[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007141874A1 - Sharp pain treatment device, high frequency treatment device - Google Patents

Sharp pain treatment device, high frequency treatment device Download PDF

Info

Publication number
WO2007141874A1
WO2007141874A1 PCT/JP2006/311634 JP2006311634W WO2007141874A1 WO 2007141874 A1 WO2007141874 A1 WO 2007141874A1 JP 2006311634 W JP2006311634 W JP 2006311634W WO 2007141874 A1 WO2007141874 A1 WO 2007141874A1
Authority
WO
WIPO (PCT)
Prior art keywords
high frequency
electromagnetic wave
frequency electromagnetic
mhz
low frequency
Prior art date
Application number
PCT/JP2006/311634
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuharu Nishi
Iwao Kishita
Original Assignee
Medical Appliance Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medical Appliance Co., Ltd. filed Critical Medical Appliance Co., Ltd.
Priority to PCT/JP2006/311634 priority Critical patent/WO2007141874A1/en
Publication of WO2007141874A1 publication Critical patent/WO2007141874A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/008Magnetotherapy specially adapted for a specific therapy for pain treatment or analgesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36021External stimulators, e.g. with patch electrodes for treatment of pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets

Definitions

  • the present invention relates to a high frequency treatment apparatus for causing an alternating magnetic field to act on an affected area of a treatment subject, and more particularly to a pain treatment apparatus.
  • the high frequency treatment device is a device that generates high frequency electromagnetic waves and causes a high frequency alternating magnetic field to act on the treatment object.
  • Patent Document 1 describes a high frequency treatment device which applies a high frequency current of 13.56 MHz, 27, 12 MHz, etc. oscillated by a high frequency oscillator to a coil and radiates a high frequency electromagnetic wave of the frequency ( See, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 9 84886
  • the present invention has been made in view of the above problems, and the object of the present invention is to improve the magnetic treatment effect by applying a high frequency alternating magnetic field of a suitable frequency.
  • the inventors of the present invention apply a high frequency alternating magnetic field of a predetermined frequency to a treatment subject (for example, a pain site (affected area) of a human body).
  • a treatment subject for example, a pain site (affected area) of a human body.
  • concentration of calcium ion (Ca 2+ ) in specific types of cells in the treatment subject is increased to induce an exocytosis reaction, which contributes to alleviation of pain and the like. It is thought that one of the main factors of the therapeutic effect on magnetism is the ability to promote the secretion of substances.
  • the inventors of the present application pay attention to the evoked action of exocytosis associated with an increase in calcium ion concentration in the cell to which it is applied, and work hard on the frequency of the high frequency alternating magnetic field to be applied to the treatment object. Experiments and studies were conducted. As a result, it has been found that a suitable frequency capable of further enhancing the magnetic therapeutic effect is about 83.3 MHz, and the present invention has been conceived as follows.
  • a pain treatment apparatus for causing an alternating magnetic field to act on an affected area of a treatment subject.
  • This pain treatment device is provided with high frequency electromagnetic wave generating means for generating high frequency high frequency electromagnetic waves for treatment in order to cause high frequency high frequency alternating magnetic fields for treatment to act on the affected part, and the high frequency for treatment is 50 to 140 MHz.
  • Range force is characterized by being selected.
  • the pain treatment device emits a high frequency high frequency electromagnetic wave for treatment by generating a high frequency high frequency electromagnetic wave for treatment suitable for magnetic treatment, thereby emitting a high frequency alternating magnetic field for the high frequency treatment. It can act on the affected area. Forced magnetic stimulation elevates intracellular calcium ion concentration in the affected area of the subject to induce exocytosis and release substances that exert analgesia (eg, nerve growth factor, 8 endorphin etc.) It can be done. Therefore, magnetic therapeutic effects such as analgesia and blood circulation promoting effects by the activity of the tissue of the treatment subject can be improved.
  • analgesia eg, nerve growth factor, 8 endorphin etc.
  • the increase degree of the calcium ion concentration in a predetermined cell is a predetermined rate or more (eg, 1. 2 times or more)
  • the positive treatment rate can be increased to, for example, 30% or more, which can improve the magnetic therapy effect.
  • the pain treatment apparatus of the present invention is emitted from the high frequency electromagnetic wave generation means.
  • the calcium ion concentration in cells in the affected area is increased to induce the exocytosis (neuron growth factor, ⁇ endorphin etc.) of the specified substance.
  • Treatment equipment By acting a therapeutic high frequency high frequency alternating magnetic field on the affected area, the calcium ion concentration in cells in the affected area is increased to induce the exocytosis (neuron growth factor, ⁇ endorphin etc.) of the specified substance. Treatment equipment.
  • a range power of 50 to 120 MHz may be selected.
  • a high frequency alternating magnetic field having a frequency of 50 to 120 MHz can be applied to the affected part of the treatment subject to make the positive rate, for example, 40% or more, so that the magnetic therapeutic effect can be further improved.
  • the therapeutic high frequency may be selected from the range of 55 to L lO MHz.
  • a high frequency alternating magnetic field with a frequency of 55 to: L 10 MHz can be applied to the affected part of the treatment subject to make the above-mentioned positive rate 50% or more, thereby further improving the magnetic therapy effect.
  • the therapeutic high frequency may be selected from the range power of 65 to: LOO MHz.
  • the high-frequency alternating magnetic field with a frequency of 65 to: LOO MHz can be applied to the affected part of the treatment subject to increase the above-mentioned positive rate to, for example, 70% or more, thereby further improving the magnetic therapy effect.
  • the therapeutic high frequency may be selected to be in the range of 75 to 95 MHz.
  • a high frequency alternating magnetic field with a frequency of 70 to 95 MHz can be applied to the affected area of the treatment subject to increase the positive rate to, for example, 90% or more, thereby further improving the magnetic therapy effect.
  • the therapeutic high frequency may be selected to be in the range of 83.3 ⁇ 10% MHz.
  • a high frequency alternating magnetic field with a frequency of 83.3 ⁇ 10% MHz can be applied to the affected area of the treatment subject to make the above-mentioned positive rate about 100%, thus further improving the magnetic therapy effect.
  • the high frequency electromagnetic wave generation means is a high frequency oscillation means for outputting a high frequency current; and an antenna for generating the high frequency electromagnetic wave of the high frequency for the treatment by applying the high frequency current from the high frequency oscillation means; May be provided.
  • the high frequency high frequency electromagnetic wave for the treatment can be suitably generated, and the high frequency alternating magnetic field for the treatment can be appropriately applied to the affected area of the treatment object.
  • the high frequency electromagnetic wave generation means may intermittently generate the high frequency electromagnetic wave by repeating the on period for generating the high frequency electromagnetic wave and the off period for not generating the high frequency electromagnetic wave at a predetermined cycle. Good.
  • the high frequency alternating magnetic field can be generated intermittently to act on the affected part of the treatment subject, and therefore, the state where the high frequency alternating magnetic field is applied to the affected part and the state where it is not applied are repeated. It can be switched. As a result, changes occur in the high frequency alternating magnetic field stimulation that acts on the affected area, and the magnetic treatment effect can be enhanced.
  • the high frequency electromagnetic wave generation means repeats the first on period for generating the high frequency electromagnetic wave and the first off period for not generating the high frequency electromagnetic wave in a cycle corresponding to 2.0 ⁇ 10% kHz.
  • high frequency electromagnetic waves may be generated intermittently.
  • the high frequency electromagnetic wave generating means repeats the second on period for generating the high frequency electromagnetic wave and the second off period for not generating the high frequency electromagnetic wave, repeating the cycle corresponding to 7. 8 ⁇ 10% Hz.
  • the electromagnetic waves may be generated intermittently.
  • the high frequency alternating magnetic field can be intermittently generated at an appropriate time interval in which the cells of the affected area of the treatment subject react sensitively to act on the affected area.
  • the low frequency low frequency electromagnetic wave generating means for generating low frequency low frequency electromagnetic waves is provided. May be selected from the range of 2. 0. +-. 10% kHz.
  • a low frequency alternating magnetic field with a therapeutic low frequency suitable for magnetic treatment is applied to the affected area of the object to be treated. It can induce sexualization, analgesia and blood circulation. For example, it is possible to increase the amount of j8 endorphin secretion in the cells of the subject. As a result, the magnetic therapeutic effect such as the analgesic effect on the affected area of the treatment subject can be further improved.
  • the low frequency electromagnetic wave generation means may be a low frequency oscillation means for outputting a low frequency current; and the low frequency oscillation means may also be applied with the low frequency current to obtain the low frequency electromagnetic wave for the treatment.
  • An antenna to be generated may be provided.
  • the low frequency electromagnetic wave for the low frequency treatment can be suitably generated, and the low frequency alternating magnetic field for the low frequency treatment can be appropriately applied to the affected part of the treatment subject.
  • the low frequency electromagnetic wave generation means intermittently generates the low frequency electromagnetic wave by repeating an on period for generating the low frequency electromagnetic wave and an off period for not generating the low frequency electromagnetic wave at a predetermined cycle.
  • the low frequency alternating magnetic field can be generated intermittently to act on the affected part of the treatment subject. Therefore, the state where the low frequency alternating magnetic field is applied to the affected part, and the state where it is not applied to the affected part. Can be switched. For this reason, a change occurs in the low frequency alternating magnetic field stimulation acting on the affected area, and the magnetic treatment effect can be enhanced.
  • the low frequency electromagnetic wave generating means has a third ON period for generating a low frequency electromagnetic wave and a third OFF period for not generating a low frequency electromagnetic wave, corresponding to a period corresponding to 7. 8 ⁇ 10% Hz.
  • the low frequency electromagnetic waves may be generated intermittently by repeating the above.
  • the low frequency alternating magnetic field can be intermittently generated at a suitable time interval in which the cells of the affected area of the treatment subject react sensitively to act on the affected area.
  • the on period of the high frequency electromagnetic wave and the on period of the low frequency electromagnetic wave may be synchronized with each other. That is, the generation period of the intermittently generated high frequency electromagnetic wave and the generation period of the intermittently generated low frequency electromagnetic wave may be synchronized with each other.
  • the high frequency alternating magnetic field and the low frequency alternating magnetic field repeat the generation Z non-generation at the same timing, it is possible to clearly separate the time when the both alternating magnetic fields act on the affected part of the treatment object and when it does not act. . For this reason, a clear change occurs in the alternating magnetic field stimulation acting on the affected area, and the magnetic therapeutic effect can be enhanced.
  • the low frequency electromagnetic wave may be configured to be a substantially rectangular wave. Because the rise time and fall time of the low frequency electromagnetic wave waveform can be minimized by the force configuration, a low frequency alternating magnetic field whose magnetic field intensity changes rapidly can be applied to the treatment object. Furthermore, the low frequency electromagnetic wave may be a substantially rectangular wave having a binary value consisting of a predetermined value and a zero value. As a result, the magnetic treatment effect can be improved by causing a low frequency alternating magnetic field to periodically act on and off the magnetic field to act on the treatment subject.
  • the high frequency electromagnetic wave generation means intermittently generates the high frequency electromagnetic wave for medical treatment by intermittently generating the high frequency electromagnetic wave having a frequency higher than 140 MHz with a period corresponding to the high frequency for medical treatment. You may make it This makes it possible to The therapeutic high frequency electromagnetic wave can be generated using a high frequency electromagnetic wave having a high frequency to which the cells do not react as a carrier wave.
  • the therapeutic high frequency high frequency electromagnetic wave generated by the above high frequency electromagnetic wave generating means may include a harmonic generated when generating a high frequency electromagnetic wave of less than 50 MHz.
  • the high frequency electromagnetic wave generation means generates high frequency electromagnetic waves in the range of 50 to 140 MHz as harmonics when generating the electromagnetic waves having a frequency of an integer fraction of the therapeutic high frequency (50 to 140 MHz). It may be an electromagnetic wave generator that can be generated incidentally.
  • a high frequency treatment apparatus for causing an alternating magnetic field to act on an affected area of a treatment subject.
  • This high frequency treatment device includes high frequency electromagnetic wave generating means for generating high frequency electromagnetic waves of the high frequency number for treatment, in order to apply high frequency high frequency alternating magnetic field for treatment to the affected part, and the high frequency number for treatment is 50 to 140 MHz. A range force is also selected.
  • FIG. 1 is a perspective view showing the appearance of a pain treatment device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing an internal configuration of the pain treatment device according to the embodiment.
  • FIG. 3 A block diagram showing an example of the circuit configuration of the pain treatment device according to the same embodiment.
  • FIG. 4 is a waveform diagram showing waveforms of a high frequency current and a low frequency current applied to a high frequency coil and a low frequency coil according to the embodiment.
  • FIG. 5 An explanatory view showing a treatment mode using the pain treatment device according to the embodiment.
  • FIG. 6 is a graph showing the experimental results of Experiment 1 focused on the example of the present invention.
  • FIG. 7 is a graph showing the experimental results of Experiment 2 focused on the example of the present invention.
  • FIG. 8 is a graph showing the experimental results of Experiment 3 focusing on the example of the present invention.
  • FIG. 9 A perspective view showing the configuration of the oscillation coil used in Experiment 5 which is an example of the present invention. Ru.
  • FIG. 1 is a perspective view showing the external appearance of the pain treatment device 10 according to the present embodiment.
  • the pain treatment device 10 is, for example, a housing 12, an operation unit 14, and a display. And 16 are provided.
  • the housing 12 is a housing for housing the main devices of the pain treatment device 10 inside, and is formed of, for example, a synthetic resin such as plastic.
  • this housing 12 has a substantially rectangular parallelepiped shape (for example, length 8 cm x width 6 cm x height 2 cm or so) in the example of FIG. 1, it is not limited to the example of force. It can be changed into any shape such as a spherical shape, a substantially rod shape, a substantially cubic shape, and a shape easy to be grasped by the user.
  • the user of the pain treatment device 10 holds the powerful housing 12 and brings the pain treatment device 10 directly into contact with the affected area or brings the affected area within a predetermined distance.
  • the radiated electromagnetic waves (including alternating magnetic fields) can be applied to the affected area
  • the operation unit 14 is, for example, a switch or the like for turning on and off the operation (such as the irradiation operation of the alternating magnetic field) of the pain treatment device 10.
  • the user can switch the operation Z non-operation of the pain treatment device 10 each time the user depresses the operation unit 14.
  • the display unit 16 is configured of, for example, a light emitting lamp such as an LED (light emitting diode).
  • the display unit 16 can display the operation Z non-operation state of the pain treatment device 10, the remaining amount or charging state of a power source unit (not shown) described later, and the like.
  • the display unit 16 is composed of two LEDs, a red LED 16 a and a green LED 16 b.
  • the red LED 16a lights up, for example, when the battery remaining amount of the power supply unit or the like is equal to or higher than a predetermined level, and blinks if the battery level is lower than this level.
  • the green LED 16b lights up or blinks when the pain treatment device 10 is operating, and goes out when the pain treating device 10 is not operating.
  • the display unit 16 is not limited to the pressing example, and for example, a force such as a liquid crystal display unit (such as an LCD) capable of displaying characters or figures may be configured.
  • a force such as a liquid crystal display unit (such as an LCD) capable of displaying characters or figures may be configured.
  • the display unit 16 displays the frequency or intensity of the electromagnetic wave (alternate magnetic field) emitted by the pain treatment device 10, the duration of the irradiation, the irradiation timing, the treatment schedule, the remaining amount of battery, time, or temperature And other information can be displayed.
  • FIG. 2 is a plan view showing the internal configuration of the pain treatment device 10 according to the present embodiment.
  • a power supply unit 18, a control block 20, a high frequency coil 30, and a low frequency coil 40 are provided inside the housing 12 of the pain treatment apparatus 10. ing .
  • the control block 20, the high frequency coil 30 and the low frequency coil 40 are installed, for example, on the same substrate 17, and can be collectively removed from the housing 12.
  • the power supply unit 18 is, for example, a direct current power supply device configured of various rechargeable batteries or dry batteries (for example, 9 V dry batteries etc.), and supplies power to each part in the pain treatment apparatus 10. be able to.
  • the control block 20 is a circuit board on which, for example, a control device that controls each part in the treatment apparatus 10, a high frequency oscillation circuit that oscillates a high frequency, a clock generation circuit, and the like (not shown). However, the details will be described later.
  • the high frequency coil 30 is an example of an antenna (high frequency antenna) that radiates a high frequency electromagnetic wave when a high frequency current is applied.
  • the high frequency coil 30 is, for example, a loop antenna constituted by a coil obtained by winding a relatively thick copper wire or the like eight times.
  • Such a high frequency coil 30 is, for example, a high frequency electromagnetic wave (a high frequency alternating magnetic field and a high frequency alternating electric field) whose frequency is 50 to 140 MHz (for example, about 83.3 MHz) by applying a high frequency current from the control block 20. Can be emitted and emitted to the surroundings.
  • the low frequency coil 40 is an example of an antenna (a low frequency antenna) that radiates a low frequency electromagnetic wave when a low frequency current is applied.
  • the low frequency coil 40 is, for example, a loop antenna composed of a relatively thin coil wound around a core of a copper wire or the like 500 times.
  • the low frequency coil 40 is, for example, a low frequency electromagnetic wave (a low frequency alternating magnetic field and a low frequency alternating electric field) having a frequency of, for example, about 2.0 kHz when a low frequency current is applied from the control block 20. It can be generated and emitted around.
  • the high frequency coil 30 and the low frequency coil 40 are installed, for example, such that both central axes are, for example, in substantially the same direction, and high frequency electromagnetic waves and low frequency electromagnetic waves generated by both are For example, irradiation is performed so as to diffuse approximately equally in the circumferential direction of the central axis. Therefore, even if any surface of the pain treatment device 10 contacts or approaches the affected area at any angle, there is a magnetic treatment effect. Therefore, treatment using the intense pain treatment device 10 is simplified.
  • the antenna that radiates high frequency electromagnetic waves or low frequency electromagnetic waves is not limited to the example of the loop antenna such as the high frequency coil 30 and the low frequency coil 40 described above, and various antennas such as a rod antenna may be used. be able to.
  • FIG. 3 is a block diagram showing the circuit configuration of the pain treatment device 10 according to the present embodiment.
  • control block 20 and the high frequency coil 30 described below are an example of a configuration of high frequency electromagnetic wave generating means for generating high frequency electromagnetic waves having a frequency of 50 to 140 MHz.
  • the control block 20 and the low frequency coil 40 are an example of a low frequency electromagnetic wave generating means for generating a low frequency electromagnetic wave having a frequency of, for example, 2 kHz.
  • control block 20 includes, for example, a main control circuit 22, a power supply circuit 21, a clock generation circuit 23, a high frequency oscillation means 24, and a low frequency oscillation means 25.
  • the main control circuit 22 is constituted of, for example, a one-chip microcomputer or the like, and has a function of controlling each part in the control block 20.
  • the power supply circuit 21 includes, for example, an on Z-off control circuit 212, a booster circuit 214, and a step-down circuit 216.
  • the power from the power supply unit 18 is supplied to each unit in the control block 20. It has a function to control feeding.
  • the on-Z-off control circuit 212 detects, for example, the on-z-off of the switch of the operation unit 14 and inputs the detection result to the main control circuit 22. Further, the on-z-off control circuit 212 turns on / off the power supply from the power supply unit 18 to the high-frequency coil 30 and the low-frequency coil 40 based on the on-z-off instruction of the main control circuit 22.
  • the booster circuit 214 can boost the power from the equal power supply unit 18 which also has a dry cell power of, for example, 9 V, for example, as necessary. Thereby, the voltage supplied to the high frequency coil 30 and the low frequency coil 40 can be maintained at 9 V, for example. Further, the booster circuit 214 outputs an error signal of battery exhaustion to the main control circuit 22 when, for example, the voltage that it can output falls below a predetermined level due to battery exhaustion of the power supply unit 18 or the like. You can also As a result, when the main control circuit 22 receives the error signal, For example, control can be performed to switch the red LED 16a from lighting to blinking to notify the user of battery consumption.
  • the step-down circuit 216 can maintain the voltage supplied to the main control circuit 22 or the like at 5 V, for example, by stepping down the power supply of the power supply unit 18. Also, the step-down circuit 216 outputs a voltage drop error signal to the main control circuit 22 when the voltage that it can output falls below a predetermined level, for example, due to battery consumption of the power supply unit 18 or the like. You can also As a result, the main control circuit 22 controls to stop the operation of the entire pain treatment device 10 in order to prevent, for example, a trouble such as a sudden operation stop due to a voltage drop or the like. As a result, for example, since the green LED 16b that was on during the operation of the pain treatment device 10 is controlled to turn off, it is possible to notify the user that the operation of the pain treatment device 10 has stopped.
  • the clock generation circuit 23 generates, for example, a clock signal of a predetermined frequency and outputs the clock signal to the main control circuit 22.
  • the clock generation circuit 23 is configured to be able to generate, for example, 32. 7 kHz and 10 MHz clock signals.
  • the main control circuit 22 outputs the clock signal input from the clock generation circuit 23 to the low frequency oscillation means 254.
  • the low frequency oscillation means 254 generates clock signals of, for example, 2. OkHz and 7.81 Hz based on the clock signal, and outputs them to the modulation circuit 246 and the coil drive circuit 256, respectively.
  • the high frequency oscillation means 24 generates a high frequency current of about 83.3 MHz, for example, and applies it to the high frequency coil 30.
  • the high frequency oscillation means 24 has, for example, a frequency control circuit 242, a high frequency oscillation circuit 244, a modulation circuit 246, and a coil drive circuit 248.
  • the frequency control circuit 242 has a function of controlling the frequency of the high frequency generated by the high frequency oscillation circuit 244. Specifically, this frequency control circuit 242 is, for example, based on the frequency setting signal from the main control circuit 22 and the high frequency fed back from the high frequency oscillation circuit 244, the frequency of the high frequency output from the high frequency oscillation circuit 244. Control. As a result, the high frequency oscillation circuit 244 can stably oscillate a high frequency of 83.3 MHz, for example, and can output it to the modulation circuit 246.
  • the high frequency may be either a high frequency current or a high frequency voltage as long as the signal can transmit a predetermined frequency.
  • the 83.3 MHz high frequency output from the high frequency oscillation circuit 244 is, for example, a substantially sine wave signal. Ru.
  • the modulation circuit 246 performs, for example, on-Z-off processing of the 83.3 MHz high frequency input from the high frequency oscillation circuit 244 based on the clock signal input from the low frequency oscillation circuit 254, for example, in two steps. Output intermittently.
  • the first step of on-Z-off processing is, for example, processing of partially cutting the inputted 83.3 MHz high frequency based on the clock signal of O kHz and outputting it intermittently.
  • the modulation circuit 246 outputs a high frequency of 8 3.3 MHz as it is, for example, for a predetermined first on period (for example, 400 sec), and then, for example, 100 ⁇ m for a predetermined first off period. sec) repeats the process of outputting as a signal obtained by cutting the amplitude of the high frequency.
  • the modulation circuit 246, for example, turns on and off the high frequency of 83.3 MHz input as a steady sine wave, for example, at a period equivalent to 2.
  • the modulation circuit 246 can perform modulation processing to output a signal representing a substantially rectangular wave of 2.O kHz using, for example, the 83.3 MHz high frequency wave input from the high frequency oscillation circuit 244 as a carrier wave.
  • the high frequency subjected to the above-mentioned first-stage on-z-off processing is further partially cut based on a 7.81 Hz clock signal. It is processing to output intermittently.
  • the modulation circuit 246 outputs the high frequency as it is for a predetermined second on period (for example, 64 msec), and then the amplitude of the high frequency for a predetermined second off period (for example, 64 msec) is output. Repeat processing to output as a cut signal.
  • the modulation circuit 246, for example turns on and off the high frequency of 83.3 MHz, which is intermittent at a period of 2.
  • the high frequency can be intermittently oscillated.
  • the modulation circuit 246 can output, for example, a signal representing a substantially rectangular wave of 7.81 Hz, with the high frequency of 83.3 MHz input with 244 power of the high frequency oscillation circuit as a carrier wave.
  • the high frequency subjected to the two-step on / off processing by the modulation circuit 246 as described above is input to the coil drive circuit 248.
  • the coil drive circuit 248 amplifies the input high frequency with the power from the power supply circuit 21, and intermittently oscillates the high frequency current of 83.3 MHz at two cycles corresponding to 2.O kHz and 7.81 Hz. , Apply to the high frequency coil 30.
  • the low frequency oscillation means 25 generates a low frequency current of about 2 kHz, for example, and applies it to the low frequency coil 40.
  • the low frequency oscillation means 25 has, for example, a low frequency oscillation circuit 254 and a coil drive circuit 258.
  • the low frequency oscillation circuit 254 generates clock signals of, for example, 2. O kHz and 7. 81 Hz based on the clock signal input from the main control circuit 22, and the modulation circuit 246 and the coil drive are generated. Output to circuit 256 respectively. Also, the low frequency oscillation circuit 254 generates, for example, a low frequency of 2. kHz at a low frequency as the substantially rectangular wave based on the clock signal. On Z-off processing (every 64 msec) with a period of, to generate a low frequency of 2 kHz intermittent with a period equivalent to about 7.81 Hz.
  • the low frequency oscillation circuit 254 outputs the low frequency as it is for a predetermined third on period (for example, 64 msec), and then for a predetermined third off period (for example, 64 msec) The process of outputting the low frequency amplitude signal as a cut signal is repeated.
  • the low frequency oscillation circuit 254 can intermittently oscillate, for example, by turning on and off the low frequency of 2.O kHz with a period corresponding to 7.81 Hz.
  • a circuit corresponding to the frequency control circuit 242 and the modulation circuit 246 may be provided before and after the low frequency oscillation circuit 254.
  • the coil drive circuit 258 amplifies the low frequency input from the low frequency oscillation circuit 254 with the power from the power supply circuit 21, and the high frequency current at a frequency of 2.O kHz corresponds to 7.81 Hz. It oscillates intermittently in a cycle and is applied to the high frequency coil 30.
  • FIG. 4 is a waveform diagram showing waveforms of the high frequency current and the low frequency current applied to the high frequency coil 30 and the low frequency coil 40 according to the present embodiment.
  • a high frequency current with a frequency of about 83.3 MHz is applied to the high frequency coil 30, for example.
  • the high-frequency current has, for example, an amplitude of 30 mA, and is a nearly sinusoidal wave symmetrical about 0 A.
  • this high frequency current is not a continuous wave, for example, but is a continuous wave which is periodically turned on and off.
  • the high frequency current has a waveform in which a first on period (1) of, for example, 400 seconds and a first off period (2) of, for example, 100 seconds are alternately repeated. For example, it is intermittent at a cycle corresponding to about 2.0 kHz.
  • such a high-frequency current has a waveform that alternately repeats, for example, the second on period (3) of 64 msec and the second off period (4) of 64 msec, for example, on a larger time scale. It is intermittent even at a cycle corresponding to about 7.81 Hz.
  • this high-frequency current is high-frequency, for example, about 83.3 MHz, its rise and fall times are very small, for example, less than or equal to 0.003 sec.
  • a low frequency current with a frequency of about 2.O kHz is applied to the low frequency coil 40.
  • This low frequency current is, for example, a rectangular wave (square wave) that alternates two values of 17 A or OA with a period of about 2. OkHz.
  • the period (5) in which the low frequency current is 17 A is, for example, 400 sec
  • the period (6) in which the OA is OA is, for example, 100 sec.
  • this approximately rectangular wave is adjusted so that its rise time is less than 0 .: see and its fall time is, for example, less than 1.0 sec.
  • this low frequency current is not, for example, a continuous wave, but an intermittent wave that is periodically turned on and off at, for example, about 7.81 Hz.
  • the low frequency current has a waveform in which, for example, a third on period (6) of 64 msec and a third off period (8) of 64 msec, for example, are alternately repeated. It is intermittent at a cycle corresponding to
  • the high-frequency current and the low-frequency current are both intermittent at a cycle corresponding to 7. 8 Hz (specifically, for example, repeating on-z off at a cycle of 128 msec).
  • the second on period (3) (or the second off period (4)) of the high frequency current and the third on period (7) (or the third off period (8)) of the low frequency current are approximately the same.
  • the application timings of the high-frequency current and the low-frequency current are adjusted to achieve the same timing.
  • a period (1) (a period during which the high frequency current is applied to the high frequency coil 30) (a period during which the high frequency current is applied) and a period (5) during which the low frequency current is 17 A, for example
  • the period in which the current flows in the coil 40) is synchronized. More specifically, while the high-frequency current is low at 2. OkHz (specifically, for example, it is repeatedly turned on and off at a cycle of 500 sec), The low frequency current is 2. alternate between 17 A or OA at OkHz. In this case, the first on period (1) of the high frequency current and the period (5) in which the low frequency current is 17; ⁇ A coincide with each other, and the first off period of the high frequency current (2 ) And the period (6) when the low frequency current becomes OA coincide.
  • the application timings of the high frequency current and the low frequency current are synchronized so that the period in which the high frequency current actually flows in the high frequency coil 30 and the period in which the low frequency current actually flows in the low frequency coil 40 are synchronized. Has been adjusted.
  • the high frequency coil 30 By applying a high frequency current as described above at, for example, 9 V, the high frequency coil 30 emits, for example, a high frequency electromagnetic wave having substantially the same waveform as the high frequency current as shown in FIG. 4 (a). It can be emitted and emitted around.
  • This high frequency electromagnetic wave is, for example, a substantially sinusoidal high frequency wave with a frequency of about 83.3 MHz, and is intermittently intermittent with a period corresponding to about 2.0 kHz and about 7.81 Hz.
  • a high frequency alternating magnetic field having a high frequency for treatment of, for example, 83.3 MHz can be intermittently generated around the pain treatment device 10.
  • the high frequency alternating magnetic field periodically increases or decreases at about 83.3 MHz, for example, with a maximum magnetic field strength of about 784 nT, and periodically at about 83.3 MHz in both positive and negative directions of the magnetic field. It is an alternating magnetic field that fluctuates to, for example, intermittently generated at a cycle equivalent to about 2. OkHz and about 7.81 Hz.
  • the pain treatment device 10 is, for example, about 83.3 MHz, which is a high frequency for treatment with respect to the treatment subject (the affected part of the human body, etc.). Not only high frequency alternating magnetic fields but also low frequency alternating magnetic fields of about 2. OkHz and about 7. 81 Hz with this high frequency alternating magnetic field as a carrier can be applied simultaneously.
  • the low frequency coil 40 has, for example, a waveform substantially the same as the low frequency current as shown in FIG. 4 (b). It can generate low-frequency electromagnetic waves and radiate them around.
  • This low frequency electromagnetic wave is, for example, a low frequency substantially rectangular wave with a frequency of about 2. OkHz, and is intermittently intermittent at about 7.81 Hz. Due to the intense low frequency electromagnetic wave irradiation, for example, a low frequency alternating magnetic field having a low frequency for treatment of, for example, about 2. OkHz can be intermittently generated around the pain treatment device 10.
  • the low frequency alternating magnetic field is, for example, a magnetic field whose intensity is approximately constant at about 736 nT and whose magnetic field direction is fixed only in the positive direction, for example, with a period of 2.0 kHz. It is an alternating magnetic field generated by turning Z off (for example, alternately turning on an on period of 400 ⁇ sec and an off period of 100 ⁇ sec), and overall it has a period of about 7. 81 Hz. It is generated intermittently.
  • the pain treatment device 10 is, for example, only the low frequency alternating magnetic field of about 2.0 kHz, which is the low frequency for treatment, for the object to be treated.
  • the low frequency alternating magnetic field of approximately 7. 8 Hz which uses this low frequency alternating magnetic field as a carrier wave, can also be irradiated simultaneously.
  • the high frequency current and the low frequency current to the high frequency coil 30 and the low frequency coil 40 in parallel, it is possible to generate the high frequency electromagnetic wave and the low frequency electromagnetic wave simultaneously.
  • a high frequency alternating magnetic field and a low frequency alternating magnetic field can be simultaneously generated around the pain treatment device 10.
  • the intermittent timing of the high frequency electromagnetic wave and the low frequency electromagnetic wave at 7.81 Hz are synchronized with each other, and the intermittent timing of the high frequency electromagnetic wave at 2.0 kHz is used.
  • the magnetic field generation timing at 2.0 kHz by low frequency electromagnetic waves is synchronized.
  • the generation timing of the high frequency alternating magnetic field due to the high frequency electromagnetic wave irradiation and the generation timing of the magnetic field due to the low frequency electromagnetic wave irradiation can be synchronized. That is, when the high frequency coil 30 generates a high frequency alternating magnetic field, the low frequency coil 40 also generates a magnetic field of a predetermined strength, while when the high frequency coil 30 does not generate a high frequency alternating magnetic field, the low frequency coil 40 also It is possible not to generate a predetermined level of magnetic field. Therefore, as a whole, the pain treatment device 10 periodically repeats the generation of the magnetic field (the high frequency alternating magnetic field generated by the high frequency coil 30 and the predetermined level of the magnetic field generated by the low frequency coil 40). be able to.
  • the high frequency alternating electric field and the low frequency alternating electric field are also generated by the irradiation of the electromagnetic wave. Since the generation mode of these alternating electric fields is, for example, substantially the same as the generation mode of the above-mentioned alternating magnetic field, the description thereof will be omitted.
  • a high frequency electromagnetic wave of 83.3 MHz is generated as the high frequency for treatment.
  • the low frequency for medical treatment 2 An example of generating an OkHz low frequency electromagnetic wave
  • the frequency to generate power is not limited to this example.
  • the magnetic therapeutic device 20, which has the same configuration as that described above, can generate a high frequency electromagnetic wave in the range of 50 to 140 MHz as a high frequency for treatment, and 2 kHz as a low frequency for treatment. It is possible to generate low frequency electromagnetic waves in the range of ⁇ 10%.
  • FIG. 5 is an explanatory view showing a treatment mode using the pain treatment device 10 according to the present embodiment.
  • the pain treating device 10 in the case of treating an affected part (a treatment subject) such as a pain site of a human body using the pain treating device 10, for example, a pain treatment in which the power is turned on and operated.
  • the vessel 10 only needs to be brought into contact with the affected area either directly or indirectly via clothes or the like.
  • the pain treatment device 10 can cause the alternating magnetic field (high frequency alternating magnetic field and low frequency alternating magnetic field) generated as described above to act on the affected part.
  • the alternating magnetic field acts not only on the surface of the affected area (skin, etc.) but also on the inside of the affected area (muscle, blood vessels, bone, etc.).
  • the pain treatment device 10 does not have to be in contact with the affected area, and as shown in FIG. 5 (b), the above alternating magnetic field can be obtained by merely approaching the affected area within a predetermined distance.
  • the world can act on the affected area. That is, the pain treatment device 10 can be used as a non-contact type magnetic treatment device that can be treated even on clothes, etc., unlike, for example, an electrode-attached type magnetic treatment device or the like.
  • the intensity of the alternating magnetic field generated by the pain treatment device 10 decreases as it separates from the pain treatment device 10, if the pain treatment device 10 and the affected area are excessively separated, the magnetic treatment effect will be weakened.
  • the pain treatment device 10 which is a feature of the present embodiment, is configured to be able to cause an alternating magnetic field having a magnetic field strength of 30 nT or more to act on the affected area, for example, if it approaches 30 cm within the affected area. ! .
  • analgesia that alleviates or eliminates, for example, chronic pain (arthritic pain, neuropathic pain, etc.) or acute pain (beats, etc.) in the affected area by causing the above alternating magnetic field to act on the affected area. It can exert magnetic therapeutic effects such as the effect and blood circulation promoting effect.
  • the irradiation stimulation of the strong alternating magnetic field brings about such an analgesic effect
  • the irradiation stimulation of the alternating magnetic field affects the magnetic energy process of the living body, and the charge transfer of the skin, blood, and nervous system cell membrane causes one atomic molecule by eddy magnetic current. It is conceivable to bring about an activity.
  • the pain treatment device 10 is, for example, calcium ions (to the cell membrane in the affected area) by the irradiation stimulation of the above alternating magnetic field.
  • exocytosis opening release
  • an analgesic nerve nerve peptide j8 an analgesic nerve nerve peptide j8—
  • Substances such as endorphin, adrenalin and nerve growth factor (NGF) are released from specific intracellular vesicles out of the cells.
  • NGF nerve growth factor
  • Hexacytosis is a process in which cytoplasmic vesicles fuse with the cell membrane and release their contents, and the vesicle membrane is transiently or permanently incorporated into the cell membrane.
  • neurotransmitters such as j8-endorphin, adrenaline and nerve growth factor (NGF) are stored in synaptic vesicles in cells such as glial cells. Stimulation of secretion in cells causes the synapse vesicle membrane and the cell membrane to bind and fuse, and in the next step, exocytosis, in which a neurotransmitter is released from the synaptic vesicle from the cell, occurs.
  • the details of the biochemical reaction leading to this exocytosis have not been fully elucidated yet.
  • the potent exocytosis has been found to be a calcium-dependent reaction, and when the calcium ion concentration in the cytoplasm, particularly in the region immediately below the cell membrane where the synaptic vesicles are present, is sufficient, the exocytosis is It is induced.
  • the affected nerve cells are damaged and cause hypersensitivity, which is considered to be a condition.
  • hypersensitivity which is considered to be a condition.
  • the glial cells are excited and calcium ion concentration in glial cells increases.
  • the glial cells are Tosis (open-cell release) occurs.
  • Glial nerves and the like have the trophic factor nerve growth factor (NGF) in their cells, and when exocytosis occurs, they release this nerve growth factor extracellularly.
  • the released nerve growth factor acts on surrounding nerve cells to promote the growth of the nerve cells.
  • damaged and hypersensitive neurons are repaired, and the hypersensitivity of the neurons is alleviated, so that chronic pain is considered to be alleviated.
  • Acute pain is caused, for example, by the occurrence of acute inflammation in the affected area.
  • ⁇ -endorphin-containing cells eg, ⁇ cells
  • 8 endorphin has a strong analgesic action, it is thought that the j8 endorphin acts on the site of inflammation to reduce pain at the site of inflammation.
  • the intracellular calcium ion concentration can be increased to induce the exocytosis, and an excellent analgesic effect can be produced. It is conceivable that.
  • the pain treatment device 10 has, for example, a high frequency alternating magnetic field of around 83.3 MHz and a low frequency of approximately 2.O kHz as an alternating magnetic field capable of giving a suitable magnetic stimulation.
  • a frequency alternating magnetic field can be emitted to act on the affected area. Irradiation stimulation of this high frequency alternating magnetic field around 83 MHz, for example, increases the permeability of calcium ion (Ca 2+ ) and oxygen (O 2) to the cell membrane compared with other frequency bands! ], Fine
  • the irradiation stimulus of the low frequency alternating magnetic field at O MHz is considered to have the function of releasing ⁇ -endorphin etc. from cells, for example.
  • the frequency of the high frequency alternating magnetic field to be applied to the affected area is optimum at about 83.3 MHz in terms of the magnetic treatment effect, but at frequencies around this 83.3 MHz. Even if they are present, they are known to sufficiently contribute to the increase in intracellular calcium ion concentration.
  • the frequency range of this preferred high frequency alternating magnetic field is 50 to 140 MHz, preferably 50 to 120 MHz, more preferably 55 to: L 10 MHz, more preferably 65 to 100 MHz, still more preferably 70 to 95 MHz, further preferably Preferably, the range of 83. 3 ⁇ 10% MHz It is Of the above-mentioned ones, as the latter range, the calcium ion concentration in many cells can be increased more, it can be said that the magnetic therapeutic effect is high.
  • the above-mentioned pain treatment device 10 can change the magnetic field action by intermittently acting an alternating magnetic field on the affected area.
  • the tissue (such as cells) in the affected area becomes accustomed to the alternating magnetic field and the magnetic therapeutic effect does not fade.
  • the generation timing of the high frequency alternating magnetic field is synchronized with the generation timing of the low frequency alternating magnetic field, the entire magnetic field to which the pain treatment device 10 acts is sharp. As a result, the presence or absence of magnetic stimulation to the affected area can be made clearer, and the magnetic treatment effect can be improved.
  • the pain treatment device 10 has a rise time and a fall time of the generated high frequency electromagnetic wave which is very small, for example, less than or equal to 0.0003 sec.
  • the rise time of the low frequency electromagnetic wave which is a rectangular wave, is 0.1 sec or less, and the fall time is adjusted, for example, 1.0 sec or less. For this reason, at the time of the change of the alternating magnetic field as described above, the change speed of the action Z non-action of the magnetic field is fast. Therefore, the tissue in the affected area responds sensitively to the changes in the magnetic field, which enhances the magnetic therapeutic effect.
  • the pain treatment device 10 acts on an alternating magnetic field of a frequency suitable for inducing, for example, activation of the tissue of the affected area, promotion of analgesia and the like.
  • the effect of alternating magnetic field can be switched in a manner suitable for the affected area. Therefore, the pain treatment device 10 according to the present embodiment has a very high magnetic treatment effect such as an analgesic effect as compared with the conventional magnetic treatment device.
  • the pain treatment device 10 exerts actions such as promoting blood circulation in the affected area by irradiation of the above alternating magnetic field to reduce and prevent shoulder stiffness, back pain and the like. I'm sorry.
  • the pain treatment device 10 is easy and short (for example, 10 minutes) simply by contacting or approaching the affected area as described above. Can produce magnetic therapeutic effects.
  • this pain treatment device 10 can emit a high frequency alternating magnetic field (eg 83.3 MHz) and a low frequency alternating magnetic field (eg 2. OkHz) to act on the treatment subject.
  • a high frequency alternating magnetic field eg 83.3 MHz
  • a low frequency alternating magnetic field eg 2. OkHz
  • the following example is intended to experimentally verify the magnetic treatment effect of the pain treatment device 10 according to the above embodiment, and the present invention is not limited to the following example.
  • Experiment 1 examines the analgesic effect of magnetic treatment using a pain treatment device 10 on thermal hyperalgesia after sciatic nerve ligation surgery (CCI: Chronic Constriction Injury).
  • the pain evaluation method of the present experiment will be described.
  • the sciatic nerve of one hind leg of the experimental rat is lightly ligated at 5 points with a surgical thread (CCI operation).
  • CCI operation a surgical thread
  • PWL Water withdrawal latency time (second) response latency to heat stimulation to the hindlimb subcutaneous
  • the difference between the time it takes for the treated hind limb to feel the heat and the time it takes for the untreated hind limb to feel the heat is regarded as the size of the pain.
  • the intensive evaluation method is called the “Bennet method”, which is a pain evaluation method that has been approved by the Pain Society worldwide.
  • FIG. Figure 6 shows the transition of the difference between the response time of the right hind limb without CCI and the response time of the left hind limb subjected to CCI (PWL difference) in the treatment group and the non-treatment group. It is a graph shown separately.
  • the left-right difference in PWL is -3 seconds on day 5, day 2 on day 5.
  • the right-and-left difference of PWL is the seventh day in the case of one Z-day irradiation.
  • the rats are classified into the following five groups (a) to (e), and the planter test is performed from 3 days to 14 days after the operation, and the left and right hind limbs react Time difference (right and left difference) was evaluated.
  • (e) NGF enhancer administration group From the fifth day after surgery, using the above-mentioned pain treatment device 10 Irradiate the left dorsal thigh with a magnetic field and a low frequency alternating magnetic field for 10 minutes for magnetic treatment and no treatment Compared to the group.
  • the description of the five sample groups is as follows.
  • This sham operation group is a group that performs the same incision and suturing as the above CCI treatment but does not ligate the sciatic nerve, and is a control group whose purpose is to eliminate the effects of the above CCI treatment incision and suturing. .
  • this sham-operated group since there is no heat sensitivity, there is almost no difference in time until pain is felt between the left and right hind limbs.
  • This non-treatment group is a group that performs the CCI treatment but does not perform magnetic treatment using the pain treatment device 10.
  • the CCI-side hindlimbs become heat-sensitive, so the degree of pain is greatest and the response latency is longest.
  • the magnetic treatment group is a group that performs the CCI treatment and performs magnetic treatment using the pain treatment device 10.
  • This magnetic therapy group is a group that represents the analgesic effect of the magnetic therapy, as it is treated daily after the CCI treatment.
  • the anti-NGF antibody administration group is an administration group to which an anti-NGF antibody is administered after the above-mentioned CCI administration, and to which a magnetic treatment using the above-mentioned pain treatment device 10 is further given.
  • Anti-NGF antibodies are substances that bind to NGF (nerve growth factor) and eliminate physiological activity. Therefore, in the anti-NGF antibody administration group, even if the excitocytosis is caused by the magnetic treatment using the pain treatment device 10 and the NGF is released in the body, the anti-NGF antibody is present in the body. NGF does not work. If anything other than NGF is a factor in the analgesic effect, this anti-NGF antibody-administered group should have the same experimental results as the above magnetic therapy group. Therefore, if the response latency of this anti-NGF antibody administration group is longer than the response latency of the above magnetic therapy group, it proves that NGF is involved in analgesia.
  • This NGF enhancer administration group is a group to which 4-Methyl Cathecol is administered after the above-described CCI administration, and magnetic treatment is further performed using the above-mentioned pain treatment device 10.
  • 4-Methyl Cathe col is a substance that enhances the formation of NGF.
  • NGF-producing cells such as glial cells
  • the amount of NGF released by magnetic stimulation also increases.
  • this NGF enhancer group should have the same experimental results as the above magnetic treatment group. Therefore, if the response latency of this NGF enhancer group is shorter than that of the magnetic therapy group, it proves that NGF is involved in pain relief.
  • FIG. Fig. 7 shows the change in the difference in response time (left-right difference in PWL) of the left hind limb with CCI to the response time of the right hind limb with CCI divided into the above five groups.
  • the lateral difference in PWL gradually decreases with the passage of days after the magnetic treatment on the fifth day, and is shorter than the above-mentioned magnetic therapy group. It is being done. Therefore, this also indicates that NGF is involved in analgesia, and magnetic treatment with the above-mentioned pain treatment device 10 causes exocytosis in the cells of the above-mentioned rat and releases NGF. That's proved!
  • FIG. 7 is a graph showing the results of measurement of the number of flingings in minutes over a 60-minute period after injection of fluoromarine for each treatment group (pre-infusion or post-infusion treatment) and non-treatment group.
  • the flinching frequency becomes the first peak at 10 minutes Z minutes at 1 minute after injection of fallmarine, and then 15 to 17 times Z minutes (30 to 10 hours after injection The reaction which becomes the 2nd peak 50 minutes was seen.
  • the overall trend of the flinching frequency was almost the same as in the non-treatment group.
  • the number of flinchings per minute is less than 1 to 3 times per minute if treated after injection and 1 to 9 times per minute if treated prior to injection compared to the non-treatment group. . Therefore, in the treatment group, it can be said that the total pain induced inflammatory pain was improved compared to the non-treatment group, and furthermore, the treatment before the total water injection was more improved.
  • inverted fluorescence microscope (TE300; made by Nikon Corporation), fluorescence signal acquisition system (AQUACOSMOS-RATIO; made by Hamamatsu Photonitas Corporation), and calcium-sensitive fluorescence element (rhod2 or fluo3) were used as measuring devices, etc. .
  • the positive rate is as high as 45% when the high frequency alternating magnetic field of 83.3 MHz is applied.
  • the positive rate is as low as 8.3% and 7.6%.
  • the positive rate is as high as 11. 1%, 35. O MHz and 250 MHz. In the case of, any Is also 0%.
  • the high frequency alternating magnetic field around 83.3 MHz which is the force in the present example, is compared with the other frequencies (35. OMHz and 250 MHz) in the comparative example. It has been demonstrated that the effect of raising the calcium ion concentration and inducing exocytosis is very high.
  • KINGS-1 which is astrocyte cells
  • NMC-Gl which is glial cells. These cells are provided by Human Science Research Resource Bank (Human Science Promotion Foundation), a cell bank.
  • the two types of cells were cultured according to a general method using a 6-well or 12-well culture plate, RPMI 1640 medium (manufactured by Nissui Pharmaceutical Co., Ltd.), and a carbon dioxide gas culture apparatus.
  • RPMI 1640 medium manufactured by Nissui Pharmaceutical Co., Ltd.
  • a carbon dioxide gas culture apparatus In this culture, 5 ⁇ 10 4 cells or 10 5 cells were put in one well of the culture plate and cultured at 37 ° C. for 4 days or 2 days in a carbon dioxide gas culture apparatus.
  • control data (Ml) reflecting the condition of the device background.
  • the measurement buffer was removed from each culture well of the culture plate. Furthermore, a Ca staining solution “Fluo-3” solution was added to each culture well of the culture plate, and left in the dark at 37 ° C. for 1 hour to infiltrate the cells. After that, the above-mentioned Ca staining solution "Fluo-3” solution was removed. In addition, cells were washed several times with phosphate buffer at 37 ° C as needed to remove residual Ca staining solution “Fluo-3” solution. Next, measurement buffer at 37 ° C was added to each culture well to keep the cells in an appropriate state so as not to dry out during the measurement. Thereafter, fluorescence measurement was performed on the cells of each culture well of the culture plate using the above-mentioned fluorescence measurement device, and the calcium ion concentration (M2) in the cells before magnetic stimulation was measured.
  • M2 calcium ion concentration
  • This fluorescence measurement was carried out at an excitation wavelength of 485 nm and a measurement wavelength of 538 nm in a single measurement using the above-mentioned fluorescence measurement apparatus “Fluoroscan Ascent” (manufactured by Thermo Electronics Co., Ltd.).
  • Fluoroscan Ascent manufactured by Thermo Electronics Co., Ltd.
  • 35 to 60 points were measured by selecting a part with many cells per well of the culture plate. Therefore, data of 35 to 60 calcium ion concentrations (M2) were obtained for cells in one culture well.
  • Magnetic stimulation was applied to each cell in the culture plate for 10 minutes using an experimental magnetic stimulation device corresponding to the pain treatment device 10 described above. At this time, experiments were performed by changing the frequency of the high frequency alternating magnetic field applied to the cells in the range of 10 MHz to 500 MHz.
  • This magnetic stimulation device is a signal generator (made by “E4421B” Agilent) for generating high frequencies in the MHz band (10 MHz to 500 MHz) and a low frequency in the kHz band (2. OkHz).
  • a function generator (“33220A” manufactured by Agilent), a function generator (“320” manufactured by Yokogawa Denki) for generating a high frequency in the Hz band (7.81 kHz), and a control device for controlling them; From the amplifier that controls the intensity of the generated frequency and the oscillating coil Configured
  • this oscillation coil 50 has a copper wire wound around the outer periphery of an acrylic annular base 52 having a diameter of 3 cm, an axial width of 9 mm, and a radial thickness of 2 mm.
  • a high frequency coil 30 and a low frequency coil 40 are formed.
  • the high frequency coil 30 is a one-turn solenoid coil (diameter 3 cm)
  • the low frequency coil 40 is a 200-turn solenoid coil (diameter 3 cm, winding width 5 mm).
  • the oscillation coil 50 one in which two kinds of coils, that is, the high frequency coil 30 and the low frequency coil 40, are coaxially formed on one annular base portion 50 is used.
  • the culture plate 60 After measurement of the calcium ion concentration (M2) was placed on the oscillation coil 50, and a light shielding cloth was placed thereon. Next, a high frequency current and a low frequency current are applied to the high frequency coil 30 and the low frequency coil 40 of the oscillation coil 50 respectively to generate an electromagnetic wave including a high frequency alternating magnetic field and a low frequency alternating magnetic field.
  • the cells in each culture well of plate 60 were subjected to magnetic stimulation for 10 minutes.
  • the frequency of the high frequency current applied to the high frequency coil 30 is stepwise changed between 10 and 500 MHz for each experimental unit to obtain different therapeutic high frequency high frequency alternating magnetic fields for cells. I was allowed to act. Among these, one with a frequency of 50 to 140 MHz was taken as the present embodiment, and one with a frequency below 50 MHz and above 140 MHz was taken as a comparative example. On the other hand, the frequency of the low frequency current applied to the low frequency coil 40 was maintained at 2.0 kHz, and a low frequency alternating magnetic field with a constant frequency (2.0 kHz) was applied to the cells.
  • both high frequency alternating magnetic fields and low frequency alternating magnetic fields were intermittently output at 7. 8 Hz, regardless of the frequency of the high frequency alternating magnetic field.
  • the magnetic field strength at the center of the oscillation coil 50 during magnetic stimulation was 784 nanotesla.
  • the reason for determining that the increase in calcium ion concentration is positive when the above-mentioned calcium ion increase degree R is 1.2 or more is as follows.
  • the mechanism of extracellular release of intracellular substances is the most frequent by the above exocytosis, and in order for this exocytosis to occur, it is necessary to increase the intracellular calcium ion concentration.
  • the calcium ion concentration in the cells is not completely constant even when the cells are not excited, and minor fluctuations occur. Therefore, in the physiological field, calcium ion concentration is 1. 2 times
  • the above rise is considered as the basis of cell excitation. Therefore, in the experiment, too, the criterion of 1. 2 was adopted.
  • these positive rates P are averaged for each frequency of the same high frequency alternating magnetic field, and the average positive rate of calcium ion elevation (% Asked for). Furthermore, the average value of the calcium ion rise degree R was also determined for each experimental unit of the frequency.
  • “Frequency (MHz)” is the frequency of the high frequency electromagnetic wave generated by the above magnetic stimulation device, that is, the frequency of the high frequency alternating magnetic field applied to the cells.
  • “Positive rate (%)” indicates that the intracellular calcium ion concentration after magnetic stimulation is 1 before magnetic stimulation.
  • Average positive rate (%) is the value obtained by averaging the above positive rates (%) for the same frequency
  • Ca rise is the value obtained by dividing the intracellular calcium ion concentration after magnetic stimulation by the calcium ion concentration before stimulation (the above calcium ion rise R) and averaging the values for each experimental unit. It indicates how many times the calcium ion concentration after magnetic stimulation at a frequency has been before magnetic stimulation.
  • astrocytes are cells that release nerve growth factor (NGF), which has the function of repairing nerve cells, and contribute to the analgesic effect of chronic pain.
  • NGF nerve growth factor
  • the average positive rate is 95%
  • the frequency is 95 MHz
  • the average positive rate is 91.5%. Therefore, if a high frequency alternating magnetic field with a frequency of 70 to 95 MHz is applied, the calcium ion concentration rises sufficiently in at least 90% or more of astrocytes, resulting in the occurrence of exocytosis. If you show the effect!
  • the average positive rate is 81%, and the frequency is 105 If it is MHz, the average positive rate is 72.7%. Therefore, if a high frequency alternating magnetic field with a frequency of 65 to 105 MHz is applied, the calcium ion concentration rises sufficiently in at least 70% or more of astrocytes, resulting in exocytosis. If you show the effect!
  • the average positive rate is 62.7%
  • the average positive rate is 59.7%. Therefore, if a high frequency alternating magnetic field with a frequency of 55 to 110 MHz is applied, the calcium ion concentration is sufficiently increased in at least 50% or more of astrocytes to cause exocytosis. If you show the effect!
  • the average positive rate is 45.3%
  • the frequency is 120 MHz
  • the average positive rate is 43.3%. Therefore, if a high frequency alternating magnetic field with a frequency of 50 to 120 MHz is applied, the calcium ion concentration is sufficiently increased in at least 40% or more of astrocytes, and an exocytosis occurs, so that good analgesia is produced. If you show the effect!
  • the average positive rate is 34%, and when the frequency is 140 MHz, the average positive rate is 30.6%. Therefore, if a high frequency alternating magnetic field with a frequency of 40 to 140 MHz is applied, the calcium ion concentration rises sufficiently in at least 30% or more of astrocytes, and an exocytosis occurs, so that a good pain relief effect is obtained. It can be said that it exerts.
  • the average positive rate is very low at 0 to 2%.
  • the frequency is greater than 140 MHz, for example, 200 MHz, 300 MHz, 385 MHz and 500 MHz, the average positive rate is as low as «0-11. 5%. Therefore, even if a high frequency alternating magnetic field with a frequency of less than 40 MHz or greater than 140 MHz is applied, the calcium ion concentration is sufficiently increased, and the number of astrocytes in which exocytosis occurs is small (or zero). Therefore, it can be said that the analgesic effect is low.
  • glial cells like the above astrocytes, release nerve growth factor (NGF) having a function of repairing nerve cells, and contribute to the analgesic effect of chronic pain.
  • NGF nerve growth factor
  • the average positive rate is 93.3%, and when the frequency is 95 MHz, the average positive rate is 94.5%. Therefore, if a high frequency alternating magnetic field with a frequency of 70 to 95 MHz is applied, the calcium ion concentration is sufficiently increased in the glial cells of at least 90% or more to cause exocytosis, so that a very excellent analgesic effect is obtained. When you show off!
  • the average positive rate is 75.5%
  • the frequency is 100 MHz
  • the average positive rate is 78.5%. Therefore, if a high frequency alternating magnetic field with a frequency of 65 to 100 MHz is applied, the calcium ion concentration is sufficiently increased in glial cells of at least 70% or more to cause exocytosis. It will be amazing to show its effect.
  • the average positive rate is 55.3%
  • the frequency is 11 OMHz
  • the average positive rate is 55.3%. Therefore, if a high frequency alternating magnetic field with a frequency of 55 to L 10 MHz is applied, the calcium ion concentration is sufficiently raised to cause an exocytosis in at least 50% or more of glial cells, so that an excellent pain relief effect is obtained. It can be said that
  • the average positive rate is 43.7%, and when the frequency is 120 MHz, the average positive rate is 47.7%. Therefore, if a high frequency alternating magnetic field with a frequency of 50 to 120 MHz is applied, the calcium ion concentration is sufficiently increased in glial cells of at least 40% or more to cause exocytosis, which is good. It can be said that it exerts an analgesic effect.
  • the average positive rate is 33%. Therefore, if a high frequency alternating magnetic field with a frequency of 50 to 140 MHz is applied, the calcium ion concentration is sufficiently raised to at least 30% or more of the gray cells to cause excitocytosis. It can be said that it exerts an effect.
  • the average positive rate is as low as 23% or less.
  • the frequency is greater than 140 MHz, for example, 200 MHz, 350 MHz, and 385 MHz, the average positive rate is as low as 0 to L: 1.5%. Therefore, even if the frequency is less than 50 MHz or greater than 140 MHz, the calcium ion concentration is sufficiently increased and the number of glial cells in which the exocytosis occurs is small (or zero). , The pain relief effect is low.
  • the frequency of the high frequency alternating magnetic field acting on the cells has a remarkable peak at 83.3 MHz, and the positive rate of increase in the calcium ion concentration in the cells is high, and the frequency is 83.3 MHz.
  • the positive rate gradually decreases as you move away from the
  • the therapeutic high frequency of the high frequency alternating magnetic field to be applied be 50 to 140 MHz.
  • the average positive rate of increase in calcium ion concentration is 30% or more, a good analgesic effect can be exhibited.
  • the frequency is less than 50 or greater than 140 MHz, the average positive rate of increase in calcium ion concentration may be less than 30%, so sufficient analgesic effects may not be obtained.
  • the therapeutic high frequency is more preferably 50 to 120 MHz, whereby the average positive rate of increase in calcium ion concentration is 40% or more, so that a good analgesic effect can be exhibited. Furthermore, it is more preferable that the therapeutic high frequency is 55 to: L lO MHz, whereby the average positive rate of increase in calcium ion concentration is 50% or more. Can exert a good analgesic effect. Furthermore, the therapeutic high frequency is more preferably 65 to: LOO MHz, and the average positive rate of increase in calcium ion concentration is 70% or more, so that it is possible to exert a very excellent analgesic effect.
  • the therapeutic high frequency is more preferably 70 to 95 MHz, and since the average positive rate of increase in calcium ion concentration is 90% or more, a very excellent analgesic effect can be exhibited. Furthermore, it is most preferable that the high frequency for treatment is in a predetermined range (83.3 ⁇ 10% MHz) centered on the above-mentioned 83.3 MHz peak, whereby the average positive rate of increase in calcium ion concentration is 100 Because it is close to%, it can exert extremely excellent analgesic effect.
  • the average positive rate is 30%, 40%, etc., it is administered to the living body about the reason for selecting the preferable range of the high frequency for medical treatment of the high frequency alternating magnetic field.
  • the general relationship between the drug and the cellular response will be described by way of example.
  • cells in the living body show a predetermined response by drug administration, but the proportion of cells that react at this time varies depending on the type of drug. For example, when a very potent drug (potassium cyanide, tetrodotoxin, etc.) is administered, 90% or more of the cells respond.
  • a very potent drug potassium cyanide, tetrodotoxin, etc.
  • conventional drugs are formulated so that 50 to 60% of cells respond.
  • Drugs with mild efficacy are formulated such that 30% of the cells react to suppress side effects.
  • a suitable high frequency alternating magnetic field is selected according to the average positive rate corresponding to the reaction rate of cells.
  • the frequency range of was selected. For example, by applying a high frequency alternating magnetic field of 50 to 55 MHz, relatively weak magnetic treatment can be given such that 30% to 40% of cells become positive. On the other hand, by applying a high frequency alternating magnetic field of 70 to 95 MHz, relatively strong magnetic therapy can be given such that cells of 90% or more become positive.
  • the high frequency and low frequency electromagnetic wave generation means is provided with a coil such as the high frequency coil 30 or the low frequency coil 40 as an antenna for emitting an electromagnetic wave. It is not limited to profitable examples.
  • Antennas that radiate electromagnetic waves include, for example, rod antennas, Hertz dipole antennas, short antennas, half-wavelength dipole antennas, helical antennas, monopole antennas, diamond antennas, array antennas, and horn antennas in addition to loop antennas such as coils. It may be configured with various antennas such as a parabola antenna or slot antenna.
  • the coil used as the antenna can be composed of a solenoid coil, Helmholtz antenna, rotary coil, split pair coil, shim coil, or saddle coil.
  • the material, shape, number of turns, presence / absence of axis, arrangement of the high frequency coil 30 or the low frequency coil 40 are not limited to the examples of the above embodiment.
  • a control block as shown in FIG. 3 is used as a high frequency oscillating means and a low frequency oscillating means for applying a high frequency current or a low frequency current to the high frequency coil 30 or the low frequency coil 40.
  • the circuit configuration of the control block 20 can be variously changed in design, for example, as long as a high frequency within the range of a predetermined high frequency for treatment (for example, 50 to 140 MHz) can be oscillated.
  • Frequency oscillating means 25 may be provided.
  • the example of 83.3 MHz was mainly described as the high frequency for treatment of high frequency electromagnetic waves (high frequency alternating magnetic field), but the present invention is limited to the example of force.
  • the high frequency for treatment may be a predetermined frequency within the range of 50 to 140 MHz.
  • the low frequency for the treatment of low frequency electromagnetic waves has been described with the example of 2. OkHz, for example, the invention is not limited to the example of force, and the low frequency for treatment is predetermined within the range of about 2.0 ⁇ 10% kHz.
  • the frequency may be any frequency in the other range.
  • the high frequency electromagnetic wave is a substantially sinusoidal wave, but is not limited to this example, and may be, for example, a substantially rectangular wave, a sawtooth wave or the like.
  • the low frequency electromagnetic wave is a substantially rectangular wave, it is not limited to a strong example, and may be, for example, a substantially sine wave, a sawtooth wave or the like.
  • the low frequency electromagnetic wave is a substantially rectangular wave having two values of a predetermined positive value and a zero value, the two values are not limited to the example of force, and for example, both positive values and both negative values. A value or one may be positive and the other negative.
  • the high frequency electromagnetic wave generating means generates the high frequency electromagnetic wave intermittently in a combined intermittent manner at frequencies of about 2. Ok Hz and about 7. 81 Hz. It is not limited to the example.
  • the high frequency electromagnetic wave generation means may intermittently generate high frequency electromagnetic waves, for example, only at a frequency of approximately 2.0 k ⁇ 10% kHz or at any frequency of approximately 7. 8 Hz ⁇ 10%.
  • High frequency electromagnetic waves may be generated intermittently at one or more frequencies other than the above frequencies.
  • the high frequency electromagnetic wave generation means may generate the high frequency electromagnetic wave continuously (for example, as a continuous wave of 83.3 MHz ⁇ 10%) without intermittent.
  • the high frequency electromagnetic wave generation means does not generate the high frequency electromagnetic wave completely intermittently as described above, but, for example, the high frequency electromagnetic wave has an electromagnetic wave intensity of a predetermined frequency or more (1 or 2 or more) For example, it may be generated to increase or decrease, for example, approximately sinusoidally at approximately 2. Ok ⁇ 10% kHz and approximately 7.81 Hz ⁇ 10%. Also in this case, the intensity of the high frequency alternating magnetic field acting on the treatment subject can be periodically increased or decreased to change the alternating magnetic field stimulation, thereby enhancing the magnetic treatment effect. Furthermore, in synchronization with the periodic increase and decrease of the high frequency electromagnetic wave intensity, for example, the low frequency electromagnetic wave generated by the low frequency electromagnetic wave generator may be periodically increased or decreased or interrupted.
  • the low frequency electromagnetic wave generating means intermittently generates the low frequency electromagnetic wave with a cycle of about 7. 8 Hz, but the present invention is not limited to the example.
  • the low frequency electromagnetic wave generation means is, for example, a low frequency electromagnetic wave at one or more frequencies other than the above frequency. May occur intermittently. Also, the low frequency electromagnetic wave generation means may generate the low frequency electromagnetic wave continuously without intermittent.
  • the pain treatment device 10 is configured to be capable of generating both high frequency electromagnetic waves and low frequency electromagnetic waves by including both the high frequency oscillation means 24 and the low frequency oscillation means 25.
  • the invention is not limited to the examples given.
  • the pain treatment device 10 may be configured to generate only the high frequency electromagnetic wave without the low frequency oscillation means 25 described above.
  • the pain treatment device 10 is additionally provided with one or more new electromagnetic wave generation means (for example, another coil etc.) May be Furthermore, the electromagnetic wave generated by the added electromagnetic wave generating means may be, for example, an electromagnetic wave of an arbitrary frequency such as a long wave, a medium wave, a short wave, an ultrashort wave, or a microwave.
  • the pain treatment device 10 may be, for example, a vibration generating means for giving vibration to the treatment subject, frequency or intensity of an electromagnetic wave (alternate magnetic field) to be applied, room temperature, body temperature. , Various measuring devices to measure the remaining amount of battery, etc., timer devices to measure and control the irradiation continuation time (operation time) of the alternating magnetic field and to perform the automatic on / off operation of the operation, etc.
  • a sound generator such as a buzzer device for notifying the end of time, power consumption, etc. by voice may be provided as appropriate, and a belt or adhesive mounting means for mounting the therapeutic device body on the affected area may be provided appropriately.
  • the pain treatment device 10 is configured to generate high frequency electromagnetic waves of 50 to 140 MHz (for example, 83.3 MHz), the present invention is not limited to the example of the present invention.
  • the pain treatment device 10 may be any frequency within 50 to 140 MHz divided by any positive integer (for example, 83.3 MHz divided by 2, 3, ... about 41.6 MHz, 27). And so on), and is also configured to generate high frequency electromagnetic waves of 50 to 140 MHz using harmonics that are incidental to the generation of electromagnetic waves of this frequency. Just a minute.
  • the fundamental wave of the high frequency electromagnetic wave to be generated is not a perfect sine wave, harmonics inevitably occur at a frequency that is an integral multiple of the fundamental wave. Because of this, 50MH Even if an electromagnetic wave of less than z (for example, about 41.65 MHz, about 27.8 MHz, etc.) is generated as a fundamental wave, a high frequency electromagnetic wave of a frequency that is an integral multiple (twice, three times,. (Eg 83.3 MHz) are generated as harmonics.
  • the frequency of this harmonic is in the preferred frequency range according to the present embodiment, that is, 50 to 140 MHz, preferably 50 to 120 MHz, more preferably 55 to: L 10 MHz, still more preferably 65 to 50 MHz.
  • the magnetic therapeutic effect is produced by applying the harmonics to the treatment object if it is within the range of LOO MHz, still more preferably 70 to 95 MHz, particularly preferably 83.3 ⁇ 10% MHz.
  • a pain treatment device and a high frequency treatment device that generate a fundamental wave that is a generation source of the harmonics are included in the technical scope of the present invention.
  • the pain treatment device 10 generates the high frequency electromagnetic wave of 50 to 140 MHz by intermittently generating the high frequency electromagnetic wave of frequency higher than 140 MHz at 50 to 140 MHz.
  • a high frequency electromagnetic wave for example, 1 GHz
  • the carrier is used as the above-mentioned therapeutic high frequency 50 to 140 MHz (for example 83.3 MHz).
  • the living cell By turning on and off at the cycle corresponding to, and outputting, the living cell will react as if only the high frequency electromagnetic wave for treatment was irradiated. Therefore, a pain treatment device that intermittently generates a carrier wave that is a source of the high frequency is included in the technical scope of the present invention.
  • the high frequency for treatment may be a fixed value within the range of 50 to 140 MHz.
  • the high frequency for the treatment is 50 to 140 MHz, preferably 3 ⁇ 450 to 120 MHz, more preferably 55 :: L l O MHz, more preferably 5 ⁇ 65 to: LOO MHz, still more preferably 70 to 95 MHz, particularly preferably 83.3 ⁇ 10% MHz.
  • a pain treatment device for treating pain in an affected part of a treatment subject has been described as a high frequency treatment device
  • the present invention is not limited to the example.
  • the high frequency treatment device of the present invention can be applied to, for example, various kinds of treatment devices having magnetic treatment effects such as blood circulation promotion.
  • the present invention is applicable to high frequency therapeutic devices, and in particular, applicable to pain treatment devices that cause magnetic therapeutic effects such as analgesia and blood circulation promotion by causing a high frequency alternating magnetic field to act on a treatment subject. It is.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Pain & Pain Management (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

A sharp pain treatment device by which magnetic treatment effect can be enhanced by the action of an alternating magnetic field having a suitable frequency. The sharp pain treatment device for making an alternating magnetic field act on the affected part of a body to be treated comprises a means for generating a high frequency electromagnetic wave having a high frequency for treatment for making a high-frequency alternating magnetic field having a high frequency for treatment act on the affected part, characterized in that the high frequency for treatment is selected from a range of 50-140 MHz. With such an arrangement, the sharp pain treatment device can make a high frequency alternating magnetic field having a suitable frequency and exhibiting high magnetic treatment effect act on the affected part. With such a magnetic stimulus, exocytosis is induced by raising calcium ion concentration in the cells at the affected part and substances exhibiting pain-killing action can be discharged. Consequently, magnetic treatment effect such as pain-killing effect and blood circulation promotion effect can be enhanced by activating cellular tissue at the affected part furthermore.

Description

明 細 書  Specification
疼痛治療器,高周波治療器  Pain treatment device, high frequency treatment device
技術分野  Technical field
[0001] 本発明は,被治療体の患部に対して交番磁界を作用させるための高周波治療器, 特に,疼痛治療器に関する。  [0001] The present invention relates to a high frequency treatment apparatus for causing an alternating magnetic field to act on an affected area of a treatment subject, and more particularly to a pain treatment apparatus.
背景技術  Background art
[0002] 従来,人体の患部に対して交番磁界を照射して刺激を与えることにより,疼痛の軽 減,血行の促進等の磁気治療効果があることが知られている。かかる磁気治療効果 を得るべく,コイル等に交流電流を印加して発生させた交番磁界を,患部に対して照 射する各種の磁気治療器が提案されている。このうち,高周波治療器は,高周波電 磁波を発生させ,高周波交番磁界を被治療体に作用させる装置である。例えば,特 許文献 1には,高周波発振器によって発振した 13. 56MHz, 27, 12MHz等の高 周波電流をコイルに印加して,当該周波数の高周波電磁波を放射する高周波治療 器が記載されている (例えば,特許文献 1参照)。  Hitherto, it has been known that magnetic treatment effects such as pain reduction and blood circulation promotion can be obtained by applying an alternating magnetic field to an affected part of a human body to give a stimulus. In order to obtain such a magnetic therapeutic effect, various magnetic therapeutic devices have been proposed which irradiate an alternating magnetic field generated by applying an alternating current to a coil etc. to the affected area. Among these, the high frequency treatment device is a device that generates high frequency electromagnetic waves and causes a high frequency alternating magnetic field to act on the treatment object. For example, Patent Document 1 describes a high frequency treatment device which applies a high frequency current of 13.56 MHz, 27, 12 MHz, etc. oscillated by a high frequency oscillator to a coil and radiates a high frequency electromagnetic wave of the frequency ( See, for example, Patent Document 1).
[0003] 特許文献 1 :特開平 9 84886号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 9 84886
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0004] しかしながら,上記従来の高周波治療器では,患部に作用させる交番磁界の周波 数が好適でないなどの原因で,十分な磁気治療効果が得られない場合もあった。こ のため,患部に対して効果的な周波数の高周波交番磁界を作用させて,優れた磁 気治療効果を得ることが可能な高周波治療器としての疼痛治療器が希求されていた However, in the above-described conventional high frequency treatment apparatus, there are cases where a sufficient magnetic treatment effect can not be obtained due to the fact that the frequency of the alternating magnetic field acting on the affected area is not suitable. Therefore, there is a need for a pain treatment device as a high frequency treatment device capable of obtaining an excellent magnetic treatment effect by causing a high frequency alternating magnetic field having an effective frequency to act on the affected area.
[0005] そこで,本発明は,上記問題に鑑みてなされたものであり,本発明の目的とするとこ ろは,好適な周波数の高周波交番磁界を作用させることにより,磁気治療効果を向 上させることが可能な,新規かつ改良された疼痛治療器,高周波治療器を提供する ことにある。 Therefore, the present invention has been made in view of the above problems, and the object of the present invention is to improve the magnetic treatment effect by applying a high frequency alternating magnetic field of a suitable frequency. To provide a new and improved pain treatment device and high frequency treatment device that can
課題を解決するための手段 [0006] 磁気治療効果のメカニズムについては完全には解明されていないが,本願発明者 らは,所定の周波数の高周波交番磁界を被治療体 (例えば人体の疼痛部位 (患部) など)に作用させることにより,被治療体における特定種類の細胞内のカルシウムィォ ン (Ca2+)濃度を上昇させて,ェキソサイト一シス (exocytosis;開口放出)なる反応を 誘発し,この結果,疼痛緩和等に寄与する物質の分泌を促す作用があることが,磁 気治療効果の主要因の 1つであると考えた。 Means to solve the problem Although the mechanism of the magnetic therapeutic effect has not been completely elucidated, the inventors of the present invention apply a high frequency alternating magnetic field of a predetermined frequency to a treatment subject (for example, a pain site (affected area) of a human body). In this way, the concentration of calcium ion (Ca 2+ ) in specific types of cells in the treatment subject is increased to induce an exocytosis reaction, which contributes to alleviation of pain and the like. It is thought that one of the main factors of the therapeutic effect on magnetism is the ability to promote the secretion of substances.
[0007] そこで,本願発明者らは,力かる細胞内のカルシウムイオン濃度上昇に伴うェキソ サイト一シスの誘発作用に着目し,鋭意努力して,被治療体に作用させる高周波交 番磁界の周波数について実験及び検討を行った。この結果,磁気治療効果をより高 めることが可能な好適な周波数が,約 83. 3MHz前後であることを見出し,以下のよ うな本願発明に想到した。  Therefore, the inventors of the present application pay attention to the evoked action of exocytosis associated with an increase in calcium ion concentration in the cell to which it is applied, and work hard on the frequency of the high frequency alternating magnetic field to be applied to the treatment object. Experiments and studies were conducted. As a result, it has been found that a suitable frequency capable of further enhancing the magnetic therapeutic effect is about 83.3 MHz, and the present invention has been conceived as follows.
[0008] 上記課題を解決するために,本発明のある観点によれば,被治療体の患部に対し て交番磁界を作用させるための疼痛治療器が提供される。この疼痛治療器は,治療 用高周波数の高周波交番磁界を患部に対して作用させるため,治療用高周波数の 高周波電磁波を発生させる高周波電磁波発生手段を備え,上記治療用高周波数は 50〜 140MHzの範囲力 選択されることを特徴とする。  In order to solve the above-mentioned problems, according to one aspect of the present invention, there is provided a pain treatment apparatus for causing an alternating magnetic field to act on an affected area of a treatment subject. This pain treatment device is provided with high frequency electromagnetic wave generating means for generating high frequency high frequency electromagnetic waves for treatment in order to cause high frequency high frequency alternating magnetic fields for treatment to act on the affected part, and the high frequency for treatment is 50 to 140 MHz. Range force is characterized by being selected.
[0009] 力かる構成により,疼痛治療器は,磁気治療に適した治療用高周波数の高周波電 磁波を発生させることによって,当該治療用高周波数の高周波交番磁界を放射して ,被治療体の患部に作用させることができる。力かる磁気刺激により,被治療体の患 部における細胞内のカルシウムイオン濃度を上昇させて,ェキソサイト一シスを誘発 させ,鎮痛作用を奏する物質 (例えば,神経成長因子, )8エンドルフィンなど)を放出 させることができる。従って,被治療体の組織の活性ィ匕による鎮痛効果,血行促進効 果などの磁気治療効果を向上することができる。  [0009] With the strong configuration, the pain treatment device emits a high frequency high frequency electromagnetic wave for treatment by generating a high frequency high frequency electromagnetic wave for treatment suitable for magnetic treatment, thereby emitting a high frequency alternating magnetic field for the high frequency treatment. It can act on the affected area. Forced magnetic stimulation elevates intracellular calcium ion concentration in the affected area of the subject to induce exocytosis and release substances that exert analgesia (eg, nerve growth factor, 8 endorphin etc.) It can be done. Therefore, magnetic therapeutic effects such as analgesia and blood circulation promoting effects by the activity of the tissue of the treatment subject can be improved.
[0010] また,上記 50〜 140MHzの高周波交番磁界を被治療体の患部に作用させること により,例えば,所定の細胞内のカルシウムイオン濃度の上昇度が所定割合以上 (例 えば 1. 2倍以上)となる陽性率を,例えば 30%以上にできるので,磁気治療効果を 向上できる。  Further, by causing the above-mentioned high frequency alternating magnetic field of 50 to 140 MHz to act on the affected part of the treatment subject, for example, the increase degree of the calcium ion concentration in a predetermined cell is a predetermined rate or more (eg, 1. 2 times or more) The positive treatment rate can be increased to, for example, 30% or more, which can improve the magnetic therapy effect.
[0011] このように,本発明の疼痛治療器は,上記高周波電磁波発生手段から放射された 治療用高周波数の高周波交番磁界を,患部に対して作用させることにより,患部に おける細胞内のカルシウムイオン濃度を上昇させ,所定物質のェキソサイト一シス ( 神経成長因子, βエンドルフィン等)を誘発させるための治療器である。 Thus, the pain treatment apparatus of the present invention is emitted from the high frequency electromagnetic wave generation means. By acting a therapeutic high frequency high frequency alternating magnetic field on the affected area, the calcium ion concentration in cells in the affected area is increased to induce the exocytosis (neuron growth factor, β endorphin etc.) of the specified substance. Treatment equipment.
[0012] また,上記治療用高周波数は, 50〜 120MHzの範囲力も選択されるようにしてもよ い。これにより,周波数が 50〜120MHzである高周波交番磁界を被治療体の患部 に作用させて,上記陽性率を例えば 40%以上にできるので,磁気治療効果を更に 向上できる。  In addition, as the high frequency for treatment, a range power of 50 to 120 MHz may be selected. By this, a high frequency alternating magnetic field having a frequency of 50 to 120 MHz can be applied to the affected part of the treatment subject to make the positive rate, for example, 40% or more, so that the magnetic therapeutic effect can be further improved.
[0013] また,上記治療用高周波数は, 55〜: L lOMHzの範囲力も選択されるようにしてもよ い。これにより,周波数が 55〜: L lOMHzである高周波交番磁界を被治療体の患部 に作用させて,上記陽性率を例えば 50%以上にできるので,磁気治療効果を更に 向上できる。  In addition, the therapeutic high frequency may be selected from the range of 55 to L lO MHz. As a result, a high frequency alternating magnetic field with a frequency of 55 to: L 10 MHz can be applied to the affected part of the treatment subject to make the above-mentioned positive rate 50% or more, thereby further improving the magnetic therapy effect.
[0014] また,上記治療用高周波数は, 65〜: LOOMHzの範囲力も選択されるようにしてもよ い。これにより,周波数が 65〜: LOOMHzである高周波交番磁界を被治療体の患部 に作用させて,上記陽性率を例えば 70%以上にできるので,磁気治療効果を更に 向上できる。  [0014] In addition, the therapeutic high frequency may be selected from the range power of 65 to: LOO MHz. As a result, the high-frequency alternating magnetic field with a frequency of 65 to: LOO MHz can be applied to the affected part of the treatment subject to increase the above-mentioned positive rate to, for example, 70% or more, thereby further improving the magnetic therapy effect.
[0015] また,上記治療用高周波数は, 75〜95MHzの範囲力も選択されるようにしてもよ い。これにより,周波数が 70〜95MHzである高周波交番磁界を被治療体の患部に 作用させて,上記陽性率を例えば 90%以上にできるので,磁気治療効果を更に向 上できる。  In addition, the therapeutic high frequency may be selected to be in the range of 75 to 95 MHz. Thus, a high frequency alternating magnetic field with a frequency of 70 to 95 MHz can be applied to the affected area of the treatment subject to increase the positive rate to, for example, 90% or more, thereby further improving the magnetic therapy effect.
[0016] また,上記治療用高周波数は, 83. 3± 10%MHzの範囲力も選択されるようにし てもよい。これにより,周波数が 83. 3± 10%MHzである高周波交番磁界を被治療 体の患部に作用させて,上記陽性率を例えば約 100%にできるので,磁気治療効果 を更に向上できる。  [0016] In addition, the therapeutic high frequency may be selected to be in the range of 83.3 ± 10% MHz. As a result, a high frequency alternating magnetic field with a frequency of 83.3 ± 10% MHz can be applied to the affected area of the treatment subject to make the above-mentioned positive rate about 100%, thus further improving the magnetic therapy effect.
[0017] また,上記高周波電磁波発生手段は,高周波電流を出力する高周波発振手段と; この高周波発振手段から高周波電流が印可されることによって,上記治療用高周波 数の高周波電磁波を発生させるアンテナと;を備えるようにしてもよい。これにより,上 記治療用高周波数の高周波電磁波を好適に発生させて,上記治療用高周波数の 高周波交番磁界を被治療体の患部に適切に作用させることができる。 [0018] また,上記高周波電磁波発生手段は,高周波電磁波を発生させるオン期間と,高 周波電磁波を発生させないオフ期間を所定の周期で繰り返して,高周波電磁波を間 欠的に発生させるようにしてもよい。これにより,高周波交番磁界を間欠的に発生さ せて被治療体の患部に作用させることができるので,当該患部に対して,高周波交 番磁界を作用させた状態と,作用させない状態とを繰り返し切り替えることができる。 このため,当該患部に作用する高周波交番磁界刺激に変化が生じ,磁気治療効果 を高めることができる。 Further, the high frequency electromagnetic wave generation means is a high frequency oscillation means for outputting a high frequency current; and an antenna for generating the high frequency electromagnetic wave of the high frequency for the treatment by applying the high frequency current from the high frequency oscillation means; May be provided. Thus, the high frequency high frequency electromagnetic wave for the treatment can be suitably generated, and the high frequency alternating magnetic field for the treatment can be appropriately applied to the affected area of the treatment object. Further, the high frequency electromagnetic wave generation means may intermittently generate the high frequency electromagnetic wave by repeating the on period for generating the high frequency electromagnetic wave and the off period for not generating the high frequency electromagnetic wave at a predetermined cycle. Good. Thus, the high frequency alternating magnetic field can be generated intermittently to act on the affected part of the treatment subject, and therefore, the state where the high frequency alternating magnetic field is applied to the affected part and the state where it is not applied are repeated. It can be switched. As a result, changes occur in the high frequency alternating magnetic field stimulation that acts on the affected area, and the magnetic treatment effect can be enhanced.
[0019] また,上記高周波電磁波発生手段は,高周波電磁波を発生させる第 1のオン期間 と,高周波電磁波を発生させない第 1のオフ期間を, 2. 0± 10%kHzに対応する周 期で繰り返して,高周波電磁波を間欠的に発生させるようにしてもよい。さらに,上記 高周波電磁波発生手段は,高周波電磁波を発生させる第 2のオン期間と,高周波電 磁波を発生させない第 2のオフ期間を, 7. 8± 10%Hzに対応する周期で繰り返して ,高周波電磁波を間欠的に発生させるようにしてもよい。これにより,被治療体の患部 の細胞が敏感に反応する好適な時間間隔で高周波交番磁界を間欠発生させて,患 部に作用させることができる。  Further, the high frequency electromagnetic wave generation means repeats the first on period for generating the high frequency electromagnetic wave and the first off period for not generating the high frequency electromagnetic wave in a cycle corresponding to 2.0 ± 10% kHz. Thus, high frequency electromagnetic waves may be generated intermittently. Furthermore, the high frequency electromagnetic wave generating means repeats the second on period for generating the high frequency electromagnetic wave and the second off period for not generating the high frequency electromagnetic wave, repeating the cycle corresponding to 7. 8 ± 10% Hz. The electromagnetic waves may be generated intermittently. As a result, the high frequency alternating magnetic field can be intermittently generated at an appropriate time interval in which the cells of the affected area of the treatment subject react sensitively to act on the affected area.
[0020] また,上記所定の治療用低周波数の低周波交番磁界を患部に対して作用させるた め,治療用低周波数の低周波電磁波を発生させる低周波電磁波発生手段を備え, 治療用低周波数は 2. 0± 10%kHzの範囲から選択されるようにしてもよい。これによ り,被治療体の患部に対して,上記高周波交番磁界のみならず,磁気治療に適した 治療用低周波数の周波数の低周波交番磁界を作用させて,被治療体の組織の活 性化,鎮痛作用の促進,血行の促進などを誘発することができる。例えば,被治療体 の細胞内の j8エンドルフィン分泌量を増大させることができる。これにより,被治療体 の患部に対する鎮痛効果などの磁気治療効果をさらに向上することができる。  [0020] Further, in order to cause the above-mentioned predetermined low frequency low frequency alternating magnetic field to act on the affected part, the low frequency low frequency electromagnetic wave generating means for generating low frequency low frequency electromagnetic waves is provided. May be selected from the range of 2. 0. +-. 10% kHz. As a result, not only the high frequency alternating magnetic field but also a low frequency alternating magnetic field with a therapeutic low frequency suitable for magnetic treatment is applied to the affected area of the object to be treated. It can induce sexualization, analgesia and blood circulation. For example, it is possible to increase the amount of j8 endorphin secretion in the cells of the subject. As a result, the magnetic therapeutic effect such as the analgesic effect on the affected area of the treatment subject can be further improved.
[0021] また,上記低周波電磁波発生手段は,低周波電流を出力する低周波発振手段と; 低周波発振手段力も低周波電流が印可されることによって,上記治療用低周波数の 低周波電磁波を発生させるアンテナと;を備えるようにしてもよい。これにより,上記治 療用低周波数の低周波電磁波を好適に発生させて,上記治療用低周波数の低周 波交番磁界を被治療体の患部に適切に作用させることができる。 [0022] また,上記低周波電磁波発生手段は,低周波電磁波を発生させるオン期間と,低 周波電磁波を発生させないオフ期間を所定の周期で繰り返して,低周波電磁波を間 欠的に発生させるようにしてもよい。これにより,低周波交番磁界を間欠的に発生さ せて被治療体の患部に作用させることができるので,当該患部に対して,低周波交 番磁界を作用させた状態と,作用させない状態とを切り替えることができる。このため ,当該患部に作用する低周波交番磁界刺激に変化が生じ,磁気治療効果を高める ことができる。 In addition, the low frequency electromagnetic wave generation means may be a low frequency oscillation means for outputting a low frequency current; and the low frequency oscillation means may also be applied with the low frequency current to obtain the low frequency electromagnetic wave for the treatment. An antenna to be generated may be provided. As a result, the low frequency electromagnetic wave for the low frequency treatment can be suitably generated, and the low frequency alternating magnetic field for the low frequency treatment can be appropriately applied to the affected part of the treatment subject. Further, the low frequency electromagnetic wave generation means intermittently generates the low frequency electromagnetic wave by repeating an on period for generating the low frequency electromagnetic wave and an off period for not generating the low frequency electromagnetic wave at a predetermined cycle. You may As a result, the low frequency alternating magnetic field can be generated intermittently to act on the affected part of the treatment subject. Therefore, the state where the low frequency alternating magnetic field is applied to the affected part, and the state where it is not applied to the affected part. Can be switched. For this reason, a change occurs in the low frequency alternating magnetic field stimulation acting on the affected area, and the magnetic treatment effect can be enhanced.
[0023] また,上記低周波電磁波発生手段は,低周波電磁波を発生させる第 3のオン期間 と,低周波電磁波を発生させない第 3のオフ期間を, 7. 8± 10%Hzに対応する周期 で繰り返して,低周波電磁波を間欠的に発生させるようにしてもよい。これにより,被 治療体の患部の細胞が敏感に反応する好適な時間間隔で低周波交番磁界を間欠 発生させて,患部に作用させることができる。  Further, the low frequency electromagnetic wave generating means has a third ON period for generating a low frequency electromagnetic wave and a third OFF period for not generating a low frequency electromagnetic wave, corresponding to a period corresponding to 7. 8 ± 10% Hz. The low frequency electromagnetic waves may be generated intermittently by repeating the above. As a result, the low frequency alternating magnetic field can be intermittently generated at a suitable time interval in which the cells of the affected area of the treatment subject react sensitively to act on the affected area.
[0024] また,上記高周波電磁波のオン期間と,低周波電磁波のオン期間とは,同期してい るようにしてもよい。即ち,上記間欠的に発生された高周波電磁波の発生期間と,上 記間欠的に発生された低周波電磁波の発生期間とは,同期しているようにしてもよい 。これにより,高周波交番磁界と低周波交番磁界とは,同タイミングで発生 Z非発生 を繰り返すので,双方の交番磁界が被治療体の患部に作用するときと,作用しないと きを明確に分離できる。このため,当該患部に作用する交番磁界刺激に明確な変化 が生じ,磁気治療効果を高めることができる。  Further, the on period of the high frequency electromagnetic wave and the on period of the low frequency electromagnetic wave may be synchronized with each other. That is, the generation period of the intermittently generated high frequency electromagnetic wave and the generation period of the intermittently generated low frequency electromagnetic wave may be synchronized with each other. As a result, since the high frequency alternating magnetic field and the low frequency alternating magnetic field repeat the generation Z non-generation at the same timing, it is possible to clearly separate the time when the both alternating magnetic fields act on the affected part of the treatment object and when it does not act. . For this reason, a clear change occurs in the alternating magnetic field stimulation acting on the affected area, and the magnetic therapeutic effect can be enhanced.
[0025] また,上記低周波電磁波は,略矩形波であるように構成してもよい。力かる構成によ り,低周波電磁波の波形の立ち上がり時間および立ち下がり時間を極小化できるの で,磁界強度が急激に変化する低周波交番磁界を,被治療体に作用させることがで きる。さらに,上記低周波電磁波は,所定値とゼロ値とからなる 2値をとるような略矩形 波としてもよい。これにより,磁界の発生と非発生を周期的に繰り返すような低周波交 番磁界を被治療体に作用させて,磁気治療効果を向上することができる。  The low frequency electromagnetic wave may be configured to be a substantially rectangular wave. Because the rise time and fall time of the low frequency electromagnetic wave waveform can be minimized by the force configuration, a low frequency alternating magnetic field whose magnetic field intensity changes rapidly can be applied to the treatment object. Furthermore, the low frequency electromagnetic wave may be a substantially rectangular wave having a binary value consisting of a predetermined value and a zero value. As a result, the magnetic treatment effect can be improved by causing a low frequency alternating magnetic field to periodically act on and off the magnetic field to act on the treatment subject.
[0026] また,上記高周波電磁波発生手段は, 140MHzより大きい周波数の高周波電磁 波を,治療用高周波数に対応する周期で間欠的に発生させることによって,上記治 療用高周波数の高周波電磁波を発生させるようにしてもよい。これにより,患部の細 胞が反応しない程度の高い周波数の高周波電磁波を搬送波として,上記治療用高 周波数の高周波電磁波を発生させることができる。 Further, the high frequency electromagnetic wave generation means intermittently generates the high frequency electromagnetic wave for medical treatment by intermittently generating the high frequency electromagnetic wave having a frequency higher than 140 MHz with a period corresponding to the high frequency for medical treatment. You may make it This makes it possible to The therapeutic high frequency electromagnetic wave can be generated using a high frequency electromagnetic wave having a high frequency to which the cells do not react as a carrier wave.
[0027] また,上記高周波電磁波発生手段が発生させる治療用高周波数の高周波電磁波 は, 50MHz未満の高周波電磁波を発生させる際に生じる高調波を含むようにしても よい。換言すると,高周波電磁波発生手段は,上記治療用高周波数 (50〜140MH z)の整数分の 1の周波数の電磁波を発生させる際に,高調波として当該 50〜140M Hzの範囲内の高周波電磁波を付随的に発生可能な電磁波発生手段であってもよ い。  [0027] Further, the therapeutic high frequency high frequency electromagnetic wave generated by the above high frequency electromagnetic wave generating means may include a harmonic generated when generating a high frequency electromagnetic wave of less than 50 MHz. In other words, the high frequency electromagnetic wave generation means generates high frequency electromagnetic waves in the range of 50 to 140 MHz as harmonics when generating the electromagnetic waves having a frequency of an integer fraction of the therapeutic high frequency (50 to 140 MHz). It may be an electromagnetic wave generator that can be generated incidentally.
[0028] 上記課題を解決するために,本発明の別の観点によれば,被治療体の患部に対し て交番磁界を作用させるための高周波治療器が提供される。この高周波治療器は, 治療用高周波数の高周波交番磁界を患部に対して作用させるため,治療用高周波 数の高周波電磁波を発生させる高周波電磁波発生手段を備え,上記治療用高周波 数は 50〜140MHzの範囲力も選択されることを特徴とする。  [0028] In order to solve the above problems, according to another aspect of the present invention, there is provided a high frequency treatment apparatus for causing an alternating magnetic field to act on an affected area of a treatment subject. This high frequency treatment device includes high frequency electromagnetic wave generating means for generating high frequency electromagnetic waves of the high frequency number for treatment, in order to apply high frequency high frequency alternating magnetic field for treatment to the affected part, and the high frequency number for treatment is 50 to 140 MHz. A range force is also selected.
発明の効果  Effect of the invention
[0029] 以上説明したように本発明によれば,被治療体の患部に対して,磁気治療効果に 優れた好適な治療用高周波数の交番磁界を作用させることにより,疼痛緩和や血行 促進等の磁気治療効果を大幅に向上させることができる。  As described above, according to the present invention, it is possible to relieve pain, promote blood circulation, etc. by acting on the affected part of the treatment subject a suitable high frequency therapeutic alternating magnetic field excellent in magnetic treatment effect. The magnetic therapeutic effect of
図面の簡単な説明  Brief description of the drawings
[0030] [図 1]本発明の第 1の実施形態にカゝかる疼痛治療器の外観を示す斜視図である。  FIG. 1 is a perspective view showing the appearance of a pain treatment device according to a first embodiment of the present invention.
[図 2]同実施形態にかかる疼痛治療器の内部構成を示す平面図である。  FIG. 2 is a plan view showing an internal configuration of the pain treatment device according to the embodiment.
[図 3]同実施形態にかかる疼痛治療器の回路構成例を示すブロック図である。  [FIG. 3] A block diagram showing an example of the circuit configuration of the pain treatment device according to the same embodiment.
[図 4]同実施形態にカゝかる高周波用コイルおよび低周波用コイルに印可される高周 波電流および低周波電流の波形を示す波形図である。  FIG. 4 is a waveform diagram showing waveforms of a high frequency current and a low frequency current applied to a high frequency coil and a low frequency coil according to the embodiment.
[図 5]同実施形態にかかる疼痛治療器を用いた治療態様を示す説明図である。  [FIG. 5] An explanatory view showing a treatment mode using the pain treatment device according to the embodiment.
[図 6]本発明の実施例に力かる実験 1の実験結果を示すグラフである。  FIG. 6 is a graph showing the experimental results of Experiment 1 focused on the example of the present invention.
[図 7]本発明の実施例に力かる実験 2の実験結果を示すグラフである。  FIG. 7 is a graph showing the experimental results of Experiment 2 focused on the example of the present invention.
[図 8]本発明の実施例に力かる実験 3の実験結果を示すグラフである。  FIG. 8 is a graph showing the experimental results of Experiment 3 focusing on the example of the present invention.
[図 9]本発明の実施例にカゝかる実験 5で用いた発振コイルの構成を示す斜視図であ る。 [FIG. 9] A perspective view showing the configuration of the oscillation coil used in Experiment 5 which is an example of the present invention. Ru.
圆 10]本発明の実施例に力かる実験 5の実験結果 (ァストロサイト)を示すグラフであ る。  圆 10] It is a graph showing the experimental result (astrocyte) of Experiment 5 focusing on the example of the present invention.
圆 11]本発明の実施例に力かる実験 5の実験結果 (グリア細胞)を示すグラフである。 符号の説明  11] It is a graph which shows the experimental result (glia cell) of Experiment 5 which presses on the Example of this invention. Explanation of sign
10 疼痛治療器  10 Pain treatment device
12 ハウジング  12 housing
16 表示部  16 Display
18 電源部  18 Power supply unit
20 制御ブロック  20 control block
21 電源供給回路  21 Power supply circuit
22 主制御回路  22 Main control circuit
23 クロック発生回路  23 Clock generator
24 高周波発振手段  24 High frequency oscillation means
25 低周波発振手段  25 Low frequency oscillation means
30 高周波用コイル  30 high frequency coil
40 低周波用コイル  40 Low frequency coil
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説 明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構 成要素については,同一の符号を付することにより重複説明を省略する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration will be assigned the same reference numerals and redundant description will be omitted.
[0033] (第 1の実施の形態)  First Embodiment
以下に,本発明の第 1の実施形態にかかる高周波治療器の一例である疼痛治療 器について説明する。  Hereinafter, a pain treatment device which is an example of the high frequency treatment device according to the first embodiment of the present invention will be described.
[0034] まず,図 1に基づいて,本実施形態に力かる疼痛治療器 10の外観構成について説 明する。なお,図 1は,本実施形態にかかる疼痛治療器 10の外観構成を示す斜視図 である。  First, based on FIG. 1, the external configuration of the pain treatment device 10 according to the present embodiment will be described. FIG. 1 is a perspective view showing the external appearance of the pain treatment device 10 according to the present embodiment.
[0035] 図 1に示すように,疼痛治療器 10は,例えば,ハウジング 12と,操作部 14と,表示 部 16とを備える。 As shown in FIG. 1, the pain treatment device 10 is, for example, a housing 12, an operation unit 14, and a display. And 16 are provided.
[0036] ハウジング 12は,内部に疼痛治療器 10の主要な各装置を収容するための筐体で あり,例えば,プラスチック等の合成樹脂などで形成されている。このハウジング 12は ,図 1の例では略直方体形状 (例えば,長さ 8cm X幅 6cm X高さ 2cm程度)を有して いるが,力かる例に限定されず,例えば,略球状,略楕円球状,略棒状,略立方体形 ,その他ユーザが把持しやすい形状など,任意の形状に変更可能である。疼痛治療 器 10のユーザは,力かるハウジング 12を把持して,疼痛治療器 10を患部に対して 直接接触させる,或いは患部に対して所定距離以内に接近させることにより,疼痛治 療器 10から放射された電磁波(交番磁界を含む。)を患部に作用させることができる  The housing 12 is a housing for housing the main devices of the pain treatment device 10 inside, and is formed of, for example, a synthetic resin such as plastic. Although this housing 12 has a substantially rectangular parallelepiped shape (for example, length 8 cm x width 6 cm x height 2 cm or so) in the example of FIG. 1, it is not limited to the example of force. It can be changed into any shape such as a spherical shape, a substantially rod shape, a substantially cubic shape, and a shape easy to be grasped by the user. The user of the pain treatment device 10 holds the powerful housing 12 and brings the pain treatment device 10 directly into contact with the affected area or brings the affected area within a predetermined distance. The radiated electromagnetic waves (including alternating magnetic fields) can be applied to the affected area
[0037] 操作部 14は,例えば,疼痛治療器 10の動作 (交番磁界の照射動作など)をオン Z オフするためのスィッチなどである。ユーザは,例えば,力かる操作部 14を押下する ごとに,疼痛治療器 10の動作 Z非動作を切り替えることができる。 The operation unit 14 is, for example, a switch or the like for turning on and off the operation (such as the irradiation operation of the alternating magnetic field) of the pain treatment device 10. For example, the user can switch the operation Z non-operation of the pain treatment device 10 each time the user depresses the operation unit 14.
[0038] また,表示部 16は,例えば, LED (発光ダイオード)等の発光ランプなどで構成さ れる。この表示部 16は,疼痛治療器 10の動作 Z非動作の状態や,後述する電源部 (図示せず。)の残量または充電の状態などを表示することができる。本実施形態で は,この表示部 16は,赤色 LED16aと緑色 LED16bの 2つの LEDで構成されている 。この赤色 LED16aは,例えば,電源部の電池残量等が所定レベル以上であれば 点灯し,このレベル未満であれば点滅する。また,緑色 LED16bは,疼痛治療器 10 の動作時には点灯又は点滅し,非動作時には消灯する。  Further, the display unit 16 is configured of, for example, a light emitting lamp such as an LED (light emitting diode). The display unit 16 can display the operation Z non-operation state of the pain treatment device 10, the remaining amount or charging state of a power source unit (not shown) described later, and the like. In this embodiment, the display unit 16 is composed of two LEDs, a red LED 16 a and a green LED 16 b. The red LED 16a lights up, for example, when the battery remaining amount of the power supply unit or the like is equal to or higher than a predetermined level, and blinks if the battery level is lower than this level. In addition, the green LED 16b lights up or blinks when the pain treatment device 10 is operating, and goes out when the pain treating device 10 is not operating.
[0039] しかし,表示部 16は,力かる例に限定されず,例えば,文字または図形等を表示可 能な液晶表示手段 (LCD等)など力も構成されもよい。これにより,表示部 16は,疼 痛治療器 10が照射して ヽる電磁波 (交番磁界)の周波数若しくは強度,照射を継続 した時間,照射タイミング,治療スケジュール,電池の残量,時刻,または温度などの 各種情報を表示することが可能になる。  However, the display unit 16 is not limited to the pressing example, and for example, a force such as a liquid crystal display unit (such as an LCD) capable of displaying characters or figures may be configured. As a result, the display unit 16 displays the frequency or intensity of the electromagnetic wave (alternate magnetic field) emitted by the pain treatment device 10, the duration of the irradiation, the irradiation timing, the treatment schedule, the remaining amount of battery, time, or temperature And other information can be displayed.
[0040] 次に,図 2に基づいて,本実施形態に力かる疼痛治療器 10の内部構成について 説明する。なお,図 2は,本実施形態に力かる疼痛治療器 10の内部構成を示す平面 図である。 [0041] 図 2に示すように,疼痛治療器 10のハウジング 12の内部には,例えば,電源部 18 と,制御ブロック 20と,高周波用コイル 30と,低周波用コイル 40と,が設けられている 。このうち,制御ブロック 20,高周波用コイル 30および低周波用コイル 40は,例えば ,同一の基板 17上に設置されており,ハウジング 12に対してまとめて脱着可能であ る。 Next, based on FIG. 2, an internal configuration of the pain treatment device 10 according to the present embodiment will be described. FIG. 2 is a plan view showing the internal configuration of the pain treatment device 10 according to the present embodiment. As shown in FIG. 2, for example, a power supply unit 18, a control block 20, a high frequency coil 30, and a low frequency coil 40 are provided inside the housing 12 of the pain treatment apparatus 10. ing . Among them, the control block 20, the high frequency coil 30 and the low frequency coil 40 are installed, for example, on the same substrate 17, and can be collectively removed from the housing 12.
[0042] 電源部 18は,例えば,各種の充電池または乾電池(例えば 9Vの乾電池等)などで 構成された直流の電源装置であり,疼痛治療器 10内の各部に対して電力を供給す ることができる。また,制御ブロック 20は,例えば,治療機 10内の各部を制御する制 御装置,高周波を発振する高周波発振回路およびクロック発生回路など ( ヽずれも 図示せず。)が設置されている回路基板であるが,詳細については後述する。  The power supply unit 18 is, for example, a direct current power supply device configured of various rechargeable batteries or dry batteries (for example, 9 V dry batteries etc.), and supplies power to each part in the pain treatment apparatus 10. be able to. In addition, the control block 20 is a circuit board on which, for example, a control device that controls each part in the treatment apparatus 10, a high frequency oscillation circuit that oscillates a high frequency, a clock generation circuit, and the like (not shown). However, the details will be described later.
[0043] 高周波用コイル 30は,高周波電流が印可されることにより高周波電磁波を放射す るアンテナ(高周波用アンテナ)の一例である。この高周波用コイル 30は,例えば, 比較的太 、銅線などを 8回巻きしたコイルで構成されたループアンテナである。かか る高周波用コイル 30は,例えば,上記制御ブロック 20から高周波電流が印加される ことにより,周波数が, 50〜140MHz (例えば約 83. 3MHz)である高周波電磁波( 高周波交番磁界及び高周波交番電界)を発生させ,周囲に放射することができる。  The high frequency coil 30 is an example of an antenna (high frequency antenna) that radiates a high frequency electromagnetic wave when a high frequency current is applied. The high frequency coil 30 is, for example, a loop antenna constituted by a coil obtained by winding a relatively thick copper wire or the like eight times. Such a high frequency coil 30 is, for example, a high frequency electromagnetic wave (a high frequency alternating magnetic field and a high frequency alternating electric field) whose frequency is 50 to 140 MHz (for example, about 83.3 MHz) by applying a high frequency current from the control block 20. Can be emitted and emitted to the surroundings.
[0044] 一方,低周波用コイル 40は,低周波電流が印可されることにより低周波電磁波を放 射するアンテナ (低周波用アンテナ)の一例である。この低周波用コイル 40は,例え ば,比較的細 、銅線などを軸芯に 500回巻きしたコイルで構成されたループアンテ ナである。かかる低周波用コイル 40は,例えば,上記制御ブロック 20から低周波電 流が印加されることにより,周波数が例えば約 2. 0kHzである低周波電磁波 (低周波 交番磁界及び低周波交番電界)を発生させ,周囲に放射することができる。  On the other hand, the low frequency coil 40 is an example of an antenna (a low frequency antenna) that radiates a low frequency electromagnetic wave when a low frequency current is applied. The low frequency coil 40 is, for example, a loop antenna composed of a relatively thin coil wound around a core of a copper wire or the like 500 times. The low frequency coil 40 is, for example, a low frequency electromagnetic wave (a low frequency alternating magnetic field and a low frequency alternating electric field) having a frequency of, for example, about 2.0 kHz when a low frequency current is applied from the control block 20. It can be generated and emitted around.
[0045] これらの高周波用コイル 30および低周波用コイル 40は,例えば,双方の中心軸が 例えば略同一方向となるように設置されており,双方が発生した高周波電磁波およ び低周波電磁波は,例えば,当該中心軸の円周方向に対して略均等に拡散するよう に照射される。このため,疼痛治療器 10のいかなる面をいかなる角度で患部に接触 又は接近させても磁気治療効果がある。従って,力かる疼痛治療器 10を用いた治療 が簡便になる。 [0046] なお,高周波電磁波又は低周波電磁波を放射するアンテナとしては,上記高周波 コイル 30及び低周波コイル 40のようなループアンテナの例に限定されず,例えば, ロッドアンテナ等の各種のアンテナを用いることができる。 The high frequency coil 30 and the low frequency coil 40 are installed, for example, such that both central axes are, for example, in substantially the same direction, and high frequency electromagnetic waves and low frequency electromagnetic waves generated by both are For example, irradiation is performed so as to diffuse approximately equally in the circumferential direction of the central axis. Therefore, even if any surface of the pain treatment device 10 contacts or approaches the affected area at any angle, there is a magnetic treatment effect. Therefore, treatment using the intense pain treatment device 10 is simplified. The antenna that radiates high frequency electromagnetic waves or low frequency electromagnetic waves is not limited to the example of the loop antenna such as the high frequency coil 30 and the low frequency coil 40 described above, and various antennas such as a rod antenna may be used. be able to.
[0047] 次に,図 3に基づいて,本実施形態にかかる疼痛治療器 10の回路構成および動 作についてより詳細に説明する。なお,図 3は,本実施形態にかかる疼痛治療器 10 の回路構成を示すブロック図である。  Next, based on FIG. 3, the circuit configuration and operation of the pain treatment device 10 according to the present embodiment will be described in more detail. FIG. 3 is a block diagram showing the circuit configuration of the pain treatment device 10 according to the present embodiment.
[0048] なお,以下に説明する制御ブロック 20および上記高周波用コイル 30は,周波数が 50〜140MHzである高周波電磁波を発生させる高周波電磁波発生手段の一構成 例である。また,この制御ブロック 20および上記低周波用コイル 40は,周波数が例え ば 2kHzである低周波電磁波を発生させる低周波電磁波発生手段の一構成例であ る。  The control block 20 and the high frequency coil 30 described below are an example of a configuration of high frequency electromagnetic wave generating means for generating high frequency electromagnetic waves having a frequency of 50 to 140 MHz. The control block 20 and the low frequency coil 40 are an example of a low frequency electromagnetic wave generating means for generating a low frequency electromagnetic wave having a frequency of, for example, 2 kHz.
[0049] 図 3に示すように,制御ブロック 20は,例えば,主制御回路 22と,電源供給回路 21 と,クロック発生回路 23と,高周波発振手段 24と,低周波発振手段 25とを備える。  As shown in FIG. 3, the control block 20 includes, for example, a main control circuit 22, a power supply circuit 21, a clock generation circuit 23, a high frequency oscillation means 24, and a low frequency oscillation means 25.
[0050] 主制御回路 22は,例えば, 1チップマイクロコンピュータなどで構成されており,制 御ブロック 20内の各部を制御する機能を有する。  The main control circuit 22 is constituted of, for example, a one-chip microcomputer or the like, and has a function of controlling each part in the control block 20.
[0051] 電源供給回路 21は,例えば,オン Zオフ制御回路 212と,昇圧回路 214と,降圧 回路 216とを有しており,上記電源部 18からの電力を制御ブロック 20内の各部に供 給することを制御する機能を有する。具体的には,オン Zオフ制御回路 212は,例え ば,操作部 14のスィッチのオン Zオフを検出して,検出結果を主制御回路 22に入力 する。また,オン Zオフ制御回路 212は,主制御回路 22のオン Zオフ指示に基づい て,電源部 18から高周波用コイル 30および低周波用コイル 40などへの電力供給を オン Zオフする。  The power supply circuit 21 includes, for example, an on Z-off control circuit 212, a booster circuit 214, and a step-down circuit 216. The power from the power supply unit 18 is supplied to each unit in the control block 20. It has a function to control feeding. Specifically, the on-Z-off control circuit 212 detects, for example, the on-z-off of the switch of the operation unit 14 and inputs the detection result to the main control circuit 22. Further, the on-z-off control circuit 212 turns on / off the power supply from the power supply unit 18 to the high-frequency coil 30 and the low-frequency coil 40 based on the on-z-off instruction of the main control circuit 22.
[0052] また,昇圧回路 214は,例えば,例えば 9Vの乾電池力もなる等電源部 18からの電 力を,必要に応じて昇圧することができる。これにより,高周波用コイル 30および低周 波用コイル 40に供給する電圧を例えば 9Vに維持することができる。また,昇圧回路 214は,例えば,電源部 18の電池の消耗等により, 自身の出力できる電圧が所定レ ベル以下に降下した場合には,主制御回路 22に対して電池消耗のエラー信号を出 力することもできる。この結果,主制御回路 22は,当該エラー信号が入力されると, 例えば,赤色 LED16aを点灯から点滅に切り替える制御を行い,電池の消耗をユー ザに通知することができる。 Further, the booster circuit 214 can boost the power from the equal power supply unit 18 which also has a dry cell power of, for example, 9 V, for example, as necessary. Thereby, the voltage supplied to the high frequency coil 30 and the low frequency coil 40 can be maintained at 9 V, for example. Further, the booster circuit 214 outputs an error signal of battery exhaustion to the main control circuit 22 when, for example, the voltage that it can output falls below a predetermined level due to battery exhaustion of the power supply unit 18 or the like. You can also As a result, when the main control circuit 22 receives the error signal, For example, control can be performed to switch the red LED 16a from lighting to blinking to notify the user of battery consumption.
[0053] また,降圧回路 216は,電源部 18の電源を降圧することにより,主制御回路 22等 に供給する電圧を例えば 5Vに維持することができる。また,降圧回路 216は,例え ば,電源部 18の電池の消耗等により, 自身が出力できる電圧が所定レベル以下に 降下した場合には,主制御回路 22に対して電圧低下のエラー信号を出力することも できる。この結果,主制御回路 22は,例えば,電圧降下などによる突発的な動作停 止等のトラブルを未然に防止するべく,疼痛治療器 10全体の動作を停止するよう制 御する。この結果,例えば,疼痛治療器 10の動作中には点灯していた緑色 LED16 bが,消灯するよう制御されるので,疼痛治療器 10の動作が停止したことをユーザに 通知することができる。 In addition, the step-down circuit 216 can maintain the voltage supplied to the main control circuit 22 or the like at 5 V, for example, by stepping down the power supply of the power supply unit 18. Also, the step-down circuit 216 outputs a voltage drop error signal to the main control circuit 22 when the voltage that it can output falls below a predetermined level, for example, due to battery consumption of the power supply unit 18 or the like. You can also As a result, the main control circuit 22 controls to stop the operation of the entire pain treatment device 10 in order to prevent, for example, a trouble such as a sudden operation stop due to a voltage drop or the like. As a result, for example, since the green LED 16b that was on during the operation of the pain treatment device 10 is controlled to turn off, it is possible to notify the user that the operation of the pain treatment device 10 has stopped.
[0054] クロック生成回路 23は,例えば,所定周波数のクロック信号を生成して,主制御回 路 22に出力する。このクロック生成回路 23は,例えば, 32. 7kHzおよび 10MHzの クロック信号を生成できるように構成されている。主制御回路 22は,このクロック生成 回路 23から入力されたクロック信号を低周波発振手段 254に出力する。低周波発振 手段 254は,当該クロック信号に基づいて,例えば, 2. OkHzおよび 7. 81Hzのクロ ック信号を生成し,変調回路 246およびコイル駆動回路 256にそれぞれ出力する。  The clock generation circuit 23 generates, for example, a clock signal of a predetermined frequency and outputs the clock signal to the main control circuit 22. The clock generation circuit 23 is configured to be able to generate, for example, 32. 7 kHz and 10 MHz clock signals. The main control circuit 22 outputs the clock signal input from the clock generation circuit 23 to the low frequency oscillation means 254. The low frequency oscillation means 254 generates clock signals of, for example, 2. OkHz and 7.81 Hz based on the clock signal, and outputs them to the modulation circuit 246 and the coil drive circuit 256, respectively.
[0055] 高周波発振手段 24は,例えば,約 83. 3MHzの高周波電流を生成して,高周波 用コイル 30に印可する。この高周波発振手段 24は,例えば,周波数制御回路 242と ,高周波発振回路 244と,変調回路 246と,コイル駆動回路 248とを有する。  The high frequency oscillation means 24 generates a high frequency current of about 83.3 MHz, for example, and applies it to the high frequency coil 30. The high frequency oscillation means 24 has, for example, a frequency control circuit 242, a high frequency oscillation circuit 244, a modulation circuit 246, and a coil drive circuit 248.
[0056] 周波数制御回路 242は,高周波発振回路 244が生成する高周波の周波数を制御 する機能を有する。具体的には,この周波数制御回路 242は,例えば,主制御回路 22からの周波数設定信号,および高周波発振回路 244からフィードバックされた高 周波に基づいて,高周波発振回路 244が出力する高周波の周波数を制御する。こ の結果,高周波発振回路 244は,例えば 83. 3MHzの高周波を安定的に発振して ,変調回路 246に出力することができる。なお,高周波は,所定の周波数を伝達でき る信号であれば,高周波電流または高周波電圧の何れであってもよい。また,上記 高周波発振回路 244が出力する 83. 3MHzの高周波は,例えば略正弦波信号であ る。 The frequency control circuit 242 has a function of controlling the frequency of the high frequency generated by the high frequency oscillation circuit 244. Specifically, this frequency control circuit 242 is, for example, based on the frequency setting signal from the main control circuit 22 and the high frequency fed back from the high frequency oscillation circuit 244, the frequency of the high frequency output from the high frequency oscillation circuit 244. Control. As a result, the high frequency oscillation circuit 244 can stably oscillate a high frequency of 83.3 MHz, for example, and can output it to the modulation circuit 246. The high frequency may be either a high frequency current or a high frequency voltage as long as the signal can transmit a predetermined frequency. In addition, the 83.3 MHz high frequency output from the high frequency oscillation circuit 244 is, for example, a substantially sine wave signal. Ru.
[0057] 変調回路 246は,例えば,低周波発振回路 254から入力されるクロック信号に基づ いて,高周波発振回路 244から入力された 83. 3MHzの高周波を,例えば 2段階で オン Zオフ処理して間欠的に出力することができる。  [0057] The modulation circuit 246 performs, for example, on-Z-off processing of the 83.3 MHz high frequency input from the high frequency oscillation circuit 244 based on the clock signal input from the low frequency oscillation circuit 254, for example, in two steps. Output intermittently.
[0058] 第 1段階のオン Zオフ処理は,例えば, 2. OkHzのクロック信号に基づいて,入力 された 83. 3MHzの高周波を部分的にカットして,間欠的に出力する処理である。具 体的には,変調回路 246は,例えば,所定の第 1のオン期間(例えば 400 sec)は 8 3. 3MHzの高周波をそのまま出力し,次いで,所定の第 1のオフ期間(例えば 100 μ sec)は当該高周波の振幅をカットした信号として出力する処理を繰り返す。これに より,変調回路 246は,例えば,定常的な正弦波として入力された 83. 3MHzの高周 波を,例えば 2. OkHz相当の周期でオン Zオフして, 83. 3MHzの高周波を間欠発 振することができる。換言すると,変調回路 246は,例えば,高周波発振回路 244か ら入力された 83. 3MHzの高周波を搬送波として, 2. OkHzの略矩形波を表す信号 を出力する変調処理を行うことができる。  The first step of on-Z-off processing is, for example, processing of partially cutting the inputted 83.3 MHz high frequency based on the clock signal of O kHz and outputting it intermittently. Specifically, the modulation circuit 246 outputs a high frequency of 8 3.3 MHz as it is, for example, for a predetermined first on period (for example, 400 sec), and then, for example, 100 μm for a predetermined first off period. sec) repeats the process of outputting as a signal obtained by cutting the amplitude of the high frequency. As a result, the modulation circuit 246, for example, turns on and off the high frequency of 83.3 MHz input as a steady sine wave, for example, at a period equivalent to 2. OkHz, and intermittently cuts the high frequency of 83.3 MHz. It can be oscillated. In other words, the modulation circuit 246 can perform modulation processing to output a signal representing a substantially rectangular wave of 2.O kHz using, for example, the 83.3 MHz high frequency wave input from the high frequency oscillation circuit 244 as a carrier wave.
[0059] また,第 2段階のオン Zオフ処理は,例えば,上記第一段階目のオン Zオフ処理が なされた高周波を, 7. 81Hzのクロック信号に基づいて,さらに部分的にカットして間 欠的に出力する処理である。具体的には,変調回路 246は,例えば,所定の第 2の オン期間(例えば 64msec)は当該高周波をそのまま出力し,次いで,所定の第 2の オフ期間(例えば 64msec)は当該高周波の振幅をカットした信号として出力する処 理を繰り返す。これにより,変調回路 246は,例えば,上記のように 2. OkHz相当の 周期で間欠した 83. 3MHzの高周波を, 7. 81Hz相当の周期でオン Zオフして,さ らに大きい周期で間欠した高周波を間欠発振することができる。換言すると,変調回 路 246は,例えば,高周波発振回路 244力 入力された 83. 3MHzの高周波を搬 送波として, 7. 81Hzの略矩形波を表す信号を出力することができる。  In the second stage of on-Z-off processing, for example, the high frequency subjected to the above-mentioned first-stage on-z-off processing is further partially cut based on a 7.81 Hz clock signal. It is processing to output intermittently. Specifically, for example, the modulation circuit 246 outputs the high frequency as it is for a predetermined second on period (for example, 64 msec), and then the amplitude of the high frequency for a predetermined second off period (for example, 64 msec) is output. Repeat processing to output as a cut signal. As a result, the modulation circuit 246, for example, turns on and off the high frequency of 83.3 MHz, which is intermittent at a period of 2. OkHz as described above, at a period of 7.81 Hz, and intermittent at a larger period. The high frequency can be intermittently oscillated. In other words, the modulation circuit 246 can output, for example, a signal representing a substantially rectangular wave of 7.81 Hz, with the high frequency of 83.3 MHz input with 244 power of the high frequency oscillation circuit as a carrier wave.
[0060] このような変調回路 246による 2段階のオン Zオフ処理が施された高周波は,コィ ル駆動回路 248に入力される。コイル駆動回路 248は,入力された高周波を電源供 給回路 21からの電力で増幅し,周波数が 83. 3MHzの高周波電流を 2. OkHz及び 7. 81Hzに相当する 2つの周期で間欠発振して,高周波用コイル 30に印加する。 [0061] 一方,低周波発振手段 25は,例えば,約 2kHzの低周波電流を生成して,低周波 用コイル 40に印可する。この低周波発振手段 25は,例えば,低周波発振回路 254と ,コイル駆動回路 258とを有する。 The high frequency subjected to the two-step on / off processing by the modulation circuit 246 as described above is input to the coil drive circuit 248. The coil drive circuit 248 amplifies the input high frequency with the power from the power supply circuit 21, and intermittently oscillates the high frequency current of 83.3 MHz at two cycles corresponding to 2.O kHz and 7.81 Hz. , Apply to the high frequency coil 30. On the other hand, the low frequency oscillation means 25 generates a low frequency current of about 2 kHz, for example, and applies it to the low frequency coil 40. The low frequency oscillation means 25 has, for example, a low frequency oscillation circuit 254 and a coil drive circuit 258.
[0062] 低周波発振回路 254は,上述したように,主制御回路 22から入力されたクロック信 号に基づき,例えば 2. OkHzおよび 7. 81Hzのクロック信号を生成し,変調回路 246 およびコイル駆動回路 256にそれぞれ出力する。また,低周波発振回路 254は,例 えば,当該クロック信号に基づいて, 2. OkHzの低周波を略矩形波として生成し,さ らに,この低周波に対して,例えば約 7. 81Hz相当の周期で(64msecごとに)オン Zオフ処理を施して,約 7. 81Hz相当の周期で間欠する 2kHzの低周波を生成する 。具体的には,低周波発振回路 254は,例えば,所定の第 3のオン期間(例えば 64 msec)は当該低周波をそのまま出力し,次いで,所定の第 3のオフ期間(例えば 64 msec)は当該低周波の振幅をカットした信号として出力する処理を繰り返す。これに より,低周波発振回路 254は,例えば, 2. OkHzの低周波を, 7. 81Hz相当の周期 でオン Zオフして間欠発振することができる。なお,この低周波発振回路 254の前後 にも,上記周波数制御回路 242及び変調回路 246に相当する回路を設けてもよい。  As described above, the low frequency oscillation circuit 254 generates clock signals of, for example, 2. O kHz and 7. 81 Hz based on the clock signal input from the main control circuit 22, and the modulation circuit 246 and the coil drive are generated. Output to circuit 256 respectively. Also, the low frequency oscillation circuit 254 generates, for example, a low frequency of 2. kHz at a low frequency as the substantially rectangular wave based on the clock signal. On Z-off processing (every 64 msec) with a period of, to generate a low frequency of 2 kHz intermittent with a period equivalent to about 7.81 Hz. Specifically, for example, the low frequency oscillation circuit 254 outputs the low frequency as it is for a predetermined third on period (for example, 64 msec), and then for a predetermined third off period (for example, 64 msec) The process of outputting the low frequency amplitude signal as a cut signal is repeated. As a result, the low frequency oscillation circuit 254 can intermittently oscillate, for example, by turning on and off the low frequency of 2.O kHz with a period corresponding to 7.81 Hz. A circuit corresponding to the frequency control circuit 242 and the modulation circuit 246 may be provided before and after the low frequency oscillation circuit 254.
[0063] コイル駆動回路 258は,低周波発振回路 254から入力された低周波を電源供給回 路 21からの電力で増幅して,周波数が 2. OkHzの高周波電流を 7. 81Hzに相当す る周期で間欠的に発振して,高周波用コイル 30に印加する。  The coil drive circuit 258 amplifies the low frequency input from the low frequency oscillation circuit 254 with the power from the power supply circuit 21, and the high frequency current at a frequency of 2.O kHz corresponds to 7.81 Hz. It oscillates intermittently in a cycle and is applied to the high frequency coil 30.
[0064] ここで,図 4に基づいて,本実施形態に力かる高周波用コイル 30および低周波用コ ィル 40に印可される高周波電流および低周波電流の波形について詳細に説明され る。なお,図 4は,本実施形態にカゝかる高周波用コイル 30および低周波用コイル 40 に印可される高周波電流および低周波電流の波形を示す波形図である。  Here, based on FIG. 4, the waveforms of the high frequency current and the low frequency current applied to the high frequency coil 30 and the low frequency coil 40 according to the present embodiment will be described in detail. FIG. 4 is a waveform diagram showing waveforms of the high frequency current and the low frequency current applied to the high frequency coil 30 and the low frequency coil 40 according to the present embodiment.
[0065] 図 4 (a)に示すように,高周波用コイル 30には,例えば,周波数が約 83. 3MHzの 高周波電流が印可されている。この高周波電流は,例えば,振幅が 30mAであり, 0 Aを中心とした対称な略正弦波となっている。  As shown in FIG. 4 (a), a high frequency current with a frequency of about 83.3 MHz is applied to the high frequency coil 30, for example. The high-frequency current has, for example, an amplitude of 30 mA, and is a nearly sinusoidal wave symmetrical about 0 A.
[0066] また,この高周波電流は,例えば,連続波ではなく,周期的にオン Zオフされた断 続波となっている。詳細には,高周波電流は,例えば 400 secの第 1のオン期間(1 )と,例えば 100 secの第 1のオフ期間(2)とを交互に繰り返した波形を有し,例え ば約 2. 0kHzに対応する周期で間欠している。さらに,かかる高周波電流は,より大 きい時間スケールでは,例えば 64msecの第 2のオン期間(3)と,例えば 64msecの 第 2のオフ期間(4)とを交互に繰り返した波形を有し,例えば約 7. 81Hzに対応する 周期でも間欠している。また,この高周波電流は,例えば約 83. 3MHzと高周波であ るので,その立ち上がり時間および立ち下がり時間が例えば 0. 003 sec以下と非 常に微少である。 Further, this high frequency current is not a continuous wave, for example, but is a continuous wave which is periodically turned on and off. In detail, the high frequency current has a waveform in which a first on period (1) of, for example, 400 seconds and a first off period (2) of, for example, 100 seconds are alternately repeated. For example, it is intermittent at a cycle corresponding to about 2.0 kHz. Furthermore, such a high-frequency current has a waveform that alternately repeats, for example, the second on period (3) of 64 msec and the second off period (4) of 64 msec, for example, on a larger time scale. It is intermittent even at a cycle corresponding to about 7.81 Hz. Also, since this high-frequency current is high-frequency, for example, about 83.3 MHz, its rise and fall times are very small, for example, less than or equal to 0.003 sec.
[0067] これに対し,図 4 (b)に示すように,低周波用コイル 40には,例えば,周波数が約 2 . OkHzの低周波電流が印可されている。この低周波電流は,例えば,約 2. OkHzの 周期で, 17 Aまたは OAの 2値を交互にとる矩形波(方形波)となっている。この低 周波電流が 17 Aとなる期間(5)は,例えば 400 secであり, OAとなる期間(6)は ,例えば 100 secである。また,この略矩形波は,その立ち上がり時間が 0.: see 以下であり,立ち下がり時間が例えば 1. 0 sec以下となるように調整されている。  On the other hand, as shown in FIG. 4 (b), for example, a low frequency current with a frequency of about 2.O kHz is applied to the low frequency coil 40. This low frequency current is, for example, a rectangular wave (square wave) that alternates two values of 17 A or OA with a period of about 2. OkHz. The period (5) in which the low frequency current is 17 A is, for example, 400 sec, and the period (6) in which the OA is OA is, for example, 100 sec. Also, this approximately rectangular wave is adjusted so that its rise time is less than 0 .: see and its fall time is, for example, less than 1.0 sec.
[0068] また,この低周波電流も,例えば,連続波ではなく,例えば約 7. 81Hzで周期的に オン Zオフされた断続波となっている。詳細には,低周波電流は,例えば 64msecの 第 3のオン期間(6)と,例えば 64msecの第 3のオフ期間(8)とを交互に繰り返した波 形を有し,例えば約 7. 81Hzに対応する周期で間欠している。  Also, this low frequency current is not, for example, a continuous wave, but an intermittent wave that is periodically turned on and off at, for example, about 7.81 Hz. In detail, the low frequency current has a waveform in which, for example, a third on period (6) of 64 msec and a third off period (8) of 64 msec, for example, are alternately repeated. It is intermittent at a cycle corresponding to
[0069] さらに,図 4 (a)および図 4 (b)を比較すると,高周波電流が 7. 81Hzの周期でオン Zオフされるタイミングと,低周波電流が 7. 81Hzの周期でオン Zオフされるタイミン グとが同期している。より詳細には,高周波電流および低周波電流は,ともに 7. 81H zに対応する周期で間欠して(具体的には,例えば 128msecの周期でオン Zオフを 繰り返して)いるが,このとき,高周波電流の第 2のオン期間(3) (若しくは第 2のオフ 期間 (4) )と,低周波電流の第 3のオン期間(7) (若しくは第 3のオフ期間(8) )とが略 同一のタイミングとなるように,高周波電流および低周波電流の印加タイミングが調整 されている。  Furthermore, comparing FIG. 4 (a) and FIG. 4 (b), the timing when the high frequency current is turned on and off in a cycle of 7. 81 Hz and the low frequency current is turned on in a cycle of 7. 81 Hz. Is synchronized with the timing of More specifically, the high-frequency current and the low-frequency current are both intermittent at a cycle corresponding to 7. 8 Hz (specifically, for example, repeating on-z off at a cycle of 128 msec). The second on period (3) (or the second off period (4)) of the high frequency current and the third on period (7) (or the third off period (8)) of the low frequency current are approximately the same. The application timings of the high-frequency current and the low-frequency current are adjusted to achieve the same timing.
[0070] カロえて,高周波電流が高周波用コイル 30に印加される期間(1) (高周波電流のォ ン期間)と,低周波電流が例えば 17 Aとなる期間(5) (即ち,低周波用コイル 40に 電流が流れる期間)とが,同期している。より詳細には,高周波電流は 2. OkHzで間 欠して(具体的には,例えば 500 secの周期でオン Zオフを繰り返して)いる一方, 低周波電流は 2. OkHzで 17 Aまたは OAの 2値を交互にとっている。この場合にお いて,高周波電流の第 1のオン期間(1)と,低周波電流が 17 ;ζ Aとなる期間(5)とが 一致しており,高周波電流の第 1のオフ期間(2)と,低周波電流が OAとなる期間(6) とが一致している。このように,高周波電流が実際に高周波用コイル 30に流れる期間 と,低周波電流が実際に低周波用コイル 40に流れる期間とが同期するように,高周 波電流および低周波電流の印加タイミングが調整されている。 After that, a period (1) (a period during which the high frequency current is applied to the high frequency coil 30) (a period during which the high frequency current is applied) and a period (5) during which the low frequency current is 17 A, for example The period in which the current flows in the coil 40) is synchronized. More specifically, while the high-frequency current is low at 2. OkHz (specifically, for example, it is repeatedly turned on and off at a cycle of 500 sec), The low frequency current is 2. alternate between 17 A or OA at OkHz. In this case, the first on period (1) of the high frequency current and the period (5) in which the low frequency current is 17; ζ A coincide with each other, and the first off period of the high frequency current (2 ) And the period (6) when the low frequency current becomes OA coincide. Thus, the application timings of the high frequency current and the low frequency current are synchronized so that the period in which the high frequency current actually flows in the high frequency coil 30 and the period in which the low frequency current actually flows in the low frequency coil 40 are synchronized. Has been adjusted.
[0071] 上記のような高周波電流が例えば 9Vで印可されることにより,高周波用コイル 30は ,例えば,図 4 (a)に示したような高周波電流と略同一の波形の高周波電磁波を,発 生して周囲に放射することができる。この高周波電磁波は,例えば,周波数が約 83. 3MHzの高周波の略正弦波であり,約 2. 0kHzおよび約 7. 81Hzに相当する周期 で周期的に間欠している。かかる高周波電磁波の照射により,例えば,疼痛治療器 1 0の周囲に,治療用高周波数が例えば 83. 3MHzである高周波交番磁界を,間欠 的〖こ発生させることができる。  By applying a high frequency current as described above at, for example, 9 V, the high frequency coil 30 emits, for example, a high frequency electromagnetic wave having substantially the same waveform as the high frequency current as shown in FIG. 4 (a). It can be emitted and emitted around. This high frequency electromagnetic wave is, for example, a substantially sinusoidal high frequency wave with a frequency of about 83.3 MHz, and is intermittently intermittent with a period corresponding to about 2.0 kHz and about 7.81 Hz. By irradiation of such high frequency electromagnetic waves, for example, a high frequency alternating magnetic field having a high frequency for treatment of, for example, 83.3 MHz can be intermittently generated around the pain treatment device 10.
[0072] より詳細には,この高周波交番磁界は,例えば,磁場強度が約 784nTを最大振幅 として約 83. 3MHzで周期的に増減し,磁場の向きが正負両方向に約 83. 3MHz で周期的に変動する交番磁界であって,例えば約 2. OkHzおよび約 7. 81Hz相当 の周期で間欠して発生したものである。  More specifically, the high frequency alternating magnetic field periodically increases or decreases at about 83.3 MHz, for example, with a maximum magnetic field strength of about 784 nT, and periodically at about 83.3 MHz in both positive and negative directions of the magnetic field. It is an alternating magnetic field that fluctuates to, for example, intermittently generated at a cycle equivalent to about 2. OkHz and about 7.81 Hz.
[0073] このように間欠した高周波交番磁界を発生させることにより,疼痛治療器 10は,例 えば,被治療体 (人体の患部等)に対して,治療用高周波数である約 83. 3MHzの 高周波交番磁界だけでなく,この高周波交番磁界を搬送波とする約 2. OkHzおよび 約 7. 81Hzの低周波交番磁界も同時に照射しているように作用できる。  By generating the intermittent high frequency alternating magnetic field in this way, the pain treatment device 10 is, for example, about 83.3 MHz, which is a high frequency for treatment with respect to the treatment subject (the affected part of the human body, etc.). Not only high frequency alternating magnetic fields but also low frequency alternating magnetic fields of about 2. OkHz and about 7. 81 Hz with this high frequency alternating magnetic field as a carrier can be applied simultaneously.
[0074] また,上記のような低周波電流が例えば 9Vで印可されることにより,低周波用コィ ル 40は,例えば,図 4 (b)に示したような低周波電流と略同一の波形の低周波電磁 波を発生させて,周囲に放射することができる。この低周波電磁波は,例えば,周波 数が約 2. OkHzの低周波の略矩形波であり,約 7. 81Hzで周期的に間欠している。 力かる低周波電磁波の照射により,例えば,疼痛治療器 10の周囲に,治療用低周 波数が例えば約 2. OkHzである低周波交番磁界を,間欠的に発生させることができ る。 [0075] より詳細には,この低周波交番磁界は,例えば,磁場の強度が約 736nTで略一定 であり,磁場の向きが例えば正方向のみに固定された磁場を, 2. 0kHzの周期でォ ン Zオフする(例えば, 400 μ secのオン期間と, 100 μ secのオフ期間を交互に繰り 返す)することにより生じた交番磁界であり,全体としては,約 7. 81Hz相当の周期で 間欠して発生されたものである。 Further, by applying the low frequency current as described above at, for example, 9 V, the low frequency coil 40 has, for example, a waveform substantially the same as the low frequency current as shown in FIG. 4 (b). It can generate low-frequency electromagnetic waves and radiate them around. This low frequency electromagnetic wave is, for example, a low frequency substantially rectangular wave with a frequency of about 2. OkHz, and is intermittently intermittent at about 7.81 Hz. Due to the intense low frequency electromagnetic wave irradiation, for example, a low frequency alternating magnetic field having a low frequency for treatment of, for example, about 2. OkHz can be intermittently generated around the pain treatment device 10. More specifically, the low frequency alternating magnetic field is, for example, a magnetic field whose intensity is approximately constant at about 736 nT and whose magnetic field direction is fixed only in the positive direction, for example, with a period of 2.0 kHz. It is an alternating magnetic field generated by turning Z off (for example, alternately turning on an on period of 400 μsec and an off period of 100 μsec), and overall it has a period of about 7. 81 Hz. It is generated intermittently.
[0076] このように間欠した低周波交番磁界を発生することにより,疼痛治療器 10は,例え ば,被治療体に対して,治療用低周波数である約 2. 0kHzの低周波交番磁界だけ でなく,この低周波交番磁界を搬送波とする約 7. 81Hzの低周波交番磁界も同時に 照射して 、るように作用できる。  By generating the intermittent low frequency alternating magnetic field in this way, the pain treatment device 10 is, for example, only the low frequency alternating magnetic field of about 2.0 kHz, which is the low frequency for treatment, for the object to be treated. Alternatively, the low frequency alternating magnetic field of approximately 7. 8 Hz, which uses this low frequency alternating magnetic field as a carrier wave, can also be irradiated simultaneously.
[0077] さらに,高周波用コイル 30および低周波用コイル 40に対して,上記高周波電流及 び低周波電流を同時並行して印加することにより,かかる高周波電磁波と低周波電 磁波を同時に発生させることができる。この結果,例えば,疼痛治療器 10の周囲に, 高周波交番磁界と低周波交番磁界を同時に発生させることができる。このとき,上記 図 4で示したように,例えば,高周波電磁波および低周波電磁波の 7. 81Hzでの間 欠タイミングが相互に同期しており,かつ,高周波電磁波の 2. 0kHzでの間欠タイミ ングと,低周波電磁波による 2. 0kHzでの磁場発生タイミングとが同期している。  Further, by simultaneously applying the high frequency current and the low frequency current to the high frequency coil 30 and the low frequency coil 40 in parallel, it is possible to generate the high frequency electromagnetic wave and the low frequency electromagnetic wave simultaneously. Can. As a result, for example, a high frequency alternating magnetic field and a low frequency alternating magnetic field can be simultaneously generated around the pain treatment device 10. At this time, as shown in FIG. 4 above, for example, the intermittent timing of the high frequency electromagnetic wave and the low frequency electromagnetic wave at 7.81 Hz are synchronized with each other, and the intermittent timing of the high frequency electromagnetic wave at 2.0 kHz is used. And the magnetic field generation timing at 2.0 kHz by low frequency electromagnetic waves is synchronized.
[0078] これにより,高周波電磁波照射による高周波交番磁界の発生タイミングと,低周波 電磁波照射による磁界の発生タイミングとを同期させることができる。即ち,高周波用 コイル 30が高周波交番磁界を発生するときには,低周波用コイル 40も所定強度の磁 界を発生する一方,高周波用コイル 30が高周波交番磁界を発生しないときには,低 周波用コイル 40も所定レベルの磁界を発生しないようにできる。従って,疼痛治療器 10は,全体として,磁界(高周波用コイル 30が発生する高周波交番磁界,および低 周波用コイル 40が発生する所定レベルの磁界)の発生 Z非発生を周期的に繰り返 すことができる。  Thus, the generation timing of the high frequency alternating magnetic field due to the high frequency electromagnetic wave irradiation and the generation timing of the magnetic field due to the low frequency electromagnetic wave irradiation can be synchronized. That is, when the high frequency coil 30 generates a high frequency alternating magnetic field, the low frequency coil 40 also generates a magnetic field of a predetermined strength, while when the high frequency coil 30 does not generate a high frequency alternating magnetic field, the low frequency coil 40 also It is possible not to generate a predetermined level of magnetic field. Therefore, as a whole, the pain treatment device 10 periodically repeats the generation of the magnetic field (the high frequency alternating magnetic field generated by the high frequency coil 30 and the predetermined level of the magnetic field generated by the low frequency coil 40). be able to.
[0079] なお,上記では交番磁界の発生について説明したが,上記電磁波の照射により高 周波交番電界と低周波交番電界も発生して!/、る。これらの交番電界の発生態様は, 例えば,上記交番磁界の発生態様と略同一であるので,その説明は省略する。  Although the generation of the alternating magnetic field has been described above, the high frequency alternating electric field and the low frequency alternating electric field are also generated by the irradiation of the electromagnetic wave. Since the generation mode of these alternating electric fields is, for example, substantially the same as the generation mode of the above-mentioned alternating magnetic field, the description thereof will be omitted.
[0080] また,上記例では,治療用高周波数として 83. 3MHzの高周波電磁波を発生させ ,治療用低周波数として 2. OkHzの低周波電磁波を発生させる例について説明した 力 発生させる周波数はかかる例に限定されない。本実施形態にカゝかる磁気治療器 20は,上記と同様な構成で,治療用高周波数として 50〜140MHzの範囲の高周波 電磁波を発生させることが可能であり,また,治療用低周波数として 2kHz± 10%の 範囲の低周波電磁波を発生させることが可能である。 In the above example, a high frequency electromagnetic wave of 83.3 MHz is generated as the high frequency for treatment. The low frequency for medical treatment 2. An example of generating an OkHz low frequency electromagnetic wave The frequency to generate power is not limited to this example. The magnetic therapeutic device 20, which has the same configuration as that described above, can generate a high frequency electromagnetic wave in the range of 50 to 140 MHz as a high frequency for treatment, and 2 kHz as a low frequency for treatment. It is possible to generate low frequency electromagnetic waves in the range of ± 10%.
[0081] 次に,図 5に基づいて,本実施形態にかかる疼痛治療器 10による治療態様および その作用効果について説明する。なお,図 5は,本実施形態に力かる疼痛治療器 10 を用いた治療態様を示す説明図である。  Next, a treatment mode by the pain treatment device 10 according to the present embodiment and its action and effect will be described based on FIG. FIG. 5 is an explanatory view showing a treatment mode using the pain treatment device 10 according to the present embodiment.
[0082] 図 5 (a)に示すように,疼痛治療器 10を用いて人体の疼痛部位などの患部 (被治療 体)を治療する場合には,例えば,電源を入れて動作させた疼痛治療器 10を,患部 に対して,直接的に若しくは洋服などを介して間接的に接触させるだけでよい。これ により,疼痛治療器 10は,上記のようにして発生させた交番磁界(高周波交番磁界 および低周波交番磁界)を患部に作用させることができる。このとき,交番磁界は,例 えば,患部の表面 (皮膚など)だけではなく,患部の内部(筋肉,血管,骨など)にも 作用する。  As shown in FIG. 5 (a), in the case of treating an affected part (a treatment subject) such as a pain site of a human body using the pain treating device 10, for example, a pain treatment in which the power is turned on and operated. The vessel 10 only needs to be brought into contact with the affected area either directly or indirectly via clothes or the like. As a result, the pain treatment device 10 can cause the alternating magnetic field (high frequency alternating magnetic field and low frequency alternating magnetic field) generated as described above to act on the affected part. At this time, the alternating magnetic field acts not only on the surface of the affected area (skin, etc.) but also on the inside of the affected area (muscle, blood vessels, bone, etc.).
[0083] また,疼痛治療器 10は,例えば,患部に対して必ずしも接触させる必要はなく,図 5 (b)に示すように,患部に対して所定距離以内に接近させるだけでも,上記交番磁 界を患部に作用させることができる。即ち,疼痛治療器 10は,例えば,電極貼付型の 磁気治療器等とは異なり,服の上などからでも治療が可能な非接触型の磁気治療器 として用いることができる。しかし,疼痛治療器 10が発生する交番磁界の強度は,疼 痛治療器 10から離隔するにつれ小さくなるので,疼痛治療器 10と患部が過度に離 隔すると磁気治療効果が薄れてしまう。本実施形態にカゝかる疼痛治療器 10は,例え ば,患部の 30cm以内に近づければ,磁界強度が 30nT以上である交番磁界を当該 患部に対して作用させることができるように構成されて!、る。  In addition, for example, the pain treatment device 10 does not have to be in contact with the affected area, and as shown in FIG. 5 (b), the above alternating magnetic field can be obtained by merely approaching the affected area within a predetermined distance. The world can act on the affected area. That is, the pain treatment device 10 can be used as a non-contact type magnetic treatment device that can be treated even on clothes, etc., unlike, for example, an electrode-attached type magnetic treatment device or the like. However, since the intensity of the alternating magnetic field generated by the pain treatment device 10 decreases as it separates from the pain treatment device 10, if the pain treatment device 10 and the affected area are excessively separated, the magnetic treatment effect will be weakened. The pain treatment device 10, which is a feature of the present embodiment, is configured to be able to cause an alternating magnetic field having a magnetic field strength of 30 nT or more to act on the affected area, for example, if it approaches 30 cm within the affected area. ! .
[0084] このようにして,上記交番磁界を患部に対して作用させることにより,例えば,患部 の慢性疼痛 (関節炎痛,神経因性疼痛等)や急性疼痛 (打撲等)を緩和若しくは解消 する鎮痛効果や,血行促進効果等の磁気治療効果を発揮できる。  In this way, analgesia that alleviates or eliminates, for example, chronic pain (arthritic pain, neuropathic pain, etc.) or acute pain (beats, etc.) in the affected area by causing the above alternating magnetic field to act on the affected area. It can exert magnetic therapeutic effects such as the effect and blood circulation promoting effect.
[0085] 力かる交番磁界の照射刺激がこのような鎮痛効果をもたらすメカニズムにつ 、ては 定かではないが,その要因の 1つとしては,例えば,交番磁界の照射刺激が,生体の 磁気エネルギー過程に影響し,皮膚,血液,神経系細胞膜の電荷移送により,渦磁 流による原子一分子活性ィ匕をもたらすことが考えられる。特に,疼痛治療器 10は,上 記交番磁界の照射刺激により,例えば,患部における細胞膜へのカルシウムイオン(About the mechanism by which the irradiation stimulation of the strong alternating magnetic field brings about such an analgesic effect, Although it is not clear, one of the factors is, for example, the irradiation stimulation of the alternating magnetic field affects the magnetic energy process of the living body, and the charge transfer of the skin, blood, and nervous system cell membrane causes one atomic molecule by eddy magnetic current. It is conceivable to bring about an activity. In particular, the pain treatment device 10 is, for example, calcium ions (to the cell membrane in the affected area) by the irradiation stimulation of the above alternating magnetic field.
Ca2+)透過性を高めて,再生'修復機能を促進することができる。 Ca 2+ ) Permeability can be enhanced to promote regeneration 'repair function.
[0086] 詳細には,例えば,上記交番磁界の作用により,細胞内のカルシウムイオン濃度が 上昇するため,ェキソサイト一シス(開口放出)が誘発され,例えば,鎮痛性の神経べ プチドである j8—エンドルフィン,アドレナリン,神経成長因子(NGF : Nerve Grow th Factor)等の物質が,特定の細胞内の小胞から当該細胞外に放出される。この 結果,例えば,破傷された末梢神経細胞において,これらの物質が鎮痛作用を奏し ,組織の再生'修復機能を促進するものと考えられる。 Specifically, for example, since the intracellular calcium ion concentration is increased by the action of the above-mentioned alternating magnetic field, exocytosis (opening release) is induced, for example, an analgesic nerve nerve peptide j8— Substances such as endorphin, adrenalin and nerve growth factor (NGF) are released from specific intracellular vesicles out of the cells. As a result, it is considered that, for example, in the injured peripheral nerve, these substances exert analgesia and promote regeneration of tissue and repair function.
[0087] このェキソサイト一シスについて,より具体的に説明する。ェキソサイト一シスとは, 細胞質の小胞が細胞膜と融合してその中身を放出し,小胞膜が細胞膜に一時的若 しくは永続的に取り込まれてしまうプロセスである。具体的には上記 j8—エンドルフィ ン,アドレナリン,神経成長因子 (NGF)等の神経伝達物質は,グリア細胞などの細 胞内におけるシナプス小胞に蓄えられている。細胞に分泌刺激があると,このシナプ ス小胞膜と細胞膜とが結合及び融合し,次!ヽで当該シナプス小胞から神経伝達物質 が細胞外に放出されるェキソサイト一シスが起こる。このェキソサイト一シスに至る生 化学的反応の詳細は,未だ十分に解明されてはいない。力かるェキソサイト一シスは ,カルシウム依存性の反応であることが判明しており,細胞質,特に,細胞膜直下の シナプス小胞が存在する領域のカルシウムイオン濃度が充分に上昇すると,ェキソサ イト一シスが誘発される。 The exocytosis system will be described more specifically. Hexacytosis is a process in which cytoplasmic vesicles fuse with the cell membrane and release their contents, and the vesicle membrane is transiently or permanently incorporated into the cell membrane. Specifically, neurotransmitters such as j8-endorphin, adrenaline and nerve growth factor (NGF) are stored in synaptic vesicles in cells such as glial cells. Stimulation of secretion in cells causes the synapse vesicle membrane and the cell membrane to bind and fuse, and in the next step, exocytosis, in which a neurotransmitter is released from the synaptic vesicle from the cell, occurs. The details of the biochemical reaction leading to this exocytosis have not been fully elucidated yet. The potent exocytosis has been found to be a calcium-dependent reaction, and when the calcium ion concentration in the cytoplasm, particularly in the region immediately below the cell membrane where the synaptic vesicles are present, is sufficient, the exocytosis is It is induced.
[0088] ここで,上記ェキソサイト一シスを利用した磁気治療による鎮痛効果のメカニズムに ついて詳細に説明する。 Here, the mechanism of the analgesic effect of the magnetic treatment using the exocytosis is described in detail.
[0089] (1)慢性疼痛の場合  (1) In the case of chronic pain
慢性疼痛では,患部の神経細胞が損傷を受けて過敏症をきたして 、る状態と考え られる。このとき,患部に磁気刺激を与えると,神経のグリア細胞等が興奮し,グリア 細胞内のカルシウムイオン濃度が上昇する。これにより,グリア細胞に上記ェキソサイ トーシス(開口放出)が起こる。グリア神経等は,細胞内に栄養因子である神経成長 因子 (NGF)を有しており,ェキソサイト一シスが起こると,この神経成長因子を細胞 外に放出する。放出された神経成長因子は周囲の神経細胞に作用し,当該神経細 胞の成長を促す。この結果,損傷を受けて過敏症をきたした神経細胞が修復され, 当該神経細胞の過敏症が軽減するので,慢性疼痛が軽減されると考えられる。 In chronic pain, the affected nerve cells are damaged and cause hypersensitivity, which is considered to be a condition. At this time, when magnetic stimulation is applied to the affected area, glial cells in nerves are excited and calcium ion concentration in glial cells increases. Thus, the glial cells are Tosis (open-cell release) occurs. Glial nerves and the like have the trophic factor nerve growth factor (NGF) in their cells, and when exocytosis occurs, they release this nerve growth factor extracellularly. The released nerve growth factor acts on surrounding nerve cells to promote the growth of the nerve cells. As a result, damaged and hypersensitive neurons are repaired, and the hypersensitivity of the neurons is alleviated, so that chronic pain is considered to be alleviated.
[0090] (2)急性疼痛の場合  (2) In the case of acute pain
急性疼痛は,患部に急性の炎症が発生すること等によって起こる。この患部に磁気 刺激を施すと,炎症部位周囲の βエンドルフィン含有細胞 (例えば ΝΚ細胞等)が興 奮し,上記ェキソサイト一シスにより,当該細胞内に存在する j8エンドルフィンが細胞 外に放出される。この |8エンドルフィンは,強い鎮痛作用を有しているので,当該 j8 エンドルフィンが炎症部位に作用して,炎症部位の疼痛が軽減されると考えられる。  Acute pain is caused, for example, by the occurrence of acute inflammation in the affected area. When magnetic stimulation is applied to the affected area, β-endorphin-containing cells (eg, ΝΚ cells) around the inflammation site are stimulated, and the exocytosis is released to the outside of the j8 endorphin present in the cells. Since this | 8 endorphin has a strong analgesic action, it is thought that the j8 endorphin acts on the site of inflammation to reduce pain at the site of inflammation.
[0091] 以上説明したように,患部に対して好適な磁気刺激を与えることで,細胞内のカル シゥムイオン濃度を上昇させてェキソサイト一シスを誘発させ,優れた鎮痛効果を生 み出すことができると考えられる。  As described above, by giving a suitable magnetic stimulus to the affected area, the intracellular calcium ion concentration can be increased to induce the exocytosis, and an excellent analgesic effect can be produced. it is conceivable that.
[0092] かかる観点から,本実施形態にかかる疼痛治療器 10は,例えば,好適な磁気刺激 を与えることの可能な交番磁界として,約 83. 3MHz前後の高周波交番磁界及び約 2. OkHzの低周波交番磁界を放射して,患部に対して作用させることができる。この 83. 3MHz前後の高周波交番磁界の照射刺激は,例えば,他の周波数帯と比して ,細胞膜へのカルシウムイオン (Ca2+)および酸素 (O )などの透過性を増力!]させ,細 From this point of view, the pain treatment device 10 according to the present embodiment has, for example, a high frequency alternating magnetic field of around 83.3 MHz and a low frequency of approximately 2.O kHz as an alternating magnetic field capable of giving a suitable magnetic stimulation. A frequency alternating magnetic field can be emitted to act on the affected area. Irradiation stimulation of this high frequency alternating magnetic field around 83 MHz, for example, increases the permeability of calcium ion (Ca 2+ ) and oxygen (O 2) to the cell membrane compared with other frequency bands! ], Fine
2  2
胞内のカルシウムイオン濃度を上昇させ,上記ェキソサイト一シスを誘発する作用が 高いと考えられる。また, 2. OMHzの低周波交番磁界の照射刺激は,例えば,細胞 から β—エンドルフィン等を放出させる作用を有すると考えられる。  It is thought that the effect of raising the calcium ion concentration in the alveolar cell and inducing the above exocytosis is high. Also, 2. The irradiation stimulus of the low frequency alternating magnetic field at O MHz is considered to have the function of releasing β-endorphin etc. from cells, for example.
[0093] なお,患部に対して作用させる高周波交番磁界の周波数は,後述する実験結果に よれば,磁気治療効果上,約 83. 3MHzが最適であるが,この 83. 3MHzの前後の 周波数であっても,細胞内のカルシウムイオン濃度上昇に充分に寄与することが分 かっている。この好適な高周波交番磁界の周波数の範囲は, 50〜140MHzであり, 好ましくは 50〜 120MHzであり,より好ましくは 55〜: L lOMHz,更に好ましくは 65 〜100MHz,更に好ましくは 70〜95MHz,更に好ましくは 83. 3± 10%MHzの範 囲である。ここで挙げたもののうち,後者の範囲ほど,多くの細胞内のカルシウムィォ ン濃度を,より多く上昇させることができるので,磁気治療効果が高いといえる。 According to the experimental results described later, the frequency of the high frequency alternating magnetic field to be applied to the affected area is optimum at about 83.3 MHz in terms of the magnetic treatment effect, but at frequencies around this 83.3 MHz. Even if they are present, they are known to sufficiently contribute to the increase in intracellular calcium ion concentration. The frequency range of this preferred high frequency alternating magnetic field is 50 to 140 MHz, preferably 50 to 120 MHz, more preferably 55 to: L 10 MHz, more preferably 65 to 100 MHz, still more preferably 70 to 95 MHz, further preferably Preferably, the range of 83. 3 ± 10% MHz It is Of the above-mentioned ones, as the latter range, the calcium ion concentration in many cells can be increased more, it can be said that the magnetic therapeutic effect is high.
[0094] さらに,上記疼痛治療器 10は,患部に対して交番磁界を断続的に作用させて,磁 界作用に変化を与えることができる。このため,患部の組織 (細胞など)が交番磁界に 慣れてしまい磁気治療効果が薄れることがない。さらに,高周波交番磁界の発生タイ ミングと,低周波交番磁界の発生タイミングとが同期しているので,疼痛治療器 10が 作用させる磁界全体としてもメリハリがある。このため,患部に対する磁気刺激の有無 をより明瞭にし,磁気治療効果を向上できる。  Furthermore, the above-mentioned pain treatment device 10 can change the magnetic field action by intermittently acting an alternating magnetic field on the affected area. As a result, the tissue (such as cells) in the affected area becomes accustomed to the alternating magnetic field and the magnetic therapeutic effect does not fade. Furthermore, since the generation timing of the high frequency alternating magnetic field is synchronized with the generation timing of the low frequency alternating magnetic field, the entire magnetic field to which the pain treatment device 10 acts is sharp. As a result, the presence or absence of magnetic stimulation to the affected area can be made clearer, and the magnetic treatment effect can be improved.
[0095] さらに,本実施形態に力かる疼痛治療器 10は,発生する高周波電磁波の立ち上が り時間および立ち下がり時間が,例えば 0. 003 sec以下と非常に微少であるととも に,略矩形波である低周波電磁波の立ち上がり時間が 0. 1 sec以下であり,立ち 下がり時間が例えば 1. 0 sec以下となるように調整されている。このため,上記のよ うな交番磁界の変化時においては,磁界の作用 Z非作用の変化スピードが速い。従 つて,患部の組織は力かる磁界の変化に敏感に反応するので,磁気治療効果が高 まる。  Furthermore, the pain treatment device 10 according to the present embodiment has a rise time and a fall time of the generated high frequency electromagnetic wave which is very small, for example, less than or equal to 0.0003 sec. The rise time of the low frequency electromagnetic wave, which is a rectangular wave, is 0.1 sec or less, and the fall time is adjusted, for example, 1.0 sec or less. For this reason, at the time of the change of the alternating magnetic field as described above, the change speed of the action Z non-action of the magnetic field is fast. Therefore, the tissue in the affected area responds sensitively to the changes in the magnetic field, which enhances the magnetic therapeutic effect.
[0096] 以上のように,本実施形態にかかる疼痛治療器 10は,例えば,患部の組織の活性 ィ匕,鎮痛作用の促進などを誘発するために好適な周波数の交番磁界を作用させると ともに,力かる交番磁界の作用 Z非作用を患部にとって好適な態様で切り替えること ができる。従って,本実施形態にかかる疼痛治療器 10は,従来の磁気治療器と比し て,鎮痛効果などの磁気治療効果が非常に高い。  As described above, the pain treatment device 10 according to the present embodiment acts on an alternating magnetic field of a frequency suitable for inducing, for example, activation of the tissue of the affected area, promotion of analgesia and the like. The effect of alternating magnetic field can be switched in a manner suitable for the affected area. Therefore, the pain treatment device 10 according to the present embodiment has a very high magnetic treatment effect such as an analgesic effect as compared with the conventional magnetic treatment device.
[0097] また,疼痛治療器 10は,上記交番磁界の照射により,例えば,上記鎮痛効果のみ ならず,患部の血行を促進させるなどの作用を奏し,肩こり,腰痛等を軽減および予 防することちでさる。  In addition to the above-mentioned analgesic effect, for example, the pain treatment device 10 exerts actions such as promoting blood circulation in the affected area by irradiation of the above alternating magnetic field to reduce and prevent shoulder stiffness, back pain and the like. I'm sorry.
[0098] また,疼痛治療器 10は,操作が簡単で,比較的小さく持ち運びしやすいだけでなく ,上記のように患部に当接または接近させるだけで,容易かつ短時間(例えば 10分 間)で磁気治療効果を奏することができる。  In addition to being easy to operate and relatively small and easy to carry, the pain treatment device 10 is easy and short (for example, 10 minutes) simply by contacting or approaching the affected area as described above. Can produce magnetic therapeutic effects.
[0099] また,細胞内のカルシウムイオン濃度を上昇させる他の方法としては,被治療体に 対する薬剤投与や,電流刺激などがある。しかしながら,薬剤投与は副作用があると いう問題があり,また,電流刺激は周囲の細胞,組織への影響が大きく,実施困難で あるという問題がある。これに対して,本実施形態にかかる疼痛治療器 10では,交番 磁界を照射するという磁気刺激によって,細胞内のカルシウムイオン濃度を上昇させ るという仕組みであるので,副作用が無く,周囲の細胞,組織への影響が小さいとい ぅ禾 IJ点がある。 In addition, other methods for increasing the intracellular calcium ion concentration include administration of a drug to a treatment subject, current stimulation, and the like. However, if drug administration has side effects There is also the problem that current stimulation has a large impact on surrounding cells and tissues and is difficult to implement. On the other hand, in the pain treatment device 10 according to the present embodiment, since the calcium ion concentration in cells is increased by magnetic stimulation of irradiating an alternating magnetic field, there is no side effect, and surrounding cells, There is a 組織 IJ point that the impact on the organization is small.
実施例  Example
[0100] 次に,上記実施形態にかかる疼痛治療器 10を用いた治療実験を行った結果につ いて説明する。この疼痛治療器 10は,上述したように,高周波交番磁界 (例えば 83. 3MHz)及び低周波交番磁界 (例えば 2. OkHz)を放射して,被治療体に作用させる ことができるものである。なお,以下の実施例は,上記実施形態にかかる疼痛治療器 10の磁気治療効果を実験的に検証するためのものであり,本発明は以下の例に限 定されるものではない。  Next, the results of a treatment experiment using the pain treatment device 10 according to the above embodiment will be described. As described above, this pain treatment device 10 can emit a high frequency alternating magnetic field (eg 83.3 MHz) and a low frequency alternating magnetic field (eg 2. OkHz) to act on the treatment subject. The following example is intended to experimentally verify the magnetic treatment effect of the pain treatment device 10 according to the above embodiment, and the present invention is not limited to the following example.
[0101] <実験 1 >  [0101] <Experiment 1>
まず,ラット坐骨神経結紮手術(CCI : Chronic Constriction Injury)後の熱性 痛覚過敏に対する,疼痛治療器 10を用いた磁気治療による鎮痛効果を検証する実 験 1について説明する。  First, Experiment 1 will be described, which examines the analgesic effect of magnetic treatment using a pain treatment device 10 on thermal hyperalgesia after sciatic nerve ligation surgery (CCI: Chronic Constriction Injury).
[0102] まず,本実験の疼痛評価法について説明する。この疼痛評価法では,実験用ラット の片方の後肢の坐骨神経を手術用糸で軽く 5箇所,結紮 (CCI施術)する。これによ り,施術した後肢は,熱に対して過敏症となるので,プランターテストの結果 (PWL : P aw Withdrawal Latency time ;後肢皮下への熱刺激に対する反応潜時(秒)) が短くなる。すなわち,施術しない方の後肢は,光を照射したときに熱さを感じるまで の時間が長いが,施術した方の後肢は,熱過敏症のため,光を照射したときに熱さを 感じるまでの時間が短くなる。施術した後肢が熱さを感じるまでの時間と,施術してい ない後肢が熱さを感じるまでの時間の時間差を,痛みの大きさとみなす。当該時間差 が大きい (施術した足が熱を感じるまでの時間が短い)ほど,痛みを大きく感じると評 価する。力かる評価方法を「ベネット法」といい,疼痛学会で世界的に承認された疼 痛評価法である。  First, the pain evaluation method of the present experiment will be described. In this pain assessment method, the sciatic nerve of one hind leg of the experimental rat is lightly ligated at 5 points with a surgical thread (CCI operation). As a result, the treated hindlimb becomes hypersensitive to heat, so the result of planter test (PWL: Water withdrawal latency time (second) response latency to heat stimulation to the hindlimb subcutaneous) becomes short. . In other words, although the time to reach heat when irradiated with light is long for those who do not receive surgery, the time for them to experience heat when exposed to light due to thermal hypersensitivity. Becomes shorter. The difference between the time it takes for the treated hind limb to feel the heat and the time it takes for the untreated hind limb to feel the heat is regarded as the size of the pain. The larger the time difference (the shorter the time it takes for the treated foot to feel the heat), the greater the pain. The intensive evaluation method is called the “Bennet method”, which is a pain evaluation method that has been approved by the Pain Society worldwide.
[0103] 次に,本実験の実験条件について説明する。本実験では,治療対象として雄 SDラ ット(300〜350g)を用いた。このラットに対して,ハロタン(2〜3%)Z酸素麻酔下で ,左側の後肢の座骨神経を結紮する手術を施して, CCIモデルを作成した。手術後 5日より 10日までプランターテストを行 、,左右の後肢が反応する時間差 (左右差)で 評価した。治療群に対しては,手術後 6日目から,疼痛治療器 10を用いて上記高周 波交番磁界および低周波交番磁界を左背側大腿部に 10分間照射(1回 Z日照射, 2回 Z日照射)して治療を施し,非治療群と比較した。 Next, the experimental conditions of this experiment will be described. In this experiment, male SD la A tow (300 to 350 g) was used. The rats underwent surgery to ligate the sciatic nerve of the left hind leg under halothane (2-3%) Z-oxygen anesthesia to create a CCI model. Planters were tested from 5 days to 10 days after surgery, and the time difference between the left and right hindlimb responses was evaluated. For the treatment group, from the 6th day after the operation, the above-mentioned high frequency alternating magnetic field and low frequency alternating magnetic field are irradiated to the left dorsal thigh for 10 minutes using the pain treatment device 10 (1 Z day irradiation, Treatment was given twice Z-day) and compared with untreated group.
[0104] 力かる実験結果を図 6に示す。図 6は, CCIを施していない右側の後肢が反応した 時間と, CCIを施した左側の後肢が反応した時間との差 (PWLの左右差)の推移を, 治療群と非治療群とに分けて示すグラフである。  The results of the experiment are shown in FIG. Figure 6 shows the transition of the difference between the response time of the right hind limb without CCI and the response time of the left hind limb subjected to CCI (PWL difference) in the treatment group and the non-treatment group. It is a graph shown separately.
[0105] 図 6に示すように,非治療群では, PWLの左右差は, 5日目で—3. 2秒, 7日目で  [0105] As shown in FIG. 6, in the non-treatment group, the left-right difference in PWL is -3 seconds on day 5, day 2 on day 5.
-4. 5秒, 10日目で 4. 8秒となっており, 日を経るにつれ左右差が増大した。これ は, CCI側の後肢で反応潜時が徐々に延長したこと,即ち, CCI側の後肢の痛覚過 敏が徐々に悪化したことを意味する。  -On the 10th day with 4.5 seconds, it became 4.8 seconds, and the left-right difference increased as the day passed. This means that the response latency was gradually extended in the CCI side hindlimb, that is, the analgesia in the CCI side gradually worsened.
[0106] これに対し,治療群では, PWLの左右差は, 1回 Z日照射の場合には, 7日目で  [0106] On the other hand, in the treatment group, the right-and-left difference of PWL is the seventh day in the case of one Z-day irradiation.
- 3. 3秒, 8日目で 2. 9秒, 10日目で 2. 3秒と, 日を経るにつれ左右差が徐々 に減少し, 2回 Z日照射の場合には, 7日目で—2. 9秒, 8日目で—2. 6秒, 10日 目で— 2. 0秒と,左右差が大幅に減少した。このような実験結果によれば,治療群に おいては, CCI側の後肢で反応潜時の延長が抑制され,非治療群に比べて痛覚過 敏が改善されたといえる。さらに,疼痛治療器 10による照射回数が多い方が,痛覚 過敏がより改善されたといえる。  -3. 3 seconds, 8 days 2. 9 seconds, 10 days 2. 3 seconds, the left-right difference gradually decreases with the passing of the day, and in the case of the second Z day irradiation, the 7th day In-2. 9 seconds, 8th day-2. 6 seconds, 10th day-2. 0 seconds, left-right difference decreased significantly. According to these experimental results, it can be said that in the treatment group, prolongation of the response latency was suppressed in the hind limb of the CCI side, and hyperalgesia was improved compared to the non-treatment group. Furthermore, it can be said that hyperalgesia was further improved as the number of irradiations by the pain treatment device 10 increased.
[0107] <実験 2>  <Experiment 2>
次に,上記実験 1と同様なラット坐骨神経結紮後の熱性痛覚過敏に対する,疼痛治 療器 10による磁気療法の効果を検証する別の実験 2について説明する。  Next, another experiment 2 will be described, which verifies the effect of magnetic therapy with the pain treatment device 10 on thermal hyperalgesia after rat sciatic nerve ligation similar to the experiment 1 above.
[0108] 実験 2では,ラットを次のような, 5つの群 (a)〜(e)に分類し,手術後 3日より 14日ま で,上記プランターテストを行い,左右の後肢が反応する時間差 (左右差)で評価し た。このうち, (c)磁気治療群, (d)抗 NGF抗体投与群,および (e) NGF増強剤投与 群に対しては,手術後 5日目から,上記疼痛治療器 10を用いて高周波交番磁界お よび低周波交番磁界を左背側大腿部に 10分間照射して,磁気治療を施し,非治療 群と比較した。 5つのサンプル群の説明は以下の通りである。 In Experiment 2, the rats are classified into the following five groups (a) to (e), and the planter test is performed from 3 days to 14 days after the operation, and the left and right hind limbs react Time difference (right and left difference) was evaluated. Among these, (c) Magnetic therapy group, (d) Anti-NGF antibody administration group, and (e) NGF enhancer administration group From the fifth day after surgery, using the above-mentioned pain treatment device 10 Irradiate the left dorsal thigh with a magnetic field and a low frequency alternating magnetic field for 10 minutes for magnetic treatment and no treatment Compared to the group. The description of the five sample groups is as follows.
[0109] (a)偽手術(Sham)群: (A) Sham operation (Sham) group:
この偽手術群は,上記 CCI施術と同様の切開,縫合を行うが,坐骨神経を結紮しな い群であり,上記 CCI施術の切開,縫合による影響を消去することが目的の対照群 である。この偽手術群は,熱過敏症がないため,左右の後肢間で痛みを感じるまで の時間差がほとんどない。  This sham operation group is a group that performs the same incision and suturing as the above CCI treatment but does not ligate the sciatic nerve, and is a control group whose purpose is to eliminate the effects of the above CCI treatment incision and suturing. . In this sham-operated group, since there is no heat sensitivity, there is almost no difference in time until pain is felt between the left and right hind limbs.
[0110] (b)非治療群: (B) Non-treatment group:
この非治療群は,上記 CCI施術を行うが,上記疼痛治療器 10を用いた磁気治療を 施さない群である。この非治療群は, CCI側の後肢が熱過敏症となるため,痛みを感 じる程度が最も大きく,反応潜時が最も長くなる。  This non-treatment group is a group that performs the CCI treatment but does not perform magnetic treatment using the pain treatment device 10. In this non-treatment group, the CCI-side hindlimbs become heat-sensitive, so the degree of pain is greatest and the response latency is longest.
[0111] (c)磁気治療群:  (C) Magnetic treatment group:
この磁気治療群は,上記 CCI施術を行い,上記疼痛治療器 10を用いた磁気治療 を施す群である。この磁気治療群は,上記 CCI施術後,毎日,磁気治療するため, 当該磁気治療の鎮痛効果を表わす群となる。  The magnetic treatment group is a group that performs the CCI treatment and performs magnetic treatment using the pain treatment device 10. This magnetic therapy group is a group that represents the analgesic effect of the magnetic therapy, as it is treated daily after the CCI treatment.
[0112] (d)抗 NGF抗体投与群:  (D) Anti-NGF antibody administration group:
この抗 NGF抗体投与群は,上記 CCI施術後に,抗 NGF抗体を投与し,さらに上記 疼痛治療器 10を用いた磁気治療を施す群である。抗 NGF抗体は, NGF (神経成長 因子)と結合し,生理的な活性を消失させる物質である。このため,抗 NGF抗体投与 群では,上記疼痛治療器 10を用いた磁気治療により上記ェキソサイト一シスが起こり 体内で NGFが放出されたとしても,上記抗 NGF抗体が体内に存在するので,当該 放出された NGFが作用しない。もし, NGF以外のものが鎮痛効果の要因であるとす れば,この抗 NGF抗体投与群は,上記磁気治療群と同等の実験結果になるはずで ある。従って,この抗 NGF抗体投与群の反応潜時が,上記磁気治療群の反応潜時 より長くなれば, NGFが鎮痛に関与していることの証明になる。  The anti-NGF antibody administration group is an administration group to which an anti-NGF antibody is administered after the above-mentioned CCI administration, and to which a magnetic treatment using the above-mentioned pain treatment device 10 is further given. Anti-NGF antibodies are substances that bind to NGF (nerve growth factor) and eliminate physiological activity. Therefore, in the anti-NGF antibody administration group, even if the excitocytosis is caused by the magnetic treatment using the pain treatment device 10 and the NGF is released in the body, the anti-NGF antibody is present in the body. NGF does not work. If anything other than NGF is a factor in the analgesic effect, this anti-NGF antibody-administered group should have the same experimental results as the above magnetic therapy group. Therefore, if the response latency of this anti-NGF antibody administration group is longer than the response latency of the above magnetic therapy group, it proves that NGF is involved in analgesia.
[0113] (e) NGF増強剤投与群:  (E) NGF enhancer administration group:
この NGF増強剤投与群は,上記 CCI施術後に, 4 -Methyl Cathecolを投与し ,さらに上記疼痛治療器 10を用いた磁気治療を施す群である。 4— Methyl Cathe colは, NGFの生成を増強する物質である。これにより,グリア細胞等の NGF産生細 胞内で, NGFの産生量が増加するので,磁気刺激により NGFを放出する量も増加 する。もし, NGF以外のものが鎮痛効果の要因であるとすれば,この NGF増強剤投 与群は,上記磁気治療群と同等の実験結果になるはずである。従って,この NGF増 強剤投与群の反応潜時が,上記磁気治療群の反応潜時より短くなれば, NGFが鎮 痛に関与していることの証明になる。 This NGF enhancer administration group is a group to which 4-Methyl Cathecol is administered after the above-described CCI administration, and magnetic treatment is further performed using the above-mentioned pain treatment device 10. 4-Methyl Cathe col is a substance that enhances the formation of NGF. Thus, NGF-producing cells such as glial cells As the amount of NGF produced increases in the cells, the amount of NGF released by magnetic stimulation also increases. If anything other than NGF is a factor in the analgesic effect, this NGF enhancer group should have the same experimental results as the above magnetic treatment group. Therefore, if the response latency of this NGF enhancer group is shorter than that of the magnetic therapy group, it proves that NGF is involved in pain relief.
[0114] 以上のような 5つのサンプル群を用いた実験結果を図 7に示す。図 7は, CCIを施し て 、な 、右側の後肢が反応した時間に対する, CCIを施した左側の後肢が反応した 時間の差 (PWLの左右差)の推移を,上記 5つの群ごとに分けて示すグラフである。  The results of experiments using the five sample groups as described above are shown in FIG. Fig. 7 shows the change in the difference in response time (left-right difference in PWL) of the left hind limb with CCI to the response time of the right hind limb with CCI divided into the above five groups. Is a graph showing
[0115] 図 7に示すように, (a)偽手術群では, PWLの左右差は,ほぼゼロ秒前後で推移し ており,上記 CCI施術の切開,縫合による影響がほとんどないことが分かる。  As shown in FIG. 7, (a) in the sham operation group, the lateral difference of PWL is approximately zero seconds, and it can be seen that there is almost no influence of the incision and suture of the CCI treatment.
[0116] また, (b)非治療群では, PWLの左右差は,多少の増減があるものの, 日を経るに つれ左右差が増大している。これは, CCI側の後肢で反応潜時が徐々に延長したこ と,即ち, CCI側の後肢の痛覚過敏が徐々に悪ィ匕したことを意味する。  [0116] Also, (b) in the non-treatment group, although there is a slight increase or decrease in the difference in PWL between left and right, the difference between left and right increases over the day. This means that the response latency was gradually extended in the CCI side hindlimb, that is, the hypersensitivity in the CCI side hindlimb gradually worsened.
[0117] これに対し, (c)磁気治療群では, PWLの左右差は,磁気治療を施した 5日目以 降, 日を経るにつれ徐々に減少している。この結果,磁気治療群においては, CCI 側の後肢で反応潜時の延長が抑制され,非治療群と比べて痛覚過敏が改善された といえる。  [0117] On the other hand, in the (c) magnetic therapy group, the lateral difference in PWL gradually decreases with the passage of days after the fifth day of magnetic therapy. As a result, in the magnetic treatment group, prolongation of the response latency was suppressed in the hind limb on the CCI side, and it can be said that hyperalgesia was improved compared to the non-treatment group.
[0118] また, (d)抗 NGF抗体投与群では, PWLの左右差は,磁気治療を施した 5日目以 降,ほぼ一定となった後に延長 (増加)しており,上記磁気治療群と比べて長くなつて いる。従って, NGFが鎮痛に関与していることと,上記疼痛治療器 10を用いた磁気 治療によって,上記ラットの細胞内でェキソサイト一シスが起こり, NGFが放出されて V、ることが実証されたと 、える。  Also, (d) in the anti-NGF antibody-administered group, the lateral difference in PWL is prolonged (increased) after becoming almost constant after the 5th day of magnetic treatment, and the above-mentioned magnetic therapy group It is longer than it is. Therefore, it is demonstrated that NGF is involved in analgesia and that magnetic treatment using the above-mentioned pain treatment device 10 causes exocytosis in the cells of the above-mentioned rat, and that NGF is released to be V. .
[0119] さらに, (e) NGF増強剤投与群では, PWLの左右差は,磁気治療を施した 5日目 以降, 日を経るにつれ徐々に減少しており,上記磁気治療群よりも更に短くなつてい る。従って,これによつても, NGFが鎮痛に関与していることと,上記疼痛治療器 10 を用いた磁気治療によって,上記ラットの細胞内でェキソサイト一シスが起こり, NGF が放出されて 、ることが実証されたと!/、える。  Furthermore, (e) in the NGF enhancer-administered group, the lateral difference in PWL gradually decreases with the passage of days after the magnetic treatment on the fifth day, and is shorter than the above-mentioned magnetic therapy group. It is being done. Therefore, this also indicates that NGF is involved in analgesia, and magnetic treatment with the above-mentioned pain treatment device 10 causes exocytosis in the cells of the above-mentioned rat and releases NGF. That's proved!
[0120] <実験 3 > 次に,フオルマリン誘発炎症性疼痛に対する疼痛治療器 10による磁界療法の効果 を検証した実験について説明する。 Experiment 3 Next, we will describe an experiment to verify the effect of magnetic field therapy with pain treatment device 10 on formalin-induced inflammatory pain.
[0121] まず,この実験 3の実験条件について説明する。治療対象として雄 SDラット(300 〜350g)を用いた。このラットに対して,ハロタン(2〜3%) /酸素(マスクで吸入)麻 酔下で,後肢に対してフオルマリンを皮下注射後,当該ラットがフリンチング (flinchi ng ;痛みにより後肢を振る行動)する回数を, 60分間にわたり分単位で測定した。治 療群に対しては,フオルマリン注入前或いは注入後に,後肢に対して,上記疼痛治 療器 10を用いて高周波交番磁界および低周波交番磁界を 10分間照射して磁気治 療を施し,非治療群と比較した。これは,ホルマリンテストといい,疼痛学会で世界的 に承認された疼痛評価法である。  First, the experimental conditions of Experiment 3 will be described. Male SD rats (300 to 350 g) were used as subjects to be treated. The rat is flinching (flinchi ng; behavior of shaking the hind limb due to pain) after subcutaneous injection of formalin to the hind limb under hypoxemia with halothane (2 to 3%) / oxygen (inhaled by mask). The number of times was measured in minutes over 60 minutes. For the treatment group, magnetic treatment is performed for 10 minutes by irradiating a high frequency alternating magnetic field and a low frequency alternating magnetic field using the above-mentioned pain treatment device 10 to the hind limbs before or after injection of fulmarin, and no treatment is given. Compared to the group. This is called the formalin test and is a pain assessment method that has been approved by the Pain Society worldwide.
[0122] 力かる実験結果を図 7に示す。図 7は,フオルマリン注入後,フリンチングする回数 を 60分間にわたり分単位で測定した結果を,治療群 (注入前または注入後の治療) ,非治療群ごとに示すグラフである。  The results of the experiment are shown in FIG. FIG. 7 is a graph showing the results of measurement of the number of flingings in minutes over a 60-minute period after injection of fluoromarine for each treatment group (pre-infusion or post-infusion treatment) and non-treatment group.
[0123] 図 7に示すように,非治療群では,フリンチング回数が,フオルマリン注入後 1分目 で 10回 Z分で第 1ピークとなった後, 15〜17回 Z分 (注入後 30〜50分)を第 2ピー クとなる反応がみられた。  [0123] As shown in FIG. 7, in the non-treatment group, the flinching frequency becomes the first peak at 10 minutes Z minutes at 1 minute after injection of fallmarine, and then 15 to 17 times Z minutes (30 to 10 hours after injection The reaction which becomes the 2nd peak 50 minutes was seen.
[0124] これに対し,治療群では,フリンチング回数の全体的な推移傾向は非治療群の場 合と略同一であった。しかし,毎分ごとのフリンチング回数が,非治療群の場合と比し て,注入後に治療した場合には毎分 1〜3回,注入前に治療した場合には毎分 1〜9 回も少ない。従って,治療群は,非治療群に比べてフオルマリン誘発炎症性疼痛が 改善されたといえ,さらに,フオルマリン注射前に治療した方がより改善されたといえ る。  On the other hand, in the treatment group, the overall trend of the flinching frequency was almost the same as in the non-treatment group. However, the number of flinchings per minute is less than 1 to 3 times per minute if treated after injection and 1 to 9 times per minute if treated prior to injection compared to the non-treatment group. . Therefore, in the treatment group, it can be said that the total pain induced inflammatory pain was improved compared to the non-treatment group, and furthermore, the treatment before the total water injection was more improved.
[0125] 以上のような実験 1〜3の結果により,痛覚過敏症およびフオルマリン誘発炎症性 疼痛に対し,上記疼痛治療器 10を用いた患部への交番磁界刺激による鎮痛効果が 実証されたといえる。  From the results of Experiments 1 to 3 as described above, it can be said that the analgesic effect of alternating magnetic field stimulation on the affected area using the above-mentioned pain treatment device 10 has been demonstrated for hyperalgesia and holmarin-induced inflammatory pain.
[0126] <実験 4>  <Experiment 4>
次に,被治療体の細胞に作用させる高周波交番磁界の治療用高周波数と,当該 細胞内におけるカルシウムイオン濃度上昇度との関係を検証するための実験につい て説明する。 Next, an experiment to examine the relationship between the high frequency for therapeutic treatment of the high frequency alternating magnetic field acting on the cells of the treatment subject and the increase in the calcium ion concentration in the cells. Explain.
[0127] この実験 4では,初代培養ゥシの大脳皮質細胞と海馬細胞に,異なる周波数の高 周波交番磁界を作用させた後,これらの細胞内のカルシウムイオン (Ca2+)濃度を測 定した。高周波交番磁界の周波数としては, 83. 3MHz (本発明の実施例), 35. 0 MHz (比較例), 250MHz (比較例)の 3種類の周波数について実験を行った。この ように測定したカルシウムイオン濃度の上昇率が 1. 2倍以上である場合には,カルシ ゥム反応が陽性であると判定し,それ未満である場合には陰性と判定した。また,測 定装置等としては,倒立型蛍光顕微鏡 (TE300 ;ニコン社製),蛍光信号取得システ ム(AQUACOSMOS—RATIO;浜松ホトニタス社製)およびカルシウム感受性蛍 光要素 (rhod2または fluo3)を使用した。 [0127] In this experiment 4, after applying a high frequency alternating magnetic field of different frequencies to the cerebral cortex cells and hippocampus cells of primary cultures, the calcium ion (Ca 2+ ) concentration in these cells was measured. did. As the frequency of the high frequency alternating magnetic field, experiments were conducted at three frequencies of 83.3 MHz (the embodiment of the present invention), 35.0 MHz (the comparative example), and 250 MHz (the comparative example). When the rate of increase in calcium ion concentration measured in this way was 1.2 or more, the calcium reaction was judged as positive, and when it was less than that, it was judged as negative. In addition, inverted fluorescence microscope (TE300; made by Nikon Corporation), fluorescence signal acquisition system (AQUACOSMOS-RATIO; made by Hamamatsu Photonitas Corporation), and calcium-sensitive fluorescence element (rhod2 or fluo3) were used as measuring devices, etc. .
[0128] かかる実験結果を,表 1 (大脳皮質細胞)および表 2 (海馬細胞)に示す。  The results of the experiment are shown in Table 1 (cerebral cortex cells) and Table 2 (hippocampal cells).
[0129] [表 1]  [Table 1]
Figure imgf000028_0001
Figure imgf000028_0001
[0130] [表 2]  [Table 2]
Figure imgf000028_0002
Figure imgf000028_0002
[0131] 表 1に示すように,大脳皮質細胞を用いた実験では, 83. 3MHzの高周波交番磁 界を作用させた場合には,陽性率が 45%と非常に高い。これに対し, 35. 0MHz及 び 250MHzの場合には,陽性率が 8. 3%, 7. 6%と低い。また,表 2に示すように, 海馬細胞を用いた実験では, 83. 3MHzの高周波交番磁界を作用させた場合には ,陽性率が 11. 1%と高いのに対し, 35. OMHz及び 250MHzの場合には,いずれ も 0%である。 [0131] As shown in Table 1, in the experiment using cerebral cortical cells, the positive rate is as high as 45% when the high frequency alternating magnetic field of 83.3 MHz is applied. On the other hand, in the case of 35.0 MHz and 250 MHz, the positive rate is as low as 8.3% and 7.6%. In addition, as shown in Table 2, in the experiment using hippocampal cells, when the high frequency alternating magnetic field of 83.3 MHz is applied, the positive rate is as high as 11. 1%, 35. O MHz and 250 MHz. In the case of, any Is also 0%.
[0132] このような実験結果によれば,本実施例に力かる 83. 3MHz前後の高周波交番磁 界は,比較例に力かる他の周波数(35. OMHz及び 250MHz)と比べて,細胞内の カルシウムイオン濃度を高め,ェキソサイト一シスを誘発する効果が非常に高いこと が実証された。  According to such experimental results, the high frequency alternating magnetic field around 83.3 MHz, which is the force in the present example, is compared with the other frequencies (35. OMHz and 250 MHz) in the comparative example. It has been demonstrated that the effect of raising the calcium ion concentration and inducing exocytosis is very high.
[0133] <実験 5 >  <Experiment 5>
次に,被治療体の細胞に作用させる高周波交番磁界の治療用高周波数と,当該 細胞内におけるカルシウムイオン濃度上昇度との関係について,より詳細に検証する ための実験について説明する。  Next, experiments to verify in more detail the relationship between the therapeutic high frequency of the high frequency alternating magnetic field acting on the cells of the treatment subject and the increase in calcium ion concentration in the cells are described.
[0134] この実験 5では, 2種の実験対象の細胞 (ァストロサイト,グリア細胞)に対して,異な る周波数(10〜500MHz)の高周波交番磁界を作用させた後,これらの細胞内の力 ルシゥムイオン (Ca2+)濃度を測定し,カルシウムイオン濃度が交番磁界作用前と比 ベて 1. 2倍以上に上昇したものを陽性と判定して,その陽性率を求めた。 In this experiment 5, after subjecting two types of cells (astrocytes, glial cells) to be tested to different frequency (10 to 500 MHz) of high frequency alternating magnetic field, The concentration of calcium ions (Ca 2+ ) was measured, and the calcium ion concentration increased by a factor of two or more compared to that before the alternating magnetic field action was judged as positive, and the positive rate was determined.
[0135] まず,本実験 5における実験条件とその手順(1)〜(6)について説明する。  First, experimental conditions and procedures (1) to (6) in the present experiment 5 will be described.
[0136] (1)細胞の培養  (1) Cell culture
使用細胞としては,ァストロサイト系細胞である「KINGS— 1」と,グリア系細胞であ る「NMC— Gl」の 2種類を用いた。これらの細胞は,細胞バンクであるヒューマンサ ィエンス研究資源バンク (財団法人ヒューマンサイエンス振興財団)力 提供されたも のである。  Two types of cells were used: “KINGS-1,” which is astrocyte cells, and “NMC-Gl,” which is glial cells. These cells are provided by Human Science Research Resource Bank (Human Science Promotion Foundation), a cell bank.
[0137] この 2種類の細胞を, 6穴又は 12穴の培養プレート, RPMI1640培地(日水製薬 社製),及び炭酸ガス培養装置を用いて,一般的な方法に従って培養した。この培養 では,培養プレートの 1穴当たり, 5 X 104個又は 105個の細胞を入れ,炭酸ガス培養 装置内で 4日間又は 2日間にわたり, 37°Cで培養した。 The two types of cells were cultured according to a general method using a 6-well or 12-well culture plate, RPMI 1640 medium (manufactured by Nissui Pharmaceutical Co., Ltd.), and a carbon dioxide gas culture apparatus. In this culture, 5 × 10 4 cells or 10 5 cells were put in one well of the culture plate and cultured at 37 ° C. for 4 days or 2 days in a carbon dioxide gas culture apparatus.
[0138] (2)対照データ (Ml)の測定  (2) Measurement of control data (Ml)
次いで,培養プレートの各培養穴の培地を吸引して除去した後に, 37°Cのリン酸 緩衝液で細胞を数回,洗浄した。次いで,各培養穴に測定緩衝液を添加して,測定 中に細胞が乾燥しないように適切な状態にした。その後,蛍光測定装置(「フルォロ スキャンアセント」サーモエレクトロン社製)を用いて,上記培養プレートに対して蛍光 測定を行い,装置バックグラウンドの状態を反映した対照データ (Ml)を得た。この 対照データ(Ml)を測定しておくことより,細胞内のカルシウム濃度とは無関係の要 素の影響を排除できる。 Then, after the medium in each culture well of the culture plate was aspirated and removed, the cells were washed several times with 37 ° C. phosphate buffer. Next, measurement buffer was added to each culture well to keep the cells in an appropriate state so as not to dry out during the measurement. Thereafter, using the fluorometer (manufactured by "Fluoroscan Ascent", manufactured by Thermo Electron Co., Ltd.) Measurement was performed to obtain control data (Ml) reflecting the condition of the device background. By measuring this control data (Ml), it is possible to eliminate the effects of factors unrelated to the intracellular calcium concentration.
[0139] (3)磁気刺激前の細胞内カルシウムイオン濃度 (M2)の測定 (3) Measurement of intracellular calcium ion concentration (M2) before magnetic stimulation
次いで,上記 Mlの測定後に,上記培養プレートの各培養穴から測定緩衝液を除 去した。さらに,培養プレートの各培養穴に, Ca染色液「Fluo— 3」溶液を添加し,暗 所において 37°Cで 1時間放置して,細胞内に Ca染色液を浸透させた。その後,上記 Ca染色液「Fluo— 3」溶液を除去した。さらに,必要に応じて, 37°Cのリン酸緩衝液 を用いて細胞を数回,洗浄して,残余の Ca染色液「Fluo— 3」溶液を除去した。次い で,各培養穴に 37°Cの測定緩衝液を添加して,測定中に細胞が乾燥しないように適 切な状態にした。その後,上記蛍光測定装置を用いて,上記培養プレートの各培養 穴の細胞に関して蛍光測定を行 、,磁気刺激前の細胞内のカルシウムイオン濃度( M2)を測定した。  Then, after the measurement of Ml, the measurement buffer was removed from each culture well of the culture plate. Furthermore, a Ca staining solution “Fluo-3” solution was added to each culture well of the culture plate, and left in the dark at 37 ° C. for 1 hour to infiltrate the cells. After that, the above-mentioned Ca staining solution "Fluo-3" solution was removed. In addition, cells were washed several times with phosphate buffer at 37 ° C as needed to remove residual Ca staining solution “Fluo-3” solution. Next, measurement buffer at 37 ° C was added to each culture well to keep the cells in an appropriate state so as not to dry out during the measurement. Thereafter, fluorescence measurement was performed on the cells of each culture well of the culture plate using the above-mentioned fluorescence measurement device, and the calcium ion concentration (M2) in the cells before magnetic stimulation was measured.
[0140] この蛍光測定は,上記蛍光測定装置「フルォロスキャンアセント」(サーモエレクト口 ン社製)を用いて,シングル測定で,励起波長 485nm,測定波長 538nmで行った。 また,当該蛍光測定装置が有する測定箇所選択機能を利用して,培養プレートの 1 穴当たり,細胞の多い部分を選択して 35〜60箇所を測定した。従って, 1つの培養 穴内の細胞について, 35〜60個のカルシウムイオン濃度(M2)のデータを得た。  This fluorescence measurement was carried out at an excitation wavelength of 485 nm and a measurement wavelength of 538 nm in a single measurement using the above-mentioned fluorescence measurement apparatus “Fluoroscan Ascent” (manufactured by Thermo Electronics Co., Ltd.). In addition, using the measurement point selection function of the fluorescence measurement device, 35 to 60 points were measured by selecting a part with many cells per well of the culture plate. Therefore, data of 35 to 60 calcium ion concentrations (M2) were obtained for cells in one culture well.
[0141] (4)磁気刺激  (4) Magnetic stimulation
上記疼痛治療器 10に相当する実験用の磁気刺激装置を用いて,上記培養プレー ト内の各細胞に対して 10分間,磁界刺激を与えた。この際,細胞に作用させる高周 波交番磁界の周波数を 10MHz〜500MHzの範囲で変えて実験を行った。  Magnetic stimulation was applied to each cell in the culture plate for 10 minutes using an experimental magnetic stimulation device corresponding to the pain treatment device 10 described above. At this time, experiments were performed by changing the frequency of the high frequency alternating magnetic field applied to the cells in the range of 10 MHz to 500 MHz.
[0142] この際に用いた実験用の磁気刺激装置の構成について詳細に説明する。この磁 気刺激装置は, MHz帯(10MHz〜500MHz)の高周波を生成するための信号発 生器(「E4421B」アジレント社製)と, kHz帯(2. OkHz)の低高周波を生成するため のファンクションジェネレータ(「33220A」アジレント社製)と, Hz帯(7. 81kHz)の低 高周波を生成するためのファンクションジェネレータ(「320」横河電機社製)と,これ らを制御する制御装置と,発生周波数の強度を制御する増幅器と,発振コイルとから 構成される。 The configuration of the experimental magnetic stimulation apparatus used in this case will be described in detail. This magnetic stimulation device is a signal generator (made by “E4421B” Agilent) for generating high frequencies in the MHz band (10 MHz to 500 MHz) and a low frequency in the kHz band (2. OkHz). A function generator ("33220A" manufactured by Agilent), a function generator ("320" manufactured by Yokogawa Denki) for generating a high frequency in the Hz band (7.81 kHz), and a control device for controlling them; From the amplifier that controls the intensity of the generated frequency and the oscillating coil Configured
[0143] この発振コイル 50は,図 9に示すように,直径 3cm,軸方向の幅 9mm,径方向の 厚さ 2mmのアクリル製の環状基台部 52の外周に,銅線を巻いて,高周波用コイル 3 0及び低周波用コイル 40を形成したものである。このうち,高周波用コイル 30は, 1回 巻きソレノイドコイル(直径 3cm)であり,低周波用コイル 40は, 200回巻きソレノイドコ ィル(直径 3cm,巻き幅 5mm)である。このように,発振コイル 50は, 1つの環状基台 部 50に,高周波用コイル 30及び低周波用コイル 40力 なる 2種のコイルを同軸上に 作成したものを用いた。  As shown in FIG. 9, this oscillation coil 50 has a copper wire wound around the outer periphery of an acrylic annular base 52 having a diameter of 3 cm, an axial width of 9 mm, and a radial thickness of 2 mm. A high frequency coil 30 and a low frequency coil 40 are formed. Among these, the high frequency coil 30 is a one-turn solenoid coil (diameter 3 cm), and the low frequency coil 40 is a 200-turn solenoid coil (diameter 3 cm, winding width 5 mm). As described above, as the oscillation coil 50, one in which two kinds of coils, that is, the high frequency coil 30 and the low frequency coil 40, are coaxially formed on one annular base portion 50 is used.
[0144] 磁気刺激時には,この発振コイル 50の上に,上記カルシウムイオン濃度 (M2)の測 定後の培養プレート 60を載置して,遮光の布をかけた。次いで,発振コイル 50の高 周波用コイル 30,低周波用コイル 40にそれぞれ高周波電流,低周波電流を印可し て,高周波交番磁界及び低周波交番磁界を含む電磁波を発生させ,これにより,培 養プレート 60の各培養穴内の細胞に対して, 10分間,磁気刺激を与えた。  At the time of magnetic stimulation, the culture plate 60 after measurement of the calcium ion concentration (M2) was placed on the oscillation coil 50, and a light shielding cloth was placed thereon. Next, a high frequency current and a low frequency current are applied to the high frequency coil 30 and the low frequency coil 40 of the oscillation coil 50 respectively to generate an electromagnetic wave including a high frequency alternating magnetic field and a low frequency alternating magnetic field. The cells in each culture well of plate 60 were subjected to magnetic stimulation for 10 minutes.
[0145] この際,高周波用コイル 30に印可する高周波電流の周波数を,実験単位ごとに, 1 0〜500MHzの間で段階的に変化させて,異なる治療用高周波数の高周波交番磁 界を細胞に作用させた。このうち,周波数が 50〜140MHzのものは本実施例とし, 周波数が 50MHz未満及び 140MHzより大きいものを比較例とした。一方,低周波 用コイル 40に印可する低周波電流の周波数は 2. 0kHzに維持して,一定の周波数 (2. 0kHz)の低周波交番磁界を細胞に作用させた。これによつて,低周波交番磁界 の影響を排除して,高周波交番磁界の周波数と細胞内のカルシウムイオン濃度上昇 との相関を実験することができる。なお,高周波交番磁界がいずれの周波数の場合 でも,高周波交番磁界及び低周波交番磁界の双方を,上記図 4で示したように 7. 81 Hzで間欠的に出力した。また,磁気刺激中における上記発振コイル 50の中心部で の磁界強度は, 784ナノテスラであった。  At this time, the frequency of the high frequency current applied to the high frequency coil 30 is stepwise changed between 10 and 500 MHz for each experimental unit to obtain different therapeutic high frequency high frequency alternating magnetic fields for cells. I was allowed to act. Among these, one with a frequency of 50 to 140 MHz was taken as the present embodiment, and one with a frequency below 50 MHz and above 140 MHz was taken as a comparative example. On the other hand, the frequency of the low frequency current applied to the low frequency coil 40 was maintained at 2.0 kHz, and a low frequency alternating magnetic field with a constant frequency (2.0 kHz) was applied to the cells. In this way, it is possible to study the correlation between the frequency of the high frequency alternating magnetic field and the increase in the calcium ion concentration in the cell by eliminating the influence of the low frequency alternating magnetic field. As shown in Fig. 4 above, both high frequency alternating magnetic fields and low frequency alternating magnetic fields were intermittently output at 7. 8 Hz, regardless of the frequency of the high frequency alternating magnetic field. The magnetic field strength at the center of the oscillation coil 50 during magnetic stimulation was 784 nanotesla.
[0146] (5)磁気刺激後の細胞内カルシウムイオン濃度 (M3)の測定  (5) Measurement of intracellular calcium ion concentration (M3) after magnetic stimulation
次いで,上記磁気刺激後に 10分間,静置した後に,上記 (3)と同様な手順で,蛍 光測定装置を用いて蛍光測定を行 、,磁気刺激後の細胞内のカルシウムイオン濃 度 (M3)を測定した。 [0147] (6)磁気刺激の前後のカルシウムイオン濃度上昇の陽性率の算出 まず,上記のように得られた,対象データ (Ml)と,磁気刺激前のカルシウムイオン 濃度 (M2)と,磁気刺激後のカルシウムイオン濃度 (M3)を用いて,下記の数式 1に 従い,カルシウムイオン濃度上昇度 Rを計算した。力かるカルシウムイオン上昇度 Rは ,各実験単位内の全ての被験細胞にっ ヽてそれぞれ算出した。 Then, after standing for 10 minutes after the above magnetic stimulation, fluorescence measurement is performed using a fluorescence measuring apparatus in the same procedure as the above (3), and calcium ion concentration in cells after magnetic stimulation (M3 Was measured. (6) Calculation of positive rate of increase in calcium ion concentration before and after magnetic stimulation First, target data (Ml) and calcium ion concentration before magnetic stimulation (M2) obtained as described above, and magnetic Using the post-stimulation calcium ion concentration (M3), the increase R in calcium ion concentration was calculated according to Equation 1 below. The effective calcium ion elevation R was calculated for each of all the test cells in each experimental unit.
[0148] [数 1] カルシウムイオン上昇度 R = M 3M 1 [Equation 1] Calcium ion elevation R = M 3 - M 1
2 - 1 ,.  twenty one ,.
• · · (数式 1 )  • · · (Formula 1)
[0149] さらに,本実験では,このカルシウムイオン上昇度 Rが 1. 2以上である場合には,磁 気刺激による細胞内カルシウムイオン濃度の上昇が陽性であると判定するようにした 。そこで,下記の数式 2のように,各実験単位内の全実験数のうち,カルシウムイオン 上昇度が 1. 2以上である実験数の割合 (%)を計算し,カルシウムイオン上昇の陽性 率 Ρを求めた。この陽性率 Ρが高いほど,磁気刺激によって細胞内のカルシウムィォ ン濃度がより多く上昇し,磁気治療効果が高いことを表す。 Furthermore, in this experiment, when the calcium ion elevation R was 1.2 or more, it was determined that the increase in intracellular calcium ion concentration by magnetic stimulation was positive. Therefore, the proportion (%) of the number of experiments with an increase in calcium ion of 1.2 or more is calculated from the total number of experiments in each experimental unit, as shown in Equation 2 below, and the positive rate of increase in calcium ions I asked for. The higher this positive rate, the higher the intracellular calcium concentration by magnetic stimulation, indicating that the magnetic therapeutic effect is higher.
[0150] [数 2] カルシウムイオン上昇の隱率尸二 Rが L 2m ある実験数 全実験数 [Equation 2] Number of experiments in which the efficiency of increase in calcium ion is 2 R is L 2 m Total number of experiments
• · · (数式 2 )  • · · (Formula 2)
[0151] なお,上記カルシウムイオン上昇度 Rが 1. 2以上である場合に,カルシウムイオン 濃度の上昇が陽性であると判定した理由は,次の通りである。一般に,細胞内物質 の細胞外への放出のメカニズムは,上記ェキソサイト一シスによるものが最も多く,こ のェキソサイト一シスが起こるためには,細胞内のカルシウムイオン濃度の上昇が必 要である。この場合,細胞内のカルシウムイオン濃度が,非興奮状態時の 1. 2倍以 上に上昇すると,細胞が興奮して,ェキソサイト一シスが起こると考えられている。細 胞内のカルシウムイオン濃度は,細胞が非興奮状態でも完全に一定ではなく,微量 の変動が起こっている。このため,生理学分野では,カルシウムイオン濃度の 1. 2倍 以上の上昇が,細胞興奮の基準とされている。従って,本実験においても, 1. 2倍な る基準を採用した。 The reason for determining that the increase in calcium ion concentration is positive when the above-mentioned calcium ion increase degree R is 1.2 or more is as follows. In general, the mechanism of extracellular release of intracellular substances is the most frequent by the above exocytosis, and in order for this exocytosis to occur, it is necessary to increase the intracellular calcium ion concentration. In this case, it is thought that when the intracellular calcium ion concentration rises to more than 1. 2 times in the non-excitation state, the cells are excited and an exocytosis occurs. The calcium ion concentration in the cells is not completely constant even when the cells are not excited, and minor fluctuations occur. Therefore, in the physiological field, calcium ion concentration is 1. 2 times The above rise is considered as the basis of cell excitation. Therefore, in the experiment, too, the criterion of 1. 2 was adopted.
[0152] さらに,上記のようにして陽性率 Pを実験単位毎に得た後,これらの陽性率 Pを同一 の高周波交番磁界の周波数ごとに平均化して,カルシウムイオン上昇の平均陽性率 (%)を求めた。さらに,当該周波数の実験単位ごとに,上記カルシウムイオン上昇度 Rの平均値も求めた。  Furthermore, after obtaining the positive rate P for each experimental unit as described above, these positive rates P are averaged for each frequency of the same high frequency alternating magnetic field, and the average positive rate of calcium ion elevation (% Asked for). Furthermore, the average value of the calcium ion rise degree R was also determined for each experimental unit of the frequency.
[0153] 以上,実験 5の実験条件及び実験手順について説明した。かかる実験 5の実験結 果を,ァストロサイト(KINGS— 1)については表 3及び図 10に,グリア細胞(NMC— G1)については表 4及び図 11に示す。なお,図 10及び図 11のグラフは,表 3及び表 4に示す平均陽性率(%)の実験データを周波数 [MHz]ごとにプロットして近似曲線 を描いたものである。  The experimental conditions and the experimental procedure of Experiment 5 have been described above. The results of Experiment 5 are shown in Tables 3 and 10 for astrocytes (KINGS-1) and in Tables 4 and 11 for glial cells (NMC-G1). The graphs in Fig. 10 and Fig. 11 plot the approximate curve by plotting the experimental data of the average positive rate (%) shown in Table 3 and Table 4 for each frequency [MHz].
[0154] [表 3] [Table 3]
Figure imgf000034_0001
Figure imgf000035_0001
なお,上記表 3及び表 4における各パラメータの意味は,次の通りである。
Figure imgf000034_0001
Figure imgf000035_0001
The meaning of each parameter in Table 3 and Table 4 is as follows.
•「NO.」は, I回の磁気刺激の実験の単位を表す実験番号である。この実験単位当 たりのデータ数は 35〜60個である。 • “NO.” Is an experiment number that represents the unit of I magnetic stimulation experiments. This experimental unit There are 35 to 60 data items.
•「周波数 (MHz)」は,上記磁気刺激装置によって発生させた高周波電磁波の周波 数,即ち,細胞に作用させた高周波交番磁界の周波数である。  • “Frequency (MHz)” is the frequency of the high frequency electromagnetic wave generated by the above magnetic stimulation device, that is, the frequency of the high frequency alternating magnetic field applied to the cells.
•「陽性率(%)」は,磁気刺激後の細胞内のカルシウムイオン濃度が磁気刺激前の 1 • “Positive rate (%)” indicates that the intracellular calcium ion concentration after magnetic stimulation is 1 before magnetic stimulation.
. 2倍以上に上昇した実験数を同時に処理した全実験数で除算して得られた百分率 (上記カルシウムイオン上昇の陽性率 P)である。 The percentage obtained by dividing the number of experiments raised more than 2 times by the total number of experiments processed simultaneously (Positive ratio P of increase in calcium ion mentioned above).
•「平均陽性率 (%)」は,上記陽性率 (%)を同一の周波数に関して平均した値である  • “Average positive rate (%)” is the value obtained by averaging the above positive rates (%) for the same frequency
•「Ca上昇度」は,磁気刺激後の細胞内カルシウムイオン濃度を刺激前のカルシウム イオン濃度で割った数値 (上記カルシウムイオン上昇度 R)を,実験単位ごとに平均し た値であり,各周波数の磁気刺激後のカルシウムイオン濃度が,磁気刺激前の何倍 になつたかを表す。 • “Ca rise” is the value obtained by dividing the intracellular calcium ion concentration after magnetic stimulation by the calcium ion concentration before stimulation (the above calcium ion rise R) and averaging the values for each experimental unit. It indicates how many times the calcium ion concentration after magnetic stimulation at a frequency has been before magnetic stimulation.
[0157] (a)ァストロサイトについて  (A) About Astrosite
まず,表 3及び図 10に示すァストロサイト (KINGS— 1)に関する実験結果につい て検討する。このァストロサイトは,神経細胞を修復する機能を有する神経成長因子( NGF)を放出し,慢性疼痛の鎮痛効果に寄与する細胞である。  First, the experimental results on astrocytes (KINGS-1) shown in Table 3 and Figure 10 are examined. These astrocytes are cells that release nerve growth factor (NGF), which has the function of repairing nerve cells, and contribute to the analgesic effect of chronic pain.
[0158] 表 3及び図 10に示すように,このァストロサイト細胞に対して作用された高周波交番 磁界の周波数が 83. 3MHzである場合には,平均陽性率は 100%であり,カルシゥ ムイオン濃度上昇度も 1. 31倍〜 1. 66倍の高い数値となっている。従って, 83. 3M Hzを中心とした所定範囲(83. 3± 10%MHz)の高周波交番磁界を作用させれば, ほぼ全てのァストロサイトにおいて,カルシウムイオン濃度が十分に上昇してェキソサ イト一シスが起こるため,顕著に優れた鎮痛効果を発揮するといえる。  As shown in Table 3 and FIG. 10, when the frequency of the high frequency alternating magnetic field applied to this astrocytic cell is 83.3 MHz, the average positive rate is 100%, and calcium ion is The increase in concentration is also a high value between 1. 31 and 1. 66 times. Therefore, when a high frequency alternating magnetic field in a predetermined range (83.3 ± 10% MHz) centered on 83.3 MHz is applied, the calcium ion concentration is sufficiently increased in almost all astrocytes, Because one ciss occurs, it can be said that it exerts a remarkably excellent analgesic effect.
[0159] また,周波数が 70MHzである場合には,平均陽性率は 95%であり,周波数が 95 MHzである場合には,平均陽性率は 91. 5%である。従って,周波数が 70〜95M Hzの高周波交番磁界を作用させれば,少なくとも 90%以上のァストロサイトにおい て,カルシウムイオン濃度が十分に上昇してェキソサイト一シスが起こるため,非常に 優れた鎮痛効果を発揮すると!ヽえる。  When the frequency is 70 MHz, the average positive rate is 95%, and when the frequency is 95 MHz, the average positive rate is 91.5%. Therefore, if a high frequency alternating magnetic field with a frequency of 70 to 95 MHz is applied, the calcium ion concentration rises sufficiently in at least 90% or more of astrocytes, resulting in the occurrence of exocytosis. If you show the effect!
[0160] また,周波数が 65MHzである場合には,平均陽性率は 81%であり,周波数が 105 MHzである場合には,平均陽性率は 72. 7%である。従って,周波数が 65〜105M Hzの高周波交番磁界を作用させれば,少なくとも 70%以上のァストロサイトにおい て,カルシウムイオン濃度が十分に上昇してェキソサイト一シスが起こるため,大変に 優れた鎮痛効果を発揮すると!ヽえる。 In addition, when the frequency is 65 MHz, the average positive rate is 81%, and the frequency is 105 If it is MHz, the average positive rate is 72.7%. Therefore, if a high frequency alternating magnetic field with a frequency of 65 to 105 MHz is applied, the calcium ion concentration rises sufficiently in at least 70% or more of astrocytes, resulting in exocytosis. If you show the effect!
[0161] また,周波数が 55MHzである場合には,平均陽性率は 62. 7%であり,周波数が 110MHzである場合には,平均陽性率は 59. 7%である。従って,周波数が 55〜1 10MHzの高周波交番磁界を作用させれば,少なくとも 50%以上のァストロサイトに おいて,カルシウムイオン濃度が十分に上昇してェキソサイト一シスが起こるため,優 れた鎮痛効果を発揮すると!ヽえる。  When the frequency is 55 MHz, the average positive rate is 62.7%, and when the frequency is 110 MHz, the average positive rate is 59.7%. Therefore, if a high frequency alternating magnetic field with a frequency of 55 to 110 MHz is applied, the calcium ion concentration is sufficiently increased in at least 50% or more of astrocytes to cause exocytosis. If you show the effect!
[0162] また,周波数が 50MHzである場合には,平均陽性率は 45. 3%であり,周波数が 120MHzである場合には,平均陽性率は 43. 3%である。従って,周波数が 50〜1 20MHzの高周波交番磁界を作用させれば,少なくとも 40%以上のァストロサイトに おいて,カルシウムイオン濃度が十分に上昇してェキソサイト一シスが起こるため,良 好な鎮痛効果を発揮すると!ヽえる。  Also, when the frequency is 50 MHz, the average positive rate is 45.3%, and when the frequency is 120 MHz, the average positive rate is 43.3%. Therefore, if a high frequency alternating magnetic field with a frequency of 50 to 120 MHz is applied, the calcium ion concentration is sufficiently increased in at least 40% or more of astrocytes, and an exocytosis occurs, so that good analgesia is produced. If you show the effect!
[0163] また,周波数力 ΟΜΗζである場合には,平均陽性率は 34%であり,周波数が 140 MHzである場合には,平均陽性率は 30. 6%である。従って,周波数が 40〜140M Hzの高周波交番磁界を作用させれば,少なくとも 30%以上のァストロサイトにおい て,カルシウムイオン濃度が十分に上昇してェキソサイト一シスが起こるため,良い鎮 痛効果を発揮するといえる。  [0163] Also, in the case of frequency power, the average positive rate is 34%, and when the frequency is 140 MHz, the average positive rate is 30.6%. Therefore, if a high frequency alternating magnetic field with a frequency of 40 to 140 MHz is applied, the calcium ion concentration rises sufficiently in at least 30% or more of astrocytes, and an exocytosis occurs, so that a good pain relief effect is obtained. It can be said that it exerts.
[0164] これに対して,周波数が 40MHz未満,例えば, 33MHz, 20MHz, 10MHzであ る場合には,平均陽性率は 0〜2%と非常に低い。また,周波数が 140MHzより大, 例えば, 200MHz, 300MHz, 385MHz, 500MHzである場合には,平均陽性率 «0-11. 5%と低い。従って,周波数が 40MHz未満,若しくは 140MHzより大きい 高周波交番磁界を作用させたとしても,カルシウムイオン濃度が十分に上昇して,ェ キソサイト一シスが起こるァストロサイトの数が少な 、 (若しくはゼロである)ので,鎮痛 効果が低いといえる。  On the other hand, when the frequency is less than 40 MHz, for example, 33 MHz, 20 MHz, 10 MHz, the average positive rate is very low at 0 to 2%. Also, if the frequency is greater than 140 MHz, for example, 200 MHz, 300 MHz, 385 MHz and 500 MHz, the average positive rate is as low as «0-11. 5%. Therefore, even if a high frequency alternating magnetic field with a frequency of less than 40 MHz or greater than 140 MHz is applied, the calcium ion concentration is sufficiently increased, and the number of astrocytes in which exocytosis occurs is small (or zero). Therefore, it can be said that the analgesic effect is low.
[0165] (b)グリア細胞について  (B) About glial cells
次に,表 4及び図 11に示すグリア細胞 (NMC— G1)に関する実験結果について 検討する。このグリア細胞は,上記ァストロサイトと同様に,神経細胞を修復する機能 を有する神経成長因子 (NGF)を放出し,慢性疼痛の鎮痛効果に寄与する細胞であ る。 Next, about the experimental result about glial cells (NMC-G1) shown in Table 4 and FIG. 11 consider. These glial cells, like the above astrocytes, release nerve growth factor (NGF) having a function of repairing nerve cells, and contribute to the analgesic effect of chronic pain.
[0166] 表 4及び図 11に示すように,このグリア細胞に対して作用された高周波交番磁界の 周波数が 83. 3MHzである場合には,平均陽性率は 97. 6%であり,カルシウムィォ ン濃度上昇度も 1. 56倍〜 2. 31倍の高い数値となっている。従って, 83. 3MHzを 中心とした所定範囲(83. 3± 10%MHz)の高周波交番磁界を作用させれば,ほぼ 全てのグリア細胞にお!、て,カルシウムイオン濃度が十分に上昇してェキソサイト一 シスが起こるため,顕著に優れた鎮痛効果を発揮するといえる。  As shown in Table 4 and FIG. 11, when the frequency of the high frequency alternating magnetic field applied to this glial cell is 83.3 MHz, the average positive rate is 97.6%, and calcium ion is The increase in concentration is also 1.56 times to 2. 31 times higher. Therefore, if a high frequency alternating magnetic field in a predetermined range (83.3 ± 10% MHz) centered on 83.3 MHz is applied, the calcium ion concentration is sufficiently increased in almost all glial cells. It can be said that it exhibits a remarkable superior analgesic effect because of the occurrence of the hexocytosis.
[0167] また,周波数が 70MHzである場合には,平均陽性率は 93. 3%であり,周波数が 95MHzである場合には,平均陽性率は 94. 5%である。従って,周波数が 70〜95 MHzの高周波交番磁界を作用させれば,少なくとも 90%以上のグリア細胞において ,カルシウムイオン濃度が十分に上昇してェキソサイト一シスが起こるため,非常に優 れた鎮痛効果を発揮すると!ヽえる。  When the frequency is 70 MHz, the average positive rate is 93.3%, and when the frequency is 95 MHz, the average positive rate is 94.5%. Therefore, if a high frequency alternating magnetic field with a frequency of 70 to 95 MHz is applied, the calcium ion concentration is sufficiently increased in the glial cells of at least 90% or more to cause exocytosis, so that a very excellent analgesic effect is obtained. When you show off!
[0168] また,周波数が 65MHzである場合には,平均陽性率は 75. 5%であり,周波数が 100MHzである場合には,平均陽性率は 78. 5%である。従って,周波数が 65〜1 OOMHzの高周波交番磁界を作用させれば,少なくとも 70%以上のグリア細胞にお いて,カルシウムイオン濃度が十分に上昇してェキソサイト一シスが起こるため,大変 に優れた鎮痛効果を発揮すると ヽえる。  When the frequency is 65 MHz, the average positive rate is 75.5%, and when the frequency is 100 MHz, the average positive rate is 78.5%. Therefore, if a high frequency alternating magnetic field with a frequency of 65 to 100 MHz is applied, the calcium ion concentration is sufficiently increased in glial cells of at least 70% or more to cause exocytosis. It will be amazing to show its effect.
[0169] また,周波数が 55MHzである場合には,平均陽性率 55. 3%であり,周波数が 11 OMHzである場合には,平均陽性率は 55. 3%である。従って,周波数が 55〜: L 10 MHzの高周波交番磁界を作用させれば,少なくとも 50%以上のグリア細胞において ,カルシウムイオン濃度が十分に上昇してェキソサイト一シスが起こるため,優れた鎮 痛効果を発揮するといえる。  When the frequency is 55 MHz, the average positive rate is 55.3%, and when the frequency is 11 OMHz, the average positive rate is 55.3%. Therefore, if a high frequency alternating magnetic field with a frequency of 55 to L 10 MHz is applied, the calcium ion concentration is sufficiently raised to cause an exocytosis in at least 50% or more of glial cells, so that an excellent pain relief effect is obtained. It can be said that
[0170] また,周波数が 50MHzである場合には,平均陽性率は 43. 7%であり,周波数が 120MHzである場合には,平均陽性率は 47. 7%である。従って,周波数が 50〜1 20MHzの高周波交番磁界を作用させれば,少なくとも 40%以上のグリア細胞にお いて,カルシウムイオン濃度が十分に上昇してェキソサイト一シスが起こるため,良好 な鎮痛効果を発揮するといえる。 When the frequency is 50 MHz, the average positive rate is 43.7%, and when the frequency is 120 MHz, the average positive rate is 47.7%. Therefore, if a high frequency alternating magnetic field with a frequency of 50 to 120 MHz is applied, the calcium ion concentration is sufficiently increased in glial cells of at least 40% or more to cause exocytosis, which is good. It can be said that it exerts an analgesic effect.
[0171] また,周波数が 140MHzである場合には,平均陽性率は 33%である。従って,周 波数が 50〜140MHzの高周波交番磁界を作用させれば,少なくとも 30%以上のグ リア細胞にぉ 、て,カルシウムイオン濃度が十分に上昇してェキソサイト一シスが起こ るため,良い鎮痛効果を発揮するといえる。  [0171] In addition, when the frequency is 140 MHz, the average positive rate is 33%. Therefore, if a high frequency alternating magnetic field with a frequency of 50 to 140 MHz is applied, the calcium ion concentration is sufficiently raised to at least 30% or more of the gray cells to cause excitocytosis. It can be said that it exerts an effect.
[0172] これに対して,周波数が 50MHz未満,例えば, 40MHz, 30MHz, 20MHzであ る場合には,平均陽性率は 23%以下と低い。また,周波数が 140MHzより大,例え ば, 200MHz, 350MHz, 385MHzである場合には,平均陽性率は 0〜: L 1. 5%と 低い。従って,周波数が 50MHz未満,若しくは 140MHzより大きい高周波交番磁 界を作用させたとしても,カルシウムイオン濃度が十分に上昇して,ェキソサイトーシ スが起こるグリア細胞の数が少な 、 (若しくはゼロである)ので,鎮痛効果が低 、と 、 える。  On the other hand, when the frequency is less than 50 MHz, for example, 40 MHz, 30 MHz, 20 MHz, the average positive rate is as low as 23% or less. In addition, if the frequency is greater than 140 MHz, for example, 200 MHz, 350 MHz, and 385 MHz, the average positive rate is as low as 0 to L: 1.5%. Therefore, even if the frequency is less than 50 MHz or greater than 140 MHz, the calcium ion concentration is sufficiently increased and the number of glial cells in which the exocytosis occurs is small (or zero). , The pain relief effect is low.
[0173] (c)実験結果のまとめ  (C) Summary of experimental results
以上の(a)ァストロサイト及び (b)グリア細胞の双方の実験結果を鑑みれば,以下の ことがいえる。  Given the above experimental results of both (a) astrocytes and (b) glial cells, the following can be said.
[0174] 即ち,細胞に作用させる高周波交番磁界の周波数が 83. 3MHzを顕著なピークと して,細胞内のカルシウムイオン濃度の上昇の陽性率が高くなつており,周波数がこ の 83. 3MHzから離れるにつれて, 当該陽性率が徐々に低くなつている。  That is, the frequency of the high frequency alternating magnetic field acting on the cells has a remarkable peak at 83.3 MHz, and the positive rate of increase in the calcium ion concentration in the cells is high, and the frequency is 83.3 MHz. The positive rate gradually decreases as you move away from the
[0175] 従って,細胞内のカルシウムイオン濃度を十分に上昇させてェキソサイト一シスを 好適に誘発させるためには,作用させる高周波交番磁界の治療用高周波数が, 50 〜 140MHzであることが好ましい。これにより,カルシウムイオン濃度上昇の平均陽 性率が 30%以上となるので,良い鎮痛効果を発揮できる。一方,周波数が, 50未満 であるか或いは 140MHzより大であると,カルシウムイオン濃度上昇の平均陽性率 が 30%未満となる場合があるので,十分な鎮痛効果が得られな 、場合がある。  Therefore, in order to sufficiently raise the intracellular calcium ion concentration to preferably induce exocytosis, it is preferable that the therapeutic high frequency of the high frequency alternating magnetic field to be applied be 50 to 140 MHz. As a result, since the average positive rate of increase in calcium ion concentration is 30% or more, a good analgesic effect can be exhibited. On the other hand, if the frequency is less than 50 or greater than 140 MHz, the average positive rate of increase in calcium ion concentration may be less than 30%, so sufficient analgesic effects may not be obtained.
[0176] また,当該治療用高周波数が, 50〜120MHzであることがより好ましく,これにより ,カルシウムイオン濃度上昇の平均陽性率が 40%以上となるので,良好な鎮痛効果 を発揮できる。さらに,当該治療用高周波数が, 55〜: L lOMHzであることがより好ま しく,これにより,カルシウムイオン濃度上昇の平均陽性率が 50%以上となるので,優 れた鎮痛効果を発揮できる。さらに,当該治療用高周波数が, 65〜: LOOMHzである ことがより好ましく,これにより,カルシウムイオン濃度上昇の平均陽性率が 70%以上 となるので,大変に優れた鎮痛効果を発揮できる。さらに,当該治療用高周波数が, 70〜95MHzであることがより好ましく,これにより,カルシウムイオン濃度上昇の平均 陽性率が 90%以上となるので,非常に優れた鎮痛効果を発揮できる。さらに,当該 治療用高周波数が,上記 83. 3MHzのピークを中心とした所定範囲(83. 3± 10% MHz)であることが最も好ましく,これにより,カルシウムイオン濃度上昇の平均陽性 率が 100%に近くなるので,極めて優れた鎮痛効果を発揮できる。 Further, the therapeutic high frequency is more preferably 50 to 120 MHz, whereby the average positive rate of increase in calcium ion concentration is 40% or more, so that a good analgesic effect can be exhibited. Furthermore, it is more preferable that the therapeutic high frequency is 55 to: L lO MHz, whereby the average positive rate of increase in calcium ion concentration is 50% or more. Can exert a good analgesic effect. Furthermore, the therapeutic high frequency is more preferably 65 to: LOO MHz, and the average positive rate of increase in calcium ion concentration is 70% or more, so that it is possible to exert a very excellent analgesic effect. Furthermore, the therapeutic high frequency is more preferably 70 to 95 MHz, and since the average positive rate of increase in calcium ion concentration is 90% or more, a very excellent analgesic effect can be exhibited. Furthermore, it is most preferable that the high frequency for treatment is in a predetermined range (83.3 ± 10% MHz) centered on the above-mentioned 83.3 MHz peak, whereby the average positive rate of increase in calcium ion concentration is 100 Because it is close to%, it can exert extremely excellent analgesic effect.
[0177] ここで,上記平均陽性率が 30%, 40%,…等であることを基準として,上記高周波 交番磁界の治療用高周波数の好適な範囲を選定した理由について,生体に投与さ れる薬剤と細胞の反応との一般的な関係を例に挙げて説明する。  Here, based on the fact that the average positive rate is 30%, 40%, etc., it is administered to the living body about the reason for selecting the preferable range of the high frequency for medical treatment of the high frequency alternating magnetic field. The general relationship between the drug and the cellular response will be described by way of example.
[0178] 一般的に,薬剤投与により生体内の細胞は所定の反応を示すが,このとき反応す る細胞の割合は,薬剤の種類によって異なる。例えば,非常に強力な薬剤(青酸カリ ,テトロドトキシン等)を投与した場合には, 90%以上の細胞が反応する。また,通常 の薬剤は, 50〜60%の細胞が反応するように調合されている。効能がマイルドな薬 剤は,副作用を抑制するために, 30%の細胞が反応するように調合されている。  [0178] Generally, cells in the living body show a predetermined response by drug administration, but the proportion of cells that react at this time varies depending on the type of drug. For example, when a very potent drug (potassium cyanide, tetrodotoxin, etc.) is administered, 90% or more of the cells respond. In addition, conventional drugs are formulated so that 50 to 60% of cells respond. Drugs with mild efficacy are formulated such that 30% of the cells react to suppress side effects.
[0179] このように細胞の反応割合に応じて好適な薬剤を選定するのと同様にして,本実施 形態では,細胞の反応割合に相当する平均陽性率に応じて,好適な高周波交番磁 界の周波数の範囲を選定した。例えば, 50〜55MHzの高周波交番磁界を作用さ せることによって, 30%〜40%の細胞が陽性となる程度の比較的弱い磁気治療を施 すことができる。一方, 70〜95MHzの高周波交番磁界を作用させることによって, 9 0%以上の細胞が陽性となる程度の比較的強い磁気治療を施すことができる。  [0179] As described above, in the same manner as selecting a suitable drug according to the reaction rate of cells, in the present embodiment, according to the average positive rate corresponding to the reaction rate of cells, a suitable high frequency alternating magnetic field is selected. The frequency range of was selected. For example, by applying a high frequency alternating magnetic field of 50 to 55 MHz, relatively weak magnetic treatment can be given such that 30% to 40% of cells become positive. On the other hand, by applying a high frequency alternating magnetic field of 70 to 95 MHz, relatively strong magnetic therapy can be given such that cells of 90% or more become positive.
[0180] 以上,本発明の実施例に係る実験 1〜5の実験結果について説明した。以上のよう な実験結果によれば,本実施形態に力かる疼痛治療器 100を用いて,患部に対して 好適な周波数の高周波交番磁界を作用させることによって,患部の細胞内のカルシ ゥムイオン濃度が上昇してェキソサイト一シスが誘発され,この結果, NGF等の放出 により神経細胞が修復されるため,患部の疼痛が鎮痛されることが実証されたといえ る。また,上記実験によれば,このような磁気治療効果をもたらす上で,高周波交番 磁界の好適な周波数の範囲を実証することができた。 [0180] The experimental results of Experiments 1 to 5 according to the example of the present invention have been described above. According to the above experimental results, the calcium ion concentration in the cells of the affected area can be increased by applying a high frequency alternating magnetic field of a suitable frequency to the affected area using the pain treatment device 100 according to the present embodiment. It is uplifted to induce exocytosis and as a result, it is proved that the pain in the affected area is analgesia because the nerve cells are repaired by the release of NGF or the like. Also, according to the above experiment, high frequency alternation is brought about in bringing about such a magnetic treatment effect. A preferred frequency range of the magnetic field could be demonstrated.
[0181] 以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本 発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範 囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明 らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される  Although the preferred embodiments of the present invention have been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such examples. It is obvious for those skilled in the art to be able to conceive of various changes or modifications within the scope described in the scope of the claims, and it is naturally also within the technical scope of the present invention. It is understood that it belongs
[0182] 例えば,上記実施形態では,高周波及び低周波電磁波発生手段は,電磁波を放 射するアンテナとして,高周波用コイル 30または低周波用コイル 40等のコイルを備 えていたが,本発明はカゝかる例に限定されない。電磁波を放射するアンテナは,例え ば,コイル等のループアンテナ以外にも,ロッドアンテナ,ヘルツダイポールアンテナ ,ショートアンテナ,半波長ダイポールアンテナ,ヘリカルアンテナ,モノポールアンテ ナ,ひし形アンテナ,アレーアンテナ,ホーンアンテナ,パラボラアンテナ,又はスロッ トアンテナ等の各種アンテナなどで構成されてもよい。また,当該アンテナとして用い られるコイルは,ソレノイドコイル,ヘルムホルツアンテナ,ロータリーコイル,スプリット ペアコイル,シムコイル,又は鞍型コイルなどで構成できる。また,高周波用コイル 30 または低周波用コイル 40の,材質,形状,巻き数,軸芯の有無,配置なども上記実 施形態の例に限定されない。 For example, in the above embodiment, the high frequency and low frequency electromagnetic wave generation means is provided with a coil such as the high frequency coil 30 or the low frequency coil 40 as an antenna for emitting an electromagnetic wave. It is not limited to profitable examples. Antennas that radiate electromagnetic waves include, for example, rod antennas, Hertz dipole antennas, short antennas, half-wavelength dipole antennas, helical antennas, monopole antennas, diamond antennas, array antennas, and horn antennas in addition to loop antennas such as coils. It may be configured with various antennas such as a parabola antenna or slot antenna. In addition, the coil used as the antenna can be composed of a solenoid coil, Helmholtz antenna, rotary coil, split pair coil, shim coil, or saddle coil. Further, the material, shape, number of turns, presence / absence of axis, arrangement of the high frequency coil 30 or the low frequency coil 40 are not limited to the examples of the above embodiment.
[0183] また,上記実施形態では,高周波用コイル 30または低周波用コイル 40に,高周波 電流または低周波電流を印加する高周波発振手段および低周波発振手段として, 図 3に示すような制御ブロック 20の回路構成を採用したが,本発明は力かる例に限 定されない。制御ブロック 20の回路構成は,例えば,所定の治療用高周波数 (例え ば 50〜 140MHz)の範囲内の高周波が発振可能であれば,多様に設計変更可能 である。例えば,必ずしもマイクロコンピュータ等力 なる主制御回路を設けずに,上 記高周波を発振可能な高周波発振手段 24と,所定の低周波 (例えば, 2. 0kHz, 7 . 81Hz等)を発振可能な低周波発振手段 25を具備するようにしてもよい。  In the above embodiment, a control block as shown in FIG. 3 is used as a high frequency oscillating means and a low frequency oscillating means for applying a high frequency current or a low frequency current to the high frequency coil 30 or the low frequency coil 40. However, the present invention is not limited to the examples in which the present invention is applied. The circuit configuration of the control block 20 can be variously changed in design, for example, as long as a high frequency within the range of a predetermined high frequency for treatment (for example, 50 to 140 MHz) can be oscillated. For example, the high frequency oscillating means 24 capable of oscillating the above high frequency and the low frequency capable of oscillating a predetermined low frequency (for example, 2.0 kHz, 7. 81 Hz etc.) without necessarily providing the main control circuit which is equal to the microcomputer. Frequency oscillating means 25 may be provided.
[0184] また,上記実施形態では,高周波電磁波 (高周波交番磁界)の治療用高周波数と して,主に, 83. 3MHzの例を挙げて説明したが,本発明は力かる例に限定されず, 治療用高周波数は, 50〜 140MHzの範囲内の所定の周波数であればよい。また, 低周波電磁波の治療用低周波数として,例えば 2. OkHzの例を挙げて説明したが, 力かる例に限定されず,治療用低周波数は,約 2. 0± 10%kHzの範囲内の所定の 周波数であっても 、し,それ以外の範囲の任意の周波数であってもよ 、。 Further, in the above embodiment, the example of 83.3 MHz was mainly described as the high frequency for treatment of high frequency electromagnetic waves (high frequency alternating magnetic field), but the present invention is limited to the example of force. The high frequency for treatment may be a predetermined frequency within the range of 50 to 140 MHz. Also, Although the low frequency for the treatment of low frequency electromagnetic waves has been described with the example of 2. OkHz, for example, the invention is not limited to the example of force, and the low frequency for treatment is predetermined within the range of about 2.0 ± 10% kHz. The frequency may be any frequency in the other range.
[0185] また,上記実施形態では,高周波電磁波は,略正弦波であつたが,かかる例に限 定されず,例えば,略矩形波,ノコギリ波などであってもよい。また,低周波電磁波は ,略矩形波であつたが,力かる例に限定されず,例えば,略正弦波,ノコギリ波などで あってもよい。また,上記低周波電磁波は,プラスの所定値とゼロ値の 2値をとる略矩 形波であつたが,この 2値は,力かる例に限定されず,例えば,ともにプラス値,ともに マイナス値,或いは,一方がプラス値で他方がマイナス値など,であってもよい。  Further, in the above embodiment, the high frequency electromagnetic wave is a substantially sinusoidal wave, but is not limited to this example, and may be, for example, a substantially rectangular wave, a sawtooth wave or the like. Although the low frequency electromagnetic wave is a substantially rectangular wave, it is not limited to a strong example, and may be, for example, a substantially sine wave, a sawtooth wave or the like. In addition, although the low frequency electromagnetic wave is a substantially rectangular wave having two values of a predetermined positive value and a zero value, the two values are not limited to the example of force, and for example, both positive values and both negative values. A value or one may be positive and the other negative.
[0186] また,上記実施形態では,高周波電磁波発生手段は,高周波電磁波を,約 2. Ok Hzおよび約 7. 81Hzの双方の周波数で複合的に間欠して発生させたが,本発明は 力かる例に限定されない。高周波電磁波発生手段は,例えば,約 2. 0k± 10%kHz の周波数,あるいは約 7. 81Hz± 10%のいずれかの周波数のみで,高周波電磁波 を間欠的に発生させてもよく,また,例えば,上記周波数以外の 1又は 2以上の周波 数で間欠的に,高周波電磁波を発生させてもよい。また,高周波電磁波発生手段は ,高周波電磁波を,間欠することなく連続的に(例えば, 83. 3MHz± 10%の連続 波として)発生させてもよい。  Further, in the above embodiment, the high frequency electromagnetic wave generating means generates the high frequency electromagnetic wave intermittently in a combined intermittent manner at frequencies of about 2. Ok Hz and about 7. 81 Hz. It is not limited to the example. The high frequency electromagnetic wave generation means may intermittently generate high frequency electromagnetic waves, for example, only at a frequency of approximately 2.0 k ± 10% kHz or at any frequency of approximately 7. 8 Hz ± 10%. , High frequency electromagnetic waves may be generated intermittently at one or more frequencies other than the above frequencies. Also, the high frequency electromagnetic wave generation means may generate the high frequency electromagnetic wave continuously (for example, as a continuous wave of 83.3 MHz ± 10%) without intermittent.
[0187] また,高周波電磁波発生手段は,上記のように高周波電磁波を完全に間欠的に発 生させるのではなく,例えば,高周波電磁波を,その電磁波強度が所定の 1又は 2以 上の周波数(例えば,約 2. Ok± 10%kHzおよび約 7. 81Hz± 10%など)で例えば 略正弦波的に増減するように,発生させてもよい。これによつても,被治療体に作用 する高周波交番磁界の強度を周期的に増減させて,交番磁界刺激に変化を与える ことができるので,磁気治療効果が高まる。さらに,かかる高周波電磁波強度の周期 的な増減に同期させて,例えば,低周波電磁波発生手段が発生させる低周波電磁 波を,周期的に増減あるいは断続させてもよい。  Also, the high frequency electromagnetic wave generation means does not generate the high frequency electromagnetic wave completely intermittently as described above, but, for example, the high frequency electromagnetic wave has an electromagnetic wave intensity of a predetermined frequency or more (1 or 2 or more) For example, it may be generated to increase or decrease, for example, approximately sinusoidally at approximately 2. Ok ± 10% kHz and approximately 7.81 Hz ± 10%. Also in this case, the intensity of the high frequency alternating magnetic field acting on the treatment subject can be periodically increased or decreased to change the alternating magnetic field stimulation, thereby enhancing the magnetic treatment effect. Furthermore, in synchronization with the periodic increase and decrease of the high frequency electromagnetic wave intensity, for example, the low frequency electromagnetic wave generated by the low frequency electromagnetic wave generator may be periodically increased or decreased or interrupted.
[0188] また,上記実施形態では,低周波電磁波発生手段は,低周波電磁波を約 7. 81H zの周期で間欠的に発生させたが,本発明は力かる例に限定されない。低周波電磁 波発生手段は,例えば,上記周波数以外の 1又は 2以上の周波数で低周波電磁波 を間欠的に発生してもよい。また,低周波電磁波発生手段は,低周波電磁波を間欠 することなく連続的に発生させてもょ 、。 Further, in the above embodiment, the low frequency electromagnetic wave generating means intermittently generates the low frequency electromagnetic wave with a cycle of about 7. 8 Hz, but the present invention is not limited to the example. The low frequency electromagnetic wave generation means is, for example, a low frequency electromagnetic wave at one or more frequencies other than the above frequency. May occur intermittently. Also, the low frequency electromagnetic wave generation means may generate the low frequency electromagnetic wave continuously without intermittent.
[0189] また,上記実施形態にかかる疼痛治療器 10は,高周波発振手段 24および低周波 発振手段 25の双方を備えることにより,高周波電磁波および低周波電磁波の双方を 発生可能に構成したが,本発明は,カゝかる例に限定されない。疼痛治療器 10は,上 記低周波発振手段 25を具備せずに,上記高周波電磁波のみを発生する構成であ つてもよい。また,疼痛治療器 10は,上記高周波発振手段 24及び Z又は低周波発 振手段 25以外にも,新たな 1又は 2以上の電磁波発生手段 (例えば,別のコイルなど )を追加して具備してもよい。さらに,この追加された電磁波発生手段が発生する電 磁波は,例えば,長波,中波,短波,超短波,マイクロ波など任意の周波数の電磁波 であってもよい。  The pain treatment device 10 according to the above embodiment is configured to be capable of generating both high frequency electromagnetic waves and low frequency electromagnetic waves by including both the high frequency oscillation means 24 and the low frequency oscillation means 25. The invention is not limited to the examples given. The pain treatment device 10 may be configured to generate only the high frequency electromagnetic wave without the low frequency oscillation means 25 described above. In addition to the high frequency oscillation means 24 and the Z or low frequency oscillation means 25, the pain treatment device 10 is additionally provided with one or more new electromagnetic wave generation means (for example, another coil etc.) May be Furthermore, the electromagnetic wave generated by the added electromagnetic wave generating means may be, for example, an electromagnetic wave of an arbitrary frequency such as a long wave, a medium wave, a short wave, an ultrashort wave, or a microwave.
[0190] また,疼痛治療器 10は,上記以外の構成要素以外にも,例えば,被治療体に振動 を与えるための振動発生手段,作用させる電磁波(交番磁界)の周波数若しくは強度 ,室温,体温,電池残量,などを計測する各種の計測装置,交番磁界の照射継続時 間 (動作時間)を計測および制御して,動作の自動オン Zオフ等を行うタイマー装置 ,ユーザに対して予定治療時間の終了や電源消耗などを音声により通知するための ブザー装置などの発音装置,治療器本体を患部に装着するためのベルトまたは粘着 剤等の装着手段,などを適宜設けてもよい。  [0190] In addition to the components other than the above, the pain treatment device 10 may be, for example, a vibration generating means for giving vibration to the treatment subject, frequency or intensity of an electromagnetic wave (alternate magnetic field) to be applied, room temperature, body temperature. , Various measuring devices to measure the remaining amount of battery, etc., timer devices to measure and control the irradiation continuation time (operation time) of the alternating magnetic field and to perform the automatic on / off operation of the operation, etc. A sound generator such as a buzzer device for notifying the end of time, power consumption, etc. by voice may be provided as appropriate, and a belt or adhesive mounting means for mounting the therapeutic device body on the affected area may be provided appropriately.
[0191] また,上記実施形態にかかる疼痛治療器 10は, 50〜140MHz (例えば 83. 3MH z)の高周波電磁波を発生させる構成であつたが,本発明は力かる例に限定されない  Further, although the pain treatment device 10 according to the above embodiment is configured to generate high frequency electromagnetic waves of 50 to 140 MHz (for example, 83.3 MHz), the present invention is not limited to the example of the present invention.
[0192] 例えば,疼痛治療器 10は, 50〜140MHz内の任意の周波数を任意の正の整数 で除算した周波数(例えば, 83. 3MHzを 2, 3,…で除算した約 41. 6MHz, 27. 7 MHz,…など)を発振するように構成されており,この周波数の電磁波を発生させる 際に付随的に生じる高調波を用いて, 50〜 140MHzの高周波電磁波をも発生させ るように構成してちょい。 [0192] For example, the pain treatment device 10 may be any frequency within 50 to 140 MHz divided by any positive integer (for example, 83.3 MHz divided by 2, 3, ... about 41.6 MHz, 27). And so on), and is also configured to generate high frequency electromagnetic waves of 50 to 140 MHz using harmonics that are incidental to the generation of electromagnetic waves of this frequency. Just a minute.
[0193] つまり,一般的には,発生させる高周波電磁波の基本波が完全な正弦波でなけれ ば,その基本波の整数倍の周波数も高調波が必然的に発生する。このため, 50MH z未満の電磁波(例えば,約 41. 65MHz,約 27. 8MHz,…等)を基本波として発 生させたとしても,その整数倍 (2倍, 3倍, ···)の周波数の高周波電磁波 (例えば 83 . 3MHz)が高調波として発生する。この高調波の周波数が,上記本実施形態にか 力る好適な周波数範囲,即ち, 50〜140MHz,好適には 50〜120MHz,より好適 には 55〜: L lOMHz,さらにより好適には 65〜: LOOMHz,さらにより好適には 70〜9 5MHz,特に好適には 83. 3± 10%MHzの範囲内にあれば,当該高調波を被治療 体に作用させることによって磁気治療効果が生じると考えられる。よって,当該高調 波の発生源となる基本波を発生させる疼痛治療器及び高周波治療器は,本願発明 の技術的範囲に含まれる。 That is, in general, if the fundamental wave of the high frequency electromagnetic wave to be generated is not a perfect sine wave, harmonics inevitably occur at a frequency that is an integral multiple of the fundamental wave. Because of this, 50MH Even if an electromagnetic wave of less than z (for example, about 41.65 MHz, about 27.8 MHz, etc.) is generated as a fundamental wave, a high frequency electromagnetic wave of a frequency that is an integral multiple (twice, three times,. (Eg 83.3 MHz) are generated as harmonics. The frequency of this harmonic is in the preferred frequency range according to the present embodiment, that is, 50 to 140 MHz, preferably 50 to 120 MHz, more preferably 55 to: L 10 MHz, still more preferably 65 to 50 MHz. : It is considered that the magnetic therapeutic effect is produced by applying the harmonics to the treatment object if it is within the range of LOO MHz, still more preferably 70 to 95 MHz, particularly preferably 83.3 ± 10% MHz. Be Therefore, a pain treatment device and a high frequency treatment device that generate a fundamental wave that is a generation source of the harmonics are included in the technical scope of the present invention.
[0194] また,疼痛治療器 10は, 140MHzより大きい周波数の高周波電磁波を 50〜140 MHzで間欠的に発生させることによって,上記 50〜 140MHzの高周波電磁波を発 生させるようにしてちょい。  In addition, the pain treatment device 10 generates the high frequency electromagnetic wave of 50 to 140 MHz by intermittently generating the high frequency electromagnetic wave of frequency higher than 140 MHz at 50 to 140 MHz.
[0195] つまり,人体などの生体細胞は,過度に高周波の周波数帯の電磁波の照射を受け ても,当該高周波の交番磁界の変化に反応しない場合がある。力かる生体細胞の鈍 感さを利用して, 140MHzより大きい周波数の高周波電磁波(例えば 1GHz)を搬送 波として,当該搬送波を,上記治療用高周波数である 50〜140MHz (例えば 83. 3 MHz)に対応する周期でオン Zオフして出力することで,生体細胞は,あたかも当該 治療用高周波数の電磁波のみが照射されているかのように反応することとなる。よつ て,当該高周波の発生源となる搬送波を間欠的に発生させる疼痛治療器は,本願発 明の技術的範囲に含まれる。  That is, even when living cells such as the human body are excessively irradiated with electromagnetic waves in a high frequency band, they may not respond to changes in the high frequency alternating magnetic field. Taking advantage of the insensitivity of powerful living cells, a high frequency electromagnetic wave (for example, 1 GHz) having a frequency higher than 140 MHz is used as a carrier wave, and the carrier is used as the above-mentioned therapeutic high frequency 50 to 140 MHz (for example 83.3 MHz). By turning on and off at the cycle corresponding to, and outputting, the living cell will react as if only the high frequency electromagnetic wave for treatment was irradiated. Therefore, a pain treatment device that intermittently generates a carrier wave that is a source of the high frequency is included in the technical scope of the present invention.
[0196] また,上記治療用高周波数は,上記 50〜 140MHz範囲内の固定値であってもよ い。しかし,患部の細胞に対して,同一の治療用高周波数の高周波交番磁界を継続 的に作用させたときには,患部の細胞が当該周波数に慣れてしまい,磁気治療効果 が低減する可能性がある,そこで,上記疼痛治療器 10を用いた治療中(患部に対す る高周波交番磁界の照射中)に,上記治療用高周波数を, 50〜140MHz,好適に ¾50~ 120MHz,より好適【こ ίま 55〜: L lOMHz,さら【こより好適【こ ίま 65〜: LOOMHz ,さらにより好適には 70〜95MHz,特に好適には 83. 3± 10%MHzの範囲内で, 変化させてもよい。これにより,磁気治療中に,患部の細胞に対して,異なる治療用 高周波数の高周波交番磁界を作用させることができるので,患部の細胞が受ける磁 気刺激に変化を与えて,磁気治療効果を向上させることができる。なお,このような治 療用高周波数の変化は,例えば,高周波発振手段が,高周波用コイル 30に印可す る高周波電流の周波数を,上記範囲内で変化させることによって実現できる。 Further, the high frequency for treatment may be a fixed value within the range of 50 to 140 MHz. However, when the same therapeutic high frequency high frequency alternating magnetic field is continuously applied to the cells in the affected area, the cells in the affected area may get used to the frequency and the magnetic therapeutic effect may be reduced. Therefore, during treatment using the above-mentioned pain treatment device 10 (during irradiation of the high frequency alternating magnetic field to the affected area), the high frequency for the treatment is 50 to 140 MHz, preferably 3⁄450 to 120 MHz, more preferably 55 :: L l O MHz, more preferably 5〜 65 to: LOO MHz, still more preferably 70 to 95 MHz, particularly preferably 83.3 ± 10% MHz. This allows different treatment of the affected cells during magnetic treatment Since high frequency alternating magnetic fields can be applied, it is possible to change the magnetic stimulation that cells in the affected area receive, and improve the magnetic treatment effect. Note that such a change in the high frequency for medical treatment can be realized, for example, by changing the frequency of the high frequency current applied to the high frequency coil 30 by the high frequency oscillation means within the above range.
[0197] また,上記実施形態では,高周波治療器として,被治療体の患部の疼痛治療を行 うための疼痛治療器の例について説明したが,本発明は力かる例に限定されない。 本発明の高周波治療器は,例えば,血行促進等の磁気治療効果を奏する各種の治 療器に適用できる。 Also, in the above embodiment, although an example of a pain treatment device for treating pain in an affected part of a treatment subject has been described as a high frequency treatment device, the present invention is not limited to the example. The high frequency treatment device of the present invention can be applied to, for example, various kinds of treatment devices having magnetic treatment effects such as blood circulation promotion.
産業上の利用可能性  Industrial applicability
[0198] 本発明は,高周波治療器に適用可能であり,特に,被治療体に対して高周波交番 磁界を作用させて,鎮痛,血行促進等の磁気治療効果をもたらす疼痛治療器に適 用可能である。 [0198] The present invention is applicable to high frequency therapeutic devices, and in particular, applicable to pain treatment devices that cause magnetic therapeutic effects such as analgesia and blood circulation promotion by causing a high frequency alternating magnetic field to act on a treatment subject. It is.

Claims

請求の範囲 The scope of the claims
[1] 被治療体の患部に対して交番磁界を作用させるための疼痛治療器であって: 治療用高周波数の高周波交番磁界を前記患部に対して作用させるため,前記治 療用高周波数の高周波電磁波を発生させる高周波電磁波発生手段を備え, 前記治療用高周波数は 50〜 140MHzの範囲力も選択されることを特徴とする,疼 痛治療器。  [1] A pain treatment apparatus for causing an alternating magnetic field to act on an affected area of a subject to be treated: a therapeutic high frequency high frequency alternating magnetic field to act on the affected area; A pain treatment apparatus comprising: a high frequency electromagnetic wave generating means for generating a high frequency electromagnetic wave; and the therapeutic high frequency in the range of 50 to 140 MHz is also selected.
[2] 前記高周波電磁波発生手段から放射された前記治療用高周波数の高周波交番 磁界を,前記患部に対して作用させることにより,前記患部における細胞内のカルシ ゥムイオン濃度を上昇させ,所定物質のェキソサイト一シスを誘発させることを特徴と する,請求項 1に記載の疼痛治療器。  [2] By causing the therapeutic high frequency alternating magnetic field emitted from the high frequency electromagnetic wave generating means to act on the affected area, the calcium ion concentration in the cells in the affected area is increased, and the ectosite of the predetermined substance is excited. The pain treatment device according to claim 1, characterized in that it induces cis.
[3] 前記治療用高周波数は, 50〜120MHzの範囲力も選択されることを特徴とする, 請求項 1に記載の疼痛治療器。 [3] The pain treatment device according to claim 1, wherein the therapeutic high frequency is also selected in the range of 50 to 120 MHz.
[4] 前記治療用高周波数は, 55〜110MHzの範囲力も選択されることを特徴とする, 請求項 1に記載の疼痛治療器。 [4] The pain treatment device according to claim 1, wherein the therapeutic high frequency is also selected in the range of 55 to 110 MHz.
[5] 前記治療用高周波数は, 65〜: LOOMHzの範囲力も選択されることを特徴とする, 請求項 1に記載の疼痛治療器。 [5] The pain treatment device according to claim 1, wherein the therapeutic high frequency is selected from the range of 65 to LOO MHz.
[6] 前記治療用高周波数は, 75〜95MHzの範囲力も選択されることを特徴とする,請 求項 1に記載の疼痛治療器。 [6] The pain treatment device according to claim 1, wherein the therapeutic high frequency is also selected in the range of 75 to 95 MHz.
[7] 前記治療用高周波数は, 83. 3± 10%MHzの範囲力も選択されることを特徴とす る,請求項 1に記載の疼痛治療器。 [7] The pain treatment device according to claim 1, wherein the therapeutic high frequency is also selected in the range of 83.3 ± 10% MHz.
[8] 前記高周波電磁波発生手段は, [8] The high frequency electromagnetic wave generation means is
高周波電流を出力する高周波発振手段と;  High frequency oscillating means for outputting high frequency current;
前記高周波発振手段力も高周波電流が印可されることによって,前記治療用高周 波数の高周波電磁波を発生させるアンテナと;  An antenna for generating the high frequency electromagnetic wave of the high frequency for treatment by applying a high frequency current to the high frequency oscillating means;
を備えることを特徴とする,請求項 1に記載の疼痛治療器。  The pain treatment device according to claim 1, comprising:
[9] 前記高周波電磁波発生手段は,前記高周波電磁波を発生させるオン期間と,前記 高周波電磁波を発生させないオフ期間を所定の周期で繰り返して,前記高周波電 磁波を間欠的に発生させることを特徴とする,請求項 1に記載の疼痛治療器。 [9] The high frequency electromagnetic wave generating means intermittently generates the high frequency electromagnetic wave by repeating an on period for generating the high frequency electromagnetic wave and an off period for not generating the high frequency electromagnetic wave at a predetermined cycle. The device for treating pain according to claim 1.
[10] 前記高周波電磁波発生手段は,前記高周波電磁波を発生させる第 1のオン期間と ,前記高周波電磁波を発生させない第 1のオフ期間を, 2. 0± 10%kHzに対応する 周期で繰り返して,前記高周波電磁波を間欠的に発生させることを特徴とする,請求 項 9に記載の疼痛治療器。 [10] The high frequency electromagnetic wave generation means repeats the first on period for generating the high frequency electromagnetic wave and the first off period for not generating the high frequency electromagnetic wave at a cycle corresponding to 2.0 ± 10% kHz. The pain treatment device according to claim 9, wherein the high frequency electromagnetic wave is intermittently generated.
[11] 前記高周波電磁波発生手段は,前記高周波電磁波を発生させる第 2のオン期間と ,前記高周波電磁波を発生させない第 2のオフ期間を, 7. 8± 10%Hzに対応する 周期で繰り返して,前記高周波電磁波を間欠的に発生させることを特徴とする,請求 項 10に記載の疼痛治療器。  [11] The high frequency electromagnetic wave generation means repeats the second on period for generating the high frequency electromagnetic wave and the second off period for not generating the high frequency electromagnetic wave at a cycle corresponding to 7. 8 ± 10% Hz. The pain treatment device according to claim 10, wherein the high frequency electromagnetic wave is intermittently generated.
[12] 所定の治療用低周波数の低周波交番磁界を前記患部に対して作用させるため, 前記治療用低周波数の低周波電磁波を発生させる低周波電磁波発生手段を備え, 前記治療用低周波数は 2. 0± 10%kHzの範囲から選択されることを特徴とする, 請求項 1に記載の疼痛治療器。  [12] A low frequency electromagnetic wave generating means for generating a low frequency electromagnetic wave of low frequency for treatment is provided to cause a predetermined low frequency of low frequency alternating magnetic field to act on the affected area, the low frequency of treatment for low frequency is 2. The pain treatment device according to claim 1, which is selected from the range of 0 ± 10% kHz.
[13] 前記低周波電磁波発生手段は,  [13] The low frequency electromagnetic wave generation means is
低周波電流を出力する低周波発振手段と;  Low frequency oscillation means for outputting low frequency current;
前記低周波発振手段から低周波電流が印可されることによって,前記治療用低周 波数の低周波電磁波を発生させるアンテナと;  An antenna for generating a low frequency electromagnetic wave of the low frequency for treatment by applying a low frequency current from the low frequency oscillation means;
を備えることを特徴とする,請求項 12に記載の疼痛治療器。  The pain treatment device according to claim 12, comprising:
[14] 前記低周波電磁波発生手段は,前記低周波電磁波を発生させるオン期間と,前記 低周波電磁波を発生させないオフ期間を所定の周期で繰り返して,前記低周波電 磁波を間欠的に発生させることを特徴とする,請求項 13に記載の疼痛治療器。 [14] The low frequency electromagnetic wave generating means intermittently generates the low frequency electromagnetic wave by repeating an on period for generating the low frequency electromagnetic wave and an off period for not generating the low frequency electromagnetic wave at a predetermined cycle. The pain treatment device according to claim 13, characterized in that.
[15] 前記低周波電磁波発生手段は,前記低周波電磁波を発生させる第 3のオン期間と[15] The low frequency electromagnetic wave generation means includes a third on period for generating the low frequency electromagnetic wave and
,前記低周波電磁波を発生させない第 3のオフ期間を, 7. 8± 10%Hzに対応する 周期で繰り返して,前記低周波電磁波を間欠的に発生させることを特徴とする,請求 項 14に記載の疼痛治療器。 The low frequency electromagnetic wave is intermittently generated by repeating the third off period in which the low frequency electromagnetic wave is not generated, at a cycle corresponding to 7. 8 ± 10% Hz. Pain therapy device as described.
[16] 前記高周波電磁波発生手段は,前記高周波電磁波を発生させるオン期間と,前記 高周波電磁波を発生させないオフ期間を所定の周期で繰り返して,前記高周波電 磁波を間欠的に発生させ, [16] The high frequency electromagnetic wave generating means intermittently generates the high frequency electromagnetic wave by repeating an on period for generating the high frequency electromagnetic wave and an off period for not generating the high frequency electromagnetic wave at a predetermined cycle,
前記高周波電磁波のオン期間と,前記低周波電磁波のオン期間とは,同期してい ることを特徴とする,請求項 14に記載の疼痛治療器。 The on period of the high frequency electromagnetic wave and the on period of the low frequency electromagnetic wave are synchronized with each other. The treatment apparatus for pain according to claim 14, characterized in that:
[17] 前記高周波電磁波発生手段は, 140MHzより大きい周波数の高周波電磁波を, 前記治療用高周波数に対応する周期で間欠的に発生させることによって,前記治療 用高周波数の高周波電磁波を発生させることを特徴とする,請求項 1に記載の疼痛 治療器。 [17] The high frequency electromagnetic wave generation means generates the high frequency electromagnetic wave for high frequency treatment by intermittently generating the high frequency electromagnetic wave having frequency higher than 140 MHz in a cycle corresponding to the high frequency for treatment. The treatment device for pain according to claim 1, characterized in that.
[18] 前記高周波電磁波発生手段が発生させる前記治療用高周波数の高周波電磁波 は, 50MHz未満の高周波電磁波を発生させる際に生じる高調波を含むことを特徴 とする,請求項 1に記載の疼痛治療器。  [18] The pain treatment according to claim 1, wherein the therapeutic high frequency high frequency electromagnetic wave generated by the high frequency electromagnetic wave generating means includes a harmonic generated when generating a high frequency electromagnetic wave of less than 50 MHz. vessel.
[19] 被治療体の患部に対して交番磁界を作用させるための高周波治療器であって: 治療用高周波数の高周波交番磁界を前記患部に対して作用させるため,前記治 療用高周波数の高周波電磁波を発生させる高周波電磁波発生手段を備え, 前記治療用高周波数は 50〜 140MHzの範囲力も選択されることを特徴とする,高 周波治療器。 [19] A high frequency treatment apparatus for causing an alternating magnetic field to act on an affected area of a subject to be treated: a therapeutic high frequency high frequency alternating magnetic field to act on the affected area; A high frequency treatment device comprising: a high frequency electromagnetic wave generating means for generating a high frequency electromagnetic wave; and a high frequency of 50 to 140 MHz for the medical treatment is also selected.
PCT/JP2006/311634 2006-06-09 2006-06-09 Sharp pain treatment device, high frequency treatment device WO2007141874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/311634 WO2007141874A1 (en) 2006-06-09 2006-06-09 Sharp pain treatment device, high frequency treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/311634 WO2007141874A1 (en) 2006-06-09 2006-06-09 Sharp pain treatment device, high frequency treatment device

Publications (1)

Publication Number Publication Date
WO2007141874A1 true WO2007141874A1 (en) 2007-12-13

Family

ID=38801145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311634 WO2007141874A1 (en) 2006-06-09 2006-06-09 Sharp pain treatment device, high frequency treatment device

Country Status (1)

Country Link
WO (1) WO2007141874A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2081645A1 (en) * 2006-11-08 2009-07-29 Medical Appliance Co., Ltd. Neurotrophic factor production accelerating apparatus
ITPR20100039A1 (en) * 2010-05-03 2011-11-04 F & B Internat S R L MEDICAL DEVICE FOR MAGNETOTHERAPY
ITPR20100038A1 (en) * 2010-05-03 2011-11-04 F & B Internat S R L MEDICAL DEVICE FOR MAGNETOTHERAPY
JP2012071134A (en) * 2010-09-29 2012-04-12 Zimmer Medizinsysteme Gmbh Electromedical device for non-invasive reduction or removal of subcutaneous adipose tissue
US10792495B2 (en) 2016-12-01 2020-10-06 Thimble Bioelectronics, Inc. Neuromodulation device and method for use

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102773A (en) * 1985-10-31 1987-05-13 株式会社島津製作所 Hiperthermia apparatus
JPS63267371A (en) * 1986-12-11 1988-11-04 Matsushita Electric Works Ltd High frequency magnetic treatment device
JPH0984886A (en) * 1995-09-26 1997-03-31 Matsushita Electric Works Ltd High frequency therapeutic tool
JP2002306614A (en) * 2001-04-18 2002-10-22 Nippon Koden Corp Magnetic stimulating device using litz wire coil
JP2005503190A (en) * 2001-05-31 2005-02-03 デルタメド ゲーエムベーハー Apparatus and method for treatment by magnetic field
JP2005537109A (en) * 2002-09-03 2005-12-08 セルシオン コーポレーション Unipolar phased array hyperthermia applicator for deep tumors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102773A (en) * 1985-10-31 1987-05-13 株式会社島津製作所 Hiperthermia apparatus
JPS63267371A (en) * 1986-12-11 1988-11-04 Matsushita Electric Works Ltd High frequency magnetic treatment device
JPH0984886A (en) * 1995-09-26 1997-03-31 Matsushita Electric Works Ltd High frequency therapeutic tool
JP2002306614A (en) * 2001-04-18 2002-10-22 Nippon Koden Corp Magnetic stimulating device using litz wire coil
JP2005503190A (en) * 2001-05-31 2005-02-03 デルタメド ゲーエムベーハー Apparatus and method for treatment by magnetic field
JP2005537109A (en) * 2002-09-03 2005-12-08 セルシオン コーポレーション Unipolar phased array hyperthermia applicator for deep tumors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISHIKAWA T.: "Rat Shinkei Insei Totsu Model ni Okeru Jikai Ryoho", PAIN RESEARCH, vol. 15, no. 3, 2000, pages 118, XP003020124 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2081645A1 (en) * 2006-11-08 2009-07-29 Medical Appliance Co., Ltd. Neurotrophic factor production accelerating apparatus
EP2081645A4 (en) * 2006-11-08 2011-09-21 Mind Co Ltd P Neurotrophic factor production accelerating apparatus
EP2596833A1 (en) * 2006-11-08 2013-05-29 P· MIND Co., Ltd Apparatus for accelerating production of neurotrophic factor
US8562506B2 (en) 2006-11-08 2013-10-22 P-Mind Co., Ltd. Neurotrophic factor production promoting device
US8951183B2 (en) 2006-11-08 2015-02-10 P-Mind Co., Ltd. Neurotrophic factor production promoting device
ITPR20100039A1 (en) * 2010-05-03 2011-11-04 F & B Internat S R L MEDICAL DEVICE FOR MAGNETOTHERAPY
ITPR20100038A1 (en) * 2010-05-03 2011-11-04 F & B Internat S R L MEDICAL DEVICE FOR MAGNETOTHERAPY
JP2012071134A (en) * 2010-09-29 2012-04-12 Zimmer Medizinsysteme Gmbh Electromedical device for non-invasive reduction or removal of subcutaneous adipose tissue
US8744594B2 (en) 2010-09-29 2014-06-03 Zimmer Medizinsysteme Gmbh Electromedical device for the non-invasive reduction or removal of subcutaneous adipose tissue
US10792495B2 (en) 2016-12-01 2020-10-06 Thimble Bioelectronics, Inc. Neuromodulation device and method for use
US11801383B2 (en) 2016-12-01 2023-10-31 Hinge Health, Inc. Neuromodulation device and method for use

Similar Documents

Publication Publication Date Title
EP2596833B1 (en) Apparatus for accelerating production of neurotrophic factor
US20240091548A1 (en) System and method for applying a low frequency magnetic field to biological tissues
US5723001A (en) Apparatus and method for therapeutically treating human body tissue with electromagnetic radiation
US20060212077A1 (en) Electromagnetic treatment apparatus for augmenting wound repair and method for using same
US7740574B2 (en) Electromagnetic treatment induction apparatus and method for using same
US7758490B2 (en) Integrated coil apparatus for therapeutically treating human and animal cells, tissues and organs with electromagnetic fields and method for using same
US8469906B2 (en) Therapeutic micro-vibration device
US8911385B2 (en) Therapeutic micro-vibration device
CN103764223B (en) For the equipment utilizing the electromagnetic treatment of pulse resonance to process
RU2203702C1 (en) Method and device for applying physiotherapeutic treatment
WO2008036383A1 (en) Electromagnetic apparatus for respiratory disease and method for using same
JP2003518959A (en) PEMF biophysical stimulus field generator apparatus and method
JP2006519680A (en) Electromagnetic therapy device and method
JP2008538513A (en) Drug, chemical substance, and topical drug enhancement device and method of use thereof
WO2007141874A1 (en) Sharp pain treatment device, high frequency treatment device
JP2009524480A (en) Independent electromagnetic cerebrofacial treatment device and method using the same
JP4821957B2 (en) High frequency treatment device
RU2010137343A (en) REGULATION OF EXPRESSION OF FACTOR OF GROWTH FIBROBLAST-2 (FGF -2) IN LIVING CELLS USING SPECIFIC AND SELECTIVE ELECTRIC AND ELECTROMAGNETIC FIELDS
KR20210126424A (en) Apparatus for treating diseases of the musculoskeletal and method for controlling the same
RU2198698C2 (en) Method for forming bone regenerate in bone defects
Cadossi et al. Physical dynamics: the base for the development of biophysical treatments
JPS6219183A (en) Laser beam irradiating treatment apparatus
Welsh Using Electromagnetic Fields to Modulate the Self-Healing Capacity of the Human Anterior Cruciate Ligament
MX2008003378A (en) Integrated coil apparatus and method for using same
AU2005336126A1 (en) Integrated coil apparatus and method for using same

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06766546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06766546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP