサ (65)の計測値を用いる。
[0028] 第 20の発明は、第 19の発明において、上記冷媒状態検出センサ (65)は、複数の 温度センサ(65)によって構成され、そのうち 1つが放熱器となる熱交 (34,37)に 取り付けられ、別の 1つが蒸発器となる熱交 (34,37)に取り付けられる一方、上記 冷媒状態検出手段 (51)は、放熱器となる熱交換器 (34,37)に取り付けられた温度セ ンサ (65)の計測値に基づいて冷凍サイクルの高圧圧力を算出し、蒸発器となる熱交 (34,37)に取り付けられた温度センサ(65)の計測値に基づ 、て冷凍サイクルの 低圧圧力を算出することによって、上記圧縮機 (30)、減圧手段 (36,39)、及び熱交換 器 (34,37)のそれぞれの入口と出口における冷媒の温度及びエントロピを算出する。
[0029] 一作用
第 1の発明では、変化量算出手段 (52)が、冷媒状態検出手段 (51)が検出する冷 媒の温度及びエントロピを用いて、圧縮機 (30)、減圧手段 (36,39)、及び複数の熱交 翻 (34,37) (以下、これらの構成機器を主要構成機器という)を含む回路構成部品 の各々で生じる冷媒のエネルギー変化の大きさを個別に算出する。ここで、各主要 構成機器の出口と入口における冷媒の温度及びエントロピを用いると、各回路構成 部品で生じる冷媒のエネルギー変化の大きさを個別に算出することが可能である。 具体的に、各主要構成機器の出口と入口における冷媒の温度及びエントロピを用い て作成された T s線図では、各回路構成部品で生じる冷媒のエネルギー変化の大 きさ力 図 2に示す各領域の面積で表される。つまり、各領域の面積から各回路構成 部品で生じる冷媒のエネルギー変化の大きさを算出することが可能である。この第 1 の発明では、この T s線図に各回路構成部品で生じる冷媒のエネルギー変化の大 きさが表されることを利用して、回路構成部品の各々で生じる冷媒のエネルギー変化 の大きさを個別に算出している。 [0030] 第 2の発明では、診断手段 (54)が、回路構成部品及び流体用部品(12,14,28,75,7 6b)の少なくとも 1つを診断対象部品として、回路構成部品の各々で生じる冷媒のェ ネルギー変化の大きさに基づいて診断対象部品の状態を診断する。
[0031] ここで、回路構成部品で生じる冷媒のエネルギー変化の大きさは、例えばその回路 構成部品で生じる損失の大きさを表し、その回路構成部品の状態に対応している。 例えば、回路構成部品としての圧縮機 (30)で生じる冷媒のエネルギー変化の大きさ は、圧縮機 (30)で生じる損失の大きさを表すので、主に圧縮機 (30)の機械摩擦の大 きさを表し、圧縮機 (30)における軸受けなどの摺動部材の劣化の状態や、冷凍機油 の劣化の状態などに対応する。
[0032] また、回路構成部品で生じる冷媒のエネルギー変化の大きさは、回路構成部品の 状態だけでなぐ熱交換器 (34,37)を流通する冷媒と熱交換する流体が流通する流 体用部品(12,14,28,75,76b)の状態にも対応している。例えば、回路構成部品として の熱交換器 (34,37)で生じる冷媒のエネルギー変化の大きさは、主に熱交換ゃ冷媒 の流通に伴う損失の大きさを表すので、その熱交換器 (34,37)自体の配管の状態に 対応するだけでなぐその熱交換器 (34,37)に対応する流体用部品(12,14,28,75,76b )であるファンの運転状態やフィルタの状態などに対応する。
[0033] このように、各回路構成部品で生じる冷媒のエネルギー変化の大きさは、回路構成 部品の状態や流体用部品(12,14,28,75,76b)の状態に対応する。従って、この第 2の 発明では、各回路構成部品で生じる冷媒のエネルギー変化の大きさに基づいて、回 路構成部品の状態や流体用部品(12,14,28,75,76b)の状態が個別に診断される。
[0034] 第 3の発明では、診断手段 (54)が、熱交換器 (34,37)に空気を送るためのファン(1 2,14)を診断対象部品としている。ファン(12,14)の状態は、回路構成部品の各々で 生じる冷媒のエネルギー変化の大きさに基づ!/、て診断される。
[0035] 第 4の発明では、変化量算出手段 (52)が、各回路構成部品で生じる冷媒のェネル ギー変化の大きさを、各回路構成部品で生じる損失の値として算出する。診断手段( 54)は、回路構成部品の各々で生じる損失の値に基づいて診断対象部品の状態を 診断する。
[0036] 第 5の発明では、回路構成部品のうち熱交換器 (34,37)で生じる損失については、 複数種類の損失の値が算出される。そして、複数種類の損失毎の損失の値が、診断 対象部品の状態の診断に用いられる。ここで、各主要構成機器の出口と入口におけ る冷媒の温度及びエントロピを用いると、熱交換器 (34,37)については複数種類の損 失の値を算出できることが可能である。例えば、上述した T s線図(図 2参照)では、 蒸発器や放熱器の損失が、熱交換に伴う損失、摩擦発熱に伴う損失、及び流路抵 抗による圧力損失に細分化される。すなわち、第 5の発明では、熱交換器 (34,37)の 損失を複数種類の損失毎に細分化して、その細分化した損失の値が診断対象部品 の状態の診断に用いられる。
[0037] 第 6の発明では、冷媒回路 (20)が、主回路 (66)と、複数の分岐回路 (67)とを備え ている。ここで、主回路 (66)の冷媒が複数の分岐回路 (67)に分配される冷媒回路 (2 0)の冷凍サイクルは、分岐回路 (67)毎に T—s線図で表すことが可能である。各分岐 回路 (67)の T s線図では、その分岐回路 (67)に設けられた回路構成部品に対応 する領域の面積が、その分岐回路 (67)の回路構成部品で生じる損失の大きさを冷 媒の単位流量当たりの値として表している。また、この T— s線図では、主回路 (66)に 設けられた回路構成部品に対応する領域の面積が、主回路 (66)の回路構成部品で 生じる損失にっ 、て、主回路 (66)の冷媒流量のうち分岐回路 (67)に流入する冷媒 流量に相当する分の大きさを、冷媒の単位流量当たりの値として表す。
[0038] そして、この第 6の発明では、主回路 (66)や分岐回路 (67)の回路構成部品で生じ る損失の値が、流量算出手段 (56)が算出する分岐回路 (67)の冷媒流量を用いて算 出される。例えば、分岐回路 (67)の回路構成部品で生じる損失の値は、その分岐回 路 (67)の T— s線図にお 、てその損失に対応する領域の面積に、流量算出手段 (56 )が算出するその分岐回路 (67)の冷媒流量を掛けることによって算出される。また、 主回路 (66)の回路構成部品で生じる損失の値は、各分岐回路 (67)の T s線図に おいてその損失に対応する領域の面積に、流量算出手段 (56)が算出するその分岐 回路 (67)の冷媒流量を掛けたものの総和として算出される。
[0039] 第 7の発明では、主回路 (66)から分配された冷媒が、各分岐回路 (67)の熱交換器
(34,37)に流通する。そして、各分岐回路 (67)の熱交換器 (34,37)を流通してから合 流した冷媒が主回路 (66)に戻る。各分岐回路 (67)の熱交換器 (34,37)の損失の値 [0040] 第 8の発明では、診断手段 (54)が、各回路構成部品で生じる損失についての正常 な運転状態の損失の値と診断時の損失の値とに基づいて、診断対象部品の状態を 診断する。つまり、診断対象部品の状態が、正常な運転状態の損失の値を基準にし て診断される。
[0041] 第 9の発明では、診断対象部品の状態の診断が、各回路構成部品で生じる損失毎 に変化量算出手段 (52)が算出する算出値と損失記憶手段 (53)が記憶する損失基 準値とを比較することにより行われる。従って、正常な運転状態と診断時との違いが、 各回路構成部品で生じる損失毎に明確に把握される。
[0042] 第 10の発明では、診断対象部品の状態の診断に、損失記憶手段 (53)が記憶する 損失基準値のうち診断時の運転条件に対応する運転条件の損失基準値が用いられ る。つまり、診断時の運転状態と同じ運転条件の損失基準値、或いは同じものがなけ れば診断時に最も近い運転条件の損失基準値が、複数の運転条件の損失基準値 の中から選び出され、正常な運転状態の損失基準値として診断対象部品の状態の 診断に用いられる。
[0043] 第 11の発明では、診断対象部品の状態の診断に、変化量算出手段 (52)が算出す る算出値の経時変化が用いられる。ここで、記憶させた正常な運転状態の損失の値 を診断時の損失の値と比較する冷凍装置(10)の場合は、正常な運転状態の損失の 値を算出する際に想定した冷凍装置(10)の設置環境 (例えば、温度調節する空間 の容積)と、冷凍装置(10)が実際に設置される設置環境とが、同じにならない場合が ある。そして、設置環境が同じにならない場合は、正常な運転状態と診断時との損失 の値の差に、設置環境の違いが含まれてしまう。これに対して、この第 11の発明では 、診断対象部品の状態の診断に変化量算出手段 (52)による算出値の経時変化を用 いるので、同じ設置環境の損失の値だけが診断対象部品の状態の診断に用いられ る。
[0044] 第 12の発明では、冷凍装置(10)に表示手段 (55)が設けられている。表示手段 (55 )には、診断手段 (54)が診断した診断対象部品の状態に関する診断結果が表示さ れる。冷凍装置(10)のユーザーは、表示手段 (55)の表示を確認することによって、 診断対象部品の状態を把握することが可能である。
[0045] 第 13の発明では、減圧手段 (36,39)の入口における冷媒の温度とエントロピ力 放 熱器となる熱交 (34,37)の出口における値と同じ値として検出される。また、減圧 手段 (36,39)の出口における冷媒の温度とエントロピが、蒸発器となる熱交換器 (34,3 7)の入口における値と同じ値として検出される。つまり、減圧手段 (36,39)の一端側と 他端側とに、温度センサと圧力センサとを 1組ずつ設けなくても、減圧手段 (36,39)の 出口と入口における冷媒の温度及びエントロピが検出される。
[0046] 第 14の発明では、表示手段 (55)が、上記算出値に基づいて各回路構成部品で生 じる冷媒のエネルギー変化の状態を表示する。各回路構成部品で生じる冷媒のエネ ルギ一変化の状態は、冷凍装置(10)を診断するための情報として表示される。回路 構成部品で生じる冷媒のエネルギー変化の状態は、上述したように、回路構成部品 などの状態に対応している。従って、例えば冷凍装置(10)に関して専門的な知識を 有する者が、表示手段 (55)に表示された各回路構成部品で生じる冷媒のエネルギ 一変化の状態を見ることによって、回路構成部品などの状態を診断することが可能で ある。
[0047] 第 15の発明では、冷凍装置の分析装置 (60)が、上記第 1の発明と同様の、冷媒状 態検出手段 (51)と変化量算出手段 (52)とを備えて!/、る。変化量算出手段 (52)が、 冷媒状態検出手段 (51)が検出する冷媒の温度及びエントロピを用いて、上記主要 構成機器を含む回路構成部品の各々で生じる冷媒のエネルギー変化の大きさを個 別に算出する。そして、変化量算出手段 (52)が算出する算出値に基づく冷凍装置( 10)の状態の分析結果が表示手段 (55)に表示される。この第 15の発明では、上記第 1の発明と同様に、この T—s線図に各回路構成部品で生じる冷媒のエネルギー変化 の大きさが表されることを利用して、回路構成部品の各々で生じる冷媒のエネルギー 変化の大きさを個別に算出している。
[0048] 第 16の発明では、診断手段 (54)が、回路構成部品及び流体用部品(12,14,28,75, 76b)の少なくとも 1つを診断対象部品として、回路構成部品の各々で生じる冷媒のェ ネルギー変化の大きさに基づいて診断対象部品の状態を診断する。表示手段 (55) は、冷凍装置(10)の状態の分析結果として、診断手段 (54)による診断対象部品の 状態に関する診断結果を表示する。上述したように、回路構成部品で生じる冷媒の エネルギー変化の大きさは、その回路構成部品の状態や流体用部品(12,14,28,75,7 6b)の状態に対応している。従って、各回路構成部品で生じる冷媒のエネルギー変 化の大きさに基づいて、回路構成部品の状態や流体用部品(12,14,28,75,76b)の状 態が個別に診断される。
[0049] 第 17の発明では、表示手段 (55)が、変化量算出手段 (52)が算出する算出値に基 づいて各回路構成部品で生じる冷媒のエネルギー変化の状態を、冷凍装置(10)の 状態の分析結果として表示する。従って、上記第 14の発明と同様に、例えば冷凍装 置(10)に関して専門的な知識を有する者が、表示手段 (55)に表示された各回路構 成部品で生じる冷媒のエネルギー変化の状態を見ることによって、回路構成部品な どの状態を診断することが可能である。
[0050] 第 18の発明では、冷凍装置の分析装置 (60)が、互いに通信回線 (63)で接続され た第 1構成部 (47)と第 2構成部 (48)とから構成されている。第 2構成部 (48)には、変 化量算出手段 (52)が算出する算出値に基づく冷凍装置(10)の状態の分析結果を 表示する表示手段 (55)が設けられている。従って、冷凍装置(10)から離れた位置で 、回路構成部品の状態を確認することが可能である。
[0051] 第 19の発明では、回路構成部品の状態を分析する際に、冷媒状態検出センサ (65 )が冷媒回路 (20)に取り付けられる。そして、その冷媒状態検出センサ (65)の計測 値を用いて、冷媒状態検出手段 (51)が各主要構成機器の出口と入口における冷媒 の温度及びエントロピを検出し、変化量算出手段 (52)が各回路構成部品で生じる損 失の値を個別に算出する。この第 19の発明では、冷凍装置(10)に関して専門的な 知識を有する者が、例えばこの冷凍装置(10)の分析装置を持ち運ぶことによって、 冷凍装置(10)が設置されている場所でその回路構成部品の状態の分析を行うことが 可能である。
[0052] 第 20の発明では、冷媒状態検出センサ (65)が、複数の温度センサ (65)によって 構成されている。そして、冷凍サイクルの高圧圧力が、放熱器となる熱交翻 (34,37 )に取り付けられた温度センサ(65)の計測値に基づいて算出され、冷凍サイクルの 低圧圧力が、蒸発器となる熱交換器 (34,37)に取り付けられた温度センサ (65)の計 測値に基づいて算出される。ここで、各主要構成機器の出口と入口における冷媒の 温度及びエントロピを算出するには、少なくとも冷凍サイクルの高圧圧力の値と、低 圧圧力の値が必要である。この第 20の発明では、冷媒状態検出センサ (65)が圧力 センサを備えていなくても、各主要構成機器の出口と入口における冷媒の温度及び エントロピが算出される。
発明の効果
[0053] 本発明では、主要構成機器の出口と入口における冷媒の温度及びエントロピを用 いて作成される T— s線図に、各回路構成部品で生じる冷媒のエネルギー変化の大 きさが表されることを利用して、回路構成部品の各々で生じる冷媒のエネルギー変化 の大きさを個別に算出している。回路構成部品で生じる冷媒のエネルギー変化の大 きさは、例えば回路構成部品で生じる損失の大きさを表しており、回路構成部品の状 態に対応している。すなわち、本発明によれば、回路構成部品の状態を個別に分析 することができる。
[0054] また、第 2、第 16の各発明では、回路構成部品の状態や流体用部品(12,14,28,75, 76b)の状態に対応する各回路構成部品で生じる冷媒のエネルギー変化の大きさを 用いることで、回路構成部品の状態や流体用部品(12,14,28,75,76b)の状態が個別 に診断されるようにしている。そして、異なる単位の物理量を使用せずに同じ単位で 診断を行うので、回路構成部品の状態や流体用部品(12,14,28,75,76b)の状態がそ れぞれ定量的に把握される。従って、回路構成部品の状態や流体用部品(12,14,28, 75,76b)の状態の診断を的確に行うことができる。
[0055] また、第 5の発明では、診断手段 (54)が、熱交翻 (34,37)で生じる損失にっ 、て は、細分化された複数種類の損失毎の損失の値を用いて診断対象部品の状態を診 断する。従って、診断対象部品の状態をさらに詳細に把握することができるので、診 断対象部品の状態の診断をさらに的確に行うことができる。
[0056] また、第 8の発明によれば、診断対象部品の状態が、正常な運転状態の損失の値 を基準にして診断される。このため、診断時の診断対象部品の状態を正常な運転状 態との違いとして把握することができるので、診断対象部品の状態の診断を的確に 行うことができる。
[0057] また、第 9の発明では、各回路構成部品で生じる損失毎に変化量算出手段 (52)が 算出する算出値と損失記憶手段 (53)が記憶する損失基準値とを比較することで、正 常な運転状態と診断時との違いが各回路構成部品で生じる損失毎に明確に把握さ れるようにしている。また、各回路構成部品で生じる損失毎に比較を行うので、冷凍 装置(10)全体としては小さ 、損失にっ 、ても正常な運転状態と診断時との違 、が明 確に把握される。従って、診断対象部品の状態の診断をさらに的確に行うことができ る。
[0058] また、第 10の発明では、診断対象部品の状態の診断に、診断時の運転状態と同じ 運転条件の損失基準値、或いは同じものがなければ診断時に最も近い運転条件の 損失基準値が用いられる。従って、正常な運転状態と診断時との損失の値の差のう ち、損失基準値の運転条件と診断時の運転条件との違いによる分が小さくなる。そし て、正常な運転状態と診断時との損失の値の差が、正常な運転状態と診断時との診 断対象部品の状態の違いをより正確に表すので、診断対象部品の状態の診断をさら に的確に行うことができる。
[0059] また、第 11の発明によれば、診断対象部品の状態の診断に変化量算出手段 (52) による算出値の経時変化を用いるので、同じ設置環境の損失の値だけが診断対象 部品の状態の診断に用いられる。従って、診断対象部品の状態の診断に用いる損 失の値に設置環境の違 、が含まれて 、な 、ので、診断対象部品の状態を的確に行 うことができる。
[0060] また、正常な運転状態の損失の値を予め冷凍装置(10)に記憶させなくても診断対 象部品の状態の診断が可能である。従って、正常な運転状態の損失の値を冷凍装 置(10)に記憶させる手間が必要ないので、冷凍装置(10)の製作を容易化させること ができる。
[0061] また、第 18の発明によれば、表示手段 (55)を備えて冷凍装置(10)側の第 1構成部
(47)に通信回線 (63)を介して接続された第 2構成部 (48)を設けることで、冷凍装置( 10)力も離れた位置で、回路構成部品の状態を確認することが可能である。従って、 冷凍装置(10)に関して専門的な知識を有する者が、冷凍装置(10)のユーザーに代 わって、回路構成部品の状態を監視することが可能になるので、例えば回路構成部 品などの状態の診断をより的確に行うことができる。
[0062] また、第 19の発明によれば、冷凍装置(10)に関して専門的な知識を有する者が、 この冷凍装置(10)の分析装置 (60)を持ち運ぶことによって、冷凍装置(10)が設置さ れている場所でその回路構成部品の状態の分析を行うことが可能になる。従って、冷 凍装置(10)に関して専門的な知識を有する者が、冷凍装置(10)のユーザーに代わ つて、回路構成部品の状態をその場で確認することができる。また、冷凍装置(10)の 分析装置 (60)は冷媒状態検出センサ (65)を備えて!/、るので、各主要構成機器の出 口と入口における冷媒の温度及びエントロピを検出するためのセンサを備えていな い冷凍装置(10)に対しても、回路構成部品の状態の分析を行うことが可能である。
[0063] また、第 20の発明では、冷媒状態検出センサ (65)が圧力センサを備えていなくて も、各主要構成機器の出口と入口における冷媒の温度及びエントロピが算出される ようにしている。従って、簡易に取り付けられる温度センサ (65)によって、回路構成部 品の状態の分析を容易に行うことができる。
図面の簡単な説明
[0064] [図 1]図 1は、本発明の実施形態 1に係る冷凍装置の概略構成図である。
[図 2]図 2は、本発明の実施形態 1において損失の値を算出する回路構成部品に対 応するように各領域に区分けされた T s線図である。
[図 3]図 3は、蒸発器の入口力 出口までの冷媒の状態の変化を表す図表である。
[図 4]図 4 (A)は正常な運転状態の T s線図であり、図 4 (B)は診断時の T s線図 の一例である。
[図 5]図 5は、圧縮機で生じる損失と圧縮機の能力の低下度合いとの相関を示す図 表である。
[図 6]図 6 (A)は正常な運転状態の T s線図であり、図 6 (B)は診断時の T s線図 の一例である。
[図 7]図 7は、蒸発器における損失とファンの風量の低下度合いとの相関を示す図表 である。
[図 8]図 8 (A)は正常な運転状態の T s線図であり、図 8 (B)は診断時の T s線図 の一例である。
[図 9]図 9は、蒸発器における損失と蒸発器における冷媒の圧力損失の増加度合い との相関を示す図表である。
[図 10]図 10は、凝縮器における損失とファンの風量の低下度合いとの相関を示す図 表である。
[図 11]図 11は、各回路構成部品で生じる損失の分布状況を表す図表である。
[図 12]図 12は、 T—s線図の領域分けの一例を示す図表である。
[図 13]図 13は、本発明の実施形態 1の変形例において損失の値を算出する回路構 成部品に対応するように各領域に区分けされた T— s線図である。
[図 14]図 14は、本発明の実施形態 2に係る冷凍装置の概略構成図である。
[図 15]図 15は、本発明の実施形態 2において式 6から式 9を説明するための回路図 である。
[図 16]図 16は、本発明の実施形態 2において損失の値を算出する回路構成部品に 対応するように各領域に区分けされた T—s線図であり、図 16 (A)は室内回路に対応 する T— s線図であり、図 16 (B)はバイパス管に対応する T— s線図である。
[図 17]図 17は、本発明の実施形態 2の変形例に係る冷凍装置の概略構成図である
[図 18]図 18は、本発明の実施形態 2の変形例に係る冷凍装置の室外ユニットの概略 構成図である。
[図 19]図 19は、本発明の実施形態 3に係る冷凍装置の概略構成図である。
[図 20]図 20は、本発明の実施形態 3において損失の値を算出する回路構成部品に 対応するように各領域に区分けされた T—s線図である。
[図 21]図 21は、本発明の実施形態 4に係る冷凍装置の診断装置の概略構成図であ る。
[図 22]図 22は、本発明の実施形態 5に係る冷凍装置の診断装置の概略構成図であ る。
[図 23]図 23は、その他の実施形態の第 3変形例に係る冷凍装置において回路構成 部品の損失の径時変化を示す図表である。 [図 24]図 24は、その他の実施形態の第 6変形例に係る表示部における回路構成部 品の損失の表示方法を示す図である。
[図 25]図 25は、その他の実施形態の第 6変形例に係る表示部における回路構成部 品の損失の表示方法の他の例を示す図である。
[図 26]図 26は、その他の実施形態の第 6変形例に係る表示部における回路構成部 品の損失の表示方法の他の例を示す図である。
[図 27]図 27は、その他の実施形態の第 6変形例に係る表示部における回路構成部 品の損失の表示方法の他の例を示す図である。
[図 28]図 28は、その他の実施形態の第 6変形例に係る表示部における回路構成部 品の損失の表示方法の他の例を示す図である。
[図 29]図 29は、その他の実施形態の第 6変形例に係る表示部における回路構成部 品の損失の表示方法の他の例を示す図である。
符号の説明
10 空気調和装置 (冷凍装置)
20 冷媒回路
30 圧縮機 (回路構成部品)
34 室外熱交換器 (熱交換器、回路構成部品)
36 膨張弁、室外膨張弁 (減圧手段、回路構成部品)
37 室内熱交換器 (熱交換器、回路構成部品)
39 室内膨張弁 (減圧手段、回路構成部品)
45 温度センサ
46 圧力センサ
51 冷媒状態検出部 (冷媒状態検出手段)
52 損失算出部 (変化量算出手段)
53 損失記憶部 (損失記憶手段)
54 診断部 (診断手段)
55 表示部(表示手段)
56 流量算出部 (流量算出手段) 60 分析装置
65 冷媒状態検出センサ
66 主回路
67 分岐回路
発明を実施するための最良の形態
[0066] 以下、本発明の実施形態を図面に基づいて詳細に説明する。
[0067] 《発明の実施形態 1》
本発明の実施形態 1について説明する。実施形態 1は、本発明に係る冷凍装置(1 0)である。この冷凍装置(10)は、図 1に示すように、室外ユニット(11)と、室内ユニット (13)とを備える空気調和装置であって、冷房運転 (冷却運転)と暖房運転 (加熱運転 )とを切り換えて行うように構成されて 、る。
[0068] なお、本発明は、冷凍サイクルを行う冷媒回路 (20)を備える冷凍装置(10)に対し て適用可能である。例えば、本実施形態 1に係る空気調和装置以外の冷凍装置にも 、食品を冷却するための冷凍装置 (冷蔵庫や冷凍庫)、空調機と冷蔵庫や冷凍庫と が組み合わされた冷凍装置、熱交換器を流通する冷媒の熱を吸着剤の加熱又は冷 却に用いる調湿機能付きの冷凍装置、いわゆるェコキュート (登録商標)のような給 湯機能を有する冷凍装置などに適用することが可能である。
[0069] 冷凍装置の構成
室外ユニット(11)内には、室外回路 (21)が設けられている。室内ユニット(13)内に は、室内回路 (22)が設けられている。この冷凍装置(10)では、室外回路 (21)と室内 回路 (22)とを、液側連絡配管 (23)及びガス側連絡配管 (24)で接続することによって 蒸気圧縮冷凍サイクルを行う冷媒回路 (20)が構成されて 、る。冷媒回路 (20)には、 冷媒として例えばフロン系の冷媒が充填されている。
[0070] 《室外ユニット》
室外ユニット(11)の室外回路 (21)には、圧縮機 (30)、熱源側熱交換器である室外 熱交 (34)、及び減圧手段である膨張弁 (36)が主要構成機器として設けられ、さ らに四路切換弁 (33)が設けられて ヽる。これらの主要構成機器及び四路切換弁 (33 )は、回路構成部品を構成しており、同じく回路構成部品を構成する冷媒配管によつ て互いに接続されている。回路構成部品は、冷媒回路 (20)を構成して冷媒が流通 する部品である。室外回路 (21)の一端には、液側連絡配管 (23)が接続される液側 閉鎖弁 (25)が設けられている。室外回路 (21)の他端には、ガス側連絡配管 (24)が 接続されるガス側閉鎖弁 (26)が設けられている。
[0071] 圧縮機 (30)は、密閉型で高圧ドーム型の圧縮機として構成されている。圧縮機 (30 )の吐出側は、吐出管 (40)を介して四路切換弁 (33)の第 1ポート (P1)に接続されて いる。圧縮機 (30)の吸入側は、吸入管 (41)を介して四路切換弁 (33)の第 3ポート (P 3)に接続されている。
[0072] 室外熱交^^ (34)は、クロスフィン式のフィン'アンド ·チューブ型熱交^^として構 成されている。この室外熱交換器 (34)の近傍には、内部を流通する室外空気を室外 熱交 (34)へ送る室外ファン(12)が設けられて 、る。この室外熱交 (34)では 、室外ファン(12)によって送られる室外空気と流通する冷媒との間で熱交換が行わ れる。室外ファン(12)は、室外熱交換器 (34)において冷媒と熱交換する空気が流通 する流体用部品を構成している。室外熱交換器 (34)の一端は、四路切換弁 (33)の 第 4ポート (P4)に接続されて!ヽる。室外熱交換器 (34)の他端は、液配管 (42)を介し て液側閉鎖弁 (25)に接続されている。この液配管 (42)には、開度可変の膨張弁 (36 )が設けられている。また、四路切換弁 (33)の第 2ポート (P2)はガス側閉鎖弁 (26)が 接続されている。
[0073] 四路切換弁 (33)は、第 1ポート(P1)と第 2ポート(P2)が互いに連通して第 3ポート( P3)と第 4ポート (P4)が互いに連通する第 1状態(図 1に実線で示す状態)と、第 1ポ ート(P1)と第 4ポート(P4)が互いに連通して第 2ポート (P2)と第 3ポート (P3)が互 ヽ に連通する第 2状態(図 1に破線で示す状態)とが切り換え可能となって 、る。
[0074] 室外回路 (21)には、圧縮機 (30)の一端側、圧縮機 (30)の他端側、室外熱交換器
(34)の一端側、及び室外熱交換器 (34)の他端側に、温度センサ (45)及び圧力セン サ (46)が 1組ずつ設けられている。具体的に、吸入管 (41)には、一対の吸入温度セ ンサ (45a)及び吸入圧力センサ (46a)が設けられている。吐出管 (40)には、一対の吐 出温度センサ (45b)及び吐出圧力センサ (46b)が設けられて 、る。室外熱交 (34 )と四路切換弁 (33)の間には、一対の室外ガス温度センサ (45c)及び室外ガス圧力 センサ (46c)が設けられている。室外熱交 (34)と膨張弁 (36)の間には、一対の 室外液温度センサ(45d)及び室外液圧力センサ(46d)が設けられて 、る。室外ファン (12)の近傍には、外気温度センサ(18)が設けられている。
[0075] 《室内ユニット》
室内ユニット(13)の室内回路 (22)には、利用側熱交換器である室内熱交換器 (37 )が主要構成機器として設けられている。室内熱交翻(37)は、回路構成部品を構 成しており、同じく回路構成部品を構成する冷媒配管を介して室外回路 (21)に接続 されている。
[0076] 室内熱交翻 (37)は、クロスフィン式のフィン 'アンド'チューブ型熱交翻として構 成されている。この室内熱交換器 (37)の近傍には、内部を流通する室内空気を室内 熱交^^ (37)へ送る室内ファン(14)が設けられている。また、室内ファン(14)と室内 熱交^^ (37)との間にはフィルタ (28)が設けられて 、る。この室内熱交 (37)で は、室内ファン(14)によって送られる室内空気と流通する冷媒との間で熱交換が行 われる。室内ファン(14)及びフィルタ (28)は、室内熱交換器 (37)において冷媒と熱 交換する空気が流通する流体用部品を構成している。
[0077] 室内回路 (22)には、室内熱交換器 (37)の一端側と他端側に温度センサ (45)及び 圧力センサ (46)が 1組ずつ設けられている。具体的に、室内回路 (22)の液側端と室 内熱交換器 (37)との間には、一対の室内液温度センサ (45e)及び室内液圧力セン サ (46e)が設けられて 、る。室内熱交 (37)と室内回路 (22)のガス側端との間に は、一対の室内ガス温度センサ(45f)及び室内液圧力センサ(46f)が設けられて 、る 。室内ファン(14)の近傍には、室内温度センサ(19)が設けられている。
[0078] 《コントローラ》
この冷凍装置(10)は、空調能力を調節するために圧縮機 (30)の運転容量や膨張 弁 (36)の開度を制御すると共に、当該冷凍装置(10)の構成部品を診断するコント口 ーラ (50)を備えている。コントローラ (50)が診断する診断対象部品は、主要構成機 器を含む回路構成部品や、上記流体用部品(12, 14,28)である。このコントローラ (50) は、各回路構成部品で生じる損失を分析する熱力学的分析 (エタセルギ分析)に基 づいて診断対象部品の状態を診断するものである。コントローラ (50)は、冷媒状態検 出手段である冷媒状態検出部 (51)と、変化量算出手段である損失算出部 (52)と、 損失記憶手段である損失記憶部 (53)と、診断手段である診断部 (54)と、表示手段で ある表示部(55)とを備えて!/、る。
[0079] なお、熱力学的分析を用いることによってコントローラ (50)が診断可能な部品は、 冷媒のエネルギー変化が生じる回路構成部品や、流体用部品(12,14,28)のように冷 媒回路 (20)の外側力 間接的に冷媒のエネルギー変化に影響を与える部品である 。例えば、室外ファン(12)や室内ファン(14)は、熱交 (34,37)に空気を送ること によって冷媒のエネルギー変化を生じさせる。また、フィルタ(28)は、自身が目詰まり すると、熱交換器 (34,37)に送られる空気の風量が変化して冷媒のエネルギー変化 に影響を与える。
[0080] 冷媒状態検出部 (51)は、各温度センサ (45)で得られた測定値から、圧縮機 (30)の 入口、圧縮機 (30)の出口、室外熱交換器 (34)の入口、室外熱交換器 (34)の出口、 膨張弁 (36)の入口、膨張弁 (36)の出口、室内熱交換器 (37)の入口、及び室内熱交 (37)の出口の 8つの位置の冷媒の温度を検出するように構成されて 、る。また、 冷媒状態検出部(51)は、対になった温度センサ (45)及び圧力センサ (46)で得られ た測定値から、圧縮機 (30)の入口、圧縮機 (30)の出口、室外熱交換器 (34)の入口 、室外熱交翻 (34)の出口、膨張弁 (36)の入口、膨張弁 (36)の出口、室内熱交換 器 (37)の入口、及び室内熱交換器 (37)の出口の 8つの位置の冷媒のエントロピをそ れぞれ算出するように構成されて!ヽる。
[0081] なお、この実施形態 1では、冷房運転の際には、膨張弁 (36)の入口における冷媒 の温度とエントロピが室外熱交^^ (34)の出口における値と同じ値として検出され、 膨張弁 (36)の出口における冷媒の温度とエントロピが室内熱交 (37)の入口に おける値と同じ値として検出される。また、暖房運転の際には、膨張弁 (36)の入口に おける冷媒の温度とエントロピが室内熱交^^ (37)の出口における値と同じ値として 検出され、膨張弁 (36)の出口における冷媒の温度とエントロピが室外熱交換器 (34) の入口における値と同じ値として検出される。
[0082] 損失算出部 (52)は、回路構成部品 (圧縮機 (30)、膨張弁 (36)、室外熱交換器 (34 )、室内熱交 (37)、室内熱交 (37)と圧縮機 (30)との間の配管、及び室外熱 交翻 (34)と圧縮機 (30)との間の配管)で生じる損失の値を個別に算出するように 構成されている。損失の値は、冷媒状態検出部 (51)が検出する冷媒の温度及びェ ントロピを用いて算出される。
[0083] 損失記憶部 (53)は、正常な運転状態において各回路構成部品 (損失算出対象部 品)で生じる損失の値を、各回路構成部品で生じる損失毎に損失基準値として記憶 している。各回路構成部品における損失毎の損失基準値としては、シミュレーション 計算によって算出したものが記憶されている。損失記憶部(53)には、室内の温度及 び室外の温度を組み合わせた運転条件が異なる複数の運転条件についての損失 基準値が記憶されている。なお、運転条件の組み合わせとしては、冷媒の循環量を 適用してちょい。
[0084] 診断部 (54)は、上記回路構成部品と室外ファン(12)や室内ファン(14)を診断対象 部品として、診断対象部品の状態を診断する。診断対象部品の状態の診断は、各回 路構成部品で生じる損失毎に損失算出部 (52)が算出する算出値を損失記憶部 (53 )が記憶する損失基準値と比較することにより行う。表示部 (55)は、診断部 (54)にお ける診断の結果を表示可能に構成されて ヽる。
[0085] 冷凍装置の運転動作
次に、冷凍装置(10)の運転動作について説明する。この冷凍装置(10)は、冷房運 転と暖房運転とが実行可能になっており、四路切換弁 (33)によって運転の切り換え が行われる。
[0086] く冷房運転〉
冷房運転では、四路切換弁 (33)が第 2状態に設定される。そして、この状態で圧縮 機 (30)を運転すると、冷媒回路 (20)では室外熱交換器 (34)が凝縮器 (放熱器)とな つて室内熱交 (37)が蒸発器となる蒸気圧縮冷凍サイクルが行われる。なお、冷 房運転では、膨張弁 (36)の開度が適宜調節される。
[0087] 具体的に、圧縮機 (30)から吐出された冷媒は、室外熱交換器 (34)で室外空気と熱 交換して凝縮する。室外熱交 (34)で凝縮した冷媒は、膨張弁 (36)を通過する 際に減圧され、その後に室内熱交 (37)で室内空気と熱交換して蒸発する。室内 熱交換器 (37)で蒸発した冷媒は、圧縮機 (30)へ吸入されて圧縮される。 [0088] く暖房運転〉
暖房運転では、四路切換弁 (33)が第 1状態に設定される。そして、この状態で圧縮 機 (30)を運転すると、冷媒回路 (20)では室外熱交換器 (34)が蒸発器となって室内 熱交 (37)が凝縮器 (放熱器)となる蒸気圧縮冷凍サイクルが行われる。なお、暖 房運転にお 、ても、膨張弁 (36)の開度が適宜調節される。
[0089] 具体的に、圧縮機 (30)力も吐出された冷媒は、室内熱交 (37)で室内空気と熱 交換して凝縮する。室内熱交 (37)で凝縮した冷媒は、膨張弁 (36)を通過する 際に減圧され、その後に室外熱交 (34)で室外空気と熱交換して蒸発する。室外 熱交換器 (34)で蒸発した冷媒は、圧縮機 (30)へ吸入されて圧縮される。
[0090] コントローラの動作
コントローラ (50)が診断対象部品の状態を診断する時の動作について説明する。 診断対象部品の状態の診断は、冷房運転中や暖房運転中に行われる。以下では、 冷房運転中に診断を行う場合にっ ヽて説明する。
[0091] 診断対象部品の状態の診断では、まず冷媒状態検出部 (51)が、対になった温度 センサ (45)及び圧力センサ (46)で得られた測定値から、圧縮機 (30)の入口、圧縮 機 (30)の出口、室外熱交翻 (34)の入口、室外熱交翻 (34)の出口、膨張弁 (36) の入口、膨張弁 (36)の出口、室内熱交換器 (37)の入口、及び室内熱交換器 (37)の 出口の 8つの位置の冷媒の温度とエントロピとを検出する。
[0092] 具体的に、圧縮機 (30)の入口の冷媒の温度とエントロピは、吸入温度センサ (45a) 及び吸入圧力センサ (46a)で得られた測定値カゝら検出される。圧縮機 (30)の出口の 冷媒の温度とエントロピは、吐出温度センサ (45b)及び吐出圧力センサ (46b)で得ら れた測定値力 検出される。室外熱交 (34)の入口の冷媒の温度とエントロピは 、室外ガス温度センサ (45c)及び室外ガス圧力センサ (46c)で得られた測定値から検 出される。室外熱交 (34)の出口及び膨張弁 (36)の入口の冷媒の温度とェントロ ピは、室外液温度センサ (45d)及び室外液圧力センサ (46d)で得られた測定値から 検出される。室内熱交 (37)の出口の冷媒の温度とエントロピは、室内ガス温度 センサ (45f)及び室内液圧力センサ (46f)で得られた測定値力も検出される。
[0093] なお、膨張弁 (36)の出口及び室内熱交換器 (37)の入口の冷媒は気液二相状態 であるため、その冷媒の温度は室内液温度センサ (45e)の測定値力 検出される力 その冷媒のエントロピは室内液温度センサ (45e)及び室内液圧力センサ (46e)の測 定値のみでは検出することができない。従って、膨張弁 (36)の出口及び室内熱交換 器 (37)の入口の冷媒エントロピは、その冷媒のェンタルビが室外熱交換器 (34)の出 口に等しいものとして検出する。
[0094] 次に、損失算出部 (52)は、冷媒状態検出部 (51)が検出する冷媒の温度及びェン トロピを用いて、圧縮機 (30)、膨張弁 (36)、室外熱交換器 (34)、及び室内熱交換器 (37)などの各回路構成部品で生じる損失の値を個別に算出する。
[0095] ここで、各主要構成機器の出口と入口における冷媒の温度及びエントロピを用いて 作成された T s線図を図 2に示す。各回路構成部品で生じるこれらの損失の値は、 この T s線図に基づいて区分けされた各領域 (c,d,e,f,gl,g2,hl,h2,i,j,k)の面積に対 応することが知られている。
[0096] 図 2に示す点 A(l)は、圧縮機 (30)の入口の冷媒の温度とエントロピから定まる点で ある。点 B(l)は、圧縮機 (30)の出口の冷媒の温度とエントロピから定まる点である。 点 C(l)は、室外熱交翻 (34)の入口の冷媒の温度とエントロピから定まる点である。 点 D(l)は、室外熱交換器 (34)の出口(膨張弁 (36)の入口)の冷媒の温度とェントロ ピカも定まる点である。点 E(l)は、室内熱交 (37)の入口(膨張弁 (36)の出口)の 冷媒の温度とエントロピから定まる点である。点 F(l)は、室内熱交 (37)の出口の 冷媒の温度とエントロピから定まる点である。
[0097] また、点 C(2)は、点 C(l)とエントロピが等しく点 D(l)を通る等圧線上に位置する点で ある。点 D(2)は、点 D(l)を通る等ェンタルピ線と点 C(l)を通る等圧線とが交わる点で ある。点 D(3)は、点 D(l)を通る等ェンタルピ線と点 B(l)を通る等圧線とが交わる点で ある。点 E(2)は、点 E(l)を通る等ェンタルピ線と点 F(l)を通る等圧線とが交わる点で ある。点 F(2)は、点 F(l)とエントロピが等しく点 E(l)を通る等圧線上に位置する点であ る。
[0098] また、点 G(l)は、点 C(l)を通る等圧線と飽和蒸気線とが交わる点である。点 G(2)は 、点 C(2)を通る等圧線と飽和蒸気線とが交わる点である。点 G(3)は、点 B(l)を通る等 圧線と飽和蒸気線とが交わる点である。点 H(l)は、点 D(l)を通る等圧線と飽和液線と が交わる点である。点 H(2)は、点 D(2)を通る等圧線と飽和液線とが交わる点である。 点 H(3)は、点 D(3)を通る等圧線と飽和液線とが交わる点である。点 1(1)は、点 D(l)を 通る等ェンタルピ線と飽和液線とが交わる点である。点 J(l)は、点 F(l)を通る等圧線と 飽和蒸気線とが交わる点である。点 J(2)は、点 F(2)を通る等圧線と飽和蒸気線とが交 わる点である。
[0099] また、 Thは室外熱交換器 (34)に送り込まれる空気の温度 (外気温度センサ(18)の 計測値)、 Tcは室内熱交換器 (37)に送り込まれる空気の温度 (室内温度センサ(19) の計測値)をそれぞれ表して!/、る。
[0100] そして、図 2に示す (a)の領域は、逆カルノーサイクルの仕事量を表している。(b)の 領域は、室内熱交 (37)における吸熱量を表している。(c)の領域は、室内熱交換 器 (37)における熱交換に伴う損失を表している。(d)の領域は、室外熱交翻 (34)に おける熱交換に伴う損失を表している。(e)の領域は、冷媒が膨張弁 (36)を通過する 際の摩擦損失を表している。(Dの領域は、圧縮機 (30)における機械摩擦による損失 を表している。(gl)の領域は、室内熱交 (37)における摩擦発熱による損失を表し ている。(g2)の領域は、室内熱交翻 (37)における圧力損失を表している。(hi)の領 域は、室外熱交 (34)における摩擦発熱による損失を表している。(h2)の領域は、 室外熱交 (34)における圧力損失を表している。(0の領域は、室内熱交 (37 )から圧縮機 (30)に至るまでの熱侵入による損失や圧力損失を表している。(j)の領域 は、圧縮機 (30)力も室外熱交 (34)に至るまでの放熱による損失を表している。 ( k)の領域は、圧縮機 (30)から室外熱交換器 (34)に至るまでの圧力損失を表している
[0101] 室外熱交 (34)や室内熱交 (37)で生じる損失の値としては、熱交換に伴う 損失、摩擦発熱による損失、及び圧力損失の 3種類の損失の値がそれぞれ算出され る。ここで、各主要構成機器の出口と入口における冷媒の温度及びエントロピを用い ると、蒸発器となる熱交 (34,37)や、凝縮器となる熱交 (34,37)については 複数種類の損失の値を算出できることを、本願の発明者は見つけ出した。この内容 について説明する。なお、以下では蒸発器となる熱交換器の場合について説明する [0102] 蒸発器の入口から出口に至るまでの冷媒の状態を T s線図で表すと、図 3に示す ようになる。この図 3において、点 E(l)は蒸発器の入口の冷媒の温度 (T1)とェントロ ピ (si)から定まる点であり、点 F(l)は蒸発器の出口の冷媒の温度 (T2)とエントロピ (s 2)から定まる点であり、点 E(2)は点 E(l)を通る等ェンタルピ線と点 F(l)を通る等圧線 とが交わる点である。
[0103] ここで、冷凍サイクルにお 、て損失が生じな 、理想状態では、冷媒が外部から吸熱 する際に圧力が変化しない。このため、等圧線上に位置する点 E(2)と点 F(l)とを結ぶ 線が、理想状態における蒸発器の入口から出口に至るまでの冷媒の状態の変化、つ まり吸熱のみによる冷媒の状態の変化を表すことになる。従って、蒸発器における吸 熱量は、点 E(2)と点 F(l)とを結ぶ線より下の領域である (b)の領域によって表される。
[0104] また、蒸発器の入口から出口に至るまでの冷媒の状態の変化を数式で表すと、以 下に示す式 1になる。
[0105] 式1 : (15 = (€^ +€^(&))÷丁
上記式 1において、 dsは比エントロピの増加量、 dqは冷媒が外部から吸熱する熱量 、 dq(fr)は圧力損失による摩擦発熱量、 Tは蒸発温度を表している。そして、式 1を区 間 [sl,s2]について積分すると、以下に示す式 2になる。
[0106] 式 2 : ί Tds= ί dq+ ί dq(fr) = Q + Q(fr)
上記式 2において、 Qは蒸発器における冷媒の吸熱量、 Q(fr)は蒸発器における圧 力損失による摩擦発熱量を表して!/ヽる。
[0107] そして、式 2の ί Tdsの値は、図 3における点 E(l)と点 F(l)とを結ぶ曲線の下の領域 の面積に対応する。従って、この領域から、蒸発器における冷媒の吸熱量 Qに対応 する (b)の領域の除外した (gl)の領域が、蒸発器における摩擦発熱量 Q(fr)に対応す る領域となる。そして、(gl)の領域の面積を算出することによって、蒸発器の 1つの損 失として蒸発器における摩擦発熱の値を算出することが可能である。蒸発器におけ る摩擦発熱量 Q(fr)は、圧力損失による摩擦発熱によって蒸発器における吸熱量が 減少した分に相当する。
[0108] なお、同様の考え方から、図 2における (g2)の領域が蒸発器の圧力損失に対応する ことを導き出すことができる。そして、(g2)の領域の面積を算出することによって、蒸発 器の 1つの損失として蒸発器における圧力損失の値を算出することが可能である。
[0109] 損失算出部 (52)は、領域 (c)から領域 (k)に対応する損失の値を、各領域 (c,d,e,f, gl,g2,hl,h2,i,j,k)の面積を算出することにより算出する。なお、損失の値は、各領域( c,d,e,f,gl,g2,hl,h2,i,j,k)の面積が表すェンタルピとして算出してもよいし、ェンタルピ に冷媒循環量を乗じたエネルギー (仕事)として算出してもよい。全ての回路構成部 品の冷媒流量が同じであるため、損失の値をェンタルピとして表す場合でも、各回路 構成部品で生じる損失の大きさを相対的に表すことが可能である。
[0110] 診断部 (54)は、損失記憶部 (53)が記憶する複数の運転条件の損失基準値のうち 、診断時の運転条件に対応する運転条件の損失基準値を選択する。対応する運転 条件としては、室内の温度及び室外の温度が診断時と同じもの、或いは同じものが なければ診断時に最も近いものが選択される。そして、診断部 (54)は、各回路構成 部品で生じる損失毎に、損失算出部 (52)が算出する算出値を選択した運転条件の 損失記憶部 (53)の損失基準値と比較することにより、診断対象部品の状態を診断す る。
[0111] 例えば、診断時の圧縮機 (30)における機械摩擦による損失の値 ((£)の領域に対応 する値)が正常な運転状態に比べて大きくなつている場合(図 4に示すような状態)は 、圧縮機 (30)での機械的なロス (摩擦発熱)や、モータのジュール発熱が増加してい ることを意味している。従って、診断部 (54)が、圧縮機 (30)の冷凍機油の劣化や軸 受けなどの摺動部材の劣化が進行している状態、又は電装品における回路抵抗が 増大している状態と診断する。そして、診断部 (54)は、正常な運転状態に比べて診 断時の損失の値が例えば 10%以上大きくなつていると、圧縮機 (30)が故障状態で あると判定する。
[0112] なお、本願の発明者は、圧縮機 (30)で生じる損失の値の大きさが圧縮機 (30)の状 態を反映していることを、シミュレーション計算によって確認している。そのシミュレ一 シヨン計算の結果を図 5に示す。図 5には、圧縮機 (30)の能力の低下度合いを所定 の値を基準にして変化させた 3ケース(2%低下、 4%低下、 6%低下)のシミュレーシ ヨン計算の結果を示している。この図 5では、圧縮機 (30)の能力の低下度合いが大き いほど、圧縮機 (30)で生じる損失の値が大きくなつている。そして、圧縮機 (30)の損 傷や不具合が進行するほど圧縮機 (30)の能力の低下度合いは大きくなるので、圧 縮機 (30)で生じる損失の値が大き!/、ほど圧縮機 (30)の損傷や不具合が進行して!/ヽ ることが図 5から確認される。
[0113] また、診断時の室内熱交 (37)における熱交換に伴う損失の値 ((c)の領域に対 応する値)が正常な運転状態に比べて大きくなつている場合(図 6に示すような状態) は、室内熱交換器 (37)における冷媒の蒸発温度が正常な運転状態に比べて低下し ていることを意味している。従って、診断部(54)は、室内熱交 (37)を通過する空 気の風量が低下していると診断する。そして、診断部 (54)は、室内熱交翻 (37)を 通過する空気の風量の低下の原因として、室内ファン(14)が老朽ィ匕して 、る状態、 室内ファン(14)のフィルタ(28)が目詰まりして!/、る状態、室内熱交換器 (37)のフィン が汚れて 、る状態、又は室内熱交 (37)のフィンが潰れて 、る状態であると診断 する。
[0114] なお、本願の発明者は、蒸発器における損失の値の大きさが、蒸発器に空気を送 るファンの状態を反映していることを、シミュレーション計算によって確認している。そ のシミュレーション計算の結果を図 7に示す。図 7には、ファンの風量の低下度合いを 所定の値を基準にして変化させた 3ケース(10%低下、 20%低下、 30%低下)のシミ ユレーシヨン計算の結果を示している。この図 7では、ファンの風量の低下度合いが 大きいほど、蒸発器における損失の値が大きくなつている。そして、ファンの損傷ゃ不 具合が進行するほどファンの風量は低下するので、蒸発器における損失の値が大き いほどファンの損傷や不具合が進行していることが図 7から確認される。
[0115] また、診断時の室内熱交換器 (37)における圧力損失の値 ((g2)の領域に対応する 値)が正常な運転状態に比べて大きくなつている場合(図 8に示すような状態)は、室 内熱交 (37)での圧力降下が大きくなつて摩擦発熱によるロスが増大していること を意味する。従って、診断部(54)は、室内熱交換器 (37)の内部が汚れている状態、 室内熱交換器 (37)の配管が潰れている状態、又は室内熱交換器 (37)の内部の異 物が多くなつている状態と診断する。診断部 (54)は、室内熱交 (37)における摩 擦発熱の値 ((gl)の領域に対応する値)が正常な運転状態に比べて大きくなつている 場合にも、同様の診断を行う。 [0116] なお、本願の発明者は、蒸発器における損失の大きさが、蒸発器における冷媒の 圧力損失の程度を反映していることを、シミュレーション計算によって確認している。 そのシミュレーション計算の結果を図 9に示す。図 9には、蒸発器における冷媒の圧 力降下の度合いを所定の値を基準にして変化させた 3ケース (0. OlMPa低下、 0. 02MPa低下、 0. 03MPa低下)のシミュレーション計算の結果を示している。この図 9では、蒸発器における冷媒の圧力降下の度合いが大きいほど、蒸発器における損 失が大きくなつている。そして、蒸発器における冷媒の圧力降下は蒸発器における冷 媒の圧力損失の増加を表すので、蒸発器における損失が大き!、ほど蒸発器におけ る冷媒の圧力損失が大きくなつていることが図 9から確認される。
[0117] また、診断時の室外熱交換器 (34)における熱交換に伴う損失の値 ((d)の領域に対 応する値)が正常な運転状態に比べて大きくなつている場合は、室外熱交換器 (34) における冷媒の凝縮温度が正常な運転状態に比べて上昇して 、ることを意味して ヽ る。従って、診断部(54)は、室外熱交換器 (34)を通過する空気の風量が低下してい ると診断する。そして、診断部 (54)は、室外熱交換器 (34)を通過する空気の風量の 低下の原因として、室外ファン(12)が老朽ィ匕している状態、室外熱交 (34)のフィ ンが汚れている状態、又は室外熱交 (34)のフィンが鲭などにより目詰まりしてい る状態であると診断する。
[0118] なお、本願の発明者は、凝縮器における損失の値の大きさが、凝縮器に空気を送 るファンの状態を反映していることを、シミュレーション計算によって確認している。そ のシミュレーション計算の結果を図 10に示す。図 10には、ファンの風量の低下度合 いを所定の値を基準にして変化させた 3ケース(10%低下、 20%低下、 30%低下) のシミュレーション計算の結果を示している。この図 10では、ファンの風量の低下度 合いが大きいほど、凝縮器における損失の値が大きくなつている。そして、ファンの損 傷や不具合が進行するほどファンの風量は低下するので、凝縮器における損失の値 が大きいほどファンの損傷や不具合が進行していることが図 10から確認される。
[0119] また、診断時の室内熱交 (37)力 圧縮機 (30)に至るまでの損失の値 (G)の領 域に対応する値)が正常な運転状態に比べて大きくなつている場合は、室内熱交換 器 (37)と圧縮機 (30)との間の配管における熱の侵入量が大きくなつている、又はそ の配管における冷媒の圧力損失が大きくなつていることを意味している。従って、診 断部 (54)は、その配管の断熱材が劣化している状態、その配管が結露している状態 、その配管が潰れている状態、又はその配管の内部に付着する異物が多くなつてい る状態と診断する。
[0120] また、診断時の圧縮機 (30)力 室外熱交 (34)に至るまでの放熱による損失の 値 ((j)の領域に対応する値)が正常な運転状態に比べて大きくなつている場合は、圧 縮機 (30)と室外熱交 (34)との間の配管における放熱量が大きくなつていること を意味している。従って、診断部 (54)は、その配管の断熱材が劣化している状態と診 断する。
[0121] また、診断時の圧縮機 (30)から室外熱交換器 (34)に至るまでの圧力損失の値 ((k) の領域に対応する値)が正常な運転状態に比べて大きくなつている場合は、圧縮機( 30)と室外熱交 (34)との間の配管における冷媒の圧力損失が大きくなつているこ とを意味している。従って、診断部 (54)は、その配管が潰れている状態、又はその配 管の内部に付着する異物が多くなつている状態と診断する。
[0122] なお、ここに示す診断結果の内容は、診断部 (54)で診断可能な内容の一部である
[0123] 表示部 (55)は、診断部 (54)が診断する診断対象部品の状態を表示する。なお、表 示部 (55)が、各回路構成部品で生じる損失の値を併せて表示してもよい。例えば、 図 11に示すように、表示部(55)は、各回路構成部品で生じる損失の値の分布状況 を表示する。これにより、ユーザーは各回路構成部品の状態を推測することができる ので、部品の劣化や経年劣化を早期に発見することが可能になる。
[0124] なお、図 2に示す T—s線図の領域分けは、単なる一例である。例えば、図 12 (A) に示すように領域分けすることも可能である。図 12 (A)において (a)の領域は、逆カル ノーサイクルの仕事量を表している。(b)の領域は、室内熱交翻 (37)における吸熱 量を表している。(c)の領域は、室内熱交 (37)で生じる損失を表している。( の 領域は、室外熱交換器 (34)で生じる損失を表している。(e)の領域は、冷媒が膨張弁 (36)を通過する際の摩擦損失を表している。(£)の領域は、圧縮機 (30)における機械 摩擦による損失を表している。この場合は、 4つの位置の冷媒の温度及びエントロピ から T s線図が作成されるので、室外ガス温度センサ (45c)及び室外ガス圧力セン サ(46c)と、室内ガス温度センサ (45f)及び室内液圧力センサ (46f)とを設ける必要が ない。
[0125] また、冷房運転にお!、て、室内熱交翻 (37)に送り込まれる空気の温度 (Tc)が、 室外熱交翻 (34)に送り込まれる空気の温度 (Th)よりも高くなる場合は、 T— s線図 が図 12 (B)のように表される。この場合、(a)の領域で表される逆カルノーサイクルの 仕事量が負の値になり、(c)の領域と (d)の領域とが重複する。損失算出部 (52)は、 (c) の領域の面積力 室内熱交 (37)で生じる損失の値を算出し、(d)の領域の面積 から室外熱交換器 (34)で生じる損失の値を算出する。なお、暖房運転において、室 内温度 (Tc)が室外温度 (Th)より低くなる場合も、同様に、逆カルノーサイクルの仕 事量を負の値として取り扱って、室外熱交換器 (34)や室内熱交換器 (37)で生じる損 失の値を算出する。
[0126] 一実施形態 1の効果
本実施形態 1では、主要構成機器の出口と入口における冷媒の温度及びェントロ ピを用いて作成される T—s線図に、各回路構成部品で生じる冷媒のエネルギー変 化の大きさが表されることを利用して、回路構成部品の各々で生じる冷媒のエネルギ 一変化の大きさを個別に算出している。回路構成部品で生じる冷媒のエネルギー変 化の大きさは、例えば回路構成部品で生じる損失の大きさを表しており、回路構成部 品の状態に対応している。すなわち、本実施形態 1によれば、回路構成部品の状態 を個別に分析することができる。
[0127] また、本実施形態 1では、回路構成部品の状態や流体用部品(12,14,28)の状態に 対応する各回路構成部品で生じる冷媒のエネルギー変化の大きさを用いることで、 回路構成部品の状態や流体用部品(12,14,28)の状態が個別に診断されるようにし ている。そして、異なる単位の物理量を使用せずに同じ単位で診断を行うので、回路 構成部品の状態や流体用部品(12,14,28)の状態がそれぞれ定量的に把握される。 従って、回路構成部品の状態や流体用部品(12,14,28)の状態の診断を的確に行う ことができる。
[0128] また、本実施形態 1では、 T—s線図で表される全ての領域に対応する回路構成部 品の損失の値を表示することで、冷凍サイクルで生じる損失を損失の種類毎に細分 化した全てについて、その変化を把握することができる。このため、抜けがない損失 分析を行うことができる。従って、冷凍装置(10)の性能をより確実に保証することがで きるので、 ESCO (エネルギ一'サービス 'カンパ-一)ビジネスとして展開する上で有 利である。また、抜けがない損失分析を行うことで、冷凍装置 (10)の異常を漏れなく 検知しゃすくなるので、冷凍装置(10)のメンテナンスサービスを向上させることができ る。
[0129] また、本実施形態 1によれば、診断対象部品の状態が、正常な運転状態の損失の 値を基準にして診断される。このため、診断時の診断対象部品の状態を正常な運転 状態との違いとして把握することができるので、診断対象部品の状態の診断を的確 に行うことができる。
[0130] また、本実施形態 1では、各回路構成部品で生じる損失毎に損失算出部 (52)が算 出する算出値と損失記憶部 (53)が記憶する損失基準値とを比較することで、正常な 運転状態と診断時との違いが各回路構成部品で生じる損失毎に明確に把握される ようにしている。また、各回路構成部品で生じる損失毎に比較を行うので、冷凍装置( 10)全体としては小さ 、損失にっ 、ても正常な運転状態と診断時との違 、が明確に 把握される。従って、診断対象部品の状態の診断をさらに的確に行うことができる。
[0131] また、本実施形態 1では、診断手段 (54)が、室外熱交換器 (34)及び室内熱交換器
(37)で生じる損失については、細分化された複数種類の損失の値を用いて、室外熱 交 (34)及び室内熱交 (37)や、流体用部品(12,14,28)であるファン(12,14) 及びフィルタ (28)の状態を診断する。従って、室外熱交換器 (34)及び室内熱交換器 (37)の状態や、ファン(12,14)及びフィルタ (28)の状態をさらに詳細に把握すること ができるので、これらの構成部品の状態の診断をさらに的確に行うことができる。
[0132] また、本実施形態 1では、診断対象部品の状態の診断に、損失算出部 (52)が算出 値を算出する診断時の運転状態と同じ運転条件の損失基準値、或いは同じものがな ければ診断時に最も近い運転条件の損失基準値が用いられる。従って、正常な運転 状態と診断時との損失の値の差のうち、損失基準値の運転条件と診断時の運転条 件との違いによる分が小さくなる。そして、正常な運転状態と診断時との損失の値の 差が、正常な運転状態と診断時との診断対象部品の状態の違いをより正確に表すの で、診断対象部品の状態の診断をさらに的確に行うことができる。
[0133] 一実施形態 1の変形例
上記実施形態 1の変形例について説明する。この変形例の冷凍装置(10)では、冷 媒回路 (20)においていわゆる超臨界サイクルが行われる。超臨界サイクルとは、その 高圧圧力が冷媒の臨界圧力よりも高い値に設定された冷凍サイクルである。冷媒回 路 (20)には、冷媒として例えば二酸ィ匕炭素が充填されている。この冷凍装置(10)で は、圧縮機 (30)が二酸ィ匕炭素をその臨界圧力よりも高圧になるように圧縮する。
[0134] この変形例の冷媒回路 (20)における冷凍サイクルの T—s線図では、凝縮器の入 口から出口に至るまでの冷媒の温度とエントロピの関係力 図 13に示すように曲線上 を変化する。なお、図 13において (a)の領域は、逆カルノーサイクルの仕事量を表し ている。(b)の領域は、室内熱交翻 (37)における吸熱量を表している。(c)の領域は 、室内熱交換器 (37)で生じる損失を表している。(d)の領域は、室外熱交換器 (34)で 生じる損失を表している。(e)の領域は、冷媒が膨張弁 (36)を通過する際の摩擦損失 を表している。(£)の領域は、圧縮機 (30)における機械摩擦による損失を表している。
[0135] この変形例のコントローラ (50)が診断対象部品の状態を診断する時の動作につい ては、上記実施形態 1と同じである。
[0136] 《発明の実施形態 2》
本発明の実施形態 2について説明する。実施形態 2は、本発明に係る冷凍装置(1 0)である。
[0137] 冷凍装置の構成
本実施形態 2の冷凍装置(10)は、図 14に示すように、第 1室内ユニット(13a)及び 第 2室内ユニット(13b)の 2台の室内ユニットを備える空気調和装置である。なお、室 内ユニット(13)の台数は単なる例示である。以下では、実施形態 1と異なる点につい て説明する。
[0138] 《室外ユニット》
室外ユニット(11)の室外回路 (21)には、圧縮機 (30)、熱源側熱交換器である室外 熱交換器 (34)、及び減圧手段である第 1室外膨張弁 (36a)及び第 2室外膨張弁 (36 b)が主要構成機器として設けられ、それら以外にも四路切換弁 (33)及び内部熱交 (15)が設けられている。これらの主要構成機器、四路切換弁 (33)及び内部熱 交換器 (15)は、回路構成部品を構成しており、同じく回路構成部品を構成する冷媒 配管によって互 ヽに接続されて!、る。
[0139] また、室外回路 (21)では、室外熱交 (34)力も延びる液配管 (42)が、室内接続 配管(17)とバイパス管(16)との 2つに分岐している。室内接続配管(17)は、液側閉 鎖弁 (25)に接続されている。バイパス管(16)は、吸入管 (41)に接続されている。第 1 室外膨張弁 (36a)は液配管 (42)に設けられ、第 2室外膨張弁 (36b)はバイパス管(16 )に設けられている。
[0140] 内部熱交 (15)は、室内接続配管(17)の途中に設けられる第 1流路(15a)と、 バイパス管(16)の途中に設けられる第 2流路(15b)とを備えて!/、る。第 2流路(15b)は 、第 2室外膨張弁 (36b)よりも吸入管 (41)側に位置している。内部熱交翻(15)では 、第 1流路(15a)と第 2流路(15b)とが互いに隣接する状態で配置され、第 1流路(15a )の冷媒と第 2流路(15b)の冷媒とが熱交換を行うように構成されて 、る。
[0141] 室外回路 (21)には、圧縮機 (30)の入口側に温度センサ (45a)及び圧力センサ (46 a)が設けられ、圧縮機 (30)の出口側に温度センサ (45b)及び圧力センサ (46b)が設 けられている。液配管 (42)には第 1室外液温度センサ (45c)が設けられ、室内接続 配管(17)には第 2室外液温度センサ (45d)が設けられている。ノ ィパス管(16)では、 第 2流路(15b)の上流側に第 3室外液温度センサ (45i)が設けられ、第 2流路(15b) の下流側に第 1室外ガス温度センサ (45j)が設けられて 、る。四路切換弁 (33)の第 2 ポート (P2)とガス側閉鎖弁 (26)との間には第 2室外ガス温度センサ (45k)が設けられ ている。
[0142] 《室内ユニット》
第 1室内ユニット(13a)には第 1室内回路 (22a)が設けられ、第 2室内ユニット(13b) には第 2室内回路 (22b)が設けられている。第 1室内回路 (22a)と第 2室内回路 (22b) とは同じ構成である。
[0143] 各室内回路 (22a,22b)には、減圧手段である室内膨張弁 (39a,39b)、及び利用側 熱交 である室内熱交 (37a,37b)が主要構成機器として設けられている。室 内膨張弁 (39a,39b)及び室内熱交換器 (37a,37b)は、回路構成部品を構成して 、る
[0144] 各室内熱交^^ (37a,37b)の近傍には、室内ファン(14a,14b)が設けられている。ま た、室内ファン(14a, 14b)と室内熱交翻 (37a,37b)との間にはそれぞれフィルタ(28) が設けられている。室内ファン(14)及びフィルタ(28)は、室内熱交換器 (37)におい て冷媒と熱交換する空気が流通する流体用部品(12,14,28)を構成している。
[0145] 第 1室内ユニット(13a)では、室内熱交換器 (37a)の液側に室内液温度センサ (45e )が設けられ、室内熱交 (37a)のガス側に室内ガス温度センサ (45f)が設けられ ている。また、第 2室内ユニット(13b)では、室内熱交換器 (37b)の液側に室内液温 度センサ (45g)が設けられ、室内熱交換器 (37b)のガス側に室内ガス温度センサ (45 h)が設けられている。
[0146] 《コントローラ》
コントローラ (50)は、上記実施形態 1と同様に、各回路構成部品で生じる損失を分 析する熱力学的分析に基づいて当該冷凍装置(10)の構成部品の状態を診断するも のである。コントローラ (50)が診断する診断対象部品は、主要構成機器を含む回路 構成部品や、流体用部品(12,14,28,75,76b)である。このコントローラ(50)は、後述す る分岐回路 (67)の各々に対して熱力学的分析を行うように構成されて ヽる。
[0147] コントローラ (50)は、上記実施形態 1と同様の冷媒状態検出部 (51)と損失算出部( 52)と損失記憶部 (53)と診断部 (54)と表示部 (55)とに加えて、流量算出部 (56)を備 えている。流量算出部(56)は、流量算出手段を構成している。流量算出部(56)は、 各室内回路 (22)の冷媒流量とバイパス管(16)の冷媒流量とを、後述する分岐回路( 67)の冷媒流量としてそれぞれ算出するように構成されている。なお、以下では、流 量算出部(56)の構成のみにっ 、て説明する。
[0148] 具体的に、流量算出部 (56)は、第 1室内回路 (22a)の冷媒流量 Gが冷媒回路 (20 )の冷媒循環量 Gに占める割合 (G /G)、第 2室内回路 (22b)の冷媒流量 Gが冷媒
1 2 回路 (20)の冷媒循環量 Gに占める割合 (G /G)、及びバイパス管(16)の冷媒流量 G
2
が冷媒回路 (20)の冷媒循環量 Gに占める割合 (G /G)を算出すると共に、冷媒回
3 3
路 (20)の冷媒循環量 G (圧縮機 (30)が吐出する冷媒流量)を算出する。そして、各 室内回路 (22)又はバイパス管(16)が冷媒回路 (20)の冷媒循環量 Gに占める割合( G /G,G /G,G /G)に冷媒回路 (20)の冷媒循環量 Gを掛けることによって、第 1室
1 2 3
内回路 (22a)の冷媒流量 Gと第 2室内回路 (22b)の冷媒流量 Gとバイパス管(16)の
1 2
冷媒流量 Gとをそれぞれ算出する。
3
[0149] 第 1室内回路 (22a)の冷媒流量 Gが冷媒回路 (20)の冷媒循環量 Gに占める割合( G /G)は、以下に示す式 3を用いて算出される。また、第 2室内回路 (22b)の冷媒流 量 Gが冷媒回路 (20)の冷媒循環量 Gに占める割合 (G /G)、以下に示す式 4を用
2 2
いて算出される。バイパス管(16)の冷媒流量 Gが冷媒回路 (20)の冷媒循環量 Gに
3
占める割合 (G /G)、以下に示す式 5を用いて算出される。
3
[0150] 式 3:G /G = (h h )X(h h )/(h h )/(h h )
1 4 3 5 2 5 3 1 2
式 4:G /G = (h h )X(h h )/(h h )/(h h )
2 4 3 5 1 5 3 2 1
式 5:G /G = (h -h )/(h h)
3 4 5 3 5
上記式 3〜式 5において、 は第 1室内回路 (22a)の室内熱交換器 (37a)の下流の 冷媒のェンタルピ、 hは第 2室内回路 (22b)の室内熱交換器 (37b)の下流の冷媒の
2
ェンタルピ、 hはバイパス管(16)の内部熱交換器(15)の下流の冷媒のェンタルピ、
3
hは第 1室内回路 (22a)の冷媒と第 2室内回路 (22b)の冷媒とが合流してバイパス管
4
(16)の冷媒が合流する前の冷媒のェンタルピ、 hは第 1室内回路 (22a)の冷媒と第 2
5
室内回路 (22b)の冷媒とにバイパス管(16)の冷媒が合流した後の冷媒のェンタルピ をそれぞれ表している。
[0151] 上記式 3〜式 5は、図 15に示す回路において、合流する 2つの回路(91,92)の冷媒 流量が、以下に示す式 6、式 7から導き出される式 8、式 9によって表されることを利用 して、作成されている。
[0152] 式 6:G Xh +G Xh =htXGt
A A B B
式 7:G +G =Gt
A B
式 8:G Z(G +G ) = (ht-h )/(h -h )
A A B B A B
式 9:G
B Z(G +G )= (ht-h )/(h -h )
A B A 2 A
上記式 6から式 9において、 Gは合流する 2つの回路(91,92)のうち一方の第 1回
A
路 (91)の冷媒流量、 Gは他方の第 2回路 (92)の冷媒流量、 Gtは第 1回路 (91)と第
B 2回路 (92)との合流後の合流回路 (93)の冷媒流量、 hは第 1回路 (91)の冷媒のェ
A
ンタルピ、 hは第 2回路 (92)の冷媒のェンタルピ、 htは合流回路 (93)の冷媒のェン
B
タルピをそれぞれ表して 、る。
[0153] また、冷媒回路 (20)の冷媒循環量 Gは、以下に示す式 10を用いて算出される。
[0154] 式 10 : G=WZ(h -h )
H L
上記式 10において、 Wは圧縮機 (30)の入力電力、 h は圧縮機 (30)の吐出冷媒の
H
ェンタルピ、 hは圧縮機 (30)の吸入冷媒のェンタルピをそれぞれ表している。
[0155] 冷凍装置の運転動作
次に、冷凍装置(10)の運転動作について説明する。
[0156] く冷房運転〉
冷房運転では、四路切換弁 (33)が第 2状態に設定される。そして、この状態で圧縮 機 (30)を運転すると、冷媒回路 (20)では室外熱交換器 (34)が凝縮器 (放熱器)とな つて室内熱交 (37)が蒸発器となる蒸気圧縮冷凍サイクルが行われる。なお、冷 房運転では、第 1室外膨張弁 (36a)が全開に設定され、第 2室外膨張弁 (36b)、及び 各室内膨張弁 (39a,39b)の開度が適宜調節される。
[0157] なお、冷房運転では、吸入管 (41)におけるバイパス管(16)の合流点から液配管 (4 2)におけるバイパス管(16)の分岐点までが、主回路 (66)を構成する。主回路 (66)は 、圧縮機 (30)に戻る冷媒が全て合流し終わる箇所力 圧縮機 (30)力 吐出された冷 媒が最初に分岐する箇所までの範囲である。また、バイパス管(16)、及び各室内回 路 (22a,22b)が、それぞれ分岐回路 (67)を構成する。分岐回路 (67)は、主回路 (66) に対して並列に接続されて!、る。
[0158] 具体的に、圧縮機 (30)力も吐出された冷媒は、室外熱交 (34)で室外空気と熱 交換して凝縮する。室外熱交翻 (34)で凝縮した冷媒は、室内接続配管(17)とバイ パス管(16)とに分岐する。室内接続配管(17)に流入した冷媒は、内部熱交翻 (15 )の第 1流路(15a)を流通する。一方、バイパス管(16)に流入した冷媒は、第 2室外膨 張弁 (36b)で減圧されて力 内部熱交 (15)の第 2流路(15b)に流入する。内部 熱交 (15)では、第 1流路(15a)の冷媒と第 2流路(15b)の冷媒との間で熱交換が 行われる。この熱交換により、第 1流路(15a)の冷媒は冷却され、第 2流路(15b)の冷 媒は加熱される。
[0159] 第 1流路(15a)を流通した冷媒は、各室内回路 (22a,22b)へ分配される。各室内回 路 (22)では、冷媒が室内膨張弁 (39)を通過する際に減圧され、その後に室内熱交 換器 (37)で室内空気と熱交換して蒸発する。室内熱交換器 (37)で蒸発した冷媒は 、バイパス管(16)を流通した冷媒と合流して、圧縮機 (30)へ吸入されて圧縮される。
[0160] く暖房運転〉
暖房運転では、四路切換弁 (33)が第 1状態に設定される。そして、この状態で圧縮 機 (30)を運転すると、冷媒回路 (20)では室外熱交換器 (34)が蒸発器となって室内 熱交 (37)が凝縮器 (放熱器)となる蒸気圧縮冷凍サイクルが行われる。なお、暖 房運転では、第 2室外膨張弁 (36b)が全閉に設定され、第 1室外膨張弁 (36a)及び 各室内膨張弁 (39a,39b)の開度が適宜調節される。
[0161] なお、暖房運転では、室内回路 (22)、液側連絡配管(23)及びガス側連絡配管(24 )が主回路 (66)を構成する。各室内回路 (22a,22b)が、それぞれ分岐回路 (67)を構 成する。
[0162] 具体的に、圧縮機 (30)から吐出された冷媒は、各室内回路 (22a,22b)へ分配され る。各室内回路 (22)では、冷媒が室内熱交 (37)で室内空気と熱交換して凝縮 する。室内熱交 (37)で凝縮した冷媒は、室内膨張弁 (39)及び第 1室外膨張弁( 36a)を通過する際に減圧され、その後に室外熱交換器 (34)で室外空気と熱交換し て蒸発する。室外熱交換器 (34)で蒸発した冷媒は、圧縮機 (30)へ吸入されて圧縮 される。
[0163] コントローラの動作
コントローラ (50)が診断対象部品の状態を診断する時の動作について説明する。 診断対象部品の状態の診断は、冷房運転中や暖房運転中に行われる。以下では、 冷房運転中に診断を行う場合にっ ヽて説明する。
[0164] 冷房運転では、コントローラ (50)力 各室内回路 (22a,22b)、及びバイパス管(16) のそれぞれに対して熱力学的分析を行う。まず、各室内回路 (22a,22b)についての 熱力学的分析について説明する。なお、以下では、第 1室内回路 (22a)の熱力学的 分析について説明する。第 2室内回路 (22b)の熱力学的分析は、第 1室内回路 (22a )の熱力学的分析と同じであるため、説明を省略する。
[0165] 第 1室内回路 (22a)の熱力学的分析では、冷媒状態検出部 (51)が、圧縮機 (30)の 入口及び出口、室外熱交換器 (34)の入口及び出口、内部熱交換器(15)の入口及 び出口、室内膨張弁 (39)の入口及び出口、室内熱交換器 (37)の入口及び出口の 1 0つの位置の冷媒の温度とエントロピとを検出する。
[0166] なお、本実施形態 2では、冷媒の温度及びエントロピが、圧縮機 (30)出口と室外熱 交 (34)の入口とで等 ヽものとし、室外熱交 (34)の出口と内部熱交 (1 5)の入口とで等 、ものとし、内部熱交 (15)の出口と室内膨張弁 (39)の入口と で等し 、ものとし、室内膨張弁 (39)の出口と室内熱交 (37)の入口とで等 、も のとしている。また、室外熱交翻(34)の出口、及び内部熱交翻(15)の出口では 、冷媒の圧力が圧縮機 (30)の出口に等しいものとしてエントロピを算出し、室内熱交 翻 (37)の入口及び出口では、冷媒の圧力が圧縮機 (30)の入口に等 、ものとし てエントロピを算出している。
[0167] 次に、損失算出部 (52)は、冷媒状態検出部 (51)が検出する冷媒の温度及びェン トロピを用いて、圧縮機 (30)、室外熱交換器 (34)、内部熱交換器 (15)、室内膨張弁 (39)、及び室内熱交換器 (37)の各回路構成部品 (主要構成機器)で生じる損失の 値を個別に算出する。
[0168] ここで、第 1室内回路 (22a)の熱力学的分析で作成される T—s線図を図 16 (A)に 示す。図 16 (A)において、点 A(l)は圧縮機 (30)の入口の冷媒の状態に対応し、点 B(l)は圧縮機 (30)の出口(室外熱交換器 (34)の入口)の冷媒の状態に対応し、点 (1)は室外熱交換器 (34)の出口(内部熱交換器 (15)の入口)の冷媒の状態に対応し 、点 D(l)は内部熱交換器 (15)出口(室内膨張弁 (39)の入口)の冷媒の状態に対応 し、点 E(l)は室内熱交換器 (37)の入口(室内膨張弁 (39)の出口)の冷媒の状態に 対応し、点 F(l)は室内熱交換器 (37)の出口の冷媒の状態に対応して!/、る。
[0169] また、 G(l)は、点 B(l)を通る等圧線と飽和蒸気線とが交わる点である。点 H(l)は、 点 D(l)を通る等圧線と飽和液線とが交わる点である。点 1(1)は、点 D(l)を通る等ェン タルピ線と飽和液線とが交わる点である。点 J(l)は、点 F(l)を通る等圧線と飽和蒸気 線とが交わる点である。 [0170] また、図 16 (A)において、(a)の領域は逆カルノーサイクルの仕事量を表し、(b)の領 域は室内熱交換器 (37)における吸熱量を表し、(c)の領域は室内熱交換器 (37)にお ける損失を表し、(d)の領域は室外熱交 (34)における損失を表し、(e)の領域は 冷媒が室内膨張弁 (39)を通過する際の摩擦損失を表し、(£)の領域は圧縮機 (30)に おける機械摩擦による損失を表し、(1)の領域は内部熱交 (15)における損失、(m) の領域は室内熱交 (37)と圧縮機 (30)の間の配管における侵入熱量を表し、 (r) の領域は室内熱交換器 (37)と圧縮機 (30)の間の配管における熱交換損失を表して いる。
[0171] なお、主回路 (66)の回路構成部品の損失を表す (a)の領域、(d)の領域、(£)の領域、 (1)の領域、(m)の領域、及び (r)の領域の各面積は、主回路 (66)の冷媒流量のうち室 内回路 (22)に流入する冷媒流量に相当する分の損失の大きさを、冷媒の単位流量 当たりの値として表している。
[0172] 続いて、バイパス管(16)についての熱力学的分析について説明する。
[0173] バイパス管(16)の熱力学的分析では、冷媒状態検出部 (51)が、圧縮機 (30)の入 口及び出口、室外熱交換器 (34)の入口及び出口、第 2室外膨張弁 (36b)の入口及 び出口、内部熱交換器(15)の入口及び出口の 8つの位置の冷媒の温度とエントロピ とを検出する。
[0174] なお、本実施形態 2では、冷媒の温度及びエントロピが、圧縮機 (30)出口と室外熱 交換器 (34)の入口とで等 ヽものとし、室外熱交換器 (34)の出口と第 2室外膨張弁 ( 36b)の入口とで等 、ものとし、第 2室外膨張弁 (36b)の出口と内部熱交^^ (15)の 入口とで等しいものとしている。また、室外熱交^^ (34)の出口では、冷媒の圧力が 圧縮機 (30)の出口に等 、ものとしてエントロピを算出し、内部熱交翻(15)の入 口及び出口では、冷媒の圧力が圧縮機 (30)の入口に等 、ものとしてエントロピを 算出している。
[0175] 次に、損失算出部 (52)は、冷媒状態検出部 (51)が検出する冷媒の温度及びェン トロピを用いて、圧縮機 (30)、室外熱交換器 (34)、第 2室外膨張弁 (36b)、及び内部 熱交換器 (15)の各回路構成部品 (主要構成機器)で生じる損失の値を個別に算出 する。 [0176] ここで、バイパス管(16)の熱力学的分析で作成される T s線図を図 16 (B)に示す 。図 16 (B)において、点 A(l)は圧縮機 (30)の入口の冷媒の状態に対応し、点 B(l) は圧縮機 (30)の出口(室外熱交換器 (34)の入口)の冷媒の状態に対応し、点 D(l) は室外熱交換器 (34)の出口(第 2室外膨張弁 (36b)の入口)の冷媒の状態に対応し 、点 E(l)は内部熱交換器 (15)の入口(第 2室外膨張弁 (36b)の出口)の冷媒の状態 に対応し、点 F(l)は内部熱交 (15)の出口の冷媒の状態に対応している。なお、 G(l)、点 H(l)、 1(1)、点 J(l)については、室内回路 (22)の熱力学的分析と同じである。
[0177] また、図 16 (B)において、(b)の領域は内部熱交 (15)における吸熱量を表し、 ( c)の領域は内部熱交換器 (15)における損失を表し、(d)の領域は室外熱交換器 (34) における損失を表し、(e)の領域は冷媒が第 2室外膨張弁 (36b)を通過する際の摩擦 損失を表し、(1)の領域は圧縮機 (30)における機械摩擦による損失を表し、(m)の領域 は内部熱交 (15)と圧縮機 (30)の間の配管における侵入熱量を表し、(r)の領域 は内部熱交 (15)と圧縮機 (30)の間の配管における熱交換損失を表している。 なお、主回路 (66)の回路構成部品の損失を表す (d)の領域、(£)の領域、(m)の領域、 及び (r)の各面積は、主回路 (66)の冷媒流量のうちバイパス管(16)の冷媒流量に相 当する分の損失の大きさを、冷媒の単位流量当たりの値として表している。
[0178] 損失算出部 (52)は、各室内回路 (22a,22b)についての熱力学的分析と、バイパス 管(16)についての熱力学的分析とに基づいて、各回路構成部品で生じる損失の値 を算出する。具体的に、分岐回路 (67)である各室内回路 (22a,22b)及びバイパス管( 16)の回路構成部品については、損失算出部 (52)が、損失の値を算出する回路構 成部品が設けられた分岐回路 (67)の T s線図において、その回路構成部品で生じ る損失に対応する領域の面積を算出する。この領域の面積は、その回路構成部品で 生じる損失の大きさを、冷媒の単位流量当たりの値として表している。損失算出部 (5 2)は、その回路構成部品に対応する領域の面積に流量算出部 (56)が算出する分岐 回路 (67)の冷媒流量を掛けることによって、その分岐回路 (67)の回路構成部品の損 失の値を仕事量として算出する。
[0179] また、主回路 (66)の回路構成部品については、損失算出部 (52)が、各分岐回路( 67)の T s線図において、損失の値を算出する回路構成部品での損失に対応する 領域の面積をそれぞれ算出する。各分岐回路 (67)の T s線図において回路構成 部品に対応する領域の面積は、主回路 (66)の冷媒流量のうち分岐回路 (67)の冷媒 流量に相当する分の回路構成部品の損失の大きさを、冷媒の単位流量当たりの値と して表している。損失算出部 (52)は、算出した各分岐回路 (67)の T—s線図の領域 の面積に流量算出部 (56)が算出する各分岐回路 (67)の冷媒流量を掛けたものを合 計することによって、その主回路 (66)の回路構成部品の損失の値を仕事量として算 出する (式 11参照)。
[0180] 式 11 :R=∑AX G
X
上記式 11において、 Rは主回路 (66)の回路構成部品の損失の値を表し、 Aは分 岐回路 (67)の T s線図にお ヽて主回路 (66)の回路構成部品で生じる損失に対応 する領域の面積を表し、 Gは Aの値を算出した分岐回路 (67)の冷媒流量を表してい
X
る。
[0181] 診断部 (54)は、上記実施形態 1と同様に、損失記憶部 (53)が記憶する複数の運転 条件の損失基準値のうち、診断時の運転条件に対応する運転条件の損失基準値を 選択する。そして、診断部 (54)は、各回路構成部品で生じる損失毎に、損失算出部 (52)が算出する算出値を選択した運転条件の損失基準値と比較することにより、回 路構成部品の状態や流体用部品(12,14,28,75,76b)の状態を診断する。
[0182] 一実施形態 2の変形例
上記実施形態 2の変形例について説明する。この変形例の冷凍装置(10)は、図 1 7に示すように、第 1室外ユニット(11a)と第 2室外ユニット(lib)の 2台の室外ユニット を備えている。第 1室外ユニット(11a)と第 2室外ユニット(lib)とは、互いに並列に接 続されている。なお、室外ユニット(11)の台数は単なる例示である。
[0183] 第 1室外ユニット(11a)には第 1室外回路 (21a)が収容され、第 2室外ユニット(lib) には第 2室外回路 (21b)が収容されて 、る。第 1室外回路 (21a)と第 2室外回路 (21b) とは、同じ構成である。各室外回路 (21)は、図 18に示すように、 2台の圧縮機 (30a,3 Ob)が設けられている以外は、上記実施形態 2の室外回路と同じ構成である。 2台の 圧縮機 (30a,30b)は、互いに並列に接続されている。 2台のうち一方の第 1圧縮機 (30 a)は容量可変の圧縮機であり、他方の第 2圧縮機 (30b)は容量一定の圧縮機である [0184] また、この変形例の冷凍装置(10)は、第 1室内ユニット(13a)と第 2室内ユニット(13 b)と第 3室内ユニット(13c)の 3台の室内ユニットを備えている。第 1室内ユニット(13a )には第 1室内回路 (22a)が収容され、第 2室内ユニット(13b)には第 2室内回路 (22b )が収容され、第 3室内ユニット(13c)には第 3室内回路 (22c)が収容されている。また 、液側連絡配管 (23)及びガス側連絡配管 (24)のそれぞれにおいて、第 1室内回路( 22a)と第 2室内回路 (22b)との間と、第 1室内回路 (22a)の室外回路 (21)側とには、 それぞれ温度センサ(45m,45n,45p,45q)が設けられて!/、る。
[0185] この変形例では、第 2室外膨張弁 (36a)が開状態になる冷房運転の際には、各室 外回路 (21)のお 、て、吸入管 (41)におけるバイパス管(16)の合流点力も液配管 (42 )におけるバイパス管(16)の分岐点までが、主回路 (66)を構成する。また、バイパス 管(16)、及び各室内回路 (22a,22b,22c)が、それぞれ分岐回路 (67)を構成する。各 室内回路 (22a,22b,22c)は、第 1室外回路 (21a)の主回路 (66)に対しても第 2室外回 路 (21b)の主回路 (66)に対しても並列に接続されて 、る。
[0186] 一方、第 2室外膨張弁 (36a)が閉状態になる暖房運転の際には、各室外回路 (21) が主回路 (66)を構成し、各室内回路 (22a,22b,22c)がそれぞれ分岐回路 (67)を構成 する。各室内回路 (22a,22b,22c)は、第 1室外回路 (21a)に対しても第 2室外回路 (21 b)に対しても並列に接続されている。
[0187] コントローラ (50)は、上記実施形態 2と同様の、冷媒状態検出部 (51)と損失算出部
(52)と損失記憶部 (53)と診断部 (54)と表示部 (55)と流量算出部 (56)とを備えて!/、る 。この変形例の流量算出部(56)は、上記実施形態 2と同様に式 8と式 9を用いて作成 した数式によって、各室内回路 (22)の冷媒流量 (G ,G ,G )と、各室外回路 (21)の
1 2 3
バイパス管(16)の冷媒流量 (G ,G )とを算出するように構成されている。
bl b2
[0188] さらに、この変形例では、流量算出部(56)が、各室内回路 (22)の冷媒流量 (G ,G
1 2
,G )について、第 1室外回路 (21a)から流入した冷媒流量 (G ,G ,G )と第 2
3 1 -1 2-1 3-1 室外回路 (21b)から流入した冷媒流量 (G ,G ,G )とを算出するように構成さ
1-2 2-2 3-2
れている。例えば、第 1室内回路 (22a)の冷媒流量 (G )のうち第 1室外回路 (21a)か ら流入した冷媒流量 (G )は、以下に示す式 12によって算出される。 [0189] 式 12 : G = G X G / (G + G )
1—1 1 mA mA mB
上記式 12において、 G は第 1室外回路 (21a)力も流出する冷媒流量、 G は第 2 mA mB 室外回路 (21b)力 流出する冷媒流量をそれぞれ表して 、る。これらの冷媒流量 (G ,G )は、流量算出部(56)が以下に示す式 13、 14を用いて算出する。 mA mB
[0190] 式 13 : G = (G + G )—G
mA Inv-A Std-A bl
式 14 : G = (G + G ) - G
mB Inv-B Std-B b2
上記式 13、式 14において、 G は第 1圧縮機 (30a)から吐出される冷媒流量、 G
Inv Std は第 2圧縮機 (30b)から吐出される冷媒流量をそれぞれ表して 、る。これらの冷媒流 量 (G ,G )は、流量算出部(56)が上記式 10を用いて算出する。
Inv Std
[0191] コントローラ(50)は、各室内回路(22a,22b,22c)と各室外回路(21a,21b)のバイパス 管(16)とのそれぞれに対して熱力学的分析を行う。各室内回路 (22)に対する熱力 学的分析におけるコントローラ (50)の動作、及び各室外回路 (21)のバイパス管(16) に対する熱力学的分析におけるコントローラ (50)の動作は、上記実施形態 2と同じで ある。各室内回路 (22)の熱力学的分析で作成される T—s線図は図 16 (A)によって 表されり、室外回路 (21)のバイパス管(16)の熱力学的分析で作成される T s線図 は図 16 (B)によって表される。
[0192] この変形例では、損失算出部 (52)において、主回路 (66)の回路構成部品で生じる 損失の値を算出する動作が、上記実施形態 2とは異なっている。分岐回路 (67)の回 路構成部品で生じる損失の値を算出する動作は、上記実施形態 2と同様であるため 、説明は省略する。以下では、主回路 (66)の回路構成部品のうち第 1室外回路 (21a )の回路構成部品で生じる損失の値を算出する動作について説明する。
[0193] 損失算出部 (52)は、主回路 (66)の回路構成部品、具体的には圧縮機 (30)や室外 熱交換器 (34)や第 1室外膨張弁 (36a)で生じる損失の値を、以下に示す式 15を用 いて算出する。
[0194] 式 15 : R=∑B X G + C X G
Y bl
上記式 15において、 Rは主回路 (66)の回路構成部品の損失の値を表し、 Bは室内 回路 (22)の T s線図にお 、て主回路 (66)の回路構成部品で生じる損失に対応す る領域の面積を表し、 Gは Bの値を算出した室内回路 (22)に対して第 1室外回路 (2
Y la)から流入する冷媒流量 (G ,G ,G )を表し、 Cは第 1室外回路 (21a)のバイ
1-1 2-1 3- 1
ノ ス管(16)の T—s線図において主回路 (66)の回路構成部品で生じるに対応する領 域の面積を表している。
[0195] 上記式 15では、圧縮機 (30)で生じる損失の値が、第 1圧縮機 (30a)で生じる損失と 、第 2圧縮機 (30b)で生じる損失との合計として算出される。損失算出部 (52)は、圧 縮機 (30)で生じる損失の値を、第 1圧縮機 (30a)から吐出される冷媒流量 G と、
Inv— A 第 2圧縮機 (30b)から吐出される冷媒流量 G との比率を用いて按分することによ
Std-A
つて、各圧縮機 (30a,30b)で生じる損失の値を算出する。
[0196] 《発明の実施形態 3》
本発明の実施形態 3について説明する。実施形態 3は、本発明に係る冷凍装置(1 0)である。この冷凍装置(10)は、給湯機能を有する冷凍装置として構成されている。
[0197] 具体的に、この冷凍装置(10)は、図 19に示すように、水が流通する水流通回路(7 5)と、水流通回路 (75)の水を冷媒回路 (20)の冷媒と熱交換させて加熱するための 給湯用熱交^^ (76)とを備えている。水流通回路(75)は、流体用部品(12,14,28,75 ,76b)を構成している。水流通回路(75)には、水道水が流通する。なお、冷媒回路 (2 0)には、冷媒として二酸ィ匕炭素が充填されている。この冷凍装置(10)は、上記実施 形態 1の変形例と同様に、冷媒回路 (20)において超臨界サイクルが行われるように 構成されている。
[0198] 給湯用熱交換器 (76)は、冷媒回路 (20)に設けられる第 1流路 (76a)と、水流通回 路 (75)に設けられる第 2流路 (76b)とを備えている。第 2流路 (76b)は、流体用部品( 12, 14,28,75,76b)を構成している。給湯用熱交翻 (76)では、第 1流路(76a)と第 2 流路 (76b)とが互いに隣接する状態で配置されている。また、給湯用熱交 (76) は、第 1流路 (76a)の入口と第 2流路 (76b)の出口とが同じ側になって第 1流路 (76a) の出口と第 2流路(76b)の入口とが同じ側になる対向流式に構成されて 、る。
[0199] 給湯用熱交換器 (76)では、第 1流路 (76a)の冷媒と第 2流路 (76b)の水との熱交換 が行われる。この熱交換によって、第 1流路 (76a)の高圧高温の冷媒は冷却され、第 2流路(76b)の水は加熱される。
[0200] この実施形態 3の冷媒回路 (20)における冷凍サイクルの T s線図では、図 20に示 すように、(d)の領域に対する、(a)の領域と (e)の領域と (Dの領域との境界線が、第 2流 路(76b)の入口の水温 (Tin)と第 2流路(76b)の出口の水温 (Tout)との温度差の分 だけ、傾いている。給湯用熱交換器 (76)が対向流式に構成されているので、上記実 施形態 1や上記実施形態 2とは異なり、第 1流路 (76a)の冷媒が熱交換する流体 (水) の温度が、出口に近づくに従って低下するためである。
[0201] なお、図 20において (a)の領域は、逆カルノーサイクルの仕事量を表している。(b)の 領域は、室内熱交 (37)における吸熱量を表している。(c)の領域は、室内熱交換 器 (37)で生じる損失を表している。(d)の領域は、第 1流路(76a)で生じる損失を表し ている。(e)の領域は、冷媒が膨張弁 (36)を通過する際の摩擦損失を表している。 (D の領域は、圧縮機 (30)における機械摩擦による損失を表している。
[0202] この実施形態 3では、コントローラ (50)が、上記実施形態 1や上記実施形態 2の診 断対象部品に加えて、水流通回路 (75)や給湯用熱交換器 (76)を診断対象部品とし ている。第 1流路 (76a)で生じる損失は、給湯用熱交換器 (76)における熱交換の状 態を反映しており、第 1流路 (76a)の状態だけでなぐ第 2流路 (76b)の状態や水流通 回路 (75)の状態に対応している。診断部 (54)は、第 1流路 (76a)で生じる損失の値 に基づ!/、て、第 2流路 (76b)の状態や水流通回路 (75)の状態を診断する。
[0203] 《発明の実施形態 4》
本発明の実施形態 4について説明する。本実施形態 4は、本発明に係る冷凍装置 (10)の分析装置 (60)である。この分析装置 (60)は、上記実施形態 1や実施形態 2や 実施形態 3のような冷凍装置(10)の状態を分析して、その構成部品の状態を診断す るように構成されている。
[0204] 分析装置の構成
本発明の実施形態 4の分析装置 (60)は、図 21に示すように、互いに通信回線 (63) で接続された第 1構成部 (47)と第 2構成部 (48)とから構成されて!ヽる。
[0205] 第 1構成部 (47)は、冷媒状態検出センサ (65)を備えている。冷媒状態検出センサ
(65)は、各主要構成機器の出口と入口における冷媒の温度及びエントロピを検出す るために必要となる冷媒回路 (20)の冷媒の状態を検出するためのセンサである。具 体的に、冷媒状態検出センサ (65)は、上記実施形態 1の冷媒回路 (20)と同じ位置 の 6つの温度センサ(45)、及び 6つの圧力センサ(46)力 構成されて 、る。
[0206] 第 2構成部 (48)は、冷媒状態検出部 (51)と損失算出部 (52)と損失記憶部 (53)と 診断部 (54)と表示部 (55)とを備えて!/、る。この第 2構成部 (48)は、電子計算機として 構成され、冷凍装置(10)とは異なる建物に設けられている。なお、冷媒状態検出部( 51)、損失算出部 (52)、損失記憶部 (53)、診断部 (54)、及び表示部 (55)は、上記実 施形態 1のものと概ね同じであるため、これらの構成や動作についての説明は省略 する。
[0207] この実施形態 4の分析装置 (60)は、接続された冷凍装置(10)のそれぞれにつ 、て 診断対象部品(回路構成部品や流体用部品(12,14,28,75,76b) )の状態を診断する ように構成されている。その際、冷媒状態検出センサ (65)の計測値が、第 1構成部 (4 7)から第 2構成部 (48)へ送信される。冷媒状態検出部 (51)は、第 1構成部 (47)から 送信された温度センサ (45)の計測値や圧力センサ (46)の計測値を用いて、該冷凍 装置(10)の各主要構成機器の出口と入口における冷媒の温度及びエントロピを検 出する。
[0208] この実施形態 4では、表示部(55)に、診断対象部品の状態に関する診断結果が表 示される。表示部(55)に表示された診断結果は、例えば冷凍装置(10)に関して専門 的な知識を有する者が冷凍装置(10)のユーザーに代わって確認を行う。このため、 診断対象部品の状態をより的確に把握することができるので、冷凍装置(10)の異常 を確実に発見できる。また、冷凍装置(10)の故障を未然に防ぐことも可能になる。
[0209] なお、表示部 (55)が、各回路構成部品で生じる損失の値を併せて表示してもよ!/、。
これにより、各回路構成部品で生じる損失の値の変化を個別に把握することが可能 になる。
[0210] ここで、通信回線を利用して冷凍装置を診断する従来の冷凍装置の診断装置では 、冷凍装置(10)力 送信されるエラーコードをカウントすることによって冷凍装置(10) の状態を診断していた。しかし、従来の診断装置では、予めエラーコードが設定され た項目し力診断を行うことができない。また、 1つの原因が複数の項目に対してカウン トされる場合がある。つまり、異常がない項目も異常があるものとしてカウントされるお それがある。従って、的確な診断を行うことが困難であった。 [0211] これに対して、 T—s線図で表される各回路構成部品で生じる損失の値を用いること で、表示部 (55)を見た者が、従来のように予め設定した項目に制限されることなぐ 様々な項目について診断を行うことができる。また、各回路構成部品で生じる損失の 値力 その回路構成部品の状態や流体用部品(12,14,28,75,76b)の状態に対応して いる。従って、損失の値に対応する部品の状態が的確に把握されるので、異常がな い回路構成部品が異常であると判断されることはなぐ従来に比べて的確な診断を 行うことができる。
[0212] 実施形態 4の変形例
この変形例では、冷媒状態検出部 (51)と損失算出部 (52)と損失記憶部 (53)と診 断部 (54)と表示部 (55)のうち冷媒状態検出部 (51)が、第 1構成部 (47)に設けられて いる。なお、冷媒状態検出部 (51)と損失算出部 (52)を第 1構成部 (47)に設けてもよ V、し、冷媒状態検出部 (51)と損失算出部 (52)と損失記憶部 (53)と診断部 (54)とを 第 1構成部 (47)に設けてもよい。
[0213] 《発明の実施形態 5》
本発明の実施形態 5について説明する。本実施形態 5は、本発明に係る冷凍装置 (10)の分析装置 (60)である。この分析装置 (60)は、上記実施形態 1や実施形態 2や 実施形態 3のような冷凍装置(10)の状態を分析して、その構成部品の状態を診断す るように構成されている。
[0214] 分析装置の構成
本発明の実施形態 5の分析装置 (60)は、図 22に示すように、計算部 (70)と、冷媒 状態検出センサ (65)とを備えている。計算部 (70)は、冷媒状態検出部 (51)と損失算 出部 (52)と損失記憶部 (53)と診断部 (54)と表示部 (55)とを備えて!/、る。計算部 (70) は、電子計算機として構成されている。
[0215] 冷媒状態検出センサ(65)は、 5つの温度センサ力 構成されて 、る。冷凍装置(10 )の状態を診断する際に冷房運転が行われている場合には、図 22に示すように、第 1温度センサ (65a)が圧縮機 (30)の吸入側に取り付けられ、第 2温度センサ (65b)が 圧縮機 (30)の吐出側に取り付けられ、第 3温度センサ (65c)が室外熱交換器 (34)の 液側に取り付けられ、第 4温度センサ (65d)が室外熱交 (34)に取り付けられ、第 5温度センサ(65e)が室内熱交 (37)に取り付けられる。各温度センサ(65)は、リ ード線 (64)を介して計算部(70)に接続される。
[0216] 冷媒状態検出部(51)は、各温度センサ(65)により計測される 5つの温度の測定値 から、圧縮機 (30)の入口及び出口、膨張弁 (36)の入口及び出口、室外熱交換器 (3 4)の入口及び出口、室内熱交換器 (37)の入口及び出口の 8つの位置の冷媒の温 度及びエントロピを検出するように構成されて 、る。
[0217] なお、室外熱交換器 (34)の入口の冷媒の温度及びエントロピは、圧縮機 (30)の出 口における値と同じ値として検出される。膨張弁 (36)の入口の冷媒の温度及びェント ロピは、室外熱交 (34)の出口における値と同じ値として検出される。膨張弁 (36) の出口の冷媒の温度及びエントロピは、室内熱交換器 (37)の入口における値と同じ 値として検出される。室内熱交 (37)の出口の冷媒の温度及びエントロピは、圧 縮機 (30)の入口における値と同じ値として検出される。
[0218] 損失算出部 (52)と損失記憶部 (53)と診断部 (54)と表示部 (55)とは、上記実施形 態 1のものと概ね同じであるため、これらの構成についての説明は省略する。
[0219] 診断装置の動作
分析装置 (60)が診断対象部品の状態を診断する時の動作について説明する。診 断対象部品の状態の診断は、冷房運転中でも暖房運転中でも行うことができる。以 下では、冷房運転中に診断を行う場合について説明する。なお、損失記憶部 (53)と 診断部 (54)と表示部 (55)の動作は、上記実施形態 1の動作と概ね同じであるため、 冷媒状態検出部 (51)の動作にっ 、てのみ説明する。
[0220] まず、冷媒状態検出部 (51)は、第 4温度センサ (65d)の計測値を室外熱交換器 (34 )における冷媒の凝縮温度として検出し、該凝縮温度における冷媒の飽和圧力を算 出して、該飽和圧力を冷凍サイクルの高圧圧力として検出する。また、冷媒状態検出 部 (51)は、第 5温度センサ (65e)の計測値を室内熱交換器 (37)における冷媒の蒸発 温度として検出し、該蒸発温度における冷媒の飽和圧力を算出して、該飽和圧力を 冷凍サイクルの定圧圧力として検出する。
[0221] 次に、冷媒状態検出部 (51)は、第 1温度センサ (65a)の計測値と冷凍サイクルの低 圧圧力とを用いて圧縮機 (30)の入口の冷媒のエントロピを算出する。これにより、圧 縮機 (30)の入口の冷媒の温度及びエントロピが把握される。
[0222] 次に、冷媒状態検出部 (51)は、第 2温度センサ (65b)の計測値と冷凍サイクルの高 圧圧力とを用いて圧縮機 (30)の出口の冷媒のエントロピを算出する。これにより、圧 縮機 (30)の出口の冷媒の温度及びエントロピが把握される。
[0223] 次に、冷媒状態検出部 (51)は、第 3温度センサ (65c)の計測値と冷凍サイクルの高 圧圧力を用いて、凝縮器となる室外熱交換器 (34)の出口の冷媒のエントロピ及びェ ンタルピを算出する。これにより、室外熱交換器 (34)の出口の冷媒の温度及びェント ロピが把握される。
[0224] 最後に、冷媒状態検出部 (51)は、第 5温度センサ (65e)の計測値を蒸発器となる室 内熱交換器 (37)の入口の冷媒の温度とする。そして、冷媒状態検出部 (51)は、室外 熱交換器 (34)の出口の冷媒のェンタルピを用いて、室内熱交換器 (37)の入口の冷 媒のエントロピを算出する。これにより、室内熱交換器 (37)の入口の冷媒の温度及び エントロピが把握される。
[0225] この実施形態 5では、冷凍装置(10)に関して専門的な知識を有する者が、この冷 凍装置(10)の分析装置 (60)を持ち運ぶことによって、冷凍装置(10)が設置されて 、 る場所で診断対象部品の状態の診断を行うことが可能になる。従って、冷凍装置(10 )に関して専門的な知識を有する者が、冷凍装置(10)のユーザーに代わって、診断 対象部品の状態をその場で的確に診断することができる。また、冷凍装置(10)の分 析装置 (60)は冷媒状態検出センサ (65)を備えて!/、るので、各主要構成機器の出口 と入口における冷媒の温度及びエントロピを検出するためのセンサを備えていない 冷凍装置(10)に対しても、診断対象部品の状態の診断を行うことが可能である。
[0226] また、この実施形態 5では、冷媒状態検出センサ(65)が圧力センサを備えていなく ても、各主要構成機器の出口と入口における冷媒の温度及びエントロピが算出され る。従って、簡易に取り付けられる温度センサ(65)によって、診断対象部品の状態の 診断を容易に行うことができる。
[0227] なお、この実施形態 5の冷媒状態検出部 (51)は、上記実施形態 1から実施形態 3 の冷凍装置(10)のコントローラ (50)や、上記実施形態 4の分析装置 (60)にも適用可 能である。この場合は、本実施形態 5で温度センサ(65)を取り付けた位置に 5つの温 度センサ (45)を設けるだけで、各主要構成機器の出口と入口における冷媒の温度 及びエントロピを検出することが可能である。
[0228] 実施形態 5の変形例
この変形例では、分析装置 (60)が、冷媒状態検出センサ (65)を備えていない。分 析装置 (60)は、リード線を介して冷凍装置(10)に接続される。冷凍装置(10)には、 上記実施形態 1と同様の温度センサ (45)及び圧力センサ (46)が設けられている。
[0229] この変形例の分析装置 (60)では、接続された冷凍装置(10)について診断対象部 品の状態の診断が行われる。その際、温度センサ (45)及び圧力センサ (46)の計測 値が、冷凍装置 (10)力も計算部 (70)へ送信される。冷媒状態検出部 (51)は、冷凍 装置(10)から送信された温度センサ (45)の計測値や圧力センサ (46)の計測値を用 V、て、該冷凍装置(10)の各主要構成機器の出口と入口における冷媒の温度及びェ ントロピを検出する。
[0230] 《その他の実施形態》
上記実施形態は、以下の変形例のように構成してもよ ヽ。
[0231] 第 1変形例
上記実施形態について、診断部 (54)が、各回路構成部品で生じる損失の値の分 布状況に基づいて診断対象部品の状態を診断するようにしてもよい。具体的に、診 断部 (54)は、全体の損失に対する各回路構成部品で生じる損失の割合に基づいて 、診断対象部品の状態を診断する。この場合、損失記憶部 (53)には、正常な運転状 態の平均的な損失分布を記憶させておく。例えば、診断部 (54)は、診断時における 圧縮機 (30)における機械摩擦による損失の割合が、正常な運転状態に比べて 10% 以上大きくなつていると、圧縮機 (30)が故障状態であると判定する。これにより、診断 時の全体の損失の合計値が正常な運転状態の合計値と大きく異なるために各主要 構成機器で生じる損失毎の比較が難 、場合であっても、診断対象部品の状態を診 断することも可能である。
[0232] 第 2変形例
上記実施形態について、診断部 (54)が、正常な運転状態力 の損失分布の変化 ノターンを総合的に解析することにより、診断対象部品の状態を診断するようにして ちょい。
[0233] 第 3変形例
上記実施形態について、診断部 (54)が、各回路構成部品で生じる損失の値の径 時変化に基づいて診断対象部品の状態を診断するようにしてもよい。診断部 (54)は 、例えば、空調負荷が増カロしている時の回路構成部品の損失の経時変化パターンと 、診断対象部品が劣化傾向にある時の回路構成部品の損失の経時変化パターンと を識別することによって、診断対象部品の状態を診断する。
[0234] 例えば、診断部 (54)は、図 23 (A)に示すように、逆カルノーサイクルの仕事量が比 較的大きく増加している場合には、空調負荷の増加によって冷媒の循環量が増加し たために損失の値が増カロしているので、回路構成部品の損失が増カロしても診断対象 部品が劣化傾向にあると判断しな 、。
[0235] 一方、診断部 (54)は、図 23 (B)に示すように、逆カルノーサイクルの仕事量がほと んど変化していない場合には、空調負荷が増加していない、つまり冷媒の循環量が 増加して!/、な 、のに損失が増加して 、るので、損失の値が増加した回路構成部品に 対応する部分が劣化傾向にあると判断する。この場合、診断部 (54)は、空調負荷の 変化に基づいて室内空間の窓が開放状態であることを検知して、窓を閉めるように表 示部(55)に表示することも可能である。
[0236] なお、冷凍装置(10)の起動時の回路構成部品の損失の経時変化パターンや、蒸 発器に付着した氷を融解させるデフロスト運転時の回路構成部品の損失の経時変化 ノターンなども、診断対象部品の状態の診断に用いることが可能である。
[0237] 第 4変形例
上記実施形態 1につ 、て、膨張弁 (36)の入口及び出口の冷媒の温度とエントロピ を直接検出するための温度センサ (45)と圧力センサ (46)を設けてもよ!、。具体的に 、室外熱交 (34)と膨張弁 (36)の間と、膨張弁 (36)と室外回路 (21)のガス側端と の間に温度センサ (45)及び圧力センサ (46)を設ける。これにより、室外熱交換器 (34 )と膨張弁 (36)とを接続する冷媒配管や、膨張弁 (36)と室内熱交 (37)とを接続 する冷媒配管の状態も、診断対象部品として診断することが可能になる。
[0238] また、上記実施形態 1につ!/、て、温度センサ (45)と圧力センサ (46)を 4糸且設けるよう にしてもよい。具体的に、上記実施形態 1とは異なり、室外熱交 (34)と四路切換 弁 (33)の間と、室内回路 (22)のガス側端と室内熱交換器 (37)の間とには、温度セン サ (45)及び圧力センサ (46)を設けな!/、。
[0239] また、上記実施形態 1、上記実施形態 2、上記実施形態 3につ 、て、圧力センサ (4 6)を高圧冷媒の圧力を計測するものと低圧冷媒の圧力を計測するものとの 2つだけ にしてもよい。例えば、吸入圧力センサ (46a)と吐出圧力センサ (46b)のみを冷媒回 路 (20)に設ける。この場合、吐出圧力センサ (46b)の測定値を用いて放熱器となる 熱交換器 (34,37)の入口と出口のエントロピを算出し、吸入圧力センサ (46a)の測定 値を用いて蒸発器となる熱交換器 (34,37)の入口と出口のエントロピを算出する。
[0240] また、上記実施形態 1、上記実施形態 2、上記実施形態 3につ 、て、吐出圧力セン サ (46b)を設けずに、放熱器となる熱交換器 (34,37)に温度センサを設け、その温度 センサの計測値を用いて冷凍サイクルの高圧圧力を算出してもよい。また、吸入圧力 センサ (46a)を設けずに、蒸発器となる熱交換器 (34,37)に温度センサを設け、その 温度センサの計測値を用いて冷凍サイクルの低圧圧力を算出してもよい。
[0241] 第 5変形例
上記実施形態について、損失記憶部 (53)が記憶する損失基準値を算出するため の損失記憶運転を行うようにしてもよい。損失記憶運転は、冷凍装置(10)が正常な 運転状態になる時 (例えば冷凍装置(10)の設置直後や製品出荷前)に行われる。損 失記憶運転では、損失算出部 (52)が算出する各回路構成部品で生じる損失の値を 損失記憶部 (53)に記憶させる。なお、損失記憶運転を製品出荷前に行うことで、損 失算出部 (52)が算出する損失の値に基づいて不良品の検出を行うことが可能にな る。
[0242] 第 6変形例
上記実施形態について、表示部 (55)が、回路構成部品毎の損失の値や、回路構 成部品毎の損失の値を図表化したものを表示してもよい。例えば、表示部(55)が、 図 24に示すように、全損失を 100%として回路構成部品(主要構成機器)毎の損失 の値 (瞬時値)の割合を表したパイチャートを表示してもよ 、。
[0243] また、表示部 (55)が、図 25に示すように、回路構成部品(主要構成機器)毎に正常 な運転の状態を 50%として損失の値 (瞬時値)の増減の割合を表したレーダーチヤ ートを表示してもよい。
[0244] また、表示部 (55)が、図 26に示すように、回路構成部品(主要構成機器)毎の損失 の値 (瞬時値)を電力に換算して表示してもよ 、し、さらに金額に換算して表示しても よい。
[0245] また、表示部 (55)が、図 27に示すように、各回路構成部品(主要構成機器)に対応 する点灯部を備えていてもよい。この場合、各回路構成部品の損失の値 (瞬時値)が 複数値に量子化され、点灯部の状態で各回路構成部品の状態が表される。例えば、 各回路構成部品の損失の値を 2値に量子化する場合は、正常時に消灯させて異常 時に点灯させるように点灯部を構成する。また、各回路構成部品の損失の値を 3値に 量子化する場合は、正常時に緑色に点灯させて警告時に黄色に点灯させて異常時 に赤色に点灯させるように、点灯部を構成する。なお、回路構成部品の損失が故障と 判断される状態に近い所定の状態になる場合に警告時と判断する。
[0246] また、表示部 (55)が、図 28に示すように、回路構成部品(主要構成機器)毎に損失 の値の経時変化をそれぞれ別の図表に示してもよい。また、表示部(55)が、図 29に 示すように、回路構成部品(主要構成機器)毎の損失の値の経時変化を同じ図表に 表示してもよい。この場合、外気温度、室内温度、冷房能力などを併せて表示しても よい。
[0247] 第 7変形例
上記実施形態 1から上記実施形態 3につ 、て、コントローラ (50)が診断部 (54)を有 してなくてもよい。また、上記実施形態 4及び実施形態 5について、分析装置 (60)が 診断部 (54)を有してなくてもよい。これらの場合、表示部 (55)には、変化量算出手段 (52)が算出する算出値に基づく回路構成部品の損失の状態が表示される。具体的 に、回路構成部品毎の損失の値や、回路構成部品毎の損失の値を図表化したもの が表示される。回路構成部品の損失の状態は、冷凍装置(10)の状態を診断するた め情報として表示される。回路構成部品の損失の状態は、その回路構成部品の状態 や、上記流体用部品(12,14,28,75,76b)の状態に対応しているので、例えば、冷凍装 置(10)に関して専門的な知識を有する者が、表示部 (55)に表示された回路構成部 品の損失の状態から、回路構成部品の状態や流体用部品(12,14,28,75,76b)の状態 を診断することが可能である。
[0248] 第 8変形例
上記実施形態では、熱力学的分析力も算出される回路構成部品の各々で生じる冷 媒のエネルギー変化の大きさを回路構成部品の各々で生じる損失の値として算出し ているが、この冷媒のエネルギー変化の大きさを、各回路構成部品に対応する動力 の使途、所要動力、動力配分として算出してもよい。この場合、損失算出部 (52)の代 わりに、変化量算出手段として、回路構成部品の各々における動力の使途、所要動 力、又は動力配分を算出する動力算出部 (52)を設ける。
[0249] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。
産業上の利用可能性
[0250] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。

Claims

請求の範囲
[1] 圧縮機 (30)、減圧手段 (36,39)、及び複数の熱交換器 (34,37)を含む回路構成部 品が接続されて構成された冷媒回路 (20)を備え、該冷媒回路 (20)で冷媒を循環さ せて冷凍サイクルを行う冷凍装置であって、
上記圧縮機 (30)、減圧手段 (36,39)、及び熱交換器 (34,37)のそれぞれの入口と 出口における冷媒の温度及びエントロピを検出する冷媒状態検出手段 (51)と、 上記冷媒状態検出手段 (51)が検出する冷媒の温度及びエントロピを用いて、上記 回路構成部品の各々で生じる冷媒のエネルギー変化の大きさを個別に算出する変 化量算出手段 (52)とを備えていることを特徴とする冷凍装置。
[2] 請求項 1において、
上記熱交換器 (34,37)において冷媒と熱交換する流体が流通する流体用部品(12, 14,28,75,76b)と、
上記回路構成部品及び上記流体用部品(12,14,28,75,76b)の少なくとも 1つを診断 対象部品として、上記変化量算出手段 (52)が算出する算出値に基づいて該診断対 象部品の状態を診断する診断手段 (54)とを備えていることを特徴とする冷凍装置。
[3] 請求項 2において、
上記熱交^^ (34,37)に空気を送るためのファン(12,14)力 上記流体用部品(12, 14,28,75,76b)を構成しており、
上記診断手段 (54)は、上記ファン(12,14)を上記診断対象部品として、上記変化量 算出手段 (52)が算出する算出値に基づいて該ファン(12,14)の状態を診断すること を特徴とする冷凍装置。
[4] 請求項 2又は 3において、
上記変化量算出手段 (52)は、上記回路構成部品の各々で生じる冷媒のエネルギ 一変化の大きさを該回路構成部品の各々で生じる損失の値として算出し、
上記診断手段 (54)は、上記変化量算出手段 (52)が上記損失の値として算出する 算出値に基づいて上記診断対象部品の状態を診断することを特徴とする冷凍装置。
[5] 請求項 4において、
上記変化量算出手段 (52)は、各熱交換器 (34,37)で生じる複数種類の損失の値を 個別に算出し、
上記診断手段 (54)は、上記各熱交換器 (34,37)で生じる損失については、上記変 化量算出手段 (52)が算出する複数種類の損失毎の算出値に基づいて上記診断対 象部品の状態を診断することを特徴とする冷凍装置。
[6] 請求項 4において、
上記冷媒回路 (20)は、冷媒を冷凍サイクルの高圧圧力にまで圧縮する圧縮機 (30 )が設けられた主回路 (66)と、該主回路 (66)に対して並列に接続する複数の分岐回 路 (67)とを備える一方、
上記各分岐回路 (67)の冷媒流量を算出する流量算出手段 (56)を備え、 上記変化量算出手段 (52)は、上記流量算出手段 (56)が算出する各分岐回路 (67 )の冷媒流量を用いて上記回路構成部品で生じる損失の値を算出することを特徴と する冷凍装置。
[7] 請求項 6において、
上記冷媒回路 (20)では、上記熱交換器 (34,37)が設けられた分岐回路 (67)が複 数存在しており、
上記変化量算出手段 (52)は、上記分岐回路 (67)の熱交換器 (34,37)で生じる損 失の値を、上記流量算出手段 (56)が算出する該分岐回路 (67)の冷媒流量を用いて 算出することを特徴とする冷凍装置。
[8] 請求項 4において、
正常な運転状態において上記各回路構成部品で生じる損失の大きさを損失基準 値として記憶する損失記憶手段 (53)を備え、
上記診断手段 (54)は、上記変化量算出手段 (52)が算出する算出値と上記損失記 憶手段 (53)が記憶する損失基準値とに基づいて上記診断対象部品の状態を診断 することを特徴とする冷凍装置。
[9] 請求項 8において、
上記診断手段 (54)は、上記各回路構成部品で生じる損失毎に上記変化量算出手 段 (52)が算出する算出値と上記損失記憶手段 (53)が記憶する損失基準値とを比較 することによって上記診断対象部品の状態を診断することを特徴とする冷凍装置。
[10] 請求項 8において、
上記損失記憶手段 (53)は、複数の運転条件について正常な運転状態の損失基準 値を記憶しており、
上記診断手段 (54)は、上記診断対象部品の状態の診断に上記損失記憶手段 (53 )が記憶する損失基準値のうち診断時の運転条件に対応する運転条件の損失基準 値を用いることを特徴とする冷凍装置。
[11] 請求項 2において、
上記診断手段 (54)は、上記変化量算出手段 (52)が算出する算出値の経時変化に 基づいて上記診断対象部品の状態を診断することを特徴とする冷凍装置。
[12] 請求項 2において、
上記診断手段 (54)による上記診断対象部品の状態に関する診断結果を表示する 表示手段 (55)を備えて!/ヽることを特徴とする冷凍装置。
[13] 請求項 1又は 2において、
上記冷媒回路 (20)では、上記圧縮機 (30)及び各熱交換器 (34,37)のそれぞれの 入口と出口の冷媒の温度と圧力を測定するために、該圧縮機 (30)及び各熱交 ( 34,37)のそれぞれの一端側と他端側とに温度センサ (45)と圧力センサ (46)が 1組ず つ設けられる一方、
上記冷媒状態検出手段 (51)は、上記減圧手段 (36,39)の入口における冷媒の温 度とエントロピを放熱器となる熱交^^ (34,37)の出口における値と同じ値とし、該減 圧手段 (36,39)の出口における冷媒の温度とエントロピを蒸発器となる熱交 (34, 37)の入口における値と同じ値とするように構成されていることを特徴とする冷凍装置
[14] 請求項 1において、
冷凍装置(10)を診断するための情報として、上記変化量算出手段 (52)が算出する 算出値に基づいて上記各回路構成部品で生じる冷媒のエネルギー変化の状態を表 示する表示手段 (55)を備えて!/ヽることを特徴とする冷凍装置。
[15] 圧縮機 (30)、減圧手段 (36,39)、及び複数の熱交換器 (34,37)を含む回路構成部 品が接続されて構成された冷媒回路 (20)を備え、該冷媒回路 (20)で冷媒を循環さ せて冷凍サイクルを行う冷凍装置(10)に接続されて、該冷凍装置(10)の状態を分析 する冷凍装置の分析装置であって、
上記圧縮機 (30)、減圧手段 (36,39)、及び熱交換器 (34,37)のそれぞれの入口と 出口における冷媒の温度及びエントロピを検出する冷媒状態検出手段 (51)と、 上記冷媒状態検出手段 (51)が検出する冷媒の温度及びエントロピを用いて、上記 回路構成部品の各々で生じる冷媒のエネルギー変化の大きさを個別に算出する変 化量算出手段 (52)と、
上記変化量算出手段 (52)が算出する算出値に基づく冷凍装置(10)の状態の分析 結果を表示する表示手段 (55)とを備えて!/ヽることを特徴とする冷凍装置の分析装置
[16] 請求項 15において、
上記冷凍装置(10)には、上記熱交換器 (34,37)において冷媒と熱交換する流体が 流通する流体用部品(12,14,28,75,76b)が設けられる一方、
上記回路構成部品及び上記流体用部品(12,14,28,75,76b)の少なくとも 1つを診断 対象部品として、上記変化量算出手段 (52)が算出する算出値に基づいて該診断対 象部品の状態を診断する診断手段 (54)を備え、
上記表示手段 (55)は、上記冷凍装置(10)の状態の分析結果として、上記診断手 段 (54)による診断対象部品の状態に関する診断結果を表示することを特徴とする冷 凍装置の分析装置。
[17] 請求項 15において、
上記表示手段 (55)は、上記冷凍装置(10)の状態の分析結果として、上記変化量 算出手段 (52)が算出する算出値に基づいて上記各回路構成部品で生じる冷媒のェ ネルギー変化の状態を表示することを特徴とする冷凍装置。
[18] 請求項 15乃至 17の何れか 1つにおいて、
上記圧縮機 (30)、減圧手段 (36,39)、及び熱交換器 (34,37)のそれぞれの入口と 出口における冷媒の温度及びエントロピを検出するために必要となる上記冷媒回路 (20)の冷媒の状態を検出する冷媒状態検出センサ (65)を少なくとも備えて冷凍装置 (10)に設けられる第 1構成部 (47)と、 上記表示手段 (55)を少なくとも備えて冷凍装置(10)から離れた位置に設置される 第 2構成部 (48)とによって構成され、
上記第 1構成部 (47)と第 2構成部 (48)とが互いに通信回線 (63)で接続されて!ヽる ことを特徴とする冷凍装置の分析装置。
[19] 請求項 15乃至 17の何れか 1つにおいて、
上記冷媒回路 (20)に取り付けられて、上記圧縮機 (30)、減圧手段 (36,39)、及び 熱交換器 (34,37)のそれぞれの入口と出口における冷媒の温度及びエントロピを検 出するために必要となる上記冷媒回路 (20)の冷媒の状態を検出する冷媒状態検出 センサ(65)を備え、
上記冷媒状態検出手段 (51)は、上記圧縮機 (30)、減圧手段 (36,39)、及び熱交換 器 (34,37)のそれぞれの入口と出口における冷媒の温度及びエントロピの算出に、上 記冷媒状態検出センサ (65)の計測値を用いることを特徴とする冷凍装置の分析装 置。
[20] 請求項 19において、
上記冷媒状態検出センサ (65)は、複数の温度センサ (65)によって構成され、その うち 1つが放熱器となる熱交 (34,37)に取り付けられ、別の 1つが蒸発器となる熱 交 (34,37)に取り付けられる一方、
上記冷媒状態検出手段 (51)は、放熱器となる熱交換器 (34,37)に取り付けられた 温度センサ (65)の計測値に基づいて冷凍サイクルの高圧圧力を算出し、蒸発器とな る熱交 (34,37)に取り付けられた温度センサ (65)の計測値に基づ 、て冷凍サイ クルの低圧圧力を算出することによって、上記圧縮機 (30)、減圧手段 (36,39)、及び 熱交換器 (34,37)のそれぞれの入口と出口における冷媒の温度及びエントロピを算 出することを特徴とする冷凍装置の分析装置。
PCT/JP2007/056032 2006-03-23 2007-03-23 冷凍装置、及び冷凍装置の分析装置 WO2007108537A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800089687A CN101400955B (zh) 2006-03-23 2007-03-23 制冷装置及制冷装置的分析装置
AU2007228009A AU2007228009B2 (en) 2006-03-23 2007-03-23 Refrigeration system and refrigeration system analyzer
EP07739473.2A EP2003410A4 (en) 2006-03-23 2007-03-23 Refrigeration system, and analyzer of refrigeration system
US12/225,485 US8132419B2 (en) 2006-03-23 2007-03-23 Refrigeration system and refrigeration system analyzer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-080687 2006-03-23
JP2006080687 2006-03-23
JP2007-040803 2007-02-21
JP2007040803 2007-02-21

Publications (1)

Publication Number Publication Date
WO2007108537A1 true WO2007108537A1 (ja) 2007-09-27

Family

ID=38522561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056032 WO2007108537A1 (ja) 2006-03-23 2007-03-23 冷凍装置、及び冷凍装置の分析装置

Country Status (7)

Country Link
US (1) US8132419B2 (ja)
EP (1) EP2003410A4 (ja)
JP (2) JP2008232604A (ja)
KR (1) KR20080097451A (ja)
CN (1) CN101400955B (ja)
AU (1) AU2007228009B2 (ja)
WO (1) WO2007108537A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038382A1 (ja) * 2008-09-30 2010-04-08 ダイキン工業株式会社 漏洩診断装置、漏洩診断方法、及び冷凍装置
JP2010085000A (ja) * 2008-09-30 2010-04-15 Daikin Ind Ltd 分析装置、及び冷凍装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007995A (ja) * 2008-06-27 2010-01-14 Daikin Ind Ltd 空気調和装置の冷媒量判定方法および空気調和装置
DE102010028315A1 (de) * 2010-04-28 2011-11-03 Siemens Aktiengesellschaft Verfahren zur thermodynamischen Online-Diagnose einer großtechnischen Anlage
EP2623887B1 (en) * 2010-09-30 2020-03-25 Mitsubishi Electric Corporation Air conditioning device
JP5058324B2 (ja) * 2010-10-14 2012-10-24 三菱電機株式会社 冷凍サイクル装置
WO2012085970A1 (ja) * 2010-12-22 2012-06-28 三菱電機株式会社 給湯空調複合装置
US9168315B1 (en) 2011-09-07 2015-10-27 Mainstream Engineering Corporation Cost-effective remote monitoring, diagnostic and system health prediction system and method for vapor compression and heat pump units based on compressor discharge line temperature sampling
CN103363749A (zh) * 2013-08-05 2013-10-23 上海理工大学 饱和等熵压缩排气温差控制制冷剂流量的方法
US20160245564A1 (en) * 2015-02-25 2016-08-25 Fbd Partnership, Lp Frozen beverage machine control system and method
US10712063B2 (en) 2016-10-17 2020-07-14 Fbd Partnership, Lp Frozen product dispensing systems and methods
US11412757B2 (en) 2017-06-30 2022-08-16 Fbd Partnership, Lp Multi-flavor frozen beverage dispenser
CN107328026B (zh) * 2017-07-31 2019-06-25 珠海格力电器股份有限公司 风机控制方法和装置、空调室外机
WO2019146035A1 (ja) * 2018-01-25 2019-08-01 三菱電機株式会社 状態解析システム及び状態解析装置
JP6911883B2 (ja) * 2019-03-29 2021-07-28 ダイキン工業株式会社 冷凍サイクル装置の性能劣化診断システム
US11280529B2 (en) * 2019-06-10 2022-03-22 Trane International Inc. Refrigerant volume control
WO2021245792A1 (ja) * 2020-06-02 2021-12-09 三菱電機株式会社 冷却装置
US11796201B2 (en) * 2021-04-20 2023-10-24 Lennox Industries Inc. HVAC sensor validation while HVAC system is off
JPWO2023281735A1 (ja) * 2021-07-09 2023-01-12
CN114623570B (zh) * 2022-02-11 2023-07-21 武汉中电节能有限公司 空调制冷主机瞬时制冷功率的计算方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862403A (ja) * 1981-10-07 1983-04-13 株式会社日立製作所 プラントの異常診断装置
JPH06331781A (ja) * 1993-05-26 1994-12-02 Toshiba Corp プラント状態表示装置
JPH0771803A (ja) * 1993-09-01 1995-03-17 Daikin Ind Ltd 空気調和装置の状態監視装置
JPH09152237A (ja) * 1995-11-30 1997-06-10 Sanyo Electric Co Ltd 空気調和機
JP2001021192A (ja) * 1999-07-12 2001-01-26 Mitsubishi Electric Building Techno Service Co Ltd 遠隔監視システム
JP2001133011A (ja) 1999-11-10 2001-05-18 Matsushita Refrig Co Ltd 空調機の診断装置
JP2001263756A (ja) * 2000-03-17 2001-09-26 Corona Corp 空気調和機
JP2005121248A (ja) * 2003-10-14 2005-05-12 Ckd Corp 冷却装置、故障診断システム及び故障診断方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510576A (en) * 1982-07-26 1985-04-09 Honeywell Inc. Specific coefficient of performance measuring device
US5073862A (en) * 1987-08-26 1991-12-17 Carlson Peter J Method and apparatus for diagnosing problems with the thermodynamic performance of a heat engine
JP3475915B2 (ja) 1993-09-01 2003-12-10 ダイキン工業株式会社 空気調和装置の状態監視装置
US5758506A (en) * 1996-07-03 1998-06-02 White Industries, Llc Method and apparatus for servicing automotive refrigeration systems
US6973794B2 (en) * 2000-03-14 2005-12-13 Hussmann Corporation Refrigeration system and method of operating the same
US7010925B2 (en) * 2004-06-07 2006-03-14 Carrier Corporation Method of controlling a carbon dioxide heat pump water heating system
US8109104B2 (en) * 2004-08-25 2012-02-07 York International Corporation System and method for detecting decreased performance in a refrigeration system
US7353660B2 (en) * 2004-09-13 2008-04-08 Carrier Corporation Multi-temperature cooling system with unloading

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862403A (ja) * 1981-10-07 1983-04-13 株式会社日立製作所 プラントの異常診断装置
JPH06331781A (ja) * 1993-05-26 1994-12-02 Toshiba Corp プラント状態表示装置
JPH0771803A (ja) * 1993-09-01 1995-03-17 Daikin Ind Ltd 空気調和装置の状態監視装置
JPH09152237A (ja) * 1995-11-30 1997-06-10 Sanyo Electric Co Ltd 空気調和機
JP2001021192A (ja) * 1999-07-12 2001-01-26 Mitsubishi Electric Building Techno Service Co Ltd 遠隔監視システム
JP2001133011A (ja) 1999-11-10 2001-05-18 Matsushita Refrig Co Ltd 空調機の診断装置
JP2001263756A (ja) * 2000-03-17 2001-09-26 Corona Corp 空気調和機
JP2005121248A (ja) * 2003-10-14 2005-05-12 Ckd Corp 冷却装置、故障診断システム及び故障診断方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2003410A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038382A1 (ja) * 2008-09-30 2010-04-08 ダイキン工業株式会社 漏洩診断装置、漏洩診断方法、及び冷凍装置
JP2010085000A (ja) * 2008-09-30 2010-04-15 Daikin Ind Ltd 分析装置、及び冷凍装置
JP2010107187A (ja) * 2008-09-30 2010-05-13 Daikin Ind Ltd 漏洩診断装置、漏洩診断方法、及び冷凍装置
EP2333461A1 (en) * 2008-09-30 2011-06-15 Daikin Industries, Ltd. Leakage diagnosing device, leakage diagnosing method, and refrigerating device
CN102149990A (zh) * 2008-09-30 2011-08-10 大金工业株式会社 泄漏诊断装置、泄漏诊断方法及制冷装置
JP2012047447A (ja) * 2008-09-30 2012-03-08 Daikin Industries Ltd 漏洩診断装置
AU2009299329B2 (en) * 2008-09-30 2013-03-21 Daikin Industries, Ltd. Leakage diagnosis apparatus, leakage diagnosis method, and refrigeration apparatus
US8555703B2 (en) 2008-09-30 2013-10-15 Daikin Industries, Ltd. Leakage diagnosis apparatus, leakage diagnosis method, and refrigeration apparatus
EP2333461A4 (en) * 2008-09-30 2015-04-15 Daikin Ind Ltd LEAKAGE DETECTION DEVICE, LEAKAGE AGGREGATE PROCESS AND COOLING DEVICE

Also Published As

Publication number Publication date
JP2008232604A (ja) 2008-10-02
US8132419B2 (en) 2012-03-13
CN101400955A (zh) 2009-04-01
AU2007228009A1 (en) 2007-09-27
KR20080097451A (ko) 2008-11-05
US20090151377A1 (en) 2009-06-18
EP2003410A2 (en) 2008-12-17
CN101400955B (zh) 2012-06-27
EP2003410A9 (en) 2009-04-22
AU2007228009B2 (en) 2010-09-30
EP2003410A4 (en) 2017-05-17
JP2010175247A (ja) 2010-08-12

Similar Documents

Publication Publication Date Title
WO2007108537A1 (ja) 冷凍装置、及び冷凍装置の分析装置
JP5040975B2 (ja) 漏洩診断装置
US20110209487A1 (en) Monitoring system for air conditioner
JP5381572B2 (ja) 冷凍装置の診断方法、冷凍装置の診断装置、及び冷凍装置
EP2204621A2 (en) Air conditioner and method for detecting malfunction thereof
JP5145674B2 (ja) 冷凍装置
WO2013099047A1 (ja) 空気調和装置
US8171747B2 (en) Refrigeration device
US10317113B2 (en) Air conditioner
JP4039462B1 (ja) 冷凍装置
JP5353166B2 (ja) 分析装置、及び冷凍装置
JP5487831B2 (ja) 漏洩診断方法、及び漏洩診断装置
GB2564367A (en) Air-conditioning device
JP4418936B2 (ja) 空気調和装置
KR101160351B1 (ko) 멀티 공기조화기 및 그 제어방법
KR100656162B1 (ko) 멀티 에어컨 시스템의 고장진단방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739473

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087021977

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780008968.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007228009

Country of ref document: AU

Ref document number: 12225485

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007739473

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007228009

Country of ref document: AU

Date of ref document: 20070323

Kind code of ref document: A