[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007039927A1 - エレベータの制御装置 - Google Patents

エレベータの制御装置 Download PDF

Info

Publication number
WO2007039927A1
WO2007039927A1 PCT/JP2005/018159 JP2005018159W WO2007039927A1 WO 2007039927 A1 WO2007039927 A1 WO 2007039927A1 JP 2005018159 W JP2005018159 W JP 2005018159W WO 2007039927 A1 WO2007039927 A1 WO 2007039927A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
speed
deceleration
force
time
Prior art date
Application number
PCT/JP2005/018159
Other languages
English (en)
French (fr)
Inventor
Masunori Shibata
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2005/018159 priority Critical patent/WO2007039927A1/ja
Priority to EP05788106A priority patent/EP1930277A4/en
Priority to KR1020077014939A priority patent/KR100931429B1/ko
Priority to CNA2005800401256A priority patent/CN101065311A/zh
Priority to JP2006529374A priority patent/JP5014790B2/ja
Publication of WO2007039927A1 publication Critical patent/WO2007039927A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/02Control systems without regulation, i.e. without retroactive action
    • B66B1/06Control systems without regulation, i.e. without retroactive action electric
    • B66B1/14Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/285Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical with the use of a speed pattern generator

Definitions

  • the present invention relates to an elevator control device that controls the speed of a car according to, for example, a load in the car.
  • a conventional elevator speed control device has been proposed that obtains a position where landing can precede the current position of the car and controls the speed of the force according to the position where landing is possible. Yes.
  • a destination floor is registered by a force call, and it is determined whether or not the car can land on the registered destination floor.
  • a speed pattern corresponding to the current position of the force and the destination floor is generated regardless of the load in the force.
  • the speed of the force is controlled according to the generated speed pattern (see Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 4 20469
  • the present invention has been made to solve the above-described problems, and can move the force more efficiently, and can normally stop to the destination floor where the force call registration was made. It is an object of the present invention to provide an elevator control device that can more accurately determine whether or not it is possible to stop.
  • the elevator control apparatus is based on car call registration!
  • the maximum speed, acceleration and jerk are calculated based on the information from the next stop floor setting means for setting the stop floor, the weighing device for detecting the load in the car, and the next stop floor setting means.
  • the speed pattern until the car normally stops at the next stop floor is generated, and the speed controller that controls the speed of the car according to the speed pattern
  • the advance position is calculated by adding the deceleration stop distance to the current position of the car, and the deceleration stop distance calculation means for calculating the deceleration stop distance when the car is normally stopped from the current position of the force.
  • the next stop floor setting means sets the next stop floor by comparing the position of the destination floor with the force call registration and the advance position. It is made as to that.
  • FIG. 1 is a schematic configuration diagram showing an elevator according to Embodiment 1 of the present invention.
  • FIG. 2 is a graph showing an example of a car speed pattern generated by the speed controller of FIG. 1.
  • FIG. 3 is a graph showing temporal changes in the speed and acceleration of the car for calculating the deceleration stop distance of the force when the car call registration is performed at time T in FIG.
  • FIG. 4 is a flowchart showing a calculation operation of the control device of FIG.
  • FIG. 5 is a flowchart showing a calculation operation in mode 1 of FIG.
  • FIG. 6 is a flowchart showing a calculation operation in mode 2 of FIG.
  • FIG. 7 is a flowchart showing a calculation operation in mode 3 of FIG.
  • FIG. 8 is a flowchart showing a calculation operation in mode 4 of FIG.
  • FIG. 9 is a graph showing temporal changes in the current position and advance position of the force calculated by the calculation operation of FIG.
  • FIG. 1 is a schematic configuration diagram showing an elevator according to Embodiment 1 of the present invention.
  • a lift 2 and a counterweight 3 are provided in the hoistway 1 so as to be lifted and lowered.
  • a lifting machine (driving device) 4 for raising and lowering the force 2 and the counterweight 3 is provided at the upper part of the hoistway 1.
  • the lifting machine 4 has a lifting machine body 5 including a motor, and a driving sheave 6 that is rotated by the lifting machine body 5.
  • a plurality of main ropes 7 are hung on the driving sheave 6.
  • the force 2 and the counterweight 3 are suspended in the hoistway 1 by the main ropes 7.
  • the force 2 and the counterweight 3 are moved up and down in the hoistway 1 by the rotation of the drive sheave 6.
  • the upper machine body 5 is provided with an encoder (detector) 8 that generates a signal corresponding to the rotation of the drive sheave 6. Further, the car 2 is provided with a scale device 9 for detecting the weight in the force cage 2 as a load. Information from each of the encoder 8 and the scale device 9 is transmitted to the control device 10 of the elevator.
  • the control device 10 controls the speed of the car 2 by controlling the driving of the lifting machine 4, and based on the information from the speed controller 11, the current position of the force 2 SYNC
  • the deceleration stop distance calculation means 12 for calculating the deceleration stop distance when the car 2 is stopped by the motor deceleration operation of the upper machine body 5 (that is, when the car 2 is normally stopped)
  • the deceleration stop distance Advanced position calculation means 13 for calculating the deceleration stop position (advance position ADVN) of car 2 by adding the deceleration stop distance calculated by calculation means 12 to the current position SYNC of car 2 and advanced position calculation
  • Next stop floor setting means 14 is provided for setting the next stop floor of the force 2 on the basis of the information from the means 13 and the car call registration information.
  • the control device 10 includes a computer having an arithmetic processing unit (CPU), a storage unit (ROM, RAM, etc.) and a signal input / output unit.
  • CPU central processing unit
  • ROM read-only memory
  • RAM random access memory
  • the functions of the speed controller 11, the deceleration stop distance calculating means 12, the advance position calculating means 13 and the next stop floor setting means 14 are realized by the computer of the control device 10.
  • a program for realizing the functions of the speed controller 11, the deceleration stop distance calculating means 12, the advanced position calculating means 13 and the next stop floor setting means 14 is stored in the storage unit of the computer. Yes.
  • data of arithmetic expressions, information on the encoder 8, the scale device 9, and the like are also stored in the storage unit.
  • the arithmetic processing unit executes arithmetic processing related to the function of the control device 10 based on a program stored in the storage unit.
  • the speed controller 11 Based on the information from each of the scale device 9 and the next stop floor setting means 14, the speed controller 11 changes the time change of the speed of the car 2 until the force 2 normally stops at the next stop floor. Generate as a velocity pattern.
  • the speed controller 11 obtains the maximum speed, acceleration and jerk by calculation based on the load in the force 2 and the position of the next stop floor, and based on the obtained maximum speed, acceleration and jerk, Force 2 Speed pattern is generated. Further, the speed controller 11 detects the speed of the force 2 based on the information from the encoder 8, and the upper body is connected via the inverter 15 so that the detected speed of the car 2 follows the speed pattern. Control 5
  • the deceleration stop distance calculating means 12 and the advance position calculating means 13 always obtain the deceleration stop distance and the advance position at a constant calculation cycle.
  • the next stop floor setting means 14 compares the advance position ADVN of the force 2 calculated by the advance position calculation means 13 with the position of the destination floor where the force call is registered.
  • the next stop floor is set.
  • the next stop floor setting means 14 excludes the destination floor from the next stop floor target when the advance position ADVN of the car 2 is ahead of the current position power of the car 2 ahead of the destination floor.
  • the destination floor is set as a candidate for the next stop floor.
  • the destination floor closest to Riki 2 is the next stop floor.
  • FIG. 2 is a graph showing an example of the speed pattern of the car 2 generated by the speed controller 11 of FIG.
  • the speed of the force 2 is the time T3 from the time the force 2 starts moving until the force 2 is normally stopped. It is set to reach the maximum speed V0. That is, the speed pattern is set so that the force 2 is accelerated from the start of movement until the time T3, and after the time T3 has elapsed, the force 2 is decelerated until the force 2 is normally stopped.
  • the starting jerk time in which the acceleration of the force 2 increases with time and the acceleration of the car 2 is constant so that the speed of the force 2 reaches the maximum speed V0 at time T3.
  • a constant acceleration time and an acceleration rounding time in which the acceleration of the car 2 decreases with the passage of time are set.
  • the time force is ST1
  • the time when shifting from the constant acceleration time to the acceleration rounding time is T2 ( ⁇ 2> Tl).
  • a constant deceleration time is set for constant deceleration of the force 2 and a landing jerk time for which the deceleration of the car 2 decreases with time.
  • the time when shifting from the deceleration rounding time to the constant deceleration time is T4
  • the time when shifting from the constant deceleration time to the landing jerk time is T5 (T5> T4).
  • the distance from the start of the movement of the car 2 to the normal stop of the car 2 is represented by the area in the range surrounded by Q2-K2-L2-Q2 in FIG.
  • the next stop floor setting means 14 will be closest to power 2 among the destination floors where the car call registration was made.
  • the destination floor is set as the next stop floor.
  • the speed controller 11 generates a speed pattern of the car 2 until the current position force of the car 2 is normally stopped at the next stop floor.
  • the speed pattern at this time is a speed pattern according to the load in the car 2 when the movement of the car 2 is started.
  • the force 2 is moved by the control of the speed controller 11 until the next stop floor while changing the speed according to the generated speed pattern.
  • the speed controller 11 constantly detects the speed of the car 2 based on the information from the encoder 8, and controls the rotational speed of the drive sheave 6 so that the speed of the force 2 follows the speed pattern.
  • the deceleration stop distance and the advance position are determined by the calculation operation in mode 1 when the time when the car call registration is performed is within the time up to time T1 (starting jerk time). If it is calculated and is within the time from time T1 to time T2 (constant acceleration time), it is calculated by the operation of mode 2, and the time from time T2 to time T3 (at the time of acceleration rounding) Between the time T3 and the time until the car 2 normally stops, it is calculated by the mode 4 operation.
  • FIG. 3 is a graph showing temporal changes in the speed and acceleration of the force 2 for calculating the deceleration stop distance of the car 2 when the car call registration is performed by time T1 in FIG. is there.
  • the process proceeds directly to the acceleration round-off time Ta, and after the deceleration round-up time Td is over, Immediately shift to landing jerk time T1.
  • the deceleration stop distance of the force 2 is represented by the area enclosed by J1-IO-Q1-J1 in Fig. 3.
  • the calculation operation in mode 1 is to calculate the deceleration stop distance by calculating the area surrounded by J1-IO-Q1-J1 in Fig. 3, and add the deceleration stop distance to the current position of car 2.
  • the acceleration of the car 2 when the acceleration rounding time Ta starts is ⁇ a
  • the acceleration of the car 2 when the deceleration rounding time Td ends is ⁇ d.
  • FIG. 4 is a flowchart showing the calculation operation of the control device 10 of FIG.
  • the arithmetic operation of the control device 10 is always performed at a constant cycle.
  • the speed controller 11 determines whether or not the car 2 is stopped (S11).
  • the current position SYNC of the car 2 is set as an initial value in each of the start position STAT and the advance position ADVN where the movement of the car 2 is started (S12).
  • 0 is set as an initial value in the counter TC (S 13)
  • mode 1 is set as an initial value in the calculation mode MOD for calculating the advance position ADVN (S 14). After this, the mode 1 operation is performed and the operation is completed.
  • the advanced position ADVN, the start position STAT, the counter TC, and the calculation mode MOD are calculated up to the previous time.
  • the value is set by operation.
  • the next stop floor setting means 14 determines whether or not the advance position ADVN is equal to or higher than the position STOP of the destination floor where the force call registration was made (S15). Advance position ADVN cannot be stopped at destination stop position STOP if ADVN is greater than destination stop position ST OP Therefore, the calculation operation ends.
  • the speed controller 11 determines whether or not the calculation mode MOD is in mode 2 (S18). If the mode is 2, the mode 2 calculation is performed (S40), and the calculation operation ends.
  • the speed controller 11 determines whether or not the calculation mode MOD is in mode 3 (S19). If the mode is 3, the mode 3 calculation is performed (S50), and the calculation operation ends.
  • FIG. 5 is a flowchart showing the calculation operation (S30) in mode 1 of FIG.
  • S30 the calculation operation (S30) in mode 1 of FIG.
  • the time of counter TC is smaller than time T beam
  • the distance BIAS from the start of movement of force 2 to the normal stop of force 2 is J1-K1-Q1-J1 in Fig. 3. Since it is expressed by the area of the enclosed range, it can be obtained by equation (1).
  • BIAS (l / 6) (aa ⁇ Tj 2 — aa ⁇ Ta 2 — ad ⁇ Td 2 + ad ⁇ if)
  • the advanced position ADVN is obtained by equation (2) using the distance BIAS obtained by equation (1) and the start position STAT of the car 2 (S32), and the calculation operation ends.
  • ADVN STAT + BIAS---(2)
  • the calculation mode MOD is set to mode 2 (S33) because the calculation is not performed within the start-up jerk time, and the calculation operation ends.
  • Figure 6 shows the operation of mode 2 in Figure 4 ( It is a flowchart which shows S40).
  • S41 it is determined whether or not the force of the counter TC is greater than or equal to time T2 (S41).
  • the time of the counter TC is smaller than the time T2
  • the advance position ADVN is If the speed of the car 2 at the time is V, it can be obtained from equation (3) (S42).
  • ADVN (V + (l / 2) a a-Ta) (Ta + Td) + (l / 6) (-a a-Ta 2 -a d-Td 2 + a d-Tl 2 )
  • FIG. 7 is a flowchart showing the calculation operation (S50) in mode 3 of FIG.
  • S50 the calculation operation
  • the time of counter TC is smaller than time T3
  • the time of counter TC belongs to the acceleration rounding time (time from time T2 to time T3) in Fig. 2, so the speed of force 2 is always Follow 2 speed pattern. Therefore, the distance from the start position STAT of the force 2 to the normal stop of the car 2 is always the area in the range surrounded by Q2-K2-L2-Q2 in FIG.
  • the advance position ADV N is constant at the position when the constant acceleration time ends (time T2), and does not change even if the time elapses. Thereby, when the time of the counter TC is smaller than the time T3, the calculation operation is finished as it is.
  • the calculation mode MOD is set to mode 4 (S52) because the calculation is not performed within the accelerated rounding time (S52), and the calculation operation ends.
  • FIG. 8 is a flowchart showing the calculation operation (S60) in mode 4 of FIG.
  • the time of the counter TC is the time when the force 2 is moving at the maximum speed (rated speed) V0 or the speed of the car 2 is decelerated.
  • the deceleration stop distance DSLR at this time is constant within the area surrounded by J2-K2-L2-J2 in Fig. 2, it can be obtained from Equation (4).
  • t is a constant deceleration time from time T4 to time T5.
  • the advance position ADVN is obtained by equation (5) using the current position SYNC of the car 2 and the deceleration stop distance DSLR.
  • ADVN SYNC + DSLR ⁇ ' ⁇ (5)
  • FIG. 9 is a graph showing temporal changes in the current position SYNC and the advance position ADVN of the car 2 calculated by the calculation operation of FIG.
  • the time of the counter TC belongs within the starting jerk time (within the time from the start of the movement of the car 2 to the time T1) or within the acceleration rounding time (within the time from the time T2 to the time T3)
  • the advance position is constant and the time of the counter TC belongs within a certain acceleration time (time T1 to time T2)
  • the deceleration between the advance position ADVN and the current position SYNC of the car 2
  • the time of the counter TC belongs within the time from the end of the acceleration rounding time to the normal stop of the force 2 after the stop distance increases with the passage of time
  • the advance position ADVN and the current position of the car 2 Deceleration stop distance DSLR with SYNC becomes constant.
  • the speed controller 11 calculates the maximum speed, acceleration, and jerk based on the load in the car 2 and the position of the next stop floor, respectively,
  • the speed pattern of the force 2 is generated based on the acceleration and jerk, and the advance position calculation means 13 adds the deceleration stop distance of the force 2 to the current position of the car 2 to thereby advance the advance position.
  • next stop floor setting means 14 determines the position of the destination floor where the force call was registered and the advance position ADVN of force 2
  • the next stop floor is set by comparing the two, so even if the load pattern in the car 2 changes due to passengers getting on and off and the speed pattern of the force 2 is changed, the speed The advance position ADVN can be determined more accurately according to the pattern. As a result, the force 2 can be moved more efficiently, and it can be more accurately determined whether or not a normal stop to the destination floor where the force call is registered is possible.
  • the deceleration stop distance calculation means 12 may set the deceleration stop distance according to at least one of the load in the force 2 and the position of the next stop floor as an initial value. Good. In this way, the force 2 can be moved efficiently, and even if the speed pattern of the force 2 is changed, the deceleration stop distance corresponding to the changed speed pattern is calculated. be able to.
  • the deceleration stop distance calculation means 12 calculates the deceleration stop distance based on the minimum deceleration set in the speed controller 11, and sets the calculated deceleration stop distance as an initial value (minimum value). It may be.
  • the initial value of the deceleration stop distance is set when the movement of the car 2 is started. In this way, since the initial value of the deceleration stop distance can be maximized at the start of the movement of the force 2, the maximum speed, acceleration and acceleration can be increased by the speed controller 11 after the movement of the force 2 is started. Even when the speed pattern is changed so that the acceleration is reduced, the car 2 can be prevented from decelerating and the over-traveling position of the next stop floor is prevented.
  • the deceleration stop distance calculation means 12 determines the deceleration stop distance of the car 2 based on the information of the current detector force that measures the current (motor current) supplied to the motor of the lifting machine body 5. May be calculated. Further, the deceleration stop distance calculating means 12 may calculate the deceleration stop distance of the car 2 based on the information on the torque command device force that generates a torque command to the motor. In this way, the deceleration stop distance of the car 2 can be calculated more accurately, and it is possible to more accurately determine whether or not a normal stop to the destination floor where the force call registration was possible is possible. it can.
  • the deceleration stop distance corresponding to the changed speed pattern is set. It can be calculated more accurately. Also, when the overspeed detection level is set so as to continuously decrease toward the bottom of the hoistway 1 near the upper and lower end of the hoistway 1, and the speed of the force 2 exceeds the overspeed detection level
  • the deceleration stop distance calculation means 12 is such that the speed of the force 2 is smaller than the overspeed detection level.
  • the deceleration stop distance of the car 2 is calculated based on the deceleration set in this way.
  • the movement of the car 2 is forcibly braked by operating the brake device mounted on the lifting machine 4 to brake the rotation of the drive sheave 6. In this way, when the car 2 is stopped at the terminal floor, the speed of the car 2 does not exceed the overspeed level, and malfunction of the forced reduction gear can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)

Abstract

 エレベータの制御装置は、かごの速度を制御する速度制御器と、速度制御器からの情報に基づいて、かごの現在位置から、かごを通常停止させるときの減速停止距離を算出する減速停止距離算出手段と、減速停止距離算出手段によって算出された減速停止距離をかごの現在位置に加算することによりかごのアドバンス位置を算出するアドバンス位置算出手段と、かご呼び登録があった行き先階の位置とアドバンス位置とを比較することにより、かごの次回停止階を設定する次回停止階設定手段とを有している。速度制御器は、秤装置及び次回停止階設定手段のそれぞれからの情報に基づいて、最高速度、加速度及び加加速度を算出し、算出した最高速度、加速度及び加加速度に基づいて、かごが次回停止階に通常停止するまでの速度パターンを生成し、速度パターンに従ってかごの速度を制御する。

Description

明 細 書
エレベータの制御装置
技術分野
[0001] この発明は、例えばかご内の負荷等に応じてかごの速度を制御するエレベータの 制御装置に関するものである。
背景技術
[0002] 従来のエレベータの速度制御装置では、かごの現在位置に対して先行する着床可 能な位置を求め、着床可能な位置に応じて力ごの速度を制御するものが提案されて いる。このような従来の速度制御装置では、力ご呼びによって行き先階が登録され、 登録された行き先階にかごが着床可能力否かが判定される。力ごが着床可能である と判断されたときには、力ご内の負荷にかかわらず、力ごの現在位置及び行き先階に 応じた速度パターンが生成される。力ごの速度は、生成された速度パターンに従って 制御される (特許文献 1参照)。
[0003] 特許文献 1:特開平 4 20469号公報
発明の開示
発明が解決しょうとする課題
[0004] しかし、力ごの移動を効率良くするために、速度パターンの生成をかご内の負荷に よっても変わるようにした場合には、乗客の乗降によりかご内の負荷が変化したときに 、力ごの最高速度、加速度及び加加速度のうち少なくともいずれかが変更されること となる。従って、従来の速度制御装置によっては、すべての速度パターンについて、 力ごの着床可能な位置を求めることができなくなってしまう。
[0005] この発明は、上記のような課題を解決するためになされたものであり、力ごをより効 率良く移動させることができるとともに、力ご呼び登録があった行き先階への通常停 止が可能力否かをより正確に判定することができるエレベータの制御装置を得ること を目的とする。
課題を解決するための手段
[0006] この発明によるエレベータの制御装置は、かご呼び登録に基づ!/、て、かごの次回 停止階を設定する次回停止階設定手段、かご内の負荷を検出するための秤装置及 び次回停止階設定手段のそれぞれからの情報に基づいて、最高速度、加速度及び 加加速度を算出し、算出した最高速度、加速度及び加加速度に基づいて、かごが次 回停止階に通常停止するまでの速度パターンを生成し、速度パターンに従ってかご の速度を制御する速度制御器、速度制御器力もの情報に基づいて、力ごの現在位 置からかごを通常停止させるときの減速停止距離を算出する減速停止距離算出手 段、及びカゝごの現在位置に減速停止距離を加算することによりアドバンス位置を算 出するアドバンス位置算出手段を備え、次回停止階設定手段は、力ご呼び登録があ つた行き先階の位置とアドバンス位置とを比較することにより、次回停止階を設定する ようになっている。
図面の簡単な説明
[0007] [図 1]この発明の実施の形態 1によるエレベータを示す模式的な構成図である。
[図 2]図 1の速度制御器によって生成されるかごの速度パターンの一例を示すグラフ である。
[図 3]図 2の時刻 Tほでにかご呼び登録が行われた場合に力ごの減速停止距離を算 出するためのかごの速度及び加速度の時間的変化を示すグラフである。
[図 4]図 1の制御装置の演算動作を示すフローチャートである。
[図 5]図 4のモード 1の演算動作を示すフローチャートである。
[図 6]図 4のモード 2の演算動作を示すフローチャートである。
[図 7]図 4のモード 3の演算動作を示すフローチャートである。
[図 8]図 4のモード 4の演算動作を示すフローチャートである。
[図 9]図 4の演算動作によって算出される力ごの現在位置及びアドバンス位置の時間 的変化を示すグラフである。
発明を実施するための最良の形態
[0008] 以下、この発明の好適な実施の形態について図面を参照して説明する。
実施の形態 1.
図 1は、この発明の実施の形態 1によるエレベータを示す模式的な構成図である。 図において、昇降路 1内には、力ご 2及び釣合おもり 3が昇降可能に設けられている 。昇降路 1の上部には、力ご 2及び釣合おもり 3を昇降させるための卷上機 (駆動装 置) 4が設けられている。卷上機 4は、モータを含む卷上機本体 5と、卷上機本体 5〖こ より回転される駆動シーブ 6とを有している。駆動シーブ 6には、複数本の主索 7が卷 き掛けられている。力ご 2及び釣合おもり 3は、各主索 7により昇降路 1内に吊り下げら れている。力ご 2及び釣合おもり 3は、駆動シーブ 6の回転により昇降路 1内を昇降さ れる。
[0009] 卷上機本体 5には、駆動シーブ 6の回転に応じた信号を発生するエンコーダ (検出 器) 8が設けられている。また、かご 2には、力ご 2内の重量を負荷として検出するため の秤装置 9が設けられている。エンコーダ 8及び秤装置 9のそれぞれからの情報は、 エレベータの制御装置 10へ伝送される。
[0010] 制御装置 10は、卷上機 4の駆動を制御することによりかご 2の速度を制御する速度 制御器 11と、速度制御器 11からの情報に基づいて、力ご 2の現在位置 SYNCから、 卷上機本体 5のモータの減速動作によってかご 2を停止させるとき(即ち、かご 2を通 常停止させるとき)の減速停止距離を算出する減速停止距離算出手段 12と、減速停 止距離算出手段 12によって算出された減速停止距離をカゝご 2の現在位置 SYNC〖こ 加算することによりかご 2の減速停止位置 (アドバンス位置 ADVN)を算出するアドバ ンス位置算出手段 13と、アドバンス位置算出手段 13からの情報及びかご呼び登録 の情報に基づいて、力ご 2の次回停止階を設定する次回停止階設定手段 14とを有 している。
[0011] 制御装置 10は、演算処理部(CPU)、記憶部 (ROM及び RAM等)及び信号入出 力部を持ったコンピュータにより構成されている。速度制御器 11、減速停止距離算 出手段 12、アドバンス位置算出手段 13及び次回停止階設定手段 14の機能は、制 御装置 10のコンピュータにより実現される。
[0012] 即ち、コンピュータの記憶部には、速度制御器 11、減速停止距離算出手段 12、ァ ドバンス位置算出手段 13及び次回停止階設定手段 14の機能を実現するためのプ ログラムが格納されている。また、演算式のデータ、エンコーダ 8や秤装置 9等の情報 も、記憶部に格納される。演算処理部は、記憶部に格納されたプログラムに基づいて 、制御装置 10の機能に関する演算処理を実行する。 [0013] 速度制御器 11は、秤装置 9及び次回停止階設定手段 14のそれぞれからの情報に 基づいて、力ご 2が次回停止階に通常停止するまでのかご 2の速度の時間的変化を 速度パターンとして生成する。即ち、速度制御器 11は、力ご 2内の負荷と次回停止 階の位置とに基づいて、最高速度、加速度及び加加速度を演算により求め、求めた 最高速度、加速度及び加加速度に基づいて、力ご 2の速度パターンを生成する。ま た、速度制御器 11は、エンコーダ 8からの情報に基づいて、力ご 2の速度を検出し、 検出したかご 2の速度が速度パターンに従うように、インバータ 15を介して卷上機本 体 5を制御する。
[0014] 減速停止距離算出手段 12及びアドバンス位置算出手段 13は、減速停止距離及 びアドバンス位置をそれぞれ一定の演算周期で常時求めるようになって!/、る。
[0015] 次回停止階設定手段 14は、アドバンス位置算出手段 13によって算出された力ご 2 のアドバンス位置 ADVNと、力ご呼び登録があった行き先階の位置とを比較すること により、力ご 2の次回停止階を設定するようになっている。即ち、次回停止階設定手 段 14は、力ご 2のアドバンス位置 ADVNが行き先階よりもかご 2の現在位置力も先に 進んでいるときに、行き先階を次回停止階の対象から除外し、力ご 2のアドバンス位 置 ADVNが行き先階と同位置力、あるいはアドバンス位置 ADVNがかご 2に対して行 き先階よりも手前にあるときに、行き先階を次回停止階の対象の候補とする。次回停 止階の対象の候補のうち、力ご 2に最も近い行き先階が次回停止階とされる。
[0016] 図 2は、図 1の速度制御器 11によって生成されるかご 2の速度パターンの一例を示 すグラフである。図に示すように、速度制御器 11によって生成される速度パターンで は、力ご 2の移動が開始されてから、力ご 2が通常停止されるまでに、力ご 2の速度が 時刻 T3で最高速度 V0に達するように設定されている。即ち、力ご 2は、移動の開始か ら時刻 T3になるまでは加速され、時刻 T3を経過した後、力ご 2が通常停止されるまで は減速されるように速度パターンが設定されて 、る。
[0017] また、速度パターンでは、力ご 2の速度が時刻 T3で最高速度 V0になるように、力ご 2 の加速度が時間の経過とともに大きくなる起動ジャーク時間、かご 2の加速度が一定 になる一定加速時間、及びかご 2の加速度が時間の経過とともに小さくなる加速丸め 時間が設定されている。また、起動ジャーク時間から一定加速時間に移行するときの 時刻力 ST1とされ、一定加速時間から加速丸め時間に移行するときの時刻が T2 (Τ2 > Tl)とされている。
[0018] さらに、速度パターンでは、時刻 T3からかご 2が通常停止されるまでの間に、かご 2 の移動方向と逆方向への加速度 (減速度)が時間の経過とともに大きくなる減速丸め 時間、力ご 2の減速度が一定になる一定減速時間、及びかご 2の減速度が時間の経 過とともに小さくなる着床ジャーク時間が設定されている。また、減速丸め時間から一 定減速時間に移行するときの時刻が T4とされ、一定減速時間から着床ジャーク時間 に移行するときの時刻が T5 (T5 >T4)とされている。
[0019] かご 2の移動が開始されてから、かご 2が通常停止されるまでの距離は、図 2の Q2- K2-L2-Q2で囲まれた範囲の面積で表される。
[0020] 次に、制御装置 10の動作について説明する。かご 2がいずれかの階床に停止して いるときに、力ご呼び登録が行われると、次回停止階設定手段 14によって、かご呼び 登録があった行き先階のうち、力ご 2に最も近い行き先階が次回停止階として設定さ れる。この後、力ご 2の現在位置力も次回停止階に通常停止するまでのかご 2の速度 パターンが速度制御器 11によって生成される。このときの速度パターンは、かご 2の 移動が開始されるときのかご 2内の負荷に応じた速度パターンとされている。
[0021] この後、力ご 2は、生成された速度パターンに従って速度を変化させながら、次回停 止階まで速度制御器 11の制御により移動される。このとき、速度制御器 11は、ェンコ ーダ 8からの情報によってかご 2の速度を常時検出し、力ご 2の速度が速度パターン に従うように、駆動シーブ 6の回転速度を制御する。
[0022] かご 2が移動されているときに、かご呼び登録が行われた場合には、速度パターン における時間帯に応じて設定された互いに異なる 4つの演算モード MOD (モード 1〜 4)のうち、力ご呼び登録が行われた時刻に対応する演算モード MODによって、減速 停止距離及びアドバンス位置がそれぞれ算出される。
[0023] 即ち、減速停止距離及びアドバンス位置は、カゝご呼び登録が行われたときの時刻 が時刻 T1までの時間(起動ジャーク時間)内にある場合には、モード 1の演算動作に よって算出され、時刻 T1から時刻 T2までの時間(一定加速時間)内にある場合には、 モード 2の演算動作によって算出され、時刻 T2から時刻 T3までの時間 (加速丸め時 間)内にある場合には、モード 3の演算動作によって算出され、時刻 T3からかご 2が 通常停止するまでの時間内にある場合には、モード 4の演算動作によって算出される
[0024] 図 3は、図 2の時刻 T1までにかご呼び登録が行われた場合にかご 2の減速停止距 離を算出するための力ご 2の速度及び加速度の時間的変化を示すグラフである。図 に示すように、例えば、起動ジャーク時間内にかご呼び登録が行われたときには、起 動ジャーク時間 Tjが終了した後、加速丸め時間 Taに直接移行し、減速丸め時間 Td が終了した後、着床ジャーク時間 T1に直接移行する。力ご 2の減速停止距離は、図 3 の J1-IO-Q1-J1で囲まれる範囲の面積で表される。即ち、モード 1の演算動作は、図 3の J1-IO-Q1-J1で囲まれる範囲の面積を求めて、減速停止距離を算出し、かご 2の 現在位置に減速停止距離を加算することにより、アドバンス位置を算出する演算動 作を意味している。なお、この例では、加速丸め時間 Taが開始するときのかご 2の加 速度を痫 aとし、減速丸め時間 Tdが終了するときのかご 2の加速度を痫 dとしている。
[0025] 次に、制御装置 10のアドバンス位置を算出するときの演算動作について説明する 。図 4は、図 1の制御装置 10の演算動作を示すフローチャートである。なお、制御装 置 10の演算動作は、一定の周期で常時行なわれる。図に示すように、制御装置 10 では、まず、かご 2が停止している力否かが速度制御器 11によって判定される(S 11) 。かご 2が停止している場合には、かご 2の移動が開始されるスタート位置 STAT及び アドバンス位置 ADVNのそれぞれに、かご 2の現在位置 SYNCを初期値として設定す る(S12)。また、カウンタ TCに 0を初期値として設定し(S 13)、アドバンス位置 ADVN を算出するための演算モード MODにモード 1を初期値として設定する(S 14)。この後 、モード 1の演算を行って、演算動作が終了する。
[0026] かご 2が停止していない場合には、かご 2の移動が開始された後であるので、アドバ ンス位置 ADVN、スタート位置 STAT、カウンタ TC及び演算モード MODには、前回ま での演算動作による値が設定されている。この場合には、アドバンス位置 ADVNが、 力ご呼び登録があった行き先階の位置 STOP以上になっているか否かが次回停止階 設定手段 14によって判定される(S15)。アドバンス位置 ADVNが行き先階の位置 ST OPよりも大きい場合には、力ご 2が行き先階の位置 STOPに停止することができない ので、演算動作が終了する。
[0027] アドバンス位置 ADVNが行き先階の位置 STOPよりも小さい場合には、カウンタ TCに 1が次回停止階設定手段 14によって加算される(S 16)。この後、演算モード MODが モード 1である力否かが速度制御器 11によって判定される(S17)。モード 1である場 合には、モード 1の演算を行って (S30)、演算動作が終了する。
[0028] モード 1でない場合には、演算モード MODがモード 2である力否かが速度制御器 1 1によって判定される(S18)。モード 2である場合には、モード 2の演算を行って(S40 )、演算動作が終了する。
[0029] モード 2でない場合には、演算モード MODがモード 3である力否かが速度制御器 1 1によって判定される(S19)。モード 3である場合には、モード 3の演算を行って(S50 )、演算動作が終了する。
[0030] モード 3でない場合には、演算モード MODがモード 4である力否かが速度制御器 1 1によって判定される(S20)。モード 4である場合には、モード 4の演算を行って(S60 )、演算動作が終了する。モード 4でない場合には、そのまま演算動作が終了する。
[0031] 次に、モード 1の演算動作について説明する。図 5は、図 4のモード 1の演算動作( S30)を示すフローチャートである。図に示すように、まず、カウンタ TCの時刻が時刻 T1以上である力否かが判定される(S31)。カウンタ TCの時刻が時刻 Tはりも小さい 場合には、力ご 2の移動が開始されてから、力ご 2が通常停止されるまでの距離 BIAS は、図 3の J1-K1-Q1-J1で囲まれる範囲の面積で表されるので、式(1)により求めら れる。
[0032] BIAS=(l/6)( a a · Tj2— a a · Ta2— a d · Td2+ a d · if)
+(1/2) a a(Tj+Ta)(Ta+Td) · · · ( 1)
[0033] この後、式(1)で求められた距離 BIAS及びかご 2のスタート位置 STATを用いて、ァ ドバンス位置 ADVNが式(2)により求められ (S32)、演算動作が終了する。
[0034] ADVN=STAT+BIAS - - - (2)
[0035] カウンタ TCの時刻が時刻 T1以上である場合には、起動ジャーク時間内での演算で はないので、演算モード MODがモード 2とされ (S33)、演算動作が終了する。
[0036] 次に、モード 2の演算動作について説明する。図 6は、図 4のモード 2の演算動作( S40)を示すフローチャートである。図に示すように、まず、カウンタ TCの時刻が時刻 T2以上である力否かが判定される(S41)。カウンタ TCの時刻が時刻 T2よりも小さい 場合には、図 2の一定加速時間(時刻 T1から時刻 T2までの時間)内にカウンタ TCの 時刻が属しているので、アドバンス位置 ADVNは、カウンタ TCの時刻におけるかご 2 の速度を Vとすると、式(3)により求められる(S42)。
[0037] ADVN=(V+(l/2) a a-Ta)(Ta+Td)+(l/6) (- a a-Ta2- a d-Td2+ a d-Tl2)
+(1/2) a d(V+(l/2) a a'Ta- (1/2) a d'Td- (1/2) a d-Tl)
+(l/2)Tl(V+(l/2) a a'Ta- (1/2) a d'Td— (1/2) a d-Tl) · · · (3)
[0038] 一方、カウンタ TCの値が時刻 T2以上である場合には、一定加速時間内での演算 ではないので、演算モード MODがモード 3とされ (S43)、演算動作が終了する。
[0039] 次に、モード 3の演算動作について説明する。図 7は、図 4のモード 3の演算動作( S50)を示すフローチャートである。図に示すように、まず、カウンタ TCの時刻が時刻 T3以上である力否かが判定される(S51)。カウンタ TCの時刻が時刻 T3よりも小さい 場合には、図 2の加速丸め時間(時刻 T2から時刻 T3までの時間)内にカウンタ TCの 時刻が属しているので、力ご 2の速度は常に図 2の速度パターンに従う。従って、力ご 2のスタート位置 STATから、かご 2が通常停止するまでの距離は、常に、図 2の Q2-K 2-L2-Q2で囲まれた範囲の面積となる。従って、この場合には、アドバンス位置 ADV Nは、一定加速時間が終了したとき(時刻 T2)の位置で一定となり、時間が経過しても 変化しない。これにより、カウンタ TCの時刻が時刻 T3よりも小さい場合には、そのまま 演算動作が終了する。
[0040] カウンタ TCの時刻が時刻 T3以上である場合には、加速丸め時間内での演算では ないので、演算モード MODがモード 4とされ (S52)、演算動作が終了する。
[0041] 次に、モード 4の演算動作について説明する。図 8は、図 4のモード 4の演算動作( S60)を示すフローチャートである。図に示すように、演算モード MODがモード 4にさ れているときには、カウンタ TCの時刻は、力ご 2が最高速度(定格速度) V0で移動し ているときの時刻、あるいはかご 2が減速しているときの時刻のいずれかになつている 。このときの減速停止距離 DSLRは、図 2の J2- K2-L2-J2で囲まれた範囲の面積で一 定となるので、式 (4)により求められる。 [0042] DSLR=V0 · Td— (1/6) a d · Td2+(l/2) a d · t2+(l/2) a d-Tl- t+(l/6) a d · Τ12· · · (4)
[0043] なお、 tは、時刻 T4から時刻 T5までの一定減速時間である。
[0044] また、アドバンス位置 ADVNは、かご 2の現在位置 SYNC及び減速停止距離 DSLRを 用いて、式(5)により求められる。
[0045] ADVN=SYNC+DSLR · ' · (5)
[0046] 従って、演算モード MODがモード 4にされているときには、式(5)によりアドバンス位 置 ADVNが算出されて(S61)、演算動作が終了する。
[0047] 図 9は、図 4の演算動作によって算出されるかご 2の現在位置 SYNC及びアドバンス 位置 ADVNの時間的変化を示すグラフである。図に示すように、起動ジャーク時間内 (かご 2の移動開始から時刻 T1までの時間内)あるいは加速丸め時間内(時刻 T2から 時刻 T3までの時間内)にカウンタ TCの時刻が属しているときには、アドバンス位置が 一定となり、一定加速時間内(時刻 T1から時刻 T2までの時間内)にカウンタ TCの時 刻が属しているときには、アドバンス位置 ADVNとかご 2の現在位置 SYNCとの間の減 速停止距離が時間の経過とともに大きくなり、加速丸め時間が終了してから、力ご 2 が通常停止するまでの時間内にカウンタ TCの時刻が属しているときには、アドバンス 位置 ADVNとかご 2の現在位置 SYNCとの間の減速停止距離 DSLRが一定になる。
[0048] 図 9において、例えば、カウンタ TCの時刻 Tnにおいて N階の行き先階のかご呼びが 発生したときには、アドバンス位置 ADVNが既に Ν階の位置よりも先に進んでいるので 、かご 2は、かご呼びに応えず N階を通過する。これに対し、カウンタ TCの時刻 Tnに おいて N+1階の行き先階のかご呼びが発生したときには、アドバンス位置 ADVNが N+ 1階の位置よりも手前にあるので、力ご 2は、力ご呼びに応えて N+1階に通常停止する
[0049] このようなエレベータの制御装置では、速度制御器 11がかご 2内の負荷及び次回 停止階の位置のそれぞれに基づいて、最高速度、加速度及び加加速度を算出し、 算出した最高速度、加速度及び加加速度に基づいて、力ご 2の速度パターンを生成 するようになっており、アドバンス位置算出手段 13は、力ご 2の減速停止距離をかご 2 の現在位置に加算することによりアドバンス位置 ADVNを算出し、次回停止階設定手 段 14は、力ご呼び登録があった行き先階の位置と、力ご 2のアドバンス位置 ADVNと を比較することにより、次回停止階を設定するようになっているので、かご 2内の負荷 が乗客の乗降により変化して、力ご 2の速度パターンが変更された場合であっても、 速度パターンに応じてアドバンス位置 ADVNをより正確に求めることができる。これに より、力ご 2をより効率良く移動させることができるとともに、力ご呼び登録があった行き 先階への通常停止が可能か否かをより正確に判定することができる。
[0050] なお、減速停止距離算出手段 12は、力ご 2内の負荷及び次回停止階の位置の少 なくともいずれか一方に応じた減速停止距離を初期値として設定するようになってい てもよい。このようにすれば、力ご 2を効率良く移動させることができるとともに、力ご 2 の速度パターンが変更された場合であっても、変更された速度パターンに応じた減 速停止距離を算出することができる。
[0051] また、減速停止距離算出手段 12は、速度制御器 11において設定された最低の減 速度によって減速停止距離を算出し、算出した減速停止距離を初期値 (最低値)とし て設定するようになっていてもよい。この場合、減速停止距離の初期値は、かご 2の 移動が開始されるときに設定される。このようにすれば、力ご 2の移動開始時に減速 停止距離の初期値を最大にすることができるので、力ご 2の移動が開始された後に、 速度制御器 11によって最高速度、加速度及び加加速度が小さくなるように速度バタ ーンが変更された場合であっても、かご 2が減速できずに次回停止階の位置を行き 過ぎることを防止することができる。
[0052] また、減速停止距離算出手段 12は、卷上機本体 5のモータに供給される電流 (モ ータ電流)を測定する電流検出器力 の情報に基づいて、かご 2の減速停止距離を 算出するようになっていてもよい。また、減速停止距離算出手段 12は、モータへのト ルク指令を発生するトルク指令装置力 の情報に基づいて、かご 2の減速停止距離 を算出するようになっていてもよい。これらのようにすれば、かご 2の減速停止距離を より正確に算出することができ、力ご呼び登録があった行き先階への通常停止が可 能か否かをより正確に判定することができる。従って、例えばかご 2の昇降ロスが大き ぐ速度パターンに従ってかご 2を移動させることができなくなって速度パターンが変 更された場合等であっても、変更された速度パターンに応じた減速停止距離をより正 確に算出することができる。 また、昇降路 1の上下終端部の近傍において昇降路 1の底部に向力つて連続的に 小さくなるように過速度検出レベルが設定され、力ご 2の速度が過速度検出レベルを 超えたときにかご 2の移動を強制的に制動する強制減速装置がエレベータに設置さ れている場合には、減速停止距離算出手段 12は、力ご 2の速度が過速度検出レべ ルよりも小さくなるように設定された減速度によって、かご 2の減速停止距離を算出す るようにするようになっている。この場合、カゝご 2の移動は、卷上機 4に搭載されたブレ ーキ装置を動作させて駆動シーブ 6の回転を制動することにより、強制的に制動され る。このようにすれば、かご 2が終端階に停止されるときに、かご 2の速度が過速度レ ベルを超えることがなくなり、強制減速装置の誤作動を防止することができる。

Claims

請求の範囲
[1] かご呼び登録に基づ!/、て、力ごの次回停止階を設定する次回停止階設定手段、 上記力ご内の負荷を検出するための秤装置及び上記次回停止階設定手段のそれ ぞれ力 の情報に基づいて、最高速度、加速度及び加加速度を算出し、算出した上 記最高速度、加速度及び加加速度に基づいて、上記かごが上記次回停止階に通常 停止するまでの速度パターンを生成し、上記速度パターンに従って上記かごの速度 を制御する速度制御器、
上記速度制御器からの情報に基づ 、て、上記かごの現在位置から上記かごを通常 停止させるときの減速停止距離を算出する減速停止距離算出手段、及び
上記カゝごの現在位置に上記減速停止距離を加算することによりアドバンス位置を 算出するアドバンス位置算出手段
を備え、
上記次回停止階設定手段は、上記かご呼び登録があった行き先階の位置と上記 アドバンス位置とを比較することにより、上記次回停止階を設定するようになって!/、る ことを特徴とするエレベータの制御装置。
[2] 上記減速停止距離算出手段は、上記力ごの移動を開始するときに、上記かご内の 負荷及び上記次回停止階の位置の少なくともいずれか一方に応じた上記減速停止 距離を初期値として設定するようになって 、ることを特徴とする請求項 1に記載のエレ ベータの制御装置。
[3] 上記減速停止距離算出手段は、上記力ごの移動を開始するときに、上記速度制御 器において設定された最低の減速度による上記減速停止距離を初期値として設定 するようになって!/、ることを特徴とする請求項 1に記載のエレベータの制御装置。
[4] 上記減速停止距離算出手段は、上記かごを昇降させる卷上機のモータ電流を測 定する電流検出器、及び上記モータへのトルク指令を発生するトルク指令装置のそ れぞれの情報のうちのいずれかに基づいて、上記減速停止距離を算出するようにな つて 、ることを特徴とする請求項 1に記載のエレベータの制御装置。
[5] 上記昇降路の上下終端部に向力つて連続的に小さくなる過速度検出レベルが設 定され、上記かごの速度が上記過速度検出レベルを超えたときに、上記かごの移動 を強制的に制動する終端階強制減速装置を有するエレベータに設けられたエレべ ータの制御装置であって、
上記減速停止距離算出手段は、上記力ごの速度が上記過速度検出レベルよりも 小さくなるように設定された減速度によって、上記減速停止距離を算出するようにな つて 、ることを特徴とする請求項 1に記載のエレベータの制御装置。
PCT/JP2005/018159 2005-09-30 2005-09-30 エレベータの制御装置 WO2007039927A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2005/018159 WO2007039927A1 (ja) 2005-09-30 2005-09-30 エレベータの制御装置
EP05788106A EP1930277A4 (en) 2005-09-30 2005-09-30 CONTROL DEVICE FOR ELEVATOR
KR1020077014939A KR100931429B1 (ko) 2005-09-30 2005-09-30 엘리베이터의 제어 장치
CNA2005800401256A CN101065311A (zh) 2005-09-30 2005-09-30 电梯控制装置
JP2006529374A JP5014790B2 (ja) 2005-09-30 2005-09-30 エレベータの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/018159 WO2007039927A1 (ja) 2005-09-30 2005-09-30 エレベータの制御装置

Publications (1)

Publication Number Publication Date
WO2007039927A1 true WO2007039927A1 (ja) 2007-04-12

Family

ID=37905973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018159 WO2007039927A1 (ja) 2005-09-30 2005-09-30 エレベータの制御装置

Country Status (5)

Country Link
EP (1) EP1930277A4 (ja)
JP (1) JP5014790B2 (ja)
KR (1) KR100931429B1 (ja)
CN (1) CN101065311A (ja)
WO (1) WO2007039927A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234048A (zh) * 2010-04-22 2011-11-09 永大机电工业股份有限公司 电梯速度曲线修正方法
JP2012153480A (ja) * 2011-01-26 2012-08-16 Toshiba Elevator Co Ltd エレベータ制御装置、当該エレベータ制御装置を備えるエレベータ装置及びエレベータ制御方法
US8269616B2 (en) 2009-07-16 2012-09-18 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for detecting gaps between objects
WO2012165236A1 (ja) * 2011-05-31 2012-12-06 三菱重工パーキング株式会社 リフト搬送機制御装置、機械式駐車装置、及びリフト搬送機制御方法
JP2012240776A (ja) * 2011-05-18 2012-12-10 Mitsubishi Electric Corp エレベータの速度制御装置
WO2016038681A1 (ja) * 2014-09-09 2016-03-17 三菱電機株式会社 エレベーター装置
CN114560362A (zh) * 2022-03-16 2022-05-31 深圳市高德科技有限公司 精确计算电梯轿厢运行速度的方法、装置、介质及设备
CN114890258A (zh) * 2022-05-05 2022-08-12 国新电梯科技股份有限公司 一种电梯智能速度控制方法和系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101434357B (zh) * 2008-12-01 2011-01-05 希姆斯电梯(中国)有限公司 一种适用于短楼层且远距离驱动曳引机的电梯控制系统
JP5554336B2 (ja) * 2009-09-09 2014-07-23 三菱電機株式会社 エレベータの制御装置
EP2628699B1 (en) * 2012-02-20 2018-08-22 Kone Corporation Elevator, and also a system and a method for enabling embarkation and disembarkation of a vessel
CN103264936B (zh) * 2013-04-24 2016-02-24 深圳市海浦蒙特科技有限公司 电梯运行控制方法
DE112015006293B4 (de) 2015-03-11 2019-11-21 Mitsubishi Electric Corporation Aufzugsteuervorrichtung
CN108439103B (zh) * 2018-04-27 2020-12-01 深圳技术大学(筹) 电梯运行速度测量方法和系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319708A (ja) * 1992-05-15 1993-12-03 Mitsubishi Electric Corp エレベータの速度制御装置
JP2003267638A (ja) * 2002-03-14 2003-09-25 Mitsubishi Electric Corp エレベーターの制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586885A (ja) * 1981-07-06 1983-01-14 三菱電機株式会社 エレベ−タの終端階減速装置
US4658935A (en) * 1985-08-05 1987-04-21 Dover Corporation Digital selector system for elevators

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319708A (ja) * 1992-05-15 1993-12-03 Mitsubishi Electric Corp エレベータの速度制御装置
JP2003267638A (ja) * 2002-03-14 2003-09-25 Mitsubishi Electric Corp エレベーターの制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1930277A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8269616B2 (en) 2009-07-16 2012-09-18 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for detecting gaps between objects
CN102234048A (zh) * 2010-04-22 2011-11-09 永大机电工业股份有限公司 电梯速度曲线修正方法
JP2012153480A (ja) * 2011-01-26 2012-08-16 Toshiba Elevator Co Ltd エレベータ制御装置、当該エレベータ制御装置を備えるエレベータ装置及びエレベータ制御方法
JP2012240776A (ja) * 2011-05-18 2012-12-10 Mitsubishi Electric Corp エレベータの速度制御装置
WO2012165236A1 (ja) * 2011-05-31 2012-12-06 三菱重工パーキング株式会社 リフト搬送機制御装置、機械式駐車装置、及びリフト搬送機制御方法
JP2013011158A (ja) * 2011-05-31 2013-01-17 Mitsubishi Heavy Industries Parking Co Ltd リフト搬送機制御装置、機械式駐車装置、及びリフト搬送機制御方法
WO2016038681A1 (ja) * 2014-09-09 2016-03-17 三菱電機株式会社 エレベーター装置
JPWO2016038681A1 (ja) * 2014-09-09 2017-04-27 三菱電機株式会社 エレベーター装置
US10124987B2 (en) 2014-09-09 2018-11-13 Mitsubishi Electric Corporation Elevator device
CN114560362A (zh) * 2022-03-16 2022-05-31 深圳市高德科技有限公司 精确计算电梯轿厢运行速度的方法、装置、介质及设备
CN114560362B (zh) * 2022-03-16 2024-04-30 深圳市高德科技有限公司 精确计算电梯轿厢运行速度的方法、装置、介质及设备
CN114890258A (zh) * 2022-05-05 2022-08-12 国新电梯科技股份有限公司 一种电梯智能速度控制方法和系统
CN114890258B (zh) * 2022-05-05 2023-09-08 国新电梯科技股份有限公司 一种电梯智能速度控制方法和系统

Also Published As

Publication number Publication date
EP1930277A1 (en) 2008-06-11
JPWO2007039927A1 (ja) 2009-04-16
EP1930277A4 (en) 2012-09-26
KR20070088756A (ko) 2007-08-29
KR100931429B1 (ko) 2009-12-11
CN101065311A (zh) 2007-10-31
JP5014790B2 (ja) 2012-08-29

Similar Documents

Publication Publication Date Title
CN1741949B (zh) 电梯装置
WO2007039927A1 (ja) エレベータの制御装置
JP2008068965A (ja) エレベータ装置
JP2009215012A (ja) エレベータの非常時減速制御システム
JPS6251861B2 (ja)
JP2005194066A (ja) エレベータの制御装置
JP5428900B2 (ja) エレベータの速度制御装置
JP4732578B2 (ja) エレベーターの制御装置
WO2008004300A1 (fr) Dispositif d'affichage pour un ascenseur
JP4618636B2 (ja) エレベータ装置
JP2007015844A (ja) エレベータの速度制御装置、速度制御方法、および速度制御プログラム
JPS5842115B2 (ja) エレベ−タの制御装置
JP5029799B2 (ja) エレベータの着床制御装置
CN109476450B (zh) 电梯的控制装置
JP4864436B2 (ja) エレベータの制御装置
JP2007137545A (ja) エレベータの制御装置
CN101844718B (zh) 电梯装置
JP6278853B2 (ja) エレベータの制御システム
JP2879277B2 (ja) 油圧エレベーターの制御装置
JPH1025069A (ja) エレベーターの速度制御装置
JP2006264822A (ja) エレベータ制御装置
JP5668599B2 (ja) エレベータの速度制御装置
JPH0764492B2 (ja) エレベータの制御装置
JP2007055804A (ja) エレベータの制御装置
KR100275576B1 (ko) 엘리베이터 제어 장치 및 방법(elevator control apparatus and method)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006529374

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580040125.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005788106

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077014939

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005788106

Country of ref document: EP