WO2007145046A1 - 排気ガス浄化システムの制御方法及び排気ガス浄化システム - Google Patents
排気ガス浄化システムの制御方法及び排気ガス浄化システム Download PDFInfo
- Publication number
- WO2007145046A1 WO2007145046A1 PCT/JP2007/059890 JP2007059890W WO2007145046A1 WO 2007145046 A1 WO2007145046 A1 WO 2007145046A1 JP 2007059890 W JP2007059890 W JP 2007059890W WO 2007145046 A1 WO2007145046 A1 WO 2007145046A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control
- exhaust gas
- injection
- fuel pressure
- region
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2409—Addressing techniques specially adapted therefor
- F02D41/2416—Interpolation techniques
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/402—Multiple injections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/18—Control of the engine output torque
- F02D2250/21—Control of the engine output torque during a transition between engine operation modes or states
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/31—Control of the fuel pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention can simplify fuel pressure control data and reduce torque shock during forced regeneration control with multi-injection of exhaust gas purification devices such as continuous regeneration type DPF devices and NOx purification devices.
- the present invention relates to an exhaust gas purification system control method and an exhaust gas purification system capable of preventing generation.
- PM particulate matter: hereinafter referred to as PM
- PM Diesel Particulate Filter
- a technology has been developed to collect this PM with a filter called Diesel Particulate Filter (DPF) and reduce the amount of PM discharged to the outside.
- DPF Diesel Particulate Filter
- This continuous regeneration type DPF device is an exhaust gas purification device in which an oxidation catalyst device carrying an oxidation catalyst and an DPF device arranged in order from the upstream side, or an exhaust gas purification device arranged in a DPF device carrying an oxidation catalyst.
- the device will become more powerful. In this device, when the temperature of the exhaust gas flowing into the filter is about 350 ° C or higher, the PM trapped in the filter is continuously burned and purified, and the filter regenerates itself. However, when the temperature of the exhaust gas is low, the temperature of the catalyst is lowered and does not become active, so the oxidation reaction is not promoted, and it is difficult to oxidize PM and self-regenerate the filter. Therefore, clogging progresses due to PM accumulation on the filter, and the problem of increased exhaust pressure due to this clogging occurs.
- HC hydrocarbon supplied into the exhaust gas by post injection (post injection) or the like in the cylinder (cylinder) is It burns with an oxidation catalyst arranged on the flow side or an oxidation catalyst carried on a filter. Using this combustion heat, the temperature of the exhaust gas at the filter inlet and the filter surface is raised, the temperature of the filter is raised above the temperature at which PM accumulated in the filter burns, and PM is burned and removed. [0005] At this time, if the oxidation catalyst is below the activation temperature, HC is not oxidized and is emitted as white smoke.
- multi-injection (delayed multistage injection) is performed by in-cylinder injection to raise the temperature of the exhaust gas so that the oxidation catalyst becomes equal to or higher than the activation temperature, and then post-injection is performed.
- the exhaust gas temperature rise by this multi-injection makes it possible to raise the DPF inlet temperature while preventing the emission of white smoke.
- the target fuel pressure (common rail pressure) is set not lower than that in the forced regeneration operation!
- the target fuel pressure (common rail pressure)
- the present inventors have reached the following idea based on the knowledge that the exhaust gas temperature discharged from the exhaust manifold rises when the engine is in a high-load operation state. It was.
- forced regeneration control when the engine is in a high-load operation state, it is not necessary to perform multi-injection because the exhaust gas temperature rises even during normal operation without performing multi-injection. Therefore, in the high load operation state in the forced regeneration control, the normal injection control during the normal operation may be performed.
- the injection control data for the normal injection control in the normal operation can be substituted for the portion in the high-load operation state on the data map of the injection control data for the forced regeneration control. This eliminates the need for injection control data in this high-load operation state, thereby reducing the control data.
- forced regeneration control may be performed during traveling or stopping work.
- the engine operating state during forced regeneration control is not always constant.
- the engine In exhaust gas temperature control, the engine is in a low-medium-load operating state that requires multi-injection, or a high-load operating state that does not require multi-injection. In some cases, there are cases where there is a transition between them. If the multi-injection fuel pressure is switched to the normal injection fuel pressure or vice versa during this transition, a problem arises that torque shock occurs. In other words, the amount of torque generated differs between the combustion pressure of multi-injection and the combustion pressure of normal injection, so the amount of torque generated is different, and the force is also in a high-load operation state. .
- Patent Document 1 Japanese Unexamined Patent Publication No. 2004-162612 (paragraphs [0025], [0035])
- Patent Document 2 Japanese Unexamined Patent Publication No. 2003-201899 (claim 3, column 16)
- the present invention has been made to solve the above-described problems, and its purpose is to perform continuous reproduction.
- control data such as the number of data maps and the number of data maps in forced regeneration control can be reduced and fuel can be reduced. It is an object of the present invention to provide an exhaust gas purification system control method and an exhaust gas purification system that can smoothly change pressure and avoid the occurrence of torque shock.
- An exhaust gas purification method for achieving the above object includes an exhaust gas purification device having an oxidation catalyst device carrying an oxidation catalyst on the upstream side in an exhaust passage of an internal combustion engine, or an An exhaust gas purification device carrying a catalyst and a control device that performs forced regeneration control for recovering the purification ability of the exhaust gas purification device, and the control device increases the exhaust temperature during the forced regeneration control.
- the control method of the exhaust gas purification system that performs the multi-injection control to warm the engine the multi-injection is stopped when the operation state of the internal combustion engine is a high load operation state during the forced regeneration control.
- the normal injection control is performed, and the control region is divided into a multi-injection control region, a transient region, and a normal injection control region according to the rotational speed and load of the internal combustion engine.
- Multi-injection system on the area side In-cylinder fuel injection is performed using fuel pressure control data obtained by interpolation between control fuel pressure control data and normal injection control fuel pressure control data on the normal injection control region side. To do.
- the total fuel injection amount injected during one cycle of each cylinder is used instead of the load.
- This high-load operation state is a cylinder force with a relatively large load exhaust gas exhausted This is the operating state of the internal combustion engine in which the exhaust gas temperature, which is the temperature of the engine, becomes higher than a predetermined temperature.
- this high-load operating state can be an operating state in which the load that is the engine output required for the internal combustion engine is equal to or greater than a predetermined load that is determined according to the rotational speed of the internal combustion engine.
- This predetermined load can be set in advance by experiment, calculation, etc., and input and stored in the control device.
- Whether the power is in the high load operation state is determined by referring to the data map based on the engine speed and the load of the internal combustion engine to determine whether the force is in the high load operation state. be able to. Instead of the load, it is also possible to use the output of the accelerator sensor force, the fuel injection amount required to produce the required engine output, the total fuel injection amount injected into the cylinder, or the like. These injection amounts are the amount injected during one cycle of each cylinder.
- the combustion pressure is a pressure when fuel is injected into the cylinder, and includes an injection pressure and a pressure such as a common rail pressure closely related to the pressure.
- This fuel pressure is, for example, 80 MPa to 180 MPa at the time of normal injection, and differs depending on the number of revolutions at the time of multi-injection which is lower than that at the time of normal injection.
- the decrease in fuel pressure can be as much as several tens of percent of the fuel pressure during normal injection.
- the exhaust gas temperature exhausted from the exhaust manifold of the internal combustion engine rises in a high-load operation state. Therefore, in order to increase the temperature of the catalyst and DPF and maintain the temperature, In consideration of the fact that it is not necessary to perform multi-injection to raise the exhaust gas temperature, if the operation state of the internal combustion engine enters a high-load operation state during forced regeneration control, multi-injection control Is stopped, and control to shift to normal injection control is performed. From this, the data map of the control data for forced regeneration control! Controls the data map of normal operation (operating state, not forced regeneration control) that performs normal injection control in the high-load operation state part. Data can be substituted.
- This data map for environmental correction includes the atmospheric temperature, atmospheric pressure, engine water temperature, and other auxiliary equipment operating conditions.
- a multi-injection control region for performing multi-injection (multi-stage injection) control for increasing the exhaust gas temperature at a low temperature of the exhaust gas according to the load of the internal combustion engine
- a transient region is provided between the normal injection control region corresponding to a high-load operation state that does not require a temperature increase by multi-injection control, and the internal combustion engine is increased by increasing the load of the internal combustion engine during forced regeneration control.
- Multi-injection control region force When the engine enters the transient region, weighting is performed according to the position in the transient region to interpolate fuel pressure control data in the transient region and fuel pressure control data in both regions And ask.
- an exhaust gas purification system for achieving the above object includes an exhaust gas purification device having an oxidation catalyst device carrying an oxidation catalyst on the upstream side in an exhaust passage of an internal combustion engine, or An exhaust gas purification device carrying an oxidation catalyst, and a control device that performs forced regeneration control to recover the purification capability of the exhaust gas purification device, the control device controls the exhaust temperature during forced regeneration control
- the control device performs the forced regeneration control when the operation state of the internal combustion engine is a high load operation state.
- control device is configured to use the total fuel injection amount injected during one cycle of each cylinder instead of the load.
- the exhaust gas purification method described above can be implemented, and similar effects can be achieved.
- the exhaust gas purifier includes not only a continuous regeneration type DPF device but also a NOx purification device such as a NOx occlusion reduction type catalyst or a NOx direct reduction type catalyst that performs the same forced regeneration control.
- the scope of application of the present invention can include forced regeneration control such as recovery from sulfur poisoning, so that not only NOx occlusion reduction type catalysts and NOx direct reduction type catalysts but also selective reduction type (SCR) This includes forced regeneration control for sulfur poisoning of exhaust gas purification equipment equipped with a catalyst.
- SCR selective reduction type
- the operating state of the internal combustion engine shifts from a multi-injection control region that requires multi-injection to a normal injection control region that does not require multi-injection.
- the transition region is provided so that the combustion pressure of in-cylinder fuel injection smoothly shifts, the occurrence of torque shock can be prevented.
- fuel pressure control data in the transient region is also unnecessary. Therefore, the data map of the fuel pressure control data in forced regeneration control The number of meshes can be reduced.
- FIG. 1 is a diagram showing an overall configuration of an exhaust gas purification system.
- FIG. 2 is a diagram schematically showing an example of an area data map.
- FIG. 3 is a diagram showing an example of a control flow of forced regeneration control.
- FIG. 4 is a diagram showing an example of a control flow for calculating fuel pressure control data.
- FIG. 5 is a diagram showing another example of a control flow for calculating fuel pressure control data.
- FIG. 1 shows the configuration of an exhaust gas purification system 1 of this embodiment.
- the exhaust gas purification system 1 is configured by providing an exhaust gas purification device 12 in an exhaust passage 11 of a diesel engine (internal combustion engine) 10.
- This exhaust gas purification device 12 is one of continuous regeneration type DPF devices.
- This exhaust gas purification device 12 is configured to have an oxidation catalyst device 12a on the upstream side and a filter device 12b with catalyst on the downstream side.
- a silencer 13 is provided on the downstream side of the exhaust gas purification device 12.
- an exhaust brake valve (exhaust brake) 14 is provided upstream of the exhaust gas purifier 12, and an exhaust throttle valve (exhaust throttle) 15 is provided downstream of the exhaust gas cleaner 12.
- the acid catalyst device 12a is made of platinum on a carrier such as a porous ceramic hard cam structure.
- the filter device 12b with catalyst is formed of a monolithic ham-wall type wall flow type filter or the like in which the inlet and outlet of a porous ceramic her cam channel are alternately plugged.
- a catalyst such as platinum or cerium oxide is supported on the filter.
- PM (particulate matter) in the exhaust gas G is collected (trapped) by the porous ceramic wall.
- a differential pressure sensor 31 is provided in the conducting pipe connected before and after the exhaust gas purification device 12.
- an oxidation catalyst inlet exhaust temperature sensor 32 is provided upstream of the oxidation catalyst device 12a for regeneration control of the filter device 12b with catalyst, and the exhaust gas temperature at the filter inlet is between the oxidation catalyst device 12a and the filter device 12b with catalyst.
- a sensor 33 is provided.
- the oxidation catalyst inlet exhaust temperature sensor 32 detects a first exhaust gas temperature Tgl that is the temperature of the exhaust gas flowing into the oxidation catalyst device 12a. Also, filter inlet exhaust temperature sensor 33 detects the second exhaust gas temperature Tg2, which is the temperature of the exhaust gas flowing into the filter device with catalyst 12b.
- the intake passage 16 is provided with an air cleaner 17, a MAF sensor (intake air amount sensor) 18, an intake throttle valve (intake throttle) 19, and the like.
- the intake throttle valve 19 adjusts the amount of intake air A that enters the intake manifold.
- the EGR passage 20 is provided with an EGR cooler 21 and an EGR valve 22.
- the output values of these sensors are input to a control device (ECU: engine control unit) 40 that performs overall control of the operation of the engine 10 and also controls regeneration of the exhaust gas purification device 12.
- the control signal output from the control device 40 controls the intake throttle valve 19, the fuel injection device (injection nozzle) 23, the exhaust brake valve 14, the exhaust throttle valve 15, the EGR valve 22, and the like.
- the fuel injection device 23 is connected to a common rail injection system 27 that temporarily stores high-pressure fuel boosted by a fuel pump (not shown).
- the control device 40 stores information such as the accelerator opening from the accelerator position sensor (APS) 34, the engine speed from the speed sensor 35, and the common rail pressure from the rail pressure sensor 36. In addition, information such as vehicle speed and cooling water temperature is also input.
- An energization time signal is output from the control device 40 so that a predetermined amount of fuel is injected from the fuel injection device 23.
- a flashing lamp (DPF lamp) 24, an abnormal lamp 25, and a manual regeneration button (manual regeneration switch) 26, which are warning means for alerting, are provided.
- This warning means alerts the driver (driver) when the amount of PM trapped in the filter device 12b with catalyst exceeds a certain amount and the filter device 12b with catalyst is clogged.
- This forced regeneration control includes automatic traveling regeneration that performs forced regeneration control during traveling, and a manual operation that starts when the driver stops the vehicle and presses the manual regeneration button 26 with a warning. There is dynamic reproduction. These are appropriately selected according to the distance traveled and DPF differential pressure.
- the regeneration control device that performs these forced regeneration controls is incorporated in the control device 40.
- the forced regeneration of the manual regeneration or the automatic traveling regeneration is performed according to this embodiment, in which the catalyst temperature index temperature indicating the temperature (bed temperature) of the acid catalyst 12a is determined from the predetermined first determination temperature Tel.
- the first exhaust gas temperature rise control is performed.
- the second exhaust gas temperature rise control with post injection is performed.
- the filter temperature index temperature indicating the temperature of the filter device with catalyst 12b becomes equal to or higher than the predetermined second determination temperature Tc2, temperature maintenance control is performed.
- the first exhaust gas temperature control, the second exhaust gas temperature control, and the temperature maintenance control are all performed as shown in FIG.
- the multi-injection control region Rm corresponding to the region the multi-injection control for raising the exhaust gas temperature is performed, and in the normal injection control region Rn corresponding to the high load operation state, the normal injection control is performed without performing the multi-injection control.
- the transient region Rt provided between the multi-injection control region Rm and the normal injection control region Rn multi-injection control is performed using fuel pressure control data obtained by interpolation.
- This interpolation is performed as follows. First, as shown in FIG. 2, the multi-injection control region Rm, the transient region Rt, and the normal injection control region Rn are divided with respect to the rotational speed Ne (horizontal axis) and the load Q (vertical axis) of the internal combustion engine. An area data map is prepared and stored in the control device 40. This region data map can be set in advance by examining whether or not it is necessary to raise the exhaust gas temperature by multi-injection through experiments and calculations.
- the current engine operating state (during control) is It is determined in which area of the area data map shown in 2.
- the multi-injection control region at low speed N em (low / medium load operation state)
- the load at the boundary Lm on the Rm side is Qml
- the load at the normal injection region (high load operation state) Rn side boundary Ln is Qnl If the load Qm is less than the load Qml, it is assumed that the load is in the multi-injection control region Rm. If so, it is assumed that it is in the normal injection control region Rn.
- multi-injection control is performed based on the fuel pressure control data Pm that also calculates the control data map force for multi-injection
- normal Normal injection control is performed based on the fuel pressure control data Pn calculated from the fuel pressure control data map for injection.
- the fuel pressures Pm and Pn are, for example, 80 MPa to 180 MPa at the time of normal injection, and differ depending on the number of revolutions that is lower at the time of multi-injection than at the time of normal injection. In some cases, the amount of decrease in fuel pressure can be as much as several tens of percent of the fuel pressure during normal injection.
- Fuel injection in the cylinder is performed using fuel pressure control data P obtained by interpolation with fuel pressure control data Pnl for normal injection at the boundary Ln on the normal injection region Rn side in Nem.
- the fuel pressure control data Pml for multi-injection also provides the base map force for fuel pressure (target rail pressure) for multi-injection control, and the fuel pressure control data Pnl for normal injection is the fuel for normal injection control. Obtained from the pressure (target rail pressure) base map.
- an index value t of the position in the transient region Rt may be calculated, and interpolation may be performed using this.
- the index value t at this position is 0 (zero) when the position of the boundary Ln on the normal injection region Rn side is 0 (zero) and the position of the boundary Lm on the multi-injection region Rm side is 1.
- Shown as a numerical value between forces 1, calculated as t (Qnl-Qm) / (Qn 1 ⁇ Qml).
- step S11 it is determined in step S11 whether or not the forced regeneration control is based on automatic traveling regeneration or manual regeneration. If it is not forced regeneration control, return without executing this forced regeneration control and perform normal operation control. If the forced regeneration control is in step S11, go to step S12.
- Whether the force is the forced regeneration control is determined as follows.
- the differential pressure detected by the differential pressure sensor 31 that measures the differential pressure between before and after the exhaust gas purifier 12 exceeds the predetermined differential pressure value for judgment.
- the flashing lamp (DPF lamp) 23 which is a warning means, flashes to prompt the driver to perform manual regeneration of the DPF, and the driver who is prompted to perform manual regeneration stops the vehicle.
- manual regeneration button 25 When manual regeneration button 25 is operated, forced regeneration control is performed.
- forced regeneration control is performed when it is detected that the amount of PM collected by the filter device 12b with force catalyst, such as the detection value of the differential pressure sensor 31, exceeds a certain amount. .
- a first determination temperature Tel is calculated.
- the first judgment temperature Tel is the oxidation catalyst of the oxidation catalyst device 12a when the second exhaust gas temperature (catalyst temperature index temperature) Tg2, which is the exhaust gas temperature detected by the filter inlet exhaust temperature sensor 33, reaches this temperature.
- the temperature at which HC, which is unburned fuel supplied by post-injection, is sufficiently oxidized for example, about 200 ° C to 250 ° C).
- a value that changes according to the engine speed Nem at that time may be used.
- the first exhaust gas temperature Tgl detected by the oxidation catalyst inlet temperature sensor 32 may be used instead of the second exhaust gas temperature Tg2 detected by the filter inlet exhaust temperature sensor 33.
- step S13 the second exhaust gas temperature (catalyst temperature index temperature) Tg2 is checked.
- the first exhaust gas temperature rise control is performed for a predetermined time (the second exhaust gas temperature Tg2 in step S13). Time related to the check interval) During A tl.
- the second exhaust gas temperature Tg2 is equal to or lower than the predetermined first determination temperature Tel. If so, go to step SI 5.
- a second determination temperature Tc2 is calculated.
- This second judgment temperature Tc2 is the target temperature of the second exhaust gas temperature rise control in step S17, and the second exhaust gas temperature (filter temperature) which is the temperature of the exhaust gas detected by the filter inlet exhaust temperature sensor 33.
- the second exhaust gas temperature Tg2 is the temperature of the exhaust gas detected by the filter inlet exhaust temperature sensor 33.
- This second judgment temperature Tc2 is usually higher than the PM combustion start temperature (for example, about 350 ° C.), for example, about 500 ° C. Further, the value of the second determination temperature Tc2 may be changed in multiple stages according to time.
- step S 16 the second exhaust gas temperature (filter temperature index temperature) Tg 2 is checked.
- the control goes to the second exhaust gas temperature rise control in step S17.
- step S18 Go to temperature maintenance control.
- step S17 the second exhaust gas temperature raising control is performed for a predetermined time (time related to the check interval of the second exhaust gas temperature Tg2 in step S16) ⁇ t2.
- the temperature of the exhaust gas is continuously increased by the second exhaust gas temperature increase control, and unburned fuel (HC) is supplied into the exhaust gas by post injection.
- the unburned fuel can be acidified by the oxidation catalyst device 12a, and the temperature of the exhaust gas can be further increased by the heat of the acid.
- the temperature Tg2 of the exhaust gas thus raised becomes equal to or higher than the second determination temperature Tc2, the PM collected in the filter device 12b with catalyst burns.
- the second exhaust gas temperature Tg2 may be continuously increased to the control target temperature Tc2, but it may be increased in two stages or multiple stages. good.
- step S18 If it is determined in step S16 that the second exhaust gas temperature Tg2 is equal to or higher than the second determination temperature Tc2, in step S18, the temperature without post-injection in the cylinder (in-cylinder) injection of the engine 10 is determined.
- the maintenance control is performed for a predetermined time (time related to the interval of checking the duration of the second exhaust gas temperature Tg2 in step S16) ⁇ t3.
- step S19 the PM combustion accumulation time ta is checked to determine whether or not the regeneration control is finished. In this check, it is checked whether the PM combustion accumulation time ta exceeds the predetermined judgment time Tac. That is, if it exceeds, the process goes to step S20, assuming that the regeneration control is completed, and if not, the process returns to step S12, assuming that the regeneration control is not completed. Then, until the PM combustion cumulative time ta exceeds the predetermined judgment time tac, the first exhaust gas temperature rise control force in step S14 and the second exhaust gas temperature rise control force in step S17 and the temperature maintenance control in step S18 are performed. Do.
- step S20 if the forced regeneration control is terminated and the vehicle is stopped, the exhaust brake valve 13 and the exhaust throttle valve 14 are returned to the normal operation state, and the normal injection control is resumed. Then return.
- the second exhaust gas temperature Tg2 detected by the filter inlet exhaust temperature sensor 33 is used as the catalyst temperature index temperature indicating the temperature (bed temperature) of the oxidation catalyst 12a.
- the second exhaust gas temperature Tg2 detected by the filter inlet exhaust temperature sensor 33 is also used as the filter temperature index temperature used to indicate the temperature of the filter device 12b with catalyst.
- the first exhaust gas temperature Tgl detected by the oxidation catalyst inlet exhaust temperature sensor 32 may be used as the catalyst temperature index temperature indicating the temperature (bed temperature) of the oxidation catalyst 12a.
- the low / medium load operation region has multiple outputs. Performs injection control, but performs normal injection control without multi-injection in high-load operation.
- This control can be performed according to a control flow as shown in FIGS.
- the control flow in Fig. 5 is called when the data P for fuel pressure control of fuel injection in the cylinder is required when entering the first exhaust gas temperature rise control, second exhaust gas temperature rise control, and temperature maintenance control.
- This fuel pressure control data P is calculated in the control flow, and is shown as returning to the place where this control flow was called after calculation! /
- step S31 an engine speed Nem and a load Qm indicating the operating state of the engine 10 are input in step S31.
- step S32 the load Qml of the boundary Lm on the multi-injection control region Rm side at the engine speed Nem and the load Qnl of the boundary Ln on the normal injection region Rn side are input.
- step S33 the load Qm is checked to determine whether or not it is less than or equal to the load Qml. If the load Qm is equal to or less than the load Qml in this determination, the process goes to step S34, and the fuel pressure control data P is set to the fuel pressure control data Pm calculated from the multi-injection fuel pressure data map, and the process returns.
- step S35 If the load Qm is not less than or equal to the load Qml in step S33, the process goes to step S35 to check the load Qm and determine whether the force is greater than or equal to the load Qnl. If the load Qm is equal to or greater than the load Qnl in this determination, the process goes to step S36, where the fuel pressure control data P is set to the fuel pressure control data Pn calculated for the normal operation fuel pressure data map force, and the return is returned. To do.
- step S35 If it is determined in step S35 that the load Qm is not equal to or greater than the load Qnl, the process proceeds to step S37.
- step S37 the fuel pressure control data Pml for multi-injection at the boundary Lm on the multi-injection control region Rm side at the engine speed Nem and the boundary Ln on the normal injection region Rn side at the engine speed Nem. Input fuel pressure control data Pnl for normal injection.
- step S38a and step S38b are used instead of step S38 as shown in the control flow of FIG. .
- the load at the boundary Lm on the multi-injection control region Rm side at the rotational speed Nem is Q ml, for fuel pressure control.
- Pt ((Qnl-Qt) X Pml + (Qt-Qml), where the data is Pml, the load at the boundary Ln on the normal injection control region Rn side at rotation speed Nem is Qnl, and the fuel pressure control data is Pnl
- the fuel pressure control data Pt calculated by X Pnl) Z (Qnl-Qml) can be used as the fuel pressure control data P in the transient region Rt.
- the exhaust gas purification device of the exhaust gas purification system is an example of a combination of the upstream side acid catalyst device 12a and the downstream filter 12b with catalyst.
- the exhaust gas purification device may be a filter carrying an acid catalyst.
- post injection has been described as a method of supplying unburned fuel (HC) to the upstream side of the oxidation catalyst 12a.
- HC unburned fuel
- a method of direct injection in the exhaust pipe in which an unburned fuel supply device is arranged in the exhaust passage 16 and the unburned fuel is directly injected into the exhaust passage 16 from the unburned fuel supply device may be adopted. .
- this exhaust gas purifier not only a continuous regeneration type DPF but also a NOx purification device such as a NOx occlusion reduction type catalyst or a NOx direct reduction type catalyst that performs the same forced regeneration control is adopted. You can also. Furthermore, since the scope of application of the present invention can include forced regeneration control such as recovery from sulfur poisoning, it is not only NOx storage reduction catalyst and NOx direct reduction type catalyst but also selective reduction type (SCR) catalyst. For sulfur poisoning of exhaust gas purification equipment equipped with For example, forced regeneration control can be included.
- the exhaust gas purification system control method and exhaust gas purification system of the present invention having the excellent effects described above are an oxidation catalyst device in which an oxidation catalyst is supported upstream in an exhaust passage of an internal combustion engine mounted on an automobile or the like.
- regeneration control in order to raise the exhaust gas temperature, it can be used extremely effectively for the control method of the exhaust gas purification system that performs multi-injection control.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
排気ガス浄化装置12の強制再生制御において、強制再生制御におけるデータマップのメッシュ数及びデータマップ数等の制御用データを減少すると共に、燃料圧の変化を円滑に行ってトルクショックの発生を回避する。 排気ガス浄化装置12の強制再生制御において、内燃機関10の運転状態が高負荷運転状態の場合には、マルチ噴射を止めた通常噴射制御を行うと共に、内燃機関10の回転数Neと負荷Qに応じて、制御用の領域をマルチ噴射制御領域Rmと過渡領域Rtと通常噴射制御領域Rnに区分し、過渡領域Rt内では、マルチ噴射制御領域Rm側の燃料圧制御用データPmlと、通常噴射制御領域Rn側の燃料圧制御用データPnlとの補間で得られる燃料圧制御用データPtを用いる。
Description
明 細 書
排気ガス浄ィヒシステムの制御方法及び排気ガス浄ィヒシステム
技術分野
[0001] 本発明は、連続再生型 DPF装置や NOx浄化装置等の排気ガス浄化装置のマル チ噴射を伴う強制再生制御の際に、燃料圧制御用データを簡素化できると共に、ト ルクショックの発生を防止することができる排気ガス浄ィ匕システムの制御方法及び排 気ガス浄ィ匕システムに関する。
背景技術
[0002] ディーゼルエンジン力も排出される粒子状物質(PM:パティキュレート ·マター:以 下 PMとする)の排出量は、 NOx、 COそして HC等と共に年々規制が強化されてきて いる。この PMをディーゼルパティキュレートフィルタ(DPF: Diesel Particulate Filter :以下 DPFとする)と呼ばれるフィルタで捕集して、外部へ排出される PMの量を低減 する技術が開発されている。その中に、触媒を担持した連続再生型 DPF装置がある
[0003] この連続再生型 DPF装置は、上流側から順に酸化触媒を担持した酸化触媒装置 と DPF装置を配置した排気ガス浄化装置、又は、酸化触媒を担持した DPF装置を 配置した排気ガス浄ィ匕装置等力 なる。この装置では、フィルタに流入する排気ガス の温度が約 350°C以上の時には、フィルタに捕集された PMは連続的に燃焼して浄 化され、フィルタは自己再生する。しかし、排気ガスの温度が低い場合には、触媒の 温度が低下して活性ィ匕しないため、酸化反応が促進されず、 PMを酸ィ匕してフィルタ を自己再生することが困難となる。そのため、 PMのフィルタへの堆積により目詰まり が進行し、この目詰まりによる排圧上昇の問題が生じる。
[0004] そこで、フィルタの目詰まりが所定の量を超えたときに、シリンダ内(筒内)における ポスト噴射 (後噴射)等により排気ガス中に供給した HC (炭化水素)を、フィルタの上 流側に配置された酸化触媒やフィルタに担持した酸化触媒で燃焼させる。この燃焼 熱を利用して、フィルタ入口やフィルタ表面の排気ガスの温度を上昇させ、フィルタに 蓄積された PMが燃焼する温度以上にフィルタを昇温して、 PMを燃焼除去する。
[0005] この時に、酸化触媒が活性温度以下であると、 HCが酸化されず、白煙となって排 出されてしまう。そのため、この場合にはシリンダ内噴射でマルチ噴射 (遅延多段噴 射)を行って排気ガスの温度を上昇させ、酸化触媒が活性温度以上になるようにして から、ポスト噴射を行っている。このマルチ噴射による排気ガス昇温により、白煙の排 出を防止しつつ DPF入口温度を上昇させることができる。
[0006] この強制再生制御のマルチ噴射にぉ 、ては、目標燃料圧 (コモンレール圧)を、強 制再生運転ではな!、通常運転時の通常噴射制御時よりも低めに設定して噴射圧を 下げて、燃焼を緩慢にして、後燃え期間を増カロさせて、排気温度を上昇させている。 この一例として、日本の特開 2004— 162612号公報に記載されているような、強制 再生運転で、排気温度が上昇するように、インジェクタの噴射圧力の低減を行ってい る内燃機関の排気浄ィ匕装置がある。
[0007] これに関連して、本発明者らは、エンジンが高負荷運転状態にある場合は排気マ 二ホールドから排出される排気ガス温度が上昇するとの知見から、次のような考えに 至った。強制再生制御中において、エンジンが高負荷運転状態にある場合は、マル チ噴射を行わなくても、通常の運転でも排気ガス温度が昇温するため、敢えてマル チ噴射を行う必要が無い。従って、この強制再生制御における高負荷運転状態では 、通常運転時の通常噴射制御を行えば良いことになる。これにより、強制再生制御の 噴射制御用データのデータマップにぉ 、て、高負荷運転状態の部分を通常運転の 通常噴射制御の噴射制御用データで代用できるようになる。そのため、この高負荷 運転状態における噴射制御用データが不要になり、制御用データの低減を図ること ができる。
[0008] つまり、強制再生制御時に高負荷運転状態に入っていたり、強制再生制御の最中 に高負荷運転状態に移行した時にはマルチ噴射を止めて通常噴射に切り換える制 御により、高負荷運転状態におけるマルチ噴射制御を無くすことができる。そのため 、例えば、制御マップのメッシュ数の減少等の制御性の向上を図ることができる。なお 、排気マ-ホールドから排出される排気ガス温度がある程度上昇しても、酸化触媒の 下流側のフィルタ入口温度が昇温するまで、時間が力かる場合があるので、この高負 荷運転状態に入って 、ても、排気ガス昇温制御を継続して行う必要がある場合が生
じる。
[0009] 一方、この強制再生運転の高負荷運転状態にお!、ても、排気ガスの低公害性の確 保のために、通常運転時の通常噴射制御と同じ燃料圧で噴射することが好ましぐ制 御目標とする燃料圧を通常噴射制御時と同様に高く設定することが望まれる。そこで 、高負荷運転状態では、マルチ噴射力 通常噴射に切り換える時に、燃料圧も、マ ルチ噴射時の燃料圧力ゝら通常噴射時の燃料圧に切り換えることが考えられる。
[0010] し力しながら、強制再生制御は走行中や停車作業中にも行われる場合があるため
、強制再生制御中のエンジンの運転状態は必ずしも一定ではなぐ排気ガス昇温制 御では、マルチ噴射を必要とする低'中負荷運転状態にある場合や、マルチ噴射を 必要としない高負荷運転状態にある場合や、これらの間を移行する場合等がある。こ の移行時にマルチ噴射の燃料圧力ゝら通常噴射の燃料圧へ又はその逆方向に切り換 えると、トルクショックが発生するという問題が生じる。つまり、マルチ噴射の燃焼圧と 通常噴射の燃焼圧では、大きさが異なるためトルクの発生量が異なり、し力も、高負 荷運転状態であるため、切り換え時にエンジンの発生トルクに大きな変動が生じる。
[0011] 一方、一般的なトルクショック対策の一つとして、例えば、日本の特開 2003— 201 899号公報に記載されておるように、低発熱率パイロット 'メイン噴射モード (第 1噴射 モード)とそれ以外の通常噴射モード (第 2噴射モード)との間の燃料噴射モードの切 り換え時に、燃料噴射量の目標値の変化量に対して所定のなまし制御を実行する圧 縮着火式内燃機関が提案されている。この一般的に行われているなまし制御は、現 状の制御目標量力 新たな制御目標量に時間的に徐々に変化させる制御である。 そのため、なまし制御に時間を掛けると制御の追従性の問題が生じ、逆になまし制御 の時間を短くするとトルクショック防止効果が低減してしまうという問題がある。また、 制御目標値を決めるための制御用データの量的な簡素化には結びつかない。 特許文献 1 :日本の特開 2004— 162612号公報(段落〔0025〕、〔0035〕) 特許文献 2 :日本の特開 2003— 201899号公報(請求項 3、コラム 16)
発明の開示
発明が解決しょうとする課題
[0012] 本発明は、上記の問題を解決するためになされたものであり、その目的は、連続再
生型 DPF装置や NOx浄ィヒ装置等の排気ガス浄ィヒ装置の強制再生制御において、 強制再生制御におけるデータマップのメッシュ数及びデータマップ数等の制御用デ ータを減少できると共に、燃料圧の変化を円滑に行ってトルクショックの発生を回避 できる排気ガス浄ィ匕システムの制御方法及び排気ガス浄ィ匕システムを提供すること にある。
課題を解決するための手段
[0013] 上記の目的を達成するための排気ガス浄ィ匕方法は、内燃機関の排気通路に、上 流側に酸化触媒を担持した酸化触媒装置を有する排気ガス浄化装置、又は、酸ィ匕 触媒を担持した排気ガス浄化装置と、前記排気ガス浄化装置の浄化能力を回復す るための強制再生制御を行う制御装置を備え、該制御装置が、強制再生制御の際 に、排気温度を昇温するために、マルチ噴射制御を行う排気ガス浄ィ匕システムの制 御方法において、前記強制再生制御の際に、内燃機関の運転状態が高負荷運転状 態の場合には、マルチ噴射を止めた通常噴射制御を行うと共に、内燃機関の回転数 と負荷に応じて、制御用の領域をマルチ噴射制御領域と過渡領域と通常噴射制御 領域に区分し、該過渡領域内においては、マルチ噴射制御領域側のマルチ噴射制 御の燃料圧制御用データと、通常噴射制御領域側の通常噴射制御の燃料圧制御 用データとの補間によって得られる燃料圧制御用データを用いて、シリンダ内燃料噴 射を行うことを特徴とする。
[0014] 更には、上記の排気ガス浄ィ匕システムの制御方法において、前記過渡領域におけ る補間で、内燃機関の回転数 Nemにおける負荷 Qmを基にして、該回転数 Nemに おけるマルチ噴射制御領域側の境界での負荷を Qml、燃料圧制御用データを Pml とし、該回転数 Nemにおける通常噴射制御領域側の境界での負荷を Qnl、燃料圧 制御用データを Pnlとした時に、 Pt= ( (Qnl—Qt) X Pml+ (Qt— Qml) X Pnl) / ( Qnl-Qml)で計算される燃料圧制御用データ Ptを、前記過渡領域内における燃料 圧制御用データ Pとすることを特徴とする。
[0015] また、上記の排気ガス浄ィ匕システムの制御方法にぉ 、て、前記負荷の代りに各シリ ンダの 1サイクル中に噴射される総燃料噴射量を用いることを特徴とする。
[0016] この高負荷運転状態とは、負荷が比較的大きぐシリンダ力 排出される排気ガス
の温度である排気温度が所定の温度よりも高くなるような、内燃機関の運転状態のこ とを言う。制御上では、この高負荷運転状態は、内燃機関に要求されるエンジン出力 である負荷が、内燃機関の回転数に応じて決まる所定の負荷以上となる運転状態と することができる。この所定の負荷は実験や計算等により予め設定し、制御装置に入 力及び記憶することができる。
[0017] そして、この高負荷運転状態である力否かは、内燃機関のエンジン回転数と負荷を ベースにしたデータマップを参照することにより、高負荷運転状態である力否かを判 定することができる。なお、負荷の代りにアクセルセンサ力もの出力や、要求されたェ ンジン出力を出すために必要な燃料噴射量ゃシリンダ内に噴射する総燃料噴射量 等を用いることもできる。これらの噴射量は、各シリンダの 1サイクル中に噴射される量 である。
[0018] また、燃焼圧とは、燃料をシリンダ内に噴射する時の圧力であり、噴射圧やこの圧 力に密接に関係するコモンレール圧力等の圧力も含む。この燃料圧は、通常噴射時 では、例えば、 80MPa〜180MPaであり、マルチ噴射時では通常噴射時より低ぐ 回転数によって異なる。場合によっては、燃料圧の低下量は通常噴射時の燃料圧の 数十%程度にも及ぶこともある。
[0019] 上記の制御方法によれば、高負荷運転状態では、内燃機関の排気マ二ホールドか ら排出される排気ガス温度が上昇するため、触媒や DPFの温度上昇や温度維持の ために、排気ガス温度を上昇させるためのマルチ噴射を行う必要がなくなることを考 慮して、強制再生制御の際に、内燃機関の運転状態が高負荷運転状態に入った場 合には、マルチ噴射制御を止めて通常噴射制御に移行する制御を行う。これ〖こより、 強制再生制御の制御用データのデータマップにお!、て、高負荷運転状態の部分を 通常噴射制御を行う通常運転 (強制再生制御ではな 、運転状態)のデータマップ等 の制御用データで代用できるようになる。従って、強制再生制御の制御用データの データマップ等の高負荷運転状態の部分が不要になる。その結果、強制再生制御 のためのデータマップのメッシュ数等を減少でき、また、環境補正用等のデータマツ プ等の数も減少できる。なお、この環境補正用のデータマップには、大気温度、大気 圧、エンジン水温、その他補機類の稼働状況等に関するものがある。
[0020] また、上記の制御方法では、内燃機関の負荷に応じて、排気ガスの低温時に、排 気ガス温度を昇温するためのマルチ噴射 (多段噴射)制御を行うマルチ噴射制御領 域と、マルチ噴射制御による昇温を必要としない高負荷運転状態に対応する通常噴 射制御領域との間に、過渡領域を設け、強制再生制御中に、内燃機関の負荷の増 大により、内燃機関の運転状態がマルチ噴射制御領域力 過渡領域に入った時に、 過渡領域内における位置に応じて重み付けを行って、過渡領域内における燃料圧 制御用データを、両領域の燃料圧制御用データを補間して求める。
[0021] この過渡領域内においては、補間によって得られる燃料圧制御用データを用いて 、シリンダ内燃料噴射を行うことにより、負荷の変化に伴って、シリンダ内燃料噴射が 、マルチ噴射の燃料圧力ゝら通常噴射の燃料圧に徐々にスムーズに切り換わる。その ため、トルクショックの発生を回避できる。また、それと共に、過渡領域における燃料 圧制御用データが不要になるので、この点からもデータマップのメッシュ数等を減少 できる。この補間に関しては、種々の補間方法を用いることができる。線形補間(一次 式による補間)を用いると補間に要するデータ数が少なぐ計算も簡単になり、制御が シンプルになる。
[0022] また、上記の目的を達成するための排気ガス浄ィ匕システムは、内燃機関の排気通 路に、上流側に酸化触媒を担持した酸化触媒装置を有する排気ガス浄化装置、又 は、酸化触媒を担持した排気ガス浄化装置と、前記排気ガス浄化装置の浄化能力を 回復するための強制再生制御を行う制御装置を備え、該制御装置が、強制再生制 御の際に、排気温度を昇温するために、マルチ噴射制御を行う排気ガス浄ィ匕システ ムの制御方法において、前記制御装置が、前記強制再生制御の際に、内燃機関の 運転状態が高負荷運転状態の場合には、マルチ噴射を止めた通常噴射制御を行う と共に、内燃機関の回転数と負荷に応じて、制御用の領域をマルチ噴射制御領域と 過渡領域と通常噴射制御領域に区分し、該過渡領域内においては、マルチ噴射制 御領域側のマルチ噴射制御の燃料圧制御用データと、通常噴射制御領域側の通常 噴射制御の燃料圧制御用データとの補間によって得られる燃料圧制御用データを 用いて、シリンダ内燃料噴射を行うように構成される。
[0023] 更に、上記の排気ガス浄ィ匕システムにお 、て、前記制御装置が、前記過渡領域に
おける補間で、内燃機関の回転数 Nemにおける負荷 Qmを基にして、該回転数 Ne mにおけるマルチ噴射制御領域側の境界での負荷を Qml、燃料圧制御用データを Pmlとし、該回転数 Nemにおける通常噴射制御領域側の境界での負荷を Qnl、燃 料圧制御用データを Pnlとした時に、 Pt= ( (Qnl—Qt) X Pml+ (Qt— Qml) X Pnl ) / (Qnl-Qml)で計算される燃料圧制御用データ Ptを、前記過渡領域内における 燃料圧制御用データ Pとするように構成される。
[0024] また、上記の排気ガス浄ィ匕システムにお 、て、前記制御装置が、前記負荷の代りに 各シリンダの 1サイクル中に噴射される総燃料噴射量を用いるように構成される。
[0025] 上記の構成の排気ガス浄ィ匕システムによれば、上記の排気ガス浄化方法を実施で き、同様な効果を奏することができる。また、この排気ガス浄ィ匕装置には、連続再生 型 DPF装置のみならず、同様な強制再生制御を行う NOx吸蔵還元型触媒や NOx 直接還元型触媒等の NOx浄化装置も含まれる。更に、本発明の適用範囲には、硫 黄被毒からの回復等の強制再生制御等も含めることができるので、 NOx吸蔵還元型 触媒や NOx直接還元型触媒のみならず選択還元型 (SCR)触媒等を備えた排気ガ ス浄化装置の硫黄被毒等に対する強制再生制御等も含まれる。要は、上記と同様な 制御を行う排気ガス浄ィ匕システムであれば、本発明の適用範囲内となる。
発明の効果
[0026] 本発明に係る排気ガス浄ィ匕システムの制御方法及び排気ガス浄ィ匕システムによれ ば、連続再生型 DPF装置や NOx浄ィ匕装置等の排気ガス浄ィ匕装置の強制再生制御 において、高負荷運転状態に対応する通常噴射制御領域の部分では、通常運転制 御の制御用データを使用することができるようになるため、強制再生制御のための制 御用データが減少する。
[0027] また、強制再生制御において、内燃機関の運転状態がマルチ噴射を必要とするマ ルチ噴射制御領域から、マルチ噴射を必要としな 、通常噴射制御領域との間を移行 する場合であっても、過渡領域を設けて、シリンダ内燃料噴射の燃焼圧が滑らか〖こ 移行するように構成しているので、トルクショックの発生を防止できる。しかも、この過 渡領域内では補間を用いているため、過渡領域内における燃料圧制御用データも 不要になる。従って、強制再生制御における燃料圧制御用データのデータマップの
メッシュ数等を減少できる。
図面の簡単な説明
[0028] [図 1]図 1は排気ガス浄ィ匕システムの全体構成を示す図である。
[図 2]図 2は領域データマップの一例を模式的に示す図である。
[図 3]図 3は強制再生制御の制御フローの一例を示す図である。
[図 4]図 4は燃料圧制御用データの算出用の制御フローの一例を示す図である。
[図 5]図 5は燃料圧制御用データの算出用の制御フローの他の例を示す図である, 符号の説明
[0029] 1 排気ガス浄化システム
10 ディーゼルエンジン(内燃機関)
12 連続再生型 DPF装置
12a 酸化触媒
12b 触媒付きフィルタ
31 差圧センサ
40 制御装置 (ECU)
P 燃料圧制御用データ
Pm マルチ噴射用の燃料圧制御用データ
Pml マルチ噴射制御領域側の境界での燃料圧制御用データ
Pn 通常噴射用の燃料圧制御用データ
Pnl 通常噴射領域側の境界での燃料圧制御用データ
Pt 補間の燃料圧制御用データ (過渡領域の燃料圧制御用データ)
Lm マルチ噴射制御領域側の境界
Ln 通常噴射領域側の境界
Ne、 Nem エンジン回転数
Q, Qm エンジン負荷
Qml マルチ噴射制御領域側の境界での負荷
Qnl 通常噴射領域側の境界での負荷
Rm マルチ噴射制御領域
Rn 通常噴射制御領域
Rt 過渡領域
t 位置の指標値
発明を実施するための最良の形態
[0030] 以下、本発明に係る実施の形態の排気ガス浄化システムの制御方法及び排気ガス 浄化システムにつ 、て、連続再生型 DPF (ディーゼルパティキュレートフィルタ)装置 を例にして、図面を参照しながら説明する。図 1に、この実施の形態の排気ガス浄ィ匕 システム 1の構成を示す。
[0031] この排気ガス浄ィ匕システム 1は、ディーゼルエンジン(内燃機関) 10の排気通路 11 に排気ガス浄ィ匕装置 12を設けて構成される。この排気ガス浄ィ匕装置 12は、連続再 生型 DPF装置の一つである。この排気ガス浄ィ匕装置 12は、上流側に酸化触媒装置 12aを、下流側に触媒付きフィルタ装置 12bを有して構成される。更に、排気ガス浄 化装置 12の下流側に、消音器 (サイレンサー) 13が設けられる。また、この排気ガス 浄ィ匕装置 12の上流側に排気ブレーキ弁 (ェキゾーストブレーキ) 14力 下流側に排 気絞り弁 (ェキゾーストスロットル) 15が設けられる。
[0032] この酸ィ匕触媒装置 12aは、多孔質のセラミックのハ-カム構造等の担持体に、白金
(Pt)等の酸化触媒を担持させて形成される。触媒付きフィルタ装置 12bは、多孔質 のセラミックのハ-カムのチャンネルの入口と出口を交互に目封じしたモノリスハ-カ ム型ウォールフロータイプのフィルタ等で形成される。このフィルタの部分に白金や酸 化セリウム等の触媒を担持する。排気ガス G中の PM (粒子状物質)は多孔質のセラミ ックの壁で捕集(トラップ)される。
[0033] そして、触媒付きフィルタ装置 12bの PMの堆積量を推定するために、排気ガス浄 化装置 12の前後に接続された導通管に差圧センサ 31が設けられる。また、触媒付 きフィルタ装置 12bの再生制御用に、酸化触媒装置 12aの上流側に酸化触媒入口 排気温度センサ 32が設けられ、酸化触媒装置 12aと触媒付きフィルタ装置 12bの間 にフィルタ入口排気温度センサ 33が設けられる。
[0034] この酸化触媒入口排気温度センサ 32は、酸化触媒装置 12aに流入する排気ガス の温度である第 1排気ガス温度 Tglを検出する。また、フィルタ入口排気温度センサ
33は、触媒付きフィルタ装置 12bに流入する排気ガスの温度である第 2排気ガス温 度 Tg2を検出する。
[0035] 更に、吸気通路 16には、エアクリーナ 17、 MAFセンサ(吸入空気量センサ) 18、 吸気絞り弁 (インテークスロットル) 19等が設けられる。この吸気絞り弁 19は、吸気マ 二ホールドへ入る吸気 Aの量を調整する。また、 EGR通路 20には、 EGRクーラ 21と EGR弁 22が設けられる。
[0036] これらのセンサの出力値は、エンジン 10の運転の全般的な制御を行うと共に、排気 ガス浄ィ匕装置 12の再生制御も行う制御装置 (ECU:エンジンコントロールユニット) 4 0に入力される。この制御装置 40から出力される制御信号により、吸気絞り弁 19や、 燃料噴射装置 (噴射ノズル) 23や、排気ブレーキ弁 14や、排気絞り弁 15や、 EGR弁 22等が制御される。
[0037] この燃料噴射装置 23は燃料ポンプ(図示しな 、)で昇圧された高圧の燃料を一時 的に貯えるコモンレール噴射システム 27に接続されている。制御装置 40には、ェン ジンの運転のために、アクセルポジションセンサ(APS) 34からのアクセル開度、回転 数センサ 35からのエンジン回転数、レール圧センサ 36からのコモンレール圧力等の 情報の他、車両速度、冷却水温度等の情報も入力される。制御装置 40から、燃料噴 射装置 23から所定量の燃料が噴射されるように通電時間信号が出力される。
[0038] また、この排気ガス浄ィ匕装置 12の再生制御において、走行中に自動的に強制再 生するだけでなぐ任意に運転者が車両を停止して強制再生ができるように、注意を 喚起するための警告手段である点滅灯 (DPFランプ) 24及び異常時点灯ランプ 25と 、手動再生ボタン (マニュアル再生スィッチ) 26が設けられる。この警告手段は、触媒 付きフィルタ装置 12bの PMの捕集量が一定量を超えて、触媒付きフィルタ装置 12b が目詰まった時に、運転者 (ドライバー)に注意を促す。
[0039] 次に、この排気ガス浄化システム 1の制御について説明する。この制御においては 、通常の運転で PMを捕集する。この通常の運転において、強制再生開始の時期で ある力否力を監視し、強制再生開始の時期であると判定されると強制再生制御を行う 。この強制再生制御には、走行中に強制再生制御を行う走行自動再生と、警告によ つて運転者が車両を停止して力も手動再生ボタン 26を押すことにより開始される手
動再生とがある。これらは、走行距離や DPF差圧の値により適宜選択実施される。な お、これらの強制再生制御を行う再生制御装置は制御装置 40に組み込まれる。
[0040] そして、この手動再生や走行自動再生の強制再生は、この実施の形態では、酸ィ匕 触媒 12aの温度 (ベッド温度)を指標する触媒温度指標温度が所定の第 1判定温度 Telより低い時は第 1排気ガス昇温制御を行い、所定の第 1判定温度 Tel以上となつ た時は、ポスト噴射を伴う第 2排気ガス昇温制御を行う。更に、触媒付きフィルタ装置 12bの温度を指標するフィルタ温度指標温度が所定の第 2判定温度 Tc2以上となつ た時には温度維持制御を行う。
[0041] そして、本発明にお 、ては、この第 1排気ガス温度制御、第 2排気ガス温度制御、 及び、温度維持制御で、いずれも、図 2に示すように、低'中負荷運転領域に対応す るマルチ噴射制御領域 Rmでは、排気ガス昇温用のマルチ噴射制御を行い、高負荷 運転状態に対応する通常噴射制御領域 Rnでは、マルチ噴射制御を行わず通常噴 射制御を行う。また、このマルチ噴射制御領域 Rmと通常噴射制御領域 Rnの間に設 けた過渡領域 Rtでは、補間によって求められた燃料圧制御用データによるマルチ噴 射制御が行われる。
[0042] この補間は、次のようにして行われる。まず、予め、図 2に示すような、内燃機関の 回転数 Ne (横軸)と負荷 Q (縦軸)に対して、マルチ噴射制御領域 Rmと過渡領域 Rt と通常噴射制御領域 Rnを区分する領域データマップを用意し、制御装置 40に記憶 させておく。この領域データマップは予め実験や計算などにより排気ガスの昇温をマ ルチ噴射で行う必要がある力否かを検討することにより設定しておくことができる。
[0043] 次に、強制再生制御中に検出されたエンジンの運転状態を示すエンジン回転数 N emと負荷 (又は、総燃料噴射量) Qmから、現在 (制御時)のエンジンの運転状態は 図 2に示す領域データマップのいずれの領域にあるかを判定する。つまり、回転数 N emにおけるマルチ噴射制御領域 (低 ·中負荷運転状態) Rm側の境界 Lmでの負荷 を Qmlとし、通常噴射領域 (高負荷運転状態) Rn側の境界 Lnでの負荷を Qnlとし、 負荷 Qmが負荷 Qml以下であれば、マルチ噴射制御領域 Rmにあるとし、負荷 Qm が負荷 Qmlを越え、負荷 Qnl以下であれば、過渡領域 Rtにあり、負荷 Qmが負荷 Qn 1を越えて ヽれば、通常噴射制御領域 Rnにあるとする。
[0044] そして、マルチ噴射制御領域 Rmにあれば、マルチ噴射用の制御用データマップ 力も算出した燃料圧制御用データ Pmに基づいてマルチ噴射制御を行い、通常噴射 制御領域 Rnにあれば、通常噴射用の燃料圧制御用データマップカゝら算出した燃料 圧制御用データ Pnに基づいて通常噴射制御を行う。この燃料圧 Pm, Pnは、通常噴 射時では、例えば、 80MPa〜180MPaであり、マルチ噴射時では通常噴射時より 低ぐ回転数によって異なる。場合によっては、燃料圧の低下量は通常噴射時の燃 料圧の数十%程度にも及ぶこともある。
[0045] 一方、過渡領域 Rtにある場合には、エンジン 10の回転数 Nemにおけるマルチ噴 射制御領域 Rm側の境界 Lmでのマルチ噴射の燃料圧制御用データ Pmlと、ェンジ ン 10の回転数 Nemにおける通常噴射領域 Rn側の境界 Lnでの通常噴射の燃料圧 制御用データ Pnlとの補間によって得られる燃料圧制御用データ Pを用いて、シリン ダ内燃料噴射を行う。このマルチ噴射の燃料圧制御用データ Pmlは、マルチ噴射制 御用の燃料圧(目標レール圧)ベースマップ力も得られ、また、この通常噴射の燃料 圧制御用データ Pnlは、通常噴射制御用の燃料圧 (目標レール圧)ベースマップから 得られる。
[0046] この補間として、線形補間を用いる場合には、 Pt= ( (Qnl— Qm) X Pml+ (Qm— Qml) X Pnl) Z (Qnl— Qml)で計算される燃料圧制御用データの量 Ptを、過渡領 域 Rt内における燃料圧制御用データ Pとする。
[0047] また、この補間で、最初に、過渡領域 Rtにおける位置の指標値 tを算出し、これを 用いて補間してもよ 、。この位置の指標値 tは通常噴射領域 Rn側の境界 Lnの位置 を 0 (ゼロ)とし、マルチ噴射領域 Rm側の境界 Lmの位置を 1とした時に、負荷 Qmに 対応する位置を 0 (ゼロ)力 1の間の数値で示すものであり、 t= (Qnl-Qm) / (Qn 1— Qml)で算出される。次に、この tを用いて、 Pt=t X Pml+ (1— t) X Pnlで計算さ れる燃料圧制御用データの量 Ptを、過渡領域 Rt内における燃料圧制御用データ P とする。
[0048] また、通常は、この図 2に示すような領域データマップは、第 1排ガス温度制御、第 2 排気ガス温度制御、温度維持制御でそれぞれ異なるものを使用する。しかし、より制 御の簡素化のために同一の領域マップデータを用いて制御用データマップの数を低
減してちょい。
[0049] 次に、この制御について、図 3〜図 5の制御フローを用いて説明する。この図 3の制 御フローがスタートすると、ステップ S 11で、走行自動再生や手動再生による強制再 生制御であるか否かを判定する。強制再生制御でない場合には、この強制再生制御 を実施することなぐリターンし、通常運転制御を行う。また、ステップ S 11で強制再生 制御である場合には、ステップ S12に行く。
[0050] この強制再生制御である力否かは、次のように決まる。手動再生による強制再生制 御であれば、排気ガス浄ィ匕装置 12の前後の間の差圧を計測する差圧センサ 31によ つて検出された差圧が所定の判定用差圧値を超えた場合等に、警告手段である点 滅灯 (DPFランプ) 23を点滅させて、 DPFの手動再生を運転者に促して、手動再生 を行うように促された運転者が車両を停止して手動再生ボタン 25を操作すると強制 再生制御となる。また、走行自動再生における強制再生制御であれば、差圧センサ 3 1の検出値など力 触媒付きフィルタ装置 12bの PMの捕集量が一定量を超えたこと を検知した時に強制再生制御となる。
[0051] ステップ S12では、第 1判定温度 Telを算出する。この第 1判定温度 Telは、フィル タ入口排気温度センサ 33で検出された排気ガス温度である第 2排気ガス温度 (触媒 温度指標温度) Tg2がこの温度になると、酸化触媒装置 12aの酸化触媒で、ポスト噴 射により供給される未燃燃料である HCが十分に酸ィ匕される温度 (例えば、 200°C〜 250°C程度)である。また、その時のエンジン回転数 Nemに従って変化する値を使 用してもよい。また、フィルタ入口排気温度センサ 33で検出された第 2排気ガス温度 Tg2に替えて、酸ィ匕触媒入口温度センサ 32で検出された第 1排気ガス温度 Tglを 用いてもよい。
[0052] 次のステップ S 13では、第 2排気ガス温度 (触媒温度指標温度) Tg2のチェックを行 う。この第 2排気ガス温度 Tg2が、ステップ S12で算出した第 1判定温度 Telより低い ときには、ステップ S14で、第 1排気ガス昇温制御を、所定の時間 (ステップ S13の第 2排気ガス温度 Tg2のチェックのインターバルに関係する時間) A tlの間行う。このス テツプ S13の後は、ステップ S12に戻る。
[0053] また、ステップ S 13の判定で、第 2排気ガス温度 Tg2が所定の第 1判定温度 Tel以
上であると、ステップ SI 5に行く。ステップ S 15では、第 2判定温度 Tc2を算出する。 この第 2判定温度 Tc2は、ステップ S 17の第 2排気ガス昇温制御の目標温度であり、 フィルタ入口排気温度センサ 33で検出された排気ガスの温度である第 2排気ガス温 度 (フィルタ温度指標温度) Tg2をこの温度 Tc2以上に維持することにより、触媒付き フィルタ装置 12bに捕集された PMの燃焼を良好な状態に維持する。第 2排気ガス温 度 Tg2は、フィルタ入口排気温度センサ 33で検出された排気ガスの温度である。こ の第 2判定温度 Tc2は、通常は PMの燃焼開始温度 (例えば、 350°C程度)よりも高 い値とし、例えば、 500°C程度とする。また、第 2判定温度 Tc2の値を時間によって多 段階に変化させてもよい。
[0054] 次のステップ S 16では、第 2排気ガス温度 (フィルタ温度指標温度) Tg2のチェック を行う。この第 2排気ガス温度 Tg2が第 2判定温度 Tc2より低いときは、ステップ S17 の第 2排気ガス昇温制御に行き、第 2排気ガス温度 Tg2が第 2判定温度 Tc2以上の 時は、ステップ S18の温度維持制御に行く。
[0055] ステップ S17では、第 2排気ガス昇温制御を、所定の時間 (ステップ S16の第 2排気 ガス温度 Tg2のチヱックのインターバルに関係する時間) Δ t2の間行う。
[0056] そして、第 2排気ガス昇温制御により排気ガス温度の昇温を継続すると共に、ポスト 噴射により排気ガス中に未燃燃料 (HC)を供給する。この未燃燃料を酸化触媒装置 12aで酸ィ匕してこの酸ィ匕熱により排気ガスの温度を更に昇温することができる。この 昇温した排気ガスの温度 Tg2が第 2判定温度 Tc2以上になると触媒付きフィルタ装 置 12bに捕集された PMが燃焼する。なお、この第 2排気ガス昇温制御で、第 2排気 ガス温度 Tg2を、制御目標の温度 Tc2まで連続的に昇温してもよいが、二段階や多 段階で昇温するようにしても良い。このステップ S 17の後は、ステップ S 19に行く。
[0057] そして、ステップ S16の判定で、第 2排気ガス温度 Tg2が第 2判定温度 Tc2以上の 場合には、ステップ S18で、エンジン 10のシリンダ内(筒内)噴射においてポスト噴射 を伴わない温度維持制御を、所定の時間 (ステップ S 16の第 2排気ガス温度 Tg2の 継続時間のチェックのインターバルに関係する時間) Δ t3の間行う。
[0058] また、ステップ S 18では、 PM燃焼累積時間のカウントを行う。このカウントは、第 2排 気ガス温度 Tg2が所定の第 2判定温度 Tc2以上の場合にのみ PM燃焼累積時間 ta
をカウントする(ta=ta+ A t3) 0このステップ S18の後は、ステップ S19に行く。
[0059] ステップ S 19では、再生制御の終了か否かを判定するために、 PM燃焼累積時間 t aのチヱックを行う。このチヱックでは PM燃焼累積時間 taが所定の判定時間 Tacを超 えた力否かをチェックする。即ち、超えていれば、再生制御が完了したとして、ステツ プ S20に行き、超えてなければ、再生制御は完了していないとして、ステップ S12に 戻る。そして、 PM燃焼累積時間 taが所定の判定時間 tacを超えるまで、ステップ S1 4の第 1排気ガス昇温制御力 ステップ S 17の第 2排気ガス昇温制御力、ステップ S1 8の温度維持制御を行う。
[0060] そして、ステップ S20では、強制再生制御を終了して、車両停車中であれば、排気 ブレーキ弁 13や排気絞り弁 14を通常運転状態に戻して、通常噴射制御に復帰する 。その後、リターンする。
[0061] この図 3の制御フローでは、酸化触媒の温度 (ベッド温度)を指標する触媒温度指 標温度 Tg2が所定の第 1判定温度 Telより低い時は第 1排気ガス昇温制御を行い、 所定の第 1判定温度 Tel以上となった時は、ポスト噴射を伴う第 2排気ガス昇温制御 を行う。更に、触媒付きフィルタ装置 12bの温度を指標するフィルタ温度指標温度が 所定の第 2判定温度 Tc2以上となった時には温度維持制御を行う。
[0062] なお、上記の図 3の制御フローでは、酸化触媒 12aの温度 (ベッド温度)を指標する 触媒温度指標温度としては、フィルタ入口排気温度センサ 33で検出された第 2排気 ガス温度 Tg2を用い、触媒付きフィルタ装置 12bの温度を指標するフィルタ温度指標 温度としても、フィルタ入口排気温度センサ 33で検出された第 2排気ガス温度 Tg2を 用いている。しかし、酸化触媒 12aの温度 (ベッド温度)を指標する触媒温度指標温 度として、酸化触媒入口排気温度センサ 32で検出された第 1排気ガス温度 Tglを用 いてもよい。
[0063] そして、本発明では、これらのステップ S 14の第 1排気ガス昇温制御、ステップ S17 の第 2排気ガス昇温制御、ステップ S18の温度維持制御において、低 ·中負荷運転 領域ではマルチ噴射制御を行うが、高負荷運転状態ではマルチ噴射を行わない通 常噴射制御を行う。
[0064] この制御は図 4及び図 5に示すような制御フローに従って行うことができる。この図 4
及び図 5の制御フローは第 1排気ガス昇温制御、第 2排気ガス昇温制御、温度維持 制御に入った時にシリンダ内燃料噴射の燃料圧制御用データ Pが必要な時に呼ば れて、この制御フローでこの燃料圧制御用データ Pを算出し、算出後にこの制御フロ 一を呼んだ所に戻るものとして示されて!/、る。
[0065] この図 4の制御フローがスタートすると、ステップ S31でエンジン 10の運転状態を示 すエンジン回転数 Nemと負荷 Qmを入力する。ステップ S32でエンジン 10の回転数 Nemにおけるマルチ噴射制御領域 Rm側の境界 Lmの負荷 Qmlと、通常噴射領域 R n側の境界 Lnの負荷 Qnlを入力する。
[0066] 次のステップ S33で、負荷 Qmをチェックし、負荷 Qml以下であるか否かを判定する 。この判定で負荷 Qmが負荷 Qml以下であれば、ステップ S34に行き、燃料圧制御 用データ Pをマルチ噴射の燃料圧データマップカゝら算出した燃料圧制御用データ P mとし、リターンする。
[0067] このステップ S33の判定で負荷 Qmが負荷 Qml以下で無ければ、ステップ S35に 行き、負荷 Qmをチェックし、負荷 Qnl以上である力否かを判定する。この判定で負荷 Qmが負荷 Qnl以上であれば、ステップ S36に行き、燃料圧制御用データ Pを通常運 転の通常噴射の燃料圧データマップ力 算出した燃料圧制御用データ Pnとし、リタ ーンする。
[0068] このステップ S35の判定で負荷 Qmが負荷 Qnl以上でなければ、ステップ S37に行 く。このステップ S37では、エンジン 10の回転数 Nemにおけるマルチ噴射制御領域 Rm側の境界 Lmでのマルチ噴射の燃料圧制御用データ Pmlと、エンジン 10の回転 数 Nemにおける通常噴射領域 Rn側の境界 Lnでの通常噴射の燃料圧制御用デー タ Pnlを入力する。
[0069] 次のステップ S38で、補間の噴射制御のデータ Ptを、 Pt= ( (Qnl— Qm) X Pml+
(Qm— Qml) X Pnl) / (Qnl— Qml)により算出し、次のステップ S39で Pを Ptとし、リ ターンする。
[0070] なお、この補間で、過渡領域 Rtにおける位置の指標値 tを用いる場合は、図 5の制 御フローに示すように、ステップ S38の代りに、ステップ S38aとステップ S38bとで構 成する。ステップ S38aで、位置の指標値 tを t= (Qnl— Qm)Z (Qnl— Qml)で算出
する。ステップ S 38bで、この位置の指標値 tを用いて、 Pt=t X Pml+ (1— t) X Pnl で燃料圧制御用データ Ptを算出する。
[0071] これらの図 4及び図 5の制御フローによれば、強制再生制御において、エンジン 10 の運転状態が高負荷運転状態の場合には、マルチ噴射を止めた通常噴射制御を行 うと共に、エンジン 10の回転数 Nemと負荷 Qmに応じて、制御用の領域をマルチ噴 射制御領域 Rmと過渡領域 Rtと通常噴射制御領域 Rnに区分し、過渡領域 Rt内に お!、ては、マルチ噴射制御領域 Rm側の境界 Lmでのマルチ噴射制御の燃料圧制 御用データ Pmlと、通常噴射制御領域 Rn側の境界 Lnでの通常噴射制御の燃料圧 制御用データ Pnlとの補間によって得られる燃料圧制御用データ Ptを用いて、シリン ダ内燃料噴射を行うことができる。
[0072] また、過渡領域 Rtにおける補間で、エンジン 10の回転数 Nemにおける負荷 Qmを 基にして、回転数 Nemにおけるマルチ噴射制御領域 Rm側の境界 Lmでの負荷を Q ml、燃料圧制御用データを Pmlとし、回転数 Nemにおける通常噴射制御領域 Rn側 の境界 Lnでの負荷を Qnl、燃料圧制御用データを Pnlとした時に、 Pt= ( (Qnl—Qt ) X Pml+ (Qt-Qml) X Pnl)Z(Qnl— Qml)で計算される燃料圧制御用データ Pt を、過渡領域 Rt内における燃料圧制御用データ Pとすることができる。
[0073] なお、上記の実施の形態では、排気ガス浄ィ匕システムの排気ガス浄ィ匕装置として は、上流側の酸ィ匕触媒装置 12aと下流側の触媒付きフィルタ 12bとの組み合わせを 例にして説明した。しかし、排気ガス浄ィ匕装置が、酸ィ匕触媒を担持したフィルタであ つてもよい。更に、酸化触媒 12aの上流側に未燃燃料 (HC)を供給する方法としてポ スト噴射で説明した。しかし、排気通路 16に未燃燃料供給装置を配置して、この未燃 燃料供給装置カゝら直接排気通路 16内に未燃燃料を噴射する排気管内直接噴射の 方法を、採用してもよい。
[0074] また、この排気ガス浄ィ匕装置としては、連続再生型 DPFのみならず、同様な強制再 生制御を行う NOx吸蔵還元型触媒や NOx直接還元型触媒等の NOx浄化装置を 採用することもできる。更に、本発明の適用範囲は、硫黄被毒からの回復等の強制 再生制御等も含めることができるので、 NOx吸蔵還元型触媒や NOx直接還元型触 媒のみならず選択還元型 (SCR)触媒等を備えた排気ガス浄化装置の硫黄被毒に
対する強制再生制御等も含むことができる。
産業上の利用可能性
上述した優れた効果を有する本発明の排気ガス浄化システムの制御方法及び排 気ガス浄ィ匕システムは、自動車搭載等の内燃機関の排気通路に、上流側に酸化触 媒を担持した酸化触媒装置を有する排気ガス浄化装置、又は、酸化触媒を担持した 排気ガス浄化装置と、前記排気ガス浄化装置の浄化能力を回復するための強制再 生制御を行う制御装置を備え、該制御装置が、強制再生制御の際に、排気温度を昇 温するために、マルチ噴射制御を行う排気ガス浄ィ匕システムの制御方法に対して、 極めて有効に利用することができる。
Claims
[1] 内燃機関の排気通路に、上流側に酸化触媒を担持した酸化触媒装置を有する排 気ガス浄化装置、又は、酸化触媒を担持した排気ガス浄化装置と、前記排気ガス浄 化装置の浄ィ匕能力を回復するための強制再生制御を行う制御装置を備え、該制御 装置が、強制再生制御の際に、排気温度を昇温するために、マルチ噴射制御を行う 排気ガス浄ィ匕システムの制御方法にぉ ヽて、
前記強制再生制御の際に、内燃機関の運転状態が高負荷運転状態の場合には、 マルチ噴射を止めた通常噴射制御を行うと共に、内燃機関の回転数と負荷に応じて 、制御用の領域をマルチ噴射制御領域と過渡領域と通常噴射制御領域に区分し、 該過渡領域内にぉ 、ては、マルチ噴射制御領域側のマルチ噴射制御の燃料圧制 御用データと、通常噴射制御領域側の通常噴射制御の燃料圧制御用データとの補 間によつて得られる燃料圧制御用データを用いて、シリンダ内燃料噴射を行うことを 特徴とする排気ガス浄ィ匕システムの制御方法。
[2] 前記過渡領域における補間で、内燃機関の回転数 Nemにおける負荷 Qmを基に して、該回転数 Nemにおけるマルチ噴射制御領域側の境界での負荷を Qml、燃料 圧制御用データを Pmlとし、該回転数 Nemにおける通常噴射制御領域側の境界で の負荷を Qnl、燃料圧制御用データを Pnlとした時に、 Pt= ( (Qnl—Qt) X Pml+ ( Qt-Qml) X Pnl)Z(Qnl— Qml)で計算される燃料圧制御用データ Ptを、前記過 渡領域内における燃料圧制御用データ Pとすることを特徴とする請求項 1記載の排 気ガス浄ィ匕システムの制御方法。
[3] 前記負荷の代りに各シリンダの 1サイクル中に噴射される総燃料噴射量を用いるこ とを特徴とする請求項 1又は 2に記載の排気ガス浄ィ匕システムの制御方法。
[4] 内燃機関の排気通路に、上流側に酸化触媒を担持した酸化触媒装置を有する排 気ガス浄化装置、又は、酸化触媒を担持した排気ガス浄化装置と、前記排気ガス浄 化装置の浄ィ匕能力を回復するための強制再生制御を行う制御装置を備え、該制御 装置が、強制再生制御の際に、排気温度を昇温するために、マルチ噴射制御を行う 排気ガス浄ィ匕システムの制御方法にぉ ヽて、
前記制御装置が、前記強制再生制御の際に、内燃機関の運転状態が高負荷運転
状態の場合には、マルチ噴射を止めた通常噴射制御を行うと共に、内燃機関の回転 数と負荷に応じて、制御用の領域をマルチ噴射制御領域と過渡領域と通常噴射制 御領域に区分し、該過渡領域内においては、マルチ噴射制御領域側のマルチ噴射 制御の燃料圧制御用データと、通常噴射制御領域側の通常噴射制御の燃料圧制 御用データとの補間によって得られる燃料圧制御用データを用いて、シリンダ内燃料 噴射を行うことを特徴とする排気ガス浄ィ匕システム。
[5] 前記制御装置が、前記過渡領域における補間で、内燃機関の回転数 Nemにおけ る負荷 Qmを基にして、該回転数 Nemにおけるマルチ噴射制御領域側の境界での 負荷を Qml、燃料圧制御用データを Pmlとし、該回転数 Nemにおける通常噴射制 御領域側の境界での負荷を Qnl、燃料圧制御用データを Pnlとした時に、 Pt= ( (Qn 1-Qt) X Pml+ (Qt-Qml) X Pnl)Z(Qnl— Qml)で計算される燃料圧制御用デ ータ Ptを、前記過渡領域内における燃料圧制御用データ Pとすることを特徴とする請 求項 4記載の排気ガス浄ィ匕システム。
[6] 前記制御装置が、前記負荷の代りに各シリンダの 1サイクル中に噴射される総燃料 噴射量を用いることを特徴とする請求項 4又は 5に記載の排気ガス浄ィ匕システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/227,930 US8973350B2 (en) | 2006-06-13 | 2007-05-14 | Control method of exhaust gas purification system and exhaust gas purification system |
EP07743325.8A EP2034165B1 (en) | 2006-06-13 | 2007-05-14 | Control method of exhaust gas purification system and exhaust gas purification system |
CN2007800219036A CN101466935B (zh) | 2006-06-13 | 2007-05-14 | 废气净化系统的控制方法以及废气净化系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-163052 | 2006-06-13 | ||
JP2006163052A JP4055808B2 (ja) | 2006-06-13 | 2006-06-13 | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007145046A1 true WO2007145046A1 (ja) | 2007-12-21 |
Family
ID=38831566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/059890 WO2007145046A1 (ja) | 2006-06-13 | 2007-05-14 | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US8973350B2 (ja) |
EP (1) | EP2034165B1 (ja) |
JP (1) | JP4055808B2 (ja) |
CN (1) | CN101466935B (ja) |
WO (1) | WO2007145046A1 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4918911B2 (ja) * | 2007-12-25 | 2012-04-18 | 日産自動車株式会社 | 筒内直接燃料噴射式火花点火エンジンの燃圧制御装置 |
US8205606B2 (en) * | 2008-07-03 | 2012-06-26 | International Engine Intellectual Property Company, Llc | Model for inferring temperature of exhaust gas at an exhaust manifold using temperature measured at entrance of a diesel oxidation catalyst |
CN103270265B (zh) * | 2010-12-22 | 2016-01-20 | 斗山英维高株式会社 | 利用非工作负载的柴油微粒过滤器强制再生系统及其方法 |
JP5609924B2 (ja) * | 2012-07-02 | 2014-10-22 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
US9874160B2 (en) * | 2013-09-27 | 2018-01-23 | Ford Global Technologies, Llc | Powertrain control system |
WO2017014772A1 (en) * | 2015-07-22 | 2017-01-26 | Cummins Inc. | System and method for controlling exhaust gas temperature |
US9909517B2 (en) * | 2015-11-23 | 2018-03-06 | Cummins Inc. | Mult-mode controls for engines systems including SCR aftertreatment |
KR102575142B1 (ko) * | 2018-03-07 | 2023-09-06 | 현대자동차주식회사 | 엔진의 시동 오프시 진동 저감 장치 및 그 방법 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10176562A (ja) * | 1996-12-19 | 1998-06-30 | Toyota Motor Corp | 筒内噴射式内燃機関の燃料噴射制御装置 |
JP2003201899A (ja) | 2001-12-28 | 2003-07-18 | Isuzu Motors Ltd | 圧縮着火式内燃機関 |
JP2004162612A (ja) | 2002-11-13 | 2004-06-10 | Mitsubishi Fuso Truck & Bus Corp | 内燃機関の排気浄化装置 |
JP2004360577A (ja) * | 2003-06-04 | 2004-12-24 | Toyota Motor Corp | 可変気筒エンジンの制御装置 |
JP2005083373A (ja) * | 2003-09-09 | 2005-03-31 | Hyundai Motor Co Ltd | 内燃機関のトルク制御方法 |
JP2005351264A (ja) * | 2004-05-12 | 2005-12-22 | Denso Corp | 内燃機関の排気浄化装置 |
JP2006132458A (ja) * | 2004-11-08 | 2006-05-25 | Denso Corp | 内燃機関の排気浄化装置 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57171035A (en) | 1981-04-10 | 1982-10-21 | Mitsubishi Electric Corp | Electronic control fuel injection system |
JPS5912138A (ja) | 1982-07-14 | 1984-01-21 | Nippon Denso Co Ltd | デイ−ゼル機関用電子式燃料噴射制御装置 |
JPS6146435A (ja) | 1984-08-13 | 1986-03-06 | Nissan Motor Co Ltd | 空燃比制御装置 |
JPH0285845A (ja) | 1988-09-22 | 1990-03-27 | Fuji Photo Film Co Ltd | ハロゲン化銀カラー写真感光材料 |
US5189876A (en) * | 1990-02-09 | 1993-03-02 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification system for an internal combustion engine |
JPH051600A (ja) | 1991-06-26 | 1993-01-08 | Nissan Motor Co Ltd | 内燃機関の空燃比制御装置 |
JP2991574B2 (ja) | 1992-09-14 | 1999-12-20 | 株式会社デンソー | 内燃機関の蓄圧式燃料噴射制御装置 |
JPH10196441A (ja) | 1997-01-17 | 1998-07-28 | Denso Corp | 内燃機関の燃料噴射制御装置及び燃料噴射制御方法 |
JPH10227239A (ja) | 1997-02-13 | 1998-08-25 | Mazda Motor Corp | エンジンの制御装置 |
JPH11173186A (ja) * | 1997-12-05 | 1999-06-29 | Denso Corp | 内燃機関の燃料噴射率の制御装置および制御方法、記録媒体 |
JPH11219350A (ja) | 1998-02-03 | 1999-08-10 | Denso Corp | 補間値演算装置、電子制御装置及び補間データテーブル適合装置 |
JPH11351029A (ja) | 1998-06-12 | 1999-12-21 | Zexel:Kk | 燃料噴射量制御方法 |
JP3331974B2 (ja) | 1998-07-21 | 2002-10-07 | トヨタ自動車株式会社 | 内燃機関 |
JP3819609B2 (ja) * | 1998-09-25 | 2006-09-13 | 株式会社日立製作所 | 補間制御手段を備えたエンジン制御装置 |
JP3948294B2 (ja) | 2002-02-05 | 2007-07-25 | 株式会社デンソー | 燃料噴射装置 |
EP1318288B1 (en) * | 2001-12-06 | 2017-09-06 | Denso Corporation | Fuel injection system for internal combustion engine |
JP3966096B2 (ja) * | 2002-06-20 | 2007-08-29 | 株式会社デンソー | 内燃機関用噴射量制御装置 |
JP2004108320A (ja) | 2002-09-20 | 2004-04-08 | Isuzu Motors Ltd | 排気ガス浄化方法及びそのシステム |
JP4110910B2 (ja) | 2002-10-03 | 2008-07-02 | トヨタ自動車株式会社 | 内燃機関のスロットル開度制御装置 |
JP3951899B2 (ja) * | 2002-11-15 | 2007-08-01 | いすゞ自動車株式会社 | ディーゼルエンジンの排気浄化装置 |
EP1457653B1 (en) * | 2003-03-11 | 2009-04-15 | Nissan Motor Co., Ltd. | Engine fuel injection control |
JP2004301007A (ja) | 2003-03-31 | 2004-10-28 | Mazda Motor Corp | 車両に搭載されたエンジンの排気浄化装置 |
JP4345359B2 (ja) | 2003-05-28 | 2009-10-14 | いすゞ自動車株式会社 | 排気ガス浄化システム |
JP4333289B2 (ja) * | 2003-09-03 | 2009-09-16 | いすゞ自動車株式会社 | 排気ガス浄化システム |
JP2005282477A (ja) * | 2004-03-30 | 2005-10-13 | Isuzu Motors Ltd | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
JP4415749B2 (ja) * | 2004-05-10 | 2010-02-17 | 株式会社デンソー | 内燃機関の排気浄化装置 |
WO2005116410A1 (ja) | 2004-05-28 | 2005-12-08 | Hino Motors, Ltd. | 排気浄化装置 |
JP4289280B2 (ja) | 2004-11-01 | 2009-07-01 | 株式会社デンソー | 噴射量学習制御装置 |
JP4049193B2 (ja) | 2006-06-13 | 2008-02-20 | いすゞ自動車株式会社 | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
-
2006
- 2006-06-13 JP JP2006163052A patent/JP4055808B2/ja not_active Expired - Fee Related
-
2007
- 2007-05-14 CN CN2007800219036A patent/CN101466935B/zh active Active
- 2007-05-14 EP EP07743325.8A patent/EP2034165B1/en active Active
- 2007-05-14 WO PCT/JP2007/059890 patent/WO2007145046A1/ja active Application Filing
- 2007-05-14 US US12/227,930 patent/US8973350B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10176562A (ja) * | 1996-12-19 | 1998-06-30 | Toyota Motor Corp | 筒内噴射式内燃機関の燃料噴射制御装置 |
JP2003201899A (ja) | 2001-12-28 | 2003-07-18 | Isuzu Motors Ltd | 圧縮着火式内燃機関 |
JP2004162612A (ja) | 2002-11-13 | 2004-06-10 | Mitsubishi Fuso Truck & Bus Corp | 内燃機関の排気浄化装置 |
JP2004360577A (ja) * | 2003-06-04 | 2004-12-24 | Toyota Motor Corp | 可変気筒エンジンの制御装置 |
JP2005083373A (ja) * | 2003-09-09 | 2005-03-31 | Hyundai Motor Co Ltd | 内燃機関のトルク制御方法 |
JP2005351264A (ja) * | 2004-05-12 | 2005-12-22 | Denso Corp | 内燃機関の排気浄化装置 |
JP2006132458A (ja) * | 2004-11-08 | 2006-05-25 | Denso Corp | 内燃機関の排気浄化装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2007332812A (ja) | 2007-12-27 |
US20090165446A1 (en) | 2009-07-02 |
EP2034165A1 (en) | 2009-03-11 |
EP2034165A4 (en) | 2015-05-06 |
CN101466935A (zh) | 2009-06-24 |
JP4055808B2 (ja) | 2008-03-05 |
CN101466935B (zh) | 2012-10-10 |
EP2034165B1 (en) | 2018-10-03 |
US8973350B2 (en) | 2015-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3988785B2 (ja) | 排気ガス浄化システムの制御方法及び排気ガス浄化システム | |
EP1905992B1 (en) | Method of controlling exhaust gas purification system, and exhaust gas purification system | |
JP3933172B2 (ja) | 排気ガス浄化システムの制御方法及び排気ガス浄化システム | |
JP4673226B2 (ja) | 排気ガス浄化方法及び排気ガス浄化システム | |
JP3979437B1 (ja) | 排気ガス浄化システムの制御方法及び排気ガス浄化システム | |
JP4169076B2 (ja) | 排気ガス浄化システムの制御方法及び排気ガス浄化システム | |
JP3956992B1 (ja) | 排気ガス浄化方法及び排気ガス浄化システム | |
US7721534B2 (en) | Control method for an exhaust gas purification system and an exhaust gas purification system | |
WO2007060785A1 (ja) | 排気ガス浄化システムの制御方法及び排気ガス浄化システム | |
WO2007049406A1 (ja) | 排気ガス浄化システムの制御方法及び排気ガス浄化システム | |
WO2007088714A1 (ja) | 排気ガス浄化システムの制御方法及び排気ガス浄化システム | |
WO2007145046A1 (ja) | 排気ガス浄化システムの制御方法及び排気ガス浄化システム | |
JP4049193B2 (ja) | 排気ガス浄化システムの制御方法及び排気ガス浄化システム | |
WO2007010699A1 (ja) | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780021903.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07743325 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12227930 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007743325 Country of ref document: EP |