[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007142204A1 - プローブカード - Google Patents

プローブカード Download PDF

Info

Publication number
WO2007142204A1
WO2007142204A1 PCT/JP2007/061317 JP2007061317W WO2007142204A1 WO 2007142204 A1 WO2007142204 A1 WO 2007142204A1 JP 2007061317 W JP2007061317 W JP 2007061317W WO 2007142204 A1 WO2007142204 A1 WO 2007142204A1
Authority
WO
WIPO (PCT)
Prior art keywords
interposer
probe card
space transformer
wiring board
probe
Prior art date
Application number
PCT/JP2007/061317
Other languages
English (en)
French (fr)
Inventor
Shunsuke Sasaki
Tsuyoshi Inuma
Yoshio Yamada
Mitsuhiro Nagaya
Takashi Akao
Hiroshi Nakayama
Original Assignee
Nhk Spring Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nhk Spring Co., Ltd. filed Critical Nhk Spring Co., Ltd.
Priority to CN200780021141XA priority Critical patent/CN101467051B/zh
Priority to JP2008520569A priority patent/JP5426161B2/ja
Priority to US12/308,110 priority patent/US7898272B2/en
Priority to EP07815064A priority patent/EP2026078A4/en
Publication of WO2007142204A1 publication Critical patent/WO2007142204A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2889Interfaces, e.g. between probe and tester
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers

Definitions

  • the present invention relates to a probe force window for electrically connecting a semiconductor wafer to be inspected and a circuit structure for generating an inspection signal.
  • a continuity inspection or the like may be performed by contacting a probe (conductive contactor) having conductivity in the state of a semiconductor wafer before dicing to detect defective products.
  • WLT Wafer Level Test
  • a probe card containing a large number of probes is used to transmit inspection signals generated and transmitted by an inspection device (tester) to a semiconductor wafer.
  • tester inspection device
  • the force to contact the probe individually for each die while scanning the die on the semiconductor wafer with the probe card is formed on the semiconductor wafer with several hundred to several tens of thousands of die! Therefore, it took a considerable amount of time to test one semiconductor wafer, and as the number of dies increased, the cost increased!
  • FIG. 11 is a diagram schematically showing a configuration example of a probe card applied in the above-described FWLT.
  • the probe card 8 shown in the figure includes a plurality of probes 9 provided corresponding to the arrangement pattern of the electrode pads on the semiconductor wafer, a probe head 81 that accommodates the plurality of probes 9, and a fine pattern in the probe head 81.
  • Space transformer 82 that converts the spacing of various wiring patterns and wiring w that comes out of space transformer 82
  • Interposer 83 that relays
  • wiring board 84 that connects the wiring relayed by interposer 83 to the inspection device
  • male connector 85 that is provided on wiring board 84 and is connected to the connector on the inspection device side
  • the interposer 83 is a thin-film base material made of an insulating material such as ceramics, and a leaf spring type that is arranged in a predetermined pattern on both surfaces of the base material and forms a cantilever shape.
  • One having a plurality of connection terminals is known.
  • the connection terminal provided on one surface of the interposer 83 is in contact with the electrode pad of the space transformer 82, and the connection terminal provided on the other surface is in contact with the electrode pad of the wiring board 84. Both are electrically connected.
  • Patent Document 1 Japanese Patent No. 3386077
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-164600
  • the conventional probe card represented by the probe card 8 described above has a problem that the space transformer warps due to the elastic force applied to the space transformer by the interposer. It was. In this case, the probe head that is almost in close contact with the space transformer also warps following the space transformer, and the flatness of the tip height of the probe is lowered. As a result, the probe held at the center of the probe head comes into contact with the semiconductor wafer before the probe held at the periphery of the probe head, and the contact resistance to the semiconductor wafer is reduced. It was stable!
  • a space transformer composed of a multilayer substrate such as ceramic is provided with a mechanical rigidity that can resist the elastic force (reaction force) received from the interposer. It is often done to make the plate as thick as possible by taking measures such as adding one layer.
  • a space transformer composed of a multilayer substrate such as ceramic is provided with a mechanical rigidity that can resist the elastic force (reaction force) received from the interposer. It is often done to make the plate as thick as possible by taking measures such as adding one layer.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a probe card that can easily improve the rigidity of a space transformer at low cost.
  • one embodiment of the present invention provides a circuit that electrically connects a semiconductor wafer to be inspected and a circuit structure that generates an inspection signal.
  • a probe card containing a number of probes, a flat wiring board having a wiring pattern corresponding to the circuit structure, an interposer stacked on the wiring board, and relaying the wiring of the wiring board;
  • a space transformer which is laminated and fixed to the interposer, converts the interval of the wiring relayed by the interposer, and exposes the wiring to the surface opposite to the side facing the interposer; and the space And a probe head that is stacked on the transformer and accommodates and holds the plurality of probes.
  • the interposer and the space transformer may be bonded to each other with an adhesive in a laminated state.
  • the adhesive may electrically connect the interposer and the space transformer on a surface where the interposer and the space transformer are opposed to each other. You can also arrange it! /
  • a resist surrounding a portion where the interposer and the space transformer are electrically connected to each other on a surface where the interposer and the space transformer face each other. Also good.
  • the adhesive may be in the form of a sheet.
  • the interposer and the space transformer may be fastened using the first screw member in a stacked state.
  • the interposer is formed on the surface of the wiring board.
  • a plurality of first post members embedded from the surface of the layered portion so as to penetrate the wiring board and having a height larger than the plate thickness of the wiring board may be further provided.
  • the first post member has the same height as the first post member, and a hollow portion that penetrates the height direction is provided, and the wiring substrate passes through the central portion of the wiring substrate.
  • the interposer is made of a conductive material, and is made of a plurality of connection terminals that are expandable and contractable in the axial direction, and an insulating material, and the plurality of connection terminals are individually separated. And a housing in which a plurality of through-hole portions to be housed are formed.
  • connection terminal has a coil shape, and a pair of electrode pin portions tightly wound so as to taper toward both ends in the axial direction; And a coil spring portion that is interposed between the pair of electrode pin portions and connects the pair of electrode pin portions.
  • the coil spring portion includes a tightly wound portion provided in the middle in the axial direction of the connection terminal, a steady wound portion provided on one end side of the tightly wound portion, and the tightly contacted portion.
  • a rough winding portion that is provided on one end side of the winding portion and different from the side on which the steady winding portion is provided, and is wound more coarsely than the steady winding portion, and force may be included.
  • a flat wiring board having a wiring pattern corresponding to a circuit structure that generates a signal for inspection, and the wiring board laminated on the wiring board,
  • FIG. 11 is a schematic diagram of the main part of the probe block according to the embodiment 11 of the present invention.
  • FIG. 2 is a perspective view of a decomposition solution showing a configuration of .
  • FIG. 22 shows the configuration of the probe card according to the embodiment 11 of the present invention.
  • FIG. 22 shows the configuration of the probe card according to the embodiment 11 of the present invention.
  • FIG. 33 is a cross-sectional view taken along line AA—AA in FIG. .
  • FIG. 44 is a schematic diagram of the inspection using the probe card according to the embodiment 11 of the present invention. It is a figure which shows the outline
  • Fig. 55 shows the internal and internal structure of the computer and tras- lance performance ma. It is a partial fragmentary sectional view showing the contact and adhesion state of both parties. .
  • FIG. 66 is a diagram showing the configuration of the probe card on the peripheral edge of the peripheral layer. .
  • FIG. 77 is a partially enlarged cross-sectional view of the enlarged and enlarged part showing the structure of the main part of the probe and the probe head.
  • Fig. 88 shows another form of contact bonding between an interposer composer and a space-stralans performance mother. It is a fragmentary sectional view showing the soot part shown. .
  • FIG. 99 shows the configuration of the probe card according to the embodiment 22 of the present invention. Ah in the cross section view
  • FIG. 1100 shows a configuration of the probe card according to the embodiment 33 of the present invention. This is a sectional view. .
  • FIG. 1111 is a cross-sectional view showing the structure of a conventional probe card. .
  • FIG. 1 is an exploded perspective view showing the configuration of the main part of the probe card according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing the configuration of the probe card according to the first embodiment.
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG. 2, with the upper side of FIG.
  • FIG. 4 is a diagram schematically showing the cross section taken along the line BB in FIG. 2 including a part of the wiring, and also shows an outline of the inspection using the probe card according to the first embodiment.
  • the probe card 1 shown in FIGS. 1 to 4 includes a semiconductor wafer to be inspected using a plurality of probes 2 (conductive contacts) and an inspection apparatus having a circuit structure for generating an inspection signal. It is an electrical connection.
  • the probe card 1 has a disk shape, and a wiring board 11 for electrical connection with an inspection device;
  • the reinforcing member 12 that is attached to one surface of the wiring board 11 and reinforces the wiring board 11, the interposer 13 that relays the wiring from the wiring board 11, and is laminated and fixed to the interposer 13, and is relayed by the interposer 13.
  • a space transformer 14 that converts the spacing between the wirings and a space transformer 14 that is formed in a disk shape with a diameter smaller than that of the wiring substrate 11 and stacked on the space transformer 14.
  • a probe head 15 for accommodating and holding the container.
  • the probe card 1 is fixed to the wiring board 11, and the holding member 16 that holds the interposer 13 and the space transformer 14 together in a stacked state, and the end of the probe head 15 that is fixed to the holding member 16 And a plurality of post members 18 (first post members) embedded in predetermined portions of the wiring board 11.
  • the wiring substrate 11 is formed using an insulating material such as bakelite or epoxy resin, and a wiring layer for electrically connecting a plurality of probes and the inspection apparatus is formed in three dimensions by via holes or the like. Has been.
  • the wiring board 11 is provided with the same number of through-hole portions 111 for embedding the plurality of post members 18 as the number of the post members 18. In FIG. 3, the wiring board 11 which is originally a flat plate is deformed, and the longitudinal section of the wiring board 11 is undulated!
  • one end of the spring w formed on the wiring board 11 is the surface of the wiring board 11 for connection with an inspection device (not shown), and the reinforcing member 12 It is connected to a plurality of male connectors 20 arranged on the surface of the attached side.
  • the other end of the wiring w is electrically connected to the probe 2 accommodated and held by the probe head 15 via the space transformer 14.
  • Each male connector 20 is arranged radially with respect to the center of the wiring board 11 and is paired with each of the female connectors 40 provided at positions facing the connector seat 4 of the inspection apparatus.
  • the electrical connection between the probe 2 and the inspection device is established by the contact of the terminal.
  • Zero-insertion force (ZIF) type which consists of male connector 20 and female connector 40, and requires little external force when pulling male connector, and applies pressure force by external force after connecting the connectors together Applying connector can power S. If this ZIF connector is applied, the probe card 1 and inspection device can be used even if the number of probes 2 is large. It is possible to obtain almost no electrical stress due to the connection, and the electrical connection can be reliably obtained, and the durability of the probe card 1 can be improved.
  • a male connector may be provided on the wiring board 11 while a male connector may be provided on the connector seat 4. Further, the shape and arrangement position of the connector are not necessarily limited to those described above.
  • a terminal such as a pogo pin having a spring action is provided in the inspection apparatus, and the probe card is connected via the terminal. 1 may be connected to the inspection apparatus.
  • the reinforcing member 12 has a circular outer peripheral portion 121 having substantially the same diameter as the wiring substrate 11, and a disk shape having the same center as the circle formed by the outer peripheral portion 121 and having a slightly larger surface area than the surface of the interposer 13. And a plurality of connecting portions 123 (four in FIG. 1) that extend from the outer peripheral direction of the central portion 122 to reach the outer peripheral portion 121 and connect the outer peripheral portion 121 and the central portion 122. The Further, a plurality of recesses 124 on which the end portions of the post members 18 are placed are formed in the central portion 122 of the reinforcing member 12.
  • the reinforcing member 12 is realized by a material having high rigidity such as aluminum anodized aluminum, stainless steel, invar material, Kovar material (registered trademark), or duralumin.
  • the interposer 13 and the space transformer 14 have a thin plate shape having regular octagonal surfaces that are substantially congruent to each other, and the opposing surfaces are bonded by an adhesive 19.
  • FIG. 5 is a partial cross-sectional view showing the internal configuration of the interposer 13 and the space transformer 14 and showing the bonding state of both members.
  • FIG. 6 is a partial cross-sectional view showing a state after the wiring board 11 is attached to the same place as FIG.
  • the interposer 13 includes a housing 131 that forms a base material, and a plurality of connection terminals 132 that are accommodated and held in the housing 131.
  • the space transformer 14 is an electrode that is connected to one end side of the wiring w for converting the pitch width with respect to the base material, exposes the surface force of the base material, and contacts the connection terminal 132 of the interposer 13.
  • a pad 141 and an electrode pad 142 which is exposed on the surface facing the probe head 15 and has a pitch width narrower than the pitch width of the electrode pad 141 are provided (the electrode pad 142 will be described below). checking).
  • the housing 131 of the interposer 13 is formed of a single member, and includes a plurality of connection terminals 132. A plurality of through-hole portions 133 that are individually accommodated are formed. For this reason, the housing 131 is made of machinable ceramics that can be machined. Since the interposer 13 and the space transformer 14 are bonded and integrated by the adhesive 19, one of the opening surfaces of the through hole 133 is blocked by the space transformer 14. For this reason, the through hole 133 may be a straight hole having a single diameter as shown in FIG. Therefore, since the through-hole part 133 can be formed, for example, by performing drilling using only one type of drill, it is easy to manufacture, and the manufacturing period can be shortened and the cost can be reduced. It becomes possible.
  • the connection terminal 132 of the interposer 13 includes a coil spring portion 132a formed by winding a conductive material so as to form a cylindrical shape, and a pair of tightly tapering tapers from both ends of the coil spring portion 132a. Electrode pin portions 132b and 132c.
  • the coil spring portion 132a includes a steady winding portion 132d, a tightly wound portion 132e, and a rough winding portion 132f formed at a relatively coarser pitch than the steady winding portion 132d. According to the connection terminal 132 having such a configuration, it is possible to prevent the entanglement of the coil spring portion 132a when it is compressed and deformed.
  • connection terminal 132 is formed of a single coil-shaped spring member, the number of parts can be reduced, and the cost required for manufacturing and maintenance can be reduced. Furthermore, since the electrode pin portions 132b and 132c have a tapered shape and are in contact with the electrode pads 141 and 112, respectively, the variation in the position of the protruding end of the electrode pin portions 132b and 132c is reduced. It is possible to contact with the contacted object uniformly with force S.
  • the coil spring portion 132a is in a substantially tight contact state with the steady winding portion 132d and the rough winding portion 132f sandwiched, and the tip of the electrode pin portion 132b of the connection terminal 132 is the electrode pad of the wiring board 11 While contacting 112, the tip of the electrode pin portion 132 c of the connection terminal 132 contacts the electrode pad 141 of the space transformer 14. As a result, the electrical connection between the wiring board 11 and the space transformer 14 is relayed.
  • the space transformer 14 is formed of polyimide multilayer wiring using an insulating material such as alumina-based ceramic as a base material.
  • the thermal expansion coefficient (CTE) of alumina ceramics is about 7.2 ppm / ° C.
  • Interposer 13's housing The thermal expansion coefficient of the machinable ceramics that form part 131 is about 1 to 1 Oppm / ° C, and there are gaps depending on the material.
  • the value of the thermal expansion coefficient is matched with that of the space transformer 14 so that the temperature is low during the inspection. Even if the temperature changes from 50 ° C) to high temperature (200 ° C), the bimetal effect does not occur, and the warp of the interposer 13 and space transformer 14 is suppressed to maintain flatness!
  • the adhesive 19 is disposed on the entire surface of the space transformer 14 with a pattern excluding the electrode pads 141.
  • the adhesive 19 is arranged by brushing, roller coating, spraying, application by a spinner, or immersion in the adhesive.
  • the adhesive 19 is semi-solid or solid, it is formed into a sheet with an appropriate thickness, dissolved or dispersed to an appropriate concentration with a solvent or diluent, and then applied as described above. Place the adhesive 19 by dipping
  • thermosetting adhesive such as an epoxy resin, a phenol resin, a urea resin, a melamine resin, a polyester resin, or a silicone resin
  • thermoplastic adhesive such as polyacetate butyl, polybule alcohol, polychlorinated butyl, nitrocellulose, polyacrylic acid ester or the like
  • a pressure-sensitive adhesive and a thermocompression adhesive can be used as the adhesive 19.
  • a brazing material such as solder may be used as the adhesive 19. If the brazing material has electrical conductivity, an oxide film is formed on the surface to provide insulation, and then used as the adhesive 19.
  • the melting point of the brazing material must be higher than the maximum temperature of 200 ° C during use. On the other hand, if the melting point of the brazing metal is too high, distortion occurs when it is returned to room temperature after brazing. Or Based on these points, the melting point of the brazing material applied as the adhesive 19 is preferably higher than 200 ° C. and very low.
  • the adhesive 19 is first disposed on the fixing surface of the interposer 13 and / or the space transformer 14 by any of the above-described methods, and is in a semi-cured state.
  • Adhesive strength in this semi-cured state Is hardly expressed, and there is no possibility that the adhesive 19 flows into the through-hole portion 133 and the electrode pad 141.
  • the interposer 13 and the space transformer 14 are laminated, and then the adhesive 19 is fully cured, whereby the interposer 13 and the space transformer 14 are completely bonded and integrated.
  • the adhesive 19 is a thermosetting adhesive
  • the main curing is performed by heating to a predetermined temperature or by further applying pressure in addition to the heating.
  • the adhesive 19 is a pressure-sensitive adhesive, it is fully cured by pressurizing at a predetermined pressure.
  • a thin-film double-sided tape is formed so as to form a pattern excluding the electrode pad 141, and the interposer 13 and the space transformer 14 are laminated after the double-sided tape is attached to the surface of the space transformer 14. You may make it adhere
  • the overall rigidity can be improved as compared to the case where both members are simply laminated, and the flatness of the space transformer 14 is improved. Can be improved.
  • the flatness of the probe head 15 laminated on the space transformer 14 is also improved, and the flatness of the tip of the probe 2 accommodated and held by the probe head 15 is also improved, so that the probe 2 contacts the semiconductor wafer 5.
  • Increases accuracy As a result, it is not necessary to increase the plate thickness by forming a dummy wiring layer in the space transformer 14, so that the manufacturing period can be shortened and the manufacturing cost can be reduced.
  • the probe head 15 has a disk shape, and accommodates and holds a plurality of probes so as to protrude perpendicular to the paper surface in FIG. 2 in the probe accommodation region 15p shown in FIG.
  • FIG. 7 is an enlarged partial cross-sectional view showing the configuration of the main part of the probe head 15 and the detailed configuration of the probe 2 accommodated in the probe head 15.
  • the probe 2 includes a needle-like member 21 that contacts the space transformer 14, a needle-like member 22 that protrudes in a direction opposite to the needle-like member 21 and contacts the electrode pad 51 of the semiconductor wafer 5, and the needle-like member And a spring member 23 provided between the needle-like member 21 and the needle-like member 22 so as to connect the two needle-like members 21 and 22 so as to be extendable and retractable. Needle-like members 21 and 22 connected to each other , And the spring member 23 have the same axis.
  • the arrangement pattern in the probe head 15 of the probe 2 is determined according to the arrangement pattern of the electrode pads 51 of the semiconductor wafer 5 to be inspected.
  • the needle-like member 21 is provided at a needle-like portion 21a having a sharp end projecting in the distal direction and a proximal end portion on the opposite side of the sharp end of the needle-like portion 21a, and is larger than the diameter of the needle-like portion 21a.
  • a boss portion 21b having a small diameter and a shaft portion 21c extending from the surface of the boss portion 21b opposite to the side on which the needle-like portion 21a is in contact have an axially symmetric shape in the longitudinal direction.
  • the needle-like member 22 is provided at a needle-like portion 22a having a sharp end protruding in the distal direction and a base end portion on the opposite side of the sharp end of the needle-like portion 22a.
  • the needle-like member 21 side is the coarsely wound portion 23a
  • the needle-like member 22 side is the tightly wound portion 23b
  • the end of the coarsely wound portion 23a is connected to the boss portion 21b of the needle-like member 21.
  • the end portion of the tightly wound portion 23b is wound around the boss portion 22c of the needle-like member 22.
  • the coarsely wound portion 23a and the boss portion 21b and the tightly wound portion 23b and the boss portion 22c are joined by a spring winding force and / or soldering, respectively.
  • the probe 2 having the above configuration is provided with the spring member 23 so that the needle-like members 21 and 22 can move spontaneously in the vertical direction in FIG.
  • the needle-like member 21 is in contact with the electrode pad 144, that is, as shown in FIG. 7, at least a part of the tightly wound portion 23b is in contact with the shaft portion 21c of the needle-like member 21.
  • the length of the tightly wound portion 23b in the axial direction is set to a length that can realize the state shown in FIG.
  • the inner diameter of the spring member 23 is slightly larger than the outer diameter of the boss portion 21b and the boss portion 22c. Thereby, the expansion / contraction operation
  • the probe head 15 is formed using an insulating material such as ceramics, and the through hole 151 for accommodating the probe 2 according to the arrangement of the semiconductor wafer 5 has a plate thickness direction (vertical direction in FIG. 7). Is formed.
  • the through-hole portion 151 has a small-diameter hole 151a formed from the end surface on the semiconductor wafer 5 side (the vertical lower side in FIG. 7) over a predetermined length that is at least smaller than the length in the longitudinal direction of the needle-like portion 22a. And has the same central axis as the small diameter hole 151a and a diameter larger than that of the small diameter hole 151a. Has a large diameter hole 151b. As is clear from FIG.
  • the inner diameter of the small-diameter hole 151a is slightly larger than the outer diameter of the needle-like portion 22a of the needle-like member 22 and slightly smaller than the outer diameter of the flange portion 22b.
  • the probe 2 (the needle-like member 22) is prevented from coming off by forming the through-hole portion 151 in the shape of a stepped hole.
  • the probe head 15 may be divided into two parts, upper and lower, along the vertical direction of FIG. In this case, the force to fasten the two parts using the screw member and the positioning pin. To prevent the lower plate from swelling due to the initial load of the probe 2, the thickness of the lower part is increased upward. It is preferable to set it to be thicker than the thickness of the coming part. By dividing the probe head 15 in this way, the probe 2 can be easily replaced.
  • the probe 2 accommodated and held by the probe head 15 includes a ground probe and a power supply probe. For this reason, some of the wirings w connected to the probe 2 are connected to the ground layer and the power supply layer.
  • the holding member 16 is made of the same material as that of the reinforcing member 12, and has a regular octagonal prism-shaped hollow portion in which the interposer 13 and the space transformer 14 can be stacked and held.
  • the holding member 16 presses and holds the interposer 13 and the space transformer 14 integrated with the adhesive 19 against the wiring board 11, so that the wiring board 11 and the space transformer 14 pass through the interposer 13. The pressure required to make the electrical connection is applied.
  • the leaf spring 17 is formed of an elastic material such as phosphor bronze, stainless steel (SUS), beryllium copper, and has a thin annular shape.
  • a claw portion 171 as a pressing member for holding the interposer 13, the space transformer 14, and the probe head 15 is uniformly provided on the inner circumference of the leaf spring 17 over the entire circumference.
  • the claw portion 171 presses the vicinity of the edge of the surface of the probe head 15 evenly toward the wiring board 11 over the entire circumference. Therefore, a substantially uniform initial load is generated on the probe 2 accommodated in the probe head 15, and the probe head 15 can be prevented from warping.
  • the post member 18 is a large cylindrical member having a height slightly larger than the thickness of the wiring board 11.
  • a diameter portion 18a and a cylindrical small diameter portion 18b having a diameter smaller than that of the large diameter portion 18a and having the same central axis as the large diameter portion 18a are provided.
  • the small diameter portion 18b can be fitted into the recess 124 of the reinforcing member 12. For this reason, the diameter of the small diameter portion 18b is substantially equal to the diameter of the concave portion 124, and the height of the small diameter portion 18b is substantially equal to the depth of the concave portion 124.
  • the post member 18 is preferably stainless steel in view of the force S that can be formed of the same material as that of the reinforcing member 12 and high processing accuracy. As shown in FIG.
  • the post members 18 are arranged symmetrically with respect to the center of a regular octagon formed by the surface of the interposer 13.
  • the width in the thickness direction of the wiring board 11 portion can be defined by the height of the post member 18, so that the wiring board 11 is warped. Even if deformation such as undulation or unevenness occurs (see FIG. 3), it is possible to improve the accuracy of the parallelism and flatness of the probe head 15 without being affected by the deformation.
  • a predetermined positioning pin is used when the wiring board 11, the reinforcing member 12, the interposer 13, the space transformer 14, the probe head 15, and the holding member 16 are sequentially stacked. It is more preferable to perform mutual positioning.
  • the probe card 1 is mounted and fixed to a prober 3 which is a device for contacting the probe 2 and the semiconductor wafer 5 during inspection.
  • the prober 3 has a probe card holder 31 for placing and holding the bottom surface of the wiring board 11, and a holding jig 32 that is located above the probe card holder 31 and holds the probe card 1 downward to fix it.
  • the contact between the probe 2 and the semiconductor wafer 5 is realized by raising the wafer chuck 50 on which the semiconductor wafer 5 is placed by a predetermined driving means. At this time, in order for the electrode pad 51 of the semiconductor wafer 5 and the tip of the needle-like portion 22a of the needle-like member 22 of the probe 2 to contact accurately, the tip height of the probe 2 after being stroked by the contact is increased. It is necessary that h is larger than the thickness d of the probe card holder 31 (h> d).
  • FIG. 4 schematically shows the tip position of the probe 2 when it contacts the semiconductor wafer 5 by a group of probes 2 (four) held at the right end of the probe head 15 ( Fig 4 In this case, the stroke amount of the probe 2 by the contact with the semiconductor wafer 5 is ⁇ ⁇ ).
  • a flat wiring board having a wiring pattern corresponding to a circuit structure that generates a signal for inspection, and the wiring board described above.
  • the interposer that is stacked and relays the wiring of the wiring board and the interposer that is stacked and fixed to the interposer, converts the interval of the wiring relayed by the interposer, and converts the wiring on the side opposite to the side facing the interposer.
  • the interposer and the space transformer are fixed and integrated, so that the thickness of the interposer does not need to be increased more than necessary. It is also possible to do.
  • the through hole for passing the connection terminal through the interposer may be a straight hole. Therefore, it is possible to reduce the manufacturing cost of the probe force. In addition, the number of days required to manufacture the probe card can be shortened, so it is possible to respond quickly to customer requests.
  • the accuracy of the tip position of the probe is improved as the flatness and the parallelism are improved.
  • the stroke of all probes can be made almost constant, and a stable contact resistance can be obtained.
  • by making the strokes of all the probes almost constant it is possible to avoid applying an unnecessary load to a specific probe. Therefore, it is possible to avoid excessively damaging the electrode pads of the semiconductor wafer, It is possible to prevent the deterioration of the yield in the connection process (wire bonding, etc.) and the destruction of the wiring connected to the electrode pad.
  • the bonding method between the interposer 13 and the space transformer 14 is not limited to the one described above.
  • the resist 24 may be provided uniformly so as to surround the through-hole portion 133 of the interposer 13 and the electrode pad 141 of the space transformer 14.
  • a resist 24 having a predetermined thickness is applied (formed) to the fixed surface, and then exposed to a predetermined pattern by masking. Subsequently, an adhesive 19 is disposed on the portion where the resist 24 has been removed by exposure.
  • the resist 24 becomes a wall, and the adhesive 19 is prevented from flowing into a place including the through-hole part 133 and the electrode pad 141, that is, a place where the interposer 13 and the space transformer 14 are electrically connected. Fulfills the function. Note that the details of the bonding method described here are disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-91391.
  • FIG. 9 is a diagram showing the configuration of the probe card according to the second embodiment of the present invention, and corresponds to FIG. 3 referred to in the description of the first embodiment.
  • the probe force mode 6 shown in FIG. 9 has a disc-shaped wiring board 61 that is electrically connected to the inspection apparatus, and a reinforcement that is attached to one surface of the wiring board 61 and reinforces the wiring board 61.
  • a member 62 and an interposer 63 that relays as much wiring as the wiring board 61 are provided.
  • the probe card 6 includes a space transformer 14, a probe head 15, a holding member 16, and a leaf spring 17 each having the same configuration as that of the probe card 1 according to the first embodiment.
  • a plurality of post members 18 are embedded in the wiring board 61.
  • the interposer 63 and the space transformer 14 are bonded and integrated by an adhesive 19.
  • one screw member 201 (second screw member) is passed through the probe card 6 in the thickness direction from the surface of the reinforcing member 62 (upper surface in FIG. 9) to the interposer 63.
  • a post member 68 (second post member) having a hollow portion through which the screw member 201 can be passed is embedded in the wiring substrate 61 in the center portion of the wiring substrate 61.
  • the post member 68 has a hollow cylindrical shape having a thickness slightly larger than the thickness of the wiring board 61.
  • a large-diameter portion 68a and a hollow cylindrical small-diameter portion 68b having a diameter smaller than that of the large-diameter portion 68a and having the same central axis as that of the large-diameter portion 68a are provided.
  • the reinforcing member 62 and the interposer 63 are provided with through-hole portions 621 and 631 that are coaxially communicated in the thickness direction when the two members are assembled in order to allow the screw member 201 to pass therethrough. Yes. On the inner side surfaces of these through-hole portions 621 and 631, a screw thread to which the screw member 201 can be screwed is appropriately provided (not shown).
  • the number and location of the screw members 201 are not necessarily limited to those described above, the rigidity required for the probe card, and the plate thickness and surface area of wiring boards, interposers, space transformers, etc. What is necessary is just to determine suitably by conditions, such as.
  • FIG. 10 is a diagram showing the configuration of the probe card according to the third embodiment of the present invention, and corresponds to FIG. 3 referred to in the description of the first embodiment.
  • the probe card 7 shown in FIG. 10 has the same configuration as the probe card 1 according to the first embodiment described above, the wiring board 11, the reinforcing member 12, the probe head 15, the holding member 16, and the leaf spring 17. And a plurality of post members 18 are embedded in the wiring board 11.
  • the probe card 7 also includes an interposer 73 that relays the wiring from the wiring board 11 and a space transformer 74 that converts the interval between the wirings converted by the interposer 73.
  • the interposer 73 and the space transformer 74 are fastened and integrated by a plurality of screw members 202 (first screw members).
  • the interposer 73 and the space transformer 74 have through-hole portions 731 and 741 that are coaxially communicated in the thickness direction when both members are assembled, and are formed at predetermined positions.
  • the inner surface of each of the through-hole portions 731 and 741 is appropriately provided with a thread that can be screwed into the screw member 202 (not shown).
  • the adhesive 19 can be further arranged between the interposer 73 and the space transformer 74, so that both members can be more firmly integrated.
  • the space transformer may be formed of a glass epoxy substrate and integrated with the interposer.
  • the thermal expansion coefficient of the glass epoxy substrate is 12 to 15 ppm / ° C, which is significantly larger than the thermal expansion coefficient (1 to 10 ppm / ° C) of the machinable ceramic constituting the interposer.
  • the rigidity when the two members are integrated is almost dependent on the rigidity of the machinable ceramics. Therefore, in this case, it is more desirable to increase the dependence of the rigidity on the machinable ceramics by making the thickness of the glass epoxy substrate as thin as possible while increasing the thickness of the machinable ceramics! /, .
  • each surface shape of the interposer and the space transformer may be circular.
  • each surface of the interposer or space transformer may be an appropriate regular polygon, and the probe head may be a regular polygon similar to the regular polygon.
  • the probe applied to the probe card according to the present invention is conventionally known. Any of various types of probes can be applied.
  • the present invention can include various embodiments and the like that are not described herein, and V, within the scope not departing from the technical idea specified by the claims. It is possible to make various design changes.
  • the probe card according to the present invention is useful for inspection of electrical characteristics of a semiconductor wafer, and is particularly suitable for FWLT.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 スペーストランスフォーマの剛性の向上を容易にかつ低コストで実現することができるプローブカードを提供する。この目的のため、検査用の信号を生成する回路構造に対応する配線パターンを有する平板状の配線基板11と、配線基板11に積層され、配線基板11の配線を中継するインターポーザ13と、インターポーザ13に積層されて接着剤19によって固着され、インターポーザ13によって中継された配線の間隔を変換し、該配線をインターポーザ13に対向する側と反対側の表面へ表出するスペーストランスフォーマ14と、スペーストランスフォーマ14に積層され、複数のプローブを収容保持するプローブヘッド15と、を備える。

Description

明 細 書
プローブカード
技術分野
[0001] 本発明は、検査対象である半導体ウェハと検査用の信号を生成する回路構造との 間を電気的に接続するプローブ力一ドに関する。
背景技術
[0002] 半導体の検査工程では、ダイシングする前の半導体ウェハの状態で導電性を有す るプローブ(導電性接触子)をコンタクトさせることによって導通検査等を行い、不良 品を検出することがある(WLT : Wafer Level Test)。この WLTを行う際には、検査 装置 (テスター)によって生成、送出される検査用の信号を半導体ウェハへ伝送する ために、多数のプローブを収容するプローブカードが用いられる。 WLTでは、半導 体ウェハ上のダイをプローブカードでスキャニングしながらプローブをダイごとに個別 にコンタクトさせる力 半導体ウェハ上には数百〜数万とレ、うダイが形成されて!/、るの で、一つの半導体ウェハをテストするにはかなりの時間を要し、ダイの数が増加すると ともにコストの上昇を招いて!/、た。
[0003] 上述した WLTの問題点を解消するために、最近では、半導体ウェハ上の全てのダ ィ、または半導体ウェハ上の少なくとも 1/4〜1/2程度のダイに数百〜数万のプロ ーブを一括してコンタクトさせる FWLT (Full Wafer Level Test)という手法も用いら れている。この手法では、プローブを半導体ウェハ上の電極パッドに対して正確にコ ンタタトさせるため、所定の基準面に対するプローブカードの平行度や平面度を精度 よく保つことによってプローブの先端位置精度を保持する技術や、半導体ウェハを高 精度でァライメントする技術が知られている(例えば、特許文献 1または 2を参照)。
[0004] 図 11は、上述した FWLTにおいて適用されるプローブカードの一構成例を模式的 に示す図である。同図に示すプローブカード 8は、半導体ウェハ上の電極パッドの配 置パターンに対応して設けられた複数のプローブ 9と、この複数のプローブ 9を収容 するプローブヘッド 81と、プローブヘッド 81における微細な配線パターンの間隔を変 換するスペーストランスフォーマ 82と、スペーストランスフォーマ 82から出た配線 wを 中継するインターポーザ 83と、インターポーザ 83で中継された配線を検査装置へ接 続する配線基板 84と、配線基板 84に設けられて検査装置側に設けられるメスコネク タと接続されるォスコネクタ 85と、配線基板 84を補強する補強部材 86と、を備える。
[0005] このうち、インターポーザ 83としては、セラミックス等の絶縁性材料から成る薄膜状 の基材と、この基材の両面に所定のパターンで配設され、片持ち梁状をなす板ばね 式の複数の接続端子とを有するものが知られている。この場合には、インターポーザ 83の一方の表面に設けられた接続端子がスペーストランスフォーマ 82の電極パッド に接触するとともに、他方の表面に設けられた接続端子が配線基板 84の電極パッド に接触することによって両者の電気的な接続を図っている。
[0006] 特許文献 1:特許第 3386077号公報
特許文献 2:特開 2005— 164600号公報
発明の開示
発明が解決しょうとする課題
[0007] しかしながら、上述したプローブカード 8に代表される従来のプローブカードには、 インターポーザがスペーストランスフォーマに対して弾性力を加えるため、この弾性力 によってスペーストランスフォーマに反りが生じてしまうという問題があった。この場合 、スペーストランスフォーマにほぼ密着して!/、るプローブヘッドもスペーストランスフォ 一マに追従して反ることとなり、ひいてはプローブの先端高さの平坦度が下がってし まうこととなる。その結果、プローブヘッドの中心部で保持されるプローブの方がプロ ーブヘッドの周辺部で保持されるプローブよりも先に半導体ウェハにコンタクトするよ うになってしまレ、、半導体ウェハへの接触抵抗が安定しな!/、要因となってレ、た。
[0008] この問題は、特に、直径が 12インチ(約 300mm)の半導体ウェハを検査対象とする 場合に顕著である。すなわち、直径が 12インチの半導体ウェハに適用可能なプロ一 ブカードは、直径 8インチ(約 200mm)の半導体ウェハに適用可能なプローブカード よりも収容するプローブの数が多く(数千〜数万)、かつスペーストランスフォーマの 表面積も大きいため、反りが一段と大きくなつてしまうという問題があった。
[0009] また、一般にセラミック等の多層基板から成るスペーストランスフォーマに対しては、 インターポーザから受ける弾性力(反力)に抗しうる機械的剛性を持たせるため、ダミ 一層を加える等の措置を施すことによってその板厚をできる限り厚くすることがしばし ば行われている。し力、しながら、配線層の数を多くするためには製造に時間がかかる 上、コストの上昇を招いてしまうと!/、う問題があった。
[0010] 本発明は、上記に鑑みてなされたものであって、スペーストランスフォーマの剛性の 向上を容易にかつ低コストで実現することができるプローブカードを提供することを目 的とする。
課題を解決するための手段
[0011] 上述した課題を解決し、 目的を達成するために、本発明の一態様は、検査対象で ある半導体ウェハと検査用の信号を生成する回路構造との間を電気的に接続する複 数のプローブを収容するプローブカードであって、前記回路構造に対応する配線パ ターンを有する平板状の配線基板と、前記配線基板に積層され、前記配線基板の配 線を中継するインターポーザと、前記インターポーザに積層されて固着され、前記ィ ンターポーザによって中継された配線の間隔を変換し、該配線を前記インターポー ザに対向する側と反対側の表面へ表出するスペーストランスフォーマと、前記スぺー ストランスフォーマに積層され、前記複数のプローブを収容保持するプローブヘッドと 、を備えたことを特 ί毁とする。
[0012] また、上記発明にお!/、て、前記インターポーザと前記スペーストランスフォーマとは 、積層状態で接着剤によって接着されたこととしてもよい。
[0013] また、上記発明にお!/、て、前記接着剤は、前記インターポーザと前記スペーストラ ンスフォーマとが互いに対向する表面において、前記インターポーザと前記スペース トランスフォーマとの電気的な接続を行う箇所を除!/、て配設されたこととしてもよ!/、。
[0014] また、上記発明にお!/、て、前記インターポーザと前記スペーストランスフォーマとが 互いに対向する表面において、前記インターポーザと前記スペーストランスフォーマ との電気的な接続を行う箇所を包囲するレジストを設けてもよい。
[0015] また、上記発明にお!/、て、前記接着剤は、シート状をなしてもょレ、。
[0016] また、上記発明にお!/、て、前記インターポーザと前記スペーストランスフォーマとは 、積層状態で第 1のねじ部材を用いて締結されたこととしてもよレ、。
[0017] また、上記発明におレ、て、前記配線基板の表面であって前記インターポーザが積 層された部分の表面から前記配線基板を貫通するように埋め込まれ、前記配線基板 の板厚よりも大きい高さを有する複数の第 1のポスト部材をさらに備えてもよい。
[0018] また、上記発明において、前記第 1のポスト部材と同じ高さを有し、この高さ方向を 貫通する中空部が設けられて成り、前記配線基板の中央部に前記配線基板を貫通 するように埋め込まれた第 2のポスト部材と、前記第 2のポスト部材に設けられた前記 中空部に揷通され、前記配線基板と前記インターポーザとを締結する第 2のねじ部 材と、をさらに備えてもよい。
[0019] また、上記発明にお!/、て、前記インターポーザは、導電性材料から成り、軸線方向 に伸縮自在な複数の接続端子と、絶縁性材料から成り、前記複数の接続端子を個 別に収容する複数の貫通孔部が形成されたハウジングと、を有してもよい。
[0020] また、上記発明にお!/、て、前記接続端子はコイル状をなし、前記軸線方向の両端 側に向けて先細となるように各々密着巻きされた一対の電極ピン部と、前記一対の電 極ピン部の間に介在して前記一対の電極ピン部を連結するコイルばね部と、を有し てもよい。
[0021] また、上記発明において、前記コイルばね部は、当該接続端子の軸線方向の中間 に設けられた密着巻き部と、前記密着巻き部の一端側に設けられた定常巻き部と、 前記密着巻き部の一端側であって前記定常巻き部が設けられた側とは異なる端部 側に設けられ、前記定常巻き部よりも粗く巻かれた粗巻き部と、力、ら成るとしてもよい。 発明の効果
[0022] 本発明に係るプローブカードによれば、検査用の信号を生成する回路構造に対応 する配線パターンを有する平板状の配線基板と、前記配線基板に積層され、前記配 線基板の配線を中継するインターポーザと、前記インターポーザに積層されて固着さ れ、前記インターポーザによって中継された配線の間隔を変換し、該配線を前記イン ターポーザに対向する側と反対側の表面へ表出するスペーストランスフォーマと、前 記スペーストランスフォーマに積層され、複数のプローブを収容保持するプローブへ ッドと、を備えたことにより、スペーストランスフォーマの剛性の向上を容易にかつ低コ ストで実現することができる。
図面の簡単な説明 [[00002233]] [[図図 11]]図図 11はは、、本本発発明明のの実実施施のの形形態態 11にに係係るるププロローーブブカカーードド要要部部のの構構成成をを示示すす分分解解斜斜 視視図図ででああるる。。
[[図図 22]]図図 22はは、、本本発発明明のの実実施施のの形形態態 11にに係係るるププロローーブブカカーードドのの構構成成をを示示すす図図ででああるる。。
[[図図 33]]図図 33はは、、図図 22のの AA—— AA線線断断面面図図ででああるる。。
[[図図 44]]図図 44はは、、本本発発明明のの実実施施のの形形態態 11にに係係るるププロローーブブカカーードドをを用用いいたた検検査査のの概概要要をを示示 すす図図ででああるる。。
[[図図 55]]図図 55はは、、イインンタターーポポーーザザおおよよびびトトラランンススフフォォーーママのの内内部部構構成成をを示示すすととととももにに両両者者 のの接接着着態態様様をを示示すす部部分分断断面面図図ででああるる。。
[[図図 66]]図図 66はは、、イインンタターーポポーーザザ周周辺辺ののププロローーブブカカーードドのの構構成成をを示示すす図図ででああるる。。
[[図図 77]]図図 77はは、、ププロローーブブおおよよびびププロローーブブヘヘッッドド要要部部のの構構成成をを示示すす拡拡大大部部分分断断面面図図ででああ
[[図図 88]]図図 88はは、、イインンタターーポポーーザザととススペペーースストトラランンススフフォォーーママととのの別別なな接接着着態態様様をを示示すす部部 分分断断面面図図ででああるる。。
[[図図 99]]図図 99はは、、本本発発明明のの実実施施のの形形態態 22にに係係るるププロローーブブカカーードドのの構構成成をを示示すす断断面面図図ででああ
[[図図 1100]]図図 1100はは、、本本発発明明のの実実施施のの形形態態 33にに係係るるププロローーブブカカーードドのの構構成成をを示示すす断断面面図図でで ああるる。。
[[図図 1111]]図図 1111はは、、従従来来ののププロローーブブカカーードドのの構構成成をを示示すす断断面面図図ででああるる。。
符符号号のの説説明明
[[00002244]] 11、、 66、、 77、、 88 ププロローーブブカカーードド
22、、 99 ププロローーブブ
33 ププロローーババ
44 ココネネククタタ座座
55 半半導導体体ウウェェハハ
1111、、 6611、、 8844 配配線線基基板板
1122、、 6622、、 8866 補補強強部部材材
1133、、 6633、、 7733、、 8833 イインンタターーポポーーザザ
Figure imgf000007_0001
、 81 プローブヘッド
p プローブ収容領域
保持部材
リーフスプリング
、 68 ポスト咅附
a, 68a 大径部
b, 68b 小径部
接着剤
、 85 才スコネクタ
、 22 針状部材
a, 22a 針状部
b、 22c ボス部
c 軸部
b フランジ部
ばね部材
a 粗巻き部
b 密着巻き部
レジス卜
プローブカードホノレダ
押え治具
メスコネクタ
ウェハチャック
、 1 12、 141、 142 電極ノ ッド
1、 133、 151、 621、 631、 731、 741 貫通孑し部1 外周部
2 中心部
3 連結部
4 凹部 131 ハウジング
132 接続端子
132a コイルばね部
132b, 132c 電極ピン部
132d 定常巻き部
132e 密着巻き部
132f 粗巻き部
151a 小径孔
151b 大径孔
171 爪部
201、 202 ねじ部材
w 酉己, fe
発明を実施するための最良の形態
[0025] 以下、添付図面を参照して本発明を実施するための最良の形態(以後、「実施の形 態」と称する)を説明する。なお、図面は模式的なものであり、各部分の厚みと幅との 関係、それぞれの部分の厚みの比率などは現実のものとは異なる場合もあることに留 意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が 含まれる場合があることは勿論である。
[0026] (実施の形態 1)
図 1は、本発明の実施の形態 1に係るプローブカード要部の構成を示す分解斜視 図である。また、図 2は、本実施の形態 1に係るプローブカードの構成を示す図である 。図 3は、図 2の A— A線断面図であり、図 1の上方を下面側とした図である。さらに、 図 4は、図 2の B— B線断面を配線の一部も含めて模式的に示すとともに、本実施の 形態 1に係るプローブカードを用いた検査の概要を示す図である。これらの図 1〜図 4に示すプローブカード 1は、複数のプローブ 2 (導電性接触子)を用いて検査対象 である半導体ウェハと検査用の信号を生成する回路構造を備えた検査装置とを電気 的に接続するものである。
[0027] プローブカード 1は円盤状をなし、検査装置との電気的な接続を図る配線基板 11と 、配線基板 11の一方の面に装着され、配線基板 11を補強する補強部材 12と、配線 基板 11からの配線を中継するインターポーザ 13と、インターポーザ 13に積層されて 固着され、インターポーザ 13によって中継された配線の間隔を変換するスペーストラ ンスフォーマ 14と、配線基板 11よりも径が小さい円盤状をなしてスペーストランスフォ 一マ 14に積層され、検査対象の半導体ウェハに対応して複数のプローブ 2を収容保 持するプローブヘッド 15と、を備える。また、プローブカード 1は、配線基板 11に固着 され、インターポーザ 13およびスペーストランスフォーマ 14を積層した状態で一括し て保持する保持部材 16と、保持部材 16に固着されてプローブへッド 15の端部を固 定するリーフスプリング 17と、配線基板 11の所定箇所に埋め込まれる複数のポスト部 材 18 (第 1のポスト部材)と、を備える。
[0028] 配線基板 11は、ベークライトやエポキシ樹脂等の絶縁性物質を用いて形成され、 複数のプローブと検査装置とを電気的に接続するための配線層がビアホール等によ つて立体的に形成されている。配線基板 11には、複数のポスト部材 18をそれぞれ埋 め込むための貫通孔部 1 11がポスト部材 18の数と同じ数だけ設けられている。なお 、図 3においては、本来平板状である配線基板 11が変形し、その配線基板 11の縦 断面が波打って!/、る状態を示して!/、る。
[0029] 図 4に示すように、配線基板 11に形成される配泉 wの一端は、検査装置(図示せず )との接続を行うために配線基板 11の表面であって補強部材 12が装着された側の 表面に配設された複数のォスコネクタ 20に接続される。これに対して、配線 wの他端 は、スペーストランスフォーマ 14を介してプローブヘッド 15で収容保持するプローブ 2に電気的に接続されている。
[0030] 各ォスコネクタ 20は、配線基板 11の中心に対して放射状に配設され、検査装置の コネクタ座 4で対向する位置に設けられるメスコネクタ 40の各々と対をなし、互!/、の端 子が接触することによってプローブ 2と検査装置との電気的な接続を確立する。ォス コネクタ 20とメスコネクタ 40とから構成されるコネクタとして、ォスコネクタを揷抜する 際に外力をほとんど必要とせず、コネクタ同士を結合した後に外力によって圧接力を 加えるゼロインサーシヨンフォース(ZIF)型コネクタを適用すること力 Sできる。この ZIF 型コネクタを適用すれば、プローブカード 1や検査装置は、プローブ 2の数が多くても 接続によるストレスをほとんど受けずに済み、電気的な接続を確実に得ることができる 上、プローブカード 1の耐久性を向上させることもできる。なお、配線基板 11にメスコ ネクタを配設する一方、コネクタ座 4にォスコネクタを配設してもよい。また、ォスコネク タの形状や配置位置は、必ずしも上述したものに限られるわけではない。
[0031] なお、上述したようにコネクタを用いることによってプローブカード 1と検査装置とを 接続する代わりに、スプリング作用のあるポゴピン等の端子を検査装置に設け、かか る端子を介してプローブカード 1を検査装置に接続する構成としてもよい。
[0032] 補強部材 12は、配線基板 11と略同径を有する円形の外周部 121と、外周部 121 のなす円と同じ中心を有し、インターポーザ 13の表面よりも若干表面積が大きい円 盤状をなす中心部 122と、中心部 122の外周方向から外周部 121に達するまで延出 し、外周部 121と中心部 122とを連結する複数の連結部 123 (図 1では 4個)とを備え る。また、補強部材 12の中心部 122には、ポスト部材 18の端部を載置する凹部 124 が複数個形成されている。この補強部材 12は、アルマイト仕上げを行ったアルミユウ ム、ステンレス、インバー材、コバール材(登録商標)、ジュラルミンなど剛性の高い材 料によって実現される。
[0033] インターポーザ 13およびスペーストランスフォーマ 14は、互いに略合同な正 8角形 の表面を有する薄板状をなしており、対向する表面が接着剤 19によって接着されて いる。図 5は、インターポーザ 13およびスペーストランスフォーマ 14の内部構成を示 すとともに、両部材の接着態様を示す部分断面図である。また、図 6は、図 5と同じ箇 所に配線基板 11を取り付けた後の状態を示す部分断面図である。これらの図に示 すように、インターポーザ 13は、母材をなすハウジング 131と、ハウジング 131に収容 保持される複数の接続端子 132とを備える。また、スペーストランスフォーマ 14は、母 材に対してピッチ幅を変換する配線 wと、配線 wの一端側に接続されて母材の表面 力、ら表出し、インターポーザ 13の接続端子 132と接触する電極パッド 141と、プロ一 ブヘッド 15と対向する側の表面に表出し、電極パッド 141のピッチ幅よりも狭いピッチ 幅を有する電極パッド 142とを備える(電極パッド 142については、以下で説明する 図 7を参照のこと)。
[0034] インターポーザ 13のハウジング 131は単一部材から成り、複数の接続端子 132を 個別に収容する複数の貫通孔部 133が形成されている。このため、ハウジング 131 は、機械加工が可能なマシナブルセラミックスから成る。インターポーザ 13とスペース トランスフォーマ 14とは、接着剤 19によって接着されて一体化しているため、貫通孔 部 133の開口面の一方はスペーストランスフォーマ 14によって塞がれることとなる。こ のため、貫通孔部 133は、図 5等に示すような単一径のストレート孔でよい。したがつ て、貫通孔部 133は、例えば 1種類のドリルを用いたドリル加工を行うだけで形成する ことができるので、製造が容易となり、製造期間の短縮とコストの低減を実現すること が可能となる。
[0035] インターポーザ 13の接続端子 132は、円筒形状をなすように導電性材料を巻回し て形成したコイルばね部 132aと、このコイルばね部 132aの両端から先細のテーパ 状に密着巻きされた一対の電極ピン部 132bおよび 132cとから成る。コイルばね部 1 32aは、定常巻き部 132dと、密着巻き部 132eと、定常巻き部 132dよりも比較的粗い ピッチで形成された粗巻き部 132fとを備える。このような構成を有する接続端子 132 によれば、圧縮変形したときにコイルばね部 132aに絡みが発生するのを防止するこ と力 Sできる。また、接続端子 132をコイル状のばね部材単体で構成しているため、部 品点数が少なくて済み、製造やメインテナンスに要するコストを低減することが可能と なる。さらに、電極ピン部 132bおよび 132cは先細りの形状をなし、電極パッド 141お よび 112にそれぞれ弹発的に接触しているため、電極ピン部 132bおよび 132cの突 出端の位置のばらつきを小さくすることができ、被接触体に対して均一にコンタクトす ること力 Sでさる。
[0036] 図 6に示す状態で、コイルばね部 132aは、定常巻き部 132dおよび粗巻き部 132f が橈んで略密着状態となり、接続端子 132の電極ピン部 132bの先端が配線基板 11 の電極パッド 112に接触する一方、接続端子 132の電極ピン部 132cの先端がスぺ 一ストランスフォーマ 14の電極パッド 141に接触する。これにより、配線基板 11とスぺ 一ストランスフォーマ 14との電気的な接続を中継している。
[0037] スペーストランスフォーマ 14は、アルミナ系セラミックスなどの絶縁性材料を母材とし 、ポリイミド多層配線によって形成される。ところで、アルミナ系セラミックスの熱膨張係 数(CTE)は、 7.2ppm/°C程度である。これに対して、インターポーザ 13のハウジン グ 131をなすマシナブルセラミックスの熱膨張係数は 1〜 1 Oppm/°C程度であり、素 材によって開きがある。本実施の形態 1においては、 CTEが 7〜7.5ppm/°C程度で あるマシナブルセラミックスを用いることによってスペーストランスフォーマ 14との熱膨 張係数の値の整合を図り、検査時に温度が低温(一 50°C)〜高温(200°C)と変化し てもバイメタル効果が発生せず、インターポーザ 13およびスペーストランスフォーマ 1 4の反りを抑制して平坦度を保つ構成として!/、る。
[0038] インターポーザ 13とスペーストランスフォーマ 14とを接着剤 19によって接着する際 には、スペーストランスフォーマ 14の表面において、電極パッド 141を除くようなパタ ーンで接着剤 19を一面に配置させる。この接着剤 19の配置は、接着剤 19が液体で ある場合には、刷毛塗り、ローラ塗り、スプレー噴霧、スピンナ等による塗布、または 接着剤への浸漬等によって行う。また、接着剤 19が半固形状または固形状の場合に は、適当な厚みのシート状に成形した後、溶剤や希釈剤等によって適当な濃度へ溶 解または分散させた後、上述した塗布や浸漬を行うことにより、接着剤 19を配置する
[0039] 接着剤 19としては、エポキシ樹脂、フエノール樹脂、尿素樹脂、メラミン樹脂、ポリエ ステル樹脂、シリコーン樹脂等の熱硬化性接着剤を使用することができる。また、接 着剤 19として、ポリ酢酸ビュル、ポリビュルアルコール、ポリ塩化ビュル、ニトロセル口 ース、ポリアクリル酸エステル等の熱可塑性接着剤を使用することもできる。加えて、 接着剤 19として、感圧性接着剤及び熱圧着性接着剤を使用することもできる。
[0040] さらに、接着剤 19として半田等のロウ材を用いてもよい。ロウ材が導電性を有してい る場合には、その表面に酸化被膜を形成して絶縁性を付与した後、接着剤 19として 使用する。ロウ材の融点は、使用時の最高温度である 200°Cより高くなければならな い一方で、ロウになる金属の融点が高すぎると、ロウ付けした後で常温に戻したとき ひずみが生じたりする。これらの点をふまえ、接着剤 19として適用するロウ材の融点 は、 200°Cより高ぐかつなるベく低い方が好ましい。
[0041] インターポーザ 13とスペーストランスフォーマ 14とを接着する際には、まずインター ポーザ 13および/またはスペーストランスフォーマ 14の固着面に接着剤 19を上述し たレヽずれかの方法によって配置して半硬化状態とする。この半硬化状態では接着力 がほとんど発現していない上、貫通孔部 133や電極パッド 141へ接着剤 19が流入す る恐れはない。このため、例えばインターポーザ 13の固着面に接着剤 19を配置して 半硬化状態としてから貫通孔部 133を形成することも可能である。
[0042] その後、インターポーザ 13とスペーストランスフォーマ 14を積層した後、接着剤 19 を本硬化させることにより、インターポーザ 13とスペーストランスフォーマ 14とが完全 に接着されて一体化する。この際、接着剤 19が熱硬化性接着剤である場合には、所 定温度に加熱するか、または加熱に加えてさらに加圧することによって本硬化させる 。これに対し、接着剤 19が感圧性接着剤の場合には、所定の圧力で加圧することに よって本硬化させる。
[0043] なお、電極パッド 141を除いたパターンをなすように薄膜状の両面テープを作り、そ の両面テープをスペーストランスフォーマ 14の表面に貼り付けた後、インターポーザ 13とスペーストランスフォーマ 14を積層することによって接着するようにしてもよい。
[0044] 上記の如くインターポーザ 13とスペーストランスフォーマ 14とを接着することにより、 両部材を積層しただけの場合と比較して、全体としての剛性を向上させることができ、 スペーストランスフォーマ 14の平坦度を向上させることができる。これにより、スペース トランスフォーマ 14に積層されたプローブヘッド 15の平坦度も向上し、プローブへッ ド 15が収容保持するプローブ 2の先端の平坦度も向上するため、半導体ウェハ 5へ のプローブ 2のコンタクトの精度が上がる。その結果、スペーストランスフォーマ 14に ダミーの配線層を形成するなどして板厚を厚くしなくてもよいため、製造期間を短縮し 、製造コストを抑えることが可能となる。
[0045] 引き続き、プローブカード 1の構成を説明する。プローブヘッド 15は、円盤形状をな し、図 2に示すプローブ収容領域 15pにおいて複数のプローブを図 2で紙面垂直に 突出するように収容保持している。図 7は、プローブヘッド 15要部の構成およびプロ ーブヘッド 15が収容するプローブ 2の詳細な構成を示す拡大部分断面図である。
[0046] プローブ 2は、スペーストランスフォーマ 14と接触する針状部材 21と、この針状部材 21と相反する向きに突出し、半導体ウェハ 5の電極パッド 51に接触する針状部材 22 と、針状部材 21と針状部材 22との間に設けられて二つの針状部材 21および 22を伸 縮自在に連結するばね部材 23とを備える。互いに連結される針状部材 21および 22 、ならびにばね部材 23は同一の軸線を有している。プローブ 2のプローブヘッド 15に おける配列パターンは、検査対象である半導体ウェハ 5の電極パッド 51の配置パタ ーンに応じて定められる。
[0047] 針状部材 21は、先端方向に突出した先鋭端を有する針状部 21aと、針状部 21aの 先鋭端と反対側の基端部に設けられ、針状部 21aの径よりも小さい径を有するボス部 21bと、ボス部 21bの針状部 21aが接する側と反対側の表面から延出する軸部 21cと を備え、長手方向に軸対称な形状をなしている。これに対して針状部材 22は、先端 方向に突出した先鋭端を有する針状部 22aと、針状部 22aの先鋭端と反対側の基端 部に設けられ、針状部 22aの径よりも大きい径を有するフランジ部 22bと、フランジ部 22bの針状部 22aが接する側と反対側の表面から突出し、フランジ部 22bの径よりも 小さい径を有するボス部 22cとを備え、長手方向に軸対称な形状をなしている。
[0048] ばね部材 23は、針状部材 21側が粗巻き部 23aである一方、針状部材 22側が密着 巻き部 23bであり、粗巻き部 23aの端部は針状部材 21のボス部 21bに巻き付けられ 、密着巻き部 23bの端部は針状部材 22のボス部 22cに巻き付けられている。粗巻き 部 23aとボス部 21bとの間および密着巻き部 23bとボス部 22cとの間は、ばねの巻き 付き力および/または半田付けによってそれぞれ接合されている。
[0049] 以上の構成を有するプローブ 2は、ばね部材 23を備えることによって針状部材 21 および 22が図 7で上下方向に弹発的に移動可能である。針状部材 21を電極パッド 1 41に接触させた状態すなわち図 7に示す状態で、密着巻き部 23bの少なくとも一部 は針状部材 21の軸部 21cに接触している。換言すれば、密着巻き部 23bの軸線方 向の長さは、上述した図 7に示す状態を実現可能な長さに設定される。ばね部材 23 の内径は、ボス部 21bやボス部 22cの外径よりも若干大きい。これにより、ばね部材 2 3の伸縮動作を円滑に行わせることができる。
[0050] プローブヘッド 15は、セラミックス等の絶縁性材料を用いて形成され、半導体ウェハ 5の配列に応じてプローブ 2を収容するための貫通孔部 151が板厚方向(図 7の鉛直 方向)に形成されている。貫通孔部 151は、半導体ウェハ 5側(図 7の鉛直下側)の端 面から、少なくとも針状部 22aの長手方向の長さよりも小さい所定の長さに渡って形 成された小径孔 151aと、この小径孔 151aと同じ中心軸を有し、小径孔 151aよりも径 が大きい大径孔 151bとを有する。また、図 7からも明らかなように、小径孔 151aの内 径は、針状部材 22の針状部 22aの外径よりも若干大きくフランジ部 22bの外径よりも 若干小さい。このように、貫通孔部 151が段付き孔状をなすことによってプローブ 2 ( の針状部材 22)を抜け止めしている。
[0051] なお、プローブヘッド 15を、図 7の鉛直方向に沿って上下二つの部分に分割して構 成してもよい。この場合には、ねじ部材と位置決めピンを用いて二つの部分を締結す る力 プローブ 2の初期荷重で下側の板が膨らんでしまうのを防ぐため、下側に来る 部分の厚みが上側に来る部分の厚みより厚くなるように設定するのが好ましい。この ようにプローブヘッド 15を分割して構成することにより、プローブ 2を容易に交換する ことが可能となる。
[0052] ところで、図 7では記載していないが、プローブヘッド 15が収容保持するプローブ 2 の中には、グランド用のプローブや、電力供給用のプローブも含まれている。このた め、プローブ 2に接続される配線 wの中には、グランド層や電源層に接続されるものも ある。
[0053] 保持部材 16は、補強部材 12と同様の材料によって構成され、インターポーザ 13と スペーストランスフォーマ 14を積層して保持可能な正八角柱形状の中空部を有する 。この保持部材 16は、接着剤 19によって一体化されたインターポーザ 13およびスぺ 一ストランスフォーマ 14を配線基板 11に対して押し付けて保持することにより、配線 基板 11とスペーストランスフォーマ 14とがインターポーザ 13を介して電気的に接続 するために必要な圧力を加えている。
[0054] リーフスプリング 17は、リン青銅、ステンレス(SUS)、ベリリウム銅などの弾性のある 材料から形成され、薄肉の円環状をなす。リーフスプリング 17の内周には、インター ポーザ 13、スペーストランスフォーマ 14、およびプローブヘッド 15を保持するための 押え用部材としての爪部 171が全周に渡って一様に設けられている。かかる爪部 17 1は、プローブへッド 15表面の縁端部近傍を全周に渡って配線基板 11の方向へ均 等に押さえ付けている。したがって、プローブヘッド 15で収容するプローブ 2には略 均一な初期荷重が発生し、プローブヘッド 15の反りを防止することができる。
[0055] ポスト部材 18は、配線基板 11の板厚よりも若干大きい高さを有する円筒形状の大 径部 18aと、この大径部 18aよりも小さい径を有し、大径部 18aと同じ中心軸を有する 円筒形状の小径部 18bとを備える。小径部 18bは、補強部材 12の凹部 124に嵌入 可能である。このため、小径部 18bの径は、凹部 124の径とほぼ等しぐ小径部 18b の高さは、凹部 124の深さとほぼ等しい。ポスト部材 18は、補強部材 12と同様の材 料によって構成することができる力 S、高い加工精度が要求される点に鑑みてステンレ スが好適である。図 1に示すように、ポスト部材 18は、インターポーザ 13の表面がな す正 8角形の中心に対して対称に配置されている。このようにして複数のポスト部材 1 8を配線基板 11に埋め込むことにより、配線基板 11部分の板厚方向の幅をポスト部 材 18の高さによって規定することができるので、配線基板 11に反り、波打ち、または 凹凸等の変形が生じても(図 3を参照)、その影響を受けることなぐプローブヘッド 15 の平行度、平面度の各精度を向上させることが可能となる。
[0056] なお、プローブカード 1を組み立てる際、配線基板 11、補強部材 12、インターポー ザ 13、スペーストランスフォーマ 14、プローブヘッド 15、保持部材 16を順次積層して いくときには、所定の位置決めピンを用いて相互の位置決めを行うようにすればより 好ましい。
[0057] 次に、以上の構成を有するプローブカード 1を用いた半導体ウェハ 5の検査の概要 を、図 4および図 7を参照して説明する。図 4に示すように、プローブカード 1は、検査 の際に、プローブ 2と半導体ウェハ 5とをコンタクトさせる装置であるプローバ 3に装着 されて固定される。このプローバ 3は、配線基板 11の底面を載置して保持するプロ一 ブカードホルダ 31と、プローブカードホルダ 31の上方に位置し、プローブカード 1を 下方へ押え付けて固定する押え治具 32とを備える。
[0058] プローブ 2と半導体ウェハ 5とのコンタクトは、半導体ウェハ 5を載置するウェハチヤッ ク 50を所定の駆動手段によって上昇させることによって実現する。この際、半導体ゥ ェハ 5の電極パッド 51とプローブ 2の針状部材 22の針状部 22aの先端とが適確にコ ンタクトするためには、コンタクトによってストロークした後のプローブ 2の先端高さ hが プローブカードホルダ 31の厚さ dよりも大きい(h〉d)ことが必要である。なお、図 4で は、プローブヘッド 15の右端部で保持されている一群のプローブ 2 (4本)により、半 導体ウェハ 5とコンタクトしたときのプローブ 2の先端位置を模式的に示している(図 4 では、半導体ウェハ 5とのコンタクトによるプローブ 2のストローク量を Δ ΐιとしている)。
[0059] 図 7に示す状態からウェハチャック 50を上昇させることによって半導体ウェハ 5の電 極パッド 51を針状部材 22の針状部 22aの先端部に接触させると、針状部材 22は上 昇し、ばね部材 23は圧縮され、さらに湾曲して蛇行するようになる。この際、密着巻き 部 23bの内周部の一部は針状部材 21の軸部 21cに接触した状態を保持するため、 密着巻き部 23bにはプローブ 2の軸線方向に沿った直線的な電気信号が流れる。し たがって、粗巻き部 23aにコイル状に電気信号が流れることがなぐプローブ 2のイン ダクタンスの増加を抑えることができる。
[0060] 以上説明した本発明の実施の形態 1に係るプローブカードによれば、検査用の信 号を生成する回路構造に対応する配線パターンを有する平板状の配線基板と、前 記配線基板に積層され、前記配線基板の配線を中継するインターポーザと、前記ィ ンターポーザに積層されて固着され、前記インターポーザによって中継された配線の 間隔を変換し、該配線を前記インターポーザに対向する側と反対側の表面へ表出す るスペーストランスフォーマと、前記スペーストランスフォーマに積層され、複数のプロ ーブを収容保持するプローブヘッドと、を備えたことにより、スペーストランスフォーマ の剛性の向上を容易にかつ低コストで実現することができる。
[0061] また、本実施の形態 1によれば、インターポーザとスペーストランスフォーマとを固着 して一体化したことにより、スペーストランスフォーマの板厚を必要以上に厚くする必 要がなぐインターポーザの板厚を厚くすることも可能となる。加えて、インターポーザ で接続端子を揷通するための貫通孔部もストレート孔でよい。したがって、プローブ力 ードの製造コストを低減すること力 Sできる。また、プローブカードの製造に要する日数 を短縮することもできるため、顧客の要望に対して迅速に対応することが可能となる。
[0062] さらに、本実施の形態 1によれば、平面度および平行度の各精度の向上に伴って プローブの先端位置の精度も向上するため、プローブ間の先端の高さ方向の位置の バラツキを抑え、全てのプローブのストロークをほぼ一定とすることができ、安定した 接触抵抗を得ることができる。加えて、全てのプローブのストロークをほぼ一定とする ことにより、特定のプローブに対して必要以上の荷重を加えてしまうこともなくなる。し たがって、半導体ウェハの電極パッドを過度に傷つけずに済み、ダイとパッケージと の接続工程 (ワイヤーボンディング等)における歩留まりの悪化や、電極パッドに接続 された配線の破壊等を防止することができる。
[0063] なお、インターポーザ 13とスペーストランスフォーマ 14との接着方法は上述したも のに限られるわけではない。例えば、図 8に示すように、インターポーザ 13の貫通孔 部 133およびスペーストランスフォーマ 14の電極パッド 141を各々包囲するようにレ ジスト 24を均一に設けてもよい。この場合には、所定の厚さのレジスト 24を固着面に 塗布(形成)した後、マスキングを施すことによって所定のパターンとなるように露光す る。続いて、露光によってレジスト 24が除去された部分に接着剤 19を配置する。この 結果、レジスト 24が壁となり、接着剤 19が貫通孔部 133や電極パッド 141を含む箇 所すなわちインターポーザ 13とスペーストランスフォーマ 14の電気的な接続を行う箇 所に流入してしまうのを防止する機能を果たす。なお、ここで説明した接着方法につ いては、例えば特開 2000— 91391号公報においてさらに詳細な内容が開示されて いる。
[0064] (実施の形態 2)
図 9は、本発明の実施の形態 2に係るプローブカードの構成を示す図であり、上記 実施の形態 1の説明の際に参照した図 3に対応する図である。図 9に示すプローブ力 ード 6は、円盤状をなして検査装置との電気的な接続を図る配線基板 61と、配線基 板 61の一方の面に装着され、配線基板 61を補強する補強部材 62と、配線基板 61 力もの配線を中継するインターポーザ 63と、を備える。また、プローブカード 6は、上 記実施の形態 1に係るプローブカード 1が備えるのとそれぞれ同じ構成を有するスぺ 一ストランスフォーマ 14、プローブヘッド 15、保持部材 16、およびリーフスプリング 17 を備えており、配線基板 61には複数のポスト部材 18が埋め込まれている。
[0065] インターポーザ 63とスペーストランスフォーマ 14は、接着剤 19によって接着されて 一体化している。これに加えて、プローブカード 6には、 1本のねじ部材 201 (第 2の ねじ部材)が、補強部材 62の表面(図 9で上面)からインターポーザ 63に至る板厚方 向に揷通されている。配線基板 61には、ねじ部材 201を揷通可能な中空部を有する ポスト部材 68 (第 2のポスト部材)が配線基板 61の中心部に埋め込まれている。この ポスト部材 68は、配線基板 61の板厚よりも若干大きい板厚を有する中空円筒形状の 大径部 68aと、大径部 68aよりも小さい径を有し、大径部 68aと同じ中心軸を有する 中空円筒形状の小径部 68bとを備える。
[0066] 補強部材 62およびインターポーザ 63には、ねじ部材 201を揷通するため、両部材 を組み付けたときに厚さ方向に同軸的に連通する貫通孔部 621および 631がそれぞ れ設けられている。これらの貫通孔部 621および 631の内側面には、ねじ部材 201を 螺着可能なねじ山が適宜設けられて!/、る (図示せず)。
[0067] 以上説明した本発明の実施の形態 2に係るプローブカードによれば、実施の形態 1 と同様に、スペーストランスフォーマの剛性の向上を容易にかつ低コストで実現するこ と力 Sできる。
[0068] なお、ねじ部材 201の本数や配置場所は、必ずしも上述したものに限られるわけで はなぐプローブカードに要求される剛性や、配線基板、インターポーザ、スペースト ランスフォーマ等の板厚や表面積等の条件によって適宜定めればよい。
[0069] (実施の形態 3)
図 10は、本発明の実施の形態 3に係るプローブカードの構成を示す図であり、上 記実施の形態 1の説明の際に参照した図 3に対応する図である。図 10に示すプロ一 ブカード 7は、上記実施の形態 1に係るプローブカード 1が備えるのと同じ構成を有す る配線基板 11、補強部材 12、プローブヘッド 15、保持部材 16、およびリーフスプリ ング 17を備えており、配線基板 11には複数のポスト部材 18が埋め込まれている。
[0070] また、プローブカード 7は、配線基板 11からの配線を中継するインターポーザ 73と 、インターポーザ 73によって変換された配線の間隔を変換するスペーストランスフォ 一マ 74とを備える。インターポーザ 73とスペーストランスフォーマ 74は、複数のねじ 部材 202 (第 1のねじ部材)によって締結されて一体化している。このために、インタ 一ポーザ 73およびスペーストランスフォーマ 74には、両部材を組み付けたときに厚さ 方向に同軸的に連通する貫通孔部 731および 741が所定の位置にそれぞれ形成さ れており、これらの貫通孔部 731および 741の各内側面には、ねじ部材 202を螺着 可能なねじ山が適宜設けられて!/、る (図示せず)。
[0071] なお、図 10ではインターポーザ 73力、らスペーストランスフォーマ 74へ向けてねじ部 材 202を揷通して両部材を締結した場合を示している力 S、これとは反対に、スペース トランスフォーマ 74からインターポーザ 73へ向けてねじ部材 202を揷通するような構 成としてあよい。
[0072] 以上説明した本発明の実施の形態 3に係るプローブカードによれば、上述した 2つ の実施の形態と同様の効果を得ることができる。
[0073] なお、本実施の形態 3において、インターポーザ 73とスペーストランスフォーマ 74と の間にさらに接着剤 19を配置することによってより強固な両部材の一体化を図ること も可能である。
[0074] (その他の実施の形態)
ここまで、本発明を実施するための最良の形態として、実施の形態;!〜 3を詳述して きた力 S、本発明は上述した 3つの実施の形態によってのみ限定されるべきものではな い。例えば、スペーストランスフォーマをガラスエポキシ基板によって構成し、インター ポーザと接着して一体化してもよい。この場合、ガラスエポキシ基板の熱膨張係数は 12〜15ppm/°Cであり、インターポーザを構成するマシナブルセラミックスの熱膨張 係数(1〜; 10ppm/°C)よりも顕著に大きい。し力もながら、ヤング率に代表される剛 性という観点で見た場合、マシナブルセラミックスの剛性(ヤング率 = 65GPa程度)は 、ガラスエポキシの剛性(ヤング率 = 25GPa程度)よりも十分に大きいので、両部材 が一体化された場合の剛性はマシナブルセラミックスの剛性にほぼ依存することとな る。したがって、この場合には、ガラスエポキシ基板の板厚をできるだけ薄くする一方 、マシナブルセラミックスの板厚を厚くすることにより、マシナブルセラミックスへの剛 性の依存度を高めればより好まし!/、。
[0075] また、インターポーザ、スペーストランスフォーマ、およびプローブヘッドの各形状は 、上述したものに限られるわけではない。例えば、インターポーザやスペーストランス フォーマの各表面形状を円形としてもよい。この場合には、 FWLT用のプローブカー ドとしては最も対称性が高くなるため、プローブカードの平面度や平行度を最優先す る場合に好適である。他にも、インターポーザやスペーストランスフォーマの各表面を 適当な正多角形とし、プローブヘッドをその正多角形に相似な正多角形としてもよい
[0076] さらに、本発明に係るプローブカードに適用されるプローブは、従来知られているさ まざまな種類のプローブのいずれかを適用することが可能である。
[0077] このように、本発明は、ここでは記載していないさまざまな実施の形態等を含みうる ものであり、特許請求の範囲により特定される技術的思想を逸脱しない範囲内にお V、て種々の設計変更等を施すことが可能である。
産業上の利用可能性
[0078] 以上のように、本発明に係るプローブカードは、半導体ウェハの電気特性検査に有 用であり、特に、 FWLTに好適である。

Claims

請求の範囲
[1] 検査対象である半導体ウェハと検査用の信号を生成する回路構造との間を電気的 に接続する複数のプローブを収容するプローブカードであって、
前記回路構造に対応する配線パターンを有する平板状の配線基板と、 前記配線基板に積層され、前記配線基板の配線を中継するインターポーザと、 前記インターポーザに積層されて固着され、前記インターポーザによって中継され た配線の間隔を変換し、該配線を前記インターポーザに対向する側と反対側の表面 へ表出するスペーストランスフォーマと、
前記スペーストランスフォーマに積層され、前記複数のプローブを収容保持するプ を備えたことを特徴とするプローブカード。
[2] 前記インターポーザと前記スペーストランスフォーマとは、積層状態で接着剤によつ て接着されたことを特徴とする請求項 1記載のプローブカード。
[3] 前記接着剤は、前記インターポーザと前記スペーストランスフォーマとが互いに対 向する表面において、前記インターポーザと前記スペーストランスフォーマとの電気 的な接続を行う箇所を除いて配設されたことを特徴とする請求項 2記載のプローブ力 ード。
[4] 前記インターポーザと前記スペーストランスフォーマとが互いに対向する表面にお
V、て、前記インターポーザと前記スペーストランスフォーマとの電気的な接続を行う箇 所を包囲するレジストを設けたことを特徴とする請求項 3記載のプローブカード。
[5] 前記接着剤は、シート状をなすことを特徴とする請求項 2〜4のいずれか一項記載 のプローブカード。
[6] 前記インターポーザと前記スペーストランスフォーマとは、積層状態で第 1のねじ部 材を用いて締結されたことを特徴とする請求項 1記載のプローブカード。
[7] 前記配線基板の表面であって前記インターポーザが積層された部分の表面から前 記配線基板を貫通するように埋め込まれ、前記配線基板の板厚よりも大きい高さを有 する複数の第 1のポスト部材をさらに備えたことを特徴とする請求項 1記載のプローブ カード。
[8] 前記第 1のポスト部材と同じ高さを有し、この高さ方向を貫通する中空部が設けられ て成り、前記配線基板の中央部に前記配線基板を貫通するように埋め込まれた第 2 のポスト部材と、
前記第 2のポスト部材に設けられた前記中空部に揷通され、前記配線基板と前記ィ ンターポーザとを締結する第 2のねじ部材と、
をさらに備えたことを特徴とする請求項 7記載のプローブカード。
[9] 前記インターポーザは、
導電性材料から成り、軸線方向に伸縮自在な複数の接続端子と、
絶縁性材料から成り、前記複数の接続端子を個別に収容する複数の貫通孔部が 形成されたハウジングと、
を有することを特徴とする請求項 1記載のプローブカード。
[10] 前記接続端子はコイル状をなし、
前記軸線方向の両端側に向けて先細となるように各々密着巻きされた一対の電極 ピン部と、
前記一対の電極ピン部の間に介在して前記一対の電極ピン部を連結するコイルば ね部と、
を有することを特徴とする請求項 9記載のプローブカード。
[11] 前記コイルばね部は、
当該接続端子の軸線方向の中間に設けられた密着巻き部と、
前記密着巻き部の一端側に設けられた定常巻き部と、
前記密着巻き部の一端側であって前記定常巻き部が設けられた側とは異なる端部 側に設けられ、前記定常巻き部よりも粗く巻かれた粗巻き部と、
力も成ることを特徴とする請求項 10記載のプローブカード。
PCT/JP2007/061317 2006-06-08 2007-06-04 プローブカード WO2007142204A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200780021141XA CN101467051B (zh) 2006-06-08 2007-06-04 探针卡
JP2008520569A JP5426161B2 (ja) 2006-06-08 2007-06-04 プローブカード
US12/308,110 US7898272B2 (en) 2006-06-08 2007-06-04 Probe card
EP07815064A EP2026078A4 (en) 2006-06-08 2007-06-04 PROBE CARD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-159679 2006-06-08
JP2006159679 2006-06-08

Publications (1)

Publication Number Publication Date
WO2007142204A1 true WO2007142204A1 (ja) 2007-12-13

Family

ID=38801455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061317 WO2007142204A1 (ja) 2006-06-08 2007-06-04 プローブカード

Country Status (7)

Country Link
US (1) US7898272B2 (ja)
EP (1) EP2026078A4 (ja)
JP (1) JP5426161B2 (ja)
KR (1) KR101025895B1 (ja)
CN (1) CN101467051B (ja)
TW (1) TW200804831A (ja)
WO (1) WO2007142204A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032519A (ja) * 2008-07-26 2010-02-12 Feinmetall Gmbh 電気被検体の検査のための電気検査装置並びに電気検査方法
WO2010027075A1 (ja) * 2008-09-05 2010-03-11 日本発條株式会社 配線基板およびプローブカード
JP2010164490A (ja) * 2009-01-16 2010-07-29 Micronics Japan Co Ltd 集積回路の試験装置
JP2010266403A (ja) * 2009-05-18 2010-11-25 Micronics Japan Co Ltd 検査装置
JP2011159826A (ja) * 2010-02-01 2011-08-18 Nhk Spring Co Ltd マシナブルセラミックス回路基板及びその製造方法
US8378705B2 (en) 2008-02-29 2013-02-19 Nhk Spring Co., Ltd. Wiring substrate and probe card
TWI391673B (zh) * 2009-05-26 2013-04-01 Alternative probe devices and probe cards for their applications
WO2013108759A1 (ja) * 2012-01-18 2013-07-25 日本発條株式会社 スペーストランスフォーマおよびプローブカード
JP2014074716A (ja) * 2012-10-03 2014-04-24 Corrado Technology Inc プローブカード用ファインピッチインターフェース
JP2016180749A (ja) * 2015-02-26 2016-10-13 スター テクノロジーズ インコーポレイテッドStar Technologies Inc. 検査アセンブリおよびその製造方法
KR20160130464A (ko) * 2014-03-06 2016-11-11 테크노프로브 에스.피.에이. 특히 극한 온도의 적용을 위한, 전기 소자의 테스트 기기용 프로브 카드
KR20160130448A (ko) * 2014-03-06 2016-11-11 테크노프로브 에스.피.에이. 전기 소자를 위한 테스트 기기용 고-평면성 프로브 카드

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979214B2 (ja) * 2005-08-31 2012-07-18 日本発條株式会社 プローブカード
JP5289771B2 (ja) * 2005-12-05 2013-09-11 日本発條株式会社 プローブカード
US7884627B2 (en) * 2006-12-29 2011-02-08 Formfactor, Inc. Stiffener assembly for use with testing devices
JP5426365B2 (ja) * 2007-03-14 2014-02-26 日本発條株式会社 プローブカード
WO2010038433A1 (ja) * 2008-09-30 2010-04-08 ローム株式会社 プローブカードの製造方法、プローブカード、半導体装置の製造方法およびプローブの形成方法
JP2011043377A (ja) * 2009-08-20 2011-03-03 Tokyo Electron Ltd 検査用接触構造体
KR101108726B1 (ko) * 2010-01-26 2012-02-29 삼성전기주식회사 수평도 조절부재
US20120038383A1 (en) * 2010-08-13 2012-02-16 Chien-Chou Wu Direct-docking probing device
TWI409465B (zh) * 2010-12-09 2013-09-21 Mpi Corp 增強板、增強板的製造方法與使用增強板的空間轉換器
CN102147442B (zh) * 2011-01-14 2014-02-26 富泰华工业(深圳)有限公司 连接器检测治具
US8550825B2 (en) * 2011-04-05 2013-10-08 Tyco Electronics Corporation Electrical interconnect device
KR101270591B1 (ko) * 2011-06-02 2013-06-03 (주)기가레인 프로브 카드
US9891273B2 (en) * 2011-06-29 2018-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Test structures and testing methods for semiconductor devices
CN102914673B (zh) 2011-08-03 2015-09-30 旺矽科技股份有限公司 探针测试装置
TWI428608B (zh) * 2011-09-16 2014-03-01 Mpi Corp 探針測試裝置與其製造方法
KR101286250B1 (ko) * 2011-11-23 2013-07-12 양 전자시스템 주식회사 다수의 헤드 유니트를 갖는 어레이 테스트 장치
JP2013190270A (ja) * 2012-03-13 2013-09-26 Nidec-Read Corp プローブ及び接続治具
CN102539852B (zh) * 2012-03-14 2015-07-29 中南大学 一种用于晶圆级封装芯片自动检测的测试头及其实现方法
EP2677326A1 (de) * 2012-06-18 2013-12-25 Multitest elektronische Systeme GmbH Vorrichtung zum Prüfen von elektronischen Bauteilelementen
US20150272459A1 (en) * 2012-07-18 2015-10-01 Neurotopia, Inc. Sensor probe assembly
DE102013008324A1 (de) * 2013-05-08 2014-11-13 Feinmetall Gmbh Elektrische Kontaktiervorrichtung
TWI503554B (zh) * 2013-06-04 2015-10-11 Mpi Corp 探針卡與其之製作方法
CN103399225A (zh) * 2013-07-26 2013-11-20 华进半导体封装先导技术研发中心有限公司 包含转接板的测试结构
US9678109B2 (en) * 2014-01-09 2017-06-13 Taiwan Semiconductor Manufacturing Co., Ltd. Probe card
US9709599B2 (en) * 2014-01-09 2017-07-18 Taiwan Semiconductor Manufacturing Co., Ltd. Membrane probe card
US10247756B2 (en) * 2014-05-20 2019-04-02 Hermes-Epitek Corp. Probe card structure
DE202015001622U1 (de) 2015-03-03 2015-03-17 Feinmetall Gmbh Elektrische Kontaktvorrichtung
CN104614591A (zh) * 2015-03-04 2015-05-13 无锡韩光电器股份有限公司 自动转换开关回路电阻测试仪
CN105136010B (zh) * 2015-09-09 2018-01-05 海安迪斯凯瑞探测仪器有限公司 一种涂层测厚仪便捷切换探头装置
CN206096201U (zh) * 2016-07-21 2017-04-12 梁永焯 用于半导体晶圆测试的系统、切线探针卡及其探头组件
CN106932615B (zh) * 2017-04-28 2024-02-13 尼得科精密检测设备(浙江)有限公司 检查夹具及具备该检查夹具的检查装置
IT201700100522A1 (it) * 2017-09-07 2019-03-07 Technoprobe Spa Elemento di interfaccia per un’apparecchiatura di test di dispositivi elettronici e relativo metodo di fabbricazione
EP3704496A4 (en) * 2017-10-31 2021-08-11 FormFactor, Inc. MEMS PROBE CARD ASSEMBLY HAVING DECOUPLED ELECTRICAL AND MECHANICAL PROBE CONNECTIONS
JP7209938B2 (ja) * 2018-02-27 2023-01-23 株式会社東京精密 プローバ
CN110531125B (zh) * 2018-05-23 2022-05-17 旺矽科技股份有限公司 空间转换器、探针卡及其制造方法
KR102581387B1 (ko) * 2018-09-11 2023-09-21 삼성전자주식회사 프로브 및 이를 포함하는 프로브 카드
JP7206140B2 (ja) * 2019-03-22 2023-01-17 株式会社ヨコオ 検査装置
CN111366839B (zh) * 2020-03-28 2022-04-12 深圳中科系统集成技术有限公司 一种晶圆测试用探针转接板及其制作方法
US11943886B2 (en) * 2020-11-11 2024-03-26 Te Connectivity Solutions Gmbh Electronic assembly including a compression assembly for cable connector modules
US11950378B2 (en) * 2021-08-13 2024-04-02 Harbor Electronics, Inc. Via bond attachment
CN117250383B (zh) * 2023-11-20 2024-02-02 安盈半导体技术(常州)有限公司 一种探针卡插接结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293934A (ja) 1987-05-27 1988-11-30 Hitachi Ltd 半導体素子検査装置
JPH09199552A (ja) * 1996-01-23 1997-07-31 Aging Tesuta Kaihatsu Kyodo Kumiai 微細構造の接触部を有する回路素子のための測定用プローバ
JPH1019926A (ja) * 1996-06-28 1998-01-23 Nhk Spring Co Ltd 導電性接触子
JP2000091391A (ja) * 1998-09-11 2000-03-31 Nhk Spring Co Ltd コンタクトプローブユニット及びその製造方法
US20050042932A1 (en) 1999-07-28 2005-02-24 Sammy Mok Construction structures and manufacturing processes for integrated circuit wafer probe card assemblies
JP2005164600A (ja) * 2000-03-17 2005-06-23 Formfactor Inc 半導体接触器を平坦化するための方法と装置
US20050275418A1 (en) 2000-05-23 2005-12-15 Chong Fu C High density interconnect system having rapid fabrication cycle
EP1959260A1 (en) 2005-12-05 2008-08-20 NHK Spring Company Limited Probe card

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567432A (en) * 1983-06-09 1986-01-28 Texas Instruments Incorporated Apparatus for testing integrated circuits
US5371654A (en) * 1992-10-19 1994-12-06 International Business Machines Corporation Three dimensional high performance interconnection package
US5974662A (en) * 1993-11-16 1999-11-02 Formfactor, Inc. Method of planarizing tips of probe elements of a probe card assembly
WO1996015551A1 (en) 1994-11-15 1996-05-23 Formfactor, Inc. Mounting electronic components to a circuit board
US6218910B1 (en) * 1999-02-25 2001-04-17 Formfactor, Inc. High bandwidth passive integrated circuit tester probe card assembly
US6917525B2 (en) * 2001-11-27 2005-07-12 Nanonexus, Inc. Construction structures and manufacturing processes for probe card assemblies and packages having wafer level springs
US6509751B1 (en) 2000-03-17 2003-01-21 Formfactor, Inc. Planarizer for a semiconductor contactor
US6911835B2 (en) * 2002-05-08 2005-06-28 Formfactor, Inc. High performance probe system
JP2004138452A (ja) * 2002-10-16 2004-05-13 Japan Electronic Materials Corp プローブカード
US6924654B2 (en) * 2003-03-12 2005-08-02 Celerity Research, Inc. Structures for testing circuits and methods for fabricating the structures
JP2005010052A (ja) 2003-06-19 2005-01-13 Japan Electronic Materials Corp プローブカード
WO2006017078A2 (en) * 2004-07-07 2006-02-16 Cascade Microtech, Inc. Probe head having a membrane suspended probe
US7071715B2 (en) 2004-01-16 2006-07-04 Formfactor, Inc. Probe card configuration for low mechanical flexural strength electrical routing substrates
TWI378245B (en) 2004-02-02 2012-12-01 Formfactor Inc Probe card configuration for low mechanical flexural strength electrical routing substrates
JP4979214B2 (ja) * 2005-08-31 2012-07-18 日本発條株式会社 プローブカード

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293934A (ja) 1987-05-27 1988-11-30 Hitachi Ltd 半導体素子検査装置
JPH09199552A (ja) * 1996-01-23 1997-07-31 Aging Tesuta Kaihatsu Kyodo Kumiai 微細構造の接触部を有する回路素子のための測定用プローバ
JPH1019926A (ja) * 1996-06-28 1998-01-23 Nhk Spring Co Ltd 導電性接触子
JP2000091391A (ja) * 1998-09-11 2000-03-31 Nhk Spring Co Ltd コンタクトプローブユニット及びその製造方法
US20050042932A1 (en) 1999-07-28 2005-02-24 Sammy Mok Construction structures and manufacturing processes for integrated circuit wafer probe card assemblies
JP2005164600A (ja) * 2000-03-17 2005-06-23 Formfactor Inc 半導体接触器を平坦化するための方法と装置
US20050275418A1 (en) 2000-05-23 2005-12-15 Chong Fu C High density interconnect system having rapid fabrication cycle
EP1959260A1 (en) 2005-12-05 2008-08-20 NHK Spring Company Limited Probe card

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2026078A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8378705B2 (en) 2008-02-29 2013-02-19 Nhk Spring Co., Ltd. Wiring substrate and probe card
JP2010032519A (ja) * 2008-07-26 2010-02-12 Feinmetall Gmbh 電気被検体の検査のための電気検査装置並びに電気検査方法
WO2010027075A1 (ja) * 2008-09-05 2010-03-11 日本発條株式会社 配線基板およびプローブカード
JP2010164490A (ja) * 2009-01-16 2010-07-29 Micronics Japan Co Ltd 集積回路の試験装置
JP2010266403A (ja) * 2009-05-18 2010-11-25 Micronics Japan Co Ltd 検査装置
TWI391673B (zh) * 2009-05-26 2013-04-01 Alternative probe devices and probe cards for their applications
JP2011159826A (ja) * 2010-02-01 2011-08-18 Nhk Spring Co Ltd マシナブルセラミックス回路基板及びその製造方法
US9341650B2 (en) 2012-01-18 2016-05-17 Nhk Spring Co., Ltd. Space transformer having a ceramic substrate with a wiring pattern for use in a probe card
WO2013108759A1 (ja) * 2012-01-18 2013-07-25 日本発條株式会社 スペーストランスフォーマおよびプローブカード
JPWO2013108759A1 (ja) * 2012-01-18 2015-05-11 日本発條株式会社 スペーストランスフォーマおよびプローブカード
JP2014074716A (ja) * 2012-10-03 2014-04-24 Corrado Technology Inc プローブカード用ファインピッチインターフェース
KR20160130464A (ko) * 2014-03-06 2016-11-11 테크노프로브 에스.피.에이. 특히 극한 온도의 적용을 위한, 전기 소자의 테스트 기기용 프로브 카드
KR20160130448A (ko) * 2014-03-06 2016-11-11 테크노프로브 에스.피.에이. 전기 소자를 위한 테스트 기기용 고-평면성 프로브 카드
JP2017513014A (ja) * 2014-03-06 2017-05-25 テクノプローベ エス.ピー.エー. 電子デバイステスト装置用高平坦度プローブカード
JP2017515126A (ja) * 2014-03-06 2017-06-08 テクノプローベ エス.ピー.エー. 電子デバイステスト装置用極端温度プローブカード
KR102205429B1 (ko) 2014-03-06 2021-01-21 테크노프로브 에스.피.에이. 전기 소자를 위한 테스트 기기용 고-평면성 프로브 카드
KR102251299B1 (ko) 2014-03-06 2021-05-13 테크노프로브 에스.피.에이. 특히 극한 온도의 적용을 위한, 전기 소자의 테스트 기기용 프로브 카드
JP2016180749A (ja) * 2015-02-26 2016-10-13 スター テクノロジーズ インコーポレイテッドStar Technologies Inc. 検査アセンブリおよびその製造方法
US10088502B2 (en) 2015-02-26 2018-10-02 Star Technologies, Inc. Test assembly and method of manufacturing the same

Also Published As

Publication number Publication date
TW200804831A (en) 2008-01-16
CN101467051B (zh) 2012-03-28
EP2026078A4 (en) 2012-08-15
US20100001748A1 (en) 2010-01-07
KR20090016466A (ko) 2009-02-13
JP5426161B2 (ja) 2014-02-26
KR101025895B1 (ko) 2011-03-30
TWI334487B (ja) 2010-12-11
CN101467051A (zh) 2009-06-24
JPWO2007142204A1 (ja) 2009-10-22
US7898272B2 (en) 2011-03-01
EP2026078A1 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP5426161B2 (ja) プローブカード
US8149008B2 (en) Probe card electrically connectable with a semiconductor wafer
JP5289771B2 (ja) プローブカード
US8314624B2 (en) Probe card, semiconductor inspecting apparatus, and manufacturing method of semiconductor device
JP4465995B2 (ja) プローブシート、プローブカード、半導体検査装置および半導体装置の製造方法
TW480692B (en) Contact structure having silicon finger contactors and total stack-up structure using same
JP5050856B2 (ja) 異方導電性コネクターの製造方法
JP4979214B2 (ja) プローブカード
TWI522622B (zh) 用於微電子接觸器總成之探針頭及其形成方法
TWI389269B (zh) 配線基板及探針卡
US8049525B2 (en) Parallelism adjusting mechanism of probe card
KR20020024771A (ko) 스파이럴 콘택터와 그 제조 방법, 및 이를 이용한 반도체검사 장치와 전자 부품
KR100980369B1 (ko) 프로브 카드의 프로브 니들 구조체와 그 제조 방법
US20130206460A1 (en) Circuit board for semiconductor device inspection apparatus and manufacturing method thereof
JPWO2010027075A1 (ja) 配線基板およびプローブカード
JP2009098153A (ja) 薄膜プローブの製造方法
US11879913B2 (en) Probe card structure
JP2008205282A (ja) プローブカード
JP5702068B2 (ja) 半導体検査用プローブカードおよびその製造方法
JPH10170549A (ja) コンタクトプローブおよびその製造方法と前記コンタクトプローブを備えたプローブ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780021141.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07815064

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008520569

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087029743

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2007815064

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007815064

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12308110

Country of ref document: US