[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007034893A1 - ペースト状金属粒子組成物、ペースト状金属粒子組成物の固化方法、金属製部材の接合方法およびプリント配線板の製造方法 - Google Patents

ペースト状金属粒子組成物、ペースト状金属粒子組成物の固化方法、金属製部材の接合方法およびプリント配線板の製造方法 Download PDF

Info

Publication number
WO2007034893A1
WO2007034893A1 PCT/JP2006/318774 JP2006318774W WO2007034893A1 WO 2007034893 A1 WO2007034893 A1 WO 2007034893A1 JP 2006318774 W JP2006318774 W JP 2006318774W WO 2007034893 A1 WO2007034893 A1 WO 2007034893A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
paste
particle composition
ultrasonic vibration
metal particles
Prior art date
Application number
PCT/JP2006/318774
Other languages
English (en)
French (fr)
Inventor
Kimio Yamakawa
Katsutoshi Mine
Original Assignee
Nihon Handa Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Handa Co., Ltd. filed Critical Nihon Handa Co., Ltd.
Priority to JP2007536559A priority Critical patent/JP4362742B2/ja
Publication of WO2007034893A1 publication Critical patent/WO2007034893A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/093Compacting only using vibrations or friction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • H01C17/281Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals by thick film techniques
    • H01C17/283Precursor compositions therefor, e.g. pastes, inks, glass frits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • H01G2/065Mountings specially adapted for mounting on a printed-circuit support for surface mounting, e.g. chip capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0285Using ultrasound, e.g. for cleaning, soldering or wet treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1131Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Paste-like metal particle composition method for solidifying paste-like metal particle composition, method for joining metal members, and method for producing printed wiring board
  • the present invention relates to an ultrasonic vibration sinterable paste-like metal particle composition comprising metal particles and a volatile dispersion medium; by applying ultrasonic vibration while applying pressure to the paste-like metal particle composition.
  • a method of sintering and solidifying metal particles by applying ultrasonic vibration while applying pressure and heating; an ultrasonic wave while applying pressure by interposing a paste-like metal particle composition between a plurality of metal members A method of joining metal members by sintering and solidifying metal particles by applying vibration, particularly applying ultrasonic vibration while applying pressure and heating; and a paste applied on a substrate
  • the metal particles are sintered and solidified.
  • Form wiring It relates manufacturing method of printed wiring board.
  • a conductive paste is a paste mainly containing fine metal powder as a solid content, and is used as a conductive path when forming a conductive wiring of a printed wiring board, for example.
  • a method of filling the through holes with conductive silver paste and connecting the wiring patterns of each layer is adopted.
  • a conductive paste for forming a thick film conductor wiring on a ceramic substrate is also known.
  • metal fine powders fine powders of noble metals such as gold, platinum, silver, and noradium that do not oxidize in the air are generally used. Recently, however, the powder is fired in a non-oxidizing atmosphere.
  • base metals such as nickel and copper are also used.
  • the conductive paste is applied on the substrate (substrate) by screen printing, gravure printing, coating, or the like. The coating film is heat-treated after drying to become a conductive film.
  • Conventional conductive pastes are roughly classified into a high-temperature sintering type, a thermosetting type, and a low-temperature sintering type from the viewpoint of a solidification method.
  • Patent Document 1 relating to a high-temperature sintered conductive paste
  • conductive metal powder for example, for example, a paste-like conductive resin composition containing copper powder
  • a substrate for example, a substrate-cured.
  • the temperature is raised to 350 ° C over 20 minutes and held for 20 minutes to thermally decompose the resin, and then 900
  • the temperature is raised to ° C and held for 30 minutes to sinter the copper powder.
  • High-temperature sintered conductive paste requires extremely high temperatures and a long time to thermally decompose the resin and sinter the metal powder, and the production efficiency is low for mass production. Therefore, there is a problem that the energy cost is huge.
  • Patent Document 2 relating to a thermosetting conductive paste, a conductive paste having a polyimide varnish force containing scaly silver powder is applied to a polyimide film, kept at 120 ° C for 30 minutes, and dried. The dried film is heat-treated at 170 ° C for 30 minutes and then at 230 ° C for 10 minutes to obtain a conductive film.
  • thermosetting conductive paste has a lower curing temperature than the high-temperature sintered conductive paste, but it takes a long time to cure, so that the production efficiency is low and the energy cost is large for mass production. There is a problem.
  • resin that is inherently electrically insulating remains as a binder, there is a problem that the electrical conductivity cannot be increased too much.
  • Patent Document 3 in the flip-chip mounting method in which the electrode of the wiring element and the electrode of the substrate are opposed to each other and the electrodes are electrically and mechanically connected, Supplying a metal paste in which metal fine particles having an average particle diameter of 1 to 1 OOnm are dispersed in a solvent to at least one of the electrodes of the wiring element, and interposing the metal paste between the electrode of the wiring element and the electrode of the substrate.
  • the solvent is evaporated by heating at a temperature above the boiling point of the solvent and below the melting point of the metal fine particles (100 ° C to 300 ° C) for 5 to 60 minutes to electrically connect the wiring element electrode and the substrate electrode.
  • This mounting method is a low temperature sintering type because it is sintered at 100 ° C to 300 ° C.
  • the ultrasonic vibration in the flip-chip mounting method is performed to remove oxides and contaminants on the electrode surface and bring the electrode surface into an active state.
  • Joining and sintering of the metal particles are performed by a heating process.
  • This mounting method has a heating temperature lower than that of the high-temperature sintered conductive paste, but requires a long time, and therefore has a problem of low production efficiency and a large energy cost for mass production.
  • nano-level metal particles having an average particle size of 1 to LOONm with high surface activity are required.
  • the metal fine particles having an average particle diameter of 1 to: LOOnm have a problem that they are agglomerated at room temperature in a fine powder form or in a solvent and immediately have poor storage stability.
  • the metal fine particles having an average particle diameter of 1 to: LOOnm have a problem that the average particle diameter is extremely expensive as compared with metal particles having an average particle diameter of 100 nm, that is, larger than 0.1 m.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-97215
  • Patent Document 2 JP 2004-39379 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-116612
  • An object of the present invention is to provide a paste-like metal particle composition in which metal particles can be easily sintered in a short time by application of ultrasonic vibration with good storage stability; Solidifying method: Using the paste-like metal particle composition, efficiently joining metal members in a short time, and using the paste-like metal particle composition, efficient in a short time In particular, it is desirable to provide a method for manufacturing a printed wiring board for forming metal wiring.
  • the average particle size is greater than 0.1 ⁇ m but not more than 30 ⁇ m, and the carbon content is not more than 2.0% by weight. It is a paste-like material composed of (B) a volatile dispersion medium, and the metal particles are sintered by application of ultrasonic vibration having a frequency of 2 kHz or more while being pressurized. A paste-like metal particle composition for ultrasonic vibration sintering.
  • Paste-like metal particles composed of metal particles having an average particle size greater than 0.1 ⁇ m but not more than 30 ⁇ m and a carbon content of not more than 2.0% by weight and (B) a volatile dispersion medium A method for solidifying a paste-like metal particle composition, wherein the metal particles are sintered by applying ultrasonic vibration having a frequency of 2 kHz or more to the composition while applying pressure.
  • a metal member joining method comprising: interposing a paste-like metal particle composition comprising: and applying ultrasonic vibration having a frequency of 2 kHz or more while applying pressure to sinter the metal particles.
  • Paste metal particles comprising (A) metal particles having an average particle size greater than 0.1 ⁇ m but not more than 30 ⁇ m and a carbon content of not more than 2.0% by weight, and (B) a volatile dispersion medium.
  • the composition is applied onto a substrate coated with a curable adhesive, and the metal particles are sintered by applying ultrasonic vibration having a frequency of 2 kHz or higher while applying pressure to the paste-like metal particle composition.
  • a method for producing a printed wiring board comprising forming a metal wiring by curing the adhesive.
  • the paste-like metal particle composition of the present invention has good storage stability because the average particle size of the metal particles is more than 0.1 m and not more than 3 O / zm, and the carbon content is not more than 2.0% by weight. Therefore, when ultrasonic vibration with a frequency of 2 kHz or higher is applied while applying pressure, in particular, applying pressure and heating, the metal particles are sintered and solidified in a very short time.
  • the composition is formed in an extremely short time.
  • the solid metal particles are sintered together to obtain a solid metal with excellent strength, conductivity, and thermal conductivity.
  • the volatile dispersion is efficiently performed.
  • the medium is volatilized, and the metal particles in the composition are sintered in an extremely short time to obtain a solid metal having excellent strength, conductivity, and thermal conductivity.
  • the paste-like metal particle composition is interposed between a plurality of metal members, and ultrasonic vibration having a frequency of 2 kHz or more is applied while applying pressure.
  • the metal particles in the composition sinter in a short time, and a plurality of metal members are firmly bonded with high durability.
  • the temperature is higher than normal temperature and 400 ° C or lower. Since the ultrasonic vibration having a frequency of 2 kHz or more is applied while heating at a temperature lower than the melting point of the metal particles, the volatile dispersion medium is efficiently volatilized, and the metal particles in the composition are exchanged in an extremely short time. It sinters and a plurality of metal members are firmly joined with good durability.
  • a paste-like metal particle composition is applied onto a substrate on which a curable adhesive is applied, and the paste-like metal particle composition is pressurized and surrounded. Since ultrasonic vibration with a wave number of 2 kHz or more is applied, the metal particles are sintered in an extremely short time, and a metal wiring having excellent wear resistance, adhesion, conductivity, and thermal conductivity is formed. . In particular, while applying pressure and applying ultrasonic vibration having a frequency of 2 kHz or higher while heating at a temperature higher than normal temperature and not higher than 400 ° C and less than the melting point of the metal particles, the volatile dispersion is efficiently performed.
  • a printed wiring board having metal wiring excellent in wear resistance, adhesiveness, conductivity, and thermal conductivity can be manufactured by evaporating the medium and sintering metal particles in an extremely short time.
  • a circuit board can be manufactured by mounting a chip or the like on the printed wiring board by the bonding method.
  • the solidification method for the paste-like metal particle composition of the present invention, the method for joining metal members, and the method for producing a printed wiring board can significantly reduce the required time, so that the production efficiency is high. High energy costs can also be saved significantly compared to the past.
  • FIG. 1 is a schematic view of a state in which vibration is applied.
  • the paste-like metal particle composition of the present invention comprises (A) metal particles having an average particle size of greater than 0.1 ⁇ m and less than or equal to 30 ⁇ m, and (B) a volatile dispersion medium.
  • A metal particles having an average particle size of greater than 0.1 ⁇ m and less than or equal to 30 ⁇ m
  • B a volatile dispersion medium.
  • the average particle size of the metal particles (A) is the average particle size of primary particles obtained by laser diffraction or image analysis of an electron micrograph.
  • the average particle size exceeds 30 m, the sinterability between metal particles decreases, and it is difficult to obtain excellent strength, conductivity, thermal conductivity, and adhesion.
  • the average particle diameter is 30 ⁇ m or less, but 10 ⁇ m or less is preferable, and more preferably 6 ⁇ m or less.
  • the so-called nano-size is 0.1 ⁇ m or less, the surface activity is too strong and the storage stability of the paste-like metal particle composition may be lowered. 0.2 ⁇ m or more.
  • the metal particles (A) need to be solid at room temperature, and are particularly selected from gold, silver, copper, aluminum, nickel, and tin, which have high electrical conductivity and thermal conductivity. preferable. Further, an alloy having a metal strength thereof or a metal whose surface is coated with the metal may be used. In the case of an alloy, the content of gold, silver, copper, aluminum, nickel, or tin is preferably 50% or more.
  • the shape of the metal particles is spherical, flake, needle, square, dendritic, granular, irregular shape, teardrop-like plate, plate, ultrathin plate, hexagonal plate, column, rod, porous, Examples include fiber, lump, sea surface, corner and round. Preferred are flakes, needles, horns, dendrites, granules, irregular shapes, teardrops, plates, ultrathin plates, hexagonal plates, more preferably spherical, flakes or It is granular.
  • An organic compound may adhere to the metal particles (A) during the production process. If the amount of adhesion is too large, the sinterability may be adversely affected, so the carbon content is 2.0% by weight or less, preferably 1.0% by weight or less.
  • the amount of carbon is converted by converting the carbon in the organic compound adhering to the metal particles to carbon dioxide by heating the metal particles in an oxygen stream, and measuring the amount of carbon dioxide by the infrared absorption spectrum method. Thus, the amount of carbon was calculated.
  • the surface of the metal particles (A) may be slightly oxidized, but when coated with an oxide film other than silver oxide (for example, copper oxide, acid aluminum, acid nickel, oxide oxide). In this case, it is preferable to use the oxide film after removing it.
  • the method for removing these oxide films is not limited.
  • the reduction treatment in a hydrogen atmosphere the reduction treatment by adding a hydrogen generating substance, the reduction treatment with a known reducing agent, the reduction treatment by adding a known reducing agent.
  • Etc. are exemplified. Since silver oxide is easily reduced by heating, the presence of silver oxide on the surface of silver particles is optional.
  • the paste-like metal particle composition of the present invention is a mixture of metal particles (A) and a volatile dispersion medium (B), and the powder metal particles (A) are pasted by the action of the volatile dispersion medium (B). I'm convinced.
  • the paste By applying the paste, the cylinder and nozzle force can be discharged in a thin line, and it is easy to apply and print with a metal mask, making it easier to apply to the electrode shape.
  • the reason for using a volatile dispersion medium rather than a non-volatile dispersion medium is that when the metal particles (A) are sintered by ultrasonic vibration, if the dispersion medium volatilizes in advance, the metal particles (A) may sinter.
  • the volatile dispersion medium (B) does not alter the surface of the metal particles and has a boiling point of 60 ° C or higher and preferably 300 ° C or lower. If the boiling point is less than 60 ° C, the solvent will volatilize during the preparation of the paste-like metal particle composition, and if the boiling point is immediately higher than 300 ° C, the metal particles (A) will remain after sintering. This is because the volatile dispersion medium may remain.
  • a volatile dispersion medium water; ethino-leanolone, propino-leano-leconole, butino-leano-leconole, pentino-leano-leconole, hexino-leano-leconole, heptino-leore Volatile monohydric alcohols such as Anoleconole, Otacino Leanoreconole, Nonino Leanoreconole, Decyl Alcohol, Benzyl Alcohol; Other Volatile Alcohols; Lower n —Volatile Aliphatic Carbonization such as Paraffin and Lower Isoparaffin Hydrogen; volatile aromatic hydrocarbons such as toluene and xylene; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol (4-hydroxy-4 methyl 2-pentanone), 2-octanone, isophorone ( 3, 5,
  • butyl alcohol, pentyl alcohol, hexyl alcohol It is preferably a volatile monohydric alcohol such as heptinoleanoreconole, otachinoleanoreconole, noninoleanoreconole, decinoreanolol, benzyl alcohol.
  • volatile monohydric alcohols having a carbon atomic power of ⁇ 10 are excellent in printability with a metal mask, extrudability from a syringe, and dischargeability when made into a paste-like metal particle composition, and have an appropriate volatilization. It is because it has sex.
  • volatile aliphatic hydrocarbons such as lower n-paraffins and lower isoparaffins are preferred.
  • Pure water is preferred for water, and its electrical conductivity is preferably 100 SZcm or less, more preferably 10 SZcm or less. Examples of pure water production methods include conventional ion exchange methods, reverse osmosis methods, and distillation methods.
  • the amount of the volatile dispersion medium (B) is sufficient to make the metal particles (A) into a paste, and as a guide, the volume ratio with the metal particles (A) is
  • the volume of the volatile dispersant (B) is 50 to 200, preferably 70 to 160, per 100 volumes of (A).
  • the paste form in the present invention includes a cream form.
  • the paste-like metal particle composition of the present invention includes other metal-based and non-metallic powders, metal compounds and metal complexes, thixotropic agents, stabilizers, colorants, etc., unless they are contrary to the object of the present invention. Additives may be added in small or trace amounts.
  • the method for solidifying the paste-like metal particle composition of the present invention comprises: (A) metal particles having an average particle size of less than or equal to 0.1 m and a carbon content of 2.0% by weight or less; and (B) Metal particles are sintered together by applying ultrasonic vibration having a frequency of 2 kHz or higher to a paste-like metal particle composition comprising a volatile dispersion medium while applying pressure.
  • the solidification method of the paste-like metal particle composition of the present invention includes (A) metal particles having an average particle diameter of more than 0.1 m and 30 m or less, and a carbon content of 2.0 wt% or less ( B) While applying pressure to a paste-like metal particle composition comprising a volatile dispersion medium and heating at a temperature higher than normal temperature and not higher than 400 ° C and lower than the melting point of the metal particle (A), the frequency
  • the volatile dispersion medium (B) is volatilized by applying ultrasonic vibration having a frequency of 2 kHz or more, and the metal particles (A) are sintered together.
  • the metal particles (A) for this purpose are gold, silver, Metal particles such as copper, aluminum, nickel and tin are suitable. Of these metal particles, aluminum particles have the advantage of being easily sintered when applied with ultrasonic vibration having a frequency of 2 kHz or higher while being pressurized at room temperature.
  • the volatile dispersion medium (B) is volatilized and the metal particles (A) are bonded to each other. Sinters into a solid metal with excellent strength, electrical conductivity, and thermal conductivity. At this time, the volatile dispersion medium (B) is volatilized, and then the metal particles (A) are sintered together with the volatilization of the volatile dispersion medium (B), which may be sintered together. Alternatively, the metal particles (A) may be sintered together, and then the volatile dispersion medium (B) may be volatilized. Since metals such as gold, silver, copper, aluminum, nickel and tin have inherently high strength and extremely high conductivity and thermal conductivity, the sintered product of the metal particles (A) also has high strength and extremely high conductivity. And heat conductivity.
  • the frequency of the ultrasonic vibration is 2 kHz or more, preferably 10 kHz or more.
  • the upper limit is not particularly limited, but it is about 500 kHz due to the capability of the equipment.
  • the amplitude of the ultrasonic vibration affects the sinterability, it is preferably 0.1 to 40 m, more preferably 0.3 to 20 ⁇ m, and further preferably 0.5 to 12 / ⁇ ⁇ . It is preferable to directly press the transmitting portion of the ultrasonic vibration to the paste-like metal particle composition so that the ultrasonic vibration is reliably transmitted to the paste-like metal particle composition.
  • the transmitting portion of the ultrasonic vibration through a force bar material or the like that has a material force that hardly absorbs the ultrasonic vibration.
  • Pressure Pushing into a pasty metal particle composition preferably 0. 9kPa (0. 09gfZmm 2) or more, good Ri preferably 9kPa (0. 92gfZmm 2) or more, still more preferably 39kPa (3. 98gf / mm 2 That's it.
  • the upper limit of the pressing pressure is the maximum pressure at which the members to be joined are not destroyed.
  • the heating temperature may be any temperature at which the volatile dispersion medium (B) higher than room temperature can be volatilized and the metal particles (A) can be sintered. However, if the temperature exceeds 400 ° C, the volatile dispersion medium (B) may evaporate suddenly and adversely affect the shape of the solid metal.
  • the temperature needs to be lower than the melting point, more preferably 300 ° C or lower.
  • Conductive solid metal gold genus particles (A) is Deki by sintering, 1 X 10 "4 ⁇ in volume resistivity - is preferable cm or less tool 1 X 10- 5 ⁇ 'cm More preferably, the heat conduction is The sex is preferably 5WZm'K or more, more preferably lOWZm'K or more.
  • the shape of the solid metal formed by sintering the metal particles (A) is not particularly limited, and examples thereof include a sheet shape, a film shape, a tape shape, a linear shape, a disk shape, a block shape, a spot shape, and an indefinite shape.
  • the average particle diameter is greater than 0.1 m and less than or equal to 30 m, and the carbon content is less than or equal to 2.0% by weight between the plurality of metal members.
  • the metal particles (A) are sintered together by applying ultrasonic vibrations with a frequency of 2 kHz or higher while applying a paste-like metal particle composition consisting of metal particles and (B) a volatile dispersion medium.
  • metal particles having an average particle size greater than 0.1 m and less than or equal to 30 m, and a carbon content of 2.0% by weight or less
  • B a volatile dispersion medium A frequency of 2 kHz or more while heating at a temperature higher than normal temperature and not higher than 400 ° C and lower than the melting point of the metal particles (A) while interposing a base-like metal particle composition consisting of
  • metal particles (A) for this purpose, metal particles such as gold, silver, copper, aluminum, nickel and tin are suitable.
  • aluminum particles have the advantage that they are easily sintered when applied with ultrasonic vibration having a frequency of 2 kHz or higher while being pressurized at room temperature.
  • the frequency, amplitude, pressing pressure, and heating temperature of ultrasonic vibration are the frequency, amplitude, and ultrasonic vibration frequency in the solidifying method of the paste-like metal particle composition. It is the same as pressing pressure and heating temperature.
  • Metal plates that have been in contact for example, gold-plated plates, silver plates, silver-plated plates, copper plates, aluminum plates, nickel-plated metal plates, tin-plated metal plates, etc .; gold-plated substrates, silver substrates, silver-plated substrates
  • Metal substrate such as copper substrate, aluminum substrate, nickel-plated metal substrate, tin-plated metal substrate, etc .; metal parts such as electrodes on electrically insulating substrates; electronic parts, electronic devices, electrical components, metal parts of electrical devices (for example, terminals) )) Is a solid metal with excellent adhesion strength, electrical conductivity, and thermal conductivity.
  • the metal member joining method of the present invention comprises a plurality of metal parts. This is useful for joining materials, and particularly useful for joining electrodes on metal substrates or electrically insulating substrates to electronic parts, electronic devices, electrical components, and metal parts (eg, terminals) of electrical devices.
  • bonding bonding between metal plates; bonding between metal plates and metal parts on an electrically insulating substrate; bonding between chip components such as capacitors and resistors and wiring boards; semiconductors such as diodes, memories, and CPUs Bonding of chip and lead frame or wiring board; bonding of high heat generation CPU chip and cooling plate is exemplified.
  • the method for producing a printed wiring board of the present invention comprises (A) metal particles having an average particle size of greater than 0.1 m and less than or equal to 30 ⁇ m, and a carbon content of less than or equal to 2.0% by weight; An ultrasonic vibration having a frequency of 2 kHz or more while applying a paste-like metal particle composition comprising a volatile dispersion medium on a substrate coated with a curable adhesive and applying pressure to the paste-like metal particle composition. Is applied to sinter the metal particles, and at the same time, the adhesive is cured to form a metal wiring.
  • a paste-like metal particle composition comprising (A) a metal particle having an average particle size of more than 0.1 m and not more than 30 m and a carbon content of 2.0% by weight or less and (B) a volatile dispersion medium.
  • A a metal particle having an average particle size of more than 0.1 m and not more than 30 m and a carbon content of 2.0% by weight or less
  • B a volatile dispersion medium.
  • metal particles such as gold, silver, copper, aluminum, nickel and tin are suitable.
  • aluminum particles have the advantage that they are easily sintered when applied with ultrasonic vibration having a frequency of 2 kHz or higher while being pressurized even at room temperature.
  • the frequency, amplitude, pressing pressure, and heating temperature of ultrasonic vibration are the frequency, amplitude, and frequency of ultrasonic vibration in the solidifying method of the paste-like metal particle composition. It is the same as pressing pressure and heating temperature.
  • a paste-like metal particle composition is formed into a curable adhesive (for example, an epoxy resin-based adhesive, a silicone resin-based adhesive, a polyimide resin-based adhesive). ) Is applied to the printed wiring board, and ultrasonic waves having a frequency of 2 kHz or higher are applied to the paste-like metal particle composition while applying pressure to the metal particles. They can sinter together to form a metal printed wiring with excellent wear resistance and adhesion to the substrate.
  • the printed wiring board may be a board in which the primer composition is applied on the board and then a curable adhesive is applied.
  • the method for applying the paste-like metal particle composition onto the substrate is not particularly limited, and includes dispensing, printing, spraying, brushing, and injection.
  • a circuit board can be manufactured by mounting a chip or the like on the printed wiring board by the bonding method described in Paragraph 0031.
  • the paste-like metal particle composition for ultrasonic vibration sintering of the present invention contains a volatile dispersion medium, it is preferably stored in a closed container. When used after long-term storage, it is preferable to use the container after shaking the container or stirring the inside of the container.
  • An example of a storage temperature that can be refrigerated for the purpose of improving storage stability is 10 ° C or less, but when storing in a closed container, it is preferable that the volatile dispersion medium does not solidify. Good.
  • the paste-like metal particle composition for ultrasonic vibration sintering of the present invention applies ultrasonic vibration while applying pressure, particularly applying ultrasonic vibration while applying pressure and heating.
  • the metal particles are sintered by this, but cleaning after the sintering is unnecessary.
  • it can be washed with water or an organic solvent!
  • the volatile dispersion medium is water or a hydrophilic solvent, it can be washed with water, so there is no problem of VOC generation as in the case of washing with an organic solvent such as alcohol.
  • Each component of the paste-like metal particle composition for ultrasonic vibration sintering in the present invention has few impurities, and is easy to clean.
  • the carbon in the organic compound adhering to the metal particles is changed to carbon dioxide, and the amount of carbon dioxide is measured by the infrared absorption spectrum method and converted to carbon. The amount was calculated.
  • the metal particles were sintered and the land (pad) part and the 2012 chip capacitor (silver plated finish on both ends) joined.
  • the metal particles were flaky aluminum particles, ultrasonic vibration was applied at room temperature.
  • the side of the chip capacitor of the bond strength test specimen obtained by force was pressed at a thickness rate of 23 mmZ using a bond strength tester, and the load when sheared was broken to determine the bond strength (unit: kgf and N). .
  • the number of times of the bond strength test was 5, and the average value of 5 times was defined as the bond strength.
  • a paste-like metal particle composition was printed on an electrically insulating FR-4 glass fiber reinforced epoxy resin substrate.
  • a non-adhesive stainless steel plate having the same size as the epoxy resin substrate and having a thickness of 200 m was stuck to the application part.
  • pressure was applied for 30 seconds at a temperature of 200 ° C. while applying ultrasonic vibration using an ultrasonic thermocompression bonding apparatus on the stainless steel plate, the metal particles were sintered to form a film.
  • the metal particles were flake aluminum particles, ultrasonic vibration was applied at room temperature. Applying a voltage of 10 volts across the 20 mm long measurement end to the film-like metal obtained by force, the resistance The resistance was measured, and the volume resistivity (unit: ⁇ ′cm) was calculated.
  • Spherical silver particles produced by a commercially available reduction method (average particle size 0.3 ⁇ ⁇ , carbon content 0.2% by weight) 2 1 part hexanol (special grade of reagent released by Wako Pure Chemical Industries, Ltd.) 2
  • a paste-like silver particle composition was prepared by adding parts and mixing uniformly using a spatula. This best silver particle composition could be applied in a good shape without sagging or flowing when applied with a metal mask.
  • This paste-like silver particle composition can easily discharge EFD syringes (manufactured by San-Tech Co., Ltd., attached to the tip-the inner diameter of one dollar is 1.55 mm and the discharge pressure is 50 kPa). It was.
  • this paste-like silver particle composition was obtained by applying ultrasonic vibration of each ultrasonic vibration application condition (Table 1) for 30 seconds while heating at a temperature of 200 ° C.
  • the silver particles in the product were sintered.
  • solid silver as a sintered product was measured for fixing strength, volume resistivity, and thermal conductivity, and Table 2 shows the measurement results.
  • the film-like silver used for volume resistivity measurement had a strength comparable to that of the silver by the precision method.
  • this paste-like silver particle composition is useful for producing strong solid silver, and useful for strongly joining metal members with good electrical and thermal conductivity, In addition, it is useful for forming a silver wiring having excellent wear resistance, adhesion to a substrate, electrical conductivity, and thermal conductivity.
  • Example 3 Using the same paste-like silver particle composition as in Example 1 to Example 5, an attempt was made to prepare a specimen for fixing strength measurement, a specimen for volume resistivity measurement, and a specimen for thermal conductivity measurement. The However, in order to obtain each test specimen, ultrasonic vibration of each ultrasonic vibration application condition (Table 3) was applied for 30 seconds while heating at a temperature of 200 ° C. The silver particles did not sinter and the specimen could not be made. Solid silver adhesion strength, volume resistivity, and thermal conductivity could not be measured.
  • Example 2 Instead of the spherical silver particles used in Example 2, flaky silver (average particle size 3., carbon content 0.7% by weight) obtained by flaking silver particles produced by a commercially available reduction method was used. Except for the above, a paste-like silver particle composition was prepared under the same conditions as in Example 2. This pasty silver particle composition could be applied in a good shape without sagging or flowing when applied with a metal mask. This paste-like silver particle composition could be easily discharged from an EFD syringe (manufactured by Suneitech Co., Ltd. attached to the tip—one dollar has an inner diameter of 1.55 mm and a discharge pressure of 50 kPa). .
  • EFD syringe manufactured by Suneitech Co., Ltd. attached to the tip—one dollar has an inner diameter of 1.55 mm and a discharge pressure of 50 kPa).
  • this paste-like silver particle composition was obtained by applying ultrasonic vibration under the same ultrasonic application conditions as in Example 2 for 30 seconds while heating at a temperature of 200 ° C.
  • the silver particles in the product were sintered.
  • the pasty silver particle composition was measured for solid silver solid strength, volume resistivity, and thermal conductivity, and the measurement results are shown in Table 4.
  • the film-like silver used for measuring the volume resistivity had a strength comparable to that of the silver by the precision method. From the above results, this paste-like silver particle composition is useful for producing strong solid silver, and useful for joining metal members firmly with good electrical and thermal conductivity. It is useful for forming a silver wiring having excellent wear resistance, adhesion to a substrate, electrical conductivity and thermal conductivity. [0050] [Table 4] Table 4
  • Example 6 Using the same paste-like silver particle composition as in Example 6, an attempt was made to prepare a test specimen for fixing strength measurement, a test specimen for volume resistivity measurement, and a test specimen for thermal conductivity measurement.
  • ultrasonic vibration under the same ultrasonic vibration application conditions (Table 3) as in Comparative Example 1 was applied for 30 seconds while heating at a temperature of 200 ° C. The silver particles did not sinter and the test specimen could not be produced. For this reason, solid silver fixing strength, volume resistivity, and thermal conductivity could not be measured.
  • Example 5 Using the same paste-like silver particle composition as in Example 1 to Example 5, an attempt was made to prepare a specimen for fixing strength measurement, a specimen for volume resistivity measurement, and a specimen for thermal conductivity measurement. However, in order to obtain each specimen, heating was performed under the same conditions except that ultrasonic vibration was not applied!]. When the silver particles touch each other with a finger that does not sinter enough, they break easily and have a strength that makes it impossible to produce a specimen. Therefore, the solid silver fixation strength, volume resistivity, and thermal conductivity could not be measured.
  • Spherical silver particles produced by a commercially available reduction method (average particle size 0.3 ⁇ ⁇ , carbon content 0.3 wt%, surface is acid silver) 20 parts, distillation range from 106 ° C to 202 A lower isoparaffin having a temperature of ° C (manufactured by Nippon Petrochemical Co., Ltd., trade name Isosol 300) 1. 8 parts were added, and the mixture was uniformly mixed with a spatula to prepare a paste-like silver particle composition.
  • This pasty silver particle composition could be applied in a good shape without sagging or flowing when applied with a metal mask.
  • This paste-like silver particle composition has a slightly unstable discharge force.
  • EFD syringe manufactured by Saneitech Co., Ltd.-attached to the tip-1.5 dollar inner diameter, discharge pressure is 50kPa. There was a continuous force. Obtain each specimen Therefore, the silver particles in the paste-like silver particle composition were sintered by applying ultrasonic vibration under the same ultrasonic application conditions as in Example 2 for 30 seconds while heating at a temperature of 200 ° C. . With respect to this pasty silver particle composition, solid silver as a sintered product was measured for adhesion strength, volume resistivity, and thermal conductivity, and the measurement results are summarized in Table 5. The film-like silver used for measuring the volume resistivity had a strength comparable to that of the silver obtained by the precision milling method.
  • this paste-like silver particle composition is useful for producing strong solid silver, and useful for strongly joining metal members with good electrical and thermal conductivity, It can also be seen that it is useful for forming silver wiring with excellent wear resistance, adhesion to the substrate, electrical conductivity, and thermal conductivity.
  • Example 7 Using the same paste-like silver particle composition as in Example 7, an attempt was made to prepare a test specimen for fixing strength measurement, a test specimen for volume resistivity measurement, and a test specimen for thermal conductivity measurement. However, in order to obtain each specimen, it was heated under the same conditions except that ultrasonic vibration was not applied. The silver particles did not sinter enough, and the sintered product was easily broken when touched with a brittle finger, and it was impossible to produce a specimen. Therefore, the solid silver fixation strength, volume resistivity, and thermal conductivity could not be measured.
  • Example 7 The same as Example 7 except that instead of the spherical silver particles used in Example 7, granular silver particles produced by a commercially available reduction method (average particle diameter 2. carbon content 0.7 wt%) were used. Under the conditions, a paste-like silver particle composition was prepared. This pasty silver particle composition could be applied in a good shape without sagging or flowing when applied with a metal mask. This paste-like silver particle composition is a force that is slightly unstable with variable discharge volume. EFD syringe (manufactured by Saneitech Co., Ltd.-attached to the tip-the inner diameter of one dollar is 1.55mm, and the discharge pressure is At 50kPa There was a continuous force.
  • EFD syringe manufactured by Saneitech Co., Ltd.-attached to the tip-the inner diameter of one dollar is 1.55mm, and the discharge pressure is At 50kPa There was a continuous force.
  • Example 2 In order to obtain each specimen, the ultrasonic vibration of the same ultrasonic application conditions as in Example 2 was applied for 30 seconds while heating at a temperature of 200 ° C. Silver particles were sintered. With respect to this paste-like silver particle composition, solid silver as a sintered product was measured for fixing strength, volume resistivity, and thermal conductivity, and the measurement results are summarized in Table 6. The film-like silver used for measuring the volume resistivity had a strength comparable to that obtained by the precision method. From the above results, this paste-like silver particle composition is useful for producing strong solid silver, useful for joining metal members firmly with good electrical conductivity and thermal conductivity, In addition, it is useful for forming a silver wiring having excellent wear resistance, adhesion to a substrate, electrical conductivity, and thermal conductivity.
  • Example 8 Using the same paste-like silver particle composition as in Example 8, an attempt was made to prepare a test specimen for measuring sticking strength, a test specimen for measuring volume resistivity, and a test specimen for measuring thermal conductivity. However, in order to obtain each specimen, it was heated under the same conditions except that ultrasonic vibration was not applied. The silver particles did not sinter enough, and the sintered product was easily broken when touched with a brittle finger, and it was impossible to produce a specimen. Therefore, the solid silver fixation strength, volume resistivity, and thermal conductivity could not be measured.
  • Reduced powder of spherical copper particles produced by a commercial atomization method by immersing copper particles with an average particle size of 4 m and carbon content of 0.01% by weight or less in an ascorbic acid aqueous solution with a concentration of 15% by weight.
  • Hexanol reagent special grade released by Wako Pure Chemical Industries, Ltd.
  • Add 5 parts to 20 parts and mix evenly using a spatula By doing so, a paste-like copper particle composition was prepared.
  • This paste-like copper particle composition has no sagging or flow during application with a metal mask. It was able to be applied in a good shape.
  • This paste-like copper particle composition is an EFD syringe (manufactured by San-Tech Co., Ltd. attached to the tip-the inner diameter of one dollar is 1.55 mm and the discharge pressure is 5 OkPa). It was.
  • the ultrasonic vibration under the same ultrasonic application conditions as in Example 2 was applied for 30 seconds while heating at a temperature of 200 ° C., whereby the copper in the paste-like copper particle composition was obtained. The particles were sintered.
  • this paste-like copper particle composition With respect to this paste-like copper particle composition, the solid copper strength, volume resistivity, and thermal conductivity of the sintered product were measured, and the measurement results are shown in Table 7.
  • the film-like copper used for volume resistivity measurement had a strength comparable to copper obtained by the precision method. From the above results, this paste-like copper particle composition is useful for producing strong solid copper, useful for joining metal members firmly with good electrical conductivity and thermal conductivity, It can also be seen that it is useful for forming copper wiring with excellent wear resistance, adhesion to the substrate, electrical conductivity and thermal conductivity.
  • Example 9 Using the same paste-like copper particle composition as in Example 9, an attempt was made to prepare a test specimen for measuring sticking strength, a test specimen for measuring volume resistivity, and a test specimen for measuring thermal conductivity. However, in order to obtain each specimen, it was heated under the same conditions except that ultrasonic vibration was not applied. The copper particles did not sinter enough, and the sintered product was easily broken when touched with a brittle finger, and it was impossible to produce a specimen. Therefore, it was impossible to measure the solid copper adhesion strength, volume resistivity, and thermal conductivity.
  • spherical gold particles (average particle size 1 ⁇ m, carbon content 0.1% by weight or less) 1 xanol (special grade released by Wako Pure Chemical Industries, Ltd.) 1. 20 parts A paste-like gold particle composition was prepared by uniformly mixing with the above. This paste-like gold particle composition could be applied in a good shape without sagging or flowing when applied with a metal mask. . This paste-like gold particle composition was able to easily discharge the EFD syringe (manufactured by San-Tech Co., Ltd., attached to the tip-the inner diameter of one dollar is 1.55 mm and the discharge pressure is 50 kPa). .
  • this paste-like gold particle composition was sintered.
  • the adhesion strength, volume resistivity, and thermal conductivity of solid gold as a sintered product were measured, and the measurement results are shown in Table 8.
  • the film-like gold used for measuring the volume resistivity had a strength comparable to that of the gold by the precision method. From the above results, this paste-like gold particle composition is useful for producing strong solid gold, and useful for joining metal members firmly with good electrical and thermal conductivity. It can be seen that it is useful for forming a gold wiring having excellent wear resistance, adhesion to a substrate, electrical conductivity and thermal conductivity.
  • Example 10 Using the same paste-like gold particle composition as in Example 10, an attempt was made to prepare a test specimen for measuring sticking strength, a test specimen for measuring volume resistivity, and a test specimen for measuring thermal conductivity. However, in order to obtain each specimen, it was heated under the same conditions except that ultrasonic vibration was not applied []. The gold particles did not sinter enough, and the sintered product was easily broken when touched with a brittle finger, and it was impossible to produce a specimen. For this reason, solid gold adhesion strength, volume resistivity, and thermal conductivity could not be measured.
  • a paste-like aluminum particle composition was prepared by mixing.
  • This paste-like aluminum particle composition sags and flows when applied with a metal mask. Although it was recognized slightly, etc., it could be applied to a measurable shape.
  • the aluminum particles in this paste-like aluminum particle composition were sintered by applying ultrasonic vibration under the ultrasonic application conditions shown in Table 9 for 60 seconds at room temperature using an ultrasonic thermocompression bonding apparatus.
  • the adhesion strength, volume resistivity, and thermal conductivity of solid aluminum as a sintered product were measured, and the measurement results are shown in Table 10.
  • the film-like aluminum used for the volume resistivity measurement had a strength comparable to that obtained by the precision method.
  • the paste-like aluminum particle composition is useful for producing strong solid aluminum, useful for joining metal members firmly with good electrical and thermal conductivity, and resistance to resistance. It can be seen that it is useful for forming aluminum wiring with excellent wear, adhesion to the substrate, electrical conductivity, and thermal conductivity.
  • Example 11 Using the same paste-like aluminum particle composition as in Example 11, an attempt was made to prepare a specimen for fixing strength measurement, a specimen for volume resistivity measurement, and a specimen for thermal conductivity measurement. However, in order to obtain each specimen, it was heated under the same conditions except that no ultrasonic vibration was applied. If the aluminum particles do not sinter enough, touch the sinter with a fragile finger. It broke easily, and it was hard to make a specimen. Therefore, it was impossible to measure the adhesion strength, volume resistivity, and thermal conductivity of solid aluminum.
  • the paste-like metal particle composition for ultrasonic vibration sintering of the present invention, the method for solidifying the paste-like metal particle composition, and the method for joining the metal members include the formation of conductive wiring on a printed wiring board; Formation of electrodes for various electronic components such as capacitors and various display elements; formation of conductive coatings for electromagnetic wave shielding; bonding between metal plates; bonding between metal plates and metal parts on electrically insulating substrates; capacitors, resistors, Bonding chip parts such as diodes, memories, and arithmetic elements (CPUs) to substrates; forming solar cell electrodes; external to chip-type ceramic electronic components such as multilayer ceramic capacitors, multilayer ceramic inductors, and multilayer ceramic actuators This is useful for forming electrodes.
  • the method for producing a printed wiring board of the present invention is useful for producing a printed wiring board having metal wiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

[課題]金属粒子が極めて短時間で焼結して強度と導電性と熱伝導性が優れた固形状金属となるペースト状金属粒子組成物、その固化方法等を提供する。 [解決手段]平均粒径が0.1μm~30μmであり炭素量が2.0重量%以下である金属粒子と揮発性分散媒とからなるペースト状金属粒子組成物;該組成物に、加圧しつつ、特には加圧、加熱しつつ超音波振動を印加することにより、該揮発性分散媒を揮散させ、該金属粒子同士を焼結させるペースト状金属粒子組成物の固化方法;金属製部材間にペースト状金属粒子組成物を介在させ、加圧しつつ、特には加圧、加熱しつつ超音波振動を印加することによる接合方法;基板上のペースト状金属粒子組成物に加圧しつつ、特には加圧、加熱しつつ超音波振動を印加することによる金属配線を形成させるプリント配線板の製造方法。

Description

明 細 書
ペースト状金属粒子組成物、ペースト状金属粒子組成物の固化方法、金 属製部材の接合方法およびプリント配線板の製造方法
技術分野
[0001] 本発明は、金属粒子と揮発性分散媒とからなる超音波振動焼結性のペースト状金属 粒子組成物;ペースト状金属粒子組成物に加圧しつつ超音波振動を印加することに より、特には加圧、加熱しつつ超音波振動を印加することにより金属粒子を焼結させ て固化する方法;複数の金属製部材間にペースト状金属粒子組成物を介在させ、加 圧しつつ超音波振動を印加することにより、特には加圧、加熱しつつ超音波振動を 印加することにより金属粒子を焼結させて固化することにより金属製部材を接合する 方法;および、基板上に塗布したペースト状金属粒子組成物を、加圧しつつ超音波 振動を印加することにより、特には加圧、加熱しつつ超音波振動を印加することによ り、金属粒子を焼結させ固化することにより、金属配線を形成するプリント配線板の製 造方法に関するものである。
背景技術
[0002] 導電性ペーストは、固形分として主に金属微粉末を含有するペーストであり、例えば 、プリント配線板の導電配線を形成する場合に導電路として用いられている。また、 両面プリント配線板ゃビルドアップ多層プリント配線板では、スルーホールを導電性 銀ペーストで充填して、各層の配線パターンを接続する方法が採用されている。セラ ミック基板に、厚膜導体配線を形成するための導電性ペーストも知られて 、る。
[0003] 金属微粉末としては、一般に、空気中で酸ィ匕しない金、白金、銀、ノラジウムなどの 貴金属の微粉末が用いられているが、最近では、非酸化性雰囲気下で焼成する方 法を採用することにより、ニッケルや銅などの卑金属も用いられている。導電性ペース トは、スクリーン印刷、グラビア印刷、コーティングなどにより基材 (基板)上に塗布され る。塗膜は、乾燥後、熱処理されて、導電性膜となる。従来の導電性ペーストは、固 化方法の観点で、高温焼結型と熱硬化型と低温焼結型とに大別される。
[0004] 例えば、高温焼結型導電性ペーストに関する特許文献 1では、導電性金属粉末 (例 えば、銅粉末)を含有するペースト状導電性榭脂組成物を基板に塗布して硬化させ
、 20分間かけて 350°Cに昇温し 20分間保持して該榭脂を熱分解させ、ついで 900
°Cに昇温し 30分間保持して銅粉末を焼結して 、る。
[0005] 高温焼結型導電性ペーストは、榭脂を熱分解させ、金属粉末を焼結させるのに、極 めて高温と長時間を要しており、大量生産するには生産効率が低ぐエネルギー費 用が多大であるという問題がある。
[0006] 熱硬化型導電性ペーストに関する特許文献 2では、鱗片状銀粉末を含有するポリイミ ドワニス力もなる導電性ペーストをポリイミドフィルムに塗布して、 120°Cで 30分間保 持して乾燥し、乾燥皮膜を 170°Cで 30分間、ついで 230°Cで 10分間熱処理して導 電性膜を得ている。
[0007] 熱硬化型導電性ペーストは、高温焼結型導電性ペーストに比べ硬化温度が低いが、 硬化に長時間を要するので、大量生産するには生産効率が低ぐエネルギー費用が 多大であるという問題がある。また、本来電気絶縁性である樹脂がバインダーとして 残存するので、電気伝導率をあまり大きくすることができないという問題がある。
[0008] 特許文献 3では、配線素子の電極と基板の電極とを対向させ、電極間を電気的およ び機械的に接続するフリップチップ実装方法にぉ 、て、上記配線素子の電極または 基板の電極上の少なくとも一方に、平均粒径が 1〜 1 OOnmの金属微粒子を溶媒中 に分散させた金属ペーストを供給する工程と、上記配線素子の電極と基板の電極と を上記金属ペーストを間にして位置合わせする工程と、上記配線素子側および基板 側の少なくとも一方に超音波振動を印加することにより、上記金属ペーストとの界面 における電極表面を活性化させる工程と、上記金属ペーストを構成する溶媒の沸点 以上、金属微粒子の融点以下の温度(100°C〜300°C)で 5分〜 60分間加熱するこ とにより、溶媒を蒸発させて配線素子の電極と基板の電極とを電気的および機械的 に接続する工程とを有することを特徴とする。この実装方法は、 100°C〜300°Cで焼 結させるので、低温焼結型ということができる。前記フリップチップ実装方法における 超音波振動は、電極表面の酸化物や汚染物を除去し電極表面を活性状態にするた めに行うものであり、金属ペースト中の金属粒子と電極表面の金属との接合、並びに 、金属粒子同士の焼結は、加熱工程によってなされる。 [0009] この実装方法は、高温焼結型導電性ペーストに比べ加熱温度が低いが、長時間を 要するので、大量生産するには生産効率が低ぐエネルギー費用が多大であるという 問題がある。
[0010] また、被着体である電極等上の酸化物除去のため、前処理として超音波振動を印加 する必要があり、複数の工程が必要という問題がある。
[0011] また、焼結性を向上させるために、表面活性の高い平均粒径 1〜: LOOnmというナノレ ベルの金属粒子を必要とする。しかしながら、平均粒径 1〜: LOOnmの金属微粒子は 、微粉末状でも溶媒中でも、常温で凝集しやすぐ保存安定性が悪いという問題があ る。さらには、平均粒径 1〜: LOOnmの金属微粒子は、平均粒径が 100nm、すなわち 0. 1 mより大きい金属粒子に比べ極めて高価であるという問題がある。
[0012] 特許文献 1 :特開 2002— 97215号公報
特許文献 2:特開 2004— 39379号公報
特許文献 3:特開 2004 - 116612号公報
発明の開示
発明が解決しょうとする課題
[0013] 本発明者らは、上記問題のないペースト状金属粒子組成物およびその固化方法を 開発すべく鋭意研究した結果、特定のペースト状金属粒子組成物に加圧しつつ超 音波振動を印加することにより、短時間で金属粒子同士が焼結し、ペースト状金属粒 子組成物が固化することを見出し、本発明を完成するに至った。本発明の目的は、 保存安定性が良ぐ超音波振動の印加により短時間で容易に金属粒子が焼結可能 であるペースト状金属粒子組成物;当該ペースト状金属粒子組成物を短時間で効率 的に固化する方法;当該ペースト状金属粒子組成物を使用して、短時間で効率的に 金属製部材を接合する方法、および、当該ペースト状金属粒子組成物を使用して、 短時間で効率的に金属配線を形成するプリント配線板の製造方法を提供すること〖こ ある。
課題を解決するための手段
[0014] この目的は、
[1](A)平均粒径が 0.1 μ mより大きく 30 μ m以下であり、炭素量が 2. 0重量%以下 である金属粒子と (B)揮発性分散媒とからなるペースト状物であり、加圧しつつ周波 数が 2kHz以上である超音波振動の印加により該金属粒子同士が焼結することを特 徴とする、超音波振動焼結用のペースト状金属粒子組成物。
[2]加圧および加熱をしつつ周波数が 2kHz以上である超音波振動の印加であるこ とを特徴とする、 [ 1]記載のペースト状金属粒子組成物。
[3]金属粒子 (A)の金属が、金、銀、銅、アルミニウム、ニッケルまたはスズであること を特徴とする、 [ 1 ]記載の超音波振動焼結用のペースト状金属粒子組成物。
[4]金属粒子 (A)の金属が、金、銀、銅、アルミニウム、ニッケルまたはスズであること を特徴とする、 [2]記載の超音波振動焼結用のペースト状金属粒子組成物。
[5]金属粒子 (A)が、球状、フレーク状または粒状であることを特徴とする、 [ 1]〜[4] のいずれかに記載の超音波振動焼結用のペースト状金属粒子組成物。
[6]揮発性分散媒 (B)が、揮発性の親水性溶剤または脂肪族炭化水素系溶剤である ことを特徴とする、 [ 1]〜 [4]の 、ずれかに記載の超音波振動焼結用のペースト状金 属粒子組成物。
[7]揮発性分散媒 (B)が、揮発性の親水性溶剤または脂肪族炭化水素系溶剤である ことを特徴とする、 [5]記載の超音波振動焼結用のペースト状金属粒子組成物。
[8]揮発性親水性溶剤が、揮発性アルコール、または揮発性アルコールと水の混合 物であることを特徴とする、 [6]記載の超音波振動焼結用のペースト状金属粒子組 成物。
[9]揮発性親水性溶剤が、揮発性アルコール、または揮発性アルコールと水の混合 物であることを特徴とする、 [7]記載の超音波振動焼結用のペースト状金属粒子組 成物。
[ 10] (Α)平均粒径が 0.1 μ mより大きく 30 μ m以下であり、炭素量が 2. 0重量%以下 である金属粒子と (B)揮発性分散媒とからなるペースト状金属粒子組成物に、加圧し つつ周波数が 2kHz以上である超音波振動を印加することにより、該金属粒子同士 を焼結させることを特徴とする、ペースト状金属粒子組成物の固化方法。
[ 11 ]加圧しつつ、かつ、常温より高く 400°C以下であり該金属粒子の融点未満の温 度で加熱しつつ、周波数が 2kHz以上である超音波振動を印加することを特徴とする , [10]記載のペースト状金属粒子組成物の固化方法。
[12]超音波振動の振幅が 0. 1〜40 /ζ πιであることを特徴とする、 [10]または [11] 記載のペースト状金属粒子組成物の固化方法。
[13]加圧が 0. 9kPa (0. 09gfZmm2)以上であることを特徴とする、 [10]または [1 1]記載のペースト状金属粒子組成物の固化方法。
[14]加圧が 0. 9kPa (0. 09gfZmm2)以上であることを特徴とする、 [12]記載のぺ 一スト状金属粒子組成物の固化方法。
[15]複数の金属製部材間に、(A)平均粒径が 0.1 mより大きく 30 m以下であり、 炭素量が 2. 0重量%以下である金属粒子と (B)揮発性分散媒とからなるペースト状金 属粒子組成物を介在させ、加圧しつつ周波数が 2kHz以上である超音波振動を印 加して該金属粒子同士を焼結させることを特徴とする、金属製部材の接合方法。
[16]加圧しつつ、かつ、常温より高く 400°C以下であり該金属粒子の融点未満の温 度で加熱しつつ、周波数が 2kHz以上である超音波振動を印加することを特徴とする 、 [15]記載の金属製部材の接合方法。
[17]金属製部材が電子部品または電気部品の金属製部材であることを特徴とする、 [15]記載の金属製部材の接合方法。
[18]金属製部材が電子部品または電気部品の金属製部材であることを特徴とする、 [16]記載の金属製部材の接合方法。
[19]超音波振動の振幅が 0. 1〜40 /ζ πιであることを特徴とする、 [15]〜 [18]のい ずれかに記載の金属製部材の接合方法。
[20]加圧が 0. 9kPa (0. 09gfZmm2)以上であることを特徴とする、 [15]〜[18] の!、ずれかに記載の金属製部材の接合方法。
[21]加圧が 0. 9kPa (0. 09gfZmm2)以上であることを特徴とする、 [19]記載の金 属製部材の接合方法。
[22] (A)平均粒径が 0.1 μ mより大きく 30 μ m以下であり、炭素量が 2. 0重量%以下 である金属粒子と (B)揮発性分散媒とからなるペースト状金属粒子組成物を、硬化性 接着剤が塗布された基板上に塗布し、該ペースト状金属粒子組成物に加圧しつつ 周波数が 2kHz以上である超音波振動を印カロして該金属粒子同士を焼結させ、同時 に該接着剤を硬化させることにより、金属配線を形成することを特徴とする、プリント 配線板の製造方法。
[23]加圧しつつ、かつ、常温より高く 400°C以下であり該金属粒子の融点未満の温 度で加熱しつつ、周波数が 2kHz以上である超音波振動を印加することを特徴とする 、 [22]記載のプリント配線板の製造方法。
[24]超音波振動の振幅が 0. 1〜40 /ζ πιであることを特徴とする、 [22]または [23] 記載のプリント配線板の製造方法。
[25]加圧が 0. 9kPa (0. 09gfZmm2)以上であることを特徴とする、 [22]または [2 3]記載のプリント配線板の製造方法。
[26]加圧が 0. 9kPa (0. 09gfZmm2)以上であることを特徴とする、 [24]記載のプ リント配線板の製造方法。
;により達成される。
発明の効果
[0015] 本発明のペースト状金属粒子組成物は、金属粒子の平均粒径が 0.1 mより大きく 3 O /z m以下であるので保存安定性が良ぐさらには炭素量が 2. 0重量%以下である ので、加圧しつつ、特には加圧、加熱しつつ周波数が 2kHz以上である超音波振動 を印加すると、金属粒子が極めて短時間で焼結して固化する。
[0016] 本発明のペースト状金属粒子組成物の固化方法では、加圧しつつ、特には加圧、加 熱しつつ周波数が 2kHz以上である超音波振動を印加するので、極めて短時間に該 組成物中の金属粒子同士が焼結して、強度、導電性、熱伝導性が優れている固形 状金属が得られる。特には、加圧しつつ、かつ、常温より高く 400°C以下であり該金 属粒子の融点未満の温度で加熱しつつ、周波数が 2kHz以上の超音波振動を印加 するので、効率良く揮発性分散媒が揮散し、極めて短時間に該組成物中の金属粒 子同士が焼結して、強度、導電性、熱伝導性が優れている固形状金属が得られる。
[0017] 本発明の金属製部材の接合方法では、ペースト状金属粒子組成物を複数の金属製 部材間に介在させ、加圧しつつ周波数が 2kHz以上である超音波振動を印加するの で、極めて短時間に該組成物中の金属粒子同士が焼結して、複数の金属製部材が 強固に耐久性よく接合する。特には加圧しつつ、かつ、常温より高く 400°C以下であ り該金属粒子の融点未満の温度で加熱しつつ周波数が 2kHz以上の超音波振動を 印加するので、効率良く揮発性分散媒が揮散し、極めて短時間に該組成物中の金 属粒子同士が焼結して、複数の金属製部材が強固に耐久性よく接合する。
[0018] 本発明のプリント配線板の製造方法では、硬化性接着剤が塗布された基板上にぺ 一スト状金属粒子組成物を塗布し、該ペースト状金属粒子組成物に、加圧しつつ周 波数が 2kHz以上である超音波振動を印加するので、極めて短時間に金属粒子同 士が焼結して、耐摩耗性、接着性、導電性、熱伝導性が優れた金属配線が形成され る。特には、加圧しつつ、かつ、常温より高く 400°C以下であり該金属粒子の融点未 満の温度で加熱しつつ、周波数が 2kHz以上の超音波振動を印加するので、効率 良く揮発性分散媒が揮散し、極めて短時間に金属粒子同士が焼結して、耐摩耗性、 接着性、導電性、熱伝導性が優れた金属配線を有するプリント配線板を製造すること ができる。また、前記接合方法によりチップ等を当該プリント配線板に搭載することに より、回路板を製造することができる。
[0019] 本発明のペースト状金属粒子組成物の固化方法、金属製部材の接合方法、プリント 配線板の製造方法のいずれも、所要時間を極めて短くすることが可能であるから、生 産効率が高ぐエネルギー費用も従来に比べ大幅に節約することができる。
図面の簡単な説明
[0020] [図 1]実施例における固着強度測定用試験体 Aを作製するために、チップコンデンサ 端子電極 3と基板ランド (パッド)部 5の間のペースト状金属粒子組成物 4に、超音波 振動を印加して 、る状態の概略図である。
符号の説明
[0021] A 固着強度測定用試験体
B 超音波熱圧着装置の圧着部 (プローブ)
1 ガラス繊維強化エポキシ榭脂基板
2 2012チップコンデンサ
3 2012チップコンデンサ端子電極
4 ペースト状金属粒子組成物
5 基板ランド (パッド)部 発明を実施するための最良の形態
[0022] 本発明のペースト状金属粒子組成物は、(A)平均粒径が 0.1 μ mより大きく 30 μ m以 下である金属粒子と (B)揮発性分散媒とからなるので、加圧しつつ、特には加圧、カロ 熱しつつ周波数が 2kHz以上である超音波振動を印加すると、金属粒子が極めて短 時間で焼結して固化する。
当該金属粒子 (A)の平均粒径は、レーザー回折または電子顕微鏡写真の画像解析 により得られる一次粒子の平均粒径である。平均粒径が 30 mを越えると金属粒子 同士の焼結性が小さくなり、優れた強度と導電性、熱伝導性、接着性を得にくい。そ のため平均粒径は 30 μ m以下であるが、 10 μ m以下であることが好ましぐより好ま しくは 6 μ m以下である。し力し、いわゆるナノサイズである 0.1 μ m以下の場合、表面 活性が強すぎてペースト状金属粒子組成物の保存安定性が低下する恐れがあるた め、 0.1 mより大であり、好ましくは 0. 2 μ m以上である。
[0023] 当該金属粒子 (A)は、常温で固形状であることが必要であり、特に導電性と熱伝導性 が高い、金、銀、銅、アルミニウム、ニッケル、スズから選択されることが好ましい。また 、それらの金属力 なる合金、または、それらの金属で表面がコーティングされた金 属であっても良い。合金の場合は、金、銀、銅、アルミニウム、ニッケル、または、スズ の含有量が 50%以上であることが好ましい。金属粒子の形状は、球状、フレーク状、 針状、角状、樹枝状、粒状、不規則形状、涙滴状板状、板状、極薄板状、六角板状 、柱状、棒状、多孔状、繊維状、塊状、海面状、けい角状、丸み状が例示される。好 ましくは、フレーク状、針状、角状、樹枝状、粒状、不規則形状、涙滴状、板状、極薄 板状、六角板状であり、より好ましくは、球状、フレーク状または粒状である。
[0024] 当該金属粒子 (A)は、製造過程で、有機化合物が付着することがある。その付着量が 多すぎると、焼結性に悪影響を及ぼすことがあるので、炭素量は 2. 0重量%以下で あり、好ましくは 1. 0重量%以下である。ここで炭素量は、金属粒子を酸素気流中で 加熱することにより、金属粒子に付着していた有機化合物中の炭素を炭酸ガスに変 え、炭酸ガス量を赤外線吸収スペクトル法により測定し、換算して炭素量を算出した ものである。金属粒子 (A)の表面は少々酸ィ匕されていても良いが、酸化銀以外の酸化 膜で被覆されている場合 (例えば、酸化銅、酸ィ匕アルミニウム、酸ィ匕ニッケル、酸化ス ズ等)には、この酸ィ匕膜を除去して用いることが好ましい。これらの酸化膜は化学的に 安定であり、金属粒子同士の焼結性が低くなるからである。これらの酸化膜を除去す る方法は限定されないが、例えば、水素雰囲気での還元処理、水素発生物質の添 加による還元処理、公知の還元剤による還元処理、公知の還元剤の添加による還元 処理等が例示される。酸化銀は加熱により容易に還元されるので、銀粒子表面の酸 化銀の存在は任意である。
本発明のペースト状金属粒子組成物は、金属粒子 (A)と揮発性分散媒 (B)との混合物 であり、粉末状の金属粒子 (A)が揮発性分散媒 (B)の作用によりペーストイ匕している。 ペーストイ匕することにより、シリンダーやノズル力も細い線状に吐出でき、またメタルマ スクによる印刷塗布が容易であり、電極の形状に適用しやすくなる。非揮発性分散媒 ではなぐ揮発性分散媒を使用する理由は、超音波振動により金属粒子 (A)が焼結 する際に、分散媒が前もって揮散すると、金属粒子 (A)が焼結しやすぐその結果、固 形状金属の強度と導電性や熱伝導性が大きくなりやす!/ヽからである。揮発性分散媒( B)は、金属粒子表面を変質させず、その沸点は 60°C以上であり、 300°C以下である ことが好ましい。沸点が 60°C未満であると、ペースト状金属粒子組成物を調製する作 業中に溶媒が揮散しやすぐ沸点が 300°Cより大であると、金属粒子 (A)の焼結後も 揮発性分散媒が残留しかねないからである。そのような揮発性分散媒 (B)として、水; ェチノレアノレコーノレ、プロピノレアノレコーノレ、ブチノレアノレコーノレ、ペンチノレアノレコーノレ、 へキシノレアノレコーノレ、ヘプチノレアノレコーノレ、オタチノレアノレコーノレ、ノニノレアノレコーノレ 、デシルアルコール、ベンジルアルコール等の揮発性一価アルコール;その他の揮 発性アルコール;低級 n—パラフィン、低級イソパラフィン等の揮発性脂肪族炭化水 素;トルエン、キシレン等の揮発性芳香族炭化水素;アセトン、メチルェチルケトン、メ チルイゾブチルケトン、シクロへキサノン、ジアセトンアルコール(4ーヒドロキシー4 メチル 2 ペンタノン)、 2—ォクタノン、イソホロン(3, 5, 5 トリメチル 2 シクロ へキセン 1 オン)、ジイブチルケトン(2, 6 ジメチルー 4一へプタノン)等の揮発 性ケトン;酢酸ェチル(ェチルアセテート)、酢酸ブチルのような揮発性酢酸エステル; 酪酸メチル、へキサン酸メチル、オクタン酸メチル、デカン酸メチルのような揮発性脂 肪族カルボン酸エステル;テトラヒドロフラン、メチルセ口ソルブ、プロピレンブリコール モノメチルエーテル、メチルメトキシブタノール、ブチルカルビトール等の揮発性エー テル;低分子量の揮発性シリコーンオイルおよび揮発性有機変成シリコーンオイル; 等が例示され、特にはブチルアルコール、ペンチルアルコール、へキシルアルコー ノレ、ヘプチノレアノレコーノレ、オタチノレアノレコーノレ、ノニノレアノレコーノレ、デシノレアノレコー ル、ベンジルアルコール等の揮発性一価アルコールであることが好ましい。これら炭 素原子数力 〜10である揮発性一価アルコールは、ペースト状金属粒子組成物にし たときに、メタルマスクでの印刷性やシリンジからの押出性、吐出性に優れ、また適度 な揮発性を有しているからである。;ついで低級 n—パラフィン、低級イソパラフィン等 の揮発性脂肪族炭化水素が好ましい。水は純水が好ましぐその電気伝導度は 100 SZcm以下が好ましぐ 10 SZcm以下がより好ましい。純水の製造方法は通常 の方法で良ぐイオン交換法、逆浸透法、蒸留法が例示される。
[0026] 揮発性分散媒 (B)の配合量は、該金属粒子 (A)をペースト状にするのに十分な量でよ く、目安として金属粒子 (A)との体積比率は、金属粒子 (A)の体積 100あたり、揮発性 分散剤 (B)の体積が 50〜200であり、好ましくは 70〜 160である。なお、本発明にお けるペースト状はクリーム状を含むものである。本発明のペースト状金属粒子組成物 には、本発明の目的に反しない限り、その他の金属系や非金属系の粉体、金属化合 物や金属錯体、チクソ剤、安定剤、着色剤等の添加物を少量ないし微量添加しても 良い。
[0027] 本発明のペースト状金属粒子組成物の固化方法は、(A)平均粒径が 0.1 mより大き く 以下であり、炭素量が 2. 0重量%以下である金属粒子と (B)揮発性分散媒 とからなるペースト状金属粒子組成物に、加圧しつつ周波数が 2kHz以上である超 音波振動を印加することにより、金属粒子同士を焼結させることを特徴とする。本発 明のペースト状金属粒子組成物の固化方法は、特には、(A)平均粒径が 0.1 mより 大きく 30 m以下であり、炭素量が 2. 0重量%以下である金属粒子と (B)揮発性分 散媒とからなるペースト状金属粒子組成物に、加圧しつつ、かつ、常温より高く 400 °C以下であり該金属粒子 (A)の融点未満の温度で加熱しつつ、周波数が 2kHz以上 である超音波振動を印加することにより、該揮発性分散媒 (B)を揮散させ、該金属粒 子 (A)同士を焼結させることを特徴とする。このための金属粒子 (A)としては、金、銀、 銅、アルミニウム、ニッケル、スズなどの金属粒子が適している。これらの金属粒子の うち、アルミニウム粒子は、常温でも加圧しつつ周波数が 2kHz以上である超音波振 動を印加すると容易に焼結すると 、う利点がある。
[0028] 加圧しつつ超音波振動を印加することにより、特には加圧、加熱しつつ超音波振動 を印加することにより、揮発性分散媒 (B)が揮散して該金属粒子 (A)同士が焼結し強 度と導電性と熱伝導性が優れた固形状の金属となる。この際、揮発性分散媒 (B)が揮 散し、ついで金属粒子 (A)同士が焼結してもよぐ揮発性分散媒 (B)の揮散と共に金属 粒子 (A)同士が焼結してもよぐまたは、金属粒子 (A)同士が焼結し、ついで揮発性分 散媒 (B)が揮散してもよい。金、銀、銅、アルミニウム、ニッケル、スズなどの金属は本 来大きな強度と極めて高い導電性と熱伝導性を有するため、該金属粒子 (A)同士の 焼結物も大きな強度ときわめて高い導電性と熱伝導性を有する。
[0029] 超音波振動の周波数は、 2kHz以上であり、 10kHz以上であることが好ましい。その 上限は特に制限されないが、装置の能力上 500kHz位である。また、超音波振動の 振幅は焼結性に影響するので、好ましくは 0. 1〜40 m、より好ましくは 0. 3-20 μ m、さらに好ましくは 0. 5〜12 /ζ πιである。なお、超音波振動がペースト状金属粒子 組成物に確実に伝わるように、ペースト状金属粒子組成物に超音波振動の発信部 分を直接押し当てることが好ましい。また、超音波振動を吸収しにくい素材力もなる力 バー材等を介して、超音波振動の発信部分を押し当てることが好ましい。ペースト状 金属粒子組成物への押当て圧力は、好ましくは 0. 9kPa (0. 09gfZmm2)以上、よ り好ましくは 9kPa (0. 92gfZmm2)以上、さらに好ましくは 39kPa (3. 98gf/mm2) 以上である。押当て圧力の上限は、接合する部材が破壊されない圧力の最大値であ る。
[0030] 加熱温度は、常温より高ぐ揮発性分散媒 (B)が揮散し金属粒子 (A)が焼結できる温 度であればよい。しかし、 400°Cを越えると揮発性分散媒 (B)が突沸的に蒸発して固 形状金属の形状に悪影響が出る可能性があるため、 400°C以下、かつ該金属粒子( A)の融点未満の温度であることが必要であり、より好ましくは 300°C以下である。該金 属粒子 (A)が焼結してできた固形状金属の導電性は、体積抵抗率で 1 X 10"4 Ω - cm 以下であることが好ましぐ 1 X 10— 5 Ω ' cm以下であることがより好ましい。その熱伝導 性は、 5WZm'K以上であることが好ましぐ lOWZm'K以上であることがより好まし い。該金属粒子 (A)が焼結してできた固形状金属の形状は特に限定されず、シート状 、フィルム状、テープ状、線状、円盤状、ブロック状、スポット状、不定形状が例示され る。
[0031] 本発明の金属製部材の接合方法は、複数の金属製部材間に、(A)平均粒径が 0.1 mより大きく 30 m以下であり、炭素量が 2. 0重量%以下である金属粒子と (B)揮発 性分散媒とからなるペースト状金属粒子組成物を介在させ、加圧しつつ周波数が 2k Hz以上である超音波振動を印カロして金属粒子 (A)同士を焼結させることを特徴とす る。特には、複数の金属製部材間に、(A)平均粒径が 0.1 mより大きく 30 m以下 であり、炭素量が 2. 0重量%以下である金属粒子と (B)揮発性分散媒とからなるベー スト状金属粒子組成物を介在させ、加圧しつつ、かつ、常温より高く 400°C以下であ り該金属粒子 (A)の融点未満の温度で加熱しつつ、周波数が 2kHz以上である超音 波振動を印加することにより、該揮発性分散媒 (B)を揮散させ、該金属粒子 (A)同士を 焼結させることを特徴とする。このための金属粒子 (A)としては、金、銀、銅、アルミ- ゥム、ニッケル、スズなどの金属粒子が適している。これらの金属粒子のうち、アルミ二 ゥム粒子は常温でも加圧しつつ周波数が 2kHz以上である超音波振動を印加すると 容易に焼結すると 、う利点がある。
[0032] 本発明の金属製部材の接合方法において、超音波振動の周波数、振幅、押当て圧 力および加熱温度は、前記ペースト状金属粒子組成物の固化方法における超音波 振動の周波数、振幅、押当て圧力および加熱温度と同じである。
[0033] 金属製部材間のペースト状金属粒子組成物に、加圧しつつ、特には加圧、加熱しつ つ超音波振動を印加すると、揮発性分散媒が揮散し該金属粒子が焼結して、接触し ていた金属製部材 (例えば、金メッキ板、銀板、銀メツキ板、銅板、アルミニウム板、二 ッケルメツキ金属板、スズメツキ金属板等の金属板;金メッキ基板、銀基板、銀メツキ基 板、銅基板、アルミニウム基板、ニッケルメツキ金属基板、スズメツキ金属基板等の金 属系基板;電気絶縁性基板上の電極等金属部分;電子部品、電子装置、電気部品、 電気装置の金属部分 (例えば端子))への接着強度、導電性、熱伝導性が優れた固 形状金属となる。したがって、本発明の金属製部材の接合方法は、複数の金属製部 材の接合に有用であり、特には金属系基板もしくは電気絶縁性基板上の電極と、電 子部品、電子装置、電気部品、電気装置の金属部分 (例えば端子)の接合に有用で ある。そのような接合として、金属板同士の接合;金属板と電気絶縁性基板上の金属 部分との接合;コンデンサ、抵抗等のチップ部品と配線基板との接合;ダイオード、メ モリ、 CPU等の半導体チップとリードフレームもしくは配線基板との接合;高発熱の C PUチップと冷却板との接合が例示される。
[0034] 本発明のプリント配線板の製造方法は、(A)平均粒径が 0.1 mより大きく 30 μ m以 下であり、炭素量が 2. 0重量%以下である金属粒子と (B)揮発性分散媒とからなるぺ 一スト状金属粒子組成物を硬化性接着剤が塗布された基板上に塗布し、該ペースト 状金属粒子組成物に加圧しつつ周波数が 2kHz以上である超音波振動を印加して 金属粒子同士を焼結させ、同時に該接着剤を硬化させることにより、金属配線を形 成することを特徴とする。特には、(A)平均粒径が 0.1 mより大きく 30 m以下であり 、炭素量が 2. 0重量%以下である金属粒子と (B)揮発性分散媒とからなるペースト状 金属粒子組成物を、硬化性接着剤が塗布された基板上に塗布し、該ペースト状金属 粒子組成物に加圧しつつ、かつ、常温より高く 400°C以下であり該金属粒子の融点 未満の温度で加熱しつつ、周波数が 2kHz以上である超音波振動を印加することに より、該揮発性分散媒を揮散させ、金属粒子同士を焼結させ、同時に該接着剤を硬 ィ匕させること〖こより、金属配線を形成することを特徴とする。このための金属粒子とし ては、金、銀、銅、アルミニウム、ニッケル、スズなどの金属粒子が適している。これら の金属粒子のうち、アルミニウム粒子は、常温でも加圧しつつ周波数が 2kHz以上で ある超音波振動を印加すると容易に焼結すると 、う利点がある。
[0035] 本発明のプリント配線板の製造方法において、超音波振動の周波数、振幅、押当て 圧力および加熱温度は、前記ペースト状金属粒子組成物の固化方法における超音 波振動の周波数、振幅、押当て圧力および加熱温度と同じである。
[0036] 本発明のプリント配線板の製造方法によれば、ペースト状金属粒子組成物を硬化性 接着剤 (例えば、エポキシ榭脂系接着剤、シリコーン榭脂系接着剤、ポリイミド榭脂系 接着剤)を塗布したプリント配線用基板に塗布し、当該ペースト状金属粒子組成物に 加圧しつつ周波数が 2kHz以上である超音波振動を印加することにより、金属粒子 同士が焼結し、耐摩耗性と基板への接着性に優れた金属プリント配線を形成するこ とができる。なお、上記プリント配線用基板は、プライマー組成物を基板上に塗布し、 次いで硬化性接着剤を塗布した基板であってもよい。特には、加圧しつつ、かつ、常 温より高く 400°C以下であり金属粒子の融点未満の温度で加熱しつつ、周波数が 2k Hz以上の超音波振動を印加することにより、効率良く揮発性分散媒が揮散し、金属 粒子同士が焼結して、耐摩耗性と基板への接着性と導電性と熱伝導性が優れた金 属配線を有するプリント配線板を短時間で製造することができる。ペースト状金属粒 子組成物を基板上へ塗布等する方法は、特に制限されず、デイスペンス塗布、印刷 塗布、スプレー塗布、はけ塗り、注入等がある。また、段落 0031に記載の接合方法 によりチップ等を当該プリント配線板に搭載することにより、回路板を製造することが できる。
[0037] 本発明の超音波振動焼結用のペースト状金属粒子組成物は、揮発性分散媒を含有 するので、密閉容器に保存することが好ましい。長期間保存後に使用するときは、容 器を振とうしてから、あるいは容器内を攪拌してカゝら使用することが好ましい。保存安 定性を向上する目的で冷蔵保管をしても良ぐ保管温度として 10°C以下が例示され るが、密閉容器内に保管するときは揮発性分散媒が凝固しない温度であることが好 ましい。
[0038] なお、本発明の超音波振動焼結用のペースト状金属粒子組成物は、加圧しつつ超 音波振動を印加することにより、特には加圧、加熱しつつ超音波振動を印加すること により金属粒子を焼結するが、焼結した後の洗浄は不要である。しかし、水や有機溶 剤で洗浄してもよ!/ヽ。揮発性分散媒が水または親水性溶剤である場合は水で洗浄す ることができるので、アルコール等の有機溶媒による洗浄の場合のような VOC発生の 問題がない。本発明における超音波振動焼結用のペースト状金属粒子組成物の各 成分は不純物が少な!、ため洗浄が容易である。
実施例
[0039] 本発明の実施例と比較例を掲げる。実施例と比較例中、数字の次の「部」とあるのは 「重量部」を意味する。金属粒子中の炭素量、ならびに、ペースト状金属粒子組成物 中の金属粒子を焼結することにより生成した固形状金属の固着強度、体積抵抗率お よび熱伝導率は、下記の方法により各試験体を製作し、該各試験体について 25°C で測定した。
[0040] [炭素含有量]
金属粒子を酸素気流中で高周波により加熱することにより、金属粒子に付着していた 有機化合物中の炭素を炭酸ガスに変え、炭酸ガス量を赤外線吸収スペクトル法によ り測定し、換算して炭素量を算出した。
[0041] [固着強度試験]
100mm X 40mmのガラス繊維強化エポキシ榭脂基板上に lmmの間隔をお!/ヽて設 けられた 2つの 0.8mm X l . 2mmのランド(パッド)部(銀メツキ仕上げ)に 150 m厚 のメタルマスクを用いて、ペースト状金属粒子組成物を塗布した (塗布面積: 0. 6mm X I . Omm)。チップマウンタにより、 2012チップコンデンサ(両端部は銀メツキ仕上 げ)を搭載した。超音波熱圧着装置を用い、超音波熱圧着装置の圧着部 (プローブ) を該チップコンデンサに押し当てて、超音波振動を印加しながら 200°Cの温度で 30 秒間圧着した。その結果、金属粒子が焼結してランド (パッド)部と 2012チップコンデ ンサ(両端部銀メツキ仕上げ)が接合した。ただし、金属粒子がフレーク状アルミ-ゥ ム粒子である場合は、常温で超音波振動を印加した。力べして得られた固着強度試 験体のチップコンデンサの側面を、固着強度試験機により押厚速度 23mmZ分で加 圧し、せん断破壊したときの荷重をもって固着強度 (単位; kgfおよび N)とした。なお 、固着強度試験の回数は 5回であり、 5回の平均値を固着強度とした。
[0042] [体積抵抗率試験]
幅 5mm、長さ 20mmの開口部を有する厚さ 100 μ mの金属製のマスクを用い、電気 絶縁性の FR— 4ガラス繊維強化エポキシ榭脂基板上にペースト状金属粒子組成物 を印刷塗布した。前記エポキシ榭脂基板と同じ大きさの厚さ 200 mの非接着性で あるステンレススチール板を前記塗布部に張付けた。該ステンレススチール板の上か ら超音波熱圧着装置を用いて、超音波振動を印カロしながら、温度 200°Cで 30秒間 圧着したところ、金属粒子が焼結してフィルム状となった。ただし、金属粒子がフレー ク状アルミニウム粒子である場合は、常温で超音波振動を印加した。力べして得られ たフィルム状の金属につ!、て、 20mm長の測定端間で 10ボルトの電圧を印加して抵 抗を測定し、体積抵抗率 (単位; Ω 'cm)を算出した。
[0043] [熱伝導率試験]
lOmmX 10mm角のシリコンウェハ 1とシリコンウェハ 2との間に、 40 /z mまたは 80 μ m厚となるようペースト状金属粒子組成物を介在させ、超音波熱圧着装置を用い て、超音波振動を印加しながら 200°Cで 30秒間加熱した。その結果、ペースト状金 属粒子組成物中の金属粒子が焼結してフィルム状となった。ただし、金属粒子がフレ ーク状アルミニウム粒子である場合は、常温で超音波振動を印加した。力べして得ら れたフィルム状の金属について、各々の厚さにおける熱抵抗(単位;。 CZW)を測定 した。各厚さ(単位; m)と熱抵抗の関係をグラフにプロットして直線を引き、その傾き を熱伝導率 (単位; WZmK)として算出した。
[0044] [実施例 1〜実施例 5]
市販の還元法で製造された球状銀粒子 (平均粒径 0. 3 ^ πι,炭素量 0. 2重量%) 2 0部に 1一へキサノール (和光純薬工業株式会社発売の試薬特級) 2部を添加し、へ らを用いて均一に混合することにより、ペースト状銀粒子組成物を調製した。このべ 一スト状銀粒子組成物は、メタルマスクでの塗布においてダレ、流れ等はなく良好な 形状に塗布できた。このペースト状銀粒子組成物は、 EFDシリンジ (サンエイテック株 式会社製。先端にとりつけた-一ドルの内径が 1. 55mmであり、吐出圧が 50kPaで ある)力も容易に吐出することができた。各実施例の各試験体を得るために、 200°C の温度で加熱しつつ、各超音波振動印加条件 (表 1)の超音波振動を 30秒間印加 することにより、このペースト状銀粒子組成物中の銀粒子を焼結させた。このペースト 状銀粒子組成物について、焼結物である固形状銀の固着強度、体積抵抗率、熱伝 導率を測定し、測定結果を表 2に示した。体積抵抗率測定に使用したフィルム状銀 は、精鍊法による銀と遜色ない強度を有していた。以上の結果より、このペースト状銀 粒子組成物が、強固な固形状銀を製造するのに有用なこと、金属製部材を電気伝導 性と熱伝導性よく強固に接合するのに有用なこと、および耐摩耗性と基板への接着 性と電気伝導性と熱伝導性が優れた銀配線を形成するのに有用なことがゎカゝる。
[0045] [表 1] 表 1
Figure imgf000019_0001
[0046] [表 2]
表 2
Figure imgf000019_0002
[0047] [比較例 1]
実施例 1〜実施例 5と同じペースト状銀粒子組成物を使用して、固着強度測定用試 験体、体積抵抗率測定用試験体および熱伝導率測定用試験体の作成を試みた。た だし、各試験体を得るために、 200°Cの温度で加熱しつつ、各超音波振動印加条件 (表 3)の超音波振動を 30秒間印加した。銀粒子が焼結せず試験体を作成すること ができな力つた。固形状銀の固着強度、体積抵抗率、熱伝導率は測定不可能であつ た。
[表 3]
表 3
Figure imgf000020_0001
[実施例 6]
実施例 2で用いた球状銀粒子の代わりに、市販の還元法で製造された銀粒子をフレ ーク化したフレーク状銀 (平均粒径 3. 、炭素量 0. 7重量%)を用いた以外は、 実施例 2と同一条件でペースト状銀粒子組成物を調製した。このペースト状銀粒子 組成物は、メタルマスクでの塗布においてダレ、流れ等はなく良好な形状に塗布でき た。このペースト状銀粒子組成物は、 EFDシリンジ (サンエイテック株式会社製。先端 にとりつけた-一ドルの内径が 1. 55mmであり、吐出圧が 50kPaである)から容易に 吐出することができた。各実施例の各試験体を得るために、 200°Cの温度で加熱し つつ、実施例 2と同じ超音波印加条件の超音波振動を 30秒間印加することにより、こ のペースト状銀粒子組成物中の銀粒子を焼結させた。このペースト状銀粒子組成物 について焼結物である固形状銀の固着強度、体積抵抗率、熱伝導率を測定し、測 定結果を表 4に示した。体積抵抗率測定に使用したフィルム状銀は、精鍊法による銀 と遜色ない強度を有していた。以上の結果より、このペースト状銀粒子組成物が、強 固な固形状銀を製造するのに有用なこと、金属製部材を電気伝導性と熱伝導性よく 強固に接合するのに有用なこと、および耐摩耗性と基板への接着性と電気伝導性と 熱伝導性が優れた銀配線を形成するのに有用なことがゎカゝる。 [0050] [表 4] 表 4
Figure imgf000021_0001
[0051] [比較例 2]
実施例 6と同じペースト状銀粒子組成物を使用して、固着強度測定用試験体、体積 抵抗率測定用試験体および熱伝導率測定用試験体の作成を試みた。ただし、各試 験体を得るために、 200°Cの温度で加熱しつつ、比較例 1と同じ各超音波振動印加 条件 (表 3)の超音波振動を 30秒間印加した。銀粒子が焼結せず試験体を作製する ことができな力つた。そのため固形状銀の固着強度、体積抵抗率、熱伝導率は測定 不可能であった。
[0052] [比較例 3]
実施例 1〜実施例 5と同じペースト状銀粒子組成物を使用して、固着強度測定用試 験体、体積抵抗率測定用試験体および熱伝導率測定用試験体の作成を試みた。た だし、各試験体を得るために、超音波振動を印力!]しない以外は同一条件で加熱した 。銀粒子同士が充分に焼結せずにもろぐ指で触ると容易に壊れ、試験体を作製す ることができな力つた。そのため固形状銀の固着強度、体積抵抗率、熱伝導率は測 定不可能であった。
[0053] [実施例 7]
市販の還元法で製造された球状銀粒子 (平均粒径 0. 3 ^ πι,炭素量 0. 3重量%、 表面は酸ィ匕銀である) 20部に、蒸留範囲が 106°Cから 202°Cである低級イソパラフィ ン (新日本石油化学株式会社製、商品名アイソゾール 300) 1. 8部を添加し、へらを 用いて均一に混合することによりペースト状銀粒子組成物を調製した。このペースト 状銀粒子組成物は、メタルマスクでの塗布においてダレ、流れ等はなく良好な形状 に塗布できた。このペースト状銀粒子組成物は、吐出量が変化しやや不安定である 力 EFDシリンジ (サンエイテック株式会社製。先端にとりつけた-一ドルの内径が 1 . 55mmであり、吐出圧が 50kPaである)力も連続して吐出できた。各試験体を得る ために、 200°Cの温度で加熱しつつ、実施例 2と同じ超音波印加条件の超音波振動 を 30秒間印加することにより、このペースト状銀粒子組成物中の銀粒子を焼結させた 。このペースト状銀粒子組成物について、焼結物である固形状銀の固着強度、体積 抵抗率、熱伝導率を測定し、測定結果を表 5にまとめて示した。体積抵抗率測定に 使用したフィルム状銀は、精鍊法による銀と遜色ない強度を有していた。以上の結果 より、このペースト状銀粒子組成物が、強固な固形状銀を製造するのに有用なこと、 金属製部材を電気伝導性と熱伝導性よく強固に接合するのに有用なこと、および耐 摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銀配線を形成するのに 有用なことがわかる。
[0054] [表 5] 表 5
Figure imgf000022_0001
[0055] [比較例 4]
実施例 7と同じペースト状銀粒子組成物を使用して、固着強度測定用試験体、体積 抵抗率測定用試験体および熱伝導率測定用試験体の作成を試みた。ただし、各試 験体を得るために、超音波振動を印力 tlしない以外は同一条件で加熱した。銀粒子同 士が充分に焼結せず、焼結物はもろぐ指で触ると容易に壊れ、試験体を作製するこ とができな力つた。そのため固形状銀の固着強度、体積抵抗率、熱伝導率は測定不 可能であった。
[0056] [実施例 8]
実施例 7で用いた球状銀粒子の代わりに、市販の還元法で製造された粒状銀粒子( 平均粒径 2. 、炭素量 0. 7重量%)を使用する以外は、実施例 7と同一条件で ペースト状銀粒子組成物を調製した。このペースト状銀粒子組成物は、メタルマスク での塗布においてダレ、流れ等はなく良好な形状に塗布できた。このペースト状銀粒 子組成物は、吐出量が変化しやや不安定である力 EFDシリンジ (サンエイテック株 式会社製。先端にとりつけた-一ドルの内径が 1. 55mmであり、吐出圧が 50kPaで ある)力も連続して吐出できた。各試験体を得るために、 200°Cの温度で加熱しつつ 、実施例 2と同じ超音波印加条件の超音波振動を 30秒間印加することにより、このべ 一スト状銀粒子組成物中の銀粒子を焼結させた。このペースト状銀粒子組成物につ いて焼結物である固形状銀の固着強度、体積抵抗率、熱伝導率を測定し、測定結 果を表 6にまとめて示した。体積抵抗率測定に使用したフィルム状銀は、精鍊法によ る銀と遜色ない強度を有していた。以上の結果より、このペースト状銀粒子組成物が 、強固な固形状銀を製造するのに有用なこと、金属製部材を電気伝導性と熱伝導性 よく強固に接合するのに有用なこと、および耐摩耗性と基板への接着性と電気伝導 性と熱伝導性が優れた銀配線を形成するのに有用なことがゎカゝる。
[0057] [表 6] 表 6
Figure imgf000023_0001
[0058] [比較例 5]
実施例 8と同じペースト状銀粒子組成物を使用して、固着強度測定用試験体、体積 抵抗率測定用試験体および熱伝導率測定用試験体の作成を試みた。ただし、各試 験体を得るために、超音波振動を印力 tlしない以外は同一条件で加熱した。銀粒子同 士が充分に焼結せず、焼結物はもろぐ指で触ると容易に壊れ、試験体を作製するこ とができな力つた。そのため固形状銀の固着強度、体積抵抗率、熱伝導率は測定不 可能であった。
[0059] [実施例 9]
市販のアトマイズ法で製造された球状銅粒子の還元処理粉 (平均粒径 4 m、炭素 含有量 0. 01重量%以下の銅粒子を、濃度 15重量%のァスコルビン酸水溶液に浸 漬することにより、銅粒子表面の酸化銅を銅に還元する処理をしたもの) 20部に 1 へキサノール (和光純薬工業株式会社発売の試薬特級) 1. 5部を添加し、へらを用 いて均一に混合することによりペースト状銅粒子組成物を調製した。
このペースト状銅粒子組成物は、メタルマスクでの塗布においてダレ、流れ等はなく 良好な形状に塗布できた。このペースト状銅粒子組成物は、 EFDシリンジ (サンエイ テック株式会社製。先端にとりつけた-一ドルの内径が 1. 55mmであり、吐出圧が 5 OkPaである)力 容易に吐出することができた。各試験体を得るために、 200°Cの温 度で加熱しつつ、実施例 2と同じ超音波印加条件の超音波振動を 30秒間印加する ことにより、このペースト状銅粒子組成物中の銅粒子を焼結させた。このペースト状銅 粒子組成物について、焼結物である固形状銅の固着強度、体積抵抗率、熱伝導率 を測定し、測定結果を表 7に示した。体積抵抗率測定に使用したフィルム状銅は、精 鍊法による銅と遜色ない強度を有していた。以上の結果より、このペースト状銅粒子 組成物が、強固な固形状銅を製造するのに有用なこと、金属製部材を電気伝導性と 熱伝導性よく強固に接合するのに有用なこと、および耐摩耗性と基板への接着性と 電気伝導性と熱伝導性が優れた銅配線を形成するのに有用なことがわかる。
[0060] [表 7] 表 7
Figure imgf000024_0001
[0061] [比較例 6]
実施例 9と同じペースト状銅粒子組成物を使用して、固着強度測定用試験体、体積 抵抗率測定用試験体および熱伝導率測定用試験体の作成を試みた。ただし、各試 験体を得るために、超音波振動を印力 tlしない以外は同一条件で加熱した。銅粒子同 士が充分に焼結せず、焼結物はもろぐ指で触ると容易に壊れ、試験体を作製するこ とができな力つた。そのため固形状銅の固着強度、体積抵抗率、熱伝導率は測定不 可能であった。
[0062] [実施例 10]
市販の球状金粒子(平均粒径 1 μ m、炭素量 0. 1重量%以下) 20部に 1 キサノ ール (和光純薬工業株式会社発売の試薬特級) 1. 0部を添加し、へらを用いて均一 に混合することによりペースト状金粒子組成物を調製した。このペースト状金粒子組 成物は、メタルマスクでの塗布においてダレ、流れ等はなく良好な形状に塗布できた 。このペースト状金粒子組成物は EFDシリンジ (サンエイテック株式会社製。先端に とりつけた-一ドルの内径が 1. 55mmであり、吐出圧が 50kPaである)力も容易に吐 出することができた。各試験体を得るために、 200°Cの温度で加熱しつつ、実施例 2 と同じ超音波印加条件の超音波振動を 30秒間印加することにより、このペースト状金 粒子組成物中の金粒子を焼結させた。このペースト状金粒子組成物について、焼結 物である固形状金の固着強度、体積抵抗率、熱伝導率を測定し、測定結果を表 8に 示した。体積抵抗率測定に使用したフィルム状金は、精鍊法による金と遜色ない強 度を有していた。以上の結果より、このペースト状金粒子組成物が、強固な固形状金 を製造するのに有用なこと、金属製部材を電気伝導性と熱伝導性よく強固に接合す るのに有用なこと、および耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優 れた金配線を形成するのに有用なことがわかる。
[0063] [表 8] 表 8
Figure imgf000025_0001
[0064] [比較例 7]
実施例 10と同じペースト状金粒子組成物を使用して、固着強度測定用試験体、体 積抵抗率測定用試験体および熱伝導率測定用試験体の作成を試みた。ただし、各 試験体を得るために、超音波振動を印力 []しない以外は同一条件で加熱した。金粒子 同士が充分に焼結せず、焼結物はもろぐ指で触ると容易に壊れ、試験体を作製す ることができな力つた。そのため固形状金の固着強度、体積抵抗率、熱伝導率は測 定不可能であった。
[0065] [実施例 11]
市販のフレーク状アルミニウム粒子(平均粒径 20 μ m、炭素量 0. 1重量%以下) 20 部にイソプロパノール (和光純薬工業株式会社発売の試薬特級) 6部を添加し、へら を用いて均一に混合することによりペースト状アルミニウム粒子組成物を調製した。こ のペースト状アルミニウム粒子組成物は、メタルマスクでの塗布において、ダレ、流れ 等がわずかに認められたが、測定可能な形状に塗布できた。超音波熱圧着装置を 用い、常温で、表 9に示す超音波印加条件の超音波振動を 60秒間印加することによ り、このペースト状アルミニウム粒子組成物中のアルミニウム粒子を焼結させた。この ペースト状アルミニウム粒子組成物につ 、て、焼結物である固形状アルミニウムの固 着強度、体積抵抗率、熱伝導率を測定し、測定結果を表 10に示した。体積抵抗率 測定に使用したフィルム状アルミニウムは、精鍊法によるアルミニウムと遜色ない強度 を有していた。以上の結果より、このペースト状アルミニウム粒子組成物力 強固な固 形状アルミニウムを製造するのに有用なこと、金属製部材を電気伝導性と熱伝導性 よく強固に接合するのに有用なこと、および耐摩耗性と基板への接着性と電気伝導 性と熱伝導性が優れたアルミニウム配線を形成するのに有用なことがわかる。
[0066] [表 9] 表 9
Figure imgf000026_0001
[0067] [表 10] 表 1 0
固着強度 体積抵抗率 熱伝導率 k g f ( N) □ • c m W/ m K 実施例 1 1 2 X 1 0— 5 1 1
[0068] [比較例 8]
実施例 11と同じペースト状アルミニウム粒子組成物を使用して、固着強度測定用試 験体、体積抵抗率測定用試験体および熱伝導率測定用試験体の作成することを試 みた。ただし、各試験体を得るために、超音波振動を印加しない以外は同一条件で 加熱した。アルミニウム粒子同士が充分に焼結せず、焼結物はもろぐ指で触ると容 易に壊れ、試験体を作製することができな力つた。そのため固形状アルミニウムの固 着強度、体積抵抗率、熱伝導率は測定不可であった。
産業上の利用可能性
本発明の超音波振動焼結用のペースト状金属粒子組成物、該ペースト状金属粒子 組成物の固化方法、金属製部材の接合方法は、プリント配線板上の導電性配線の 形成;抵抗器ゃコンデンサ等の各種電子部品及び各種表示素子の電極の形成;電 磁波シールド用導電性被膜の形成;金属板同士の接合;金属板と電気絶縁性基板 上の金属部分との接合;コンデンサ、抵抗、ダイオード、メモリ、演算素子 (CPU)等 のチップ部品の基板への接合;太陽電池の電極の形成;積層セラミックコンデンサ、 積層セラミックインダクタ、積層セラミックァクチユエータ等のチップ型セラミック電子部 品の外部電極の形成等に有用である。本発明のプリント配線板の製造方法は、金属 配線を有するプリント配線板の製造に有用である。

Claims

請求の範囲
[1] (A)平均粒径が 0.1 μ mより大きく 30 μ m以下であり、炭素量が 2. 0重量%以下であ る金属粒子と (B)揮発性分散媒とからなるペースト状物であり、加圧しつつ周波数が 2 kHz以上である超音波振動の印加により該金属粒子同士が焼結することを特徴とす る、超音波振動焼結用のペースト状金属粒子組成物。
[2] 加圧および加熱をしつつ周波数が 2kHz以上である超音波振動の印加であることを 特徴とする、請求項 1記載のペースト状金属粒子組成物。
[3] 金属粒子 (A)の金属が、金、銀、銅、アルミニウム、ニッケルまたはスズであることを特 徴とする、請求項 1記載の超音波振動焼結用のペースト状金属粒子組成物。
[4] 金属粒子 (A)の金属が、金、銀、銅、アルミニウム、ニッケルまたはスズであることを特 徴とする、請求項 2記載の超音波振動焼結用のペースト状金属粒子組成物。
[5] 金属粒子 (A)が、球状、フレーク状または粒状であることを特徴とする、請求項 1〜請 求項 4のいずれか 1項に記載の超音波振動焼結用のペースト状金属粒子組成物。
[6] 揮発性分散媒 (B)が、揮発性の親水性溶剤または脂肪族炭化水素系溶剤であること を特徴とする、請求項 1〜請求項 4のいずれか 1項に記載の超音波振動焼結用のぺ 一スト状金属粒子組成物。
[7] 揮発性分散媒 (B)が、揮発性の親水性溶剤または脂肪族炭化水素系溶剤であること を特徴とする、請求項 5記載の超音波振動焼結用のペースト状金属粒子組成物。
[8] 揮発性親水性溶剤が、揮発性アルコール、または揮発性アルコールと水の混合物で あることを特徴とする、請求項 6記載の超音波振動焼結用のペースト状金属粒子組 成物。
[9] 揮発性親水性溶剤が、揮発性アルコール、または揮発性アルコールと水の混合物で あることを特徴とする、請求項 7記載の超音波振動焼結用のペースト状金属粒子組 成物。
[10] (Α)平均粒径が 0.1 μ mより大きく 30 μ m以下であり、炭素量が 2. 0重量%以下であ る金属粒子と (B)揮発性分散媒とからなるペースト状金属粒子組成物に、加圧しつつ 周波数が 2kHz以上である超音波振動を印加することにより、該金属粒子同士を焼 結させることを特徴とする、ペースト状金属粒子組成物の固化方法。
[11] 加圧しつつ、かつ、常温より高く 400°C以下であり該金属粒子の融点未満の温度で 加熱しつつ、周波数が 2kHz以上である超音波振動を印加することを特徴とする、請 求項 10記載のペースト状金属粒子組成物の固化方法。
[12] 超音波振動の振幅が 0. 1〜40 μ mであることを特徴とする、請求項 10または請求項
11記載のペースト状金属粒子組成物の固化方法。
[13] 加圧が 0. 9kPa (0. 09gfZmm2)以上であることを特徴とする、請求項 10または請 求項 11記載のペースト状金属粒子組成物の固化方法。
[14] 加圧が 0. 9kPa (0. 09gfZmm2)以上であることを特徴とする、請求項 12記載のぺ 一スト状金属粒子組成物の固化方法。
[15] 複数の金属製部材間に、(A)平均粒径が 0.1 mより大きく 30 m以下であり、炭素 量が 2. 0重量%以下である金属粒子と (B)揮発性分散媒とからなるペースト状金属粒 子組成物を介在させ、加圧しつつ周波数が 2kHz以上である超音波振動を印加して 該金属粒子同士を焼結させることを特徴とする、金属製部材の接合方法。
[16] 加圧しつつ、かつ、常温より高く 400°C以下であり該金属粒子の融点未満の温度で 加熱しつつ、周波数が 2kHz以上である超音波振動を印加することを特徴とする、請 求項 15記載の金属製部材の接合方法。
[17] 金属製部材が電子部品または電気部品の金属製部材であることを特徴とする、請求 項 15記載の金属製部材の接合方法。
[18] 金属製部材が電子部品または電気部品の金属製部材であることを特徴とする、請求 項 16記載の金属製部材の接合方法。
[19] 超音波振動の振幅が 0. 1〜40 /ζ πιであることを特徴とする、請求項 15〜請求項 18 の 、ずれか 1項に記載の金属製部材の接合方法。
[20] 加圧が 0. 9kPa (0. 09gfZmm2)以上であることを特徴とする、請求項 15〜請求項
18のいずれか 1項に記載の金属製部材の接合方法。
[21] 加圧が 0. 9kPa (0. 09gfZmm2)以上であることを特徴とする、請求項 19記載の金 属製部材の接合方法。
[22] (A)平均粒径が 0.1 μ mより大きく 30 μ m以下であり、炭素量が 2. 0重量%以下であ る金属粒子と (B)揮発性分散媒とからなるペースト状金属粒子組成物を硬化性接着 剤が塗布された基板上に塗布し、該ペースト状金属粒子組成物に加圧しつつ周波 数が 2kHz以上である超音波振動を印カロして該金属粒子同士を焼結させ、同時に該 接着剤を硬化させることにより、金属配線を形成することを特徴とする、プリント配線 板の製造方法。
[23] 加圧しつつ、かつ、常温より高く 400°C以下であり該金属粒子の融点未満の温度で 加熱しつつ、周波数が 2kHz以上である超音波振動を印加することを特徴とする、請 求項 22記載のプリント配線板の製造方法。
[24] 超音波振動の振幅が 0. 1〜40 μ mであることを特徴とする、請求項 22または請求項
23記載のプリント配線板の製造方法。
[25] 加圧が 0. 9kPa (0. 09gfZmm2)以上であることを特徴とする、請求項 22または請 求項 23記載のプリント配線板の製造方法。
[26] 加圧が 0. 9kPa (0. 09gfZmm2)以上であることを特徴とする、請求項 24記載のプ リント配線板の製造方法。
PCT/JP2006/318774 2005-09-22 2006-09-21 ペースト状金属粒子組成物、ペースト状金属粒子組成物の固化方法、金属製部材の接合方法およびプリント配線板の製造方法 WO2007034893A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007536559A JP4362742B2 (ja) 2005-09-22 2006-09-21 ペースト状金属粒子組成物の固化方法、金属製部材の接合方法およびプリント配線板の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005276484 2005-09-22
JP2005-276484 2005-09-22
JP2005309128 2005-10-24
JP2005-309128 2005-10-24

Publications (1)

Publication Number Publication Date
WO2007034893A1 true WO2007034893A1 (ja) 2007-03-29

Family

ID=37888936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318774 WO2007034893A1 (ja) 2005-09-22 2006-09-21 ペースト状金属粒子組成物、ペースト状金属粒子組成物の固化方法、金属製部材の接合方法およびプリント配線板の製造方法

Country Status (2)

Country Link
JP (1) JP4362742B2 (ja)
WO (1) WO2007034893A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086895A (ja) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd 導電性基板の製造方法及び導電性基板
WO2009098831A1 (ja) * 2008-02-07 2009-08-13 Murata Manufacturing Co., Ltd. 電子部品装置の製造方法
JP2009218167A (ja) * 2008-03-12 2009-09-24 Hitachi Chem Co Ltd 導電性基板及びその製造方法、並びに銅配線基板及びその製造方法
EP2306796A1 (en) 2009-10-05 2011-04-06 ABB Research Ltd. Method of joining components, composite of components of an electrical circuit and electrical circuit
JP2011192608A (ja) * 2010-03-16 2011-09-29 Murata Mfg Co Ltd 導電性ペーストおよびセラミック電子部品の製造方法
JP2014118586A (ja) * 2012-12-14 2014-06-30 Unitika Ltd 繊維状銅微粒子組成物、及び該繊維状銅微粒子組成物を用いた繊維状銅微粒子の保存方法
WO2016035314A1 (ja) * 2014-09-01 2016-03-10 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
JP2016053216A (ja) * 2014-09-01 2016-04-14 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
TWI566359B (zh) * 2014-11-13 2017-01-11 艾馬克科技公司 具有直接附接至引線架的半導體晶粒的半導體封裝及方法
WO2017009586A1 (fr) * 2015-07-16 2017-01-19 Valeo Equipements Electriques Moteur Procede de brasage par frittage d'une poudre conductrice par thermo-compression ultrasonique et module electronique de puissance realise par ce procede
WO2017188446A1 (ja) * 2016-04-28 2017-11-02 シャープ株式会社 導電性ペースト、電極接続構造、及び、電極接続構造の製造方法
RU185234U1 (ru) * 2018-09-03 2018-11-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный технологический университет" Установка для получения изделий из порошковых материалов
WO2020118269A1 (en) * 2018-12-07 2020-06-11 Interlog Corporation Method for 3d-shaped multiple-layered electronics with ultrasonic voxel manufacturing
CN111843281A (zh) * 2020-07-20 2020-10-30 广东省科学院中乌焊接研究所 铝合金焊丝的制备方法和铝合金焊丝
WO2021227872A1 (zh) * 2020-05-09 2021-11-18 苏州大学 粉末浆料超声场助压印成型微结构装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011114558A1 (de) * 2011-09-30 2013-04-04 Osram Opto Semiconductors Gmbh Bauelement und Verfahren zum Herstellen dieses Bauelementes
WO2013185839A1 (de) * 2012-06-15 2013-12-19 Osram Opto Semiconductors Gmbh Verfahren zur herstellung eines optoelektronischen halbleiterbauelements mit einer unter einwirkung von wärme, druck und ultraschall versinterten verbindungsschicht
DE102014117020A1 (de) 2014-11-20 2016-05-25 Infineon Technologies Ag Verfahren zum herstellen einer stoffschlüssigen verbindung zwischen einem halbleiterchip und einer metallschicht
CN105101658B (zh) * 2015-09-09 2017-10-20 中南大学 一种纳米银导电墨水的热超声低温烧结方法及装置
FR3134021B1 (fr) * 2022-03-29 2024-05-31 Safran Procédé de soudage par ultrasons

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345201A (ja) * 1999-05-31 2000-12-12 Mitsui Mining & Smelting Co Ltd 複合銅微粉末及びその製造方法
JP2005116612A (ja) * 2003-10-03 2005-04-28 Murata Mfg Co Ltd フリップチップ実装方法およびこの方法を用いた電子回路装置
JP2005146408A (ja) * 2003-10-22 2005-06-09 Mitsui Mining & Smelting Co Ltd 微粒銀粒子付着銀粉及びその微粒銀粒子付着銀粉の製造方法
JP2006131928A (ja) * 2004-11-04 2006-05-25 Mitsui Mining & Smelting Co Ltd フレークニッケル粉及びその製造方法並びに導電性ペースト

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4296347B2 (ja) * 2004-01-19 2009-07-15 Dowaエレクトロニクス株式会社 フレーク状銅粉およびその製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345201A (ja) * 1999-05-31 2000-12-12 Mitsui Mining & Smelting Co Ltd 複合銅微粉末及びその製造方法
JP2005116612A (ja) * 2003-10-03 2005-04-28 Murata Mfg Co Ltd フリップチップ実装方法およびこの方法を用いた電子回路装置
JP2005146408A (ja) * 2003-10-22 2005-06-09 Mitsui Mining & Smelting Co Ltd 微粒銀粒子付着銀粉及びその微粒銀粒子付着銀粉の製造方法
JP2006131928A (ja) * 2004-11-04 2006-05-25 Mitsui Mining & Smelting Co Ltd フレークニッケル粉及びその製造方法並びに導電性ペースト

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086895A (ja) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd 導電性基板の製造方法及び導電性基板
WO2009098831A1 (ja) * 2008-02-07 2009-08-13 Murata Manufacturing Co., Ltd. 電子部品装置の製造方法
JP2009218167A (ja) * 2008-03-12 2009-09-24 Hitachi Chem Co Ltd 導電性基板及びその製造方法、並びに銅配線基板及びその製造方法
EP2306796A1 (en) 2009-10-05 2011-04-06 ABB Research Ltd. Method of joining components, composite of components of an electrical circuit and electrical circuit
JP2011192608A (ja) * 2010-03-16 2011-09-29 Murata Mfg Co Ltd 導電性ペーストおよびセラミック電子部品の製造方法
JP2014118586A (ja) * 2012-12-14 2014-06-30 Unitika Ltd 繊維状銅微粒子組成物、及び該繊維状銅微粒子組成物を用いた繊維状銅微粒子の保存方法
WO2016035314A1 (ja) * 2014-09-01 2016-03-10 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
JP2016053216A (ja) * 2014-09-01 2016-04-14 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
JP2016153530A (ja) * 2014-09-01 2016-08-25 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
TWI642511B (zh) * 2014-09-01 2018-12-01 日商同和電子科技有限公司 接合材及使用其之接合方法
KR102359193B1 (ko) 2014-09-01 2022-02-04 도와 일렉트로닉스 가부시키가이샤 접합재 및 그것을 사용한 접합 방법
KR20170047360A (ko) * 2014-09-01 2017-05-04 도와 일렉트로닉스 가부시키가이샤 접합재 및 그것을 사용한 접합 방법
US10821558B2 (en) 2014-09-01 2020-11-03 Dowa Electronics Materials Co., Ltd. Bonding material and bonding method using same
TWI566359B (zh) * 2014-11-13 2017-01-11 艾馬克科技公司 具有直接附接至引線架的半導體晶粒的半導體封裝及方法
US9711484B2 (en) 2014-11-13 2017-07-18 Amkor Technology, Inc. Semiconductor package with semiconductor die directly attached to lead frame and method
WO2017009586A1 (fr) * 2015-07-16 2017-01-19 Valeo Equipements Electriques Moteur Procede de brasage par frittage d'une poudre conductrice par thermo-compression ultrasonique et module electronique de puissance realise par ce procede
FR3039025A1 (fr) * 2015-07-16 2017-01-20 Valeo Equip Electr Moteur Procede de soudure avec apport de matiere et module electronique de puissance realise par ce procede
JPWO2017188446A1 (ja) * 2016-04-28 2019-04-04 シャープ株式会社 導電性ペースト、電極接続構造、及び、電極接続構造の製造方法
WO2017188446A1 (ja) * 2016-04-28 2017-11-02 シャープ株式会社 導電性ペースト、電極接続構造、及び、電極接続構造の製造方法
RU185234U1 (ru) * 2018-09-03 2018-11-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный технологический университет" Установка для получения изделий из порошковых материалов
WO2020118269A1 (en) * 2018-12-07 2020-06-11 Interlog Corporation Method for 3d-shaped multiple-layered electronics with ultrasonic voxel manufacturing
WO2021227872A1 (zh) * 2020-05-09 2021-11-18 苏州大学 粉末浆料超声场助压印成型微结构装置
CN111843281A (zh) * 2020-07-20 2020-10-30 广东省科学院中乌焊接研究所 铝合金焊丝的制备方法和铝合金焊丝

Also Published As

Publication number Publication date
JP4362742B2 (ja) 2009-11-11
JPWO2007034893A1 (ja) 2009-03-26

Similar Documents

Publication Publication Date Title
JP4362742B2 (ja) ペースト状金属粒子組成物の固化方法、金属製部材の接合方法およびプリント配線板の製造方法
JP4353380B2 (ja) ペースト状銀粒子組成物、固形状銀の製造方法、固形状銀、接合方法およびプリント配線板の製造方法
JP4347381B2 (ja) 金属系被着体接着用ペースト状銀組成物、その製造方法および金属系被着体の接着方法
JP4247801B2 (ja) ペースト状金属粒子組成物および接合方法
JP4872663B2 (ja) 接合用材料及び接合方法
JP4247800B2 (ja) 可塑性を有する焼結性金属粒子組成物、その製造方法、接合剤および接合方法
JP5611537B2 (ja) 導電性接合材料、それを用いた接合方法、並びにそれによって接合された半導体装置
JP5011225B2 (ja) 金属製部材用接合剤、金属製部材接合体の製造方法、金属製部材接合体、および電気回路接続用バンプの製造方法
JP2006339057A (ja) 樹脂金属複合導電材料、その製造方法およびそれを用いた電子デバイス
KR20020034075A (ko) 도전성 접착제와 전자 부품의 실장체 및 그 실장 방법
JP5207281B2 (ja) 導電性ペースト
JP2013177618A (ja) 加熱接合用材料の製造方法、及び電子部品の接合方法
JP2011142052A (ja) 銅導体インク及び導電性基板及びその製造方法
TWI417903B (zh) 導電性膠糊
CN112272851B (zh) 导电性糊料和烧结体
WO2018030173A1 (ja) 接合用組成物及びその製造方法
JP6669420B2 (ja) 接合用組成物
JP2004234900A (ja) 導電性粒子を用いた導電性ペースト、及び、これを用いた接続用シート
JP7317397B2 (ja) 酸化銅ペースト及び電子部品の製造方法
JP2020013768A (ja) ペースト状銀粒子組成物、金属製部材接合体の製造方法および多孔質の銀粒子焼結物と樹脂硬化物の複合物の製造方法
JPS61185806A (ja) 導電性レジンペ−スト
JP6677231B2 (ja) 電子部品の接合方法および接合体の製造方法
JPWO2018030173A1 (ja) 接合用組成物及びその製造方法
WO2021260960A1 (ja) 導電性ペースト、積層体、及びCu基板又はCu電極と導電体との接合方法
Yim et al. High performance anisotropic conductive adhesives using copper particles with an anti-oxidant coating layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007536559

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798213

Country of ref document: EP

Kind code of ref document: A1