[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007108245A1 - 抗菌性ガラスおよび抗菌性ガラスの製造方法 - Google Patents

抗菌性ガラスおよび抗菌性ガラスの製造方法 Download PDF

Info

Publication number
WO2007108245A1
WO2007108245A1 PCT/JP2007/052302 JP2007052302W WO2007108245A1 WO 2007108245 A1 WO2007108245 A1 WO 2007108245A1 JP 2007052302 W JP2007052302 W JP 2007052302W WO 2007108245 A1 WO2007108245 A1 WO 2007108245A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial glass
antibacterial
glass
amount
range
Prior art date
Application number
PCT/JP2007/052302
Other languages
English (en)
French (fr)
Inventor
Yoshinao Kobayashi
Mamoru Kitamura
Shinobu Kanamaru
Kenichi Tanaka
Original Assignee
Koa Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Glass Co., Ltd. filed Critical Koa Glass Co., Ltd.
Priority to US12/224,487 priority Critical patent/US8034732B2/en
Priority to JP2008506194A priority patent/JP4212642B2/ja
Priority to CN200780006958XA priority patent/CN101389577B/zh
Publication of WO2007108245A1 publication Critical patent/WO2007108245A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • C02F1/505Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment by oligodynamic treatment
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B13/00Rolling molten glass, i.e. where the molten glass is shaped by rolling
    • C03B13/14Rolling other articles, i.e. not covered by C03B13/01 - C03B13/12, e.g. channeled articles, briquette-shaped articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0035Compositions for glass with special properties for soluble glass for controlled release of a compound incorporated in said glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/002Grey water, e.g. from clothes washers, showers or dishwashers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/02Antibacterial glass, glaze or enamel

Definitions

  • Antibacterial glass and method for producing antibacterial glass are provided.
  • the present invention relates to antibacterial glass and a method for producing antibacterial glass, and particularly relates to an antibacterial glass containing an inorganic colorant and excellent in discoloration prevention effect and distinguishability, and a method for producing antibacterial glass.
  • antibacterial glass having a predetermined particle size has been added to resin for building materials, home appliances (including TVs, personal computers, mobile phones, video cameras, etc.), sundries, packaging materials, etc.
  • An antibacterial resin composition mixed in a predetermined amount is used.
  • a synthetic resin molded article containing a borosilicate antibacterial glass that elutes silver ions in the resin has been disclosed (for example, see Patent Document 1). More specifically, a strong synthetic resin molding is composed of one or more types of network-forming oxides of SiO, BO, PO, and one or more types of networks of Na 0, K 0, CaO, and ⁇ .
  • a glass solid consisting of a modified oxide is composed of 100% by weight of borosilicate antibacterial glass containing 1 to 20 parts by weight of AgO as monovalent Ag in a synthetic resin.
  • an antibacterial resin composition there is disclosed a resin composition comprising a glass flake having an antibacterial particle size of 10 to L000 ⁇ m and a thickness of 0 ⁇ ! To 20 ⁇ m. (For example, see Patent Document 2).
  • composition of vigorous flaky glass when it contains BO, Sio: 20 to 60 wt%, BO: 30 to 70 wt%, NaO: 5 to 35 wt%, AO: 0.5-3 weight. /.
  • B 2 O is not contained
  • SiO 55 to 80% by weight
  • AI 2 O 0.5 to
  • a silver ion-containing inorganic antibacterial agent having an average particle size of 2 to 20 ⁇ containing 0 to 5% by weight of Ag 2 O to a glass component composed of 6 to 8 mol% in a resin.
  • An antibacterial water-based product is disclosed, which is added in the range of ⁇ 5% by weight and further added with an inorganic filler in the range of 5 to 80% by weight.
  • the average particle size of 20 / ⁇ ⁇ or less is 40 to 80 mol 0 in the molding resin constituting the covered electric product.
  • ⁇ ⁇ ⁇ ⁇ : 54-60 mol% mean particle size of 20 ⁇ m or less
  • alkali metal oxides an antimicrobial glass consisting 5-8 mole 0/0, is proposed respectively antimicrobial ⁇ composition comprising a predetermined amount Rereru addition
  • Patent Document 6 the maximum of the antimicrobial glass diameter (tl):!
  • the antibacterial glass which creates silver ion-containing water by direct contact with water and applies a predetermined antibacterial treatment to an antibacterial object during or after washing
  • the method of manufacture is disclosed! /, Ru.
  • Patent Document 7 As an application of antibacterial glass, a glass water treatment agent used in a water treatment apparatus such as a water storage tank or a cooling tower has been proposed (for example, see Patent Document 7).
  • Patent Document 2 JP-A-7-25635 (Claims)
  • Patent Document 3 JP-A-10-72530 (Claims)
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-3238 (Claims)
  • Patent Document 5 Japanese Patent Laid-Open No. 2000-3239 (Claims)
  • Patent Document 6 WO 2005/087675 Publication (Claims)
  • Patent Document 7 Japanese Patent Publication No. 7-63701 (Claims)
  • the antibacterial resin composition is composed of a mixture of antibacterial glass and resin, so that the antibacterial glass is substantially colorless and transparent and contains it.
  • silver reacts with chlorine ions, causing discoloration or opacification.
  • the average particle size of the antibacterial glass is preferably 20 m or less in order to mix uniformly in the resin.
  • the antibacterial glass is a scale having a predetermined size.
  • antibacterial glass and glass water treatment agents disclosed in Patent Documents 6 and 7 have relatively large longest diameters, but are used in electrical products that use running water such as dishwashers, dish dryers, and washing machines. When used, there was a problem that the effect of preventing discoloration was inferior or that it was easy to break.
  • the antibacterial glasses disclosed in Patent Documents 1 to 7 are all substantially colorless and transparent, and when they are provided with a covering member and formed into a cartridge, their presence is identified from the outside. The problem of not being able to be seen was seen. In other words, it is converted into a cartridge and used as an electrical product. There was also a problem that when it was used, it was difficult to determine when to replenish or replace the antibacterial glass.
  • the present inventors have added a predetermined amount of an inorganic colorant and, at the same time, limited the size of the antibacterial glass to a predetermined range, thereby directly with water.
  • the present invention has been completed by finding that a predetermined amount of silver ions can be repeatedly released while maintaining the initial appearance and distinguishability even when contacted.
  • the present invention provides an antibacterial glass and an antibacterial property capable of obtaining an excellent discoloration preventing effect and distinguishability while maintaining the release amount of silver ions within a predetermined range even when an inorganic colorant is added. It aims at providing the manufacturing method of glass.
  • a plate-shaped antibacterial glass that exhibits antibacterial effects by releasing silver ions, the maximum diameter (tl) is set to a value within a range of 3 to 30 mm, and
  • the size of the antibacterial glass and the elution amount of silver ions can be easily limited to a predetermined range.
  • the initial appearance and distinguishability can be maintained while exhibiting the prescribed antibacterial effect. Therefore, the action of the inorganic colorant can effectively exhibit the resin-color discoloration prevention effect due to silver ions, and the presence of external force even in the case of a cartridge equipped with a covering member. Can be easily identified, and it is possible to accurately determine when to replenish or replace the antibacterial glass.
  • the inorganic colorant is a group power consisting of acid hydranol, copper oxide, chromium oxide, nickel oxide, manganese oxide, neodymium oxide, erbium oxide, and cerium oxide power. Preferably it contains at least one selected compound. Good.
  • cobalt oxide as an inorganic colorant, excellent colorability can be obtained by adding a very small amount, and the moldability and polishability of the antibacterial glass can be improved. Can be improved.
  • the amount of inorganic colorant contained in the antibacterial glass is C1 (wt%), and the amount of acid silver contained in the same manner ⁇
  • the ratio represented by C1ZC2 should preferably be within the range of 0.01-3.
  • the elution amount of silver ions is set to 0. ⁇ .
  • a value within the range of 45 mg / (g′24Hrs) is preferred.
  • the initial appearance and distinguishability can be maintained while exhibiting a predetermined antibacterial effect for a longer period of time.
  • the antibacterial glass of the present invention it is preferable that the antibacterial glass is chamfered along the side constituting the antibacterial glass.
  • the initial appearance and distinguishability can be maintained while exhibiting a predetermined antibacterial effect for a longer period of time.
  • the moldability and polishing properties of the antibacterial glass can be improved.
  • this form of antibacterial glass if it is easy to handle or replace, even if a relatively strong water flow is used, it will flow out to the outside along with the water flow. It is possible to effectively prevent crushing.
  • an antibacterial antibacterial glass containing no inorganic colorant -It is preferable to further contain the glass in the range of 10 to 90% by weight with respect to the total amount. By configuring in this way, it is possible to adjust the elution amount of silver in the antibacterial glass.
  • the antibacterial glasses are in contact with each other. , It is possible to effectively prevent aggregation.
  • Another aspect of the present invention is a method for producing a plate-shaped antibacterial glass that exhibits antibacterial effects by releasing silver ions, and includes the following steps ( ⁇ ) to ( ⁇ ): This is a method for producing antibacterial glass.
  • the initial appearance and distinguishability are maintained while exhibiting a predetermined antibacterial effect over a long period of time even when directly in contact with water. Possible antibacterial glass can be produced efficiently.
  • step (smell) polishing the antibacterial glass.
  • FIG. 1] (a) to (f) are diagrams for explaining the shape of the antibacterial glass of the first embodiment.
  • FIG. 2 A diagram used to explain the relationship between the maximum diameter (tl) of antibacterial glass and the residual rate.
  • FIG. 3 A diagram used to explain the relationship between the amount of silver ions eluted with the number of washings.
  • FIG. 4 is a diagram provided to explain the relationship between the amount of cobalt oxide added and color developability.
  • FIG. 5 is a diagram for explaining the relationship between the addition amount of cobalt oxide and copper oxide and the elution amount of silver ions.
  • FIG. 6 (a) to (b) are diagrams for explaining the antibacterial glass cartridge.
  • FIG. 7] (a) to (c) are diagrams for explaining an antibacterial glass covering member.
  • FIG. 8 is a diagram showing an example of a washing machine to which antibacterial glass is applied.
  • FIG. 9 (a) to (b) are diagrams for explaining the method for producing antibacterial glass (part 1). '
  • FIG. 10 is a diagram for explaining another method for producing antibacterial glass.
  • FIG. 11] (a) to (b) are diagrams for explaining the anti-discoloration effect of the antibacterial glass.
  • FIG. 12] (a) to (c) are diagrams for explaining the influence of the surface treatment process on the appearance of the antibacterial glass.
  • the first embodiment is a plate-like antibacterial glass that exhibits antibacterial effects by releasing silver ions, and has a maximum diameter (tl) in the range of 3 to 30 mm, and a blending component
  • the antibacterial glass contains an inorganic colorant and the added amount of the inorganic colorant is a value within the range of 0.001 to 0.5% by weight with respect to the total amount.
  • the shape of the antibacterial glass is not particularly limited, but as shown in FIGS. 1 (a) to (f), it has a rectangular shape, a polygonal shape, a disc shape, an elliptical shape, an irregular shape, a perforated shape, etc.
  • it is a flat antibacterial glass 2 (2a-2f).
  • the antibacterial glass is made into a flat plate shape such as a rectangular shape or a disk shape, so that even when it is placed in a predetermined place and brought into direct contact with water, it is washed away by water pressure, This is because it is possible to effectively prevent outflow from a predetermined location.
  • the antibacterial glass is rectangular or the like, the antibacterial glass is less likely to agglomerate adjacently during manufacture or use, so the size and shape of the antibacterial glass can be controlled and used. This is because it becomes easier to control environmental conditions.
  • FIGS. 1 (a) to 1 (f) it is preferable that chamfering is performed along the sides constituting the strong antibacterial glass.
  • this chamfered shape can improve the moldability and polishability of the antibacterial glass.
  • the maximum diameter (tl) of the antibacterial glass is set to a value within the range of 3 to 30 nmi.
  • the maximum diameter (tl) of the antibacterial glass is, for example, the maximum length when an arbitrary line is drawn in the shape of the antibacterial glass, as shown in FIGS. Means.
  • the maximum diameter of the antibacterial glass is more preferably set to a value within the range of 4 to 25 mm, and further preferably set to a value within the range of 5 to 15 mm.
  • the maximum diameter (tl) of the antibacterial glass that is strong is that the antibacterial glass is flat, for example. • In some cases, it is the maximum diameter in the plane direction, and in the case of a sphere, it is the diameter of the sphere.
  • the thickness of the antibacterial glass is preferably set to a value within a range of 0.1 to LOm m. .
  • the thickness of the strong antibacterial glass is less than 0.1 mm, it becomes difficult to release a predetermined concentration of silver ions, it is difficult to handle, and it is manufactured stably. This is because it may be difficult to do. On the other hand, if the thickness of the strong antibacterial glass exceeds 10 mm, it will be difficult to handle or to manufacture stably.
  • the thickness of the antibacterial glass is set to a value in the range of 1 to 8 mm. Is preferable.
  • the maximum diameter and thickness of the antibacterial glass described above can be easily measured using, for example, an optical micrograph or a caliper.
  • the horizontal axis of FIG. 2 indicates the logarithm of the maximum diameter (nun) in the plane direction of the antibacterial glass, and the vertical axis indicates the antibacterial gas in the examples described later when the antibacterial glass of each particle size is used. Show the residual rate (%) measured according to the method for measuring the residual rate of lath.
  • the residual rate is relatively high, that is, 50% or more. It is understood that it can withstand long-term use.
  • the antibacterial glass (maximum diameter in the plane direction 15 mm) according to the present invention and the antibacterial glass having an average particle diameter of 20 ⁇ m
  • the horizontal axis in FIG. 3 shows the number of times that each antibacterial glass was washed using a washing machine 50 as shown in FIG. 8 described later, and the vertical axis in FIG.
  • the elution amount of silver ions into water (mg / (g'24Hrs)) is shown.
  • the previous data is indicated by solid line A
  • antibacterial glass having an average particle size of 20 ⁇ m the previous data is indicated by dotted line B.
  • the antibacterial glass of the present invention has a predetermined maximum diameter in the plane direction and is not swept away by water pressure or the like. Absent. Therefore, it is understood that a desired amount of elution can be maintained even when used repeatedly. Therefore, it is understood that the antibacterial glass of the present invention can withstand long-term use.
  • antibacterial glass with an average particle size of 20 / m as shown in Fig. 2, the residual amount of antibacterial glass decreases each time it is used. Compared with the elution amount of silver ions immediately after the start of use, the elution value is greatly reduced. Therefore, it is understood that it is necessary to replenish antibacterial glass frequently in order to ensure the desired amount of elution of silver ions.
  • antibacterial glass having the following compositional power without containing an inorganic colorant.
  • the first glass composition in the antibacterial glass contains Ag 0, ZnO, CaO, B 2 O and P 2 O, and when the total amount is 100% by weight, the content of Ag 2 O is 0.2.
  • the weight ratio of aO is preferably set to a value within the range of 1 to 15.
  • the reason for this is that if the ZnO / CaO weight ratio is less than 1.1, yellowing of the antibacterial glass may not be effectively prevented, while the powerful ZnO / CaO weight ratio. If the value exceeds 15, the antibacterial glass may become cloudy or, conversely, yellow.
  • the weight ratio represented by ZnOZCaO is a value in the range of 1.2 to 10; more preferably in the range of 1.5 to 8.
  • the second glass composition instead of containing substantially no ZnO, Ag 0, CaO, BO And PO, and when the total amount is 100% by weight, the content of AgO is 0.2
  • a value in the range of ⁇ 5 wt%, a CaO content in the range of 15-50 wt%, a BO content in the range of 0.1-15 wt%, and a PO content It is an antibacterial glass having a value within the range of 30-80% by weight and a weight ratio of CaO / AgO within the range of 5-15.
  • the weight ratio represented by strong CaO-no-Ag. O it is more preferable to set the weight ratio represented by strong CaO-no-Ag. O to a value in the range of 6 to 12, more preferably in the range of 7 to 10.
  • the third glass composition contains Ag 0, CaO, BO, PO and Al 2 O, and when the total amount is 100% by weight, the content of Al 2 O is 0, 5 to Antibacterial glass with a value within the range of 10% by weight.
  • the content of strong AlO to a value within the range of 1 to 5% by weight.
  • the antibacterial glass contains an inorganic colorant, and the addition amount of the inorganic colorant is set to a value within the range of 0.001 to 0.5% by weight with respect to the total amount. And This is because the size of the antibacterial glass and the elution amount of silver ions can be easily limited to a predetermined range by adding a predetermined amount of an inorganic colorant.
  • the initial appearance can be maintained distinctive while exhibiting a predetermined antibacterial effect over a long period of time.
  • silver ions are produced by the action of the inorganic colorant.
  • the addition amount of the inorganic colorant in the antibacterial glass is more preferably set to a value within the range of 0.003 to 0.1% by weight with respect to the total amount, and 0.005 to 0.05% by weight. More preferably, the value is within the range of%.
  • the color developability of this antibacterial glass indicates that the larger the number, the better, and the value corresponds to the absorbance of visible light.
  • the horizontal axis in FIG. 5 indicates the amount of addition of inorganic colorants (acid-cobalt and acid-copper) (weight%) in antibacterial glass in logarithm, and the vertical axis in antibacterial glass.
  • the elution amount of silver ion (mg / (g '24Hrs)) is shown.
  • the characteristic curve with the symbol A is the case where cobalt oxide is used as the inorganic colorant
  • the characteristic curve force with the symbol B is copper oxide as the inorganic colorant. This is the case.
  • the color development in antibacterial glass and the silver ion It can be understood that it is effective to set the added amount of the inorganic colorant to a value within the range of 0.001 to 0.5% by weight with respect to the total amount in order to take a balance with the eluted amount. .
  • the ratio represented by C1 / C2 is 0.01-3. A value within the range is preferred.
  • the reason for this is to maintain the initial appearance and discriminability without suppressing the exertion of the prescribed antibacterial effect by controlling the amount of inorganic colorant added in association with the amount of silver oxide added. It is because it can do. That is, if the ratio represented by C1ZC2 is less than 0.01, the effect of preventing discoloration may be poor. On the other hand, if the ratio force 3 ⁇ 4 represented by C1ZC 2 is exceeded, the antibacterial effect may be poorly expressed. Therefore, the ratio represented by C1 / C2 is set to a value within the range of 0.01 to 2. It is more preferable to set the value within the range of 0.05 to 1.
  • the type of inorganic colorant is not particularly limited, but cobalt oxide (CoO), copper oxide (CuO), chromium oxide (Cr 2 O 3), dioxide oxide can be used in an oxidizing atmosphere.
  • CoO cobalt oxide
  • CuO copper oxide
  • Cr 2 O 3 chromium oxide
  • dioxide oxide can be used in an oxidizing atmosphere.
  • Neckel NiO
  • manganese oxide MnO
  • neodymium oxide NdO
  • ruby oxide E
  • sky blue color developability can be obtained with a relatively small amount of addition, and the initial appearance and distinguishability can be maintained without suppressing the antibacterial effect.
  • chromium oxide if chromium oxide is used, a light green color can be obtained with a relatively small amount of addition, and the initial appearance and distinguishability can be maintained.
  • acid-nickel nickel it is possible to obtain astringency and green color developability with a relatively small amount of addition, provided that there are many potash components, and maintain the initial appearance and distinguishability. Can do.
  • manganese oxide when manganese oxide is used, a bright purple color developability can be obtained with a relatively small amount of addition under the condition that an oxidizing agent is present, and the initial appearance and distinguishability can be maintained.
  • the elution amount of silver ions in the antibacterial glass is set to a value within a range of 0.01 to 0.45 mg / (g-24Hrs).
  • the elution amount of silver ions in the antibacterial glass is set to a value within the range of 0.01 to 0.40 mg / (g-24 Hrs). Furthermore, it is more preferable to set the value within the range of 0.02 to 0.35 mgZ (g ′ 24Hrs).
  • the elution amount of silver ions in the antibacterial glass can be measured in accordance with the measurement method described in Example 1 described later. Furthermore, when used in washing machines, etc., the amount of silver ions dissolved in antibacterial glass has been considered to be a good value within the range of 0.5 to 100 mgZ (g-24Hrs). Since the antibacterial effect is increased by returning it, knowledge has been obtained that the same antibacterial effect can be obtained even with a smaller silver ion elution amount.
  • Complex-forming compounds capable of forming complexes with silver ions, such as ammonium sulfate, ammonium nitrate, ammonium chloride, sodium thiosulfate, ammonium sulfide, ethylenediamine tetraacetic acid (EDTA), ammonium acetate, ammonium perchlorate, It is preferable to add one kind or a combination of two or more kinds such as ammonium phosphate. This is because the antibacterial glass can be discolored or colored by adding such a complex-forming compound. This is because it can be remarkably prevented.
  • a complex can be easily formed with silver ions to prevent coloration.
  • a complex-forming compound ammonium sulfate, ammonium nitrate, It is more preferable to use at least one compound selected from ammonium chloride and group power consisting of thiosulfate.
  • the amount of the complex-forming compound added is preferably set to a value within the range of 0.01 to 30% by weight with respect to the total amount.
  • the addition amount of the complex-forming compound is within the range of 0.1 to 20% by weight relative to the total amount. It is more preferable to set a value within the range of 0.5 to 10% by weight.
  • the covering member has a form in which an inorganic substance and an organic substance are coated around the antibacterial glass.
  • the particles covering the antibacterial glass include titanium oxide, silicon oxide, colloidal silica, zinc oxide, tin oxide, lead oxide, white carbon, acrylic particles, styrene particles.
  • colloidal silica zinc oxide, tin oxide, lead oxide, white carbon, acrylic particles, styrene particles.
  • acrylic particles, styrene particles One kind alone or a combination of two or more kinds such as polycarbonate particles is preferable.
  • the method of coating the antibacterial glass with the particles is not particularly limited.
  • the glass is heated to a temperature of 600 to 1200 ° C. It is preferable to fix it through a fusing force or a binder.
  • the antibacterial glass 1 (with a packaging member 18 ⁇ as a covering member around the bag or a casing,
  • a covering member facilitates handling during storage and prevents aggregation of the antibacterial glass. This is because, in use, the usability is improved, and even if a relatively strong water flow is used, it is possible to prevent the outflow of a predetermined place force. Therefore, handling and replacement can be easily performed.
  • a plurality of antibacterial glasses 10 can be packaged using a moisture-proof material such as an aluminum laminated film 16 or the like as shown in FIG. 7 (b). It is also preferable to package or to cover the periphery with a perforated member 18 as shown in FIG. 7 (c).
  • an oxidizing agent such as a surfactant as a dispersant, stearic acid, myristic acid, sodium stearate, or silane coupling agent is used. It is preferable to add pigments or dyes as colorants, such as hindered phenol compounds as hindered amine compounds as inhibitors.
  • the addition amount of these additives is preferably determined in consideration of the effect of addition and the like.
  • the additive amount should be a value within the range of 0.01 to 30% by weight with respect to the total amount. More preferable.
  • the antibacterial glass containing no inorganic colorant is added to the antibacterial glass in an amount of 10 to 90% by weight relative to the total amount. It is preferable to add in a range.
  • the reason for this is that the amount of silver elution of the antibacterial glass can be adjusted by such a configuration, while an inorganic colorant is contained due to the anti-discoloration effect of the antibacterial glass having a large maximum diameter (tl). This is because the discoloration of the antibacterial glass that does not take place can be eliminated.
  • the antibacterial property containing the inorganic colorant is contained. It is also possible to effectively prevent the glass from aggregating due to the force S contact between the antibacterial glasses not containing the inorganic colorant.
  • the antibacterial glass containing no inorganic colorant is 20 to 80% by weight based on the total amount. It is more preferable to add in the range of / 0. Addition in the range of 30 to 70% by weight;
  • (C) A step of making silver ion-containing water by directly contacting antibacterial glass and water (sometimes referred to as a contact step).
  • the washing machine 50 shown in FIG. 8 the method of using strong antibacterial glass will be specifically described.
  • the power that describes the unit for recycling the washing water on the outside of the washing tub 25 is provided inside the washing tub 25.
  • the method of direct contact between the antibacterial glass and water is not particularly limited.
  • the antibacterial glass is immersed in water or the antibacterial glass is poured into a water stream. It is preferable to make the silver ion-containing water by directly contacting the functional glass with water. •
  • a bypass 26 is provided, and an antibacterial glass 27 placed in a cartridge is placed thereon.
  • the antibacterial material is treated by showering silver ion-containing water or by directly immersing it, and then performing antibacterial treatment.
  • antibacterial materials in the case of a washing machine, there are woven fabrics, textiles, non-woven fabrics, mats, clothing, towels, footwear, underwear, and the like.
  • the second embodiment is a method for producing a plate-shaped antibacterial glass that exhibits antibacterial effects by releasing silver ions, and includes the following steps (A) to (B). It is a manufacturing method of glass.
  • the initial appearance and distinguishability are maintained while exhibiting a predetermined antibacterial effect over a long period of time even when directly in contact with water. Possible antibacterial glass can be produced efficiently.
  • the universal glass is mixed so that the first glass composition and the second glass composition described above are obtained. • Use a compound machine and stir at a rotation speed of 250i: pm for 30 minutes until they are mixed uniformly. At this time, the inorganic colorant such as cobalt oxide is added in an amount of 0.001 to 0.05. Append to make the value within the range of / 0 . .
  • the glass raw material is heated at 1280 ° C. for 3 hours and a half to prepare a glass melt.
  • the heating conditions in the melting furnace can be changed as appropriate according to the type of raw materials and the mixing ratio.
  • the forming step is a step in which a molten glass obtained by melting a glass raw material is made into antibacterial glass having a predetermined shape.
  • FIGS. 9 (a) to 9 (b) by using predetermined rotating members 20a and 20b, it is possible to cut chocolate using a so-called thin-walled portion. No, the antibacterial glass 10 whose area and shape can be easily adjusted can be obtained efficiently. That is, the upper force molten glass 22 is allowed to naturally fall between the pair of rotating members 20a and 20b, and the predetermined antibacterial glass 10 is formed using the recess 24 provided on the surface of the rotating member 20a. Can do.
  • a cooling pipe (not shown) is provided at the center of the pair of rotating members 20a and 20b, and the surface temperature of the rotating members 20a and 20b can be controlled. preferable.
  • the antibacterial glass is formed in a strip shape through the thin wall portion, the antibacterial glass is maintained at a predetermined temperature, and therefore, in order to further cool it, cooling air is applied to the surface of the antibacterial glass. I prefer to blow.
  • the molding apparatus shown in FIGS. 9A to 9B includes a pair of rotating members 20a and 20b.
  • a modified example as shown in FIG. 10, instead of one rotating member 20b, Even when the flat wall member 20c is used, the flat antibacterial glass 10 having substantially the same shape can be obtained.
  • a stirrer such as a V-pender, ball mill, vibration ball mill, etc.
  • powdered flat plate antibacterial glass water or alcohol (isopropyl alcohol, etc.), room temperature, about 10 minutes to 24 hours, Foreign matter adhering to the surface of antibacterial glass after mixing and stirring It is preferable to secure a clean surface by removing, etc., to remove a chamfer, and to chamfer along the side of the flat antibacterial glass.
  • the silver elution amount is 0.45 mgZ ( In contrast to g'24Hrs), it is confirmed that if the powerful surface polishing process is omitted, the silver elution is reduced to 0.16 mgZ (g'24Hrs), which is about 1 to 3.
  • the glass raw material corresponding to the glass composition was stirred using a universal mixer at a rotational speed of 250 rpm for 30 minutes until it was uniformly mixed.
  • a glass material was heated using a glass melting furnace at 1280 ° C. for 3 hours and a half to prepare a molten glass.
  • Thickness lmm area 20cm X 20cm stainless steel plate surface, depth 0.5mm, area 5cm
  • the weight (W2) of the remaining antibacterial glass on the stainless steel plate was measured, and the residual ratio of the antibacterial glass ((Wl-W2) ZW1 X 100) was calculated. Then, from the calculated residual ratio, the outflow property of the antibacterial glass was evaluated according to the following criteria.
  • Residual rate is 90-100% by weight.
  • Residual rate is 70 to less than 90% by weight.
  • Residual rate is 30 to less than 70% by weight.
  • Residual rate is less than 30% by weight.
  • washing machine antibacterial evaluation of the cotton cloth using the obtained antibacterial glass was carried out. That is, using the washing machine shown in FIG. 8, 3 kg cotton cloth was washed while circulating tap water containing detergent. After washing is completed, the valve leading to the bypass containing the antibacterial glass in the form of a cartridge is opened and closed to allow water to flow in, and the antibacterial glass and water are brought into direct contact to create silver ion-containing water. did. In addition, water that was appropriately antibacterial treated with antibacterial glass was recycled. Then, antibacterial treatment was performed by supplying antibacterial treated water to the cotton fabric as an antibacterial object.
  • the cotton fabric thus obtained was left under environmental conditions of 35 ° C., 95% Rh, 48 hours, and antibacterial properties were evaluated under the following conditions.
  • Fig. 12 (a) shows photographs of the antibacterial glass before the start of evaluation and the antibacterial glass after the end of evaluation.
  • antibacterial evaluation was performed using a washing machine, and the antibacterial glass anti-discoloration effect was evaluated. That is, after the antibacterial evaluation was performed for 48 hours using the washing machine shown in FIG. 8, the antibacterial glass in a cartridge was taken out as shown in FIG. 7 (c), and the distinctive evaluation was performed under the following conditions. .
  • A The presence of antibacterial glass in the cartridge is markedly identified.
  • ⁇ ⁇ The presence of antibacterial glass in the cartridge is easily identified. ⁇ : Part of the presence of antibacterial glass in the cartridge is not identified.
  • antibacterial glass was used in the same manner as in Example 1 except that the composition ratio of the glass used in Example 1 and the inorganic colorant (cobalt oxide) were changed as shown in Table 1. Created and evaluated.
  • Comparative Example 1 evaluation was made in the same manner as in Example 1 except that the amount of cobalt oxide added in Example 1 was 0.0001% by weight.
  • Comparative Example 3 was evaluated in the same manner as in Example 1 except that the amount of cobalt oxide added in Example 1 was 0% by weight, that is, no acid cobalt was added.
  • the maximum diameter (tl) is limited to a predetermined range, and a predetermined amount of an inorganic colorant is contained as a blending component, so that it can be directly contacted with water. Even in such a case, a predetermined amount of silver ions can be repeatedly released while maintaining the initial appearance and distinguishability.
  • such an antibacterial glass having a maximum amount (tl) within a predetermined range and containing a predetermined amount of an inorganic colorant as a blending component is efficiently used. You can get to.
  • the maximum diameter (tl) is within a predetermined range and an antibacterial containing a predetermined amount of an inorganic colorant.
  • the antibacterial glass of the present invention is a washing machine, a dishwasher, an iron, a humidifier, a food washing tank, a medical equipment washer, a water tank for flush toilets, a barn washing device, an artificial turf ground rotating nozzle type wash. It can be suitably used for various devices such as a device, a bathtub circulating water device, a cooling tower for cooling, a sprayer, and a gardening hose.
  • the antibacterial glass of the present invention can exhibit excellent mechanical properties and durability even in devices such as irons, washing machines, and dishwashers where considerable vibration is applied. Since it does not blacken in appearance, it is suitable for the antibacterial glass of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pest Control & Pesticides (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Agronomy & Crop Science (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Plant Pathology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

洗濯中あるいは洗濯後等の被抗菌物に対して、迅速かつ長期間にわたって、所定量の銀イオンを放出し、繰り返し所定の抗菌処理を施すことができるとともに、変色防止効果や識別性に優れた抗菌性ガラスおよびその製造方法を提供する。銀イオンを放出することによって抗菌効果を発揮する平板状の抗菌性ガラスであって、最大径(t1)を3~30mmの範囲内の値とし、かつ、配合成分として、無機系着色剤を含有するとともに、当該無機系着色剤の添加量を、全体量に対して、0.001~0.5重量%の範囲内の値とする。

Description

明 細 書
抗菌性ガラスおよび抗菌性ガラスの製造方法
技術分野
[0001] 本発明は、抗菌性ガラスおよび抗菌性ガラスの製造方法に関し、特に、無機系着 色剤を含む、変色防止効果や識別性に優れた抗菌性ガラスおよび抗菌性ガラスの 製造方法に関する。
背景技術
[0002] 近年、建材、家電製品 (TV、パソコン、携帯電話、ビデオカメラなどを含む)、雑貨、 包装用資材等において、抗菌効果を付与するために、所定粒径の抗菌性ガラスを、 樹脂中に所定量混入させた抗菌性樹脂組成物が使用されてレ、る。
このような抗菌性樹脂組成物として、樹脂中に、銀イオンを溶出する硼ケィ酸抗菌 性ガラスを含む合成樹脂成形体が開示されている (例え 、特許文献 1参照)。 より具体的には、力かる合成樹脂成形体は、 SiO、 B O、 P Oの一種もしくは二種 以上の網目形成酸化物と、 Na 0、 K 0、 CaO、 ΖηΟの一種もしくは二種以上の網 目修飾酸化物とからなるガラス固形物 100重量部中に、一価の Agとして、 Ag Oを◦ . 1〜20重量部含有した硼ケィ酸抗菌性ガラスを合成樹脂中に含んで構成されてレヽ る。そして、当該特許公報の実施例において、 SiO :40モル0 /0、 B O : 50モル%、 N a 0 : 10モル%カもなる混合¾100重量部に対して、 Ag Oを 2重量部添カ卩した、平 均粒径が 20 μ m以下の抗菌性ガラスを合成樹脂中に含んだ抗菌性樹脂組成物が . 開示されている。
[0003] また、抗菌性樹脂組成物として、抗菌性を有する粒径が 10〜: L000 μ m、厚さが 0· :!〜 20 μ mの鱗片状ガラスを含む樹脂組成物が開示されている (例えば、特許文献 2参照)。
より具体的には、力かる鱗片状ガラスの組成としては、 B Oを含有する場合には、 S iO : 20〜60重量%、B O : 30〜70重量%、Na O : 5〜35重量%、A O :0. 5〜3 重量。/。からなり、 B Oを含有しない場合には、 SiO : 55〜80重量%、 AI O : 0. 5〜
30重量%、Na〇:19. 5〜42重量0 /0、 Ag O : 0. 5〜3重量%である。 [0004] また、 100°Cの沸騰水に 500〜: L000時間浸漬後に、 20°Cの水または酸に 24時間 浸漬した場合、銀イオンの溶出量が 0. 5ng/Cm2/day以上である銀イオン含有無 機系抗菌剤と、無機系充填剤と、を含有する抗菌性水周り製品が開示されている (例 えば、特許文献 3参照)。 '
より具体的には、 P〇:56〜59mol%、 MgO+CaO+ZnO : 33〜38mol%、 A1
O : 6〜8mol%からなるガラス成分に対して、 Ag Oを 0〜5重量%配合した平均粒 径が 2〜20 μ πιの銀イオン含有無機系抗菌剤を、樹脂中に、 0. 5〜5重量%の範囲 で添加するとともに、さらに、無機系充填剤を 5〜80重量%の範囲で添加した抗菌性 水周り製品が開示されてレ、る。
[0005] また、抗菌性ガラスの用途として、食器洗浄機、食器乾燥機、冷蔵庫、洗濯機、ポッ ト等の電気製品を例示した抗菌性樹脂組成物も提案されている (例えば、特許文献 4 〜6参照)。
すなわち、特許文献 4〜5によれば、カゝかる電気製品を構成する成形樹脂中に、平 均粒径が 20 /·ί ΐη以下の ΖηΟ :40〜80モル0ん SiO : 5〜35モル%、 CaO : 5〜30 モル%からなる抗菌性ガラスや、同じく平均粒径が 20 μ m以下の ΖηΟ: 54〜60モル %、 Β Ο : 25〜32モル%、 SiO : 7〜12モル%、アルカリ金属酸化物: 5〜 8モル0 /0 からなる抗菌性ガラスを、それぞれ所定量含む抗菌性榭脂組成物が提案されてレヽる また、特許文献 6によれば、抗菌性ガラスの最大径 (tl)を:!〜 50mmの範囲内の値 とするとともに、'銀イオンの溶出量を 0· 5〜: L00mg/ (g' 24Hrs)の範囲内の値とし、 ' 当該抗菌性ガラスを、水と直接的に接触させることにより、銀イオン含有水を作成して 、洗濯中あるいは洗濯後の被抗菌物に対して所定の抗菌処理を施す抗菌性ガラス およびその製造方法が開示されて!/、る。
さらに、抗菌性ガラスの用途として、貯水槽やクーリングタワー等の水処理装置にお レ、て使用される硝子水処理剤が提案されている (例えば、特許文献 7参照)。
すなわち、最長径が 10mm以上のリン酸系ガラスであって、その重量組成比が、 (R 0+R O) /P O =0, 4〜1. 2、R O/ (RO+R O ) =0〜10であり(Rは Caゝ Na 等)、かつ、初期溶解速度を Aとし、末期溶解速度を Bとしたときに、 B/A≥ 1/3で • あるとともに、金属イオンの含有量が 0. 005〜5重量%である硝子水処理剤である。 特許文献 1 :特開平 1一 313531号公報 (特許請求の範囲)
特許文献 2 :特開平 7— 25635号公報 (特許請求の範囲)
特許文献 3:特開平 10— 72530 (特許請求の範囲)
特許文献 4:特開平 2000— 3238号公報 (特許請求の範囲)
特許文献 5:特開平 2000― 3239号公報 (特許請求の範囲)
特許文献 6: WO 2005/087675号公報(特許請求の範囲)
特許文献 7:特公平 7— 63701号公報 (特許請求の範囲)
発明の開示
発明が解決しようとする課題
[0006] し力しながら、特許文献 1〜6に開示されて!/、る抗菌性樹脂組成物は、レ、ずれも抗 菌性ガラスを樹脂中に混合して構成されてレ、ることから、抗菌性ガラスは、実質的に 無色透明であって、含有する銀が、塩素イオン等と反応して、変色したり、不透明化 したりする場合が多く見られた。
したがって、力かる抗菌性樹脂組成物を用いた場合、電気製品の部品等に対して 所定の抗菌性を付与することはできても、使用中に、電気製品の外観性が著しく低 下するという問題が見られた。
また、特許文献 1、 3〜5では、樹脂中に均一に混合するため、抗菌性ガラスの平均 粒径を 20 m以下が好ましいとし、特許文献 2では、抗菌性ガラスを所定の大きさの 鱗片状ガラスとしてレ、るものの、製造装置として分級装置等を併用し、これらの値を所 定範囲に制限しなければならなレ、と!/、う製造上の問題,が見られた。
一方、特許文献 6や 7に開示されている抗菌性ガラスや硝子水処理剤は、最長径 は比較的大きいものの、食器洗浄機、食器乾燥機、あるいは洗濯機等の流水を使用 する電気製品に使用した場合には、変色防止効果に劣っていたり、あるいは破枠し やす力 たりするという問題が見られた。
さらに、特許文献 1〜7に開示されている抗菌性ガラスは、いずれも実質的に無色 透明であって、被覆部材を備えて、カートリッジ化したような場合には、外からその存 在を識別できないという問題が見られた。すなわち、カートリッジ化して、電気製品に 使用した場合、抗菌性ガラスの補充時期や取替え時期を判断することが困難である という問題も見られた。
[0007] そこで、本発明者らは、鋭意検討した結果、所定量の無機系着色剤を添加するとと もに、抗菌性ガラスの大きさを所定範囲に制限することにより、水と直接的に接触した 場合であっても、初期の外観や識別性を維持したまま、繰り返し所定量の銀イオンを 放出できることを見出し、本発明を完成させたものである。
すなわち、本発明は、無機系着色剤を加えた場合であっても、銀イオンの放出量を 所定範囲に維持したままで、優れた変色防止効果や識別性が得られる抗菌性ガラス および抗菌性ガラスの製造方法を提供することを目的とする。
課題を解決するための手段 '
[0008] 本発明によれば、銀イオンを放出することによって抗菌効果を発揮する平板状の抗 菌性ガラスであって、最大径 (tl)を 3〜30mmの範囲内の値とし、かつ、配合成分と して、無機系着色剤を含有するとともに、当該無機系着色剤の添加量を、全体量に 対して、 0. 001-0. 5重量%の範囲内の値とした抗菌性ガラスが提供され、上述し た問題を解決することができる。
すなわち、本発明の抗菌性ガラスによれば、所定量の無機系着色剤を添加するこ とにより、抗菌性ガラスの大きさや銀イオンの溶出量を所定範囲に容易に制限するこ とができ、長期間にわたって.、所定の抗菌効果を発揮しながら、初期の外観や識別 性を維持することができる。したがって、無機系着色剤の働きによって、銀イオンに由 来した、樹脂め変色防止効果を有効に発揮できるとともに、被覆部材を備えて、カー ' トリッジィヒしたような場合であっても、外力 その存在を容易に識別することができ、抗 菌性ガラスの補充時期や取替え時期を正確に判断することができる。
また、このような大きな形態の抗菌性ガラスであれば、取り扱いが容易になるばかり 、従来の微粒子状の抗菌性ガラスと組み合わせるだけで、微粒子状の抗菌性ガラ ス同士が接触して、凝集することを有効に防止することができる。
[0009] また、本発明の抗菌性ガラスを構成するにあたり、無機系着色剤が、酸ィヒコパノレト、 酸化銅、酸化クロム、酸化ニッケル、酸化マンガン、酸化ネオジゥム、酸化エルビウム 、及び酸化セリウム力 なる群力 選択される少なくとも一つの化合物を含むことが好 ましい。
このように無機系着色剤として、酸ィ匕コバルト等の特定ィ匕合物を使用することにより 、比較的少量の添加で優れた発色性が得られ、銀イオンの溶出量に影響を及ぼすこ とが少なくなつて、長期間にわたって、所定の抗菌効果を発揮しながら、初期の外観 や識別性を維持することができる。
なお、無機系着色剤として、特に、酸ィ匕コバルトを使用することにより、極めて少量 の添加により、優れた発色性が得られるばかりか、抗菌性ガラスの成形性や研磨性 についても改良して、向上させることができる。
[0010] また、本発明の抗菌性ガラスを構成するにあたり、抗菌性ガラスに含まれる無機系 着色剤の添加量を C1 (重量%)とし、同様に含まれる酸ィ匕銀の添加'量を〇2 (重量% )としたときに、 C1ZC2で表される比率を 0. 01〜3の範囲内の値とすることが好まし レ、。
このように無機系着色剤の添加量を、酸化銀の添加量と関連つけて制御することに より、所定の抗菌効果の発揮を抑制することなぐ初期の外観や識別性を維持するこ とができる。
Coon] また、本発明の抗菌性ガラスを構成するにあたり、銀イオンの溶出量を 0. οι〜ο.
45mg/ (g'24Hrs)の範囲内の値とすることが好ましい。
このような銀イオンの溶出量であれば、さらに長期間にわたって、所定の抗菌効果 を発揮しながら、初期の外観や識別性を維持することができる。
[0012] また、本発明の抗菌性ガラスを構成するにあたり、抗菌性ガラスを構成する辺に沿 ' つて面取りしてあることが好ましい。
このような形状とすることにより、さらに長期間にわたって、所定の抗菌効果を発揮し ながら、初期の外観や識別性を維持することができる。また、このような面取り形状と することにより、抗菌性ガラスの成形性や研磨性についても向上させることができる。 さらに、このような形態の抗菌性ガラスであれば、取り扱いや交換等が容易になるば 力、りか、比較的強い水流を用いた場合であっても、当該水流と一緒に外部に流出し たり、破砕したりすることを有効に防止することができる。
[0013] また、本発明の抗菌性ガラスを構成するにあたり、無機系着色剤を含有しなレヽ抗菌 - 性ガラスを、全体量に対して、 10〜90重量%の範囲でさらに含むことが好ましい。 このように構成することにより、抗菌性ガラスの銀の溶出量を調整することができる 一方、最大径 (tl)が大きい抗菌性ガラスの変色防止効果によって、無機系着色剤を 含有しない抗菌性ガラスの変色についても目だたなくすることができる。
なお、このように構成することにより、無機系着色剤を含有しない抗菌性ガラスの平 均粒径が、例えば、 100 μ πι以下の微粒子状であっても、当該抗菌性ガラス同士が 接触して、凝集することを有効に防止することができる。
[0014] また、本発明の別の態様は、銀イオンを放出することによって抗菌効果を発揮する 平板状の抗菌性ガラスの製造方法であって、下記工程 (Α)〜 (Β)を含むことを特徴 とする抗菌性ガラスの製造方法である。
(Α)原材料を加熱溶融させて、全体量に対して、 0. 001〜0. 5重量%の無機系着 色剤を含有する着色溶融ガラスを作成する溶融工程
(Β)着色溶融ガラスを冷却しながら、最大径 (tl)が 3〜30mmの抗菌性ガラスとする 成形工程
すなわち、本発明の抗菌性ガラスの製造方法によれば、直接的に水と接触した場 合であっても、長期間にわたって、所定の抗菌効果を発揮しながら、初期の外観や 識別性を維持可能な抗菌性ガラスを効率的に製造することができる。
[0015] また、本発明の抗菌性ガラスの製造方法を実施するにあたり、工程 )におい" (:、 抗菌性ガラスを研磨する工程をさらに含むことが好ましい。
このような抗菌性ガラスの製造方法によれば、初期段階から優れた抗菌効果を発 揮しながら、長期間にわたって、初期の外観や識別性を維持可能な抗菌性ガラスを 効率的に製造することができる。
図面の簡単な説明
[0016] [図 1] (a)〜 (f)は、第 1実施形態の抗菌性ガラスの形状を説明するために供する図で あな。
[図 2]抗菌性ガラスの最大径 (tl)と残留率との関係を説明するために供する図である [図 3]洗濯回数に伴う銀イオンの溶出量との関係を説明するために供する図である。 . [図 4]酸化コバルトの添加量と、発色性との関係を説明するために供する図である。
[図 5]酸化コバルト及び酸化銅の添加量と、銀イオン溶出量との関係を説明するため に供する図である。
[図 6] (a)〜 (b)は、抗菌性ガラスのカートリッジィ匕について説明するために供する図 である。
[図 7] (a)〜 (c)は、抗菌性ガラスの被覆部材について説明するために供する図であ る。
[図 8]抗菌性ガラスを適用した洗濯機の一例を示す図である。
[図 9] (a)〜 (b)は、抗菌性ガラスの製造方法について説明するために供する図であ る (その 1)。 '
[図 10]抗菌性ガラスの別の製造方法について説明するために供する図である。
[図 11] (a)〜 (b)は、抗菌性ガラスの変色防止効果について説明するために供する 図である。
[図 12] (a)〜(c)は、抗菌性ガラスの外観に対する表面処理工程の影響について説 明するために供する図である。
発明を実施するための最良の形態
[0017] 以下、本発明の抗菌性ガラス、抗菌性ガラスの製造方法、および抗菌性ガラスの使 用方法に関する実施の形態を具体的に説明する。 ' [0018] [第 1の実施形態]
第 1の実施形態は、銀イオンを放出することによって抗菌効果を発揮する平板状の • 抗菌性ガラスであって、最大径(tl)を 3〜30mmの範囲内の値とし、かつ、配合成分 として、無機系着色剤を含有するとともに、当該無機系着色剤の添加量を、全体量に 対して、 0. 001-0. 5重量%の範囲内の値とした抗菌性ガラスである。
[0019] 1.抗菌性ガラス
(1)形状 1
抗菌性ガラスの形状は特に制限されるものではないが、図 1 (a)〜 (f)に示すように 、矩形状、多角形状、円板状、楕円状、異形状、穴あき状等の平板状の抗菌性ガラ ス 2 (2a〜2f)であることが好まし 、。 この理由は、抗菌性ガラスを、矩形状や円板状等の平板状とすることにより、所定 箇所に載置し、水と直接的に接触させた場合であっても、水圧によって押し流され、 所定箇所から流出するのを効果的に防止することができるためである。また、抗菌性 ガラスが矩形状等であれば、製造時や使用時等に、抗菌性ガラスが隣接して凝集し にくいため、抗菌性ガラスの製造時における大きさや形状の制御や、使用する際の 環境条件の制御についてもより容易となるためである。
また、図 1 (a)〜 (f)に示すように、力かる抗菌性ガラスを構成する辺に沿って面取り してあることが好ましい。
この理由は、このような形状とすることにより、さらに長期間にわたって、所定の抗菌 効果を発揮しながら、初期の外観や識別性を維持することができるこめである。また 、このような面取り形状とすることにより、抗菌性ガラスの成形性や研磨性についても 向上させることができるためである。
さらに、このような形態の抗菌性ガラスであれば、取り扱いや交換等が容易になるば かりか、比較的強い水流を用いた場合であっても、当該水流と一緒に外部に流出し たり、破枠したりすることを有効に防止することができるためである。
(2)形状 2 '
また、抗菌性ガラスの最大径 (tl)を 3〜30nmiの範囲内の値とすることを特徴とす る。ここで、抗菌性ガラスの最大径 (tl)とは、例えば、図 l (a)〜(f)に示すように、'抗 菌性ガラスの形状において、任意の線を引いたときの最大長さを意味する。
すなわち、この理由は、力かる最大径が 3mm未満の値となると、所定箇所に載置し 、水と直接的に接触させた場合に、水圧によって押し流され、所定箇所から流出しや すくなったり、長期間にわたって、所定濃度の銀イオンを放出することが困難になつ たり、さらには、保管時に凝集しやすくなつたりする場合があるためである。
一方、力、かる最大径が 30mmを超えると、取り扱いが困難となったり、安定的に製 造することが困難になったりするためである。
したがって、抗菌性ガラスの最大径を 4〜25mmの範囲内の値とすることがより好ま しく、 5〜 15mmの範囲内の値とすることがさらに好ましレ、。
なお、力かる抗菌性ガラスの最大径 (tl)は、抗菌性ガラスが、例えば平板状である • 場合には、平面方向の最大径となり、球状である場合には、球の直径となる。
[0021] また、かかる抗菌性ガラスが平板状である場合、抗菌性ガラスの厚さを 0. 1〜: LOm mの範囲内の値とすることが好ましい。 .
この理由は、力かる抗菌性ガラスの厚さが 0. lmm未満の値となると、所定濃度の 銀イオンを放出することが困難になったり、取り扱いが困難となったり、さらには安定 的に製造することが困難になったりする場合があるためである。一方、力かる抗菌性 ガラスの厚さが 10mmを超えると、逆に取り扱いが困難となったり、安定的に製造した りすることが困難になったりするためである。
したがって、力かる抗菌性ガラスが平板状である場合、抗菌性ガラスの厚さを 1〜8 mmの範囲内の値とすることがより好ましぐ 2〜5mmの範囲内の値 することがさら に好ましい。
なお、上述した抗菌性ガラスの最大径ゃ厚さは、例えば、光学顕微鏡写真やノギス を用いて容易に測定することができる。
[0022] (3)形状 3
次いで、抗菌性ガラスの形状に関して、図 2を参照しつつ、抗菌性ガラスの平面方 向の最大径 (tl)と、当該抗菌性ガラスの使用時における残留率との関係を詳細に説 明する。この図 2の横軸は、抗菌性ガラスの平面方向の最大径 (nun)を対数で示し、 縦軸は、各粒径の抗菌性ガラスを使用したときに、後述の実施例における抗菌性ガ ラスの残留率の測定方法に準じて測定される残留率 (%)を示してレ、る。
力かる図 2から明らかなように、抗菌性ガラスの平面方向の最大径 (tl)が 5mm以 + 上の値であれば、その残留率は比較的高い値、すなわち、 50%以上の値を示し、長 期間の使用にも耐え得ることが理解される。
[0023] 次レ、で、抗菌性ガラスの形状に関して、図 3を参照して、本発明に係る抗菌性ガラ ス (平面方向の最大径 15mm)と平均粒径が 20 μ mの抗菌性ガラス、それぞれを使 用した場合における、洗濯回数と、銀イオンの溶出量の変化にっレ、て詳細に説明す る。すなわち、図 3の横軸は、後述する図 8に示すような洗濯機 50を用いて、それぞ れの抗菌性ガラスを使用して洗濯した回数を示し、図 3の縦軸は、各回における水中 への銀イオンの溶出量 (mg/ (g'24Hrs) )を示している。また、図 3中、本発明の抗 . 菌性ガラスにつ 、てのデータを実線 Aで示し、平均粒径が 20 μ mの抗菌性ガラスに っレ、てのデータを点線 Bで示す。
力かる図 3に示すように、本発明の抗菌性ガラスは、平面方向の最大径が所定の大 きさであり水圧等で押し流されることがないために、残留量が大幅に減少することが ない。したがって、繰り返し使用したとしても、所望の溶出量を維持できることが理解 される。よって、本発明の抗菌性ガラスは、長期間の使用にも耐えうることが理解され る。
一方で、平均粒径が 20 / mの抗菌性ガラスは、図 2に示されるように、使用する毎 に抗菌性ガラスの残留量が減少していくために、洗濯回数が増加するに伴って、使 用開始直後の銀イオンの溶出量と比較して、溶出量の値が大きく減少している。した がって、所望の銀イオンの溶出量を確保するためには、頻繁に抗菌性ガラスを補充 することが必要であることが理解される。
[0024] (4)種類 1
また、抗菌性ガラスの種類に関して、無機系着色剤を含まない状態で、以下の配合 組成力もなる抗菌性ガラスを使用することが好ましい。
すなわち、抗菌性ガラスにおける第 1のガラス組成として、 Ag 0、 ZnO、 CaO、 B O および P Oを含み、かつ、全体量を 100重量%としたときに、 Ag Oの含有量を 0. 2
〜5重量%の範囲内の値、 ZnOの含有量を 1〜50重量。/。の範囲内の値、 CaOの含 有量を 0.:!〜 15重量%の範囲内の値、 B Oの含有量を 0.:!〜 15重量%の範囲内 の値、および P Oの含有量を 30〜80重量%の範囲內の値とするとともに、 ZnO/C
• aOの重量比率を 1. 1〜15の範囲内の値とすることが好ましい。
この理由は、かかる ZnO/CaOの重量比率が 1. 1未満の値となると、抗菌性ガラス の黄変を効率的に防止することができない場合があり、一方、力かる ZnO/CaOの 重量比率が 15を超えると、抗菌性ガラスが白濁したり、あるいは、逆に、黄変したりす る場合があるためである。
したがって、カゝかる ZnOZCaOで表される重量比率を 1. 2〜; 10の範囲内の値とす ることがより好ましぐ 1. 5〜8の範囲内の値とすることがさらに好ましい。
[0025] また、第 2のガラス組成として、 ZnOを実質的に含まない代りに、 Ag 0、 CaO、 B O および P Oを含み、かつ、全体量を 100重量%としたときに、 Ag Oの含有量を 0. 2
〜5重量%の範囲内の値、 CaOの含有量を 15〜50重量%の範囲内の値、 B Oの 含有量を 0. 1〜15重量%の範囲内の値、および P Oの含有量を 30〜80重量%の 範囲内の値とするとともに、 CaO/Ag Oの重量比率を 5〜15の範囲内の値とした抗 菌性ガラスである。
この理由は、力かる CaO/Ag Oの重量比率が 5未満の値となると、抗菌性ガラス の黄変を効率的に防止することができない場合があり、一方、力かる CaOZAg Oの 重量比率が 15を超えると、抗菌性ガラスが白濁したり、あるいは、逆に、黄変したりす る場合があるためである。
したがって、力かる CaOノ Ag. Oで表される重量比率を 6〜 12の範囲内の値とする ことがより好ましぐ 7〜10の範囲内の値とすることがさらに好ましい。
[0026] さらに、第 3のガラス組成として、 Ag 0、 CaO、 B O、 P Oおよび Al Oを含み、か つ、全体量を 100重量%としたときに、 Al Oの含有量を 0, 5〜10重量%の範囲内 の値とした抗菌性ガラスである。
この理由は、このように Al Oを添加することにより、潮解現象を抑制することができ るためである。
すなわち、 Al Oの含有量が 0. 5重量%未満になると、潮解現象を抑制する効果 が発現しない場合があるためである。一方、 Al Oの含有量が 10重量%を超えると、
(抗菌)効果が発現しなレ、場合力 るためである。
したがって、力かる Al Oの含有量を 1〜5重量%の範囲内の値とすることがより好
■ ましレ、といえる。
[0027] (5)種類 2
また、抗菌性ガラスに、無機系着色剤を含むとともに、当該無機系着色剤の添加量 を、全体量に対して、 0. 001-0. 5重量%の範囲内の値とすることを特徴とする。 この理由は、所定量の無機系着色剤を添加することにより、抗菌性ガラスの大きさ や銀イオンの溶出量を所定範囲に容易に制限することができためである。
したがって、長期間にわたって、所定の抗菌効果を発揮しながら、初期の外観ゃ識 別性を維持することができる。すなわち、無機系着色剤の働きによって、銀イオンに 由来した、樹脂の変色防止効果を有効に発揮できるとともに、被覆部材を備えて、力 ートリッジ化したような場合であっても、外からその存在を容易に識別することができ、 抗菌性ガラスの補充時期や取替え時期を正確に判断することができる。
また、このような大きな形態の抗菌性ガラスであれば、取り扱いが容易になるばかり か、従来の微粒子状の抗菌性ガラスと組み合わせるだけで、微粒子状の抗菌性ガラ ス同士が接触して、凝集することを有効に防止することができるためである。
したがって、抗菌性ガラスにおける無機系着色剤の添加量を、全体量に対して、 0. 003-0. 1重量%の範囲内の値とすることがより好ましく、 0. 005~0. 05重量%の 範囲内の値とすることがさらに好ましい。
ここで、抗菌性ガラスにおける無機系着色剤の添加量の影響を、図 4及び図 5を参 照して説明する。
図 4の横軸は、抗菌性ガラスにおける酸化コノ ルトの添加量 (重量0 /0)を対数で示し ており、縦軸は、抗菌性ガラスの発色性 (相対値)を示している。この抗菌性ガラスの 発色性は、数字が大きいほど良好であることを示しており、可視光の吸収度に相当す る値である。
また、図 5の横軸は、抗菌性ガラスにおける無機系着色剤 (酸ィ匕コバルトおよび酸 ィ匕銅)の添加量 (重量%)を対数で示しており、縦軸は、抗菌性ガラスにおける銀ィォ ン溶出量 (mg/ (g' 24Hrs) )を示している。そして、図 5中、記号 Aが付された特性 曲線が、無機系着色剤として、酸化コバルトを用いた場合であって、記号 Bが付され た特性曲線力 無機系着色剤として、酸化銅を用いた場合である。
したがって、図 4から明らかなように、抗菌性ガラスにおける酸化コバルトの添加量 が 0. 001重量%以上であれば、所定の発色性が得られ、さらに酸化コバルトの添カロ 量が多くなるにつれ、発色性も良好となり、 0. 1重量%を越えるとそれが飽和する傾 向が見られている。
一方、図 5から明らかなように、抗菌性ガラスにおける無機系着色剤 (酸ィ匕コバルト および酸化銅)の添加量が多くなるにつれて、銀イオン溶出量 (mgZ (g- 24Hrs) ) が除々に低下する傾向が見られている。
したがって、図 4及ぴ図 5を参照すると、抗菌性ガラスにおける発色性と、銀イオン 溶出量とのパランスをとるために、無機系着色剤の添加量を、全体量に対して、 0. 0 01-0. 5重量%の範囲内の値とすることが有効であると理解できる。
[0029] なお、抗菌性ガラスに含まれる無機系着色剤の添加量を考慮するにあたり、酸化銀 の添加量にっレ、ても考慮することが好ましレ、。
すなわち、抗菌性ガラスに含まれる無機系着色剤の添加量を C1とし、同様に含ま れる酸化銀の添加量を C2としたときに、 C1/C2で表される比率を 0. 01〜3の範囲 内の値とすることが好まし 、。
この理由は、このように無機系着色剤の添加量を、酸化銀の添加量と関連付けて 制御することにより、所定の抗菌効果の発揮を抑制することな 初期の外観や識別 性を維持することができるためである。すなわち、 C1ZC2で表される比率が 0. 01未 満となると、変色防止効果の発現が乏しくなる場合があるためである。一方、 C1ZC 2で表される比率力 ¾を超えると、抗菌効果の発現が乏しくなる場合があるためである したがって、 C1/C2で表される比率を 0. 01〜2の範囲内の値とすることがより好 ましぐ 0. 05〜1の範囲内の値とすることがさらに好ましい。
[0030] (6)種類 3 .
また、無機系着色剤の種類は特に制限されるものではないが、酸化雰囲気で発色 しゃすいように、酸化コバルト(CoO)、酸化銅(CuO)、酸化クロム(Cr O )、酸化二
. 2 3
ッケル (NiO)、酸化マンガン(MnO )、酸化ネオジゥム(Nd O )、酸化ヱルビゥム (E
2 2 3
r O )、及び酸化セリウム (CeO )等の一種単独または二種以上の組み合わせが挙
2 3 2
げられる。
例えば、酸化コバルトであれば、極めて少量添加、例えば、 0. 005重量%であって も、優れたあざや力^インクブルーの発色性が得られ、所定の抗菌効果を抑制するこ となぐ初期の外観や識別性を維持することができる。
また、酸化銅であれば、比較的少量の添加でスカイブルーの発色性が得られ、抗 菌効果を抑制することなぐ初期の外観や識別性を維持することができる。
また、酸化クロムであれば、比較的少量の添加で若草色の発色性が得られ、初期 の外観や識別性を維持することができる。 . また、酸ィ匕ニッケルであれば、カリ成分が多レ、ことを条件に、比較的少量の添加で 渋レ、グリーン色の発色性が得られ、初期の外観や識別性を維持することができる。 また、酸ィ匕マンガンであれば、酸化剤の存在を条件に、比較的少量の添加で鮮ゃ 力な紫色の発色性が得られ、初期の外観や識別性を維持することができる。
また、酸ィ匕ネオジゥムであれば、添加量がばらついたとしても、幅広い範囲で、ラベ ンダー紫色の発色性が得られ、初期の外観や識別性を維持することができる。また、 鉄分等が多レ、ガラス原料を用いた場合には、その消色効果を発揮することもできる。 さらに、酸化エルビウムや酸化セリウムであれば、ピンク色の発色性が得られ、初期 の外観や識別性を維持することができる。
[0031] (7)銀イオン溶出量 '
また、抗菌性ガラスにおける銀イオンの溶出量を 0. 01〜0. 45mg/ (g- 24Hrs) の範囲内の値とすることを特徴とする。
この理由は、力かる銀イオンの溶出量が 0· 01mg/ (g' 24Hrs)未満の値となると、 水と直接的に接触させた場合に、迅速に所定濃度の銀イオンを放出し、所定の抗菌 効果を発揮することが困難になる場合があるためである。
—方、力かる銀イオンの溶出量が 0. 45mgZ (g' 24Hrs)を超えると、長期間にわ たって所定濃度の銀イオンを放出することが困難になったり、取り扱いが困難となつ たり、あるいは安定的に製造することが困難になったりするためである。
したがって、抗菌性ガラスにおける銀イオンの溶出量を 0. 01〜0. 40mg/ (g- 24 Hrs)の範囲内の値とすることが好ましい。さらに、 0. 02〜0. 35mgZ (g' 24Hrs)の • 範囲内の値とすることがより好ましい。
なお、抗菌性ガラスにおける銀イオンの溶出量は、後述する実施例 1に記載の測定 方法に準じて、測定することができる。さらに、従来、洗濯機等に使用する場合、抗菌 性ガラスにおける銀イオンの溶出量は 0. 5〜100mgZ (g- 24Hrs)の範囲内の値が 良レ、と考えられてきた力 洗濯を操り返すことにより抗菌効果が増加するため、より少 量の銀イオンの溶出量であっても、同等の抗菌効果が得られる知見が得られている。
[0032] 2.被覆部材または添加剤
(1)錯体形成化合物 銀イオンと錯体を形成することが可能な錯体形成化合物、例えば、硫酸アンモニゥ ム、硝酸アンモニゥム、塩化アンモニゥム、チォ硫酸ナトリウム、硫化アンモニゥム、ェ チレンジァミン四酢酸 (EDTA)、酢酸アンモニゥム、過塩素酸アンモユウム、およぴリ ン酸アンモニゥム等の一種単独または二種以上の組合せを添加することが好ましレヽ この理由は、このような錯体形成化合物を添加することにより、抗菌性ガラスの変色 や、着色を著しく防止することができるためである。
なお、雰囲気が強アルカリ、例えば pH値が 10以上であっても、銀イオンと容易に錯 体を形成して、着色防止することができることから、錯体形成化合物として、硫酸アン モニゥム、硝酸アンモニゥム、塩化アンモニゥム、およびチォ硫酸チトリウム力ちなる 群力 選択される少なくとも一つの化合物を使用することがより好ましい。
また、錯体形成化合物の添加量を、全体量に対して、 0. 01〜30重量%の範囲内 の値とするのが好ましい。
この理由は、かかる錯体形成化合物の添加量が 0. 01重量%未満となると、変色を 有効に防止することが困難となる場合があるためである。一方、力かる錯体形成化合 物の添加量が 30重量%を超えると、抗菌性ガラスにおける抗菌性が低下したり、均 一に混合したりすることが困難となる場合があるためである。
したがって、力かる抗菌性ガラスにおける耐変色性と、抗菌性等とのパランスがより 好ましいことから、錯体形成化合物の添加量を、全体量に対して、 0. 1〜20重量% の範囲内の値とするのがより好ましぐ 0. 5〜10重量%の範囲内の値とすることがさ ■ らに好ましい。
3] (2)被覆部材
また、被覆部材として、抗菌性ガラスの周囲に無機物および有機物を被覆した形態 とすることも好ましい。
この理由は、このように構成することにより、銀イオンの溶出速度の制御を容易にし 、また、抗菌性ガラスの凝集防止性を良好なものとすることができるためである。 また、抗菌性ガラスを被覆する粒子としては、酸化チタン、酸化ケィ素、コロイダノレ シリカ、酸化亜鉛、酸化スズ、酸化鉛、ホワイトカーボン、アクリル粒子、スチレン粒子 、ポリカーボネート粒子等の一種単独または二種以上の組合せが好ましい。
さらに、抗菌性ガラスを粒子により被覆する方法も特に制限されるものでないが、例 えば、抗菌性ガラスと、粒子とを均一に混合後、 600〜1200°Cの温度で加熱してガ ラスに融着させる力、あるいは、'結合剤を介して、固定することが好ましい。
また、図 6 (a)や (b)に示すように、抗菌性ガラス 1(Τの周囲に対して、被覆部材とし ての包装部材 18^を備えたり、筐体を備えたりして、カートリッジ化することが好ましい この理由は、このような被覆部材を設けることにより、保存時において、取り扱いが 容易になったり、抗菌性ガラスの凝集ィ匕を防止したりすることができるためである。ま た、使用時においては、使用性が向上するとともに、比較的強い水流を用いた場合 であっても、所定場所力 流出を防止したりすることができるためである。さらに、カー トリッジ化してあることから、取り扱いや交換等についても容易に実施することができる ためである。
また、図 7 (a)に示すように、アルミニウム積層フィルム 16等の防湿材料を用いて、 複数の抗菌性ガラス 10をパッケージしたり、図 7 (b)に示すように、小分けした状態で 、パッケージしたり、さらに、図 7 (c)に示すように、穴開き部材 18で周囲を覆うことも 好ましい。
[0034] (3)表面処理
また、抗菌性ガラスに対して、酸化防止、あるいは着色化等の目的のために、分散 剤としての界面活性剤、ステアリン酸、ミリスチン酸、ステアリン酸ナトリウム、またはシ . ランカップリング剤等、酸化防止剤としてのヒンダードフエノール化合物ゃヒンダード アミンィ匕合物等、着色剤としての顔料や染料等を添加することが好ましレ、。
なお、これらの添加剤の添加量は、添加効果等を考慮して定めることが好ましいが 、例えば、それぞれ、全体量に対して、 0. 01〜30重量%の範囲内の値とするのがよ り好ましい。
[0035] 3.使用例 1
また、本発明の抗菌性ガラスを使用するにあたって、当該抗菌性ガラスに対して、 無機系着色剤を含有しない抗菌性ガラスを、全体量に対して、 10~90重量%の範 . 囲で添加することが好ましい。
この理由は、このように構成することにより、抗菌性ガラスの銀の溶出量を調整する ことができる一方、最大径 (tl)が大きい抗菌性ガラスの変色防止効果によって、無機 系着色剤を含有しない抗菌性ガラスの変色についても目ただなくすることができるた めである。
また、このように構成することにより、無機系着色剤を含有しない抗菌性ガラスの平 均粒径が、例えば、 100 /x m以下の微粒子状であっても、無機系着色剤を含有した 抗菌性ガラスが、無機系着色剤を含有しない抗菌性ガラス同士力 S接触して、凝集す ることを有効に防止することもできる。
したがって、無機系着色剤を含有しない抗菌性ガラスを、全体量に対して、 20〜8 0重量。 /0の範囲で添加することがより好ましぐ 30〜70重量%の範囲で添加すること ; ^さらに好ましい。
[0036] 4.使用例 2
また、本発明の抗菌性ガラスを使用するにあたって、下記工程 (C)〜 (D)を含むこ とが好ましい。
(C)抗菌性ガラスと、水とを、 .直接的に接触させて、銀イオン含有水を作成する工程( 接触工程と称する場合がある。 )
(D)銀イオン含有水により被抗菌物を処理して、抗菌処理を施す工程 (抗菌工程と称 する場合がある。 )
以下、図 8に示す洗濯機 50に用いた場合を想定して、力かる抗菌性ガラスの使用 . 方法を具体的に説明する。なお、説明が容易なように、図 8中、洗濯水のリサイクル 用のユニットを洗濯槽 25の外部に記載している力 通 は、洗濯槽 25の内部に備わ つているものである。
[0037] (1)接触工程
抗菌性ガラスと、水との直接的な接触方法は特に制限されるものではないが、例え ば、抗菌性ガラスを水中へ浸漬させたり、抗菌性ガラスを水流中へ投入したりすること により抗菌性ガラスと、水とを直接的に接触させて、銀イオン含有水を作成することが 好ましい。 • その際、例えば、抗菌性ガラスを洗濯機において使用する場合には、図 8の上方に 示すように、パイパス 26を設けて、そこにカートリッジィ匕された抗菌性ガラス 27を载置 しておき、必要なときにバイパス 26に通じるバルブ 28を開閉して、水を流入させて、 抗菌性ガラス 27と直接的に接触させて、銀イオン含有水を得ることが好ましい。 この理由は、例えば、洗濯の最終段階でのみ銀イオン含有水を使用することにより 、銀イオンを無駄に流してしまうことがなぐすなわち、被洗浄物に対して抗菌処理を 施すに際して、抗菌性ガラスの使用量を効率的に制限することができるためである。 一方、図 8の下方に示すように、一旦使用した水をリサイクルする際に、糸くず等を フィルター処理するとともに、抗菌性ガラス 31と接触させることも好ましい、すなわち、 ポンプ 32及びパルプ 33を介して、抗菌処理した水を再利用することが好ましい。
[0038] (2)抗菌工程
また、銀イオン含有水をシャワリングしたり、直接浸漬したりすることにより被抗菌物 を処理して、抗菌処理を施すことも好ましい。
なお、被抗菌物の代表例としては、洗濯機の場合、織物、繊維物、不織布、マット 状物、衣服、タオル類、履物、下着等が挙げられる。
[0039] [第 2の実施形態] '
第 2の実施形態は、銀イオンを放出することによって抗菌効果を発揮する平板状の 抗菌性ガラスの製造方法であって、下記工程 (A)〜 (B)を含むことを特徴とする抗菌 性ガラスの製造方法である。
(A)原材料を加熱溶融させて、全体量に対して、 0. 001〜0. 5重量%の無機系着 • 色剤を含有する着色溶融ガラスを作成する溶融工程
(B)着色溶融ガラスを冷却しながら、最大径 (tl)が 3〜30mmの抗菌性ガラスとする 成形工程
すなわち、本発明の抗菌性ガラスの製造方法によれば、直接的に水と接触した場 合であっても、長期間にわたって、所定の抗菌効果を発揮しながら、初期の外観や 識別性を維持可能な抗菌性ガラスを効率的に製造することができる。
[0040] 1.溶融工程
原材料として、上述した第 1のガラス組成や第 2のガラス組成となるように、万能混 • 合機を用いて、回転数 250i:pm、 30分の条件で、均一に混合されるまで攪拌する。 また、このとき、酸化コバルト等の無機系着色剤を 0. 001-0. 05重量。 /0の範囲内 の値となるように添カロする。 .
次いで、溶融炉を用いて、一例として、 1280°C、 3時間半の条件でガラス原料を加 熱して、ガラス融液を作成する。
なお、原材料の種類や配合比率に応じて、溶融炉における加熱条件については、 適宜変更することができる。
[0041] 2.成形工程
成形工程は、ガラス原料を溶融して得た溶融ガラスを、所定形状の抗菌性ガラスと する工程である。 '
具体的には、図 9 (a)〜(b)に示すように、所定の回転部材 20a、 20bを用いて製造 することにより、いわゆる薄肉部を利用したチョコレートカットが可能であって、取り扱 いや、面積や形状の調整が容易な抗菌性ガラス 10を効率的に得ることができる。 すなわち、上方力 溶融ガラス 22を、一対の回転部材 20a、 20bの間に自然落下さ せるとともに、回転部材 20aの表面に設けた凹部 24を利用して、所定の抗菌性ガラス 10を成形することができる。'また、一対の回転部材 20a、 20bの中心部には、冷却パ ィプ(図示せず。)が備えてあり、回転部材 20a、 20bの表面温度を制御できるように 構成してあることが好ましい。さらに、抗菌性ガラスは、薄肉部を介して、短冊状に成 形してあるためが所定温度を維持してレ、るため、さらに冷却するためには、抗菌性ガ ラスの表面に冷却風を吹きつけることが好ましレ、。
なお、図 9 (a)〜(b)に示す成形装置は、一対の回転部材 20a、 20bを備えてレ、る 、変形例として、図 10に示すように、一方の回転部材 20bのかわりに、平坦な壁部 材 20cを用いても、実質的に同様の形状であって、平板状の抗菌性ガラス 10を得る ことちでさる。
[0042] 3.表面研磨工程
Vプレンダー、ボールミル、振動ボールミル等の攪拌装置ゃ粉碎装置を用いて、得 られた平板状の抗菌性ガラスと、水ある 、はアルコール (イソプロピルアルコール等) と、室温、 10分〜 24時間程度、混合攪拌し、抗菌性ガラスの表面に付着した異物等 を除去等して、清浄面を確保するとともに、ノ リ取りして、さらには平板状の抗菌性ガ ラスの辺に沿って、面取りすることが好ましい。
すなわち、このように表面研磨工程を実施することにより、初期から銀の溶出量が多 くなつて、銀の溶出量の制御に'ついても容易になるためである。
例えば、実施例 1において得られる抗菌性ガラスにおいて、振動ボールミル中で、 水あるいはイソプロピルアルコールを用いた表面研磨工程(室温、 30分)を実施した 場合には、銀の溶出量は 0. 45mgZ(g'24Hrs)であるのに対して、力かる表面研 磨工程を省略すると、銀の溶出量は約 1ノ 3の 0. 16mgZ (g'24Hrs)に低下するこ とが確認されている。
実施例 '
[0043] 以下、本発明を実施例によってさらに詳細に説明する。但し、以下の説明は本発明 を例示的に示すものであり、本発明はこれらの記載に制限されるものではなレ、。
[0044] [実施例 1]
1.抗菌性ガラス作成
(1)溶融工程
第 1のガラス組成として、表 1に示すように、全体量を 100重量%としたときに、 Ag
Oが 3重量%、 ZnOが 30重量%、 CaOが 20重量%、 B O力 ¾重量%、 P Oカ42重 量%、および着色剤としての. CoOが 0. 01重量%となるように、それぞれのガラス組 成に対応したガラス原料を、万能混合機を用いて、回転数 250rpm、 30分の条件で 、均一に混合するまで攪拌した。
次レ、で、ガラス溶融炉を用いて、 1280°C、 3時間半の条件でガラス原料を加熱して 、溶融ガラスを作成した。
[0045] (2)成形工程
ガラス溶融炉カ 取り出した溶融ガラスを、図 9に示すような成形装置 40に導入し、 円板状の抗菌性ガラス (矩形状小片、最大径 (tl) : 15mm,厚さ (t2) :4mm)を成形 した。
[0046] (3)表面研磨工程
得られた円板状の抗菌性ガラス 500gを、メディアを使用しなレ、振動ボールミル中に 投入した。次レ、で、 500gのイソプロピルアルコールあるいは水を添カ卩し、その状態で 、振動ボールミルを室温、 30分の条件で稼働させて、バリ取り工程を含む表面研磨 工程を実施した。
その結果、図 12 (a)に示すように、表面研磨工程処理前は、微小凹凸が見られたも のが、図 12 (b)に示すように、表面研磨工程処理後には、表面が平滑化して、光沢 を癸するようになった。
[0047] 2.抗菌性ガラスの評価
(1)銀イオン溶出性評価
得られた抗菌性ガラス 10gを、 100mlの蒸留水(20°C)中に浸漬し、振とう機を用い て 24時間振とうした。遠心分離器を用いて銀イオン溶出液を分離後、さらにろ紙 (5C )でろ過して、測定試料とした。次いで、測定試料中の銀イオンを、 ICP発光分光分 析法により測定し、抗菌性ガラスにおける銀イオン溶出量 (mgZ (g' 24Hrs) )を算出 した。
[0048] (2)流出性評価
厚さ lmm、面積 20cm X 20cmのステンレス板の表面に、深さ 0. 5mm、面積 5cm
X 5cmの凹部を設けておき'、そこに 100g(Wl)の抗菌性ガラスを充填した状態で、 流量が 1リットル Z分の水道水を横方向力 吹きつけた。その状態を 1分間続けた後
、ステンレス板の上に、残っている抗菌性ガラスの重量 (W2)を測定し、抗菌性ガラス の残留率((Wl— W2) ZW1 X 100)を算出した。そして、算出した残留率から、以 下の基準により、抗菌性ガラスの流出性を評価した。
. © :残留率は90〜100重量%でぁる。
〇:残留率は 70〜90重量%未満である。
△:残留率は 30〜70重量%未満である。
X:残留率は 30重量%未満である。
[0049] (3)抗菌性評価
洗濯機を用いて、得られた抗菌性ガラスによる木綿布に対する抗菌性評価を実施 した。すなわち、図 8に示す洗濯機を用い、洗剤入りの水道水を循環させながら、 3k gの木綿布を洗濯した。 洗濯終了後、カートリッジ化された抗菌性ガラスを載置したパイパスに通じるバルブ を開閉して、水を流入させて、抗菌性ガラスと水とを直接的に接触させて、銀イオン 含有水を作成した。また、抗菌性ガラスによって、適宜抗菌処理した水をリサイクルし た。そして、被抗菌物としての术綿布に対して、抗菌処理した水を供給して、抗菌処 理を施した。
このようにして得られた木綿布を、 35°C、 95%Rh、 48時間の環境条件に放置し、 以下の条件で抗菌性を評価した。
◎:臭 、や黒ずみの発生が全く観察されなレ、。
〇:臭レ、や黒ずみの発生がほとんど観察されなレ、。
△:臭いや黒ずみの発生が一部観察される。 '
X:顕著な臭いや黒ずみの発生が観察される。
[0050] (4)変色防止効果
上述したように、洗濯機を用いて抗菌性評価等を行なうとともに、得られた抗菌性ガ ラスの変色防止効果を評価した。すなわち、図 8に示す洗濯機を用レ、、抗菌性評価 を 48時間行った後、抗菌性ガラスを取り出し、以下の条件で変色防止効果を評価し た。なお、図 12 (a)に、評価開始前の抗菌性ガラス及び評価終了後の抗菌性ガラス の写真を示す。
◎:抗菌性ガラスに変色等が全く観察されない。
〇:抗菌性ガラスに変色等がほとんど観察されない。
△:抗菌性ガラスに変色等が少々観察される。
' X:顕著な抗菌性ガラスの変色等が観察される。
[0051] (5)識別性評価
上述したように、洗濯機を用いて抗菌性評価等を行なうとともに、得られた抗菌性ガ ラスの変色防止効果を評価した。すなわち、図 8に示す洗濯機を用い、抗菌性評価 を 48時間行った後、図 7 (c)のように、カートリッジ化された抗菌性ガラスを取り出し、 以下の条件で識別性評価を行なった。
◎:カートリッジ内の抗菌性ガラスの存在が顕著に識別される。
■〇:カートリッジ内の抗菌性ガラスの存在が容易に識別される。 . △:カートリッジ内の抗菌性ガラスの存在が、一部識別されない。
X:カートリッジ内の抗菌性ガラスの存在力 全く識別されない。
[0052] [実施例 2〜5]
実施例 2〜5では、表 1に示すように実施例 1で使用したガラスの組成比及び無機 系着色剤 (酸化コバルト)を変えたほかは、実施例 1と同様に、それぞれ抗菌性ガラス を作成して、評価した。
[0053] [比較例:!〜 3]
比較例 1では、実施例 1における酸化コバルトの添加量を 0. 0001重量%としたほ かは、実施例 1と同様に評価した。
また、比較例 2では、実施例 1における酸化コバルト(CoO)のかおりに、酸化鉄 (Fe 〇)を添加するとともに、その添加量を 0. 0001重量%としたほかは、実施例 1と同
2 3
様に評価した。
さらに、比較例 3では、実施例 1における酸化コバルトの添加量を 0重量%、すなわ ち、酸ィヒコバルトを添加しなカゝつたほかは、実施例 1と同様に評価した。
なお、図 11 (a)〜(! 3)に、比較例 1〜3における変色防止効果の評価開始前の抗 菌性ガラス及び評価終了後の抗菌性ガラスの写真をそれぞれ示す。
[0054] [表 1]
実施例 実施例 実施例 実施例 実施例 比較例 比較例 比較伢
1 2 3 4 5 1 2 3
P203 42 62 37 37 57 32 52 32 ガ
ラ ZnO 30 - 30 30 - 30 - 30
組 S1O2 5 5 5 5 10 5 5 5
CaO 20 30 25 25 30 30 35 30
Ag20 3 3 3 3 3 3 3 3 糊 CoO CoO CoO CoO CoO CoO
0.01 0.03 0.05 0.008 0.002 0.0001 0.0001 0
円板 円板 円板 円板 円板 円板 円板 ' 円板
12 12 15 20 25 12 12 12
(mm)
JK Ct2) 4.0 4.0 2.0 5.0 8.0 4.0 4.0 4.0
(mm)
im. 0.30 0.35 0.10 0.10 0.15 0.02 0.01 0.02
(mg/g/24Hr)
© © ◎ © © X X X
◎ o o 0 X Δ X
© © o 厶 X O X 隱 ◎ o o 厶 X Δ X
産業上の利用可能性
本発明の抗菌性ガラスによれば、最大径 (tl)を所定範囲に制限するとともに、配合 成分として、所定量の無機系着色剤を含有することにより、水と直接的に接触した場 合であっても、初期の外観や識別性を維持したまま、繰り返し所定量の銀イオンを放 出できるようになった。
また、本発明の抗菌性ガラスの製造方法によれば、このような最大径 (tl)が所定範 囲であって、配合成分として、所定量の無機系着色剤を含む抗菌性ガラスを効率的 に得ることができるようになった。
したがって、最大径 (tl)が所定範囲であって、所定量の無機系着色剤を含む抗菌 性ガラスと、水とを、直接的に接触させて得られた銀イオン含有水により被抗菌物を 処理することにより、例えば、洗濯中の被抗菌物に対しても、所定量の銀イオンを迅 速に放出し、所定の抗菌処理を効率的に施すことができるとともに、繰り返し洗濯した 被抗菌物において、同様の抗菌効果を発揮することができる。
よって、本発明の抗菌性ガラスは、洗濯機、食洗機、アイロン、加湿器、食材洗浄槽 、医療用器具洗浄器、水洗式トイレ用水タンク、畜舎洗浄装置、人工芝グラウンド回 転ノズル式洗浄装置、浴槽循環水装置、冷房用クーリングタワー、噴霧器、園芸用ホ ース等の各種装置に好適に使用することができる。
特に、アイロンや洗濯機、あるいは食洗機のように、相当の振動が加わるような装置 においても、本発明の抗菌性ガラスは、優れた機械的特性や耐久性を示すことがで き、かつ、外観的にも黒色化しないことから、本発明の抗菌性ガラスにとって、好適な 用途である。

Claims

請求の範囲
[1] 銀イオンを放出することによって抗菌効果を発揮する平板状の抗菌性ガラスであつ て、
最大径(tl)を 3〜30mmの範囲内の値とし、かつ、
配合成分として、無機系着色剤を含有するとともに、当該無機系着色剤の添加量を 、全体量に対して、 0. 001-0. 5重量%の範囲内の値とすることを特徴とする抗菌 性ガラス。
[2] 前記無機系着色剤が、酸化コバルト、酸化銅、酸化クロム、酸化ニッケル、酸化マ ンガン、酸ィ匕ネオジゥム、酸化エルビウム、及び酸化セリウム力もなる群力も選択され る少なくとも一つの化合物であることを特徴とする請求の範囲の第 1項に記載の抗菌 性ガラス。
[3] 前記抗菌性ガラスに含まれる無機系着色剤の添加量を P1とし、同様に含まれる酸 化銀の添加量を C2としたときに、 C1ZC2で表される比率を 0. 01〜3の範囲内の値 とすることを特徴とする請求の範囲の第 1項または第 2項に記載の抗菌性ガラス。
[4] 前記銀イオンの溶出量を 0. 01〜0. 45mg (g' 24Hrs)の範囲内の値とすること を特徴とする請求の範囲の第 1項〜第 3項のいずれか一項に記載の抗菌性ガラス。
[5] 前記抗菌性ガラスを構成する辺に沿って面取りしてあることを特徴とする請求の範 囲の第項 1項〜第 4項のいずれか一項に記載の抗菌性ガラス。 '
[6] 無機系着色剤を含有しな!/、抗菌性ガラスを、全体量に対して、 10〜90重量%の範 囲でさらに含むことを特徴とする請求の範囲の第 1項〜第 5項のいずれか一項に記 ' 載の抗菌性ガラス。
[7] 銀イオンを放出することによって抗菌効果を発揮する平板状の抗菌性ガラスの製造 方法であって、下記工程 (A)〜 (B)を含むことを特徴とする抗菌性ガラスの製造方法
(A)原材料を加熱溶融させて、全体量に対して、 0. 001〜0. 5重量%の無機系着 色剤を含有する着色溶融ガラスを作成する溶融工程
(B)着色溶融ガラスを冷却しながら、最大径 (U)が 3〜 30mmの抗菌性ガラスとする 成形工程 前記工程 (B)において、抗菌性ガラスを研磨する工程をさらに含むことを特徴とす る請求の範囲の第 7項に記載の抗菌性ガラスの製造方法。
PCT/JP2007/052302 2006-03-17 2007-02-02 抗菌性ガラスおよび抗菌性ガラスの製造方法 WO2007108245A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/224,487 US8034732B2 (en) 2006-03-17 2007-02-02 Antimicrobial glass and method of producing antimicrobial glass
JP2008506194A JP4212642B2 (ja) 2006-03-17 2007-02-02 抗菌性ガラスおよび抗菌性ガラスの製造方法
CN200780006958XA CN101389577B (zh) 2006-03-17 2007-02-02 抗菌性玻璃及抗菌性玻璃的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006074641 2006-03-17
JP2006-074641 2006-03-17

Publications (1)

Publication Number Publication Date
WO2007108245A1 true WO2007108245A1 (ja) 2007-09-27

Family

ID=38522282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052302 WO2007108245A1 (ja) 2006-03-17 2007-02-02 抗菌性ガラスおよび抗菌性ガラスの製造方法

Country Status (5)

Country Link
US (1) US8034732B2 (ja)
JP (1) JP4212642B2 (ja)
CN (1) CN101389577B (ja)
TW (1) TWI348461B (ja)
WO (1) WO2007108245A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9567259B2 (en) 2013-02-11 2017-02-14 Corning Incorporated Antimicrobial glass articles and methods of making and using same
US9840438B2 (en) 2014-04-25 2017-12-12 Corning Incorporated Antimicrobial article with functional coating and methods for making the antimicrobial article
US10131574B2 (en) 2013-06-17 2018-11-20 Corning Incorporated Antimicrobial glass articles and methods of making and using same
KR20190123570A (ko) * 2018-04-24 2019-11-01 엘지전자 주식회사 항균 글라스 조성물 및 이의 제조방법
US11370703B2 (en) 2018-06-15 2022-06-28 Corning Incorporated Glass substrate processing methods

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056785A (ja) * 2010-09-08 2012-03-22 Takara Standard Co Ltd ガラス粒の製造方法及び装置
US9725354B2 (en) * 2012-11-01 2017-08-08 Owens-Brockway Glass Container Inc. Color-strikable glass containers
WO2015001870A1 (ja) 2013-07-02 2015-01-08 興亜硝子株式会社 抗菌性ガラス
WO2015098070A1 (ja) * 2013-12-26 2015-07-02 川崎重工業株式会社 バイオマスを原料とする糖化液製造方法、糖化液製造装置及び連続式反応器
JP6287240B2 (ja) * 2014-01-17 2018-03-07 東京エレクトロン株式会社 真空処理装置及び真空処理方法
EP3104905B1 (en) * 2014-02-12 2021-04-07 Sanofi-Aventis Deutschland GmbH Drug delivery device with compressible reservoir for liquid medicament
KR20160123368A (ko) 2014-02-13 2016-10-25 코닝 인코포레이티드 향상된 강도 및 항균 특성을 갖는 유리, 및 이의 제조방법
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039621B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039620B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US10364181B2 (en) 2014-04-23 2019-07-30 Corning Incorporated Antimicrobial articles with silver-containing alkali silicate coating and methods of making thereof
DE102016003868A1 (de) * 2016-04-05 2017-10-05 Trovotech Gmbh farbstabiles, mit Silberionen dotiertes, antimikrobielles, poröses Glaspulver sowie Verfahren zur Herstellung eines solchen bei hohen Temperaturen und dessen Verwendung
TW202038887A (zh) 2018-11-20 2020-11-01 美商康寧公司 生物活性硼酸鹽玻璃
CN111253070B (zh) * 2020-01-19 2021-07-13 成都天佑晶创科技有限公司 一种缓释型抗菌磷酸盐玻璃体及其制备方法
CN116217072A (zh) * 2022-12-26 2023-06-06 中建材玻璃新材料研究院集团有限公司 一种有效抑制银离子还原的柔性抗菌玻璃
CN118599236B (zh) * 2024-08-08 2024-10-18 安徽正合雅聚新材料科技有限公司 一种高透明as树脂用载银玻璃抗菌剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319042A (ja) * 1998-05-12 1999-11-24 Sasaki Glass Co Ltd 抗菌性強化ガラス物品
JP2002343261A (ja) * 2002-03-20 2002-11-29 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル
JP2005162519A (ja) * 2003-12-01 2005-06-23 Nishiyama Stainless Chem Kk フラットパネルディスプレイ用ガラス基板の切断分離面の研磨方法、フラットパネルディスプレイ用ガラス基板及びフラットパネルディスプレイ
JP2005255517A (ja) * 2004-03-08 2005-09-22 Schott Ag 抗菌性の屈折率を調整したリン酸塩ガラス
WO2005087675A1 (ja) * 2004-03-15 2005-09-22 Koa Glass Co., Ltd. 抗菌性ガラスおよび抗菌性ガラスの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647625B2 (ja) 1988-06-13 1994-06-22 近畿パイプ技研株式会社 合成樹脂成形体
US5430301A (en) 1990-03-14 1995-07-04 Zellweger Uster, Inc. Apparatus and methods for measurement and classification of generalized neplike entities in fiber samples
JP3486919B2 (ja) 1993-07-09 2004-01-13 日本板硝子株式会社 抗菌性を有するフレーク状ガラス
JPH1072530A (ja) 1996-06-28 1998-03-17 Ishizuka Glass Co Ltd 抗菌性水周り製品
JP2002003238A (ja) 2000-06-20 2002-01-09 Toagosei Co Ltd 新規なガラス系抗菌剤
JP4037038B2 (ja) 2000-06-20 2008-01-23 東亞合成株式会社 ガラス系抗菌剤
US6831028B1 (en) * 2000-09-29 2004-12-14 Koa Glass Co., Ltd. Antibacterial glass and method for production thereof
DE10141117A1 (de) * 2001-08-22 2003-03-13 Schott Glas Antimikrobielles Silicatglas und dessen Verwendung
US7704530B2 (en) * 2001-09-14 2010-04-27 Kenji Nakamura Antimicrobially treated material and methods of preventing coloring thereof
DE10244783A1 (de) * 2001-10-02 2003-04-24 Schott Glas Hochreines bioaktives Glas sowie Verfahren zu dessen Herstellung
EP1597211A2 (de) 2003-02-25 2005-11-23 Schott AG Antimikrobiell wirkendes phosphatglas
DE10308227A1 (de) * 2003-02-25 2004-09-09 Schott Glas Antimikrobiell wirkendes Sulfophosphatglas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319042A (ja) * 1998-05-12 1999-11-24 Sasaki Glass Co Ltd 抗菌性強化ガラス物品
JP2002343261A (ja) * 2002-03-20 2002-11-29 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル
JP2005162519A (ja) * 2003-12-01 2005-06-23 Nishiyama Stainless Chem Kk フラットパネルディスプレイ用ガラス基板の切断分離面の研磨方法、フラットパネルディスプレイ用ガラス基板及びフラットパネルディスプレイ
JP2005255517A (ja) * 2004-03-08 2005-09-22 Schott Ag 抗菌性の屈折率を調整したリン酸塩ガラス
WO2005087675A1 (ja) * 2004-03-15 2005-09-22 Koa Glass Co., Ltd. 抗菌性ガラスおよび抗菌性ガラスの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9567259B2 (en) 2013-02-11 2017-02-14 Corning Incorporated Antimicrobial glass articles and methods of making and using same
US10155691B2 (en) 2013-02-11 2018-12-18 Corning Incorporated Antimicrobial glass articles and methods of making and using same
US10131574B2 (en) 2013-06-17 2018-11-20 Corning Incorporated Antimicrobial glass articles and methods of making and using same
US9840438B2 (en) 2014-04-25 2017-12-12 Corning Incorporated Antimicrobial article with functional coating and methods for making the antimicrobial article
KR20190123570A (ko) * 2018-04-24 2019-11-01 엘지전자 주식회사 항균 글라스 조성물 및 이의 제조방법
KR102104318B1 (ko) * 2018-04-24 2020-04-24 엘지전자 주식회사 항균 글라스 조성물 및 이의 제조방법
US11370703B2 (en) 2018-06-15 2022-06-28 Corning Incorporated Glass substrate processing methods

Also Published As

Publication number Publication date
TWI348461B (en) 2011-09-11
JPWO2007108245A1 (ja) 2009-08-06
CN101389577A (zh) 2009-03-18
US20100004111A1 (en) 2010-01-07
TW200736184A (en) 2007-10-01
US8034732B2 (en) 2011-10-11
JP4212642B2 (ja) 2009-01-21
CN101389577B (zh) 2011-05-11

Similar Documents

Publication Publication Date Title
WO2007108245A1 (ja) 抗菌性ガラスおよび抗菌性ガラスの製造方法
JP5114396B2 (ja) 混合抗菌性ガラス
JP5845209B2 (ja) 抗菌性ガラスおよび抗菌性ガラスの製造方法
JP5642325B1 (ja) 抗菌性ガラス
WO2004064524A1 (ja) ガラス質抗菌剤および抗菌性製品
KR101869108B1 (ko) 용해성 유리질 항균제 및 수처리제
JP5085803B2 (ja) 抗菌性ガラスおよび抗菌性ガラスの製造方法
JP2001247336A (ja) 抗菌性付与用ガラス組成物、及びそれを用いた抗菌性高分子複合材料、抗菌性高分子複合材料成形体
JP5069482B2 (ja) 抗菌性ガラスおよび抗菌性ガラスの製造方法
KR101665747B1 (ko) 수처리용 입상 항균제
JP5043393B2 (ja) 収容容器
JP2001247337A (ja) 抗菌性付与用ガラス組成物、及びそれを用いた抗菌性高分子複合材料、抗菌性高分子複合材料成形体
JP2001247334A (ja) 抗菌性付与用ガラス組成物及び抗菌性繊維
JP2003054990A (ja) 抗菌性材料および抗菌性樹脂組成物
JP5111906B2 (ja) 抗菌剤を含む樹脂組成物及び成形品
JP2003246645A (ja) 防黴性ガラス、防黴性樹脂組成物および防黴性ガラスの製造方法
JP2001247335A (ja) 抗菌性付与用ガラス組成物、抗菌性高分子複合材料及び抗菌性繊維

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07713964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008506194

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780006958.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12224487

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07713964

Country of ref document: EP

Kind code of ref document: A1