WO2007099781A1 - 発光モジュールとそれを用いた画像投影装置 - Google Patents
発光モジュールとそれを用いた画像投影装置 Download PDFInfo
- Publication number
- WO2007099781A1 WO2007099781A1 PCT/JP2007/052749 JP2007052749W WO2007099781A1 WO 2007099781 A1 WO2007099781 A1 WO 2007099781A1 JP 2007052749 W JP2007052749 W JP 2007052749W WO 2007099781 A1 WO2007099781 A1 WO 2007099781A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- concave reflecting
- reflecting surface
- light
- light emitting
- emitting module
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2013—Plural light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/208—Homogenising, shaping of the illumination light
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/16—Cooling; Preventing overheating
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2066—Reflectors in illumination beam
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B33/00—Colour photography, other than mere exposure or projection of a colour film
- G03B33/06—Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus
Definitions
- the present invention relates to a light emitting module and an image projection apparatus using the light emitting module.
- the present invention relates to a reflection type light emitting module using an LEDQight emitting diode) chip as a light emitter, and an image projection apparatus using the same. Is.
- Patent Document 1 proposes a reflective light-emitting module that is a combination of a reflector having a concave reflecting surface and an LED chip.
- the light-emitting module has a so-called reflective LED configuration that emits only the light reflected by the reflector.
- the electrode lead connected to the LED chip also acts as a heat sink, so a certain degree of efficiency can be achieved.
- Patent Document 2 proposes a reflection type light emitting module in which a plurality of LED chips are arranged on one reflector having a concave reflection surface.
- the light-emitting module is configured to distribute light from a plurality of LED chips on a single reflecting surface, so that high brightness can be achieved.
- Patent Document 3 proposes a mopile device that is a combination of a transmissive liquid crystal element and three LEDs arranged on the back side thereof.
- the three LEDs correspond to the three primary colors RGB, and each color image displayed by the transmissive liquid crystal element is illuminated by time-division driving.
- Patent Document 4 proposes a light source device that uses three LEDs corresponding to the three primary colors RGB to combine light of each color with a dichroic prism.
- Patent Document 1 Japanese Patent Laid-Open No. 2005-322701
- Patent Document 2 Japanese Patent Laid-Open No. 2002-9347
- Patent Document 3 Japanese Patent Laid-Open No. 11-295690
- Patent Document 4 Japanese Unexamined Patent Application Publication No. 2005-189824
- the light emitting module described in Patent Document 1 As an application of the light emitting module described in Patent Document 1, for example, illumination light for a projector
- a source device When a source device is assumed, it is necessary to arrange a plurality of the same light emitting modules in parallel in order to increase the brightness. If a plurality of light emitting modules are arranged in parallel, the overall size increases, and at the same time, the illumination on the display panel becomes inefficient.
- the light emitting module described in Patent Document 2 since a plurality of LED chips are used for one reflecting surface, the size of the light source is substantially increased. As a result, the light distribution angle becomes very large, and it becomes impossible to realize a highly efficient light emitting module with excellent light distribution characteristics.
- the mopile device described in Patent Document 3 does not use an illumination optical system that collects illumination light with the power of LED and guides it to the transmissive liquid crystal element, so that the transmissive liquid crystal element is efficiently illuminated. And a bright projection image cannot be obtained.
- the light source device described in Patent Document 4 has a dichroic prism for full color, it is disadvantageous in terms of cost and size. In other words, since the color composition is performed by the dichroic prism, it is also necessary to secure a space for arranging the dichroic prism, which only increases the cost of the dichroic prism. Therefore, it is suitable for image projection devices that are required to be small and low cost.
- An object of the present invention is to provide a high-luminance and high-efficiency small light emitting module and a small and low-cost image projection apparatus using the same. Means for solving the problem
- a light emitting module includes a single reflector having a plurality of concave reflecting surfaces, and the same number of light emitters as the concave reflecting surfaces. A part of the outer shape of the reflecting surface is notched at the boundary with the adjacent concave reflecting surface, and each light emitter emits light toward the concave reflecting surface.
- a light emitting module includes a single reflector having a plurality of concave reflecting surfaces, and the same number of light emitters as the concave reflecting surfaces, and each concave reflecting surface is located on a central axis of the reflector.
- the boundary with the adjacent concave reflecting surface forms a straight line that faces the central axis of the reflector. Is characterized in that it emits light by directing force toward the concave reflecting surface.
- a light emitting module according to a third invention is the light emitter according to the first or second invention.
- the electrode lead is disposed on the opposite side of the concave reflecting surface, and each LED chip emits light toward the concave reflecting surface.
- the concave reflecting surface is a rotationally symmetric surface having one focal point, and the thickness of the concave reflecting surface in the optical axis direction is The surface vertex force of the concave reflecting surface is also approximately equal to the distance to the focal point.
- the concave reflecting surface is a rotationally symmetric surface having two focal points, and the thickness of the concave reflecting surface in the optical axis direction is It is characterized by being approximately equal to the distance from the surface vertex of the concave reflecting surface to the focal point closer to the surface vertex.
- a light emitting module is characterized in that, in the first or second aspect of the invention, the concave reflecting surface has four surfaces.
- a light emitting module according to a seventh invention is characterized in that, in the third invention, the LED emits at least three colors of red, blue and green.
- the electrode lead has a size parallel to the optical axis of the concave reflecting surface with respect to the optical axis of the concave reflecting surface. It is characterized by being larger than the smallest size on a vertical plane.
- a light emitting module according to a ninth invention is the light emitting module according to the eighth invention, wherein the electrode lead has a plate shape, and the size in the direction parallel to the optical axis of the concave reflecting surface is X, Concave surface
- a light emitting module according to a tenth invention is in contact with the LED chip in the third invention! This is characterized in that all electrode leads are oriented in the same direction.
- An image projection apparatus includes a light emitting module according to the first or second aspect of the invention, a transmissive spatial modulation element that forms an image by spatially modulating illumination light, A projection optical system for projecting an image formed by the spatial modulation element.
- An image projecting device of a twelfth invention according to the eleventh invention wherein the light emitter is an LED, and the LED has an LED chip and an electrode lead for fixing the LED chip,
- the LED chip is disposed at or near the focal position of each concave reflecting surface, and the electrode lead is disposed on the opposite side of the concave reflecting surface with respect to each LED chip, and each LED chip is disposed on the concave reflecting surface. It emits light toward
- the size in a direction parallel to the optical axis of the concave reflecting surface is the optical axis of the concave reflecting surface. It is characterized by being larger than the smallest of the sizes on a plane perpendicular to.
- An image projection apparatus is characterized in that, in the twelfth invention, at least one of the plurality of LED chips emits light in a wavelength region different from the others.
- the spatial modulation element is time-division driven.
- An image projection apparatus is characterized in that, in the eleventh invention, the projection optical system is telecentric on the spatial modulation element side.
- An image projection apparatus is characterized in that, in the eleventh invention, the center of the screen of the spatial modulation element and the optical axis of the projection optical system are aligned.
- An image projection apparatus is the image display apparatus according to the eleventh aspect, further comprising a cooling device that cools the spatial modulation element and the light emitting module.
- An image projecting device of a nineteenth invention according to the eighteenth invention further comprising a duct for guiding the refrigerant from the cooling device to the spatial modulation element through the light emitting module. To do.
- An image projection apparatus is a transmission-type spatial modulation element that forms an image by spatially modulating illumination light, a light emitting module for illuminating the spatial modulation element, and A projection optical system for projecting an image formed by a spatial modulation element, comprising: the light emitting module force SLED and a reflector; and the reflector modulates the light flux from the LED to the spatial modulation Concave reflection that reflects toward the element
- the LED power LED chip and an electrode lead for fixing the LED chip, and the LED chip is disposed at or near the focal position of the concave reflecting surface.
- the electrode lead is arranged on the side opposite to the concave reflecting surface.
- the size in a direction parallel to the optical axis of the concave reflecting surface is the optical axis of the concave reflecting surface. It is characterized by being larger than the smallest of the sizes on a plane perpendicular to.
- An image projection apparatus is the image projector according to the twenty-first invention, wherein the reflector is a single reflector having a plurality of the concave reflecting surfaces, and each concave reflecting surface is adjacent to the concave reflecting surface. It is characterized in that a part of the outer shape is cut out at the boundary of!
- the reflector is a single reflector having a plurality of the concave reflecting surfaces, and each concave reflecting surface with respect to the central axis of the reflector It is arranged in rotational symmetry, and when the reflector is viewed along the central axis from the front, the boundary with the adjacent concave reflecting surface forms a straight line that faces the central axis of the reflector. To do.
- FIG. 1 is a front view for explaining an effect of an adjacent configuration of a concave reflecting surface in a specific example of a reflector.
- FIG. 2 is a diagram for explaining the effect of thinning the concave reflecting surface in a specific example of the reflector.
- FIG. 3 is a front view showing a specific example of a reflector having a plurality of concave reflecting surfaces.
- FIG. 4 is a perspective view showing the appearance of an embodiment of a light emitting module.
- FIG. 5 is a front view showing an appearance of an embodiment of a light emitting module.
- FIG. 6 is a perspective view showing an external appearance of a light source unit (type 1).
- FIG. 10 is a diagram showing a specific example of lighting timing of the light emitting module.
- FIG. 11 is a front view showing an arrangement state of RGB light source units (type 1).
- FIG. 12 is a plan view showing a schematic optical configuration of a projector provided with the light source unit (type 1) of FIG.
- FIG. 13 is an optical configuration diagram showing an outline of an embodiment of an image projection apparatus.
- ⁇ 14 A diagram for explaining the telecentricity of the projection optical system.
- FIG. 15 is a diagram showing an outline of an embodiment of an image projection apparatus having a cooling structure.
- FIG. 17 is an optical configuration diagram showing a first configuration example using a reflective polarizing plate.
- FIG. 18 is an optical configuration diagram showing a second configuration example using a reflective polarizing plate.
- FIG. 1 (A) shows a specific example of the reflector RT having four concave reflecting surfaces RS
- FIG. 2 shows the shape, positional relationship, and the like of each concave reflecting surface RS in the reflector RT.
- Fig. 1 (A) shows the front side appearance of the concave reflecting surface RS
- Fig. 2 (A) shows the cross-sectional shape of the concave reflecting surface RS, corresponding to the optical axis AX and the central axis CX.
- Fig. 2 (B) shows the front side appearance of the concave reflecting surface RS.
- the reflector RT shown in FIG. 1 (A) and FIG. 2 has a single structure having four concave reflecting surfaces RS.
- a light emitting device for example, an LED chip
- a light emitting module MJ described later.
- the increase in luminance increases with an increase in the number of light emitters. Therefore, the higher the required luminance, the greater the number of concave reflecting surfaces, so that the demand for higher luminance can be met.
- Figure 3 shows specific examples of three types of reflectors RT with different numbers of concave reflecting surfaces RS.
- (A) shows a reflector RT having three concave reflecting surfaces RS
- (B) shows a reflector RT having four concave reflecting surfaces RS (reflector RT shown in FIGS. 1 (A) and 2).
- (C) shows a reflector RT having five concave reflecting surfaces RS.
- the reflector having a plurality of concave reflecting surfaces has a single configuration as described above, the overall size can be reduced and assembly work or the like becomes unnecessary. If a plurality of reflectors having a single concave reflecting surface are arranged in parallel, an error occurs due to the arrangement, and an act of assembling them side by side is required, and a gap is created between the reflectors. This leads to problems such as an increase in the size of the entire light emitting device and an increase in the size of the system (illumination optical system, etc.) due to the increase in the size of the emitted light. If multiple concave reflecting surfaces are integrated, this problem does not occur. Therefore, it is preferable to have a single configuration of a reflector having a plurality of concave reflecting surfaces.
- the same brightness can be obtained if the light emitting areas of the light emitters are the same. For example, if the light emitting area is quadrupled with one concave reflecting surface, the light emitting area is four times that of four light emitters. A large concave reflecting surface is required. When four light emitters are used with one concave reflecting surface, the divergence angle increases if the optical sensitivity is the same, so the focal length must be doubled. When the focal length is increased, the concave reflecting surface becomes deeper, and the light emitting device becomes thicker in the optical axis direction. Moreover, since the light emitters are close to each other, there is a problem that cooling is difficult.
- each concave reflecting surface RS is in the reflector RT. It is configured to be rotationally symmetric with respect to the mandrel cx. In this way, if each concave reflecting surface force S is configured to be rotationally symmetric with respect to the central axis of the reflector, uneven illumination can be prevented when applied to a general rotationally symmetric optical system. .
- spatial modulation elements such as digital 'micromirror device' and LCD (liquid crystal display), illumination optics, projection optics, etc. are rotationally symmetric. It is customary to have an axis. When applied to such an optical configuration, it is preferable that each concave reflecting surface is rotationally symmetric with respect to the central axis of the reflector in order to prevent unevenness in the light from the light emitting device.
- each concave reflecting surface RS is characterized in that a part of the outer shape is notched at the boundary with the adjacent concave reflecting surface RS.
- the cut-out part forms the linear boundary shown in Fig. 1 (A) and Fig. 2 (B). From this point of view, the front force of the reflector RT was also seen along its central axis CX.
- each of the concave reflecting surfaces RS is characterized in that the boundary with the adjacent concave reflecting surface RS forms a straight line LN that faces the central axis CX of the reflector RT.
- the boundary with the adjacent concave reflecting surface RS is characterized by a straight line LN extending radially about the central axis CX of the reflector RT.
- Fig. 1 (B) shows the front side appearance of the reflector RT having four concave reflecting surfaces RS '.
- the four concave reflecting surfaces RS ′ are arranged rotationally symmetrically with respect to the central axis CX of the reflector RT as in the specific example shown in FIG. 1 (A).
- the four concave reflecting surfaces RS ′ having circular openings of the same size are arranged so as to be in contact with adjacent ones at one point. In this arrangement, there is a large gap between the concave reflecting surfaces RS ′, so that the light use efficiency is low. From the contact state shown in Fig.
- each concave reflecting surface RS ' when each concave reflecting surface RS 'is brought closer to the central axis CX so as to shorten the distance between the optical axes AX, it is adjacent while maintaining rotational symmetry with respect to the central axis CX.
- a part of the outer shape of each concave reflecting surface RS ′ is cut out from the contact point with the concave reflecting surface RS ′.
- the notched part is the boundary
- the overlapping of the two concave reflecting surfaces RS ′ forms a concave curve.
- the projected shape (that is, the shape of the curve projected onto a plane perpendicular to the central axis CX) is obtained.
- Shape is a straight line. The straight line becomes longer as each concave reflecting surface RS ′ approaches the central axis CX, and the size of the gap between the concave reflecting surfaces RS ′ and the entire reflector RT ′ becomes smaller.
- the distance between the optical axes AX when this gap-free state is reached (that is, the rotation center interval between adjacent concave reflecting surfaces RS) is naturally shorter than the opening diameter (that is, the outer diameter) of each concave reflecting surface RS, but it is necessary. Depending on, the distance between the optical axes AX may be further shortened.
- the setting may be determined appropriately according to the required conditions (the size of the entire reflector, the size of the concave reflecting surface, the number of concave reflecting surfaces, etc.), but it is assumed that a light emitting device for a general projector is used. In this case, considering the balance of each condition, the distance between the optical axes AX is preferably shorter than the opening radius (that is, the outer diameter) of each concave reflecting surface.
- a part of the outer shape is notched at the boundary between each concave reflecting surface and the adjacent concave reflecting surface, or when the front force is seen along the central axis of the reflector, it is adjacent. If the configuration is such that the boundary with the concave reflecting surface forms a straight line facing the central axis of the reflector, the concave reflecting surfaces are closely packed together, so that the reflector's high brightness and high efficiency are not impaired. By reducing the outer shape, the entire reflector can be reduced in size.
- the cut out part becomes a concave curve on the front side, so the boundary with the adjacent concave reflecting surface is a concave curve on the front side. Is a cut-out part of the outer shape of the concave reflecting surface.
- the concave reflecting surface is a rotationally symmetric surface having at least one focal point (for example, a spherical surface; a rotationally symmetric aspheric surface such as a paraboloid, an ellipsoidal surface, a polynomial aspherical surface, etc.), and the concave reflecting surface in the optical axis direction.
- a focal point for example, a spherical surface; a rotationally symmetric aspheric surface such as a paraboloid, an ellipsoidal surface, a polynomial aspherical surface, etc.
- the surface vertex force of a surface If the composition is almost equal to the distance to the focal point closer to the surface vertex,
- the reflector can be made smaller in the radial direction and thickness direction, and the light use efficiency and light distribution characteristics can be improved.
- the thickness d of the concave reflecting surface RS in the optical axis AX direction is the surface vertex O of the concave reflecting surface RS. It is almost equal to the distance from the focus F.
- the reflector is used. It is obvious that RT increases in the radial direction (perpendicular to the central axis CX of the reflector RT) and in the thickness direction (parallel to the central axis CX of the reflector RT). Note that the focal point here does not mean only the focal point in a strict sense, but if a certain object force is also emitted, the focal point is the position condensed by the concave reflecting surface.
- a light emitter for example, an LED chip
- the light emitter is fixed to the electrode lead, the light from the light emitter is emitted in a hemispherical shape to the left side in FIG. 2A (that is, the concave reflecting surface RS side). Therefore, even if the thickness d in the optical axis AX direction of the concave reflecting surface RS is made larger than the distance to the surface apex O force focus F of the concave reflecting surface RS, light is not applied to the thickened portion (dashed line portion).
- the reflector RT Since it does not reach, the reflector RT will become uselessly large. If we consider placing a light emitter near the focal point in order to improve the light distribution characteristics, if we try to make the concave reflecting surface to the minimum size while improving the light utilization efficiency, the concave reflecting surface will be improved. It is preferable that the thickness in the direction of the optical axis be approximately the same as the distance from the top of the concave reflecting surface to the focal point (or the focal point closer to the top of the surface if there are two or more). It is possible to realize a light-emitting device with the best light distribution efficiency and the best light distribution efficiency.
- the appearance of the light emitting module MJ including the reflector RT shown in FIGS. 1 (A) and 2 is shown in a perspective view of FIG. 4 and a front view of FIG.
- the light emitting module MJ is an example of a light emitting device having a reflector RT and the same number of LEDs as the concave reflecting surface RS.
- the mounted LED includes, as its constituent elements, an LED chip TP, an electrode lead (anode) It has LA and electrode lead (cathode) LC. LEDs used as light emitters have the advantage of being small, cheap and low power consumption. In addition, it does not need to be replaced because it does not break like a light bulb.
- the reflector RT also has a mirror case force with a concave reflecting surface RS, and the concave surface of the plastic plate with the concave surface is coated with aluminum, silver, etc. to form the concave reflecting surface RS.
- the concave reflective surface RS is sealed with a heat-resistant resin such as epoxy resin or silicone resin to protect the LED chip TP.
- the light emitting module MJ is provided with a reflector RT having four concave reflecting surfaces RS.
- the configuration having four concave reflecting surfaces is effective for reducing the size when a plurality of light emitting devices are arranged.
- the reflector has a configuration having a plurality of concave reflecting surfaces, it is possible to increase the brightness of the light emitting device by arranging an LED chip on each concave reflecting surface. If it is a few power surface of the concave reflecting surface RS, its outer shape (that is, the shape when the reflector RT is viewed from the front along the central axis CX) is close to a square, and such a reflector RT is provided.
- the outer shape of the light emitting module MJ is also close to a square.
- a plurality of light emitting modules MJ can be mounted compactly on a device such as a projector.
- Adjacent concave reflective surface Distance between rotation centers of RS 4.9 mm
- LED chip TP size 0.9mm X O. 9mm X O. 250mm
- Concave reflecting surface RS apex force Electrode lead (force sword) Distance to LC: 2. 925mm Concave reflective surface RS apex force Electrode lead (anode) Distance to LA: 2. 800mm Distance between centers of adjacent LED chips TP: 5. lmm
- the LED chip TP is arranged at or near the focal position of each concave reflecting surface RS, and the electrode lead LC is disposed on the concave reflecting surface RS with respect to each LED chip TP. It is arranged on the opposite side.
- the electrode lead (force sword) to which the LED chip is fixed and the concave reflecting surface face each other, so that light from the LED chip can be emitted only to the concave reflecting surface side.
- the LED chip is placed at or near the focal position of each concave reflecting surface and the electrode leads are placed on the opposite side of the concave reflecting surface with respect to each LED chip, almost all the light from the LED chip is concave reflected. Since it is reflected by the surface, high light utilization efficiency can be achieved.
- the power required to dissipate heat with an LED chip The electrode lead to which the LED chip is fixed also serves as a heat sink, so the LED chip can be cooled quickly with the electrode lead. Therefore, it is possible to achieve high brightness by preventing the LED chip from being hot.
- the junction temperature is kept constant, the power to obtain optical power (brightness) proportional to the amount of current is obtained. When the junction temperature increases, the additional input current becomes heat. Therefore, if the heat dissipation is performed effectively, the current that can keep the junction temperature constant can be increased. As a result, a brightness proportional to the input current can be obtained, so that a light-emitting module with high brightness can be realized.
- the electrode leads LA and LC As a material of the electrode leads LA and LC, for example, a metal having good electrical conductivity such as copper and aluminum is preferable. Metals such as copper and aluminum have very good thermal conductivity such as 403WZmZK and 236WZmZK. Therefore, the electrode lead (force sword) to which the LED chip TP is fixed Adopts a metal with good electrical conductivity as the material for the LC. A function can also be obtained.
- the electrode lead LC facing the concave reflecting surface RS the surface is preferably a mirror surface or a surface coated with a reflection coating.
- LED chip TP is not fixed to the electrode lead (anode) LA It is preferably arranged so as to overlap on the boundary (straight line LN) between the concave reflecting surfaces RS.
- Concave surface Reflective surface Since almost no effective reflected light can be obtained from the boundary between RS, if electrode lead LA is placed on the boundary between concave reflective surfaces RS, the vignetting is reduced as much as possible. Use efficiency can be improved.
- the anode and the force sword may be reversed. In other words, the electrode lead LA can be used as a force sword and the electrode lead LC can be used as an anode!
- the electrode lead (force sword) LC has a plate shape, and as shown in Fig. 4, of the three directions orthogonal to each other, the direction parallel to the optical axis AX (Fig. 2) (thickness) (Direction) is X, the width direction size is y, and the size in the direction extending from the focal point F toward the concave reflective surface RS is z, the light is larger than the size y in the direction perpendicular to the optical axis AX. The size X in the axis AX direction is larger. Since the electrode lead LC also has a heat dissipation role, the heat dissipation effect increases as the surface area of the electrode lead LC increases.
- the electrode lead LC is large in the direction perpendicular to the optical axis AX, the light reflected by the concave reflecting surface RS is blocked, and the luminous efficiency of the light emitting module MJ is reduced.
- Increasing the thickness of the electrode lead LC in the direction of the optical axis AX increases the heat dissipation effect due to the increase in surface area, but the light shielding area hardly increases, so that the light utilization efficiency can be kept good. Therefore, the shape of the electrode lead is larger in the direction parallel to the optical axis of the concave reflecting surface than the smallest size on a plane perpendicular to the optical axis of the concave reflecting surface. Is preferred.
- the width (y): thickness (X) is 1: 2 to 1: 6. This is a drought condition that cools well and is too large considering the balance between the heat dissipation effect and the overall size.
- the electrode leads LC in contact with the LED chip TP are oriented in the same direction. Heat dissipation is performed by the electrode lead LC itself. The heat dissipation effect can be further improved by bringing the electrode lead LC into contact with a refrigerant (eg, fluid such as air or liquid). At that time, in order to efficiently flow the refrigerant without blocking the flow of air or liquid by air cooling or water cooling, the electrode leads LC should be oriented in the same direction (that is, the orientation direction of all the electrode leads LC should be Are preferably the same). The flow of the refrigerant is indicated by the white arrow in FIG.
- a refrigerant eg, fluid such as air or liquid
- the electrode leads LC are not facing the same direction (for example, If the electrode leads LC are arranged radially around the central axis CX), the flow of air and liquid will be poor, and the cooling efficiency will deteriorate and the brightness will decrease. If the electrode leads that are in contact with the LED chip are all oriented in the same direction, the refrigerant can be brought into contact with the electrode leads without obstructing the flow of the refrigerant, thereby improving the heat dissipation effect and achieving high brightness. be able to.
- the electrode leads LC are oriented in the same direction as described above, there may be a limitation in arranging a plurality of light emitting modules MJ. Since the end of the electrode lead LC is connected to the power supply as a contact point, it needs to have a certain size in space. That is, the light emitting module MJ tends to be large in the direction parallel to the electrode lead LC. If the light emitting modules MJ are adjacent to each other in the direction (for example, the vertical direction in FIG. 5), the adjacent distance increases, resulting in an increase in the size of the entire system.
- the adjacent direction of the light emitting module and the direction of the electrode lead are perpendicular (that is, in a direction perpendicular to the orientation direction of the electrode lead). It is preferable to arrange luminescent modules. With such a configuration, a plurality of light emitting modules can be densely arranged to achieve compactness.
- Figures 6 and 7 show the Type 1 light source unit UN
- Figures 8 and 9 show the Type 2 light source unit UN
- Figures 6 and 8 show the external appearance of type 1 and 2 light source units UN in perspective views, respectively.
- Fig. 7 (A) and Fig. 9 (A) show the appearance of type 1 and 2 light source units UN in front views, respectively.
- Fig. 7 (B) and Fig. 9 (B) show Fig. 7 (A ) And the PP line cross section in Fig. 9 (A).
- Each type 1 and 2 light source unit UN consists of a light emitting module MJ and a radiator HS, the difference being in the direction of the radiator fin FN of the radiator HS.
- the radiator HS is configured to flow the refrigerant in one direction along the radiation fins FN. Regulated by the wall.
- the electrode leads (annodes) LA and the LED chips TP are connected by electric wires.
- the direction of the electrode lead LC and the direction of the radiation fin FN are perpendicular to each other. As mentioned above, all electrode leads LC face the same direction.
- the direction of the radiation fin FN is parallel to the adjacent direction of the light emitting module MJ (perpendicular to the electrode lead LC).
- the radiator HS is attached to the light emitting module MJ, all the radiators HS can be dissipated by the flow of the refrigerant in one direction.
- the direction of the radiation fins FN is aligned, so it can be cooled at once with a fan. Therefore, when a plurality of light source units UN are arranged, the direction of the radiation fin FN is preferably perpendicular to the electrode lead LC.
- the direction of the electrode lead LC and the direction of the radiation fin FN are parallel to each other. That is, the electrode lead LC and the heat radiation fin FN face the same direction. With this configuration, it is possible to dissipate heat from both the electrode lead LC and the heat radiation fin FN with a one-way refrigerant flow. Therefore, when one light source unit UN is disposed, the direction of the heat radiation fin FN is preferably parallel to the orientation direction of the electrode lead LC.
- the light emission colors of the LEDs employed in the light emitting module as described above are preferably at least three colors of RGB. If the LEDs emit at least three RGB colors, a light-emitting module capable of full-color light emission can be realized.
- a light-emitting device capable of full-color light emission an optical configuration is known in which light from three light-emitting modules compatible with RGB is synthesized by a color synthesis mirror or color synthesis prism. Is not preferable because it is necessary. In addition, it is difficult to obtain a good light distribution characteristic that is known to have multiple LEDs packed in one concave reflecting surface.
- a light-emitting module for example, light-emitting module MJ shown in Figs.
- RGB or RG BY light is sequentially used.
- the LED emission colors are at least three colors RGB, for example, in the light emitting module MJ shown in FIGS. 4 and 5, the reflector RT has a configuration having four concave reflecting surfaces RS.
- the four LED chips TP may all have the same color [for example, three LED chips TP (RRRR, GGGG, BBBB) of the same color are used in three light emitting modules MJ. ], RGBY combination or RGGB combination.
- the overall brightness can be improved by setting the lighting timing appropriately. Specifically, at the lighting timing shown in Fig.
- Fig. 11 shows the arrangement of three type 1 light source units UN (red light source unit UR, blue light source unit UB, and green light source unit UG), and
- Fig. 12 shows the schematic optical configuration of a projector equipped with them as a light source device. Show.
- the red light source unit UR has four LED chips TP that all emit red light
- the blue light source unit UB has all four LED chips TP that emit blue light
- the green light source unit UG has four LED chips TP. All emit green light.
- the direction of the radiating fins FN is the same, so it can be cooled at once with a fan or the like. Indicated by arrows) o
- MR is a mirror for R reflection
- MB is a dichroic mirror for R transmission and ⁇ reflection
- MG is a dichroic mirror for R reflection and ⁇ reflection 'G transmission
- LI and L2 are collected.
- Convex lens for light intensity adjustment CL is a condenser lens
- RI is a rod integrator
- ⁇ 1 to ⁇ 3 are first to third mirrors
- ⁇ is a display panel
- PL is a projection optical system.
- the power that assumes a digital micromirror device as the display panel PA is not limited to this.
- Other non-light-emitting / reflective (or transmissive) display elements or light valves (LCD, etc.) suitable for the projection optical system PL may be used.
- the light engine units from the light source units UR, UB, and UG to the projection optical system PL constitute the main part of the projector.
- the light from is guided to the display panel PA.
- the display image of the display panel PA illuminated by the illumination optical system is projected onto a screen (not shown) by the projection optical system PL.
- each unit will be described in more detail.
- the light source units UR, UB, and UG all have a type 1 configuration that includes the light emitting module MJ and the radiator HS (Figs. 6 and 7).
- the concave reflecting surface RS of the reflector RT provided in each light emitting module MJ consists of an ellipsoidal surface (or a parabolic surface), and each light source unit UR, UB, UG has a corresponding convergent light with a weak emission color ( (Or parallel light flux).
- the light emitted from the light source unit UR is reflected by the mirror MR, passes through the convex lens L1, the mirror MB, and the convex lens L2 in this order, is reflected by the mirror MG, and enters the condenser lens CL.
- Light emitted from the light source unit UB is reflected by the mirror MB, passes through the convex lens L2, is reflected by the mirror MG, and enters the condenser lens CL.
- Light emitted from the light source unit UG is transmitted through the mirror MG and then enters the condenser lens CL.
- the light from R passes through the convex lenses LI and L2, and the light from B passes through the convex lens L2, so that the light emitted from the light source units UR, UB, and UG has the same concentration on the condenser lens CL. become.
- the color-combined illumination light is collected by the condenser lens CL and is imaged near the entrance end face of the rod integrator RI.
- the rod integrator RI is a hollow rod type light intensity equalizing means formed by bonding four plane mirrors.
- the incident end surface force is incident on the side surface (ie, the inner wall surface) many times. It is mixed by repeatedly reflecting, and the spatial energy distribution of light is made uniform and emitted from the exit end face.
- the shape of the entrance end face and exit end face of the rod integrator RI is a quadrangle similar to the display face of the display panel PA. Further, the entrance end surface of the rod integrator RI is conjugated with the illumination system pupil, and the exit end surface of the rod integrator RI is conjugated with the display surface of the display panel PA.
- the rod integrator RI is not limited to a hollow rod, and may be a glass rod having a square columnar glass body force.
- the display surface of the display panel PA As long as it matches the shape, the side is not limited to four. Accordingly, examples of the rod integrator RI to be used include a hollow cylindrical body formed by combining a plurality of reflecting mirrors, and a polygonal columnar glass body.
- the light emitted from the rod integrator RI is incident on a reflected optical system including the first to third mirrors M1 to M3. Then, the reflection optical system forms an image of the exit end face of the rod integrator RI on the display surface of the display panel PA.
- the reflecting surfaces of the first and third mirrors Ml and M3 constituting the reflecting optical system are concave reflecting surfaces, and the reflecting surface of the second mirror M2 is a convex reflecting surface.
- the secondary light source near the incident end face of the rod integrator RI is re-imaged by the concave reflecting surface of the first mirror Ml, and a tertiary light source is formed near the convex reflecting surface of the second mirror M2.
- Light from the tertiary light source is guided to the display panel PA by the concave reflecting surface of the third mirror M3.
- Light incident on the display panel PA is spatially modulated by being reflected by each micromirror in the ONZOFF state (for example, tilted by ⁇ 12 °).
- each micromirror in the ONZOFF state for example, tilted by ⁇ 12 °.
- only the light reflected by the micromirror in the ON state enters the projection optical system PL, and is efficiently guided to the entrance pupil of the projection optical system PL by the power of the concave reflecting surface of the third mirror M3. Then, it is projected onto the screen by the projection optical system PL.
- the reflecting optical system has only two concave reflecting surfaces and one convex reflecting surface as optical surfaces having power. For this reason, it is possible to reduce the number of parts of the illumination optical system and achieve compactness, and since chromatic aberration does not occur, it is possible to suppress a decrease in illuminance that also causes color unevenness. Therefore, it is possible to use optical components that are compact and advantageous in terms of mass productivity and cost, while maintaining good optical performance, and to reduce the cost of display devices. Is possible.
- projection optical system PL has an oblique non-telecentric configuration on display panel PA side, and is laid out so that light rays are collected from display panel PA toward the entrance pupil of projection optical system PL.
- Non-telecentric optical systems have the advantage that the projection optical system is compact, but there is also a problem that the optical elements having a condenser lens function in the illumination optical system become large.
- the first and third mirrors Ml As the optical element having power in the illumination optical system, the first and third mirrors Ml, If M3 is used and a negative second mirror M2 with a convex reflecting surface is placed near the illumination system pupil (i.e., near the tertiary light source), the image height [3] In other words, it is possible to make the light incident on the light beams having different positions] on the display surface (image surface) of the display panel PA with a large angle difference. Therefore, it is possible to efficiently spread the light beam in a small space and configure a non-telecentric illumination optical system for the projection optical system PL on the display panel PA side.
- the first mirror Ml having a relay lens function is arranged between the exit end face of the rod integrator RI and the illumination system pupil, and the entrance end face of the rod integrator RI and the illumination system pupil are conjugated.
- the power of the first mirror Ml is set so that
- a third mirror M3 having a condenser lens function is arranged between the illumination system pupil and the display panel PA, and is combined with a part of the projection optical system PL located on the display panel PA side from the projection system pupil.
- the power of the third mirror M3 is set so that the illumination system pupil and the projection system pupil are conjugate.
- the first mirror Ml with a relay lens function and the third mirror M3 with a condenser lens function are set so that the exit surface of the rod integrator RI and the display surface of the display panel PA are conjugated.
- the light emitted from the exit end face of the rod integrator RI can be efficiently guided to the small display panel PA, and the reflected light having the display surface power can be efficiently guided to the projection optical system PL. Accordingly, it is possible to reduce the decrease in illuminance while maintaining high optical performance in the illumination optical system, and it is possible to achieve the low cost and compact size of the display device.
- the second mirror M2 having the convex reflecting surface is connected between the optical axis of the rod integrator RI and the optical axis of the projection optical system PL.
- the optical path is bent so as to be substantially parallel, and the optical path is bent so that the optical axis direction of the rod integrator RI and the normal direction of the display surface of the display panel PA substantially coincide.
- the optical axis of the rod integrator RI and the optical axis of the projection optical system PL are substantially parallel, or the optical axis direction of the rod integrator RI and the normal direction of the display surface of the display panel PA substantially coincide.
- the optical configuration of the entire display device can be made compact, and errors can be reduced by using a common design reference axis. It is possible to simplify the position adjustment and ensure the flexibility of layout.
- the concave reflecting surface provided on the first and third mirrors Ml and M3 and the convex reflecting surface provided on the second mirror M2 are both free-form surfaces.
- the illumination optical system is configured with only the power of the reflecting surface as in this embodiment, if at least one of them is a free-form surface, the illumination efficiency can be improved accordingly.
- a digital 'micromirror device is used as the display panel PA, oblique illumination with respect to the display surface is essential.
- a free-form surface is used, aberrations such as distortion can be corrected well even during oblique illumination. it can. Thereby, light can be efficiently guided toward the entrance pupil of the projection optical system PL, and the display can be brightened.
- the imaging performance (for example, blur and distortion) on the display panel PA conjugate to the exit end face of the rod integrator RI can be improved, so that the reflected light from the display panel PA is applied to the entrance pupil of the projection optical system PL. It is possible to collect efficiently and increase the lighting efficiency. Moreover, since the illuminance change due to the position in the screen can be reduced, it is possible to reduce uneven brightness.
- the concave reflecting surfaces of the first and third mirrors Ml and M3 have a free-form surface.
- the concave reflecting surface closest to the display panel PA and the concave surface closest to the exit end surface of the rod integrator RI are used. Making the reflecting surface into a free-form surface is an effective force in achieving the above-mentioned improvement in illumination efficiency and reduction in brightness unevenness.
- a digital micromirror device is used as the display panel PA, the illumination light reflected by the micromirror in the ON state is efficiently guided to the projection system pupil when the concave reflecting surface is closest to the display panel PA and is a free-form surface. be able to. Therefore, it is possible to effectively improve the illumination efficiency and reduce the brightness unevenness.
- the concave reflecting surface closest to the exit end surface of the rod integrator RI is formed into a free-form surface, it becomes possible to satisfactorily correct aberrations when the exit end surface is imaged on the display panel PA. As a result, it is possible to more effectively achieve an improvement in illumination efficiency by reducing distortion and blurring.
- the concave reflecting surfaces of the first and third mirrors Ml and M3 have free-form surfaces that are asymmetric in the y-axis direction and the z-axis direction, respectively.
- this projector as can be seen from Fig.
- each concave reflecting surface is also optimized with a shape that reflects its layout
- a concave reflecting surface having a free-form surface shape is: I A plane that is perpendicular to the plane containing the incident and exit rays on the concave reflecting surface having a free-form surface shape and that contains the normal vector of the concave reflecting surface.
- Radius to be cut I ⁇ I Free curved surface Satisfies the relationship of radius of curvature I to be cut by a plane including the incident light and exit light to the concave reflecting surface, and the free curved surface has no plane symmetry It is desirable. According to this configuration, it is possible to improve optical performance, reduce distortion, and improve imaging performance. As a result, it becomes possible to improve illumination efficiency.
- any material such as glass, plastic, metal, ceramic, etc. may be used as required.
- plastic materials such as PMMA (polymethyl methacrylate) and PC (poly carbonate) can be used to reduce the cost of materials with little shape change, such as glass, in order to prevent deterioration in imaging performance due to temperature changes.
- PMMA polymethyl methacrylate
- PC poly carbonate
- a multilayer film having a dielectric force of several tens of layers may be coated.
- the metal film there is no light absorption by the metal, so that there is no problem that the absorbed light is changed into heat even during use.
- the reflectivity of the reflective surface with visible light is approximately 90% or more. And are preferred.
- FIG. 13 shows an embodiment of a projector (image projection apparatus) provided with one light emitting module as a light source device, and the configuration thereof will be described below.
- MJ is a light emitting module
- 1 is a pair of lens arrays
- 2 is a condenser lens
- 3 is a field lens
- 4 is a transmissive liquid crystal display (LCD)
- 5 is a projection optical system
- ST is an aperture. is there .
- the light emitting module MJ includes a reflector RT having four concave reflecting surfaces RS and four LED chips TP.
- the four LED chips TP are combinations including at least three emission colors corresponding to the three primary colors RGB (for example, a combination of RGBY and RGGB).
- the lens array 1, the condenser lens 2 and the field lens 3 are main components of the illumination optical system, and the illumination light generated by the light emitting module MJ force is transmitted to the transmissive liquid crystal element 4 by the illumination optical system. Led. At that time, the illumination light emitted from each cell of the lens array 1 is superposed on the transmissive liquid crystal element 4 by the condenser lens 2 so that the spatial energy distribution is made uniform, and the transmissive liquid crystal element 4 is made uniform. To illuminate.
- the transmissive liquid crystal element 4 is configured to be driven in a time-sharing manner, and the transmissive liquid crystal element 4 receives illumination from the light emitting module MJ at a lighting timing (for example, in the order of RGB or RGBY) synchronized with the image signal. become.
- the image formed by the transmissive liquid crystal element 4 illuminated by the illumination optical system is projected onto a screen (not shown) by the projection optical system 5.
- the transmissive liquid crystal element 4 is configured to be driven in a time-sharing manner. For this reason, it is possible to obtain a high-definition image with a compact configuration by effectively utilizing the entire area of the liquid crystal element surface for spatial modulation even though it is a single plate type.
- image display methods using spatial modulation elements include the three-plate method, single-plate color filter method, and single-plate time-division method.
- three spatial modulation elements are required, resulting in an increase in cost and size.
- the pixel size is set to 1Z3. As a result, it becomes dark, and if the pixels are enlarged to increase the brightness, the whole size is increased.
- the entire spatial modulation element can be used effectively, which is preferable in terms of high image quality, “compactness” and low cost.
- the entire spatial modulation element can be used effectively, which is preferable in terms of high image quality, “compactness” and low cost.
- at least one of the plurality of LED chips emits light in a wavelength range different from the others, multicolor display is possible.
- a dichroic prism or dichroic mirror for color synthesis is not required. Since there is no need to provide an optical member for color synthesis, the distance between the light emitting module and the transmissive spatial modulation element can be shortened, and the image projection apparatus can be miniaturized.
- Spatial modulation elements driven by a single plate time division method include a reflection type and a transmission type.
- Examples of the reflective type include a digital micromirror device and a reflective liquid crystal element.
- a digital 'micromirror' device When using a digital 'micromirror' device, a large space is required to separate incident light and reflected light.
- a reflective liquid crystal device it is necessary to insert a polarizing beam splitter (PBS). is there. Therefore, when a reflective spatial modulation element is used, a certain space is required between the spatial modulation element and the projection optical system, and the projection optical system having a large lens back is necessarily increased in size.
- PBS polarizing beam splitter
- a projection optical system can be disposed immediately after the spatial modulation element. Therefore, it is possible to reduce the size of the projection optical system and to reduce the size of the entire image projection apparatus.
- the combination of a light-emitting module having a so-called reflective LED structure and a transmissive spatial modulation element makes it possible to reduce the size of the image projection apparatus and to obtain a bright projected image.
- the light emitting module MJ shown in FIG. 13 is miniaturized, and the image projection apparatus can be miniaturized due to the spatially close arrangement of the front surface and the transmissive liquid crystal element 4 (particularly, the incident side polarizing plate). It becomes possible.
- the transmissive spatial modulation element a sapphire substrate transmissive liquid crystal element is preferable. Electrodes made on the sapphire generally have a higher electrical conductivity than those on glass. Therefore, the wiring dimension can be made smaller than that of a liquid crystal element in which electrodes are arranged on glass. As a result, the aperture ratio of the transmissive liquid crystal element can be increased, so that bright display is possible.
- the transmissive liquid crystal element 4 is illustrated as the transmissive spatial modulation element. Power is not limited to this. Instead of the transmissive liquid crystal element 4, another type of transmissive spatial modulation element that forms an image by spatially modulating the illumination light may be used.
- LED is used as the light emitter.
- LEDs have the advantages of small size, low cost, and low power consumption. They are not like bulbs, so there is no need to replace them. There are also benefits. For this reason, the LED can be said to be a suitable light emitter for a light source device of a portable small-sized image projector.
- the light emitting module MJ uses the reflector RT, which has the above-mentioned features, so that it is possible to obtain a bright projected image with high brightness and high efficiency even though it is a compact image projector.
- LEDs usually have a large divergence angle, and when used as a light source for a projector, the efficiency is poor unless the divergence angle is optimized (condensed).
- a lens that uses a lens to collect light of LED power is difficult to capture all light.
- the reflection type is folded, so that the space efficiency is high and it is difficult to increase the size, and all the light emitted in a hemispherical shape can be taken in, so that the utilization efficiency is high.
- the force required to dissipate heat in the LED chip Since the electrode lead to which the LED chip is fixed also serves as a heat sink, the LED chip can be quickly cooled by the electrode lead. Therefore, it is possible to achieve high brightness by preventing the LED chip from being hot.
- the junction temperature is kept constant, the power to obtain optical power (brightness) proportional to the amount of current is obtained.
- the additional input current becomes heat. If the heat is dissipated effectively, the current that can keep the junction temperature constant can be increased, and brightness proportional to the input current can be obtained. Therefore, by increasing the brightness of the light emitting module, it is possible to realize a small and low-cost image projection apparatus with a bright projected image.
- the reflector RT has a configuration having four concave reflection surfaces RS.
- One LED chip TP may be a combination of RGBY or RGGB.
- full color display is performed by sequentially turning on LEDs such as RGB, RGBY, etc., the overall brightness is improved by setting the lighting timing appropriately. Can. Specifically, at the lighting timing shown in Fig.
- RGB is simply divided into 3 parts
- the G time is increased, as shown in (C), two or more lights are turned on at the same time, or as shown in (D). You may make time to overlap Y with G.
- the projection optical system 5 is telecentric on the transmissive liquid crystal element 4 side, and the center of the screen of the transmissive liquid crystal element 4 and the optical axis PX of the projection optical system 5 (Note that the center axis CX also coincides with each other.) 0
- the projection optical system has a telecentric configuration on the spatial modulation element side, or a configuration in which the screen center of the spatial modulation element is aligned with the optical axis of the projection optical system. Occurrence of color unevenness on the projection screen can be suppressed.
- a configuration in which the projection optical system is telecentric on the side of the spatial modulation element or a configuration in which the center of the screen of the spatial modulation element and the optical axis of the projection optical system coincide is preferable. More preferably, the projection optical system simultaneously satisfies the telecentric configuration on the spatial modulation element side and the configuration in which the screen center of the spatial modulation element matches the optical axis of the projection optical system.
- the combination of the light emitting module having the reflective LED structure and the transmissive spatial modulation element makes it possible to reduce the size of the image projection apparatus and to obtain a bright projected image.
- the front surface of the light emitting module MJ shown in FIG. The In the transmissive liquid crystal element 4, the incident-side polarizing plate absorbs specific polarized light and is heated to a high temperature, and thus cooling is necessary. If the light emitting module MJ and the transmissive liquid crystal element 4 are located close to each other, the cooling structure can be shared. The common cooling structure makes it possible to further reduce the size of the image projection apparatus.
- FIG. 15 shows an embodiment of an image projection apparatus having a cooling structure.
- This image projection device is obtained by adding an outside 6 and a cooling device (for example, a blower) 7 to the image projection device shown in FIG. 13 (the lens array 1 is not shown).
- the air is sent into the duct 6 as a refrigerant.
- the wind flow is indicated by an arrow in duct 6.
- Cooling device 7 The wind that comes out touches the electrode lead LC of the light emitting module MJ, cools the LED chip TP, cools the transmissive liquid crystal element 4, and then exhausts it from the duct 6.
- the spatial modulation element and the light emitting module are cooled by the same cooling device, it is possible to obtain a high heat dissipation effect while reducing the size of the entire image projection device.
- the heat dissipation effect of the electrode lead is improved, and as a result, further increase in brightness can be achieved.
- the light emitting module has at least three LED chips corresponding to RGB, thereby realizing low-cost and small full-color display without using a dichroic prism or a dichroic mirror.
- the NA (numerical aperture) of the projection optical system is preferably larger than the NA of each color.
- the R light from the LED chip TR and the G light from the LED chip TG are reflected by the concave reflecting surface RS, respectively, and exit the reflector RT almost in parallel.
- the NA of the light from the LED chip TR (shown by the solid line) NA is NAr and the LED chip TG of the G light emission is TG.
- the NA of the projection optical system 5 is NAp, and the NAp of the projection optical system 5 is NAp. , Preferably greater than NAg.
- the light-emitting module has at least three LED chips corresponding to RGB
- the NA of the projection optical system is made larger than each color. Otherwise, the light from the light source passes through the projection optical system and is present on the screen. Cannot reach effect. For this reason, it is necessary to set the effective diameter (ie NA) of the projection optical system so that all the R, G, B light is incident on the projection optical system.
- NA effective diameter
- the NA of the projection optical system is larger than the NA of each color that enters the projection optical system from the light emitting module, the light emitted from the light emitting module can be efficiently projected without using a prism or mirror for color composition. It is possible to enter the optical system.
- the NA of the projection optical system is converted to the NA of each color entering the projection optical system. It is even better to double it.
- the light emitted from the LED force is non-polarized light, and thus a liquid crystal element using polarized light requires a polarizing plate before and after its incidence.
- a polarizing plate As the polarizing plate, an absorption type and a reflection type are known.
- the incident side polarizing plate absorbs a specific polarized light and causes a high temperature.
- a polarization conversion element composed of a polarization beam splitter array and a 1Z2 wavelength plate may be used between the lens array 1 and the condenser lens 2.
- a reflective polarizing plate may be used, high-temperature light can be avoided, and the light use efficiency can be increased so that no loss occurs in the illuminating light at the incident-side polarizing plate.
- an optical configuration in which the light reflected by the reflective polarizing plate is reused can be used.
- a reflective polarizing plate may be disposed between the light emitting module and the liquid crystal layer for spatial modulation, and a 1Z4 wavelength plate may be disposed between the light emitting module and the reflective polarizing plate.
- the reflected light from the reflective polarizing plate can be reused by polarization conversion at the 1Z4 wavelength plate. This will be described in more detail below with a specific configuration example (Figs. 17 and 18).
- FIG. 17 shows a first configuration example using a reflective polarizing plate.
- the transmissive liquid crystal element 40 includes, in order from the light incident side, an incident side polarizing plate 41, a liquid crystal layer 42, and an emission side polarizing plate 43.
- As the incident side polarizing plate 41 a reflection type polarizing plate, and as an emission side polarizing plate 43, Absorptive polarizing plates are used.
- the reflective polarizing plate transmits specific linearly polarized light and reflects linearly polarized light whose vibration plane (that is, polarization direction) is perpendicular to the linearly polarized light. Specific examples include DBEF (trade name) manufactured by Sumitomo 3EM Co., Ltd., and wire grid. Further, on the light incident side of the transmissive liquid crystal element 40, an incident side polarizing plate 41 is provided on the light incident side of the transmissive liquid crystal element 40.
- the 1Z4 wave plate 8 is inserted at an angle of 45 degrees with respect to the transmission
- the light emitted from the LED chip T1 of the light emitting module MJ (shown by a solid line) is reflected by the concave reflecting surface RS1, passes through the condenser lens 2 and the 1Z4 wavelength plate 8 in order, and then enters the transmissive liquid crystal element 40. Incident.
- the linearly polarized light having a specific polarization direction is transmitted through the incident side polarizing plate 41, but the linearly polarized light having a polarization direction perpendicular to the incident side polarizing plate 41 is reflected by the incident side polarizing plate 41.
- the light (solid line) that has passed through the incident side polarizing plate 41 enters the liquid crystal layer 42, and the polarization state is spatially modulated by applying a voltage corresponding to the video signal, and then enters the outgoing side polarizing plate 43. To do.
- the exit side polarizing plate 43 forms an image by replacing the difference in polarization state of the light modulated by the liquid crystal layer 42 with the difference in light intensity.
- the light reflected by the incident side polarizing plate 41 (shown by a broken line) is transmitted through the 1Z4 wavelength plate 8 and the condenser lens 2 in order, and then reflected by the concave reflecting surface RS2 (adjacent to the concave reflecting surface RS1). Then, LED chip T2 is reached. Since the LED chip T2 is optically transparent, the light passes through the LED chip T2, and then is reflected by the electrode lead LC. After passing through the LED chip T2 again, it is reflected by the concave reflecting surface RS2.
- the surface of the electrode lead LC to which the LED chip T2 is fixed is desirably a mirror surface or a surface provided with a reflective coating (for example, a highly reflective reflective coating made of a metal material such as aluminum or silver). . If the surface treatment is performed in this way, even if the reflected light from the concave reflecting surface RS2 is incident, it can be reflected again toward the concave reflecting surface RS2, and the electrode lead LC can be used as a radiator. It is possible to improve the function.
- the light reflected by the concave reflecting surface RS2 passes through the condenser lens 2 and the 1Z4 wavelength plate 8 in order, and then reenters the transmissive liquid crystal element 40.
- the light re-entering the transmissive liquid crystal element 40 passes through the 1Z4 wavelength plate 8 twice by being reciprocated after being reflected by the incident-side polarizing plate 41.
- the state force reflected by the incident side polarizing plate 41 also rotates the polarization direction by 90 degrees (that is, because it is in a polarization state orthogonal to the polarizing direction at the time of reflection). Can be transmitted.
- Light (broken line) that has passed through the incident-side polarizing plate 41 enters the liquid crystal layer 42, and the polarization state is spatially modulated by applying a voltage corresponding to the video signal, and then enters the exit-side polarizing plate 43. .
- the exit-side polarizing plate 43 forms an image by replacing the difference in polarization state of the light modulated by the liquid crystal layer 42 with the difference in light intensity. To do.
- the polarization component unnecessary for the liquid crystal display is returned to the light emitting module side. Since the light-emitting module has a reflective LED structure, the returned light goes again to the transmissive liquid crystal element. If a 1Z4 wavelength plate is placed between the light-emitting module force transmissive liquid crystal element and the incident-side polarizing plate so that the polarization direction is rotated 90 degrees in this reciprocation, the returned light is polarized light necessary for liquid crystal display. Reused as an ingredient. Accordingly, no loss occurs in the illumination light, and the light use efficiency is improved. In addition, if a reflection type polarizing plate is used as the incident side polarizing plate, it is possible to prevent high temperature light due to absorption of illumination light there.
- FIG. 18 shows a second configuration example using a reflective polarizing plate.
- the transmissive liquid crystal element 4 includes, in order from the light incident side, an incident side polarizing plate 4a, a liquid crystal layer 4b, and an emission side polarizing plate 4c, and an absorption type polarizing plate as the incident side polarizing plate 4a and the emission side polarizing plate 4c. Is used.
- a 1 Z4 wavelength plate 8 and a reflective polarizing plate 44 are arranged in this order from the light emitting module MJ side.
- 1Z4 wavelength plate 8 is transmitted through the reflective polarizing plate 44. It is placed at an angle of 45 degrees to the axis.
- the reflective polarizing plate 44 transmits the specific linearly polarized light and reflects the linearly polarized light whose vibration plane (that is, the polarization direction) is perpendicular to the linearly polarized light, similarly to the incident side polarizing plate 41 (FIG. 17).
- DBEF trade name manufactured by Sumitomo 3EM Co., Ltd.
- wire grid can be cited as examples.
- Light emitted from the LED chip T1 of the light emitting module MJ (shown by a solid line) is reflected by the concave reflecting surface RS1, passes through the 1Z4 wavelength plate 8, and then enters the reflective polarizing plate 44.
- the linearly polarized light in a specific polarization direction is transmitted through the reflective polarizing plate 44.
- the linearly polarized light in the orthogonal polarization direction is reflected by the reflective polarizing plate 44.
- the light (solid line) that has passed through the reflective polarizing plate 44 passes through the condenser lens 2 and then enters the transmissive liquid crystal element 4.
- the incident side polarizing plate 4a Since the incident side polarizing plate 4a is configured to transmit the light transmitted through the reflective polarizing plate 44, the incident side polarizing plate 4a does not absorb illumination light.
- the light transmitted through the incident side polarizing plate 4a enters the liquid crystal layer 4b, and after the polarization state is spatially modulated by applying a voltage corresponding to the video signal, the light enters the emission side polarizing plate 4c.
- the exit side polarizing plate 4c is modulated by the liquid crystal layer 4b. Images are formed by replacing the difference in polarization state of the light with the difference in light intensity
- the light reflected by the reflective polarizing plate 44 passes through the 1Z4 wavelength plate 8, and is then reflected by the concave reflecting surface RS1 to reach the LED chip T1. Since the LED chip T1 is optically transparent, the light is transmitted through the LED chip T1, then reflected by the electrode lead LC, and again through the LED chip T1, and then reflected by the concave reflecting surface RS1.
- the surface of the electrode lead LC on which the LED chip T1 is fixed is preferably a mirror surface or a surface provided with a reflective coating (for example, a highly reflective reflective coating made of a metal material such as aluminum or silver). .
- the surface treatment is performed in this way, even if the reflected light from the concave reflecting surface RS1 is incident again, it can be reflected again toward the concave reflecting surface RS1, and the electrode lead LC can be used as a radiator. It is also possible to improve the function.
- the light reflected by the concave reflecting surface RS1 passes through the 1Z4 wavelength plate 8 and then reenters the reflective polarizing plate 44. At this time, the light re-entering the reflective polarizing plate 44 is transmitted through the 1Z4 wavelength plate 8 twice by being reciprocated after being reflected by the reflective polarizing plate 44. As a result, since the polarization direction of the state force reflected by the reflective polarizing plate 44 is also rotated by 90 degrees (that is, the polarization state is perpendicular to the polarizing direction at the time of reflection), the reflective polarizing plate 44 is It can be transmitted.
- Light (broken line) that has passed through the reflective polarizing plate 44 passes through the condenser lens 2 and then enters the transmissive liquid crystal element 4. Since the incident side polarizing plate 4a is configured to transmit the light transmitted through the reflective polarizing plate 44, the incident side polarizing plate 4a does not absorb illumination light. The light transmitted through the incident-side polarizing plate 4a enters the liquid crystal layer 4b, and after the polarization state is spatially modulated by applying a voltage corresponding to the video signal, the light enters the emission-side polarizing plate 4c. The exit-side polarizing plate 4c forms an image by replacing the difference in the polarization state of the light modulated by the liquid crystal layer 4b with the difference in light intensity.
- the polarization component unnecessary for the liquid crystal display is returned to the light emitting module side. Since the light emitting module has a reflective LED structure, the returned light is directed again to the transmissive liquid crystal element. If the 1Z4 wavelength plate is placed between the light-emitting module and the reflective polarizing plate so that the polarization direction rotates 90 degrees in this reciprocation, the returned light will be displayed on the liquid crystal display. It is reused as a necessary polarization component. Accordingly, no loss occurs in the illumination light, and the light use efficiency is improved.
- the incident-side polarizing plate of the transmissive liquid crystal element Since the polarization state of the light incident on the incident side polarization plate of the transmissive liquid crystal element is basically uniform, it is possible to omit the incident side polarizing plate.
- the reflector having the first configuration is a single reflector having a plurality of concave reflecting surfaces, and each concave reflecting surface is partially cut off at the boundary with an adjacent concave reflecting surface. It is characterized by being.
- the reflector of the second configuration is a single reflector having a plurality of concave reflecting surfaces, and each concave reflecting surface is arranged rotationally symmetrically with respect to the central axis of the reflector. When viewed from the front along the central axis, the boundary with the adjacent concave reflecting surface forms a straight line toward the central axis of the reflector.
- the reflector having the third configuration is a rotationally symmetric surface in which the concave reflecting surface has at least one focal point, and the thickness of the concave reflecting surface in the optical axis direction is Is approximately equal to the distance from the vertex of the concave reflecting surface to the focal point, and the rotationally symmetric surface has two or more focal points, the thickness of the concave reflecting surface in the optical axis direction is the surface vertex of the concave reflecting surface. Is approximately equal to the distance from the focal point closer to the top of the surface.
- a light emitting module having a fourth structure is a light emitting module having the reflector according to any one of the first to third forces, and the same number of LEDs as the concave reflecting surface.
- the LED has an LED chip and an electrode lead for fixing the LED chip, and the LED chip is disposed at or near the focal point of each concave reflecting surface, and the electrode lead for each LED chip is the concave surface. It is arrange
- the light emitting module of the fifth configuration is characterized in that, in addition to the fourth configuration, there are four concave reflecting surfaces.
- the light emitting module of the sixth configuration is characterized in that, in the above fourth or fifth configuration, the light emitting colors of the LEDs are at least three colors of RGB.
- the shape of the electrode lead is a size on a plane perpendicular to the optical axis of the concave reflecting surface. Of these, the size in the direction parallel to the optical axis of the concave reflecting surface is larger than the smallest size.
- the light emitting module of the eighth configuration is characterized in that in any one of the fourth to seventh configurations, the electrode leads in contact with the LED chip are all directed in the same direction.
- the reflector is a single configuration having a plurality of concave reflecting surfaces, the overall size can be reduced while achieving high brightness and high efficiency, and the assembly is possible. No need for standing work.
- a part of the outer shape of each concave reflecting surface is notched at the boundary with the adjacent concave reflecting surface, or when the reflector is viewed from the front along the central axis, it is different from the adjacent concave reflecting surface. Since the boundary forms a straight line that faces the central axis of the reflector, the reflector becomes smaller in the direction perpendicular to the central axis, so that further miniaturization becomes possible. Therefore, a high-brightness and high-efficiency small light emitting module can be realized.
- each concave reflecting surface is arranged rotationally symmetrically with respect to the central axis of the reflector, it is possible to realize a high-brightness and high-efficiency small light-emitting module capable of uniform light emission. It is possible to prevent uneven illumination when applied to a general rotationally symmetric optical system.
- the concave reflecting surface is a rotationally symmetric surface having at least one focal point, and the thickness of the concave reflecting surface in the optical axis direction is substantially equal to the distance from the vertex of the concave reflecting surface to the focal point.
- the thickness of the concave reflecting surface in the optical axis direction is almost equal to the distance from the surface vertex of the concave reflecting surface to the focal point closer to the surface vertex. Therefore, the reflector can be made small in the direction perpendicular to and parallel to the central axis, and the light use efficiency and light distribution characteristics can be improved.
- the LED chip is arranged at or near the focal position of each concave reflecting surface, and the electrode lead is arranged on the opposite side of the concave reflecting surface with respect to each LED chip. Therefore, almost all the light from the LED chip is reflected by the concave reflecting surface. For this reason, high light utilization efficiency can be achieved. Also, the electrode lead acts as a radiator Therefore, it is possible to achieve high brightness by preventing the LED chip from being hot.
- the reflector since the reflector has a configuration having four concave reflecting surfaces, the outer shape of the reflector (that is, the shape when the reflector is viewed from the front along its central axis) is Close to a square. Therefore, when arranging a plurality of light emitting modules in the horizontal direction or the vertical direction so that the central axes thereof are parallel to each other, it is possible to arrange the light emitting modules so as not to generate a gap. Further, according to the sixth configuration, since the LED emission colors are at least three colors of the three primary colors RGB! /, A light emitting module capable of full color emission can be obtained.
- the shape of the electrode lead is smaller than the smallest size on the plane perpendicular to the optical axis of the concave reflecting surface with respect to the optical axis of the concave reflecting surface. Since the size in the parallel direction is larger, it is possible to obtain a high heat radiation effect by the electrode lead while minimizing the amount of reflected light shielded by the electrode lead. Further, according to the eighth configuration, since the electrode leads contacting the LED chip are all directed in the same direction, the electrode leads are not obstructed without obstructing the flow of the refrigerant (air, liquid, etc.). By bringing the refrigerant into contact with the liquid, it is possible to improve the heat dissipation effect and achieve high brightness.
- the refrigerant air, liquid, etc.
- An image projection apparatus having a ninth configuration includes a transmissive spatial modulation element that forms an image by spatially modulating illumination light, and an LED and a reflector for illuminating the spatial modulation element.
- a light emitting module having a projection optical system for projecting an image formed by the spatial modulation element, the LED force LED chip and an electrode lead for fixing the LED chip.
- the reflector has a concave reflecting surface that reflects the light emitted by the LED chip force, and the LED chip is disposed at or near the focal position of the concave reflecting surface.
- the electrode lead is disposed on the opposite side of the concave reflecting surface with respect to the LED chip.
- the reflector is a single reflector having a plurality of concave reflecting surfaces, and the LED chips are arranged in the same number as the concave reflecting surfaces.
- Each concave reflecting surface is characterized in that a part of the outer shape is cut off at the boundary with the adjacent concave reflecting surface.
- the image projector of the eleventh configuration is the reflector according to the ninth or tenth configuration.
- the number of the LED chips is the same as the number of the concave reflecting surfaces, and each concave reflecting surface is rotationally symmetric with respect to the central axis of the reflector.
- the boundary with the adjacent concave reflecting surface forms a straight line toward the central axis of the reflector and is characterized by a long line.
- the image projector of the twelfth configuration is characterized in that, in the tenth or eleventh configuration, at least one of the plurality of LED chips emits light in a wavelength region different from the others.
- the image projector of the thirteenth configuration is characterized in that, in the twelfth configuration, the spatial modulation element is time-division driven.
- An image projection apparatus is the configuration according to any one of the ninth to thirteenth configurations.
- the projection optical system is telecentric on the spatial modulation element side.
- An image projection apparatus of a fifteenth configuration is the configuration of any one of the ninth to fourteenth aspects described above.
- the center of the screen of the spatial modulation element is aligned with the optical axis of the projection optical system.
- the image projector of the sixteenth configuration has a configuration in which, in any one of the ninth to fifteenth configurations, the spatial modulation element and the light emitting module are cooled by the same cooling device.
- An image projection apparatus of a seventeenth configuration has, in any one of the tenth to sixteenth configurations described above, three LED chips corresponding to at least three primary colors RGB, and the projection optical system
- the NA of the light emitting module is larger than the NA of each color that enters the projection optical system.
- the LED chip is disposed at or near the focal position of each concave reflecting surface, and the electrode lead is disposed on the opposite side of the concave reflecting surface with respect to each LED chip. Therefore, almost all the light from the LED chip is reflected by the concave reflecting surface. For this reason, high light utilization efficiency can be achieved.
- the electrode lead for fixing the LED chip acts as a heat sink, it is possible to achieve high brightness by preventing the LED chip from being hot.
- spatial modulation that forms an image by spatially modulating the illumination light Since the device has a transmissive spatial modulation element, the projection optical system that projects the image formed by the spatial modulation element can be miniaturized, and the entire image projection device can be miniaturized. It becomes. Therefore, it is possible to realize a small and low-cost image projection apparatus with a bright projected image.
- the reflector since the reflector has a single configuration having a plurality of concave reflecting surfaces, the overall size can be reduced while achieving high brightness and high efficiency, and assembling. Work becomes unnecessary.
- a part of the outer shape of each concave reflecting surface is cut off at the boundary with the adjacent concave reflecting surface, or when the front force is seen along the central axis of the reflector, the distance from the adjacent concave reflecting surface is Since the boundary forms a straight line directed to the central axis of the reflector, the size of the reflector becomes smaller in the direction perpendicular to the central axis, thereby enabling further miniaturization.
- each concave reflecting surface is arranged rotationally symmetrically with respect to the center axis of the reflector, it is possible to realize a high-luminance and high-efficiency compact light-emitting module capable of uniform light emission. It is possible to prevent uneven illumination when applied to a general rotationally symmetric optical system.
- the spatial modulation element is configured to be driven in a time-sharing manner, the entire area of the spatial modulation element is effectively used while being a single plate type, and a high-definition image has a compact configuration. Obtainable.
- LED light emission is pulse light emission, and the LED chip is cooled when the LED is not emitting light. Therefore, since the output during light emission can be increased, the combination of the time-division driven spatial modulation element and the LED light source is suitable for high brightness.
- the projection optical system since the projection optical system has a telecentric configuration on the spatial modulation element side, it is possible to suppress the occurrence of color unevenness on the projection screen due to the color angle composition.
- the center of the screen of the spatial modulation element is aligned with the optical axis of the projection optical system, color unevenness occurs on the projection screen due to color angle composition. It is possible to suppress this.
- the sixteenth configuration since the spatial modulation element and the light emitting module are cooled by the same cooling device, the overall size of the image projection device can be reduced while being high. A heat dissipation effect can be obtained. For example, as a result of improving the heat dissipation effect of the light emitting module, further increase in brightness can be achieved.
- the LED chip since the LED chip has at least three corresponding to the three primary colors RGB, it is possible to achieve full color while achieving downsizing and low cost. Become.
- the NA of the projection optical system is larger than the NA of each color that enters the projection optical system, so the light emitted from the light-emitting module can be used efficiently without using prisms or mirrors for color synthesis. It can be incident on the projection optical system.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Projection Apparatus (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
発光モジュールは、複数の凹面反射面を有する単一のリフレクターと、凹面反射面と同数の発光体と、を有する。各凹面反射面は、隣接する凹面反射面との境界において外形の一部が切り欠かれている。各発光体は、凹面反射面に向かって光を放射する。
Description
明 細 書
発光モジュールとそれを用いた画像投影装置
技術分野
[0001] 本発明は発光モジュールとそれを用いた画像投影装置に関するものであり、例え ば、 LEDQight emitting diode)チップを発光体とする反射型の発光モジュールと、 それを用 、た画像投影装置に関するものである。
背景技術
[0002] 特許文献 1には、凹面反射面を有するリフレタターと LEDチップとを組み合わせて 成る反射型の発光モジュールが提案されている。その発光モジュールは、リフレクタ 一で反射した光のみを射出する、いわゆる反射型 LEDの構成になっている。その構 成では、 LEDチップに接続された電極リードが放熱体としても作用するため、ある程 度の高効率化が可能となる。特許文献 2には、凹面反射面を有する 1つのリフレクタ 一に複数の LEDチップを配置して成る反射型の発光モジュールが提案されて 、る。 その発光モジュールは、複数の LEDチップを 1つの反射面で配光する構成になって いるため、高輝度化が可能となる。
[0003] また、特許文献 3には、透過型液晶素子と、その背面側に配置された 3つの LEDと 、を組み合わせて成るモパイル機器が提案されている。 3つの LEDは 3原色 RGBに 対応しており、透過型液晶素子が表示する各色の画像を時分割駆動により照明する 構成になっている。また特許文献 4には、 3原色 RGBに対応した 3つの LEDを用いて 、各色光の合成をダイクロイツクプリズムで行う光源装置が提案されて 、る。
特許文献 1:特開 2005— 322701号公報
特許文献 2:特開 2002— 9347号公報
特許文献 3:特開平 11― 295690号公報
特許文献 4:特開 2005— 189824号公報
発明の開示
発明が解決しょうとする課題
[0004] 特許文献 1記載の発光モジュールの用途として例えばプロジェクターの照明用光
源装置を想定した場合には、高輝度化のために同一の発光モジュールを複数並列 に並べる必要がある。そして、複数の発光モジュールを並列に配置すると、全体が大 型化してしまうと同時に表示パネルに対する照明が非効率になってしまう。特許文献 2記載の発光モジュールでは、 1つの反射面に対し複数の LEDチップが用いられる ため、光源の大きさが実質的に大きくなつてしまう。その結果、配光角度が非常に大 きくなつてしま 、、配光特性に優れた高効率の発光モジュールを実現することができ なくなる。
[0005] 一方、特許文献 3記載のモパイル機器には、 LED力もの照明光を集光して透過型 液晶素子に導く照明光学系が用いられていないため、透過型液晶素子を効率良く 照明することができず、明るい投影像を得ることができない。特許文献 4記載の光源 装置は、フルカラー化のためにダイクロイツクプリズムを有しているため、コストや大き さの点で不利である。つまり、ダイクロイツクプリズムで色合成する構成になっているた め、ダイクロイツクプリズムがコストアップを招くだけでなぐダイクロイツクプリズムを配 置するための空間を確保する必要もある。したがって、小型 '低コストであることが要 求される画像投影装置には向 ヽて 、な 、。
[0006] 本発明の目的は、高輝度'高効率の小型発光モジュールと、それを用いた小型で 低コストの画像投影装置を提供することにある。 課題を解決するための手段
[0007] 上記目的を達成するために、第 1の発明の発光モジュールは、複数の凹面反射面 を有する単一のリフレタターと、前記凹面反射面と同数の発光体と、を有し、各凹面 反射面は隣接する凹面反射面との境界において外形の一部が切り欠かれており、各 発光体は凹面反射面に向かって光を放射することを特徴とする。
[0008] 第 2の発明の発光モジュールは、複数の凹面反射面を有する単一のリフレタターと 、前記凹面反射面と同数の発光体と、を有し、各凹面反射面がリフレタターの中心軸 に対して回転対称に配置されており、リフレタターをその中心軸に沿って正面から見 たとき、隣接する凹面反射面との境界がリフレタターの中心軸に向いた直線を成して おり、各発光体は凹面反射面に向力つて光を放射することを特徴とする。
[0009] 第 3の発明の発光モジュールは、上記第 1又は第 2の発明において、前記発光体
が LEDであり、前記 LED力LEDチップとその LEDチップを固定する電極リードとを 有しており、前記 LEDチップが各凹面反射面の焦点位置又はその近傍に配置され ており、各 LEDチップに対し電極リードが前記凹面反射面とは反対側に配置されて おり、各 LEDチップは凹面反射面に向けて光を放射することを特徴とする。
[0010] 第 4の発明の発光モジュールは、上記第 1又は第 2の発明において、前記凹面反 射面が 1つの焦点を持つ回転対称面であり、前記凹面反射面の光軸方向の厚みが 凹面反射面の面頂点力も焦点までの距離とほぼ等しいことを特徴とする。
[0011] 第 5の発明の発光モジュールは、上記第 1又は第 2の発明において、前記凹面反 射面が 2つの焦点を持つ回転対称面であり、前記凹面反射面の光軸方向の厚みが 凹面反射面の面頂点からその面頂点に近い方の焦点までの距離とほぼ等しいことを 特徴とする。
[0012] 第 6の発明の発光モジュールは、上記第 1又は第 2の発明において、前記凹面反 射面を 4面有することを特徴とする。
[0013] 第 7の発明の発光モジュールは、上記第 3の発明において、前記 LEDの発光色が 赤,青,緑の少なくとも 3色であることを特徴とする。
[0014] 第 8の発明の発光モジュールは、上記第 3の発明において、前記電極リードにおい て、前記凹面反射面の光軸に対して平行方向のサイズが、前記凹面反射面の光軸 に対して垂直な平面上でのサイズのうち最も小さいサイズよりも大きいことを特徴とす る。
[0015] 第 9の発明の発光モジュールは、上記第 8の発明において、前記電極リードが板状 を成しており、前記凹面反射面の光軸に対して平行方向のサイズを Xとし、前記凹面 反射面の光軸に対して垂直な平面上でのサイズのうち最も小さいサイズを yとすると、 y: x= 1: 2〜 1: 6であることを特徴とする。
[0016] 第 10の発明の発光モジュールは、上記第 3の発明において、前記 LEDチップと接 して!/、る電極リードが全て同一方向を向 、て 、ることを特徴とする。
[0017] 第 11の発明の画像投影装置は、上記第 1又は第 2の発明に係る発光モジュールと 、照明光を空間的に変調することにより画像を形成する透過型の空間変調素子と、 前記空間変調素子により形成された画像を投影する投影光学系と、を有することを
特徴とする。
[0018] 第 12の発明の画像投影装置は、上記第 11の発明において、前記発光体が LED であり、前記 LEDが LEDチップとその LEDチップを固定する電極リードとを有してお り、前記 LEDチップが各凹面反射面の焦点位置又はその近傍に配置されており、各 LEDチップに対し電極リードが前記凹面反射面とは反対側に配置されており、各 LE Dチップは凹面反射面に向けて光を放射することを特徴とする。
[0019] 第 13の発明の画像投影装置は、上記第 12の発明において、前記電極リードにお いて、前記凹面反射面の光軸に対して平行方向のサイズが、前記凹面反射面の光 軸に対して垂直な平面上でのサイズのうち最も小さいサイズよりも大きいことを特徴と する。
[0020] 第 14の発明の画像投影装置は、上記第 12の発明において、前記複数の LEDチッ プのうち少なくとも 1つが他とは異なる波長域の光を放射することを特徴とする。
[0021] 第 15の発明の画像投影装置は、上記第 11の発明において、前記空間変調素子 が時分割駆動することを特徴とする。
[0022] 第 16の発明の画像投影装置は、上記第 11の発明において、前記投影光学系が 前記空間変調素子側にテレセントリックであることを特徴とする。
[0023] 第 17の発明の画像投影装置は、上記第 11の発明において、前記空間変調素子 の画面中心と前記投影光学系の光軸とがー致していることを特徴とする。
[0024] 第 18の発明の画像投影装置は、上記第 11の発明において、前記空間変調素子と 前記発光モジュールとを冷却する冷却装置を更に有することを特徴とする。
[0025] 第 19の発明の画像投影装置は、上記第 18の発明において、前記冷却装置からの 冷媒を、前記発光モジュールを介して前記空間変調素子に導くためのダクトを更に 有することを特徴とする。
[0026] 第 20の発明の画像投影装置は、照明光を空間的に変調することにより画像を形成 する透過型の空間変調素子と、その空間変調素子を照明するための発光モジユー ルと、前記空間変調素子により形成された画像を投影する投影光学系と、を備えた 画像投影装置であって、前記発光モジュール力 SLED及びリフレタターを有し、前記リ フレタターが前記 LEDからの光束を前記空間変調素子に向けて反射する凹面反射
面を有し、前記 LED力LEDチップとその LEDチップを固定する電極リードとを有して おり、前記凹面反射面の焦点位置又はその近傍に前記 LEDチップが配置されてお り、前記 LEDチップに対し前記電極リードが前記凹面反射面とは反対側に配置され ていることを特徴とする。
[0027] 第 21の発明の画像投影装置は、上記第 20の発明において、前記電極リードにお いて、前記凹面反射面の光軸に対して平行方向のサイズが、前記凹面反射面の光 軸に対して垂直な平面上でのサイズのうち最も小さいサイズよりも大きいことを特徴と する。
[0028] 第 22の発明の画像投影装置は、上記第 21の発明において、前記リフレタターが前 記凹面反射面を複数有する単一のリフレタターであり、各凹面反射面は隣接する凹 面反射面との境界にぉ 、て外形の一部が切り欠かれて!/、ることを特徴とする。
[0029] 第 23の発明の画像投影装置は、上記第 21の発明において、前記リフレタターが前 記凹面反射面を複数有する単一のリフレタターであり、各凹面反射面がリフレタター の中心軸に対して回転対称に配置されており、リフレタターをその中心軸に沿って正 面から見たとき、隣接する凹面反射面との境界がリフレタターの中心軸に向いた直線 を成して 、ることを特徴とする。
発明の効果
[0030] 本発明によれば、高輝度'高効率の小型発光モジュールと、それを用いた小型で 低コストの画像投影装置を実現することができる。 図面の簡単な説明
[0031] [図 1]リフレタターの一具体例における凹面反射面の隣接構成による効果を説明する ための正面図。
[図 2]リフレタターの一具体例における凹面反射面の薄型化の効果を説明するための 図。
[図 3]凹面反射面を複数有するリフレタターの具体例を示す正面図。
[図 4]発光モジュールの一実施の形態の外観を示す斜視図。
[図 5]発光モジュールの一実施の形態の外観を示す正面図。
[図 6]光源ユニット (タイプ 1)の外観を示す斜視図。
圆 7]光源ユニット (タイプ 1)の正面側外観及び断面構造を示す図。
圆 8]光源ユニット (タイプ 2)の外観を示す斜視図。
圆 9]光源ユニット (タイプ 2)の正面側外観及び断面構造を示す図。
[図 10]発光モジュールの点灯タイミングの具体例を示す図。
[図 11]RGBの光源ユニット (タイプ 1)の配置状態を示す正面図。
[図 12]図 11の光源ユニット (タイプ 1)を備えたプロジェクターの概略光学構成を示す 平面図。
[図 13]画像投影装置の一実施の形態の概略を示す光学構成図。
圆 14]投影光学系のテレセントリック性を説明するための図。
[図 15]冷却構造を有する画像投影装置の一実施の形態の概略を示す図。
圆 16]発光モジュールを備えた画像投影装置における NAの関係を説明するための 光学構成図。
[図 17]反射型偏光板を用いた第 1の構成例を示す光学構成図。
[図 18]反射型偏光板を用いた第 2の構成例を示す光学構成図。
符号の説明
RT リフレタター
RS 凹面反射面
LN 直線 (境界)
CX 中心軸
AX 光軸
F 焦点
TP LEDチップ (発光体)
LC 電極リード (力ソード)
LA 電極リード (アノード)
MJ 発光モジュール (発光装置)
HS 放熱体
FN 放熱フィン
UN 光源ユニット
UR 赤色光源ユニット
UG 緑色光源ユニット
UB 青色光源ユニット
PL 投影光学系
PA 表示パネル
RSI, RS2 凹面反射面
Tl, T2 LEDチップ
TR, TG 赤色,緑色の LEDチップ
4, 40 透過型液晶素子 (透過型の空間変調素子)
41 入射側偏光板 (反射型偏光板)
44 反射型偏光板
5 投影光学系
6 ダクト
7 冷却装置
8 1Z4波長板
PX 投影光学系の光軸
発明を実施するための最良の形態
[0033] 以下、本発明に係る発光モジュールとそれを用いた画像投影装置の実施の形態等 を、図面を参照しつつ説明する。なお、各実施の形態等の相互で同一の部分や相 当する部分には同一の符号を付して重複説明を適宜省略する。
[0034] 図 1(A)に 4つの凹面反射面 RSを有するリフレタター RTの一具体例を示し、図 2にリ フレタター RTにおける各凹面反射面 RSの形状,位置関係等を示す。図 1(A)は凹面 反射面 RSの正面側外観を示しており、図 2(A)は凹面反射面 RSの断面形状を示し ており、その光軸 AX及び中心軸 CXと対応するように、凹面反射面 RSの正面側外 観を図 2(B)で示している。図 1(A)及び図 2に示すリフレタター RTは、凹面反射面 RS を 4面有する単一構成になって 、る。このようにリフレタターが複数の凹面反射面を有 する構成であれば、各凹面反射面に発光体 (例えば LEDチップ)を配置することによ り、発光装置 (後述する発光モジュール MJに相当する。)の高輝度化が可能となる。
その高輝度化は発光体の数が多いほど向上するので、必要とされる輝度が高いほど 凹面反射面の数を多く設定することにより、高輝度化の要求に応えることができる。図
3に、凹面反射面 RSの数が異なる 3つのタイプのリフレタター RTの具体例を示す。 図 3において、(A)は凹面反射面 RSを 3面有するリフレタター RTを示しており、(B)は 凹面反射面 RSを 4面有するリフレタター RT (図 1(A)及び図 2に示すリフレタター RTと 同じ構成である。)を示しており、(C)は凹面反射面 RSを 5面有するリフレタター RTを 示している。
[0035] 上記のように複数の凹面反射面を有するリフレタターが単一構成であることにより、 全体の小型化が可能になるとともに組み立て作業等が不要になる。 1つの凹面反射 面を有するリフレタターを並列に複数並べようとすると、並べることで誤差が発生し、 並べて組み立てるという行為が必要になり、リフレクタ一間に隙間が生じることにもな る。これは発光装置全体の大型化、さらには出てくる光の大型化に起因するシステム (照明光学系等)の大型化といった問題を招くことになる。複数の凹面反射面が一体 化されていれば、こういった問題は生じない。したがって、複数の凹面反射面を有す るリフレタターを単一構成とすることが好まし 、。
[0036] 一般に、発光体の発光面積が同じであれば同じ明るさが得られるので、例えば、 1 つの凹面反射面で発光面積を 4倍にしようとすると、 4個の発光体と 2倍の大きさの凹 面反射面が必要になる。 1つの凹面反射面で 4個の発光体を用いた場合、光学的感 度を同じにすれば発散角が大きくなるので、焦点距離を 2倍に大きくしなければなら なくなる。焦点距離を大きくすると、凹面反射面は深くなるため発光装置は光軸方向 に厚くなつてしまう。また、発光体同士近いので冷却しにくいという問題も生じる。 1つ の凹面反射面に 3原色 RGB3つの発光体を用いた場合も同様であり、各色で発散角 が異なってしまうことから上記と同様の問題が発生する。それに対し、図 1(A)及び図 2に示すリフレタター RTのように複数の凹面反射面を有する構成とすれば、各凹面 反射面に発光素子を配置することにより、発散角や焦点距離を大きくしなくても発光 面積を大きくすることが可能となる。つまり、発光装置を厚くせずに高輝度化を達成 することができる。
[0037] 図 1(A)及び図 2に示すリフレタター RTは、各凹面反射面 RSがリフレタター RTの中
心軸 cxに対して回転対称に配置された構成になっている。このように各凹面反射面 力 Sリフレクタ一の中心軸に対して回転対称に配置された構成であれば、一般的な回 転対称光学系に適用した場合に照明ムラ等を防止することができる。例えば、プロジ エタター等への応用を考えた場合、デジタル 'マイクロミラ一'デバイス (digital microm irror device)や LCD(liquid crystal display)等の空間変調素子、照明光学系、投影 光学系等は回転対称軸を持っているのが通例である。そのような光学構成へ応用す る場合、発光装置からの光にムラが発生しないようにするため、各凹面反射面がリフ レクターの中心軸に対して回転対称であることが好ましい。
[0038] 図 1(A)及び図 2に示すリフレタター RTは、各凹面反射面 RSの隣接構成に特徴の ある構成になっている。例えば、各凹面反射面 RSは隣接する凹面反射面 RSとの境 界において外形の一部が切り欠かれている点に特徴がある。その切り欠かれた部分 は、図 1(A)及び図 2(B)に示す直線状の境界を構成するので、この観点から言えば、 リフレタター RTをその中心軸 CXに沿って正面力も見たとき、各凹面反射面 RSが隣 接する凹面反射面 RSとの境界がリフレタター RTの中心軸 CXに向いた直線 LNを成 している点に特徴がある。つまり、リフレタター RTを正面側力も見たとき、隣接する凹 面反射面 RSとの境界はリフレタター RTの中心軸 CXを中心として放射状に延びる直 線 LNを成している点に特徴がある。各凹面反射面 RSの隣接構成を上記のように設 定することは、以下に説明するように、発光装置の高輝度 ·高効率ィ匕を損なうことなく リフレタター RTの小型化に大きく寄与する。
[0039] 図 1(A)に示すリフレタター RTとの比較のために、 4つの凹面反射面 RS 'を有するリ フレタター RT,の正面側外観を図 1(B)に示す。 4つの凹面反射面 RS'は、図 1(A)に 示す具体例と同様、リフレタター RTの中心軸 CXに対して回転対称に配置されてい る。ただし、同一サイズの円形状開口を有する 4つの凹面反射面 RS'は、隣接するも のに対して一点で接するように配置されている。この配置では、凹面反射面 RS '間に 大きな隙間が存在するため光利用効率が低くなる。図 1(B)に示す接触状態から、光 軸 AX間距離を短縮するように各凹面反射面 RS'を中心軸 CXに近づけていくと、中 心軸 CXに対する回転対称性を保ちながら、隣接する凹面反射面 RS'との接点から 各凹面反射面 RS 'の外形の一部が切り欠かれて 、く。その切り欠かれた部分が境界
となり、 2つの凹面反射面 RS'の重なりが凹形状の曲線を成すことになる。
[0040] 上記 2つの凹面反射面 RS 'の重なりから成る凹形状の曲線を中心軸 CXに沿って 見ると、その射影形状 (つまり中心軸 CXに対して垂直な平面に射影された曲線の形 状)は直線である。その直線は、各凹面反射面 RS'が中心軸 CXに近づいていくにし たがって長くなり、それとともに凹面反射面 RS'間の隙間とリフレタター RT'全体のサ ィズは小さくなつていく。そして、全ての直線が中心軸 CXの位置に到達すると、図 1( A)に示すように凹面反射面 RS間に隙間の無い状態が得られ、隣接する凹面反射面 RSとの境界がリフレタター RTの中心軸 CXから放射状に延びる直線 LNとなる。この 隙間の無い状態に達したときの光軸 AX間距離 (すなわち隣接する凹面反射面 RSの 回転中心間隔)は、各凹面反射面 RSの開口直径 (つまり外形直径)よりも当然短いが 、必要に応じて光軸 AX間距離を更に短縮してもよい。その設定は、必要とされる条 件 (リフレタター全体のサイズ,凹面反射面のサイズ,凹面反射面の数等)に応じて適 宜決定すればよいが、一般的なプロジェクター用の発光装置を想定した場合、各条 件のバランスを考慮して、光軸 AX間距離は各凹面反射面の開口半径 (つまり外形半 径)よりも短いことが好ましい。
[0041] 上述したように、各凹面反射面が隣接する凹面反射面との境界において外形の一 部が切り欠かれた構成、あるいは、リフレタターをその中心軸に沿って正面力 見たと き、隣接する凹面反射面との境界がリフレタターの中心軸に向いた直線を成す構成 にすれば、凹面反射面同士が密に詰まるため、発光装置の高輝度'高効率化を損な うことなくリフレタターの外形を小さくして、リフレタター全体を小型化することが可能と なる。なお、凹面反射面の外形の一部を切り欠くと、その切り欠き部は正面側に凹の 曲線となるので、隣り合う凹面反射面との境界が正面側に凹の曲線となっているもの は、凹面反射面の外形の一部を切り欠!、たものとみなす。
[0042] 凹面反射面が少なくとも 1つの焦点を持つ回転対称面 (例えば、球面;放物面,楕 円面,多項式非球面等の回転対称非球面)であり、凹面反射面の光軸方向の厚みが 凹面反射面の面頂点から焦点までの距離とほぼ等しぐ回転対称面が 2以上の焦点 を持つ場合 (例えば楕円面の場合)には凹面反射面の光軸方向の厚みが凹面反射 面の面頂点力 その面頂点に近い方の焦点までの距離とほぼ等しい構成とすれば、
リフレタターを径方向及び厚み方向に小さくするとともに、光の利用効率及び配光特 性を良好にすることができる。例えば図 1(A)及び図 2に示すリフレタター RTの場合、 図 2(A)の断面で示すように、凹面反射面 RSの光軸 AX方向の厚み dは、凹面反射 面 RSの面頂点 Oから焦点 Fまでの距離とほぼ等しくなつている。これに対し、図 2(A) において破線で示すように、凹面反射面 RSの光軸 AX方向の厚み d'が凹面反射面 RSの面頂点 O力 焦点 Fまでの距離よりも大きければ、リフレタター RTが径方向 (リフ レクター RTの中心軸 CXに対して垂直方向),厚み方向 (リフレタター RTの中心軸 CX に対して平行方向)共に大きくなることは一目瞭然である。なお、ここでいう焦点は厳 密な意味での焦点のみを意味するものではなぐある物点力も光を放射させたとした 場合に、凹面反射面により集光される位置を焦点とする。
[0043] また、回転対称面力も成る凹面反射面を用いる場合、発光体 (例えば LEDチップ) は焦点付近に配置されるのが一般的であり、それにより配光特性を最適化することが できる。その際、発光体は電極リードに固定されているために、発光体からの光は図 2(A)中の左側 (つまり凹面反射面 RS側)へ半球状に発せられることになる。したがつ て、凹面反射面 RSの光軸 AX方向の厚み dを凹面反射面 RSの面頂点 O力 焦点 F までの距離以上に厚くしても、その厚くした部分 (破線部分)には光が到達しないので 、リフレタター RTは無駄に大きくなつてしまう。配光特性を良好にするために焦点付 近に発光体を配置することを考えた場合、光利用効率を良好にしながら凹面反射面 を必要最小限の大きさにしょうとすれば、凹面反射面の光軸方向の厚みが凹面反射 面の面頂点から焦点 (2以上ある場合は面頂点に近い方の焦点)までの距離とほぼ等 しい構成とするのが好ましぐそれにより、最も小型で最も光利用効率の良いリフレタ ターで配光特性の良好な発光装置を実現することができる。
[0044] 図 1(A)及び図 2に示すリフレタター RTを備えた発光モジュール MJの外観を、図 4 の斜視図と図 5の正面図で示す。この発光モジュール MJは、リフレタター RTと、凹面 反射面 RSと同数の LEDと、を有する発光装置の一例であり、搭載されている LEDは 、その構成要素として、 LEDチップ TP,電極リード (アノード) LA及び電極リード (カソ ード) LCを有している。発光体として用いられている LEDには、小型'安価で低消費 電力であるというメリットがある。また、電球のように切れないため交換不要であり、放
電ランプのように発光開始までに時間が力からず速やかに起動できる等のメリットもあ る。リフレタター RTは凹面反射面 RSを有するミラーケース力も成っており、凹面が形 成されたプラスチック板の凹面部分にアルミニウム,銀等のコーティングを施して凹面 反射面 RSとしている。凹面反射面 RSには LEDチップ TP等を保護するためにェポ キシ榭脂,シリコーン榭脂等の耐熱樹脂が封入されて 、る。
[0045] 図 4及び図 5に示すように、発光モジュール MJは凹面反射面 RSを 4面有するリフレ クタ一 RTを備えている。凹面反射面を 4面有する構成は、発光装置を複数配置する 場合のコンパクト化に有効である。前述したように、リフレタターが複数の凹面反射面 を有する構成であれば、各凹面反射面に LEDチップを配置することにより発光装置 の高輝度化が可能となる。凹面反射面 RSの数力 面であれば、その外形 (つまり、リ フレタター RTをその中心軸 CXに沿って正面から見たときの形状)は正方形に近くな り、そのようなリフレタター RTを備えた発光モジュール MJも、外形は正方形に近くな る。複数の発光モジュール MJを中心軸が互いに平行になるように水平方向や垂直 方向に並べる際、発光モジュール MJの外形が正方形に近ければ、発光モジュール MJ間に隙間が生じないように密に並べることができる。したがって、プロジェクタ一等 の装置に複数の発光モジュール MJをコンパクトに搭載することが可能となる。
[0046] 発光モジュール MJの一例として、その具体的な構造を以下に示す。
リフレタター RTの外开 : 15. 5mm X 15. 5mm
凹面反射面 RSの直径: 10. 5mm
凹面反射面 RSの厚さ: 2. 95mm
凹面反射面 RSの曲率半径: 5. 6mm
凹面反射面 RSのコーニック定数: 0. 8(楕円面)
隣接する凹面反射面 RSの回転中心間距離 :4. 9mm
LEDチップ TPのサイズ: 0. 9mm X O. 9mm X O. 250mm
電極リード (力ソード) LCのサイズ: 1. Omm X 4. Omm X 7. Omm
電極リード (アノード) LAのサイズ: 0. 3mm X O. 3mm X 6. Omm
凹面反射面 RSの頂点から LEDチップ面までの距離: 2. 675mm
凹面反射面 RSの頂点力 電極リード (力ソード) LCまでの距離: 2. 925mm
凹面反射面 RSの頂点力 電極リード (アノード) LAまでの距離: 2. 800mm 隣接する LEDチップ TPの中心間距離: 5. lmm
[0047] 図 4及び図 5に示す発光モジュール MJでは、 LEDチップ TPが各凹面反射面 RSの 焦点位置又はその近傍に配置されており、各 LEDチップ TPに対し電極リード LCが 凹面反射面 RSとは反対側に配置されている。いわゆる反射型 LEDの構成では、 LE Dチップが固定されている電極リード (力ソード)と凹面反射面とが対向しているので、 LEDチップからの光は凹面反射面側にしか発せられない。したがって、 LEDチップ を各凹面反射面の焦点位置又はその近傍に配置し、各 LEDチップに対し電極リード を凹面反射面とは反対側に配置すれば、 LEDチップからの光はほとんど全て凹面反 射面で反射されるため、高い光利用効率を達成することができる。また、 LEDチップ では放熱が必要になる力 LEDチップが固定される電極リードは放熱体も兼ねるの で、電極リードで LEDチップを速やかに冷やすことができる。したがって、 LEDチップ の高温ィ匕を防止して高輝度化を達成することができる。一般に、ジャンクション温度を 一定に保てるまでは電流量に比例した光パワー (明るさ)が得られる力 ジャンクション 温度が高くなると、追加投入電流は熱となってしまう。したがって、放熱を効果的に行 えば、ジャンクション温度を一定に保てる電流を大きくすることができる。その結果、投 入電流に比例した明るさが得られるので、高輝度な発光モジュールを実現することが できる。
[0048] 電極リード LA, LCの材料としては、例えば、銅,アルミニウム等の電気伝導度の良 い金属が好ましい。銅,アルミニウム等の金属は、 403WZmZK, 236WZmZKと いった非常に良い熱伝導率を有している。したがって、 LEDチップ TPが固定される 電極リード (力ソード) LCの材質として上記電気伝導度の良 ヽ金属を採用すれば、電 気を通すという機能と同時に LEDチップ TPからの発熱を逃がす放熱の機能も得るこ とができる。また、凹面反射面 RSと対向している電極リード LCに関しては、その表面 が鏡面又は反射コートされた面であることが望ましい。そのように表面処理を施してお けば、凹面反射面 RSからの反射光が入射してきた場合でも再び凹面反射面 RS〖こ 向けて反射させることができ、また、電極リード LCの放熱体としての機能を向上させ ることもできる。 LEDチップ TPが固定されていない方の電極リード (アノード) LAは、
凹面反射面 RS間の境界 (直線 LN)上に重なるように配置されるのが好ましい。凹面 反射面 RS間の境界からは有効な反射光がほとんど得られないので、電極リード (ァノ ード) LAを凹面反射面 RS間の境界上に配置すれば、ケラレを極力少なくして光利用 効率を向上させることができる。なお、アノードと力ソードは逆でもよい。つまり、電極リ ード LAを力ソードとし、電極リード LCをアノードとして用いてもよ!、。
[0049] 電極リード (力ソード) LCは板状を成しており、図 4に示すように、互いに直交する 3 方向のサイズのうち、光軸 AX (図 2)に対して平行方向 (厚み方向)のサイズを Xとし、幅 方向のサイズ^ yとし,焦点 Fから凹面反射面 RS周辺に向けて延びる方向のサイズを zとすると、光軸 AXに対して垂直方向のサイズ yよりも光軸 AX方向のサイズ Xの方が 大きくなつている。電極リード LCには放熱の役割もあるため、電極リード LCの表面積 が大きいほど放熱効果は大きくなる。しかし、電極リード LCが光軸 AXに対して垂直 方向に大きいと、凹面反射面 RSで反射した光を遮光してしまい、発光モジュール MJ 力もの発光効率を低下させることになる。電極リード LCを光軸 AX方向に厚くすると、 その表面積の増大により放熱効果は大きくなるが、遮光面積はほとんど増えないため 光利用効率を良好に保つことができる。したがって、電極リードの形状は、凹面反射 面の光軸に対して垂直な平面上でのサイズのうち最も小さいサイズよりも、凹面反射 面の光軸に対して平行方向のサイズの方が大きいことが好ましい。そのような構成に すれば、電極リードで遮光される反射光量を最小限に抑えながら、電極リードによる 高い放熱効果を得ることが可能となる。更に好ましくは、幅 (y) :厚み (X)は 1 : 2〜1 : 6 が良い。これは、放熱の効果と全体の大きさとのバランスを考慮した場合、良く冷える とともに大きすぎな ヽ条件である。
[0050] 図 4及び図 5に示す発光モジュール MJでは、 LEDチップ TPと接している電極リー ド LCが同一の方向を向いている。放熱は電極リード LCそのもので行われる力 電極 リード LCに冷媒 (例えば、空気,液体等の流体)を触れさせることによって更に放熱効 果を向上させることができる。その際、空冷や水冷で空気や液体の流れをせき止め ずに効率良く冷媒を流すためには、電極リード LCが同一方向を向 ヽて 、ること (つま り全ての電極リード LCの配向方向が同一であること)が好ましい。その冷媒の流れを 、図 5中の白抜き矢印で示す。電極リード LCが同一方向を向いていないと (例えば、
中心軸 CXを中心とする放射状に電極リード LCを配置にした場合)、空気や液体の流 れが悪くなり、冷却効率が悪ィ匕して輝度低下を招くことになる。 LEDチップと接してい る電極リードが全て同一方向を向いた構成とすれば、冷媒の流れを妨げることなく電 極リードに冷媒を触れさせることにより、放熱効果を向上させて高輝度化を達成する ことができる。
[0051] 上記のように電極リード LCが同一の方向を向いていると、発光モジュール MJを複 数配置する際に制約が生じる場合がある。電極リード LCの端は接点として電源と接 続されるため、空間的にある程度の大きさが必要となる。つまり、発光モジュール MJ は電極リード LCに対して平行方向に大きくなりやすい。そして、その方向 (例えば、図 5の上下方向)で発光モジュール MJを隣接させると、隣接距離が大きくなり、システム 全体の大型化を招くことになる。したがって、電極リードが全て同一方向を向いた発 光モジュールを複数配置する構成では、発光モジュールの隣接方向と電極リードの 方向とが垂直であること (つまり電極リードの配向方向に対して垂直方向に発光モジ ユールを配列すること)が好ましい。そのように構成すれば、複数の発光モジュールを 密に配置してコンパクトィ匕を図ることができる。
[0052] 次に、図 4及び図 5に示す発光モジュール MJを備えた光源ユニット UNを説明する 。図 6及び図 7にタイプ 1の光源ユニット UNを示し、図 8及び図 9にタイプ 2の光源ュ ニット UNを示す。図 6と図 8は、タイプ 1, 2の光源ユニット UNの外観を斜視図でそれ ぞれ示している。また、図 7(A)と図 9(A)はタイプ 1, 2の光源ユニット UNの外観を正 面図でそれぞれ示しており、図 7(B)と図 9(B)は図 7(A)と図 9(A)における P— P'線断 面をそれぞれ示している。タイプ 1, 2の光源ユニット UNは、いずれも発光モジュール MJと放熱体 HSとから成っており、その違いは放熱体 HSが有する放熱フィン FNの 向きにある。図 6,図 8中の白抜き矢印で示すように、放熱体 HSは冷媒を放熱フィン FNに沿って一方向に流す構成になっており、それに対して垂直方向の流れは放熱 体 HS内部の壁面によって規制される。なお、図 7,図 9に示すように、電極リード (ァノ ード) LAと LEDチップ TPとは電線で接続されている。
[0053] タイプ 1の光源ユニット UN (図 6,図 7)では、電極リード LCの向きと放熱フィン FNの 向きとが垂直になっている。前述したように、電極リード LCが全て同一方向を向いた
発光モジュール MJを複数配置する場合、電極リード LCの方向に対して発光モジュ ール MJの隣接方向を垂直にすることがコンパクトィ匕を図る上で好ましい。そのように 発光モジュール MJを複数配置した場合 (後述する図 11参照。;)、放熱フィン FNの向 きが発光モジュール MJの隣接方向 (電極リード LCに対して垂直方向)に対して平行 になるように放熱体 HSを発光モジュール MJに取り付ければ、一方向の冷媒の流れ で全ての放熱体 HSを放熱させることができる。例えば、 3原色 RGBに対応した 3つの 光源ユニット UNを並べた場合、放熱フィン FNの向きが揃っているため、ファン等で 一気に冷やすことができる。したがって、光源ユニット UNを複数配置する場合には、 放熱フィン FNの向きは電極リード LCに対して垂直方向が好ましい。
[0054] タイプ 2の光源ユニット UN (図 8,図 9)では、電極リード LCの向きと放熱フィン FNの 向きとが平行になっている。つまり、電極リード LCと放熱フィン FNとが同一の方向を 向いている。このように構成すれば、一方向の冷媒の流れで電極リード LCと放熱フィ ン FNの両方を放熱させることができる。したがって、光源ユニット UNを 1つ配置する 場合には、放熱フィン FNの向きは電極リード LCの配向方向に対して平行方向であ ることが好ましい。
[0055] 上述したような発光モジュールに採用する LEDの発光色は、 RGBの少なくとも 3色 であることが好ましい。 LEDの発光色が少なくとも RGBの 3色であれば、フルカラー 発光の可能な発光モジュールを実現することができる。フルカラー発光の可能な発 光装置としては、 RGBに対応した 3つの発光モジュールからの光を色合成ミラーや色 合成プリズムで合成する光学構成が知られているが、色合成のための部品や空間が 必要となるので好ましくない。また、 1つの凹面反射面に複数の LEDを詰め込んだも のも知られている力 良好な配光特性を得ることは困難である。リフレタターとその凹 面反射面と同数の LEDとを有する発光モジュール (例えば、図 4及び図 5に示す発光 モジュール MJ)をフルカラーのプロジェクターに用いることを考えた場合、 RGBや RG BYの光を順番に点灯し、空間変調素子の画像信号と同期させることにより、小型で 高効率なフルカラーの発光モジュールを実現することができる。
[0056] LEDの発光色が RGBの少なくとも 3色の場合、例えば、図 4及び図 5に示す発光モ ジュール MJではリフレタター RTが凹面反射面 RSを 4面有する構成になっているの
で、 4つの LEDチップ TPを全て同一色としてもよく [例えば 3つの発光モジュール MJ において、同一色の 4つの LEDチップ TP(RRRR, GGGG, BBBB)をそれぞれ用い る。 ]、 RGBYの組み合わせとしてもよぐ RGGBの組み合わせとしてもよい。また、 R GB, RGBY等のように LEDを順番に点灯させてフルカラー表示を行う際、その点灯 タイミングを適正に設定することにより、全体の輝度を向上させることができる。具体的 には図 10に示す点灯タイミング (1フレーム:例えば 1Z30秒)で、例えば、 4色同一の 発光モジュール MJを 3つ用いて、(A)に示すように単純に RGBを 3分割する構成でも よいが、 RGBYや RGGBの組み合わせの発光モジュール MJを 1つ用いて、(B)に示 すように Gの時間を多くしたり、(C)に示すように同時に 2つ以上点灯する時間帯を設 けたり、(D)に示すように Yを Gと重ねる時間を作ったりしてもよい。
[0057] 次に、 4つの LEDチップ TPが全て同一色の発光モジュール MJを 3つ備えたプロジ エタターを説明する。図 11にタイプ 1の 3つの光源ユニット UN (赤色光源ユニット UR ,青色光源ユニット UB,緑色光源ユニット UG)の配置状態を示し、それらを光源装 置として備えたプロジェクターの概略光学構成を図 12に示す。赤色光源ユニット UR は 4つの LEDチップ TPが全て赤色発光を行うものであり、青色光源ユニット UBは 4 つの LEDチップ TPが全て青色発光を行うものであり、緑色光源ユニット UGは 4つの LEDチップ TPが全て緑色発光を行うものである。図 11に示す光源ユニット UR, UB , UGの配置では、放熱フィン FNの向きが揃っているため、ファン等で一気に冷やす ことが可能である (図 11,図 12中、冷媒の流れを白抜き矢印で示す。 )o
[0058] 図 12において、 MRは R反射用のミラー、 MBは R透過 ·Β反射用のダイクロイツクミ ラー、 MGは R反射 ·Β反射 'G透過用のダイクロイツクミラー、 LI, L2は集光度調整 用の凸レンズ、 CLはコンデンサーレンズ、 RIはロッドインテグレータ、 Μ1〜Μ3は第 1〜第 3ミラー、 ΡΑは表示パネル、 PLは投影光学系である。なお、ここでは表示パネ ル PAとしてデジタル ·マイクロミラ一 ·デバイスを想定している力 これに限らない。投 影光学系 PLに適した他の非発光 ·反射型 (又は透過型)の表示素子やライトバルブ( LCD等)を用いても構わな 、。
[0059] 図 12に示すように、光源ユニット UR, UB, UGから投影光学系 PLまでがプロジェ クタ一の主要部を成す光学エンジン部である。その光学エンジン部において、ミラー
MR, MB, MGと、凸レンズ LI, L2と、コンデンサーレンズじしと、ロッドインテグレー タ RIと、第 1〜第 3ミラー M1〜M3と、力も成る照明光学系により、光源ユニット UR, UB, UGからの光が表示パネル PAに導かれる。照明光学系により照明された表示 パネル PAの表示画像は、投影光学系 PLによってスクリーン (不図示)に投影される。
[0060] 各部の構成を更に詳しく説明する。光源ユニット UR, UB, UGは、いずれも発光モ ジュール MJと放熱体 HSと力も成るタイプ 1の構成を有している (図 6及び図 7)。各発 光モジュール MJが備えているリフレタター RTの凹面反射面 RSは、楕円面 (又は放 物面)から成っており、各光源ユニット UR, UB, UGは、対応する発光色の弱い収束 光 (又は平行光束)をそれぞれ射出する。光源ユニット URからの射出光はミラー MR で反射された後、凸レンズ L1,ミラー MB,凸レンズ L2の順に通過し、ミラー MGで反 射されてコンデンサーレンズ CLに入射する。光源ユニット UBからの射出光はミラー MBで反射された後、凸レンズ L2を通過し、ミラー MGで反射されてコンデンサーレ ンズ CLに入射する。光源ユニット UG力もの射出光はミラー MGを透過した後、コン デンサ一レンズ CLに入射する。上記のように Rの光が凸レンズ LI, L2を透過し、 B の光が凸レンズ L2を透過することにより、光源ユニット UR, UB, UGからの射出光の 、コンデンサーレンズ CLへの集光度は同等になる。そして、色合成後の照明光は、 コンデンサーレンズ CLにより集光されてロッドインテグレータ RIの入射端面近傍で結 像する。
[0061] ロッドインテグレータ RIは、 4枚の平面ミラーを貼り合わせて成る中空ロッド方式の光 強度均一化手段であり、入射端面力 入射してきた光を、その側面 (すなわち内壁面 )で何度も繰り返し反射することによりミキシングし、光の空間的なエネルギー分布を 均一化して射出端面から射出する。ロッドインテグレータ RIの入射端面と射出端面の 形状は、表示パネル P Aの表示面と相似の四角形になっている。また、ロッドインテグ レータ RIの入射端面は照明系瞳に対して共役になっており、ロッドインテグレータ RI の射出端面は表示パネル PAの表示面に対して共役になつて 、る。上記ミキシング 効果により射出端面での輝度分布は均一化されるため、表示パネル PAは効率良く 均一に照明されることになる。なお、ロッドインテグレータ RIは中空ロッドに限らず、四 角柱形状のガラス体力も成るガラスロッドでもよい。また、表示パネル PAの表示面形
状と適合するならば、その側面についても 4面に限らない。したがって、用いるロッドィ ンテグレータ RIとしては、複数枚の反射ミラーを組み合わせて成る中空筒体、多角柱 形状のガラス体等が挙げられる。
[0062] ロッドインテグレータ RIを射出した光は、第 1〜第 3ミラー M1〜M3から成る反射光 学系に入射する。そして、反射光学系がロッドインテグレータ RIの射出端面の像を表 示パネル PAの表示面上に形成する。反射光学系を構成している第 1,第 3ミラー Ml , M3の各反射面は凹面反射面になっており、第 2ミラー M2の反射面は凸面反射面 になっている。第 1ミラー Mlの凹面反射面によって、ロッドインテグレータ RIの入射 端面近傍の 2次光源が再結像して、第 2ミラー M2の凸面反射面近傍に 3次光源が形 成される。 3次光源からの光は、第 3ミラー M3の凹面反射面によって表示パネル PA に導かれる。表示パネル PAに入射した光は、 ONZOFF状態 (例えば ± 12° の傾 き状態)の各マイクロミラーで反射されることにより空間的に変調される。その際、 ON 状態のマイクロミラーで反射した光のみが投影光学系 PLに入射し、第 3ミラー M3の 凹面反射面のパワーによって投影光学系 PLの入射瞳に効率良く導かれる。そして、 投影光学系 PLによりスクリーンに投射される。
[0063] 図 12に示すプロジェクターにおいては、パワーを有する光学面として 2つの凹面反 射面と 1つの凸面反射面のみを反射光学系に有する構成になっている。このため、 照明光学系の部品点数の削減とコンパクトィ匕を達成することが可能であり、色収差が 発生しないため色ムラの発生もなぐ照度低下を抑えることができる。したがって、良 好な光学性能を保持しつつ、コンパクトで量産性やコスト面で有利な光学部品を用い ることが可能となり、表示装置の低コスト化 'コンパクトィ匕 ·高性能化を達成することが 可能となる。
[0064] また、投影光学系 PLは表示パネル PA側に斜めノンテレセントリックな構成になって おり、表示パネル PAから投影光学系 PLの入射瞳に向けて光線が集光されるように レイアウトされている。ノンテレセントリックな光学系の場合、投影光学系がコンパクト になるというメリットがある反面、照明光学系においてコンデンサーレンズ機能を有す る光学素子が大きくなるという不具合もある。このプロジェクターのように、照明光学系 においてパワーを有する光学素子として、凹面反射面を有する第 1,第 3ミラー Ml,
M3を用いるとともに、照明系瞳近傍 (すなわち 3次光源近傍)に凸面反射面を有する 負パワーの第 2ミラー M2を配置すれば、コンデンサーレンズとして機能する第 3ミラ 一 M3に対し、像高 [つまり表示パネル PAの表示面 (像面)上での位置]の違う光線ご とに角度差を大きくつけて入射させることができる。したがって、小さなスペースで効 率的に光線を広げて、表示パネル PA側にノンテレセントリックな投影光学系 PL向き の照明光学系を構成することができる。
[0065] このプロジェクターの場合、ロッドインテグレータ RIの射出端面と照明系瞳との間に リレーレンズ機能を有する第 1ミラー Mlを配置して、ロッドインテグレータ RIの入射端 面と照明系瞳とが共役になるように第 1ミラー Mlのパワーが設定されている。また、 照明系瞳と表示パネル PAとの間にコンデンサーレンズ機能を有する第 3ミラー M3を 配置して、投影系瞳よりも表示パネル PA側に位置する投影光学系 PLの一部と合わ せて、照明系瞳と投影系瞳とが共役になるように第 3ミラー M3のパワーが設定されて いる。それとともに、リレーレンズ機能を有する第 1ミラー Mlとコンデンサーレンズ機 能を有する第 3ミラー M3とで、ロッドインテグレータ RIの射出端面と表示パネル PAの 表示面とが共役になるように設定されている。この構成によると、ロッドインテグレータ RIの射出端面から出た光を、小型の表示パネル PAに効率的に導いて、その表示面 力もの反射光を投影光学系 PLに効率的に導くことができる。したがって、照明光学 系において高い光学性能を保持しながら照度低下を少なくすることが可能となり、し 力も表示装置の低コストィ匕 ·コンパクトイ匕を達成することができる。
[0066] また、凹面反射面を有する第 1,第 3ミラー Ml, M3間において、凸面反射面を有 する第 2ミラー M2が、ロッドインテグレータ RIの光軸と投影光学系 PLの光軸とが略 平行になるように光路を折り曲げ、ロッドインテグレータ RIの光軸方向と表示パネル P Aの表示面の法線方向とが略一致するように光路を折り曲げる構成になってる。この ように、ロッドインテグレータ RIの光軸と投影光学系 PLの光軸とが略平行になるよう に、又はロッドインテグレータ RIの光軸方向と表示パネル P Aの表示面の法線方向と が略一致するように、 2つの凹面反射面の間に凸面反射面を有することが望ましい。 第 1,第 3ミラー Ml, M3間で光路を折り曲げることにより、表示装置全体の光学構成 をコンパクトィ匕することが可能となり、さらに設計基準軸の共通化による誤差の低減、
位置調整の簡素化、レイアウトの自由度の確保等が可能となる。また、第 1,第 3ミラ 一 Ml, M3を一部品化することにより、 2つの凹面反射面を 1つの部品に一体化する ことが好ましぐこれにより部品点数の削減、誤差の低減及び精度の向上を達成する ことが可能となる。
[0067] 第 1,第 3ミラー Ml, M3に設けられている凹面反射面と第 2ミラー M2に設けられて いる凸面反射面は、いずれも自由曲面形状を成している。この実施の形態のよう〖こ 反射面のパワーのみで照明光学系を構成する場合には、そのうちの少なくとも 1面を 自由曲面にすれば、それに応じた照明効率の向上が可能となる。例えば、表示パネ ル PAとしてデジタル 'マイクロミラー ·デバイスを用いた場合、表示面に対する斜め照 明が必須となるが、自由曲面を用いれば斜め照明に際しても歪曲等の収差を良好に 補正することができる。それにより、投影光学系 PLの入射瞳に向けて効率的に光を 導いて、表示を明るくすることができる。つまり、ロッドインテグレータ RIの射出端面に 対して共役な表示パネル PAへの結像性能 (例えばボケや歪曲)を高めることができる ので、表示パネル PAでの反射光を投影光学系 PLの入射瞳に効率的に集めて、照 明効率を上げることが可能となるのである。また、画面中の位置による照度変化も少 なくできるので、明るさムラの低減も可會となる。
[0068] このプロジェクターにおいて第 1,第 3ミラー Ml, M3の凹面反射面を自由曲面形 状にしているのは、表示パネル PAに最も近い凹面反射面やロッドインテグレータ RI の射出端面に最も近い凹面反射面を自由曲面形状にすることが、上記照明効率の 向上や明るさムラの低減を達成する上で有効だ力 である。表示パネル PAとしてデ ジタル ·マイクロミラー ·デバイスを用いた場合、表示パネル PAに最も近 、凹面反射 面を自由曲面にすると、 ON状態のマイクロミラーで反射した照明光を効率良く投影 系瞳に導くことができる。したがって、照明効率の向上や明るさムラの低減を効果的 に達成することが可能である。また、ロッドインテグレータ RIの射出端面に最も近い凹 面反射面を自由曲面形状にすると、射出端面を表示パネル PA上で結像させる際の 収差補正を良好に行うことが可能となる。それによつて、歪曲やボケの低減による照 明効率の向上を更に効果的に達成することができる。
[0069] また、表示パネル PAの表示面の縦方向を y軸方向とし横方向を z軸方向とすると、
第 1,第 3ミラー Ml, M3の凹面反射面は、いずれも y軸方向と z軸方向とにそれぞれ 非対称な自由曲面形状を有している。このように、反射光学系を構成する凹面反射 面のうちの少なくとも 1面は、 y軸方向と z軸方向とにそれぞれ非対称な自由曲面形状 を有することが望ましい。こうすることで、その凹面反射面に当たる位置によって光線 の反射方向を制御しやすくなるため、結像や歪曲の光学性能を向上させることができ る。また、このプロジェクターの場合、図 12から分かるように、物体面 (ロッドインテグレ ータ RIの射出端面)と像面 (表示パネル PAの表示面)とが主に z軸方向に大きくなつて おり、各凹面反射面の自由曲面もそのレイアウトを反映した形状で最適化されている
[0070] さらに、ロッドインテグレータ RIの射出端面の中心から表示パネル PAを通過し、投 影光学系 PLの入射瞳中心に至る光線が、自由曲面形状の凹面反射面に当たる点 での曲率半径について、自由曲面形状を有する凹面反射面が条件: I 自由曲面形 状を有する凹面反射面への入射光線と射出光線とを含む平面に垂直であるとともに 、その凹面反射面の法線ベクトルを含む平面で切られる曲率半径 I < I 自由曲面 形状を有する凹面反射面への入射光線と射出光線とを含む平面で切られる曲率半 径 Iの関係を満足し、その自由曲面形状が面対称性を有しないことが望ましい。この 構成によると、光学性能の向上を図り、歪曲を減少させたり、結像性能を向上させた りすることが可能になる。ひいては、照明効率を高めることが可能になる。
[0071] 各ミラー M1〜M3の反射面を構成する基板材料としては、ガラス,プラスチック,金 属,セラミック等、いずれの材料を用いてもよぐ必要に応じたものを用いればよい。 例えば、温度変化による結像性能の劣化を防ぐには、ガラス等の形状変化の少ない 材料が好ましぐコストを低減するには、 PMMA(polymethyl methacrylate), PC(poly carbonate)等のプラスチック材料が好ましい。照明効率を高くするには基板上に反射 率の高いコートを施す必要があり、具体的には A1 (アルミニウム)や Ag (銀)等の金属反 射薄膜を形成したり、誘電体をコートした増反射膜を形成したりすればよい。また、数 十層の誘電体力 成る多層膜をコートしてもよい。その場合、金属膜とは異なり、金属 による光吸収がないため、使用時にも吸収光が熱に変わるといった不具合がないの で好ましい。また、反射面の可視光での反射率は、概ね 90%以上の反射率があるこ
とが好ましい。
[0072] 図 13に、光源装置として発光モジュールを 1つ備えたプロジェクター (画像投影装 置)の一実施の形態を示し、その構成を以下に説明する。図 13において、 MJは発光 モジュール、 1は一対のレンズアレイ、 2はコンデンサーレンズ、 3はフィールドレンズ、 4は透過型液晶素子 (LCD : liquid crystal display), 5は投影光学系、 STは絞りである 。発光モジュール MJは、凹面反射面 RSを 4面有するリフレタター RTと、 4つの LED チップ TPと、を備えている。そして、 4つの LEDチップ TPとして少なくとも 3原色 RGB に対応した発光色の 3つを含む組み合わせ (例えば、 RGBYや RGGBの組み合わせ )になっている。 LEDチップとして少なくとも RGBに対応した 3つを有する構成とするこ とにより、ダイクロイツクプリズムやダイクロイツクミラーを用いずに安価で小型のフル力 ラー表示を行うことが可能となる。なお、モノクロ表示の場合には単色照明でよいので 、全て同一色の LEDチップを用いてもよぐ凹面反射面を 1面のみ有するリフレタター を用いてもよい。
[0073] レンズアレイ 1,コンデンサーレンズ 2及びフィールドレンズ 3は、照明光学系の主要 な構成要素であり、発光モジュール MJ力 発せられた照明光は、その照明光学系に よって透過型液晶素子 4に導かれる。その際、レンズアレイ 1の各セルを射出した照 明光は、コンデンサーレンズ 2で透過型液晶素子 4上に重ね合わせられることにより 空間的なエネルギー分布が均一化されて、透過型液晶素子 4を均一に照明する。透 過型液晶素子 4は時分割駆動する構成になっており、透過型液晶素子 4はその画像 信号と同期した点灯タイミング (例えば RGB又は RGBYの順)で発光モジュール MJか らの照明を受けることになる。そして、照明光学系により照明された透過型液晶素子 4 により形成された画像は、投影光学系 5によってスクリーン (不図示)に投影される。
[0074] 図 13に示すプロジェクターにおいて、透過型液晶素子 4は時分割駆動する構成に なっている。このため、単板式でありながら空間変調のための液晶素子面の全域を有 効利用して、高精細な画像をコンパクトな構成で得ることができる。空間変調素子を 用いた画像表示方法としては、 3板方式,単板カラーフィルター方式,単板時分割方 式等が挙げられる。 3板方式の場合、空間変調素子が 3枚必要となるので、コストアツ プ,大型化を招いてしまう。単板カラーフィルター方式の場合、画素サイズが 1Z3に
なるので暗くなり、明るさを稼ぐために画素を大きくすると全体が大型化してしまう。空 間変調素子が時分割駆動する単板時分割方式の場合、空間変調素子全域を有効 に使えるので、高画質化'コンパクト化'低コストィ匕の点で好ましい。また、複数の LE Dチップのうち少なくとも 1つが他とは異なる波長域の光を放射する構成であれば、多 色表示が可能となるので、カラー化の方法として単板時分割方式を採用すれば、色 合成のためのダイクロイツクプリズムやダイクロイツクミラーが不要となる。色合成用の 光学部材を設ける必要がないので、発光モジュールと透過型空間変調素子との間隔 を短縮することができ、画像投影装置の小型化が可能になる。
[0075] 単板時分割方式で駆動する空間変調素子には反射型と透過型がある。反射型の 例としては、デジタル ·マイクロミラ^ ~·デバイス (digital micromirror device)や反射型 液晶素子が挙げられる。デジタル'マイクロミラー'デバイスを用いる場合には入射光 と反射光とを分離するための大きな空間が必要となり、反射型液晶素子を用いる場 合には偏光ビームスプリツター (PBS)を挿入する必要がある。したがって、反射型の 空間変調素子を用いる場合には、空間変調素子と投影光学系との間に一定の空間 が必要となり、レンズバックの大きな投影光学系は必然的に大型化することになる。そ れに対して、透過型液晶素子 4のような透過型の空間変調素子を用いる場合には、 空間変調素子の直後に投影光学系を配置することが可能である。したがって、投影 光学系の小型化が可能になるとともに、画像投影装置全体の小型化も可能となる。
[0076] また後で詳しく説明するが、いわゆる反射型 LEDの構造を有する発光モジュールと 透過型の空間変調素子との組み合わせにより、画像投影装置を小型化するとともに 明るい投影像を得ることが可能になる。この組み合わせでは、例えば図 13に示す発 光モジュール MJの小型化とともに、その前面と透過型液晶素子 4(特にその入射側 偏光板)との空間的に近い配置により、画像投影装置の小型化が可能となる。
[0077] 透過型の空間変調素子としては、サファイア基板の透過型液晶素子が好ま 、。サ ファイア上に作製された電極は、一般にガラス上のものよりも電気伝導性が高い。し たがって、ガラスの上に電極を配置する液晶素子よりも配線の寸法を細くできる。そ の結果、透過型液晶素子の開口率を上げることができるので、明るい表示が可能と なる。なお、ここでは透過型の空間変調素子として透過型液晶素子 4を例示している
力 これに限らない。透過型液晶素子 4の代わりに、照明光を空間的に変調すること により画像を形成する他のタイプの透過型の空間変調素子を用いてもよい。
[0078] 図 13に示す発光モジュール MJには、図 4〜図 9で説明したように、発光体として L EDが用いられている。 LEDには、小型.安価.低消費電力といったメリットがあり、電 球のように切れな 、ため交換不要であり、放電ランプのように発光開始までに時間が 力からず速やかに起動できる等のメリットもある。このため、 LEDは携帯可能な小型 画像投影装置の光源装置に好適な発光体と言える。また発光モジュール MJには、 前述した特長のあるリフレタター RTが用いられているため、小型の画像投影装置で ありながら高輝度 ·高効率ィ匕により明るい投影像を得ることが可能になる。 LEDは通 常発散角が大き 、と 、う特性があり、プロジェクターの光源として利用する場合には、 発散角度の最適化 (集光)を行わないと効率が悪い。一般に LED力 の光を集光する ためにレンズが用いられる力 レンズだと全ての光を取り込むのが困難である。その 反面、反射型であれば折り返しがあるので、スペース効率も高く大型化しにくい上に 、半球状に発光する全ての光を取り込むことができるので利用効率も高い。
[0079] 前述したように、 LEDチップでは放熱が必要になる力 LEDチップが固定される電 極リードは放熱体も兼ねるので、電極リードで LEDチップを速やかに冷やすことがで きる。したがって、 LEDチップの高温ィ匕を防止して高輝度化を達成することができる。 一般に、ジャンクション温度を一定に保てるまでは電流量に比例した光パワー (明るさ )が得られる力 ジャンクション温度が高くなると、追加投入電流は熱となってしまう。放 熱を効果的に行えば、ジャンクション温度を一定に保てる電流を大きくすることができ るので、投入電流に比例した明るさが得られる。したがって、発光モジュールの高輝 度化により、投影像の明るい小型で低コストの画像投影装置を実現することができる
[0080] LEDの発光色が RGBの少なくとも 3色の場合、例えば、図 4及び図 5に示す発光モ ジュール MJではリフレタター RTが凹面反射面 RSを 4面有する構成になっているの で、 4つの LEDチップ TPを RGBYの組み合わせとしてもよぐ RGGBの組み合わせ としてもよい。また、 RGB, RGBY等のように LEDを順番に点灯させてフルカラー表 示を行う際、その点灯タイミングを適正に設定することにより、全体の輝度を向上させ
ることができる。具体的には図 10に示す点灯タイミング (1フレーム:例えば 1Z30秒) で、例えば、 RGBYや RGGBの組み合わせの発光モジュール MJを 1つ用いて、(A) に示すように単純に RGBを 3分割する構成にしてもょ 、が、(B)に示すように Gの時間 を多くしたり、(C)に示すように同時に 2つ以上点灯する時間帯を設けたり、(D)に示す ように Yを Gと重ねる時間を作ったりしてもよい。
[0081] 図 13から分力るように、投影光学系 5は透過型液晶素子 4側にテレセントリックにな つており、また、透過型液晶素子 4の画面中心と投影光学系 5の光軸 PXとが一致し ている (なお、各々中心軸 CXとも一致している。 )0この画像投影装置のように色の角 度合成が行われる場合には、投影画面上での色ムラの発生が懸念される。しかし、 上記のように投影光学系が空間変調素子側にテレセントリックな構成、又は空間変調 素子の画面中心と投影光学系の光軸とがー致した構成とすることにより、色の角度合 成による投影画面上での色ムラの発生を抑えることができる。したがって、投影光学 系が空間変調素子側にテレセントリックな構成、又は空間変調素子の画面中心と投 影光学系の光軸とがー致した構成が好ましい。また、投影光学系が空間変調素子側 にテレセントリックな構成と、空間変調素子の画面中心と投影光学系の光軸とがー致 した構成と、を同時に満足することが更に好ましい。
[0082] 例えば、図 14(A)に示すように、 Rと Gの光が透過型液晶素子 4を照明する際、投影 光学系 5の Fナンバー (Fnop)内に入らない光はケラレてしまう (Q :ケラレ部分)。投影 光学系 5が透過型液晶素子 4側にテレセントリックである場合、軸上,軸外共にケラレ の量は同じになる。しかし、投影光学系 5が透過型液晶素子 4側にテレセントリックで ない場合、図 14(B)に示すように、軸外ではケラレ量が異なるので色ムラが生じる。し たがってこの色ムラの発生は、投影光学系を空間変調素子側にテレセントリックな構 成とすることにより解消可能である。照明光学系についても同様であり、照明光学系 が空間変調素子側にテレセントリックな構成であることが好ましい。
[0083] 前述したように、反射型 LEDの構造を有する発光モジュールと透過型の空間変調 素子との組み合わせにより、画像投影装置を小型化するとともに明るい投影像を得る ことが可能になる。この組み合わせでは、例えば図 13に示す発光モジュール MJの前 面と透過型液晶素子 4(特にその入射側偏光板)とを空間的に近く配置することができ
る。透過型液晶素子 4では、その入射側偏光板が特定の偏光を吸収して高温ィ匕する ため、冷却が必要である。発光モジュール MJと透過型液晶素子 4とが近くに位置す ると、冷却構造の共通化が可能となる。そして冷却構造の共通化により、画像投影装 置の更なる小型化が可能となる。
[0084] 図 15に、冷却構造を有する画像投影装置の一実施の形態を示す。この画像投影 装置は、図 13に示す画像投影装置に、ダ外 6と冷却装置 (例えば送風機) 7を追加し たものである (レンズアレイ 1は図示省略している。 )o冷却装置 7からは空気が冷媒と してダクト 6内に送り込まれる。その風の流れをダクト 6内の矢印で示す。冷却装置 7 力 出た風は、発光モジュール MJの電極リード LCに触れて LEDチップ TPを冷却し 、透過型液晶素子 4を冷却した後、ダクト 6から排気される。このように空間変調素子 と発光モジュールとを同一の冷却装置によって冷却する構成とすることにより、画像 投影装置全体の小型化を図りながら、高い放熱効果を得ることができる。そして、発 光モジュールでは電極リードの放熱効果が向上する結果、更なる高輝度化の達成が 可能となる。
[0085] 前述したように、発光モジュールが少なくとも RGBに対応した 3つの LEDチップを 有する構成とすることにより、ダイクロイツクプリズムやダイクロイツクミラーを用いずに、 安価で小型にフルカラー表示を実現することが可能となる。このような構成では、投 影光学系の NA(numerical aperture)が各色の NAよりも大きいことが好ましい。例え ば図 16に示すように、 LEDチップ TRからの Rの光と LEDチップ TGからの Gの光が、 それぞれ凹面反射面 RSで反射され、リフレタター RTをほぼ平行に射出し、コンデン サーレンズ 2で集光され、フィールドレンズ 3を通過した後、透過型液晶素子 4を照明 する場合、 R発光の LEDチップ TRからの光 (実線で示す。)の NAを NArとし、 G発光 の LEDチップ TGからの光 (破線で示す。)の NAを NAgとし、投景光学系 5の NAを N Apとすると、投影光学系 5の NApが発光モジュール MJカゝら投影光学系 5に入る各 色の NAr, NAgよりも大きいことが好ましい。
[0086] 発光モジュールが少なくとも RGBに対応した 3つ LEDチップを有する構成では、各 色の光が空間変調素子に異なった入射角度で入射するので、投影光学系の NAを 各色よりも大きくしておかないと、光源力もの光が投影光学系を通ってスクリーンに有
効に到達することができない。このため、 R, G, Bの光が全て投影光学系に入射する ように、投影光学系の有効径 (つまり NA)を設定する必要がある。投影光学系の NA が発光モジュールから投影光学系に入る各色の NAよりも大き 、構成に設定すれば 、色合成にプリズムやミラーを用いなくても、発光モジュール力も射出した光を効率良 く投影光学系に入射させることが可能となる。また、図 16に示すように、投影光学系 5 の光軸 PXを挟んで 2つの発光点が存在する場合には、投影光学系の NAを発光モ ジュール力 投影光学系に入る各色の NAの 2倍にすることが更に好まし 、。
[0087] 一般に LED力 発せられる光は無偏光であるため、偏光を利用する液晶素子にお V、てはその入射の前と後に偏光板が必要となる。偏光板としては吸収型と反射型が 知られているが、液晶素子の入射側偏光板として吸収型偏光板を用いると、入射側 偏光板が特定の偏光を吸収して高温ィ匕することになる。これを避けるには、例えば図 13に示すプロジェクターにおいて、レンズアレイ 1とコンデンサーレンズ 2との間に偏 光ビームスプリツターアレイと 1Z2波長板とで構成された偏光変換素子を用いればよ い。また、反射型偏光板を用いれば高温ィ匕を避けることができ、入射側偏光板で照 明光にロスが生じないように光利用効率を上げることも可能である。入射側偏光板で の照明光のロスを避けるには、反射型偏光板で反射させた光を再利用する光学構成 にすればよい。例えば、発光モジュールと空間変調用の液晶層との間に反射型偏光 板を配置し、発光モジュールと反射型偏光板との間に 1Z4波長板を配置すればよ い。これにより、反射型偏光板での反射光を 1Z4波長板での偏光変換により再利用 することが可能となる。以下に具体的な構成例 (図 17,図 18)を挙げて更に詳しく説 明する。
[0088] 図 17に、反射型偏光板を用いた第 1の構成例を示す。透過型液晶素子 40は、光 入射側から順に、入射側偏光板 41,液晶層 42及び射出側偏光板 43から成っており 、入射側偏光板 41として反射型偏光板、射出側偏光板 43として吸収型偏光板がそ れぞれ用いられている。反射型偏光板は、特定の直線偏光を透過させるとともにその 直線偏光に対して振動面 (すなわち偏光方向)が垂直な直線偏光を反射させるもので ある。その具体例としては、例えば住友スリーェム (株)製の DBEF (商品名),ワイヤー グリッドが挙げられる。また、透過型液晶素子 40の光入射側には、入射側偏光板 41
の透過軸に対して 45度傾 、た 1Z4波長板 8が挿入されて 、る。
[0089] 発光モジュール MJの LEDチップ T1から射出した光 (実線で示す。)は、凹面反射 面 RS1で反射され、コンデンサーレンズ 2, 1Z4波長板 8を順に透過した後、透過型 液晶素子 40に入射する。特定の偏光方向の直線偏光は入射側偏光板 41を透過す るが、それに直交する偏光方向の直線偏光は入射側偏光板 41で反射される。入射 側偏光板 41を透過した光 (実線)は、液晶層 42に入射して、映像信号に対応した電 圧の印加により偏光状態が空間的に変調された後、射出側偏光板 43に入射する。 射出側偏光板 43は、液晶層 42で変調された光の偏光状態の違いを光の強度の違 いに置き換えることにより画像を形成する。
[0090] 入射側偏光板 41で反射した光 (破線で示す。)は、 1Z4波長板 8,コンデンサーレ ンズ 2を順に透過した後、(凹面反射面 RS1に隣接する)凹面反射面 RS2で反射され 、 LEDチップ T2に到達する。 LEDチップ T2は光学的に透明体であるため、光は LE Dチップ T2を透過した後、電極リード LCで反射され、再び LEDチップ T2を透過した 後、凹面反射面 RS2で反射される。 LEDチップ T2が固定されている電極リード LC の表面は鏡面又は反射コート (例えば、アルミニウム,銀等の金属材料から成る反射 率の高 、反射コート)が施された面であることが望まし 、。そのように表面処理を施し ておけば、凹面反射面 RS2からの反射光が入射してきた場合でも再び凹面反射面 R S2に向けて反射させることができ、また、電極リード LCの放熱体としての機能を向上 させることち可會である。
[0091] 凹面反射面 RS2で反射された光は、コンデンサーレンズ 2, 1Z4波長板 8を順に透 過した後、透過型液晶素子 40に再入射する。このとき透過型液晶素子 40に再入射 する光は、入射側偏光板 41で反射されてからの往復により 1Z4波長板 8を 2回透過 している。結果として、入射側偏光板 41で反射された状態力も偏光方向が 90度回転 して 、るため (つまり反射時の偏光方向に対して直交方向の偏光状態にあるため)、 入射側偏光板 41を透過することができる。入射側偏光板 41を透過した光 (破線)は、 液晶層 42に入射して、映像信号に対応した電圧の印加により偏光状態が空間的に 変調された後、射出側偏光板 43に入射する。射出側偏光板 43は、液晶層 42で変 調された光の偏光状態の違いを光の強度の違いに置き換えることにより画像を形成
する。
[0092] 上記のように、透過型液晶素子の入射側偏光板として反射型偏光板を用いれば、 液晶表示に不要な偏光成分は発光モジュール側に戻される。発光モジュールは反 射型 LEDの構造を有しているので、戻ってきた光は再び透過型液晶素子に向かう。 この往復で偏光方向が 90度回転するように、発光モジュール力 透過型液晶素子の 入射側偏光板までの間に 1Z4波長板を配置しておけば、戻ってきた光は液晶表示 に必要な偏光成分として再利用される。したがって、照明光にロスが生じず、光利用 効率が向上することになる。また、入射側偏光板として反射型偏光板を用いれば、そ こでの照明光の吸収に起因する高温ィ匕を防止することも可能となる。
[0093] 図 18に、反射型偏光板を用いた第 2の構成例を示す。透過型液晶素子 4は、光入 射側から順に、入射側偏光板 4a,液晶層 4b及び射出側偏光板 4cから成っており、 入射側偏光板 4a及び射出側偏光板 4cとして吸収型偏光板が用いられて 、る。発光 モジュール MJとコンデンサーレンズ 2との間には、発光モジュール MJ側から順に、 1 Z4波長板 8と反射型偏光板 44とが配置されており、 1Z4波長板 8は反射型偏光板 44の透過軸に対して 45度傾いた配置になっている。反射型偏光板 44は、前記入射 側偏光板 41(図 17)と同様、特定の直線偏光を透過させるとともにその直線偏光に対 して振動面 (すなわち偏光方向)が垂直な直線偏光を反射させるものであり、その具 体例としては、例えば住友スリーェム (株)製の DBEF (商品名),ワイヤーグリッドが挙 げられる。
[0094] 発光モジュール MJの LEDチップ T1から射出した光 (実線で示す。)は、凹面反射 面 RS1で反射され、 1Z4波長板 8を透過した後,反射型偏光板 44に入射する。特 定の偏光方向の直線偏光は反射型偏光板 44を透過する力 それに直交する偏光 方向の直線偏光は反射型偏光板 44で反射される。反射型偏光板 44を透過した光( 実線)は、コンデンサーレンズ 2を透過した後、透過型液晶素子 4に入射する。入射側 偏光板 4aは、反射型偏光板 44を透過した光を透過させる構成になっているため、入 射側偏光板 4aでは照明光の吸収は生じない。入射側偏光板 4aを透過した光は、液 晶層 4bに入射して、映像信号に対応した電圧の印加により偏光状態が空間的に変 調された後、射出側偏光板 4cに入射する。射出側偏光板 4cは、液晶層 4bで変調さ
れた光の偏光状態の違いを光の強度の違いに置き換えることにより画像を形成する
[0095] 反射型偏光板 44で反射した光 (破線で示す。)は、 1Z4波長板 8を透過した後、凹 面反射面 RS1で反射され、 LEDチップ T1に到達する。 LEDチップ T1は光学的に 透明体であるため、光は LEDチップ T1を透過した後、電極リード LCで反射され、再 び LEDチップ T1を透過した後、凹面反射面 RS1で反射される。 LEDチップ T1が固 定されている電極リード LCの表面は鏡面又は反射コート (例えば、アルミニウム,銀 等の金属材料から成る反射率の高 、反射コート)が施された面であることが望ま 、。 そのように表面処理を施しておけば、凹面反射面 RS1からの反射光が再入射してき た場合でも再び凹面反射面 RS1に向けて反射させることができ、また、電極リード LC の放熱体としての機能を向上させることも可能である。
[0096] 凹面反射面 RS1で反射された光は、 1Z4波長板 8を透過した後、反射型偏光板 4 4に再入射する。このとき反射型偏光板 44に再入射する光は、反射型偏光板 44で 反射されてからの往復により 1Z4波長板 8を 2回透過している。結果として、反射型 偏光板 44で反射された状態力も偏光方向が 90度回転しているため (つまり反射時の 偏光方向に対して直交方向の偏光状態にあるため)、反射型偏光板 44を透過するこ とができる。反射型偏光板 44を透過した光 (破線)は、コンデンサーレンズ 2を透過し た後、透過型液晶素子 4に入射する。入射側偏光板 4aは、反射型偏光板 44を透過 した光を透過させる構成になって 、るため、入射側偏光板 4aでは照明光の吸収は生 じない。入射側偏光板 4aを透過した光は、液晶層 4bに入射して、映像信号に対応し た電圧の印加により偏光状態が空間的に変調された後、射出側偏光板 4cに入射す る。射出側偏光板 4cは、液晶層 4bで変調された光の偏光状態の違いを光の強度の 違いに置き換えることにより画像を形成する。
[0097] 上記のように、透過型液晶素子と発光モジュールとの間のどこかに反射型偏光板を 配置すれば、液晶表示に不要な偏光成分は発光モジュール側に戻される。発光モ ジュールは反射型 LEDの構造を有して 、るので、戻ってきた光は再び透過型液晶 素子に向かう。この往復で偏光方向が 90度回転するように、発光モジュール力 反 射型偏光板までの間に 1Z4波長板を配置しておけば、戻ってきた光は液晶表示に
必要な偏光成分として再利用される。したがって、照明光にロスが生じず、光利用効 率が向上することになる。また、透過型液晶素子の入射側偏光板での照明光の吸収 に起因する高温ィ匕を防止することも可能となる。なお、透過型液晶素子の入射側偏 光板に入射する光の偏光状態は基本的に揃って ヽるので、入射側偏光板を省略す ることち可會である。
[0098] 以上の説明から分かるように、上述した各実施の形態等には以下の構成が含まれ ている。
[0099] 第 1の構成のリフレクタ一は、複数の凹面反射面を有する単一のリフレタターであつ て、各凹面反射面は隣接する凹面反射面との境界において外形の一部が切り欠か れていることを特徴とする。
[0100] 第 2の構成のリフレクタ一は、複数の凹面反射面を有する単一のリフレタターであつ て、各凹面反射面がリフレタターの中心軸に対して回転対称に配置されており、リフ レクターをその中心軸に沿って正面から見たとき、隣接する凹面反射面との境界がリ フレタターの中心軸に向 、た直線を成して 、ることを特徴とする。
[0101] 第 3の構成のリフレクタ一は、上記第 1又は第 2の構成において、前記凹面反射面 が少なくとも 1つの焦点を持つ回転対称面であり、前記凹面反射面の光軸方向の厚 みが凹面反射面の面頂点から焦点までの距離とほぼ等しぐ前記回転対称面が 2以 上の焦点を持つ場合には前記凹面反射面の光軸方向の厚みが凹面反射面の面頂 点からその面頂点に近い方の焦点までの距離とほぼ等しいことを特徴とする。
[0102] 第 4の構成の発光モジュールは、上記第 1〜第 3のいずれ力 1つの構成に係るリフ レクターと、前記凹面反射面と同数の LEDと、を有する発光モジュールであって、前 記 LEDが LEDチップと LEDチップを固定する電極リードを有しており、前記 LEDチ ップが各凹面反射面の焦点位置又はその近傍に配置されており、各 LEDチップに 対し電極リードが前記凹面反射面とは反対側に配置されていることを特徴とする。
[0103] 第 5の構成の発光モジュールは、上記第 4の構成にぉ 、て、前記凹面反射面を 4面 有することを特徴とする。
[0104] 第 6の構成の発光モジュールは、上記第 4又は第 5の構成において、前記 LEDの 発光色が RGBの少なくとも 3色であることを特徴とする。
[0105] 第 7の構成の発光モジュールは、上記第 4〜第 6のいずれ力 1つの構成において、 前記電極リードの形状が、前記凹面反射面の光軸に対して垂直な平面上でのサイズ のうち最も小さ 、サイズよりも、前記凹面反射面の光軸に対して平行方向のサイズの 方が大きいことを特徴とする。
[0106] 第 8の構成の発光モジュールは、上記第 4〜第 7のいずれか 1つの構成において、 前記 LEDチップと接している電極リードが全て同一方向を向いていることを特徴とす る。
[0107] 第 1又は第 2の構成によれば、リフレタターが複数の凹面反射面を有する単一構成 になっているため、高輝度 ·高効率としながら全体の小型化が可能になるとともに組 み立て作業が不要になる。さらに、隣接する凹面反射面との境界において各凹面反 射面の外形の一部が切り欠かれており、あるいはリフレタターをその中心軸に沿って 正面から見たとき、隣接する凹面反射面との境界がリフレタターの中心軸に向いた直 線を成しているため、リフレタターがその中心軸に対して垂直方向に小さくなつて、よ り一層の小型化が可能となる。したがって、高輝度'高効率の小型発光モジュールを 実現することができる。また第 2の構成によれば、各凹面反射面がリフレタターの中心 軸に対して回転対称に配置されているため、均質発光の可能な高輝度'高効率の小 型発光モジュールを実現することができ、一般的な回転対称光学系に適用した場合 に照明ムラ等を防止することができる。
[0108] 第 3の構成によれば、凹面反射面が少なくとも 1つの焦点を持つ回転対称面であり 、凹面反射面の光軸方向の厚みが凹面反射面の面頂点から焦点までの距離とほぼ 等しぐ回転対称面が 2以上の焦点を持つ場合には凹面反射面の光軸方向の厚み が凹面反射面の面頂点からその面頂点に近い方の焦点までの距離とほぼ等しくなつ ているため、リフレタターをその中心軸に対して垂直方向及び平行方向に小さくする とともに、光の利用効率及び配光特性を良好にすることができる。
[0109] 第 4の構成によれば、 LEDチップが各凹面反射面の焦点位置又はその近傍に配 置されており、各 LEDチップに対し電極リードが凹面反射面とは反対側に配置され ているので、 LEDチップからの光はほとんど全て凹面反射面で反射される。このため 、高い光利用効率を達成することができる。また、電極リードが放熱体として作用する
ため、 LEDチップの高温ィ匕を防止して高輝度化を達成することができる。
[0110] 第 5の構成によれば、リフレタターが凹面反射面を 4面有する構成になっているため 、リフレタターの外形 (つまり、リフレタターをその中心軸に沿って正面から見たときの 形状)が正方形に近くなる。したがって、複数の発光モジュールを中心軸が互いに平 行になるように水平方向や垂直方向に並べる際、隙間が生じな 、ように密に並べるこ とができる。また第 6の構成によれば、 LEDの発光色が 3原色 RGBの少なくとも 3色 になって!/、るため、フルカラー発光可能な発光モジュールとすることができる。
[0111] 第 7の構成によれば、電極リードの形状が、凹面反射面の光軸に対して垂直な平 面上でのサイズのうち最も小さいサイズよりも、凹面反射面の光軸に対して平行方向 のサイズの方が大きい構成になっているため、電極リードで遮光される反射光量を最 小限に抑えながら、電極リードによる高い放熱効果を得ることができる。また第 8の構 成によれば、 LEDチップと接して ヽる電極リードが全て同一方向を向!、た構成になつ ているため、冷媒 (空気,液体等)の流れを妨げることなく電極リードに冷媒を触れさせ ることにより、放熱効果を向上させて高輝度化を達成することができる。
[0112] 第 9の構成の画像投影装置は、照明光を空間的に変調することにより画像を形成 する透過型の空間変調素子と、その空間変調素子を照明するための LED及びリフレ クタ一を有する発光モジュールと、前記空間変調素子により形成された画像を投影 する投影光学系と、を備えた小型の画像投影装置であって、前記 LED力LEDチッ プとその LEDチップを固定する電極リードとを有しており、前記 LEDチップ力 発せ られた光を反射させる凹面反射面を前記リフレタターが有しており、前記凹面反射面 の焦点位置又はその近傍に前記 LEDチップが配置されており、前記 LEDチップに 対し前記電極リードが前記凹面反射面とは反対側に配置されていることを特徴とする
[0113] 第 10の構成の画像投影装置は、上記第 9の構成において、前記リフレタターが複 数の凹面反射面を有する単一のリフレタターであって、前記 LEDチップが前記凹面 反射面と同数配置されており、各凹面反射面は隣接する凹面反射面との境界におい て外形の一部が切り欠かれて 、ることを特徴とする。
[0114] 第 11の構成の画像投影装置は、上記第 9又は第 10の構成において、前記リフレタ
ターが複数の凹面反射面を有する単一のリフレタターであって、前記 LEDチップが 前記凹面反射面と同数配置されており、各凹面反射面がリフレタターの中心軸に対 して回転対称に配置されており、リフレタターをその中心軸に沿って正面力 見たとき 、隣接する凹面反射面との境界がリフレタターの中心軸に向 、た直線を成して 、るこ とを特徴とする。
[0115] 第 12の構成の画像投影装置は、上記第 10又は第 11の構成において、前記複数 の LEDチップのうち少なくとも 1つが他とは異なる波長域の光を放射することを特徴と する。
[0116] 第 13の構成の画像投影装置は、上記第 12の構成において、前記空間変調素子 が時分割駆動することを特徴とする。
[0117] 第 14の構成の画像投影装置は、上記第 9〜第 13のいずれか 1つの構成において
、前記投影光学系が前記空間変調素子側にテレセントリックであることを特徴とする。
[0118] 第 15の構成の画像投影装置は、上記第 9〜第 14のいずれか 1つの構成において
、前記空間変調素子の画面中心と前記投影光学系の光軸とがー致していることを特 徴とする。
[0119] 第 16の構成の画像投影装置は、上記第 9〜第 15のいずれか 1つの構成において 、前記空間変調素子と前記発光モジュールとが同一の冷却装置によって冷却される 構成を有することを特徴とする。
[0120] 第 17の構成の画像投影装置は、上記第 10〜第 16のいずれか 1つの構成におい て、前記 LEDチップとして少なくとも 3原色 RGBに対応した 3つを有し、前記投影光 学系の NAが前記発光モジュール力も投影光学系に入る各色の NAよりも大き 、こと を特徴とする。
[0121] 第 9の構成によれば、 LEDチップが各凹面反射面の焦点位置又はその近傍に配 置されており、各 LEDチップに対し電極リードが凹面反射面とは反対側に配置され ているので、 LEDチップからの光はほとんど全て凹面反射面で反射される。このため 、高い光利用効率を達成することができる。また、 LEDチップを固定する電極リード が放熱体として作用するため、 LEDチップの高温ィ匕を防止して高輝度化を達成する ことができる。さらに、照明光を空間的に変調することにより画像を形成する空間変調
素子として、透過型の空間変調素子を有する構成になっているため、空間変調素子 により形成された画像を投影する投影光学系の小型化が可能になるとともに、画像 投影装置全体の小型化も可能となる。したがって、投影像の明るい小型で低コストの 画像投影装置を実現することができる。
[0122] 第 10又は第 11の構成によれば、リフレタターが複数の凹面反射面を有する単一構 成になっているため、高輝度 ·高効率としながら全体の小型化が可能になるとともに 組み立て作業が不要になる。さらに、隣接する凹面反射面との境界において各凹面 反射面の外形の一部が切り欠かれており、あるいはリフレタターをその中心軸に沿つ て正面力も見たとき、隣接する凹面反射面との境界がリフレタターの中心軸に向いた 直線を成して 、るため、リフレタターがその中心軸に対して垂直方向に小さくなつて、 より一層の小型化が可能となる。また第 11の構成によれば、各凹面反射面がリフレタ ターの中心軸に対して回転対称に配置されているため、均質発光の可能な高輝度- 高効率の小型発光モジュールを実現することができ、一般的な回転対称光学系に適 用した場合に照明ムラ等を防止することができる。
[0123] 第 12の構成によれば、複数の LEDチップのうち少なくとも 1つが他とは異なる波長 域の光を放射する構成になっているため、多色表示が可能となる。さらに第 13の構 成によれば、空間変調素子が時分割駆動する構成になっているため、単板式であり ながら空間変調素子の全域を有効利用して、高精細な画像をコンパクトな構成で得 ることができる。また時分割駆動のため、 LEDの発光はパルス発光となり、 LEDの非 発光時に LEDチップが冷却される。したがって発光時の出力をより高出力にできるた め、時分割駆動の空間変調素子と LED光源との組み合わせは高輝度化に適してい る。
[0124] 第 14の構成によれば、投影光学系が空間変調素子側にテレセントリックな構成に なっているため、色の角度合成による投影画面上での色ムラの発生を抑えることがで きる。
[0125] 第 15の構成によれば、空間変調素子の画面中心と投影光学系の光軸とがー致し た構成になっているため、色の角度合成による投影画面上での色ムラの発生を抑え ることがでさる。
[0126] 第 16の構成によれば、空間変調素子と発光モジュールとが同一の冷却装置によつ て冷却される構成になっているため、画像投影装置全体の小型化を図りながら、高 い放熱効果を得ることができる。例えば、発光モジュールの放熱効果が向上する結 果、更なる高輝度化を達成することができる。
[0127] 第 17の構成によれば、 LEDチップとして少なくとも 3原色 RGBに対応した 3つを有 する構成になっているため、小型化 ·低コストィ匕を図りながらフルカラー化の実現が可 能となる。また、投影光学系の NAが発光モジュール力 投影光学系に入る各色の N Aよりも大きい構成になっているため、色合成にプリズムやミラーを用いなくても、発光 モジュール力 射出した光を効率良く投影光学系に入射させることが可能となる。
Claims
[1] 複数の凹面反射面を有する単一のリフレタターと、前記凹面反射面と同数の発光 体と、を有し、各凹面反射面は隣接する凹面反射面との境界において外形の一部が 切り欠かれており、各発光体は凹面反射面に向力つて光を放射することを特徴とする 発光モジュール。
[2] 複数の凹面反射面を有する単一のリフレタターと、前記凹面反射面と同数の発光 体と、を有し、各凹面反射面がリフレタターの中心軸に対して回転対称に配置されて おり、リフレタターをその中心軸に沿って正面力も見たとき、隣接する凹面反射面との 境界がリフレタターの中心軸に向いた直線を成しており、各発光体は凹面反射面に 向かって光を放射することを特徴とする発光モジュール。
[3] 前記発光体力 SLEDであり、前記 LEDが LEDチップとその LEDチップを固定する 電極リードとを有しており、前記 LEDチップが各凹面反射面の焦点位置又はその近 傍に配置されており、各 LEDチップに対し電極リードが前記凹面反射面とは反対側 に配置されており、各 LEDチップは凹面反射面に向けて光を放射することを特徴と する請求項 1又は 2記載の発光モジュール。
[4] 前記凹面反射面が 1つの焦点を持つ回転対称面であり、前記凹面反射面の光軸 方向の厚みが凹面反射面の面頂点力も焦点までの距離とほぼ等しいことを特徴とす る請求項 1又は 2記載の発光モジュール。
[5] 前記凹面反射面が 2つの焦点を持つ回転対称面であり、前記凹面反射面の光軸 方向の厚みが凹面反射面の面頂点からその面頂点に近い方の焦点までの距離とほ ぼ等しいことを特徴とする請求項 1又は 2記載の発光モジュール。
[6] 前記凹面反射面を 4面有することを特徴とする請求項 1又は 2記載の発光モジユー ル。
[7] 前記 LEDの発光色が赤,青,緑の少なくとも 3色であることを特徴とする請求項 3記 載の発光モジュール。
[8] 前記電極リードにおいて、前記凹面反射面の光軸に対して平行方向のサイズが、 前記凹面反射面の光軸に対して垂直な平面上でのサイズのうち最も小さいサイズよ りも大きいことを特徴とする請求項 3記載の発光モジュール。
[9] 前記電極リードが板状を成しており、前記凹面反射面の光軸に対して平行方向の サイズを Xとし、前記凹面反射面の光軸に対して垂直な平面上でのサイズのうち最も 小さいサイズを yとすると、 y :x= 1: 2〜1: 6であることを特徴とする請求項 8記載の発 光モジユーノレ。
[10] 前記 LEDチップと接している電極リードが全て同一方向を向いていることを特徴と する請求項 3記載の発光モジュール。
[11] 請求項 1又は 2記載の発光モジュールと、照明光を空間的に変調することにより画 像を形成する透過型の空間変調素子と、前記空間変調素子により形成された画像を 投影する投影光学系と、を有することを特徴とする画像投影装置。
[12] 前記発光体力 SLEDであり、前記 LEDが LEDチップとその LEDチップを固定する 電極リードとを有しており、前記 LEDチップが各凹面反射面の焦点位置又はその近 傍に配置されており、各 LEDチップに対し電極リードが前記凹面反射面とは反対側 に配置されており、各 LEDチップは凹面反射面に向けて光を放射することを特徴と する請求項 11記載の画像投影装置。
[13] 前記電極リードにおいて、前記凹面反射面の光軸に対して平行方向のサイズが、 前記凹面反射面の光軸に対して垂直な平面上でのサイズのうち最も小さいサイズよ りも大きいことを特徴とする請求項 12記載の画像投影装置。
[14] 前記複数の LEDチップのうち少なくとも 1つが他とは異なる波長域の光を放射する ことを特徴とする請求項 12記載の画像投影装置。
[15] 前記空間変調素子が時分割駆動することを特徴とする請求項 11記載の画像投影 装置。
[16] 前記投影光学系が前記空間変調素子側にテレセントリックであることを特徴とする 請求項 11記載の画像投影装置。
[17] 前記空間変調素子の画面中心と前記投影光学系の光軸とがー致していることを特 徴とする請求項 11記載の画像投影装置。
[18] 前記空間変調素子と前記発光モジュールとを冷却する冷却装置を更に有すること を特徴とする請求項 11記載の画像投影装置。
[19] 前記冷却装置からの冷媒を、前記発光モジュールを介して前記空間変調素子に導
くためのダクトを更に有することを特徴とする請求項 18記載の画像投影装置。
[20] 照明光を空間的に変調することにより画像を形成する透過型の空間変調素子と、 その空間変調素子を照明するための発光モジュールと、前記空間変調素子により形 成された画像を投影する投影光学系と、を備えた画像投影装置であって、
前記発光モジュールが LED及びリフレタターを有し、前記リフレタターが前記 LED からの光束を前記空間変調素子に向けて反射する凹面反射面を有し、前記 LEDが LEDチップとその LEDチップを固定する電極リードとを有しており、前記凹面反射面 の焦点位置又はその近傍に前記 LEDチップが配置されており、前記 LEDチップに 対し前記電極リードが前記凹面反射面とは反対側に配置されていることを特徴とする 画像投影装置。
[21] 前記電極リードにおいて、前記凹面反射面の光軸に対して平行方向のサイズが、 前記凹面反射面の光軸に対して垂直な平面上でのサイズのうち最も小さいサイズよ りも大きいことを特徴とする請求項 20記載の画像投影装置。
[22] 前記リフレタターが前記凹面反射面を複数有する単一のリフレタターであり、各凹 面反射面は隣接する凹面反射面との境界において外形の一部が切り欠かれている ことを特徴とする請求項 21記載の画像投影装置。
[23] 前記リフレタターが前記凹面反射面を複数有する単一のリフレタターであり、各凹 面反射面がリフレタターの中心軸に対して回転対称に配置されており、リフレタターを その中心軸に沿って正面から見たとき、隣接する凹面反射面との境界がリフレタター の中心軸に向 、た直線を成して 、ることを特徴とする請求項 21記載の画像投影装 置。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006047625A JP2007227690A (ja) | 2006-02-24 | 2006-02-24 | リフレクターとそれを用いた発光モジュール |
JP2006-047625 | 2006-02-24 | ||
JP2006-070375 | 2006-03-15 | ||
JP2006070375A JP2007250295A (ja) | 2006-03-15 | 2006-03-15 | 小型の画像投影装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007099781A1 true WO2007099781A1 (ja) | 2007-09-07 |
Family
ID=38443778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/052749 WO2007099781A1 (ja) | 2006-02-24 | 2007-02-15 | 発光モジュールとそれを用いた画像投影装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US7850314B2 (ja) |
WO (1) | WO2007099781A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101603662A (zh) * | 2008-06-13 | 2009-12-16 | 富准精密工业(深圳)有限公司 | 发光二极管灯具及其灯罩 |
KR101039885B1 (ko) * | 2009-06-22 | 2011-06-09 | 엘지이노텍 주식회사 | 컬러 휠 발광 유니트 및 이를 사용하는 프로젝션 시스템 |
JP5489748B2 (ja) * | 2010-01-27 | 2014-05-14 | 三菱電機株式会社 | 光源装置、投射型映像表示装置 |
JP5720134B2 (ja) * | 2010-04-20 | 2015-05-20 | 株式会社リコー | 画像検査装置及び画像形成装置 |
JP6186877B2 (ja) * | 2013-05-17 | 2017-08-30 | セイコーエプソン株式会社 | 光源装置およびプロジェクター |
US20140247431A1 (en) * | 2014-05-09 | 2014-09-04 | Terry James Boss | Projector with light emitting diodes |
EP3026490B1 (en) * | 2014-11-28 | 2018-06-20 | Ricoh Company, Ltd. | Image projection device and image projection method |
CN109424905A (zh) * | 2017-07-17 | 2019-03-05 | 佛山市蔚蓝光电科技有限公司 | X型led车灯光源结构 |
JP7476643B2 (ja) * | 2020-04-22 | 2024-05-01 | セイコーエプソン株式会社 | 投写光学装置およびプロジェクター |
CN112180666A (zh) * | 2020-11-04 | 2021-01-05 | 南华智能精密机器(深圳)有限公司 | 一种lcd投影机光学系统和投影方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01143366A (ja) * | 1987-11-30 | 1989-06-05 | Iwasaki Electric Co Ltd | Led面発光光源 |
JPH10269802A (ja) * | 1997-03-24 | 1998-10-09 | Sony Corp | 照明装置および映像表示装置 |
JPH10335706A (ja) * | 1997-05-30 | 1998-12-18 | Toyoda Gosei Co Ltd | 発光ダイオードランプ |
JPH1126813A (ja) * | 1997-06-30 | 1999-01-29 | Toyoda Gosei Co Ltd | 発光ダイオードランプ |
JPH11266035A (ja) * | 1998-03-17 | 1999-09-28 | Sanyo Electric Co Ltd | 光源装置 |
JP2005106974A (ja) * | 2003-09-29 | 2005-04-21 | Seiko Epson Corp | プロジェクタ |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3237136B2 (ja) | 1991-08-08 | 2001-12-10 | 株式会社デンソー | 車両用空調装置 |
JPH11295690A (ja) | 1998-04-10 | 1999-10-29 | Fuji Film Microdevices Co Ltd | モバイル機器 |
JP2001133885A (ja) * | 1999-08-26 | 2001-05-18 | Mitsubishi Electric Corp | プロジェクター |
JP4601128B2 (ja) | 2000-06-26 | 2010-12-22 | 株式会社光波 | Led光源およびその製造方法 |
US6578998B2 (en) * | 2001-03-21 | 2003-06-17 | A L Lightech, Inc. | Light source arrangement |
JP3991764B2 (ja) * | 2002-05-10 | 2007-10-17 | セイコーエプソン株式会社 | 照明装置および投射型表示装置 |
DE112004002083T5 (de) * | 2003-10-31 | 2008-03-20 | Toyoda Gosei Co., Ltd. | Lichtemittierende Vorrichtung |
US7070301B2 (en) * | 2003-11-04 | 2006-07-04 | 3M Innovative Properties Company | Side reflector for illumination using light emitting diode |
JP2005189824A (ja) | 2003-12-03 | 2005-07-14 | Seiko Epson Corp | 光源装置及び表示装置 |
JP2005322701A (ja) | 2004-05-06 | 2005-11-17 | Opto Device Kenkyusho:Kk | 反射型発光ダイオード及び製造方法 |
US7222968B2 (en) * | 2004-05-14 | 2007-05-29 | 3M Innovative Properties Company | Illumination system with separate optical paths for different color channels |
-
2007
- 2007-02-15 US US11/706,533 patent/US7850314B2/en active Active
- 2007-02-15 WO PCT/JP2007/052749 patent/WO2007099781A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01143366A (ja) * | 1987-11-30 | 1989-06-05 | Iwasaki Electric Co Ltd | Led面発光光源 |
JPH10269802A (ja) * | 1997-03-24 | 1998-10-09 | Sony Corp | 照明装置および映像表示装置 |
JPH10335706A (ja) * | 1997-05-30 | 1998-12-18 | Toyoda Gosei Co Ltd | 発光ダイオードランプ |
JPH1126813A (ja) * | 1997-06-30 | 1999-01-29 | Toyoda Gosei Co Ltd | 発光ダイオードランプ |
JPH11266035A (ja) * | 1998-03-17 | 1999-09-28 | Sanyo Electric Co Ltd | 光源装置 |
JP2005106974A (ja) * | 2003-09-29 | 2005-04-21 | Seiko Epson Corp | プロジェクタ |
Also Published As
Publication number | Publication date |
---|---|
US7850314B2 (en) | 2010-12-14 |
US20070201235A1 (en) | 2007-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007099781A1 (ja) | 発光モジュールとそれを用いた画像投影装置 | |
US9249949B2 (en) | Lighting device and projection-type display device using the same including a color-combining prism | |
JP6155200B2 (ja) | リサイクリングを行う発光ダイオードアレイ照明システム | |
JP2007524976A (ja) | 照明システム | |
CN111722464B (zh) | 激光投影设备 | |
JP6295960B2 (ja) | 光源ユニット、光源装置、及び画像表示装置 | |
JP2014238485A (ja) | 光学ユニット、光源装置、及び画像表示装置 | |
JP6737265B2 (ja) | 光変換装置および光源装置、ならびにプロジェクタ | |
WO2016167110A1 (ja) | 照明装置および投影型表示装置 | |
US20060072078A1 (en) | Illumination unit having an LED and image projecting apparatus employing the same | |
JP6777075B2 (ja) | 光変換装置および光源装置ならびに投影型表示装置 | |
US20180149955A1 (en) | Illumination device and projector | |
JP6669222B2 (ja) | 光源装置、及び画像表示装置 | |
JP2007250295A (ja) | 小型の画像投影装置 | |
JPWO2020012751A1 (ja) | 光源装置、および投写型表示装置 | |
JP2002189252A (ja) | 光学ユニット及びそれを用いた映像表示装置 | |
US20070242231A1 (en) | Illumination system and projection apparatus | |
CN112114483B (zh) | 激光投影设备 | |
WO2020253164A1 (zh) | 激光投影设备 | |
WO2013118272A1 (ja) | 照明光学系および投写型表示装置 | |
US20120154755A1 (en) | Illuminating device and projection display device using the same | |
JP2002189192A (ja) | 照明装置及び液晶プロジェクタ | |
JP2006310321A (ja) | 照明装置及び画像投影装置 | |
WO2020186843A1 (zh) | 激光光源和激光投影设备 | |
JP2007227690A (ja) | リフレクターとそれを用いた発光モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07714279 Country of ref document: EP Kind code of ref document: A1 |