WO2007108471A1 - Modulation device, demodulation device, and modulating method - Google Patents
Modulation device, demodulation device, and modulating method Download PDFInfo
- Publication number
- WO2007108471A1 WO2007108471A1 PCT/JP2007/055682 JP2007055682W WO2007108471A1 WO 2007108471 A1 WO2007108471 A1 WO 2007108471A1 JP 2007055682 W JP2007055682 W JP 2007055682W WO 2007108471 A1 WO2007108471 A1 WO 2007108471A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bit
- modulation
- sub
- bits
- block
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/25—Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM]
- H03M13/255—Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM] with Low Density Parity Check [LDPC] codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0041—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0057—Block codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0071—Use of interleaving
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/3405—Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
- H04L27/3416—Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power in which the information is carried by both the individual signal points and the subset to which the individual points belong, e.g. using coset coding, lattice coding, or related schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/3488—Multiresolution systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L2001/0098—Unequal error protection
Definitions
- Modulation device demodulation device, and modulation method
- the present invention relates to a modulation device, a demodulation device, and a modulation method, and in particular, a modulation device that performs channel error correction, a low density parity check code (LDPC code), and an LDPC encoded signal.
- the present invention relates to a demodulation device that performs demodulation and a modulation method that performs LDPC coding.
- LDPC codes are a very powerful forward error correction coding method that was rediscovered in the last decade or so. LDPC codes are considered to be effective alternatives to turbo codes because they are already approaching the Shannon limit under the long code structure, and may be adopted in next-generation mobile communications and deep space communications. Is expensive.
- FIG. 1 is a diagram showing a simple example of a low density parity check code using a bipartite graph.
- the bipartite graph shows the following: That is, the N nodes below the bipartite graph represent N codewords and become message nodes, the M nodes above represent M check expressions, and check nodes Called. If the lower message node and the upper check node exist in the same check expression, they are connected using an edge. The number of lines connected to each node is called the degree of this node.
- the entire process of force decoding using the Sum-Product algorithm is as seen in the application of BP algorithm on the Tanner bipartite graph (eg, Non-Patent Document 1).
- each modulation symbol consists of a few bits.
- 8PSK, 16QAM, 64QAM, and 256QAM modulation symbols are composed of 3, 4, 6, and 8 bits, respectively.
- Golay mapping is usually used for mapping the bit string power to the modulation symbol.
- Figure 2 shows the constellation map of 16QAM Golay coding.
- a constellation point is represented by 4 bits (a a a a).
- X-axis component I-axis
- FIG. 3 is a diagram showing a constellation map of 64QAM Golay coding.
- Each constellation point is represented by 6 bits (a a a a a a a a). However, X-axis
- the minute (I axis) is a a a
- the Y axis component (Q axis) is a a a.
- a a is a strong bit
- a a is a weak bit
- a a is an intermediate.
- Non-Patent Documents 4 to 8 in non-regular LDPC codes, the higher the bit node frequency, the stronger the bit protection capability and the lower the bit error rate. It is regarded. Therefore, in the recent LDPC code modulation method (Non-Patent Document 4) based on Bit-Reliability Mapping, as shown in FIG. In addition, high frequency bits are mapped to strong bit positions in high-order modulation, and low V bits are mapped to weak bit positions in high-order modulation.
- BICM bit interleaved code modulation
- Non-patent Document 9 determines that the protection capability of a bit is determined by the degree of protection indicated by its separation distance, not by frequency.
- Non-Special Reference 1 Matthew C. Davey, PHD Thesis: Error-correction using Low-Density Parity-Check Code, Gonville and Caius College, Cambridge, 1999
- Non-Patent Document 2 Stephen G. Wilson, Digital Modulation and Coding, Prentice-Hall, 19 96
- Patent Document 3 Pavan K. Vitthaladevuni, and Mohamed— Slim Alouini, A Recursive Alg orithm for the Exact BER Computation of Generalized Hierarchical QAM Constellati ons, IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 1, JAN UARY 2003 297
- Non-Patent Document 4 Yan Li and William E. Ryan, "Bit-Reliability Mapping in LDPC- Coded Modulation Systems", IEEE Communications Letters, VOL. 9, NO. 1, JANUARY 2005
- Non-Patent Document 5 Stephan ten Brink, Gerhard Kramer, and Alexei Ashikhmin, "Design of Low— Density Parity-Check Codes for Modulation and Detection, IEEE Trans. Commun" VOL. 52, NO. 4, APRIL 2004
- Non-Patent Document 6 Xiumei Yang; Dongfeng Yuan; Piming Ma; Mingyan Jiang, "New resea rch on unequal error protection (UEP) property of irregular LDPC codes", Consumer Communications and Networking Conference, 2004. CCNC 2004. First IEEE 5 —8 J an. 2004 Page (s): 361-363
- Patent Literature 7 Poulliat, C; Declercq, D .; Fijalkow, I .; Optimization of LDPC codes for UEP channels ", International Symposium on Information Theory 2004. Proceeding ngs. 27 June- 2 July 2004 Page (s): 450
- Patent Document 8 Rahnavard, N .; Fe n, F .; "Unequal error protection using low—densit y parity-check codes", International Symposium on Information Theory 2004. Proce edings. 27 June— 2 July 2004 Page (s) : 449
- Non-Patent Document 9 Wang Xinmei, Xiao Guoqian "Error Correction Code Principle and Method", publisher of Xi'an Electronic Technology University, revised in April 2001
- the bit error rate of nodes with high frequency is low because the frequency distribution of bit nodes of the irregular LDPC codes selected in these documents is extremely wide. This is because very high frequency nodes have a relatively high average degree of protection over very low frequency nodes. Even if all the frequency distribution polynomials for bit nodes and check nodes are determined, the parity check matrix of the configured L DPC codes is diverse, so the bit error rate performance is also greatly different. On the other hand, for the L DPC code where the frequency distribution polynomials of the bit nodes and check nodes are all determined, the above method does not actually differ, so this method can be a general and accurate method. Absent.
- the error correction performance of an LDPC code is almost determined by an element diagram (factor graph) representing the details of its configuration, that is, a bipartite graph.
- factor graph representing the details of its configuration
- the above method cannot accurately reflect the topology structure of the bipartite graph of LDPC codes. Therefore, the method described above reflects the unequal error protection (UEP) characteristics of the LDPC code to some extent!
- UEP unequal error protection
- this method is not a reliable method. In other words, this method is uncertain in predicting the UEP performance of LDPC codes and cannot be used to analyze the UEP characteristics of regular LDPC codes. Therefore, this coded modulation method has a certain limit in terms of improving error correction performance.
- An object of the present invention is to provide a modulation device, a demodulation device, and a modulation method that reduce the bit error rate.
- the modulation apparatus is based on the order of LDPC encoding means for forming an encoded data block by performing LDPC encoding on the source data block, and the order of strength of bit protection capability.
- Bit reordering to reorder each sign key of the sign key data block Dividing means for dividing the rearranged encoded bit sequence into a plurality of sub-blocks equal to the number of constituent bits of a unit bit string represented by one modulation symbol, and the constituent bits Corresponds to the bit string obtained when rearranging bit groups extracted one bit at a time from each sub-block according to the allocation of the configuration bits to the sub-block according to the ease of error for each and the bit protection capability of the sub-block And a modulation means for forming a modulation signal in accordance with the modulation symbol on the constellation.
- the demodulator of the present invention is a demodulator that demodulates the modulated signal formed by the modulator, and converts the modulated signal into the bit string based on the constellation.
- Demodulating means for allocating each bit of the bit string for each sub-block, combining means for forming the rearranged code key sequence by synthesizing the sub-block, and the bit rearranging means
- the other bit rearrangement unit that performs the reverse operation on the encoded bit sequence formed by the synthesis unit, and the LDPC decoding process on the code data sequence obtained by the other bit rearrangement unit.
- an LDPC decoding means for performing a trap.
- the modulation method of the present invention performs the LDPC code process on the source data block to form an encoded data block, and the code data is based on the order of the strength of the bit protection capability. Rearranging the code bits of the block, dividing the code bit sequence after the rearrangement into a plurality of sub-blocks such as the number of constituent bits of a unit bit string represented by one modulation symbol, Obtained when the bit groups sequentially extracted from each subblock are rearranged in accordance with the allocation of the configuration bits to the subblock based on the ease of error for each configuration bit and the bit protection capability of the subblock. The step of forming the modulation signal according to the modulation symbol on the constellation corresponding to the bit string to be And.
- the present invention it is possible to provide a modulation device, a demodulation device, and a modulation method that reduce the bit error rate.
- FIG.4 Diagram for explaining LDPC high-order modulation method based on conventional bit interleaved code modulation (BICM)
- FIG. 5 A diagram for explaining an LDPC high-order modulation method based on conventional bit reliability mapping.
- FIG. 6 A hierarchical interleaved LDPC high based on non-uniform error characteristic matching according to an embodiment of the present invention. Diagram for explaining the next modulation method
- FIG. 7 A diagram for explaining the relationship between the separation distance of the LDPC code and the circumference of the shortest short cycle on the bipartite graph
- FIG. 9 A diagram for explaining the relationship between the separation distance of LDPC codes and the circumference of the shortest short cycle on the bipartite graph and the relationship between bit strength and separation distance.
- FIG. 10 is a diagram illustrating a main configuration of a modulation apparatus that performs a high-order modulation method of a common LDPC code according to an embodiment of the present invention.
- FIG. 11 is a diagram showing a main configuration of a demodulator that demodulates a received signal subjected to high-order modulation of a common LDPC code according to an embodiment of the present invention.
- FIG. 12 is a diagram showing a main configuration of a modulation apparatus that performs a high-order modulation method of an LDPC code for IZQ axisymmetric modulation according to an embodiment of the present invention.
- FIG. 13 is a diagram showing a main configuration of a demodulating apparatus that demodulates a received signal subjected to high-order modulation of an LDPC code of I / Q axisymmetric modulation according to an embodiment of the present invention.
- FIG. 14 is a diagram illustrating a main configuration of a modulation apparatus that performs high-order modulation of an LDPC code of 16QAM modulation according to an embodiment of the present invention.
- FIG. 15 is a diagram showing a main configuration of a demodulator that demodulates a received signal subjected to high-order modulation of a 16QAM-modulated LDPC code according to an embodiment of the present invention.
- LDPC codes have non-uniform error protection characteristics, but normal high-order modulation also has a distinction between strong and weak bits.
- LEP linear unequal error protection coding
- each bit i has a separation distance s. Can be used to represent the protection capability of the bit.
- the separation distance s can be expressed as follows.
- A is the parity check matrix and X is the codeword.
- X represents bit i
- w (X) represents the weight of codeword X.
- s sets bit X to 1 and bit X satisfies the minimum weight of all codewords in the parity check matrix.
- ti is expressed as follows.
- this embodiment presents a new LDPC higher-order modulation method using hierarchical interleaving based on non-uniform error characteristic matching.
- bits with a low protection grade in the LDPC code are mapped to bits with high protection capability in high-order modulation.
- the bits belonging to the codeword with the smallest LDPC weight must be mapped to the strongest bits in higher-order modulation.
- the weak bits of the LDPC code are mapped to the strong bits of the high-order modulation, and the strong bits of the LDPC code are mapped to the weak bits of the high-order modulation symbol.
- the separation distance of the LDPC code is equal to half the circumference of the shortest short cycle in which the bit exists. For example, in the short cycle of length 4 shown in Figure 7, both bits b and b are 1.
- the bit is half the circumference of the shortest short circle with the bit. Therefore, compared to the LDPC higher-order modulation method based on bit reliability mapping, the method of this embodiment can accurately reflect the characteristics of the bipartite graph structure of the LDPC code and can be applied to irregular LDPC codes. It can also be applied to regular LDPC codes. Different LDPC codes with all bit node and check node frequency distributions corresponding to bipartite graphs with different check matrices do not have the same protection class. Therefore, the method of this embodiment has a stronger adaptability to the LDPC code, and is more accurate in determining its UEP characteristics.
- FIG. 8 is a diagram of bit error rate performance of [2000, 1000] regular LDPC codes with different separation distances. It uses binary phase shift keying (BPSK) and additive white Gaussian noise (AWGN) channels.
- the LDPC code is a [2000, 1000] regular code with half the code rate, and all short cycles of length 4 have been deleted.
- the average bit error rate and the bit error rate when the separation distance is 3 and 4 are shown. From this figure, the separation distance has a significant effect on the bit error rate performance. It can be seen that the larger the separation, the lower the bit error rate.
- FIG. 9 is a diagram showing separation distances of a plurality of short cycles.
- there are two short cycles b c b c b and b c b c b c b.
- b is a short cycle with a circumference of 4.
- ⁇ is assumed to be an energy-to-noise ratio in the AWGN channel. That is, ⁇ is expressed as follows.
- the C codeword is a binary phase shift keying (BPSK) additive white Gaussian noise (AWGN) channel that uses soft decision. (Max-likelihood decoding based on soft decision), it is easy to use a standard analysis method of union bound (Union bound based on pair-wise error probability) based on the pairwise error rate.
- Block error rate P bit error
- the rate P can be obtained as follows.
- bit-level LLR log likelihood ratio
- the average signal-to-noise ratio of the output of the higher-order modulation is as follows.
- the method of the present embodiment has an asymptotic coding gain ACG (Asymptomatic Coding Ganv force S) than the conventional method.
- Figure 10 shows the main configuration of a modulation device that performs a high-order modulation method using a common LDPC code.
- the modulation device 100 includes an LDPC encoding unit 110, a bit rearrangement unit 120, a division unit 130, a serial Z parallel (SZP) conversion unit 140, an interleaver 150, and a modulation unit 160. And have.
- the modulation device 100 is used by being mounted on a wireless transmission device.
- LDPC encoding section 110 receives source data block S and performs LDPC encoding.
- the code key data block U after the L DPC code key is output to the bit rearrangement unit 120.
- the bit rearrangement unit 120 groups each bit after the code that forms the code data block U according to the protection capability of the bit after the code.
- the bit rearrangement unit 120 obtains the rearranged data block V by arranging the bits in the order of the group power in which the bit protection capability is low. That is, the bit rearrangement unit 120 sets each bit after the code that constitutes the encoded data block U according to the protection capability of the bit after the code. Rearranged.
- Dividing section 130 receives rearranged data block V and divides it into m sub-data blocks.
- m corresponds to a modulation order in a modulation unit 160 described later.
- Serial Z parallel (SZP) converter 140 converts rearranged data block V from divider 130 into m substreams in parallel. Each substream corresponds to each subdata block. As described above, the dividing unit 130 and the S / P conversion unit 140 form m substreams corresponding to the bit protection capability from the encoded data block.
- Interleavers 150-l to m interleave the corresponding sub data blocks. This interleaving is performed so that bits belonging to the same check expression are placed at different positions and an ideal time diversity effect is obtained.
- Modulating section 160 forms a modulated signal according to a bit group sequentially extracted bit by bit from each input substream.
- each constituent bit represented by one modulation symbol is assigned in advance as a used bit for each substream based on the ease of error for each constituent bit and the bit protection capability of the substream.
- a substream with low bit protection capability is assigned to constituent bits that are less prone to error than a substream with high bit protection capability.
- the modulation unit 160 converts the modulation signal according to the symbols on the constellation corresponding to the bit string obtained by rearranging the bit groups sequentially extracted bit by bit from each input substream according to the above assignment.
- the bit protection capability is determined based on the bit separation distance in this embodiment as described above. More specifically, the bit protection capability is determined based on half the circumference of the shortest short cycle on the bipartite graph.
- the high-order modulation is m-th order, that is, one on the constellation diagram by m bits (a---a).
- the source data block S is LDPC encoded by the LDPC encoding unit 110 to become an encoded data block U.
- the bit rearrangement unit 120 rearranges the bits in order from the smallest to the largest protection capability of each bit of the encoded data block. Is obtained.
- the protection capability described here corresponds to the protection class of each bit defined in the above-mentioned document (Non-Patent Document 9). However, a certain fixed order table is calculated in advance and rearrangement is performed once. Even if it corresponds to the interleave operation.
- V to V are arranged in descending order of protection capability.
- Each rearranged sub data block V (l ⁇ i ⁇ m) is serial / parallel converted and then interleaved to obtain an interleaved sub data block W. Interleaving here must ensure that the bits belonging to the same check expression are placed at a distance and that an ideal time diversity effect is obtained.
- each interleaved sub-data block W is input in parallel to a bits in high-order modulation, and constellation corresponding to m bits (a---a) in parallel is input.
- One modulation symbol on the diagram is selected, that is, the final modulation symbol block ⁇ is obtained.
- a modulation signal is formed according to the modulation symbol block ⁇ .
- FIG. 11 is a diagram illustrating a main configuration of a demodulation device that demodulates a reception signal subjected to high-order modulation of a common LDPC code.
- the demodulator 200 includes a demodulator 210, a Dinterleaver 220, a parallel Z-serial (PZS) converter 230, a combiner 240, a bit rearranger 250, and an LDPC decoding. Part 260.
- the demodulating device 200 is used by being mounted on a wireless receiving device.
- hat (T) a modulation symbol block of channel output
- Hat corresponds to the symbol (') in the figure.
- the demodulator 210 performs high-order demodulation of the modulation symbol block hat (T), and then outputs the demodulated output sub-blocks of hat (W) to hat (W) respectively from the bit position of a.
- Each demodulated output sub-block hat (W) (where l ⁇ i ⁇ m) is subjected to a corresponding Dinter Reno 220 trowel and corresponding Dinter Leave, resulting in a Dinter Leave sub-block hat (V). .
- All the Dinterleave sub-blocks are parallel / serial converted by the parallel Z-serial (PZS) converter 230 and synthesized by the synthesizer 240.
- Hat (V) ⁇ hat (V), hat (V), ..., hat (V) ⁇ is obtained.
- the bit rearrangement unit 250 the order is canceled for the combined block, that is, the reverse operation performed for the bit rearrangement unit 120 on the transmission side is performed to obtain the order cancellation block hat (U).
- the LDPC decoding unit 260 performs LDPC decoding on the order cancellation block hat (U) to obtain the decoding block block (S).
- IZQ axisymmetric modulation is usually used for higher-order modulation.
- the Golay mapping used for the I-axis and Q-axis is the same.
- (a a --- a) bits are used for the I axis and (a a --- a) bits are used for the Q axis in the m-th order high-order modulation.
- FIG. 12 is a diagram illustrating a main configuration of a modulation apparatus that performs a high-order modulation method using an LDPC code of IZQ axisymmetric modulation.
- the modulation device 100A includes an LDPC code key unit 110, a bit rearrangement unit 120, a division unit 130A, a serial Z parallel (SZP) conversion unit 140 A, an interleaver 150, a modulation unit. 160 and a serial Z parallel (SZP) converter 170.
- SZP serial Z parallel
- Dividing section 130A receives rearranged data block V and divides it into mZ2 sub-data blocks.
- m corresponds to a modulation order in a modulation unit 160 described later.
- the constellation for the IQ axis is considered here, unlike the first embodiment, it is divided into mZ 2 sub-data blocks! /.
- Serial Z parallel (SZP) conversion section 140A converts rearranged data block V into parallel mZ2 substreams. Each substream corresponds to each subdata block. In this way, mZ2 substreams corresponding to the bit protection capability are formed from the encoded data block by the dividing unit 130A and the SZP converting unit 140A.
- Serial Z-parallel (SZP) conversion section 170 divides each substream into two substreams.
- the number of substreams input to the modulation unit 160 is the same as in the first embodiment.
- the operation of modulation apparatus 100A having the above configuration will be described.
- the source data block S is LDPC code input by the LDPC code key unit 110 to become a code data block U.
- the bit rearrangement unit 120 the bits are rearranged in the order of the protection capability of each bit of the sign key data block from the smallest to the largest, and the rearranged data block V is obtained.
- a fixed order table may be calculated in advance, and the rearrangement may correspond to one interleave operation.
- V force and V are arranged in the order of low protective strength and high strength.
- each rearranged sub-data block (1 ⁇ 11172) is subjected to serial / parallel conversion and then interleaved to obtain an interleaved sub-data block Wi.
- bits belonging to the same check expression must be placed at separate positions.
- each interleaved sub-data block W is divided into two data streams of the same size by serial / parallel conversion (if the interleaved sub-data block W cannot be converted into a data stream of the same size, the actual contents are Add the appropriate sign bit (all 1's, all 0's, or other suitable bit sequence) so that it can be converted to a data stream of the same size), a bit and a Enter in the bit.
- one modulation symbol on the constellation diagram is selected, ie the final modulation symbol block, which is m / 2 + i 1 m corresponding to m bits (a --- a) in parallel T is obtained.
- FIG. 13 is a diagram showing a main configuration of a demodulator that demodulates a received signal subjected to high-order modulation of an LDPC code with IZQ axisymmetric modulation.
- the demodulator 200A includes a demodulation unit 210, a Dinterleaver 220, a parallel Z-serial (PZS) conversion unit 230, a synthesis unit 240, a bit rearrangement unit 250, and an LDPC decoding. Section 260 and a parallel Z-serial (P ZS) conversion section 270.
- P ZS parallel Z-serial
- demodulator 210 modulation symbol block hat (T) After high-order demodulation, the data stream output from the ⁇ -bit on the I axis and the data stream power output from the a bit on the symmetric Q-axis Normalar Z-serial (PZS) conversion m / 2 + i
- the order of block hat (V) is released! ⁇ , and the order release block hat (U) is obtained.
- the LDPC decoding unit 260 performs LDPC decoding on the order cancellation block hat (U) to obtain the decoding block block (S).
- FIG. 14 is a diagram illustrating a main configuration of a modulation apparatus that performs a high-order modulation method of a 16QAM modulation LDPC code.
- modulation apparatus 100B includes LDPC encoding section 110, bit rearrangement section 120, division section 130B, serial Z parallel (SZP) conversion section 140B, interleaver 150, and modulation section 160. And a serial Z parallel (SZP) converter 170.
- 16QAM uses the constellation map of 16QAM Golay coding shown in Fig.2.
- Dividing section 130B receives rearranged data block V and divides it into two sub data blocks.
- the number of sub data blocks 2 corresponds to the modulation order 1Z2 in the modulation unit 160 described later.
- Serial Z-parallel (SZP) conversion section 140B converts rearranged data block V into two parallel substreams. Each substream corresponds to each subdata block. In this way, the division unit 130B and the S / P conversion unit 140B form two substreams corresponding to the bit protection capability from the code key data block.
- the source data block S is LDPC code input by the LDPC code input unit 110 to become a code data block U. .
- the bits are rearranged in the order of the protection capability of each bit of the sign key data block from the smallest to the largest, and the rearranged data block V is obtained.
- a fixed order table may be calculated in advance, and the rearrangement may correspond to one interleave operation.
- V is a data block with low protection capability
- V is a data block with high protection capability
- Each reordering sub-data block is serial / parallel converted and then interleaved to obtain interleaved sub-data blocks W and W.
- one modulation symbol on the constellation diagram is selected, that is, the final modulation symbol block ⁇ is obtained.
- FIG. 15 is a diagram illustrating a main configuration of a demodulator that demodulates a received signal subjected to high-order modulation of an LDPC code of 16QAM modulation.
- the demodulator 200B includes a demodulator 210, a Dinterleaver 220, a parallel Z-serial (PZS) converter 230, a combiner 240, a bit rearranger 250, and an LDPC decoder. 260 and a parallel Z-serial (PZS) converter 270.
- PZS parallel Z-serial
- the data stream that has also been output in 1 to 3 is subjected to parallel / serial conversion by the normal Z serial (PZS) converter 270, and a demodulated output sub-block hat (W) is obtained.
- PZS normal Z serial
- W demodulated output sub-block hat
- the data stream is parallel / serial converted by a parallel Z-serial (PZS) converter 270 to obtain a demodulated output sub-block hat (W).
- PZS parallel Z-serial
- composite block h
- the order of at (V) is released, and the order release block hat (U) is obtained.
- the LDPC decoding unit 260 performs LDPC decoding on the order cancellation block hat (U) to obtain the decoding block block (S).
- FIG. 16 is a performance comparison diagram of 16QAM and 64QAM of [2000, 1000] regular LDPC codes.
- the LDPC code is a [2000, 1000] regular code with a code rate of 1/2, the information block length is 1000 bits, the encoded block length is 2000 bits, the check node frequency is 6, and the message node frequency is 3. 16QAM and 64QAM use Golay mapping as shown in Fig. 2 and Fig. 3, respectively. Since it is a regular LDPC code and the method based on bit reliability is not effective, the performance of the method of the present invention (the present invention) was compared with that of the conventional bit interleaved code modulation (BICM).
- BICM bit interleaved code modulation
- the method of the present invention has the ability to significantly improve the bit error rate in a region where the signal-to-noise ratio is high, compared to the conventional bit interleaved code modulation method. I understand.
- FIG. 17 is a performance comparison diagram of 16QAM and 64QAM of [3000, 1000] irregular LDPC codes.
- BPSK modulation and AWGN channel are used.
- 16QAM and 64QAM use Gory Mapping as shown in Fig. 2 and Fig. 3, respectively.
- bit reliability bit reliability
- BICM bit interleaved code modulation
- the method of the present invention has a remarkable bit error rate improvement performance in the region where the signal-to-noise ratio is high, compared with the conventional bit interleave code modulation method.
- the bit reliability (BR) method is somewhat effective in the low signal-to-noise ratio region, but has a high signal-to-noise ratio! [0065] That is, the method of the present invention can significantly improve the bit error rate performance in a region with a high signal-to-noise ratio for both regular LDPC codes and non-regular LDPC codes.
- a high-order coded modulation scheme using the low-density parity check code LDPC code including the following steps. That is, the method performs LDPC coding on a source data block to generate a coded data block, and based on the order of strength of protection capability, A step of rearranging each code bit, a step of rearranging each symbol bit in the modulation symbol based on the order of the strength of protection, and a block of the rearranged encoded bit sequence based on the number of symbol bits
- the coded bit sequence after division and rearrangement is divided into sub-blocks equal to the number of symbol bits, the steps of interleaving each code block in parallel, and a code with strong protection capability
- the interleaved coded sub-block consisting of the ⁇ bits is mapped to symbol bits with weak protection capability. Mapping interleaved coding sub-blocks, which are composed of weakly protected code bits, to symbol bits with strong protection capability, and one parallel symbol bit to form one modul
- the step of interleaving the code sub-blocks in parallel includes disposing bits belonging to the same check expression at positions separated from each other.
- the strength of the protection capability of each sign bit is determined by the separation distance. However, the greater the separation distance, the stronger the protection capability of the bit.
- the separation distance of each sign bit is equal to half the circumference of the shortest short site on the bipartite graph.
- the strength of protection of each symbol bit is determined by the sum of the symbol and ming distance of each symbol bit. However, the greater the sum of the Hamming distance, the weaker the protection capability of that bit.
- the encoded bit sequence after rearrangement cannot be equally divided into sub-blocks equal to the number of symbol bits, if necessary, the end of the rearranged encoded bit sequence An empty bit is added at the end so that it can be equally divided into sub-blocks, equal to the number of symbol bits.
- a high-order decoding demodulation method for receiving a modulation symbol block generated by the above-described high-order coding modulation method including the following steps. That is, the method receives a modulation symbol block, performs high-order demodulation on the received modulation symbol block to generate a demodulation sub-block, and a position of each symbol bit corresponds to one demodulation sub-block; Depending on the step of deinterleaving all demodulated sub-blocks in parallel and the correspondence between each symbol bit and each code bit, the sub-blocks after deinterleaving are combined to generate a code bit sequence.
- an orthogonal symmetric high-order code modulation method based on a low density parity check code and an L DPC code including the following steps is presented.
- the step of interleaving the code sub-blocks in parallel includes disposing bits belonging to the same check expression at positions separated from each other.
- the strength of the protection capability of each code bit is determined by the separation distance. However, the greater the separation distance, the stronger the protection capability of the bit.
- the separation distance of each code bit is equal to half the circumference of the shortest short site on the bipartite graph.
- the protection capability of each symbol bit is determined by the sum of the symbol and ming distance of each symbol bit.
- the end of the rearranged code bit sequence as necessary Add an empty bit to, so that it can be equally divided into half the number of symbol bits, equal to N.
- each interleaved code sub-block cannot be converted into two encoded data streams of the same size, an empty space is added at the end of each interleaved code sub-block as necessary. Are converted so that they can be converted into two identically sized data streams.
- a high-order decoding demodulation method for receiving a modulation symbol block generated by the orthogonal symmetric high-order code modulation method including the following steps. That is, the method receives a modulation symbol block, performs high-order demodulation of the received modulation symbol block, generates a demodulation sub-block, and each symbol bit position corresponds to one demodulation sub-block; Combining two demodulated sub-blocks corresponding to the positions of the i-th and N + i-th symbol bits with the same demodulated sub-block and all demodulated sub-blocks after the synthesis in parallel Din leave and the correspondence between each symbol bit and each sign bit Synthesizing the subleaved sub-blocks to generate a coded bit sequence; releasing the order of the coded bit sequence; performing L DPC decoding on the unsigned code bit sequence; Generating a decryption key data block.
- the modulation device, demodulation device, and modulation method of the present invention are useful for reducing the bit error rate.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Theoretical Computer Science (AREA)
- Error Detection And Correction (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
A modulation device, a demodulation device and a modulating method are provided with a feature to reduce a bit error rate. A modulation device (100) is comprised of an LDPC coding unit (110) for carrying out LDPC coding of a source data block to form a coded data block, a bit disposition changing unit (120) for changing a disposition of each coded bit of the coded data block in order of strength for a bit protection capability, a dividing unit (130) for dividing a coded bit sequence changed in disposition into sub-blocks that are equal to the number of bits composed of a unit bit string indicated by one modulating symbol, and a modulating unit (160) for forming a modulation signal in accordance with a modulation symbol on a constellation corresponding to bit sequences obtained when bit groups extracted from one bit per each sub-block in turn are changed in disposition in response to allocation to sub-blocks of composed bits based on an error tendency per composed bit and the bit protection capability. A demodulation device (200) carries out demodulation processes corresponding to those set forth above.
Description
明 細 書 Specification
変調装置、復調装置、および変調方法 Modulation device, demodulation device, and modulation method
技術分野 Technical field
[0001] 本発明は、変調装置、復調装置、および変調方法に関し、特に、チャネル誤り訂正 低密度パリティ検査符号 (LDPC符号: Low Density Parity Code)化を行う変調装置、 LDPC符号化された信号の復調を行う復調装置、および LDPC符号化を行う変調方 法に関する。 TECHNICAL FIELD [0001] The present invention relates to a modulation device, a demodulation device, and a modulation method, and in particular, a modulation device that performs channel error correction, a low density parity check code (LDPC code), and an LDPC encoded signal. The present invention relates to a demodulation device that performs demodulation and a modulation method that performs LDPC coding.
背景技術 Background art
[0002] LDPC符号はここ十年ほどに再発見された非常に有力なフォワード誤り訂正符号 化方法である。 LDPC符号は、ロングコード構造の条件下において、すでにシャノン 限界に迫っているため、ターボ符号に対する有効な代替技術とみなされており、次世 代移動体通信や深宇宙通信で採用される可能性が高い。 [0002] LDPC codes are a very powerful forward error correction coding method that was rediscovered in the last decade or so. LDPC codes are considered to be effective alternatives to turbo codes because they are already approaching the Shannon limit under the long code structure, and may be adopted in next-generation mobile communications and deep space communications. Is expensive.
[0003] 図 1は、低密度パリティ検査符号の簡単な例が 2部グラフを用いて示された図である 。 LDPC符号は一種の疎な検査行列による線形ブロック符号である。 1981年、タナ 一 (Tanne)が 2部グラフを用いて低密度の線形ブロック符号を表す方法を発表して以 来、 2部グラフは LDPC符号を分析するための主要なツールとなった。或る LDPC符 号について、情報ビット長を K、符号長を Ν、ノ リティビットを Μ = Ν—Κとすると、この 符号の検査行列 Αは、 M X Nを大きさとする行列である。 2部グラフは以下のことを表 している。すなわち、 2部グラフの下方の N個のノードは N個の符号語を表し、メッセ ージノード (message node)となり、上方の M個のノードは M個の検査式を表し、チエツ クノード (check node)と呼ばれる。下方のメッセージノードと上方のチェックノードが同 一の検査式に存在する場合は、エッジを用いて両者をつなぐ。各ノードとつながった 線の数を、このノードの度数(degree)と呼ぶ。 LDPC符号の復号化には、 Sum -Prod uctアルゴリズムを用いる力 復号化の全プロセスはタナーの 2部グラフ上の BPァルゴ リズムの応用(例えば、非特許文献 1)に見られるとおりである。 FIG. 1 is a diagram showing a simple example of a low density parity check code using a bipartite graph. An LDPC code is a linear block code with a kind of sparse check matrix. Since 1981, when Tanne introduced a method for representing low-density linear block codes using bipartite graphs, bipartite graphs have become the primary tool for analyzing LDPC codes. For an LDPC code, if the information bit length is K, the code length is Ν, and the NORMAL bit is Μ = Ν—Κ, the check matrix の of this code is a matrix whose size is M X N. The bipartite graph shows the following: That is, the N nodes below the bipartite graph represent N codewords and become message nodes, the M nodes above represent M check expressions, and check nodes Called. If the lower message node and the upper check node exist in the same check expression, they are connected using an edge. The number of lines connected to each node is called the degree of this node. For decoding of LDPC codes, the entire process of force decoding using the Sum-Product algorithm is as seen in the application of BP algorithm on the Tanner bipartite graph (eg, Non-Patent Document 1).
[0004] 一方で、周波数スペクトル利用効率をより高めるため、 8PSK、 16QAM、 64QAM 、 256QAMのような高次変調技術も導入されている(例えば、非特許文献 2)。高次
変調のコンスタレーシヨン図では、各変調シンボルは若干数のビットで構成される。例 えば 8PSK、 16QAM、 64QAM、 256QAMの変調シンボルは、それぞれ 3、 4、 6、 8個のビットで構成されている。ビット誤り率を下げるため、通常ビット列力も変調シン ボルへのマッピングには Golayマッピングが用いられる。 [0004] On the other hand, higher-order modulation techniques such as 8PSK, 16QAM, 64QAM, and 256QAM have been introduced in order to further improve the frequency spectrum utilization efficiency (for example, Non-Patent Document 2). Higher order In the modulation constellation diagram, each modulation symbol consists of a few bits. For example, 8PSK, 16QAM, 64QAM, and 256QAM modulation symbols are composed of 3, 4, 6, and 8 bits, respectively. In order to reduce the bit error rate, Golay mapping is usually used for mapping the bit string power to the modulation symbol.
[0005] 図 2は 16QAMのゴレイ(Golay)符号化のコンスタレーシヨンマップを示す力 一つ のコンスタレーシヨン点は 4個のビット(a a a a )で表示される。ただし、 X軸成分 (I軸 [0005] Figure 2 shows the constellation map of 16QAM Golay coding. A constellation point is represented by 4 bits (a a a a). However, X-axis component (I-axis
1 2 3 4 1 2 3 4
)は a aで、 Y軸成分(Q軸)は a aで表示され、コンスタレーシヨン図のエネルギー正 ) Is a a, Y-axis component (Q-axis) is a a, and the constellation diagram energy positive
1 2 3 4 1 2 3 4
規ィ匕要素は c= 1Z 10である。 The rule element is c = 1Z10.
[0006] 図 3は 64QAMゴレイ (Golay)符号化のコンスタレーシヨンマップを示す図である。 FIG. 3 is a diagram showing a constellation map of 64QAM Golay coding.
各コンスタレーシヨン点は 6個のビット(a a a a a a )で表されている。ただし、 X軸成 Each constellation point is represented by 6 bits (a a a a a a). However, X-axis
1 2 3 4 5 6 1 2 3 4 5 6
分(I軸)は a a aで、 Y軸成分(Q軸)は a a aで表され、コンスタレーシヨン図のエネ The minute (I axis) is a a a, and the Y axis component (Q axis) is a a a.
1 2 3 4 5 6 1 2 3 4 5 6
ルギ一正規ィ匕要素は、 c = lZ 42である。 The Lugi regular element is c = lZ42.
[0007] Golayマッピングでは、ビット列中の各ビットの保護能力は不均等であり、強い保護 能力を持つビットもあれば、保護能力の弱いビットもある。従来技術によれば、各ビッ トの保護能力は各ビットのハミング距離の和によって決定され、ハミング距離の和が 大き 、ほど、そのビットの保護能力が弱 、ことがわ力 て 、る(具体的な導出過程は 文末に記載した非特許文献 2及び 3参照)。当然のことながら、当業者の知り得る他 の方法によってビットの保護能力の強弱を判定してもよい。例えば、図 2に示す 16Q AMゴレイ(Golay)符号化のコンスタレーシヨンマップでは、 a aは強ビットで、 a aは [0007] In Golay mapping, the protection capability of each bit in a bit string is uneven, and there are bits with strong protection capability and some bits with weak protection capability. According to the prior art, the protection capability of each bit is determined by the sum of the hamming distances of each bit, and the greater the sum of the hamming distances, the weaker the protection capability of the bits. (See Non-Patent Documents 2 and 3 described at the end of the text for typical derivation process). As a matter of course, the strength of the bit protection capability may be determined by other methods known to those skilled in the art. For example, in the 16Q AM Golay coding constellation map shown in Figure 2, a a is a strong bit and a a is
1 3 2 4 弱ビットである。図 3に示す 64QAMのゴレイ(Golay)符号化のコンスタレーシヨンマ ップでは、 a aが強ビットで、 a aが弱ビットで、 a aが中間である。 1 3 2 4 Weak bits. In the constellation map of 64QAM Golay coding shown in Fig. 3, a a is a strong bit, a a is a weak bit, and a a is an intermediate.
1 4 3 6 2 5 1 4 3 6 2 5
[0008] また、従来のビットインターリーブ符号ィ匕変調 (BICM)の LDPC高次変調方法にお いては、図 4に示すように、 LDPCチャネル符号化器と高次変調器を乱数ィ匕したチヤ ネルインターリーバに直列接続したのみで、両者を効果的に協働させていない。現 在流行している観点(非特許文献 4〜8参照)によれば、非正則 LDPC符号では、ビ ットノードの度数が高いほど、そのビットの保護能力はより強ぐビット誤り率はより低く なるとみなされている。したがって、最近のビット信頼性マッピング(Bit— Reliability Mapping)による LDPC符号化変調方法 (非特許文献 4)においては、図 5に示すよう
に、度数の高いビットを、高次変調における強ビットの位置にマッピングし、度数の低 V、ビットを、高次変調における弱ビットの位置にマッピングして 、る。 [0008] Further, in the conventional LDPC high-order modulation method of bit interleaved code modulation (BICM), as shown in Fig. 4, an LDPC channel encoder and a high-order modulator are randomly combined. They are simply connected in series to a Nell interleaver, and they do not cooperate effectively. According to the current trend (see Non-Patent Documents 4 to 8), in non-regular LDPC codes, the higher the bit node frequency, the stronger the bit protection capability and the lower the bit error rate. It is regarded. Therefore, in the recent LDPC code modulation method (Non-Patent Document 4) based on Bit-Reliability Mapping, as shown in FIG. In addition, high frequency bits are mapped to strong bit positions in high-order modulation, and low V bits are mapped to weak bit positions in high-order modulation.
しかし、スタンダードな理論 (非特許文献 9)により、ビットの保護能力を決定するの はその分離距離が示す保護等級であり、度数ではないことがわ力つている。 However, the standard theory (Non-patent Document 9) determines that the protection capability of a bit is determined by the degree of protection indicated by its separation distance, not by frequency.
非特干文献 1: Matthew C. Davey , PHD Thesis: Error-correction using Low-Density Parity-Check Code, Gonville and Caius College, Cambridge, 1999 Non-Special Reference 1: Matthew C. Davey, PHD Thesis: Error-correction using Low-Density Parity-Check Code, Gonville and Caius College, Cambridge, 1999
非特許文献 2 : Stephen G. Wilson, Digital Modulation and Coding, Prentice-Hall, 19 96 Non-Patent Document 2: Stephen G. Wilson, Digital Modulation and Coding, Prentice-Hall, 19 96
特許文献 3: Pavan K. Vitthaladevuni, and Mohamed— Slim Alouini, A Recursive Alg orithm for the Exact BER Computation of Generalized Hierarchical QAM Constellati ons, IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 1, JAN UARY 2003 297 Patent Document 3: Pavan K. Vitthaladevuni, and Mohamed— Slim Alouini, A Recursive Alg orithm for the Exact BER Computation of Generalized Hierarchical QAM Constellati ons, IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 1, JAN UARY 2003 297
非特許文献 4 :Yan Li and William E. Ryan, "Bit-Reliability Mapping in LDPC- Code d Modulation Systems", IEEE Communications Letters, VOL. 9, NO. 1, JANUARY 2005 Non-Patent Document 4: Yan Li and William E. Ryan, "Bit-Reliability Mapping in LDPC- Coded Modulation Systems", IEEE Communications Letters, VOL. 9, NO. 1, JANUARY 2005
非特許文献 5: Stephan ten Brink, Gerhard Kramer, and Alexei Ashikhmin, "Design o f Low— Density Parity-Check Codes for Modulation and Detection , IEEE Trans. C ommun" VOL. 52, NO. 4, APRIL 2004 Non-Patent Document 5: Stephan ten Brink, Gerhard Kramer, and Alexei Ashikhmin, "Design of Low— Density Parity-Check Codes for Modulation and Detection, IEEE Trans. Commun" VOL. 52, NO. 4, APRIL 2004
非特許文献 6: Xiumei Yang; Dongfeng Yuan; Piming Ma; Mingyan Jiang, "New resea rch on unequal error protection (UEP) property of irregular LDPC codes", Consume r Communications and Networking Conference, 2004. CCNC 2004. First IEEE 5—8 J an. 2004 Page(s):361 - 363 Non-Patent Document 6: Xiumei Yang; Dongfeng Yuan; Piming Ma; Mingyan Jiang, "New resea rch on unequal error protection (UEP) property of irregular LDPC codes", Consumer Communications and Networking Conference, 2004. CCNC 2004. First IEEE 5 —8 J an. 2004 Page (s): 361-363
^^特許文献 7 : Poulliat, C; Declercq, D.; Fijalkow, I.; Optimization of LDPC codes for UEP channels", International Symposium on Information Theory 2004. Proceedi ngs. 27 June- 2 July 2004 Page(s):450 ^^ Patent Literature 7: Poulliat, C; Declercq, D .; Fijalkow, I .; Optimization of LDPC codes for UEP channels ", International Symposium on Information Theory 2004. Proceeding ngs. 27 June- 2 July 2004 Page (s): 450
特許文献 8 : Rahnavard, N.; Fe n, F.; "Unequal error protection using low— densit y parity-check codes", International Symposium on Information Theory 2004. Proce edings. 27 June— 2 July 2004 Page(s):449
非特許文献 9 :王新梅、肖国鎮 「誤り訂正符号 原理と方法」西安電子科技大学出 版者、 2001年 4月改訂版 Patent Document 8: Rahnavard, N .; Fe n, F .; "Unequal error protection using low—densit y parity-check codes", International Symposium on Information Theory 2004. Proce edings. 27 June— 2 July 2004 Page (s) : 449 Non-Patent Document 9: Wang Xinmei, Xiao Guoqian "Error Correction Code Principle and Method", publisher of Xi'an Electronic Technology University, revised in April 2001
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0010] 一部の文献において、度数の高いノードのビット誤り率が低いのは、これらの文献 で選択されている非正則 LDPC符号のビットノードの度数分布が、極端に差の開い たものになっており、これにより極めて度数の高いノードが極めて度数の低いノードに 対し比較的高い平均保護等級を有する結果となっているためである。また、例えビッ トノードとチェックノードの度数分布多項式がすべて決められていても、構成された L DPC符号の検査行列は多種多様であるため、そのビット誤り率性能も大きな差異が ある。また一方、ビットノードとチェックノードの度数分布多項式が全て決まっている L DPC符号に対して、上述の方法は実際には差がないため、この方法は一般的で正 確な方法とはなりえない。し力も、周知のように、 LDPC符号の誤り訂正性能は、その 構成の細部を表す要素図(factor graph),即ち 2部グラフ(bipartite graph)によってほ とんど決まる。特に、信号対雑音比の高い領域においては、 2部グラフ上のショートサ イタル (short cycle)によって決まる。上述の方法は明らかに、 LDPC符号の 2部グラフ のトポロジ構造を正確に反映することはできない。したがって、上述の方法はある程 度 LDPC符号の不均一誤り保護 (UEP)特性を反映しては!、るが、この方法は精度 の確かな方法ではない。すなわち、この方法は、 LDPC符号の UEP性能の予測に は不確定さがあり、特に正則 LDPC符号の UEP特性の分析には用いることができな い。したがって、この符号化変調方法は、誤り訂正性能の改善の面で一定の限界性 がある。 [0010] In some documents, the bit error rate of nodes with high frequency is low because the frequency distribution of bit nodes of the irregular LDPC codes selected in these documents is extremely wide. This is because very high frequency nodes have a relatively high average degree of protection over very low frequency nodes. Even if all the frequency distribution polynomials for bit nodes and check nodes are determined, the parity check matrix of the configured L DPC codes is diverse, so the bit error rate performance is also greatly different. On the other hand, for the L DPC code where the frequency distribution polynomials of the bit nodes and check nodes are all determined, the above method does not actually differ, so this method can be a general and accurate method. Absent. As is well known, the error correction performance of an LDPC code is almost determined by an element diagram (factor graph) representing the details of its configuration, that is, a bipartite graph. In particular, in the high signal-to-noise ratio region, it is determined by the short cycle on the bipartite graph. Obviously, the above method cannot accurately reflect the topology structure of the bipartite graph of LDPC codes. Therefore, the method described above reflects the unequal error protection (UEP) characteristics of the LDPC code to some extent! However, this method is not a reliable method. In other words, this method is uncertain in predicting the UEP performance of LDPC codes and cannot be used to analyze the UEP characteristics of regular LDPC codes. Therefore, this coded modulation method has a certain limit in terms of improving error correction performance.
[0011] 本発明の目的は、ビット誤り率を低下させる変調装置、復調装置、および変調方法 を提供することである。 An object of the present invention is to provide a modulation device, a demodulation device, and a modulation method that reduce the bit error rate.
課題を解決するための手段 Means for solving the problem
[0012] 本発明の変調装置は、ソースデータブロックに対して LDPC符号ィ匕を行うことにより 、符号化データブロックを形成する LDPC符号化手段と、ビット保護能力の強弱の順 序に基づき、前記符号ィ匕データブロックの各符号ィ匕ビットを並び替えるビット並び替
え手段と、前記並び替え後の符号化ビット系列を、 1つの変調シンボルが表す単位ビ ット列の構成ビット数に等し 、数の複数のサブブロックに分割する分割手段と、前記 構成ビットごとの誤り易さおよび前記サブブロックのビット保護能力に基づく前記構成 ビットの前記サブブロックに対する割り当てに従って、各サブブロックから 1ビットずつ 順次抽出されたビット群を並べ替えたときに得られるビット列に対応する、コンスタレ ーシヨン上の変調シンボルに従って、変調信号を形成する変調手段と、を具備する 構成を採る。 [0012] The modulation apparatus according to the present invention is based on the order of LDPC encoding means for forming an encoded data block by performing LDPC encoding on the source data block, and the order of strength of bit protection capability. Bit reordering to reorder each sign key of the sign key data block Dividing means for dividing the rearranged encoded bit sequence into a plurality of sub-blocks equal to the number of constituent bits of a unit bit string represented by one modulation symbol, and the constituent bits Corresponds to the bit string obtained when rearranging bit groups extracted one bit at a time from each sub-block according to the allocation of the configuration bits to the sub-block according to the ease of error for each and the bit protection capability of the sub-block And a modulation means for forming a modulation signal in accordance with the modulation symbol on the constellation.
[0013] 本発明の復調装置は、上記変調装置にて形成された変調信号を復調する復調装 置であって、前記変調信号を前記コンスタレーシヨンに基づ 、て前記ビット列に変換 すると共に、当該ビット列の各ビットを前記サブブロックごとに振り分ける復調手段と、 前記サブブロックを合成することにより前記並び替え後の符号ィ匕ビット系列を形成す る合成手段と、前記ビット並び替え手段にて行われた逆の操作を前記合成手段にて 形成された前記符号化ビット系列に施す他のビット並び替え手段と、前記他のビット 並び替え手段にて得られた符号ィ匕データ系列に LDPC復号ィ匕を行う LDPC復号ィ匕 手段と、を具備する構成を採る。 [0013] The demodulator of the present invention is a demodulator that demodulates the modulated signal formed by the modulator, and converts the modulated signal into the bit string based on the constellation. Demodulating means for allocating each bit of the bit string for each sub-block, combining means for forming the rearranged code key sequence by synthesizing the sub-block, and the bit rearranging means The other bit rearrangement unit that performs the reverse operation on the encoded bit sequence formed by the synthesis unit, and the LDPC decoding process on the code data sequence obtained by the other bit rearrangement unit. And an LDPC decoding means for performing a trap.
[0014] 本発明の変調方法は、ソースデータブロックに対して LDPC符号ィ匕を行うことにより 、符号化データブロックを形成するステップと、ビット保護能力の強弱の順序に基づき 、前記符号ィヒデータブロックの各符号ィヒビットを並び替えるステップと、前記並び替 え後の符号ィ匕ビット系列を、 1つの変調シンボルが表す単位ビット列の構成ビット数 に等 、数の複数のサブブロックに分割するステップと、前記構成ビットごとの誤り易 さおよび前記サブブロックのビット保護能力に基づく前記構成ビットの前記サブブロッ クに対する割り当てに従って、各サブブロックから 1ビットずつ順次抽出されたビット群 を並べ替えたときに得られるビット列に対応する、コンスタレーシヨン上の変調シンポ ルに従って、変調信号を形成するステップと、を具備する。 [0014] The modulation method of the present invention performs the LDPC code process on the source data block to form an encoded data block, and the code data is based on the order of the strength of the bit protection capability. Rearranging the code bits of the block, dividing the code bit sequence after the rearrangement into a plurality of sub-blocks such as the number of constituent bits of a unit bit string represented by one modulation symbol, Obtained when the bit groups sequentially extracted from each subblock are rearranged in accordance with the allocation of the configuration bits to the subblock based on the ease of error for each configuration bit and the bit protection capability of the subblock. The step of forming the modulation signal according to the modulation symbol on the constellation corresponding to the bit string to be And.
発明の効果 The invention's effect
[0015] 本発明によれば、ビット誤り率を低下させる変調装置、復調装置、および変調方法 を提供することができる。 According to the present invention, it is possible to provide a modulation device, a demodulation device, and a modulation method that reduce the bit error rate.
図面の簡単な説明
[図 1]低密度パリティ検査符号の簡単な例を、 2部グラフを用いて示す図 Brief Description of Drawings [Figure 1] A simple example of a low-density parity check code using a bipartite graph
[図 2]16QAMゴレイ(Golay)符号化のコンスタレーシヨンマップを示す図 [Figure 2] Diagram showing the constellation map for 16QAM Golay coding
[図 3]64QAMゴレイ符号化のコンスタレーシヨンマップを示す図 [Figure 3] Diagram showing constellation map of 64QAM Golay coding
[図 4]従来のビットインターリーブ符号ィ匕変調 (BICM)に基づく LDPC高次変調方法 の説明に供する図 [Fig.4] Diagram for explaining LDPC high-order modulation method based on conventional bit interleaved code modulation (BICM)
[図 5]従来のビット信頼性マッピングに基づく LDPC高次変調方法の説明に供する図 [図 6]本発明の実施の形態に係る、不均一誤り特性マッチングに基づく階層的インタ 一リーブの LDPC高次変調方法の説明に供する図 [FIG. 5] A diagram for explaining an LDPC high-order modulation method based on conventional bit reliability mapping. [FIG. 6] A hierarchical interleaved LDPC high based on non-uniform error characteristic matching according to an embodiment of the present invention. Diagram for explaining the next modulation method
[図 7]LDPC符号の分離距離と 2部グラフ上の最短ショートサイクルの周の長さの関係 を説明に供する図 [Fig. 7] A diagram for explaining the relationship between the separation distance of the LDPC code and the circumference of the shortest short cycle on the bipartite graph
[図 8][2000, 1000]正則 LDPC符号の異なる分離距離によるビット誤り率性能を示す 図 [Fig.8] [2000, 1000] Regular Diagram showing bit error rate performance for different separation distances of LDPC codes
[図 9]LDPC符号の、分離距離と 2部グラフ上の最短ショートサイクルの周の長さとの 関係及びビットの強弱と分離距離との関係の説明に供する図 [Fig. 9] A diagram for explaining the relationship between the separation distance of LDPC codes and the circumference of the shortest short cycle on the bipartite graph and the relationship between bit strength and separation distance.
[図 10]本発明の実施の形態に係る、共通的な LDPC符号の高次変調方法を行う変 調装置の主要構成を示す図 FIG. 10 is a diagram illustrating a main configuration of a modulation apparatus that performs a high-order modulation method of a common LDPC code according to an embodiment of the present invention.
[図 11]本発明の実施の形態に係る、共通的な LDPC符号の高次変調がなされた受 信信号の復調を行う復調装置の主要構成を示す図 FIG. 11 is a diagram showing a main configuration of a demodulator that demodulates a received signal subjected to high-order modulation of a common LDPC code according to an embodiment of the present invention.
[図 12]本発明の実施の形態に係る、 IZQ軸対称変調の LDPC符号の高次変調方 法を行う変調装置の主要構成を示す図 FIG. 12 is a diagram showing a main configuration of a modulation apparatus that performs a high-order modulation method of an LDPC code for IZQ axisymmetric modulation according to an embodiment of the present invention.
[図 13]本発明の実施の形態に係る、 I/Q軸対称変調の LDPC符号の高次変調がな された受信信号の復調を行う復調装置の主要構成を示す図 FIG. 13 is a diagram showing a main configuration of a demodulating apparatus that demodulates a received signal subjected to high-order modulation of an LDPC code of I / Q axisymmetric modulation according to an embodiment of the present invention.
[図 14]本発明の実施の形態に係る、 16QAM変調の LDPC符号の高次変調を行う 変調装置の主要構成を示す図 FIG. 14 is a diagram illustrating a main configuration of a modulation apparatus that performs high-order modulation of an LDPC code of 16QAM modulation according to an embodiment of the present invention.
[図 15]本発明の実施の形態に係る、 16QAM変調の LDPC符号の高次変調がなさ れた受信信号の復調を行う復調装置の主要構成を示す図 FIG. 15 is a diagram showing a main configuration of a demodulator that demodulates a received signal subjected to high-order modulation of a 16QAM-modulated LDPC code according to an embodiment of the present invention.
[図 16][2000,1000]正則 LDPC符号の 16QAMと 64QAMの性能比較図 [Fig.16] [2000,1000] regular LDPC code 16QAM and 64QAM performance comparison diagram
[図 17][3000, 1000]非正則 LDPC符号の 16QAMと 64QAMの性能比較図
発明を実施するための最良の形態 [Fig.17] [3000, 1000] irregular LDPC code 16QAM and 64QAM performance comparison diagram BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明の一実施の形態について図面を参照して詳細に説明する。ここに述 ベる実施例は説明の目的のためのものに過ぎず、本発明の範囲を制限するものでは ないことを指摘しておく。ここに述べる各種の数値は本発明を限定するためのもので はなぐこれらの数値は当業者の必要に応じ適宜変更が可能である。本明細書にお いては、 IZQ軸対称変調と 16QAM変調を例にとり本発明を記述した。し力し 64Q AMなどその他の M-QAM (M = 2m)変調方式を採用した通信システムに応用でき ることも自明である。なお、実施の形態において、同一の構成要素には同一の符号を 付し、その説明は重複するので省略する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. It should be pointed out that the embodiments described herein are for illustrative purposes only and do not limit the scope of the invention. The various numerical values described here are not intended to limit the present invention, and these numerical values can be appropriately changed as necessary by those skilled in the art. In the present specification, the present invention has been described by taking IZQ axisymmetric modulation and 16QAM modulation as examples. However, it is obvious that it can be applied to communication systems that employ other M-QAM (M = 2m) modulation methods such as 64Q AM. In the embodiments, the same components are denoted by the same reference numerals, and the description thereof will be omitted because it is redundant.
[0018] LDPC符号は不均一誤り保護の特性をもつが、通常の高次変調にもビットに強弱 の区別がある。線形不均一誤り保護符号化(LUEP : Linear Unequal Error Protectio n)のスタンダードな理論 (上記非特許文献 9参照)によれば、一般的な線形ブロック 符号については、各ビット iは、分離距離 sを用いて、そのビットの保護能力を表すこと ができる。そして、分離距離 sは、次のように表すことができる。 [0018] LDPC codes have non-uniform error protection characteristics, but normal high-order modulation also has a distinction between strong and weak bits. According to the standard theory of linear unequal error protection coding (LUEP) (see Non-Patent Document 9 above), for a general linear block code, each bit i has a separation distance s. Can be used to represent the protection capability of the bit. The separation distance s can be expressed as follows.
[数 1] st≡xmn{w(X)I AX = 0, x, = 1} [Equation 1] s t ≡ xmn {w (X) I AX = 0, x, = 1}
ここで、 Aは検査行列、 Xは符号語である。また、 Xは、ビット iを表し、 w (X)は、符号 語 Xの重みを表す。 sはビット Xを 1とし、且つビット Xが検査行列の全ての符号語の最 小重みを満たすようにする。 Where A is the parity check matrix and X is the codeword. X represents bit i, and w (X) represents the weight of codeword X. s sets bit X to 1 and bit X satisfies the minimum weight of all codewords in the parity check matrix.
[0019] さらに、 tをビット Xの保護能力或いは保護等級(Protection Level)と定義すると、 ti は次のように表される。 [0019] Further, if t is defined as the protection capability or protection level of bit X, ti is expressed as follows.
[数 2] [Equation 2]
I s; - 1 1 I s ; -1 1
tは、伝送する符号語に発生した誤りビット数力 ¾より大きくない場合、最尤復号ィ匕 によりビット Xのビット誤りを必ず正確に訂正することができることを表す。 s或いは tが 小さいほど、その保護能力は弱くなり、または弱ビットと呼ばれる。
[0021] 上記 UEP保護等級の概念に基づき、本実施の形態では、不均一誤り特性マツチン グに基づく階層的インターリーブによる、新たな LDPC高次変調方法を提示する。 When t is not larger than the number of error bits generated in the transmitted codeword, t indicates that the bit error of bit X can be corrected accurately by the maximum likelihood decoding function. The smaller s or t, the weaker the protection, or the weak bit is called. [0021] Based on the above UEP protection class concept, this embodiment presents a new LDPC higher-order modulation method using hierarchical interleaving based on non-uniform error characteristic matching.
[0022] 図 6に示すとおり、 LDPC符号における保護等級の低いビットを、高次変調におけ る保護能力の強いビットにマッピングするものである。特に、 LDPCの重みが最小の 符号語に属すビットは、必ず高次変調における最強のビットにマッピングする。簡単 に言えば、 LDPC符号の弱ビットを高次変調の強ビットにマッピングし、 LDPC符号 の強ビットを高次変調シンボルの弱ビットにマッピングする。このように、 LDPC符号 の不均一誤り保護特性と高次変調の不均一誤り保護特性を効果的にマッチングさせ ることで、ビット誤り率を下げ、符号化変調利得を得る。 [0022] As shown in FIG. 6, bits with a low protection grade in the LDPC code are mapped to bits with high protection capability in high-order modulation. In particular, the bits belonging to the codeword with the smallest LDPC weight must be mapped to the strongest bits in higher-order modulation. In short, the weak bits of the LDPC code are mapped to the strong bits of the high-order modulation, and the strong bits of the LDPC code are mapped to the weak bits of the high-order modulation symbol. Thus, by effectively matching the non-uniform error protection characteristics of the LDPC code with the non-uniform error protection characteristics of the higher-order modulation, the bit error rate is lowered and the coded modulation gain is obtained.
[0023] 研究を通じ、発明者らは LDPC符号の分離距離と 2部グラフ上のショートサイクルに は密接な関係が存在することを見いだした。ループで構成される 2部グラフでは、或 るビットの分離距離はそのビットが存在する最短ショートサイクルの周の長さの半分に 等しい。例えば図 7に示す長さ 4のショートサイクルでは、ビット bと bが共に 1の場合 [0023] Through research, the inventors found that there is a close relationship between the separation distance of the LDPC code and the short cycle on the bipartite graph. In a bipartite graph composed of loops, the separation distance of a bit is equal to half the circumference of the shortest short cycle in which the bit exists. For example, in the short cycle of length 4 shown in Figure 7, both bits b and b are 1.
1 2 1 2
、検査式 cと cの制約を満たす。したがって、ビット bと bの分離距離は共に 2で、ち Satisfies the constraints of the check expressions c and c. Therefore, the separation distance between bits b and b is 2,
1 2 1 2 1 2 1 2
ようどそのビットがある最短ショートサークルの周の長さの半分である。したがって、ビ ット信頼性マッピングに基づく LDPC高次変調方法に比べ、本実施の形態の方法は LDPC符号の 2部グラフの構造の特徴を正確に反映でき、非正則な LDPC符号に適 用できるば力りでなぐ正則 LDPC符号にも適用できる。ビットノードとチェックノード の度数分布がすべて決められている、異なる LDPC符号は、その検査行列が異なる 2部グラフに対応するため、保護等級も同じではない。そのため、本実施の形態の方 法は LDPC符号に対しより強い適応力があり、その UEP特性を判定するのもより正 確である。 The bit is half the circumference of the shortest short circle with the bit. Therefore, compared to the LDPC higher-order modulation method based on bit reliability mapping, the method of this embodiment can accurately reflect the characteristics of the bipartite graph structure of the LDPC code and can be applied to irregular LDPC codes. It can also be applied to regular LDPC codes. Different LDPC codes with all bit node and check node frequency distributions corresponding to bipartite graphs with different check matrices do not have the same protection class. Therefore, the method of this embodiment has a stronger adaptability to the LDPC code, and is more accurate in determining its UEP characteristics.
[0024] 図 8は、 [2000, 1000]正則 LDPC符号の異なる分離距離のビット誤り率性能の図で ある。二位相偏移変調(BPSK: Binary Phase Shift Keying)、加法的白色ガウス雑音 (AWGN:Addative White Gaussian Noise)チャネルを用いている。 LDPC符号は 2 分の 1の符号率の [2000, 1000]正則符号で、長さ 4のショートサイクルは全て削除され ている。同図中には、平均のビット誤り率と、分離距離が 3と 4の場合のビット誤り率が 示されている。この図から、分離距離はビット誤り率性能に対し大きく影響し、分離距
離が大き 、ほどビット誤り率が低 、ことがわかる。 [0024] FIG. 8 is a diagram of bit error rate performance of [2000, 1000] regular LDPC codes with different separation distances. It uses binary phase shift keying (BPSK) and additive white Gaussian noise (AWGN) channels. The LDPC code is a [2000, 1000] regular code with half the code rate, and all short cycles of length 4 have been deleted. In the figure, the average bit error rate and the bit error rate when the separation distance is 3 and 4 are shown. From this figure, the separation distance has a significant effect on the bit error rate performance. It can be seen that the larger the separation, the lower the bit error rate.
[0025] 図 9は複数のショートサイクルの分離距離を示す図である。同図中には、 2個のショ ートサイクル b c b c bと b c b c b c bが存在する。 bは周の長さ 4のショートサイク FIG. 9 is a diagram showing separation distances of a plurality of short cycles. In the figure, there are two short cycles, b c b c b and b c b c b c b. b is a short cycle with a circumference of 4.
1 1 2 2 1 2 2 3 3 4 4 2 1 1 1 2 2 1 2 2 3 3 4 4 2 1
ル b c b c bにのみ存在する。したがって bの分離距離は 2である。 bと bは周の長 Exists only in b c b c b. So the separation distance of b is 2. b and b are the circumference
1 1 2 2 1 1 3 4 さ 6のショートサイクルにのみ存在する。したがって bと bの分離距離は 3である。 bは 1 1 2 2 1 1 3 4 Only exists in 6 short cycles. So the separation distance between b and b is 3. b is
3 4 2 両方のショートサイクルに存在する力 分離距離はそのなかで最小のもの(ショートサ イタル b c b c b )の周の長さの半分を取るので、 bの分離距離は 2である。まとめる 3 4 2 Force separation in both short cycles The separation distance of b is 2 because it takes half the circumference of the shortest of them (short cycle b c b c b). Put together
1 1 2 2 1 2 1 1 2 2 1 2
と、 bと bの分離距離は共に 2であり、弱ビットということになり、 bと bの分離距離は And the separation distance between b and b is 2, which is a weak bit, and the separation distance between b and b is
1 2 3 4 共に 3で、強ビットということになる。 1 2 3 4 Both 3 are strong bits.
[0026] [本発明の基本理論] [0026] [Basic theory of the present invention]
或る二元線形符号 C[N, K, d]において、 dは符号の最小距離であり、その重み分 布関数 F (C)を次のように仮定する。 In a binary linear code C [N, K, d], d is the minimum distance of the code, and its weight distribution function F (C) is assumed as follows.
[数 3] [Equation 3]
F ( 0 = F (0 =
[0027] また、全零符号語を参考にして、 γを AWGNチャネルにおけるエネルギー対雑音 比(energy- to- noise ratio)と仮定する。すなわち、 γは次のように表される。 [0027] Further, with reference to the all-zero codeword, γ is assumed to be an energy-to-noise ratio in the AWGN channel. That is, γ is expressed as follows.
画 Picture
Es E s
[0028] C符号語は二位相偏移変調(BPSK: Binary Phase Shift Keying)の加法的白色ガ ウス雑音(AWGN :Addative White Gaussian Noise)チャネルにおいて、軟判定を用 い 7こ琅尤復 ィ匕 (Max— Likelihood decoding based on soft decision)であると 疋 'する と、ペアワイズ誤り発生率に基つく union bound(Union bound based on pair-wise erro r probability)のスタンダードな分析方法を利用し、容易にブロック誤り率 P 、ビット誤 [0028] The C codeword is a binary phase shift keying (BPSK) additive white Gaussian noise (AWGN) channel that uses soft decision. (Max-likelihood decoding based on soft decision), it is easy to use a standard analysis method of union bound (Union bound based on pair-wise error probability) based on the pairwise error rate. Block error rate P, bit error
W W
り率 Pを次のように得ることができる。 The rate P can be obtained as follows.
b b
[数 5]
プロック誤り率 :[Equation 5] Plock error rate:
4 Four
ビット誤り率/^ : ) ) Bit error rate / ^:))
[0029] 信号対雑音比が高!、場合、このブロック誤り率とビット誤り率の漸近的性能 (asympt otic performance)は首項 Q ( (d γ ) )によって決まる。 [0029] When the signal-to-noise ratio is high !, the asymptotic performance of the block error rate and the bit error rate is determined by the head term Q ((dγ)).
[0030] 通常、高次復調で得られるビットレベルの LLR (対数尤度比)値は、モデリングして AWGNチャネルにおける出力値とし、また適当なチャネル補償方法によってチヤネ ル復号器に入力できる。ゴレイ符号ィ匕を用いた Μ- QAM (M = 2m)高次変調におけ る各ビットの保護能力は一様ではないので、その出力の信号対雑音比も同じではな い。高次変調における強ビットの出力の信号対雑音比は、弱ビットの出力の信号対 雑音比より大きくなるので、復調ビット誤り率も低いということがわかる。 [0030] Normally, the bit-level LLR (log likelihood ratio) value obtained by higher-order demodulation is modeled as an output value in the AWGN channel, and can be input to the channel decoder by an appropriate channel compensation method. Since the protection capability of each bit in 次 -QAM (M = 2 m ) higher-order modulation using Golay codes 匕 is not uniform, the signal-to-noise ratio of the output is not the same. It can be seen that the signal-to-noise ratio of the strong bit output in the high-order modulation is larger than the signal-to-noise ratio of the weak bit output, so that the demodulated bit error rate is also low.
[0031] 各ビット iの出力の信号対雑音比を T とすると、高次変調の出力の平均信号対雑音 比は次のようになる。 [0031] If the signal-to-noise ratio of the output of each bit i is T, the average signal-to-noise ratio of the output of the higher-order modulation is as follows.
[数 6] [Equation 6]
Y - m' Y-m '
[0032] さらに保護能力の最も強いビットの出力の信号対雑音比を γ と仮定する。すると [0032] Further, it is assumed that the signal-to-noise ratio of the output of the bit having the strongest protection capability is γ. Then
max max
、次の関係が成り立つことがわかる。 It can be seen that the following relationship holds.
[数 7] [Equation 7]
} max } max
[0033] 従来の、ビットインターリーブ符号ィ匕変調 (BICM)に基づく LDPC高次変調方法を 採用した場合、そのブロック誤り率とビット誤り率の漸近的性能は、次の項により決ま る。 [0033] When the conventional LDPC high-order modulation method based on bit interleaved code modulation (BICM) is adopted, the asymptotic performance of the block error rate and the bit error rate is determined by the following terms.
[数 8]
[0034] 一方、不均一誤り特性マッチングに基づく階層的インターリーブによる新しい LDP C高次変調方法を採用した場合、 LDPCの最小重みのビットは全て高次変調上の最 強ビットにマッピングされるので、最小重みのビットの変調出力信号対雑音比は γ [Equation 8] [0034] On the other hand, when the new LDP C high-order modulation method based on hierarchical interleaving based on non-uniform error characteristic matching is adopted, all bits of the LDPC minimum weight are mapped to the strongest bits on the high-order modulation. The modulation output signal to noise ratio of the least weight bit is γ
max となる。このため、そのブロック誤り率とビット誤り率の漸近的性能は、次の項によって 決まる。 max. Therefore, the asymptotic performance of the block error rate and bit error rate is determined by the following terms.
[数 9] [Equation 9]
[0035] したがって、本実施の形態の方法は、従来方法よりも漸近符号化利得 ACG(Asymp totic Coding Ganv力 Sめ 。 [0035] Therefore, the method of the present embodiment has an asymptotic coding gain ACG (Asymptomatic Coding Ganv force S) than the conventional method.
[数 10] [Equation 10]
A C G = A C G =
V V
[0036] (実施例 1) [Example 1]
図 10は共通的な LDPC符号による高次変調方法を行う変調装置の主要構成を示 す図である。同図に示すように変調装置 100は、 LDPC符号化部 110と、ビット並び 替え部 120と、分割部 130と、シリアル Zパラレル (SZP)変換部 140と、インターリー バ 150と、変調部 160とを有する。変調装置 100は、無線送信装置に搭載されて利 用される。 Figure 10 shows the main configuration of a modulation device that performs a high-order modulation method using a common LDPC code. As shown in the figure, the modulation device 100 includes an LDPC encoding unit 110, a bit rearrangement unit 120, a division unit 130, a serial Z parallel (SZP) conversion unit 140, an interleaver 150, and a modulation unit 160. And have. The modulation device 100 is used by being mounted on a wireless transmission device.
[0037] LDPC符号化部 110は、ソースデータブロック Sを入力し、 LDPC符号化を施す。 L DPC符号ィ匕後の符号ィ匕データブロック Uは、ビット並べ替え部 120に出力される。 [0037] LDPC encoding section 110 receives source data block S and performs LDPC encoding. The code key data block U after the L DPC code key is output to the bit rearrangement unit 120.
[0038] ビット並び替え部 120は、符号ィ匕データブロック Uを構成する符号ィ匕後の各ビットを 、その符号ィ匕後ビットの保護能力に応じてグルーピングする。ビット並び替え部 120 は、ビットの保護能力が低いグループ力 順番に、ビットを並べることにより、並べ替 えデータブロック Vを取得する。すなわち、ビット並び替え部 120は、符号化データブ ロック Uを構成する符号ィ匕後の各ビットを、その符号ィ匕後ビットの保護能力に応じて
並び替えている。 [0038] The bit rearrangement unit 120 groups each bit after the code that forms the code data block U according to the protection capability of the bit after the code. The bit rearrangement unit 120 obtains the rearranged data block V by arranging the bits in the order of the group power in which the bit protection capability is low. That is, the bit rearrangement unit 120 sets each bit after the code that constitutes the encoded data block U according to the protection capability of the bit after the code. Rearranged.
[0039] 分割部 130は、並べ替えデータブロック Vを入力し、 m個のサブデータブロックに分 割する。ここで、 mは、後述の変調部 160における変調次数に対応する。 [0039] Dividing section 130 receives rearranged data block V and divides it into m sub-data blocks. Here, m corresponds to a modulation order in a modulation unit 160 described later.
[0040] シリアル Zパラレル(SZP)変換部 140は、分割部 130からの並べ替えデータブロ ック Vを並列な m個のサブストリームに変換する。各サブストリームは、各サブデータ ブロックに対応する。このように分割部 130および S/P変換部 140により、符号化デ 一タブロックから、ビット保護能力に応じた m個のサブストリームが形成される。 [0040] Serial Z parallel (SZP) converter 140 converts rearranged data block V from divider 130 into m substreams in parallel. Each substream corresponds to each subdata block. As described above, the dividing unit 130 and the S / P conversion unit 140 form m substreams corresponding to the bit protection capability from the encoded data block.
[0041] インターリーバ 150— l〜mは、それぞれ対応するサブデータブロックにインターリ ーブを施す。このインターリーブは、同一の検査式に属するビットを離れた位置に配 置し、理想的な時間ダイバーシチ効果が得られるように行われる。 [0041] Interleavers 150-l to m interleave the corresponding sub data blocks. This interleaving is performed so that bits belonging to the same check expression are placed at different positions and an ideal time diversity effect is obtained.
[0042] 変調部 160は、入力される各サブストリームから 1ビットずつ順次抽出されたビット群 に従って、変調信号を形成する。ここで、 1つの変調シンボルが表す各構成ビットは、 構成ビットごとの誤り易さ、および、サブストリームのビット保護能力に基づいて、サブ ストリーム毎の使用ビットとして、予め割り当てられている。具体的には、ビット保護能 力の低いサブストリームは、ビット保護能力の高いサブストリームに比べて、誤り難い 構成ビットに割り当てられる。すなわち、変調部 160は、入力される各サブストリーム から 1ビットずつ順次抽出されたビット群を上記割り当てに従って並べ替えたときに得 られるビット列に対応する、コンスタレーシヨン上のシンボルに従って、変調信号を形 成する。なお、ビット保護能力は、上述のとおり本実施の形態では、ビットの分離距離 に基づいて決められる。より具体的には、ビット保護能力は、 2部グラフ上にある最短 のショートサイクルの周の長さの半分に基づいて、決められる。 [0042] Modulating section 160 forms a modulated signal according to a bit group sequentially extracted bit by bit from each input substream. Here, each constituent bit represented by one modulation symbol is assigned in advance as a used bit for each substream based on the ease of error for each constituent bit and the bit protection capability of the substream. Specifically, a substream with low bit protection capability is assigned to constituent bits that are less prone to error than a substream with high bit protection capability. That is, the modulation unit 160 converts the modulation signal according to the symbols on the constellation corresponding to the bit string obtained by rearranging the bit groups sequentially extracted bit by bit from each input substream according to the above assignment. Form. Note that the bit protection capability is determined based on the bit separation distance in this embodiment as described above. More specifically, the bit protection capability is determined based on half the circumference of the shortest short cycle on the bipartite graph.
[0043] 次に、以上の構成を有する変調装置 100の動作について説明する。まず、高次変 調を m次と仮定、すなわち m個のビット(a - --a )によりコンスタレーシヨン図上の一つ Next, the operation of modulation apparatus 100 having the above configuration will be described. First, it is assumed that the high-order modulation is m-th order, that is, one on the constellation diagram by m bits (a---a).
1 m 1 m
の変調シンボルを選択すると仮定し、また a力も a は強力も弱の順に並んでいるもの , And a force and a are arranged in the order of strong and weak.
1 m 1 m
とする。 And
[0044] ソースデータブロック Sは、 LDPC符号化部 110にて LDPC符号化されて符号化デ 一タブロック Uとなる。ビット並び替え部 120では、符号化データブロックの各ビットの 保護能力が小から大の順に、ビットの並び替えが行われ、並び替えデータブロック V
が得られる。ここで述べる保護能力は、上述の文献 (非特許文献 9)において定義さ れた各ビットの保護等級に相当するが、予め或る固定の順番表を算出しておき、並 び替えが一回のインターリーブ操作に相当するようにしてもょ 、。 The source data block S is LDPC encoded by the LDPC encoding unit 110 to become an encoded data block U. The bit rearrangement unit 120 rearranges the bits in order from the smallest to the largest protection capability of each bit of the encoded data block. Is obtained. The protection capability described here corresponds to the protection class of each bit defined in the above-mentioned document (Non-Patent Document 9). However, a certain fixed order table is calculated in advance and rearrangement is performed once. Even if it corresponds to the interleave operation.
[0045] 並び替え後のデータブロック Vは、 m個の並び替えサブデータブロック V={V , V [0045] The rearranged data block V has m rearranged sub data blocks V = {V, V
1 2 1 2
, · ··, V }に等分される (もし Vが mで割り切れない場合は、実際の内容をもたない符 号ィ匕ビット(全て 1か全て 0、或いは他の適当なビット系列)を適宜カ卩え、 mで割り切れ るようにする)。ここで、 Vから V は保護能力の低力も高の順に並んでいるものとする , ···, V} equally (if V is not divisible by m, the sign bit with no actual content (all 1's or all 0's or other suitable bit sequences) ) So that it is divisible by m). Here, it is assumed that V to V are arranged in descending order of protection capability.
1 m 1 m
[0046] 各並び替えサブデータブロック V (l≤i≤m)は、シリアル/パラレル変換された後、 それぞれインターリーブされ、インターリーブサブデータブロック Wが得られる。ここで のインターリーブは、同一の検査式に属するビットを離れた位置に配置し、理想的な 時間ダイバーシチ効果が得られるようにすることを保証するものでなければならな 、。 [0046] Each rearranged sub data block V (l≤i≤m) is serial / parallel converted and then interleaved to obtain an interleaved sub data block W. Interleaving here must ensure that the bits belonging to the same check expression are placed at a distance and that an ideal time diversity effect is obtained.
[0047] そして、変調部 160では、各インターリーブサブデータブロック Wを高次変調にお ける aビットに並列に入力し、並列の m個のビット(a - --a )と対応する、コンスタレーシ [0047] Then, in modulation section 160, each interleaved sub-data block W is input in parallel to a bits in high-order modulation, and constellation corresponding to m bits (a---a) in parallel is input.
1 m 1 m
ヨン図上の一つの変調シンボルが選択される、すなわち最終的な変調シンボルブロッ ク τが得られる。この変調シンボルブロック τに従って、変調信号が形成される。 One modulation symbol on the diagram is selected, that is, the final modulation symbol block τ is obtained. A modulation signal is formed according to the modulation symbol block τ.
[0048] 図 11は共通的な LDPC符号の高次変調がなされた受信信号の復調を行う復調装 置の主要構成を示す図である。同図に示すように復調装置 200は、復調部 210と、 ディンターリーバ 220と、パラレル Zシリアル(PZS)変換部 230と、合成部 240と、ビ ット並べ替え部 250と、 LDPC復号化部 260とを有する。復調装置 200は、無線受信 装置に搭載されて利用される。図 10に対応し、まずチャネル出力の変調シンボルブ ロックである hat (T)を受信したと仮定する。なお、 hatは、図中の記号(')に相当する 。復調部 210では、変調シンボルブロック hat (T)の高次復調がなされた後、 a力も a のビット位置から、それぞれ hat (W )から hat (W )の復調出カサブブロックが出力 m 1 m FIG. 11 is a diagram illustrating a main configuration of a demodulation device that demodulates a reception signal subjected to high-order modulation of a common LDPC code. As shown in the figure, the demodulator 200 includes a demodulator 210, a Dinterleaver 220, a parallel Z-serial (PZS) converter 230, a combiner 240, a bit rearranger 250, and an LDPC decoding. Part 260. The demodulating device 200 is used by being mounted on a wireless receiving device. Corresponding to Fig. 10, we first assume that hat (T), a modulation symbol block of channel output, has been received. Hat corresponds to the symbol (') in the figure. The demodulator 210 performs high-order demodulation of the modulation symbol block hat (T), and then outputs the demodulated output sub-blocks of hat (W) to hat (W) respectively from the bit position of a.
される。各復調出カサブブロック hat (W) (ただし、 l≤i≤m)は、対応するディンター リーノ 220〖こて、相応のディンターリーブを施され、ディンターリーブサブブロック hat (V)が得られる。全てのディンターリーブサブブロックは、パラレル Zシリアル(PZS) 変換部 230にてパラレル/シリアル変換され、合成部 240にて合成されて合成ブロッ
ク hat(V) = {hat(V ) , hat(V ) , ···, hat(V ) }が得られる。そして、ビット並べ替え 部 250にて、合成ブロックに対し順番の解除、つまり送信側のビット並べ替え部 120 に行われた逆の操作を行い、順番解除ブロック hat (U)が得られる。最後に、 LDPC 復号ィ匕部 260にて、順番解除ブロック hat (U)に対し LDPC復号ィ匕を行い、復号ィ匕 ブロック hat (S)が得られる。 Is done. Each demodulated output sub-block hat (W) (where l≤i≤m) is subjected to a corresponding Dinter Reno 220 trowel and corresponding Dinter Leave, resulting in a Dinter Leave sub-block hat (V). . All the Dinterleave sub-blocks are parallel / serial converted by the parallel Z-serial (PZS) converter 230 and synthesized by the synthesizer 240. Hat (V) = {hat (V), hat (V), ..., hat (V)} is obtained. Then, in the bit rearrangement unit 250, the order is canceled for the combined block, that is, the reverse operation performed for the bit rearrangement unit 120 on the transmission side is performed to obtain the order cancellation block hat (U). Finally, the LDPC decoding unit 260 performs LDPC decoding on the order cancellation block hat (U) to obtain the decoding block block (S).
[0049] (実施例 2) [0049] (Example 2)
実践的な応用においては、高次変調には通常 IZQ軸対称変調の方式が採用され る。図 2に示す 16QAMと図 3に示す 64QAMのように、 I軸と Q軸で用いられるゴレイ マッピングは同じである。一般性を失わないよう、 m次の高次変調において、 I軸には ( a a ---a )ビットを用い、 Q軸には (a a ---a )ビットを用いる。そして、 a力 In practical applications, IZQ axisymmetric modulation is usually used for higher-order modulation. Like 16QAM shown in Fig. 2 and 64QAM shown in Fig. 3, the Golay mapping used for the I-axis and Q-axis is the same. In order to avoid losing generality, (a a --- a) bits are used for the I axis and (a a --- a) bits are used for the Q axis in the m-th order high-order modulation. And a force
1 2 /2 /2 + 1 /2 +2 m 1 ら a は強から弱の順序になっており、且つ、(a a 'a )と (a a 'a》は m/2 1 2 m/2 m/2 + 1 /2 + 2 m 完全に対称であると仮定する。したがって、対称方式の高次変調のビットは mZ2個 のレベルとなる。 1 2/2/2 + 1/2 +2 m 1 and a are in the order of strong to weak, and (aa 'a) and (aa' a >> are m / 2 1 2 m / 2 m / 2 + 1/2 + 2 m Assuming that it is completely symmetric, the number of high-order modulation bits in the symmetric system is mZ2 levels.
[0050] 図 12は、 IZQ軸対称変調の LDPC符号による高次変調方法を行う変調装置の主 要構成を示す図である。同図に示すように変調装置 100Aは、 LDPC符号ィ匕部 110 と、ビット並び替え部 120と、分割部 130Aと、シリアル Zパラレル(SZP)変換部 140 Aと、インターリーバ 150と、変調部 160と、シリアル Zパラレル(SZP)変換部 170と を有する。 [0050] FIG. 12 is a diagram illustrating a main configuration of a modulation apparatus that performs a high-order modulation method using an LDPC code of IZQ axisymmetric modulation. As shown in the figure, the modulation device 100A includes an LDPC code key unit 110, a bit rearrangement unit 120, a division unit 130A, a serial Z parallel (SZP) conversion unit 140 A, an interleaver 150, a modulation unit. 160 and a serial Z parallel (SZP) converter 170.
[0051] 分割部 130Aは、並べ替えデータブロック Vを入力し、 mZ2個のサブデータブロッ クに分割する。ここで、 mは、後述の変調部 160における変調次数に対応する。また 、ここでは、 IQ軸対象のコンスタレーシヨンを考えているので、実施例 1と異なり、 mZ 2のサブデータブロックに分けられて!/、る。 [0051] Dividing section 130A receives rearranged data block V and divides it into mZ2 sub-data blocks. Here, m corresponds to a modulation order in a modulation unit 160 described later. In addition, since the constellation for the IQ axis is considered here, unlike the first embodiment, it is divided into mZ 2 sub-data blocks! /.
[0052] シリアル Zパラレル(SZP)変換部 140Aは、並べ替えデータブロック Vを並列な m Z2個のサブストリームに変換する。各サブストリームは、各サブデータブロックに対 応する。このように分割部 130Aおよび SZP変換部 140Aにより、符号化データプロ ックから、ビット保護能力に応じた mZ2個のサブストリームが形成される。 [0052] Serial Z parallel (SZP) conversion section 140A converts rearranged data block V into parallel mZ2 substreams. Each substream corresponds to each subdata block. In this way, mZ2 substreams corresponding to the bit protection capability are formed from the encoded data block by the dividing unit 130A and the SZP converting unit 140A.
[0053] シリアル Zパラレル(SZP)変換部 170は、各サブストリームを 2つのサブストリーム に分ける。こうして変調部 160に入力されるサブストリーム数は、実施例 1と同じになる
[0054] 以上の構成を有する変調装置 100Aの動作について説明する。ソースデータブロッ ク Sは、 LDPC符号ィ匕部 110にて LDPC符号ィ匕されて符号ィ匕データブロック Uとなる 。ビット並び替え部 120では、符号ィ匕データブロックの各ビットの保護能力が小から大 の順に、ビットの並び替えが行われ、並び替えデータブロック Vが得られる。なお、実 施例 1と同様に、予め或る固定の順番表を算出しておき、並び替えが一回のインター リーブ操作に相当するようにしてもよい。 [0053] Serial Z-parallel (SZP) conversion section 170 divides each substream into two substreams. Thus, the number of substreams input to the modulation unit 160 is the same as in the first embodiment. The operation of modulation apparatus 100A having the above configuration will be described. The source data block S is LDPC code input by the LDPC code key unit 110 to become a code data block U. In the bit rearrangement unit 120, the bits are rearranged in the order of the protection capability of each bit of the sign key data block from the smallest to the largest, and the rearranged data block V is obtained. As in the first embodiment, a fixed order table may be calculated in advance, and the rearrangement may correspond to one interleave operation.
[0055] 並び替え後のデータブロック Vは、 mZ2個の並び替えサブデータブロック V={V , V , · ··, V }に等分される (もし Vが mZ2で割り切れない場合は、実際の内容をも たない符号ィ匕ビット(全て 1か全て 0、或いは他の適当なビット系列)を適宜カ卩え、 mZ 2で割り切れるようにする)。ただし、 V力も V は、保護能力の低力も高の順に並ん [0055] The sorted data block V is equally divided into mZ2 sorted sub-data blocks V = {V, V, ..., V} (if V is not divisible by mZ2, it is actually Code bit (not all 1's, all 0's, or any other appropriate bit sequence) that has no contents, is appropriately divided and divided by mZ 2). However, V force and V are arranged in the order of low protective strength and high strength.
1 m/2 1 m / 2
でいるものとする。各並び替ぇサブデータブロック¥(1≤ 11172)は、シリアル/パラ レル変換された後、それぞれインターリーブされ、インターリーブサブデータブロック Wiが得られる。ここでのインターリーブは同一の検査式に属するビットを必ず離れた 位置に配置するようにする。そして、各インターリーブサブデータブロック Wをシリア ル /パラレル変換により 2個の大きさの同じデータストリームに分け (もインターリーブ サブデータブロック Wが大きさの同じデータストリームに変換できない場合は、実際 の内容をもたない符号ィ匕ビット (全て 1か全て 0、或いは他の適当なビット系列)を適宜 加え大きさの同じデータストリームに変換できるようにする)、それぞれ高次変調にお ける aビットと a ビットに入力する。最後に、並列の m個のビット(a ---a )と対応す i m/2 + i 1 m る、コンスタレーシヨン図上の一つの変調シンボルが選択される、すなわち最終的な 変調シンボルブロック Tが得られる。 Suppose that Each rearranged sub-data block (1≤11172) is subjected to serial / parallel conversion and then interleaved to obtain an interleaved sub-data block Wi. In this interleaving, bits belonging to the same check expression must be placed at separate positions. Then, each interleaved sub-data block W is divided into two data streams of the same size by serial / parallel conversion (if the interleaved sub-data block W cannot be converted into a data stream of the same size, the actual contents are Add the appropriate sign bit (all 1's, all 0's, or other suitable bit sequence) so that it can be converted to a data stream of the same size), a bit and a Enter in the bit. Finally, one modulation symbol on the constellation diagram is selected, ie the final modulation symbol block, which is m / 2 + i 1 m corresponding to m bits (a --- a) in parallel T is obtained.
[0056] 図 13は IZQ軸対称変調の LDPC符号の高次変調がなされた受信信号の復調を 行う復調装置の主要構成を示す図である。同図に示すように復調装置 200Aは、復 調部 210と、ディンターリーバ 220と、パラレル Zシリアル(PZS)変換部 230と、合 成部 240と、ビット並べ替え部 250と、 LDPC復号化部 260と、パラレル Zシリアル(P ZS)変換部 270を有する。図 12に対応し、まずチャネル出力の変調シンボルブロッ ク hat (T)を受信したと仮定する。復調部 210では、変調シンボルブロック hat (T)の
高次復調が行われた後、 I軸の ^ビットから出力されたデータストリームと、対称的な Q 軸の a ビットから出力されたデータストリーム力 ノラレル Zシリアル (PZS)変換 m/2+i FIG. 13 is a diagram showing a main configuration of a demodulator that demodulates a received signal subjected to high-order modulation of an LDPC code with IZQ axisymmetric modulation. As shown in the figure, the demodulator 200A includes a demodulation unit 210, a Dinterleaver 220, a parallel Z-serial (PZS) conversion unit 230, a synthesis unit 240, a bit rearrangement unit 250, and an LDPC decoding. Section 260 and a parallel Z-serial (P ZS) conversion section 270. Corresponding to Fig. 12, it is assumed that the modulation symbol block hat (T) of channel output is received first. In demodulator 210, modulation symbol block hat (T) After high-order demodulation, the data stream output from the ^ -bit on the I axis and the data stream power output from the a bit on the symmetric Q-axis Normalar Z-serial (PZS) conversion m / 2 + i
部 270にてパラレル/シリアル変換され、復調出カサブブロック hat (W)が得られる。 ここでは、 l≤i≤m/2である。全ての復調出カサブブロック hat (W)は相応のディ ンターリーブが施され、ディンターリーブサブブロック hat (V )が得られる。次に、全て のディンターリーブサブブロックは、パラレル Zシリアル(PZS)変換部 230にてパラ レル /シリアル変換され、合成部 240にて合成されて合成ブロック hat (V) = {hat (V ) , hat (V ) , · ··, hat (V ) }が得られる。そして、ビット並べ替え部 250にて、合成 In part 270, parallel / serial conversion is performed to obtain a demodulated output sub-block hat (W). Here l≤i≤m / 2. All demodulated output sub-blocks hat (W) are subjected to corresponding deinterleaving, so that Dinter-leaved sub-block hat (V) is obtained. Next, all the Dinterleave sub-blocks are parallel / serial converted by the parallel Z-serial (PZS) converter 230 and synthesized by the synthesizer 240. The synthesized block hat (V) = (hat (V) , hat (V), ..., hat (V)}. Then, in the bit rearrangement unit 250, the composition
2 m/2 2 m / 2
ブロック hat (V)の順番の解除を行!ヽ、順番解除ブロック hat (U)が得られる。最後に 、 LDPC復号ィ匕部 260にて、順番解除ブロック hat (U)に対し LDPC復号ィ匕を行い、 復号ィ匕ブロック hat (S)が得られる。 The order of block hat (V) is released! ヽ, and the order release block hat (U) is obtained. Finally, the LDPC decoding unit 260 performs LDPC decoding on the order cancellation block hat (U) to obtain the decoding block block (S).
[0057] (実施例 3) [Example 3]
実施例 3では、実施例 2に示した IZQ軸対称変調の方式が採用される場合のうち、 特に 16QAMの場合について説明する。図 14は、 16QAM変調の LDPC符号の高 次変調方法を行う変調装置の主要構成を示す図である。同図に示すように変調装置 100Bは、 LDPC符号化部 110と、ビット並び替え部 120と、分割部 130Bと、シリア ル Zパラレル(SZP)変換部 140Bと、インターリーバ 150と、変調部 160と、シリアル Zパラレル(SZP)変換部 170とを有する。 16QAMは、図 2に示す 16QAMゴレイ( Golay)符号化のコンスタレーションマップを採用する。 In the third embodiment, among the cases where the IZQ axisymmetric modulation method shown in the second embodiment is adopted, the case of 16QAM in particular will be described. FIG. 14 is a diagram illustrating a main configuration of a modulation apparatus that performs a high-order modulation method of a 16QAM modulation LDPC code. As shown in the figure, modulation apparatus 100B includes LDPC encoding section 110, bit rearrangement section 120, division section 130B, serial Z parallel (SZP) conversion section 140B, interleaver 150, and modulation section 160. And a serial Z parallel (SZP) converter 170. 16QAM uses the constellation map of 16QAM Golay coding shown in Fig.2.
[0058] 分割部 130Bは、並べ替えデータブロック Vを入力し、 2個のサブデータブロックに 分割する。ここで、サブデータブロック数 2は、後述の変調部 160における変調次数 の 1Z2に対応する。 [0058] Dividing section 130B receives rearranged data block V and divides it into two sub data blocks. Here, the number of sub data blocks 2 corresponds to the modulation order 1Z2 in the modulation unit 160 described later.
[0059] シリアル Zパラレル(SZP)変換部 140Bは、並べ替えデータブロック Vを並列な 2 個のサブストリームに変換する。各サブストリームは、各サブデータブロックに対応す る。このように分割部 130Bおよび S/P変換部 140Bにより、符号ィ匕データブロックか ら、ビット保護能力に応じた 2個のサブストリームが形成される。 [0059] Serial Z-parallel (SZP) conversion section 140B converts rearranged data block V into two parallel substreams. Each substream corresponds to each subdata block. In this way, the division unit 130B and the S / P conversion unit 140B form two substreams corresponding to the bit protection capability from the code key data block.
[0060] 以上の構成を有する変調装置 100Bの動作について説明する。ソースデータブロッ ク Sは、 LDPC符号ィ匕部 110にて LDPC符号ィ匕されて符号ィ匕データブロック Uとなる
。ビット並び替え部 120では、符号ィ匕データブロックの各ビットの保護能力が小から大 の順に、ビットの並び替えが行われ、並び替えデータブロック Vが得られる。なお、実 施例 1と同様に、予め或る固定の順番表を算出しておき、並び替えが一回のインター リーブ操作に相当するようにしてもよい。 The operation of modulation apparatus 100B having the above configuration will be described. The source data block S is LDPC code input by the LDPC code input unit 110 to become a code data block U. . In the bit rearrangement unit 120, the bits are rearranged in the order of the protection capability of each bit of the sign key data block from the smallest to the largest, and the rearranged data block V is obtained. As in the first embodiment, a fixed order table may be calculated in advance, and the rearrangement may correspond to one interleave operation.
[0061] 並び替えたデータブロック Vは、 2個の並び替えサブデータブロック V={V , V }に [0061] The rearranged data block V is changed to two rearranged sub data blocks V = {V, V}.
1 2 等分される。なお、 Vは保護能力の低いデータブロックで、 Vは保護能力の高いデ 1 Divided into two equal parts. V is a data block with low protection capability, and V is a data block with high protection capability.
1 2 1 2
一タブロックである。各並び替えサブデータブロックはシリアル/パラレル変換された 後、それぞれインターリーブされ、インターリーブサブデータブロック Wと Wが得られ One block. Each reordering sub-data block is serial / parallel converted and then interleaved to obtain interleaved sub-data blocks W and W.
1 2 る。ここでのインターリーブは同一の検査式に属するビットを必ず離れた位置に配置 するようにする。そして、インターリーブサブデータブロック Wをシリアル/パラレル変 換により 2個のデータストリームに分け、それぞれ高次変調における aビットと aビット 1 2 In this interleaving, bits belonging to the same check expression are always arranged at distant positions. Then, the interleaved sub-data block W is divided into two data streams by serial / parallel conversion.
1 3 に入力する。また、インターリーブサブデータブロック Wをシリアル/パラレル変換し、 1 Enter in 3. Also, the interleaved sub data block W is serial / parallel converted,
2 2
それぞれ aビットと aビットに入力する。最後に、並列の 4個のビット(a a a a )と対応 Input to a bit and a bit respectively. Finally, it corresponds to 4 parallel bits (a a a a)
2 4 1 2 3 4 する、コンスタレーシヨン図上の一つの変調シンボルが選択される、すなわち最終的 な変調シンボルブロック τが得られる。 2 4 1 2 3 4, one modulation symbol on the constellation diagram is selected, that is, the final modulation symbol block τ is obtained.
[0062] 図 15は 16QAM変調の LDPC符号の高次変調がなされた受信信号の復調を行う 復調装置の主要構成を示す図である。同図に示すように復調装置 200Bは、復調部 210と、ディンターリーバ 220と、パラレル Zシリアル(PZS)変換部 230と、合成部 2 40と、ビット並べ替え部 250と、 LDPC復号化部 260と、パラレル Zシリアル(PZS) 変換部 270を有する。図 14に対応し、まずチャネル出力の変調シンボルブロック hat (T)を受信したと仮定する。復調部 210では、変調シンボルブロック hat (T)が高次復 調された後、 I軸の aビットから出力されたデータストリームと、対称的な Q軸の aビット FIG. 15 is a diagram illustrating a main configuration of a demodulator that demodulates a received signal subjected to high-order modulation of an LDPC code of 16QAM modulation. As shown in the figure, the demodulator 200B includes a demodulator 210, a Dinterleaver 220, a parallel Z-serial (PZS) converter 230, a combiner 240, a bit rearranger 250, and an LDPC decoder. 260 and a parallel Z-serial (PZS) converter 270. Corresponding to Fig. 14, it is assumed that the modulation symbol block hat (T) of channel output is received first. In the demodulator 210, after the modulation symbol block hat (T) is demodulated in high order, the data stream output from the a bit on the I axis and the a bit on the symmetric Q axis
1 3 力も出力されたデータストリームは、ノ ラレル Zシリアル (PZS)変換部 270にてパラ レル /シリアル変換され、復調出カサブブロック hat (W )が得られる。同様に、 I軸の a ビットから出力されたデータストリームと、対称的な Q軸の aビットから出力されたデ The data stream that has also been output in 1 to 3 is subjected to parallel / serial conversion by the normal Z serial (PZS) converter 270, and a demodulated output sub-block hat (W) is obtained. Similarly, the data stream output from the a bit on the I axis and the data stream output from the symmetric Q axis a bit.
2 4 twenty four
一タストリームは、パラレル Zシリアル (PZS)変換部 270にてパラレル/シリアル変換 され、復調出カサブブロック hat (W )が得られる。復調出カサブブロック hat (W )と h The data stream is parallel / serial converted by a parallel Z-serial (PZS) converter 270 to obtain a demodulated output sub-block hat (W). Demodulated output sub-blocks hat (W) and h
2 1 at (W )には、相応のディンターリーブが施され、ディンターリーブサブブロック hat (
V )と hat (V )が得られる。全てのディンターリーブサブブロックは、パラレル Zシリア2 1 at (W) is given a corresponding Dinterleave, Dinterleave subblock hat ( V) and hat (V) are obtained. All Dinterleave sub-blocks are parallel Z serial
1 2 1 2
ル (PZS)変換部 230にてパラレル/シリアル変換された後、合成部 240にて合成さ れて合成ブロック hat (V) = {hat (V ) , hat (V ) }が得られる。そして、合成ブロック h The parallel (serial) conversion is performed in the P (PZS) conversion unit 230, and then the synthesis unit 240 synthesizes the resultant block hat (V) = {hat (V), hat (V)}. And composite block h
1 2 1 2
at (V)の順番の解除を行い、順番解除ブロック hat (U)が得られる。最後に、 LDPC 復号ィ匕部 260にて、順番解除ブロック hat (U)に対し LDPC復号ィ匕を行い、復号ィ匕 ブロック hat (S)が得られる。 The order of at (V) is released, and the order release block hat (U) is obtained. Finally, the LDPC decoding unit 260 performs LDPC decoding on the order cancellation block hat (U) to obtain the decoding block block (S).
[0063] 図 16は [2000, 1000]正則 LDPC符号の 16QAMと 64QAMの性能比較図である。 FIG. 16 is a performance comparison diagram of 16QAM and 64QAM of [2000, 1000] regular LDPC codes.
BPSK変調、 AWGNチャネルを用いている。 LDPC符号は符号率二分の一の [2000 , 1000]正則符号で、情報ブロック長は 1000ビット、符号化ブロック長は 2000ビットで、 チェックノードの度数は 6、メッセージノードの度数は 3である。 16QAMと 64QAMは それぞれ図 2及び図 3に示すようにゴレイマッピングを用いて 、る。正則 LDPC符号 であり、ビット信頼性による方法は効力がないため、従来のビットインターリーブ符号 化変調 (BICM)と、本発明の方法の性能 (本発明)の比較を行った。同図から、正則 LDPC符号に対しては、本発明の方法は従来のビットインターリーブ符号ィ匕変調方 法と比べ、信号対雑音比の高い領域で、顕著にビット誤り率を改善する性能があるこ とがわかる。 BPSK modulation and AWGN channel are used. The LDPC code is a [2000, 1000] regular code with a code rate of 1/2, the information block length is 1000 bits, the encoded block length is 2000 bits, the check node frequency is 6, and the message node frequency is 3. 16QAM and 64QAM use Golay mapping as shown in Fig. 2 and Fig. 3, respectively. Since it is a regular LDPC code and the method based on bit reliability is not effective, the performance of the method of the present invention (the present invention) was compared with that of the conventional bit interleaved code modulation (BICM). From the figure, it can be seen that, for regular LDPC codes, the method of the present invention has the ability to significantly improve the bit error rate in a region where the signal-to-noise ratio is high, compared to the conventional bit interleaved code modulation method. I understand.
[0064] 図 17は、 [3000, 1000]非正則 LDPC符号の 16QAMと 64QAMの性能比較図で ある。 BPSK変調、 AWGNチャネルを用いている。 LDPC符号は符号率三分の一の [3000, 1000]非正則符号で、情報ブロック長は 1000ビット、符号化ブロック長は 3000 ビットで、チェックノードの度数は 4、メッセージノードの度数分布の多項式は f (x) =x 2Z3 + 2x3Z3である。 16QAMと 64QAMはそれぞれ図 2及び図 3に示すようにゴレ ィマッピングを用いている。非正則 LDPC符号であるため、ビット信頼性による方法( BR)を用いることができ、ビット信頼性による方法 (BR)、ビットインターリーブ符号ィ匕 変調 (BICM)と、本発明の方法 (本発明)の比較を行った。同図から、非正則 LDPC 符号に対しては、本発明の方法は従来のビットインターリーブ符号ィ匕変調方法と比 ベ、信号対雑音比の高い領域でやはり顕著なビット誤り率改善性能があることがわか る。ビット信頼性 (BR)による方法は、信号対雑音比の低い領域ではやや効果がある ものの、信号対雑音比の高!、領域では従来方法に及ばな 、。
[0065] つまり、正則 LDPC符号に対してでも、非正則 LDPC符号に対してでも、本発明の 方法は、信号対雑音比の高 、領域で顕著にビット誤り率性能を改善することができる [0064] FIG. 17 is a performance comparison diagram of 16QAM and 64QAM of [3000, 1000] irregular LDPC codes. BPSK modulation and AWGN channel are used. The LDPC code is a [3000, 1000] irregular code with a code rate of 1/3, the information block length is 1000 bits, the coding block length is 3000 bits, the frequency of the check nodes is 4, and the frequency distribution polynomial of the message nodes Is f (x) = x 2Z3 + 2x 3 Z3. 16QAM and 64QAM use Gory Mapping as shown in Fig. 2 and Fig. 3, respectively. Since it is a non-regular LDPC code, the method based on bit reliability (BR) can be used, the method based on bit reliability (BR), bit interleaved code modulation (BICM), and the method of the present invention (the present invention). A comparison was made. From the figure, for non-regular LDPC codes, the method of the present invention has a remarkable bit error rate improvement performance in the region where the signal-to-noise ratio is high, compared with the conventional bit interleave code modulation method. I understand. The bit reliability (BR) method is somewhat effective in the low signal-to-noise ratio region, but has a high signal-to-noise ratio! [0065] That is, the method of the present invention can significantly improve the bit error rate performance in a region with a high signal-to-noise ratio for both regular LDPC codes and non-regular LDPC codes.
[0066] 以上実施の形態により、以下のステップを含む低密度パリティ検査符号 LDPC符号 による高次符号化変調方式を提示する。即ち前記方法は、ソースデータブロックに対 し LDPC符号ィ匕を行い、符号化されたデータブロックを生成するステップと、保護能 力の強弱の順序に基づき、符号ィ匕されたデータブロックの中の各符号ィ匕ビットを並び 替えるステップと、保護能力の強弱の順序に基づき、変調シンボルにおける各シンポ ルビットを並び替えるステップと、シンボルビットの個数に基づき、並び替え後の符号 化ビット系列をブロックに分け、並び替え後の符号化ビット系列を、シンボルビットの 個数に等し 、サブブロックに等分するステップと、各符号ィ匕サブブロックを並行してィ ンターリーブするステップと、保護能力の強い符号ィ匕ビットで構成された、インターリ ーブ後の符号化サブブロックを、保護能力の弱いシンボルビットにマッピングし、保護 能力の弱い符号ィ匕ビットで構成された、インターリーブ後の符号化サブブロックを、保 護能力の強いシンボルビットにマッピングするステップと、並列の各シンボルビットに より一つの変調シンボルを構成し、各変調シンボルを最終的な変調シンボルブロック に高次変調するステップを含む。 [0066] According to the above embodiment, a high-order coded modulation scheme using the low-density parity check code LDPC code including the following steps is presented. That is, the method performs LDPC coding on a source data block to generate a coded data block, and based on the order of strength of protection capability, A step of rearranging each code bit, a step of rearranging each symbol bit in the modulation symbol based on the order of the strength of protection, and a block of the rearranged encoded bit sequence based on the number of symbol bits The coded bit sequence after division and rearrangement is divided into sub-blocks equal to the number of symbol bits, the steps of interleaving each code block in parallel, and a code with strong protection capability The interleaved coded sub-block consisting of the 匕 bits is mapped to symbol bits with weak protection capability. Mapping interleaved coding sub-blocks, which are composed of weakly protected code bits, to symbol bits with strong protection capability, and one parallel symbol bit to form one modulation symbol, High-order modulation of each modulation symbol into a final modulation symbol block.
[0067] 好ましくは、各符号ィ匕サブブロックを並行してインターリーブするステップは、同一の 検査式に属するビットをそれぞれ離れた位置に配置することを含む。 [0067] Preferably, the step of interleaving the code sub-blocks in parallel includes disposing bits belonging to the same check expression at positions separated from each other.
[0068] 好ましくは、各符号ィ匕ビットの保護能力の強弱はその分離距離によって決定され、 ただし分離距離が大きいほど、そのビットの保護能力は強くなる。 [0068] Preferably, the strength of the protection capability of each sign bit is determined by the separation distance. However, the greater the separation distance, the stronger the protection capability of the bit.
[0069] 好ましくは、各符号ィ匕ビットの分離距離はその 2部グラフ上にある最短のショートサ イタルの周の長さの半分に等し 、。 [0069] Preferably, the separation distance of each sign bit is equal to half the circumference of the shortest short site on the bipartite graph.
[0070] 好ましくは、各シンボルビットの保護能力の強弱は各シンボルビットのノ、ミング距離 の和によって決定され、ただしハミング距離の和が大きいほど、そのビットの保護能力 は弱くなる。 [0070] Preferably, the strength of protection of each symbol bit is determined by the sum of the symbol and ming distance of each symbol bit. However, the greater the sum of the Hamming distance, the weaker the protection capability of that bit.
[0071] 好ましくは、もし並び替え後の符号化ビット系列が、シンボルビットの個数に等しい サブブロックに等分できない場合は、必要に応じ、並び替えた符号ィ匕ビット系列の末
尾に空のビットをカ卩え、シンボルビットの個数に等し 、サブブロックに等分できるように する。 [0071] Preferably, if the encoded bit sequence after rearrangement cannot be equally divided into sub-blocks equal to the number of symbol bits, if necessary, the end of the rearranged encoded bit sequence An empty bit is added at the end so that it can be equally divided into sub-blocks, equal to the number of symbol bits.
[0072] また以上の実施の形態により、以下のステップを含む、前述の高次符号化変調方 法によって生じた変調シンボルブロックを受信する、高次復号化復調方法を提示す る。即ち前記方法は、変調シンボルブロックを受信し、受信した変調シンボルブロック を高次復調して復調サブブロックを生成し、各シンボルビットの位置が一つの復調サ ブブロックが対応して 、るステップと、全ての復調サブブロックを並行してディンターリ ーブするステップと、各シンボルビットと各符号ィ匕ビットの間の対応関係に応じて、デ インターリーブ後のサブブロックを合成し、符号ィ匕ビット系列を生成するステップと、符 号ィ匕ビット系列に対し順番の解除を行うステップと、順番を解除された符号化ビット系 列に対し LDPC復号ィ匕を行 、、復号ィ匕データブロックを生成するステップを含む。 In addition, according to the above embodiment, a high-order decoding demodulation method for receiving a modulation symbol block generated by the above-described high-order coding modulation method including the following steps is presented. That is, the method receives a modulation symbol block, performs high-order demodulation on the received modulation symbol block to generate a demodulation sub-block, and a position of each symbol bit corresponds to one demodulation sub-block; Depending on the step of deinterleaving all demodulated sub-blocks in parallel and the correspondence between each symbol bit and each code bit, the sub-blocks after deinterleaving are combined to generate a code bit sequence. A step of generating, a step of canceling the order of the encoded bit sequence, and a step of generating a decoded data block by performing LDPC decoding on the encoded bit sequence whose sequence has been canceled. including.
[0073] また以上の実施の形態により、以下のステップを含む、低密度パリティ検査符号、 L DPC符号に基づく直交対称高次符号ィ匕変調方法を提示する。なお m次の変調が採 用され、 m= 2N、 Nは自然数である。即ち、前記方法は、ソースデータブロックに対 し LDPC符号ィ匕を行い、符号化されたデータブロックを生成するステップと、保護能 力の強弱の順序に基づき、符号化されたデータブロックにおける各符号ィ匕ビットを並 び替えるステップと、保護能力の強弱の順序に基づき、変調シンボルにおける各符 号シンボルビットを並び替え、ただし mは偶数であるので、第 i個目のシンボルビットと 第 N + i個目のシンボルビットと同じ保護能力を有し、 iは 1以上かつ N以下の自然数 であるステップと、シンボルビットの個数 mに応じて並び替え後の符号ィ匕ビット系列を ブロック分けし、並び替え後の符号化ビット系列をシンボルビットの個数の半分、 Nと 等 、サブブロックに等分するステップと、各符号ィ匕サブブロックを並行してインター リーブするステップと、各インターリーブ後の符号ィ匕サブブロックを、 2個の同じ大きさ の符号ィ匕データストリームに変換するステップと、保護能力の強い符号ィ匕ビットからな る符号化データストリームを、保護能力の弱いシンボルビットにマッピングし、保護能 力の弱い符号ィ匕ビットからなる符号ィ匕データストリームを保護能力の強いシンボルビ ットにマッピングし、ただし、インターリーブされた同一の符号化サブブロックからの 2 個の符号ィ匕データストリームは、それぞれ保護能力の等しい第 i個目と第 N+i個目の
シンボルビットにマッピングされるステップと、並列の各シンボルビットから一つの変調 シンボルを構成し、各変調シンボルを最終的な変調シンボルブロックに高次変調す るステップを含む。 Further, according to the above embodiment, an orthogonal symmetric high-order code modulation method based on a low density parity check code and an L DPC code including the following steps is presented. Note that m-th order modulation is used, where m = 2N and N are natural numbers. That is, the method performs LDPC coding on a source data block to generate a coded data block and each code in the coded data block based on the order of the strength of protection. Reorder each symbol bit in the modulation symbol based on the order of rearrangement of bits and the order of strength of protection, where m is an even number, so the i-th symbol bit and the N + th It has the same protection ability as the i-th symbol bit, i is a natural number greater than or equal to 1 and less than or equal to N, and the code bit sequence after rearrangement according to the number m of symbol bits is divided into blocks, A step of equally dividing the rearranged encoded bit sequence into half of the number of symbol bits, such as N, and sub-blocks, and interleaving each code sub-block in parallel. A step of converting each of the interleaved code signal sub-blocks into two code signal data streams of the same size, and an encoded data stream comprising code signal bits having strong protection capability Map to a weakly protected symbol bit and map a code data stream consisting of weakly protected code bits to a strong protected symbol bit, but with the same interleaved coding sub-block Are the i-th and N + i-th data streams with the same protection capability. A step of mapping to symbol bits, and a step of constructing one modulation symbol from each parallel symbol bit, and high-order modulating each modulation symbol into a final modulation symbol block.
[0074] 好ましくは、各符号ィ匕サブブロックを並行してインターリーブするステップは、同一の 検査式に属するビットをそれぞれ離れた位置に配置することを含む。 [0074] Preferably, the step of interleaving the code sub-blocks in parallel includes disposing bits belonging to the same check expression at positions separated from each other.
[0075] 好ましくは、各符号ィ匕ビットの保護能力の強弱はその分離距離によって決定され、 ただし分離距離が大きいほど、そのビットの保護能力は強くなる。 [0075] Preferably, the strength of the protection capability of each code bit is determined by the separation distance. However, the greater the separation distance, the stronger the protection capability of the bit.
[0076] 好ましくは、各符号ィ匕ビットの分離距離はその 2部グラフ上にある最短のショートサ イタルの周の長さの半分に等し 、。 [0076] Preferably, the separation distance of each code bit is equal to half the circumference of the shortest short site on the bipartite graph.
[0077] 好ましくは、各シンボルビットの保護能力の強弱は各シンボルビットのノ、ミング距離 の和によって決定され、ただしハミング距離の和が大きいほど、そのビットの保護能力 は弱くなる。 [0077] Preferably, the protection capability of each symbol bit is determined by the sum of the symbol and ming distance of each symbol bit. However, the greater the sum of the Hamming distance, the weaker the protection capability of that bit.
[0078] 好ましくは、もし並び替えた符号ィ匕ビット系列力 シンボルビットの個数の半分、 Nに 等しいサブブロックに等分できない場合は、必要に応じ、並び替えた符号ィ匕ビット系 列の末尾に空のビットを加え、シンボルビットの個数の半分、 Nに等しいサブブロック に等分できるようにする。 [0078] Preferably, if the reordered code bit sequence power is not equally divided into half the number of symbol bits and equal to N, the end of the rearranged code bit sequence as necessary Add an empty bit to, so that it can be equally divided into half the number of symbol bits, equal to N.
[0079] 好ましくは、もしインターリーブ後の各符号ィ匕サブブロックが 2個の同じ大きさの符号 化データストリームに変換できない場合、必要に応じ、インターリーブ後の各符号ィ匕 サブブロックの末尾に空のビットをカ卩え、 2個の同じ大きさの符号ィ匕データストリーム に変換できるようにする。 [0079] Preferably, if each interleaved code sub-block cannot be converted into two encoded data streams of the same size, an empty space is added at the end of each interleaved code sub-block as necessary. Are converted so that they can be converted into two identically sized data streams.
[0080] また以上の実施の形態により、以下のステップを含む、前記直交対称高次符号ィ匕 変調方法により生じた変調シンボルブロックを受信する、高次復号化復調方法を提 示する。即ち、前記方法は、変調シンボルブロックを受信し、受信した変調シンボル ブロックを高次復調し、復調サブブロックを生成し、各シンボルビットの位置が一つの 復調サブブロックに対応するステップと、保護能力が同じ第 i個目と第 N+i個目のシ ンボルビットの位置に対応する 2個の復調サブブロックを、同一の復調サブブロックに 合成するステップと、合成後の全ての復調サブブロックを並行してディンターリーブ するステップと、各シンボルビットと各符号ィ匕ビットの間の対応関係に基づき、ディン
ターリーブしたサブブロックを合成し、符号化ビット系列を生成するステップと、符号 化ビット系列の順番を解除するステップと、順番を解除した符号ィ匕ビット系列に対し L DPC復号ィ匕を行 、、復号ィ匕データブロックを生成するステップを含む。 Further, according to the above embodiment, a high-order decoding demodulation method for receiving a modulation symbol block generated by the orthogonal symmetric high-order code modulation method including the following steps is provided. That is, the method receives a modulation symbol block, performs high-order demodulation of the received modulation symbol block, generates a demodulation sub-block, and each symbol bit position corresponds to one demodulation sub-block; Combining two demodulated sub-blocks corresponding to the positions of the i-th and N + i-th symbol bits with the same demodulated sub-block and all demodulated sub-blocks after the synthesis in parallel Din leave and the correspondence between each symbol bit and each sign bit Synthesizing the subleaved sub-blocks to generate a coded bit sequence; releasing the order of the coded bit sequence; performing L DPC decoding on the unsigned code bit sequence; Generating a decryption key data block.
[0081] 2006年 3月 20日出願の第 200610071413. 4の中国出願に含まれる明細書、図 面および要約書の開示内容は、すべて本願に援用される。 [0081] The disclosures of the description, drawings and abstracts contained in the Chinese application No. 200610071413.4 filed on March 20, 2006 are hereby incorporated by reference.
産業上の利用可能性 Industrial applicability
[0082] 本発明の変調装置、復調装置、および変調方法は、ビット誤り率を低下させるもの として有用である。
The modulation device, demodulation device, and modulation method of the present invention are useful for reducing the bit error rate.
Claims
[1] ソースデータブロックに対して LDPC符号ィ匕を行うことにより、符号化データブロック を形成する LDPC符号化手段と、 [1] LDPC encoding means for forming an encoded data block by performing LDPC encoding on the source data block;
ビット保護能力の強弱の順序に基づき、前記符号化データブロックの各符号化ビッ トを並び替えるビット並び替え手段と、 A bit rearranging means for rearranging each encoded bit of the encoded data block based on the order of bit protection capability;
前記並び替え後の符号化ビット系列を、 1つの変調シンボルが表す単位ビット列の 構成ビット数に等しい数の複数のサブブロックに分割する分割手段と、 Dividing means for dividing the rearranged encoded bit sequence into a plurality of sub-blocks equal to the number of constituent bits of a unit bit string represented by one modulation symbol;
前記構成ビットごとの誤り易さおよび前記サブブロックのビット保護能力に基づく前 記構成ビットの前記サブブロックに対する割り当てに従って、各サブブロックから 1ビッ トずつ順次抽出されたビット群を並べ替えたときに得られるビット列に対応する、コン スタレーシヨン上の変調シンボルに従って、変調信号を形成する変調手段と、 を具備する変調装置。 When a group of bits sequentially extracted from each sub-block is rearranged according to the assignment of the above-mentioned configuration bits to the sub-block based on the ease of error for each constituent bit and the bit protection capability of the sub-block. A modulation device comprising: modulation means for forming a modulation signal according to a modulation symbol on a constellation corresponding to the obtained bit string.
[2] 前記ビット並び替え手段は、符号ィ匕ビットの分離距離により決定されるビット保護能 力の強弱の順序に基づき、並び替える請求項 1に記載の変調装置。 [2] The modulation device according to [1], wherein the bit rearranging unit rearranges the bits based on the order of bit protection capability determined by the separation distance of the sign bits.
[3] 前記符号ィ匕ビットの分離距離は、 2部グラフ上の最短ショートサイクルの周の長さの 半分である請求項 2に記載の変調装置。 [3] The modulation device according to [2], wherein the separation distance of the sign bit is half of the circumference of the shortest short cycle on the bipartite graph.
[4] 前記分割手段と前記変調手段との間に設けられ、サブブロック毎にインターリーブ を施すインターリーバを具備し、 [4] An interleaver that is provided between the dividing unit and the modulating unit and performs interleaving for each sub-block,
前記インターリーバは、 LDPC符号ィ匕の同一の検査式に属するビットが互いに離れ た位置に配置されるように、インターリーブする請求項 1に記載の変調装置。 2. The modulation apparatus according to claim 1, wherein the interleaver performs interleaving so that bits belonging to the same check expression of the LDPC code are arranged at positions separated from each other.
[5] 前記変調手段は、前記保護能力の高!、サブブロックを、前記保護能力の低!、サブ ブロックに比べて、誤り易い前記構成ビットに割り当てる割り当てに従って、前記ビット 群を並べ替えたときに得られるビット列に対応する、コンスタレーション上の変調シン ボルに従って、変調信号を形成する請求項 1に記載の変調装置。 [5] When the modulation means rearranges the bit groups according to the assignment of the high protection capability !, the sub-blocks to the protection bits! 2. The modulation device according to claim 1, wherein a modulation signal is formed in accordance with a modulation symbol on a constellation corresponding to the bit string obtained in (1).
[6] 請求項 1に記載の変調装置にて形成された変調信号を復調する復調装置であって 前記変調信号を前記コンスタレーシヨンに基づいて前記ビット列に変換すると共に 、当該ビット列の各ビットを前記サブブロックごとに振り分ける復調手段と、
前記サブブロックを合成することにより前記並び替え後の符号ィ匕ビット系列を形成 する合成手段と、 [6] A demodulating device that demodulates the modulation signal formed by the modulation device according to claim 1, wherein the modulation signal is converted into the bit string based on the constellation, and each bit of the bit string is converted. Demodulating means for distributing each sub-block; Combining means for forming the rearranged code bit sequence by combining the sub-blocks;
前記ビット並び替え手段にて行われた逆の操作を前記合成手段にて形成された前 記符号化ビット系列に施す他のビット並び替え手段と、 Other bit rearranging means for applying the reverse operation performed by the bit rearranging means to the coded bit sequence formed by the synthesizing means;
前記他のビット並び替え手段にて得られた符号ィ匕データ系列に LDPC復号ィ匕を行 う LDPC復号ィヒ手段と、 LDPC decoding means for performing LDPC decoding on the code data sequence obtained by the other bit rearranging means;
を具備する復調装置。 A demodulator comprising:
[7] ソースデータブロックに対して LDPC符号ィ匕を行うことにより、符号化データブロック を形成するステップと、 [7] forming an encoded data block by performing LDPC code on the source data block;
ビット保護能力の強弱の順序に基づき、前記符号化データブロックの各符号化ビッ トを並び替えるステップと、 Rearranging each encoded bit of the encoded data block based on the order of the strength of the bit protection capability; and
前記並び替え後の符号化ビット系列を、 1つの変調シンボルが表す単位ビット列の 構成ビット数に等しい数の複数のサブブロックに分割するステップと、 Dividing the rearranged encoded bit sequence into a plurality of sub-blocks equal to the number of constituent bits of a unit bit string represented by one modulation symbol;
前記構成ビットごとの誤り易さおよび前記サブブロックのビット保護能力に基づく前 記構成ビットの前記サブブロックに対する割り当てに従って、各サブブロックから 1ビッ トずつ順次抽出されたビット群を並べ替えたときに得られるビット列に対応する、コン スタレーシヨン上の変調シンボルに従って、変調信号を形成するステップと、 When a group of bits sequentially extracted from each sub-block is rearranged according to the assignment of the above-mentioned configuration bits to the sub-block based on the ease of error for each constituent bit and the bit protection capability of the sub-block. Forming a modulation signal according to modulation symbols on the constellation corresponding to the resulting bit string;
を具備する変調方法。
A modulation method comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006100714134A CN101043483A (en) | 2006-03-20 | 2006-03-20 | High-order coded modulation method based on low density check code |
CN200610071413.4 | 2006-03-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007108471A1 true WO2007108471A1 (en) | 2007-09-27 |
Family
ID=38522498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/055682 WO2007108471A1 (en) | 2006-03-20 | 2007-03-20 | Modulation device, demodulation device, and modulating method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101043483A (en) |
WO (1) | WO2007108471A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104168083A (en) * | 2014-05-22 | 2014-11-26 | 西安空间无线电技术研究所 | Interleaved mapping method for coded modulation of protograph LDPC code |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101399554B (en) * | 2007-09-30 | 2012-03-21 | 华为技术有限公司 | Interleaving method and de-interleaving method based on LDPC code and apparatus therefor |
KR101435681B1 (en) * | 2007-11-08 | 2014-09-02 | 삼성전자주식회사 | Method and apparatus for transmitting and receiving data in a communication system using low density parity check code |
CN101404564B (en) * | 2008-11-14 | 2011-04-27 | 南京航空航天大学 | Soft demodulation method for 8PSK Gray mapping |
EP2525496A1 (en) | 2011-05-18 | 2012-11-21 | Panasonic Corporation | Bit-interleaved coding and modulation (BICM) with quasi-cyclic LDPC codes |
CN102394660B (en) * | 2011-08-24 | 2017-06-13 | 中兴通讯股份有限公司 | The coding method of the quasi- cyclic extensions parallel encoding LDPC code of block interleaved and encoder |
CA2940197C (en) * | 2014-02-20 | 2022-07-26 | Shanghai National Engineering Research Center Of Digital Television Co., Ltd | Interleaving and mapping method and deinterleaving and demapping method for ldpc codeword |
WO2015149280A1 (en) * | 2014-04-01 | 2015-10-08 | 华为技术有限公司 | Adaptive coding and modulation method, apparatus and system |
CN105406876B (en) * | 2015-10-21 | 2019-04-12 | 深圳市统先科技股份有限公司 | A kind of multiplexing decoder of multichannel LDPC code |
CN106685586B (en) * | 2015-11-11 | 2020-02-14 | 华为技术有限公司 | Method and apparatus for generating low density parity check code for transmission in a channel |
CN108432168B (en) * | 2016-06-14 | 2020-11-03 | 华为技术有限公司 | Method and equipment for demodulation and decoding |
CN108123776A (en) | 2016-11-30 | 2018-06-05 | 华为技术有限公司 | A kind of coding and modulator approach, communicator |
CN110034847B (en) * | 2018-01-12 | 2022-01-14 | 华为技术有限公司 | Cascade coding method and device |
WO2019157759A1 (en) * | 2018-02-14 | 2019-08-22 | 华为技术有限公司 | Encoding and decoding methods, encoding and decoding apparatuses and encoding and decoding devices |
CN110572345B (en) * | 2019-07-22 | 2021-12-14 | 武汉邮电科学研究院有限公司 | Channel coding and decoding method and system for reducing bit error rate |
CN114567534B (en) * | 2022-02-23 | 2024-08-16 | 深圳云驰科技有限公司 | Soft decision method, soft decision device, computer equipment and computer readable storage medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006287561A (en) * | 2005-03-31 | 2006-10-19 | Kddi Corp | Adaptive modulation device and adaptive modulating method |
JP2007019770A (en) * | 2005-07-06 | 2007-01-25 | Matsushita Electric Ind Co Ltd | Transmitter and multi-antenna transmitter |
-
2006
- 2006-03-20 CN CNA2006100714134A patent/CN101043483A/en active Pending
-
2007
- 2007-03-20 WO PCT/JP2007/055682 patent/WO2007108471A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006287561A (en) * | 2005-03-31 | 2006-10-19 | Kddi Corp | Adaptive modulation device and adaptive modulating method |
JP2007019770A (en) * | 2005-07-06 | 2007-01-25 | Matsushita Electric Ind Co Ltd | Transmitter and multi-antenna transmitter |
Non-Patent Citations (2)
Title |
---|
BRINK S. ET AL.: "Design of low-density parity-check codes for modulation and detection", IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 52, no. 4, April 2004 (2004-04-01), pages 670 - 678, XP002324882 * |
LI Y. ET AL.: "Bit-reliability mapping in LDPC-coded modulation systems", IEEE COMMUNICATIONS LETTERS, vol. 9, no. 1, January 2005 (2005-01-01), pages 1 - 3, XP001211457 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104168083A (en) * | 2014-05-22 | 2014-11-26 | 西安空间无线电技术研究所 | Interleaved mapping method for coded modulation of protograph LDPC code |
Also Published As
Publication number | Publication date |
---|---|
CN101043483A (en) | 2007-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007108471A1 (en) | Modulation device, demodulation device, and modulating method | |
US8261152B2 (en) | Apparatus and method for channel encoding/decoding in communication system using variable-length LDPC codes | |
JP5235629B2 (en) | Encoding and modulation method and decoding method for wireless communication apparatus | |
KR102338508B1 (en) | Method and apparatus for coding/decoding in a comminication or broadcasting system using high-order modulation | |
WO2008048188A1 (en) | A method and system for data transmission in a multiple input multiple output (mimo) system | |
CA2881540C (en) | Modulator and modulation method using non-uniform 16-symbol signal constellation for low-density parity check codeword having 4/15 code rate | |
CA2881538C (en) | Modulator and modulation method using non-uniform 16-symbol signal constellation for low-density parity check codeword having 2/15 code rate | |
EP1330062B1 (en) | Method and apparatus for weighted non-binary repeat coding and space-time coding | |
JP2012239240A (en) | Method for generating parity-check matrices of low-density parity-check codes | |
KR20170060562A (en) | Apparatus and method for channel encoding/decoding in communication or broadcasting system | |
KR102678457B1 (en) | Channel encoding/decoding method and device in communication or broadcasting system | |
CA2881523A1 (en) | Modulator and modulation method using non-uniform 16-symbol signal constellation for low-density parity check codeword having 7/15 code rate | |
Abdelaziz et al. | Ternary convolutional codes for ternary phase shift keying | |
JP2006094012A (en) | Encoding method, decoding processing method, and communication apparatus | |
KR20180107692A (en) | Apparatus and method of transmission using harq in communication or broadcasting system | |
KR102482110B1 (en) | Apparatus and method for channel encoding/decoding in communication or broadcasting system | |
KR102509968B1 (en) | Apparatus and method of transmission using harq in communication or broadcasting system | |
KR20210134289A (en) | Modulator using non-uniform 16-symbol signal constellation for low density parity check codeword with 4/15 code rate, and method using the same | |
JP5153588B2 (en) | Wireless communication device | |
JP5521063B2 (en) | Encoding and modulation method and decoding method for wireless communication apparatus | |
KR102531459B1 (en) | Modulator using non-uniform 16-symbol signal constellation for low density parity check codeword with 2/15 code rate, and method using the same | |
EP3160070B1 (en) | Multi-stage encoding device, method for implementing multi-stage encoding device and storage medium | |
KR20190017600A (en) | Apparatus and method for transmitting and receiving data in communication systems | |
KR101426557B1 (en) | Method and appratus for transmitting and receiving data in a communication system using low density parity check code | |
KR20170060574A (en) | Apparatus and method for channel encoding/decoding in communication or broadcasting system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07739125 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07739125 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |