WO2007085406A1 - Semi-crystalline semi-aromatic polyamide - Google Patents
Semi-crystalline semi-aromatic polyamide Download PDFInfo
- Publication number
- WO2007085406A1 WO2007085406A1 PCT/EP2007/000529 EP2007000529W WO2007085406A1 WO 2007085406 A1 WO2007085406 A1 WO 2007085406A1 EP 2007000529 W EP2007000529 W EP 2007000529W WO 2007085406 A1 WO2007085406 A1 WO 2007085406A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diamine
- polyamide
- semi
- aromatic
- mole
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/265—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/28—Preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/28—Preparatory processes
- C08G69/30—Solid state polycondensation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G81/00—Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
- C08G81/02—Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C08G81/024—Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
- C08G81/028—Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyamide sequences
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
Definitions
- the invention relates to a semi-crystalline semi-aromatic polyamide, more particular to a semi-crystalline semi-aromatic polyamide comprising units derived from diamines (A-A units) comprising aliphatic diamine and from dicarboxylic acids (B- B units) comprising terephthalic acid.
- Semi-crystalline semi-aromatic polyamides are used in particular for injection-moulded parts intended for applications wherein the parts are exposed to high temperatures. Exposure to such high temperatures may be for shorter or longer periods, and/or at variable time intervals as well as also incidentally to very high peak temperatures, all depending on the type of application. Depending on the applications the polyamides have to comply with different requirements. Semi-crystalline semi- aromatic polyamides are used for example in automotive and electronics applications where mechanical properties and requirements on good dimensional stability under hot humid conditions are vital. The polymers must have a sufficiently high crystallinity to allow for good mechanical properties for example retaining a high stiffness above Tg up to Tm.
- Polymers that are suitable for such applications not only need to have a high melting temperature (Tm), and likewise also a high glass transition temperature (Tg), for the neat polymer, but also retention of the properties after being subjected to humid conditions.
- Tm high melting temperature
- Tg high glass transition temperature
- the materials need to have a high blistering resistance also after being subjected to humid conditions (se, for example, Polyamide, Kunststoff Handbuch 3 / 4 Becker/Braun (Ed.), Hanser Verlag (M ⁇ nchen), 1998, ISBN 3-446-16486-3, pages 617 and 809).
- SMT surface mounting technologies
- these polymers must also have a good thermal stability in the melt, to enable melt processing for making injection-moulded parts on an economic industrial scale.
- semi-crystalline semi-aromatic polyamides include homopolyamides such as polyamide 6T, i.e. the polyamide derived from terephthalic acid and hexamethylene diamine (synonym for 1 ,6-hexanediamine), and polyamide 4T, i.e. the polyamide derived from terephthalic acid and 1 ,4-butane diamine.
- Polyamide 6T is a semi-aromatic, semi-crystalline polyamide with a melting point of about 370 0 C, whereas the melting point of polyamide 4T is well above 400 0 C.
- polyamide 6T and polyamide 4T are higher than the decomposition temperatures of the respective polyamides, these polyamides are not melt-processable and therefore not suitable for the production of moulded polyamide parts via for example injection- moulding.
- semi-aromatic polyamides used as engineering plastics in injection moulding applications are mostly copolyamides.
- Copolyamides typically have melting points that are lower than the melting points of the corresponding semi-aromatic homopolyamides, which makes the copolyamides better melt-processable than the corresponding semi-aromatic homopolyamides.
- Such semi- aromatic polyamides are known from US 6747120.
- polyamide 6T/4T which is a copolyamide of the homopolyamides polyamide 6T and polyamide 4T
- a problem of polyamide 6T/4T is that under standard processing conditions it is difficult to prepare such a polyamide with sufficiently high molecular weight and sufficiently high viscosity for various applications.
- higher molecular weights, and thereby higher viscosities may be achieved by using acid or amine monomers with functionalities of 3 and higher, the use of such monomers also introduces the risk of crosslinking and gellation of the polyamide, during polymerisation and /or during melt processing.
- the object of the present invention is to provide a heat resistant melt- processable polyamide that does not show the aforementioned disadvantages, or shows them to a lesser extent.
- the polyamide must have a high melting temperature as well as high melt stability, good mechanical properties, a good blister resistance and a limited drop in melting temperature under humid conditions.
- the inventions aims to provide a semi-aromatic polyamide that can be prepared under standard processing conditions, and which semi-aromatic polyamide can be obtained with a higher viscosity than polyamide 46/4T or polyamide 6T/4T can be obtained under such conditions, has a high melting temperature and at the same time an improved melt stability and blister behaviour compared to polyamide 46/4T with a high polyamide 46 content.
- the semi-crystalline semi-aromatic polyamide according to the invention wherein a. the dicarboxylic acids consist of a mixture of aromatic dicarboxylic acid and aliphatic dicarboxylic acid, wherein i. the aromatic dicarboxylic acid consists for at least 80 mole % of terephthalic acid, relative to the total amount of aromatic dicarboxylic acid, and ii. the molar amount of the aliphatic dicarboxylic acid is at least 5 mole%, relative to the total molar amount of dicarboxylic acids, b.
- the dicarboxylic acids consist of a mixture of aromatic dicarboxylic acid and aliphatic dicarboxylic acid, wherein i. the aromatic dicarboxylic acid consists for at least 80 mole % of terephthalic acid, relative to the total amount of aromatic dicarboxylic acid, and ii. the molar amount of the aliphatic dicarboxylic acid is at least 5 mole%
- the diamines consist of a mixture of long chain aliphatic diamine (C6-C12) and short chain aliphatic diamine (C2-C5), wherein the molar amount of the short chain aliphatic diamine is at least 10 mole%, relative to the total molar amount of diamines, and c. the sum of the molar amount of the aromatic dicarboxylic acid and the long chain aliphatic diamine is 60-90 mole%, relative to the total molar amount of dicarboxylic acids and diamines.
- the effect of these measures is that the aforementioned disadvantages have been overcome.
- the polyamide according to the invention can more easily be prepared with a high viscosities, i.e. under more modest process conditions and/or shorter processing times, than both polyamide 46/4T and polyamide 6T/4T, and can also be prepared with higher viscosities even without the use of higher functional starting components.
- the semi-aromatic semi-crystalline polyamide according to the invention despite that it is derived from a complex mixture of dicarboxylic acids and diamines, still has a high melting point and at the same time a high crystallinity.
- the crystallinity is at a similar level as the crystallinity of copolyamides like polyamide 46/4T and polyamide 6T/4T, whereas the melting point is comparable with or only slightly lower than these copolyamides.
- the copolymers can be regarded as a combination of a copolyamide of two polyamides, for example as a combination of polyamide 6T/4T and polyamide 46. It shows that replacement of part of the polyamide 4T in polyamide 6T/4T by polyamide 46 for making such combination, the melting temperature drops, whereas the diffusion remains at a very low level, and the extent of an increase, if any is by far less than could be accounted for on a weight basis for the high diffusion value of Polyamide 46.
- a further advantage is that the copolyamide according to the invention has a higher Tg compared to PA46/4T copolyamides or PA66/6T copolyamides having a corresponding melting temperature.
- the Tg of copolyamides increases with increasing melting temperature
- the increase is larger with the copolyamide according to the invention, compared to PA46/4T copolyamides and PA66/6T copolyamides.
- the melting temperature preferably is not too high, whereas for retention of mechanical properties at elevated temperature a higher Tg is preferred. Therefore, the copolyamide according to the invention has the advantage, compared to the PA46/4T copolyamides and PA66/6T copolyamides, that either the mechanical properties are retained up to higher temperatures, while having the same melting temperature, or that the mechanical properties are retained up to the same temperature, while having a lower melting temperature.
- the semi-aromatic semi-crystalline polyamide according to the invention has an improved melt stability compared to a polyamide 46/4T with a comparable high melting point.
- a 'semi-aromatic polyamide' is understood to be a homo- or copolyamide that contains units derived from a combination of aromatic and aliphatic components, such as aliphatic dicarboxylic acids and aromatic diamines or aromatic dicarboxylic acids and aliphatic diamines, or a combination thereof.
- Polyamides made from diamines and dicarboxylic acids are classified as AABB polymers, as is described for example in Nylon Plastic Handbook, Ed. M.I. Kohan, Hanser Publishers, Kunststoff, ISBN 1-56990-189-9 (1995), page 5.
- Semi-crystalline polyamide are distinguished from amorphous polyamides in that semi- crystalline polyamides, when in the solid state, are characterized by a multiphase structure comprising crystalline domains next to amorphous domains. It is furthermore noted that for the nomenclature of the polyamides that are mentioned herein the standard convention is applied wherein the word polyamide is followed by a code consisting of a combination of numbers and or letters wherein the first number or letter refers to the diamine and the second number or letter refers to the diacid. In case of a copolyamide, wherein monomers of different homopolyamides are combined, the codes for the different homopolyamides are separated by a slash according to the ISO practice described in Nylon Plastic Handbook, Ed. M.I. Kohan, Hanser Publishers, Kunststoff, ISBN 1-56990-189-9 (1995), page 5.
- the semi-crystalline semi-aromatic polyamide according to the invention comprises copolyamides, most of which can be considered as terpolymers or even higher copolyamides, i.e. comprising monomer compositions representing 3 or more homopolyamides.
- Representative examples of these terpolymers according to the invention are polyamide 6T/4T/46, [which is a copolyamide of polyamide 6T, polyamide 4T and polyamide 46], polyamide 6T/66/46, [being a copolyamide of polyamide 6T, polyamide 66 and polyamide 46], polyamide 6T/5T/56, [which is copolyamide of polyamide 6T, polyamide 5T and polyamide 56], and polyamide 6T/66/56 [i.e.
- the effect of the measure of the invention resulting in the semi- crystalline semi-aromatic polyamide according to the invention having the above said improved properties are in particular surprising in view of the facts that the homopolyamides polyamide 46 and polyamide 56, in particular polyamide 46, have a limited melt stability and the production of these homopolyamides is normally accompanied with production of side products, such as cyclic mono-amines, which can act as a chain stopper.
- the semi-aromatic polyamide according to the invention comprises derived from aromatic dicarboxylic acid and aliphatic dicarboxylic acid and long chain aliphatic diamine and short chain aliphatic diamine.
- the units derived from diamines are denoted herein also as B-B units, whereas in analogy the units derived from dicarboxylic acids are denoted herein as B-B units. Further, the A-A units and B-B units are denoted together herein below also as A-A-B-B units.
- the aromatic dicarboxylic acid consists for at least 80 mole % of terephthalic acid, relative to the total amount of aromatic dicarboxylic acid.
- Other suitable aromatic dicarboxylic acids that can be used in the polyamide according to the invention next to terephthalic acid are for example isophthalic acid or naphthalene dicarboxylic acid.
- Suitable aliphatic dicarboxylic acid are, for example, aliphatic dicarboxylic acid with 6 to 18 carbon atoms, such as adipic acid (C6), 1 ,4-cyclohexane dicarboxylic acid (C8), suberic acid (C8), sebacic acid (C10), dodecanoic acid (C12) or a mixture thereof.
- the aliphatic dicarboxylic acid is a C6-C10 aliphatic dicarboxylic acid, including adipic acid, sebacic acid or a mixture thereof, and more the aliphatic dicarboxylic acid is a C6-C8 aliphatic dicarboxylic acid.
- the aliphatic dicarboxylic acid is adipic acid.
- a “short chain diamine” is herein understood to be a diamine with 2 - 5 carbon atoms, or in other words the short chain aliphatic diamine is a C2-C5 aliphatic diamine.
- diamines that can suitably be used in the polyamides according to the invention include 1 ,2-ethylene diamine, 1 ,3-propanediamine, 1,4- butanediamine and 1 ,5-pentane diamine, and mixtures thereof.
- the short chain aliphatic diamine is chosen from the group consisting of 1,4-butanediamine, 1,5- pentane diamine and mixtures thereof, more preferably 1 ,4-butanediamine.
- a long chain aliphatic diamine is herein understood to be a diamine with 6-12 C atoms, or in other words the long chain aliphatic diamine is a C6-C12 aliphatic diamine
- the aliphatic chain in these diamines may be a straight chain, a branched chain, a cyclic structure and any combination thereof.
- Suitable long chain aliphatic diamines that can be used in the polyamide according to the invention are for example 2-methyl-1 ,5-pentaned ⁇ amine (also known as 2-methylpentamethylene diamine), 1,5-hexanediamine, 1,6-hexane diamine, 1 ,4-cyclohexaned ⁇ am ⁇ ne, 1,8- octanediamine, 2-methyl-1,8-octaned ⁇ am ⁇ ne, 1,9-nonaned ⁇ am ⁇ ne, trimethylhexamethylene diamine, 1 ,10-decane diamine, 1 ,11-undecanediam ⁇ ne, 1 ,12- dodecanediamine, m-xylylened ⁇ am ⁇ ne and p-xylylenediamine, and any mixture thereof.
- 2-methyl-1 ,5-pentaned ⁇ amine also known as 2-methylpentamethylene diamine
- 1,5-hexanediamine 1,6-hexane diamine
- the long chain aliphatic diamine is chosen from the group consisting of 1 ,6- hexane diamine, C8-d ⁇ am ⁇ ne, 2-methyl-1,8-octanediamine, 1,9-nonaned ⁇ am ⁇ ne, C10- diamine, and mixtures thereof, more preferably 1,6-hexane diamine.
- the advantage of this preferred choice, and in particular of the more preferred choice of 1 ,6-hexane diamine is that the high temperature properties of the copolyamide according to the invention are even better.
- the polyamide according to the invention may comprise units derived from other components, such as aliphatic aminocarboxylic acids (AB units) and the corresponding cyclic lactams, as well as small amounts of a branching agent and/or chain stoppers
- the polyamide according to the invention comprises at most 10 mass %, more preferably at most 8 mass %, and still more preferably a ⁇ most 5 mass%, relative to the total mass of the polyamide, of units derived from components other than dicarboxylic acids and diamines.
- the polyamide according to the invention does not comprise such other components at all and consists only of A-A- B-B units derived from dicarboxylic acids and diamines. The advantage is a logistically simpler process and better crystalline properties.
- Suitable lactams are for example laurolactam and epsilon- caprolactam.
- Suitable branching agents are, for example, trifunctional carboxylic acids, such as t ⁇ mellitic acid, and trifunctional amines, such as bishexamethylent ⁇ amine (BHT).
- Suitable chain stoppers are monofunctional carboxylic acids, such as benzoic acid, and monofunctional amines Branching agents as well as chain stoppers, if used at all, are preferably used in an amount for each of these components, of at most 1 mole %, more preferably at most 0.1 mole %, relative to the total molar amount of diamine and dicarboxylic acid.
- the aromatic dicarboxylic acid in the semi-aromatic polyamide according to the invention consists for at least 90 mole %, more preferably at least 95 mole%, of terephthalic acid, relative to the total molar amount of aromatic dicarboxylic acid.
- terephthalic acid is used as the aromatic dicarboxylic acid.
- the advantage of use of terephthalic acid as the only aromatic dicarboxylic acid is that the potyamide has higher crystallinity, improved blister resistance and better property retention at elevated temperature.
- the molar amount of the aliphatic dicarboxylic acid is at least 5 mole%, relative to the total amount of dicarboxylic acids, and the molar amount of the short chain aliphatic diamine is at least 10 mole%, relative to the total amount of diamines,
- the minimum amount of the aromatic dicarboxylic acid and the long chain aliphatic diamine these amounts follow implicitly from the further requirement that the sum of the molar amount of the aromatic dicarboxylic acid and the long chain aliphatic diamine is 60-90 mole%, relative to the total molar amount of dicarboxylic acids and diamines Implicitly, the amount of the aromatic dicarboxylic acid is at least 30 mole %, relative to the total amount of dicarboxylic acids, whereas the amount of the long chain aliphatic diamine is at least 25 mole %, relative to the total amount of diamines
- the dicarboxylic acid consist of 30-95 mole % of aromatic dicarboxylic acid and 70-5 mole% of aliphatic dicarboxylic acid
- the aliphatic diamines consist of 25-90 mole % long chain diamines and 75-10 mole % short chain diamines
- these ranges, wherein the composition of dicarboxylic acids and diamines may vary are further restricted by the requirement of the sum of the molar amount of the aromatic dicarboxylic acid and the long chain aliphatic diamine being 60-90 mole%, relative to the total molar amount of dicarboxylic acids and diamines
- the dicarboxylic acids consist for at least 30 mole %, more preferably at least 35 mole % of aromatic dicarboxylic acid.
- the aliphatic diamines consist for at least 15 mole %, more preferably at least 20 mole % short chain diamine
- the advantage of an increased amount of aromatic dicarboxylic acid, respectively short chain diamine, is that the high temperature properties are further increased.
- the dicarboxylic acid consist of 50-85 mole % of aromatic dicarboxylic acid and 50-15 mole% of aliphatic dicarboxylic acid
- the aliphatic diamines consist of 40-80 mole % long chain diamines and 60-20 mole % short chain diamines.
- the molar amount of the short chain aliphatic diamine in the semi-aromatic polyamide according to the invention is at least 30 mole %, relative to the sum of the molar amount of the aliphatic dicarboxylic acid and the short chain aliphatic diamine. More preferably, this amount is at least 40 mole %, or at least 45 mole%, and still better at least 50 mole% or even at least 55 mole%, The higher the molar amount of the short chain aliphatic diamine the better is the thermal stability of the polyamide.
- the molar amount of the short chain aliphatic diamine in the semi- aromatic polyamide according to the invention also is at most 75 mole %, relative to the molar amount of short chain and long chain diamines.
- the molar amount of the short chain aliphatic diamine is at most 60 mole%, more preferably 50 mole%, 40 mole%, or even 35 mole% relative to the molar amount of short chain and long chain diamines.
- the sum of the molar amount of the aromatic dicarboxylic acid and the long chain aliphatic diamine is at least 65 mole%, preferably at least 70 mole% and more preferably at least 75 mole%, relative to the total molar amount of dicarboxylic acids and diamines.
- the advantage of the polyamide with the sum of the molar amount of the aromatic dicarboxylic acid and the long chain aliphatic diamine is higher is that the polyamide combines a higher melt temperature and higher crystallinity with a better thermal stability and melt processability.
- the said sum is in the range of 70-85 mole %, or even 75-80 mole%, relative to the total molar amount of dicarboxylic acids and diamines.
- - at least 80 mole% of the long chain aliphatic diamine consists of hexane diamine, C8-diamine, C9-diamine, C10-diamine and mixtures thereof, and - at least 80 mole% of the short chain aliphatic diamine consists of 1 ,4- butanediamine.
- At least 95 mole% of the aromatic dicarboxylic acid consists of terephthalic acid
- At least 90 mole% of the long chain aliphatic diamine consists of hexane diamine, C8-diamine, C9-diamine, C10-diamine and mixtures thereof, and at least 90 mole% of the short chain aliphatic diamine consists of 1 ,4- butanediamine.
- the semi-aromatic polyamide according to the invention is a terpolymer of 3 polyamides wherein the first polyamide is chosen from the group consisting of polyamide 6T 1 polyamide 8T, polyamide 9T, polyamide 10T and polyamide 12T, the second polymer is chosen from the group consisting of polyamide 66, polyamide 86, polyamide 96, polyamide 106 and polyamide 126 and the third polyamide is chosen from the group consisting of polyamide 4T and polyamide 5T.
- the semi-aromatic copolyamide is a terpolymer chosen from the group consisting of the terpolymers of polyamide 6T, polyamide 66 and polyamide 4T; polyamide 8T, polyamide 86 and polyamide 4T; polyamide 9T, polyamide 96 and polyamide 4T; and polyamidelOT, polyamide106 and polyamide 4T.
- terpolymers of may be nominated in different ways depending on the ratio of the respective monomers used in the polyamides. For example polyamide 6T/66/4T, i.e.
- copolyamide polyamide 6T, polyamide 66 and polyamide 4T might also be nominated as polyamide 6T/6T/46 or polyamide 6T/4T/46, depending on whether either the polyamide 66 is higher or lower than the polyamide 4T content.
- the invention also relates to a process for the preparation of the semi- aromatic polyamide according to the invention comprising a polymerisation step wherein dicarboxylic acids comprising terephthalic acid and diamines comprising aliphatic diamine are cocondensed to form a polyamide comprising A-A-B-B units, and wherein the dicarboxylic acids and diamines have a composition described above.
- copolyamide according to the invention can be prepared in various ways known per se for the preparation of polyamides and copolymers thereof. Examples of suitable processes are for example described in Polyamide, Kunststoff Handbuch 3/4, Hanser Verlag (M ⁇ nchen), 1998, ISBN 3-446-16486-3.
- the polymerisation may for example be performed as a solution phase process or as a melt phase process.
- a mixture of the dicarboxylic acids, or esters or polyesters thereof, and diamines, to which mixture water and an excess amount of diamine are added is polycondensed via the liquid phase to form a low molar mass copolyamide, with a relative viscosity of for example 1.03 - 1.80, measured in 96% sulphuric acid according to method to ISO 307, fourth edition.
- a process is for example known from S-5550208-A, EP- 0393548-A and EP-0039524-A.
- the conditions for the polymerisation, independent of the type of process that is applied, are suitably chosen such that the polyamide that is obtained with the process has a relative viscosity of for example more than 1.80, measured in 96% sulphuric acid according to method to ISO 307, fourth edition.
- Such polyamides give good mechanical properties.
- the copolyamide according to the invention has a relative viscosity of at least 1.90, and also preferably less than 6.0, more preferably in the range of 2.0-4.0 and still more preferably 2.1-3.5, measured in 96% sulphuric acid according to method to ISO 307, fourth edition.
- the relative viscosity might even be lower than 1.80, and might be as low as 1.7 or even as low as 1.6 while still retaining good mechanical properties. This is in contrast with the copolyamides 46/4T and 4T/6T.
- a polyamide with such a low viscosity i.e. in the range of 1.6 - 1.8 measured in 96% sulphuric acid according to method to ISO 307, fourth edition, has the advantage that the flow during moulding is better and moulded parts with thinner elements can be made. Retention of mechanical properties is really important for such moulded parts.
- the invention also relates to a polymer composition comprising a semi-aromatic polyamide according to the invention and at least one additive, and to the use of said semi-aromatic polyamide and the said polymer composition for making moulded polyamide parts, as well as to moulded polyamide parts made thereof.
- the semi-aromatic polyamide according to the invention as well as the polyamide composition comprising said polyamide are eminently suitable for forming products from the melt, for example by means of injection-moulding, extrusion, blow moulding or compression moulding.
- Additives that may be comprised in the said polyamide composition include the usual additives, known by the person skilled in the art of making polyamide moulding compositions. Suitable additives are, for example, stabilisers, such as UV stabilizers, heat stabilizers and antioxidants, colorants, processing aids, for example mould release agents and lubricants, flow improving additives, such as polyamide oligomers, agents for improving the impact resistance, fillers, reinforcing agents, such as carbon fibers and glass fibers, and flame retardants, such as halogen containing flame retardants, halogen free flame retardants and flame retardant synergists.
- the polyamide composition may optionally also contain polymers other than polyamides.
- the polyamide composition comprises the semi-aromatic polyamide in an amount of 20-99.99 wt.%, and at least one additive in an amount of 0.01-80 wt.%, relative to the total weight of the polyamide composition.
- the amount of the at least one additive is 0.1-70 wt.%, more preferably, 1.0-60 wt.% or even 2-50 wt.%, relative to the total weight of the polyamide composition.
- Products that can be obtained by using the semi-aromatic polyamide or the polyamide composition according to the invention are, for example, automotive engine parts, electric and electronic components, films and fibres.
- the moulded part comprising the semi-aromatic polyamide according to the invention or a polyamide composition comprising the same is used as automotive engine part, as an electric or electronic component, or in aerospace and household applications.
- Example II In the same way as in Example I a mixture of 179.8 g tetramethylene diamine , 347.25 g hexamethylene diamine, 537 g water, 0.36g sodium hypophosphite monohydrate, 72.36 g adipic acid and 653.38 g terephthalic acid was stirred in a 2.5 liter autoclave with heating so-that an 91 wt.% aqueous salt solution was obtained after 27 minutes. In this process the temperature increased from 169°C to 223°C. The polymerisation was effected at increasing temperatures of 210 0 C to 226°C for 21 minutes, during which the pressure rose to 1.3 MPa. The prepolymer was subsequently dried and post-condensed in the solid phase in the same way as in Example I.
- Example II In the same way as in Example I a mixture of 57.77 g tetramethylene diamine , 454.24 g hexamethylene diamine, 498 g water, 0.36 g sodium hypophosphite monohydrate, 209.21 g adipic acid and 493.18 g terephthalic acid was stirred in a 2.5 liter autoclave with heating so-that an 91 wt.% aqueous salt solution was obtained after 17 minutes. In this process the temperature increased from 168°C to 206 0 C. The polymerisation was effected at increasing temperatures of 210 0 C to 226 0 C for 25 minutes, during which the pressure rose to 1.4 MPa. The prepolymer was subsequently dried and post-condensed in the solid phase in the same way as in Example I except the post condensation time at 260°C was 17 hours.
- Example II In the same way as in Example I a mixture of 218.26 g tetramethylene diamine , 312.95 g hexamethylene diamine, 540 g water, 0.36 g sodium hypophosphite monohydrate, 122.33 g adipic acid and 606.47 g terephthalic acid was stirred in a 2.5 liter autoclave with heating so-that an 90 wt.% aqueous salt solution was obtained after 22 minutes. In this process the temperature increased from 170 0 C to 216°C. The polymerisation was effected at increasing temperatures of 21O 0 C to 226 0 C for 25 minutes, during which the pressure rose to 1.5 MPa. The prepolymer was subsequently dried and post-condensed in the solid phase in the same way as in Example I, except the post condensation time at 225 0 C was 5 hours.
- Example V Preparation of PA-6T/46/66 (mole ratio 60.0/18.7/21.3)
- a mixture of 94.91 g tetramethylene diamine , 421.58 g hexamethylene diamine, 524 g water, 0.36 g sodium hypophosphite monohydrate, 260.68 g adipic acid and 444.43 g terephthalic acid was stirred in a 2.5 liter autoclave with heating so-that an 90 wt.% aqueous salt solution was obtained after 19 minutes. In this process the temperature increased from 170 0 C to 206 0 C.
- the polymerisation was effected at increasing temperatures of 210 0 C to 226°C for 25 minutes, during which the pressure rose to 1.5 MPa.
- the prepolymer was subsequently dried and post-condensed in the solid phase in the same way as in Example I, except the post condensation time at 26O 0 C was 21 hours.
- Example II In the same way as in Example I a mixture of 127.09 g tetramethylene diamine , 350.05 g hexamethylene diamine, 487 g water, 0.66 g sodium hypophosphite monohydrate, 91.59 g adipic acid and 567.48 g terephthalic acid was stirred in a 2.5 liter autoclave with heating so-that an 91 wt.% aqueous salt solution was obtained after 22 minutes. In this process the temperature increased from 176 0 C to 212°C. The polymerisation was effected at increasing temperatures of 220 0 C to 226°C for 22 minutes, during which the pressure rose to 1.4 MPa.
- the prepolymer thus obtained was subsequently dried in a drying kiln for several hours heating at 125°C and 180 0 C under vacuum and a stream of nitrogen of 0.02 Mpa.
- Example II In the same way as in Example I a mixture of 57.42 g tetramethylene diamine , 368.62 g hexamethylene diamine, 546,88 g water, 0.6 g sodium hypophosphite monohydrate, 117.22 g adipic acid and 472.37 g terephthalic acid was stirred in a 2.5 liter autoclave with heating so-that an 91 wt.% aqueous salt solution was obtained after 22 minutes. In this process the temperature increased from 176°C to 212°C. The polymerisation was effected at increasing temperatures of 220 0 C to 226°C for 22 minutes, during which the pressure rose to 1.5 MPa.
- the prepolymer thus obtained was subsequently dried in a drying kiln for several hours heating at 125°C and 180 0 C under vacuum and a stream of nitrogen of 0.02 Mpa.
- the prepolymer was subsequently dried and post-condensed in the solid phase in the same way as in Example I, except the post condensation time at 260 0 C was 48 hours.
- Comparative Example A polvamide 6T/4T (mole ratio 60/40)
- a mixture of 209.08 g tetramethylene diamine ,282.93 g hexamethylene diamine, 500 g water 0.33 g sodium hypophosphite monohydrate, and 673.99 g terephthalic acid was stirred in a 2.5 liter autoclave with heating so-that an 91 wt.% aqueous salt solution was obtained after 25 minutes.
- the temperature increased from 179°C to 220 0 C.
- the polymerisation was effected at increasing temperatures of 220 0 C to 226°C for 22 minutes, during which the pressure rose to 1.6 MPa.
- the prepolymer was subsequently post-condensed in the solid phase in the same way as in Example I except the post condensation time at 260 0 C was 45 hours.
- Example II In the same way as in Example I a mixture of 430.4 g tetramethylene diamine , 500 g water, 0.33 g sodium hypophosphite monohydrate and 686.8 g adipic acid was stirred in a 2.5 liter autoclave with heating so-that a 90 wt.% aqueous salt solution was obtained after 25 minutes. In this process the temperature increased from 110 0 C to 162°C. The polymerisation was effected at increasing temperatures of 162 0 C to 204 0 C in during which the pressure rose to 1.3 Mpa. The prepolymer was subsequently dried and post-condensed in the solid phase in the same way as in Example I.
- Example II In the same way as in Example I a mixture of 444.23 g tetramethylene diamine, 616 g water 0.33 g sodium hypophosphite monohydrate, 301.66 g terephthalic acid and 398.11 g of adipic acid (Aldrich) was stirred in a 2.5 liter autoclave with heating so-that an 90 wt.% aqueous salt solution was obtained after 25 minutes. In this process the temperature increased from 170 0 C to 200 0 C. The polymerisation was effected at increasing temperatures of 220 0 C to 226°C in during which the pressure rose to 1.6 Mpa.
- the prepolymer thus obtained was subsequently dried in a drying kiln for several hours heating at 125°C and 180 0 C under vacuum and a stream of nitrogen of 0.02 Mpa.
- the prepolymer was subsequently dried and post- condensed in the solid phase in the same way as in Example I, except the post condensation time at 260 0 C was 48 hours.
- T m and T 9 The measurements of the second melting temperature T m and glass transition temperature T 9 were carried out with a Mettler Toledo Star System (DSC) using a heating and cooling rate of 20°C/min. in an N 2 atmosphere. For the measurements a sample of about 5 mg pre-dried powdered polymer was used. The predrying was carried out at high vacuum, i.e. less than 50 mbar and a 105 0 C during 16 hrs. The polyamide sample was heated from 2O 0 C to 360 0 C at 20°C/min, immediately cooled to 40°C at 20°C/min and subsequently heated to 360 0 C again at 20°C/min. For glass transition temperature T 9 the inflection point in the second heating cycle was determined.
- DSC Mettler Toledo Star System
- T m the peak value of the melting peak in the second heating cycle was determined. Determination of 7 m (sat) : The measurements of the melting temperature upon saturation T m (sat) were carried out with a Mettler Toledo Star System (DSC) using a heating rate of 5°C/min. The measurement of T m (sat) was carried out on pre-saturated injection moulded samples. Pre-saturation was done by immersing a Campus UL bar made of a polyamide in water for 14 days at 40°C. Then a round sample with a mass of about 15 mg was cut out of the Campus UL bar and put in a high-pressure resistant DSC cup together with about 15 mg of water. For the melting temperature T m (sat) the peak value of the melting peak during the first heating run using a starting temperature of 20 0 C and a heating rate of 5°C/min was measured.
- the relative viscosity was measured for the polymers obtained by post-condensation.
- the measurement of the relative viscosity was performed according to ISO 307, fourth edition.
- a pre-dried polymer sample was used, the drying of which was performed under high vacuum (i.e. less than 50 mbar) at 80 c C during 24 hrs.
- Determination of the relative viscosity was done at a concentration of 1 gram of polymer in 100 ml of sulphuric acid 96,00 ⁇ 0,15 % m/m at 25,00 ⁇ 0,05 0 C.
- the flow time of the solution (t) and the solvent (to) were measured using a DIN-Ubbelohde from Schott (ref. no. 53020) at 25°C.
- the relative viscosity is defined as t/t ⁇ .
- compositions and test results for Examples I-VII and Comparative Experiments A-C have been collected in Table 1.
- the results illustrate that the polyamides in the Examples can be obtained with higher viscosities and in shorter times than the semi-aromatic polyamides in the Comparative Experiments.
- the polyamides in the Examples comprise an amount of polyamide 46 components, which shows a substantial drop in Tm upon saturation in water, the polyamides in the Examples show a much lower drop, which is even lower than that of the semi-aromatic polyamide in Comparative
- Table 1 Compositions and test results of Examples l-VII and Comparative Experiments A-C.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyamides (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007800033395A CN101374884B (en) | 2006-01-26 | 2007-01-23 | Semi-crystalline semi-aromatic polyamide |
JP2008551709A JP5368111B2 (en) | 2006-01-26 | 2007-01-23 | Semi-crystalline semi-aromatic polyamide |
BRPI0707219-8A BRPI0707219B1 (en) | 2006-01-26 | 2007-01-23 | SEMI-aromatic semicrystalline polyamide, its preparation process, polymer composition, use of said polyamide or polymer composition, molded part and its use |
EP07702942A EP1976907B1 (en) | 2006-01-26 | 2007-01-23 | Semi-crystalline semi-aromatic polyamide |
CA2636063A CA2636063C (en) | 2006-01-26 | 2007-01-23 | Semi-crystalline semi-aromatic polyamide |
US12/161,602 US9428612B2 (en) | 2006-01-26 | 2007-01-23 | Semi-crystalline semi-aromatic polyamide |
KR1020087018209A KR101377355B1 (en) | 2006-01-26 | 2007-01-23 | Semi-crystalline semi-aromatic polyamide |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06075293.8 | 2006-01-26 | ||
EP06075293 | 2006-01-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007085406A1 true WO2007085406A1 (en) | 2007-08-02 |
Family
ID=36390300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/000529 WO2007085406A1 (en) | 2006-01-26 | 2007-01-23 | Semi-crystalline semi-aromatic polyamide |
Country Status (11)
Country | Link |
---|---|
US (1) | US9428612B2 (en) |
EP (1) | EP1976907B1 (en) |
JP (1) | JP5368111B2 (en) |
KR (1) | KR101377355B1 (en) |
CN (1) | CN101374884B (en) |
BR (1) | BRPI0707219B1 (en) |
CA (1) | CA2636063C (en) |
MX (1) | MX2008009628A (en) |
RU (1) | RU2415156C2 (en) |
TW (1) | TWI453233B (en) |
WO (1) | WO2007085406A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009012932A1 (en) * | 2007-07-23 | 2009-01-29 | Dsm Ip Assets B.V. | Polyamide compositions and bobbins made thereof |
WO2009012936A1 (en) * | 2007-07-23 | 2009-01-29 | Dsm Ip Assets B.V. | E/e connector and polymer composition used therein |
WO2009012933A1 (en) * | 2007-07-23 | 2009-01-29 | Dsm Ip Assets B.V. | Plastic component for a lighting systems |
WO2010001846A1 (en) * | 2008-06-30 | 2010-01-07 | 東レ株式会社 | Polyamide resin, composition containing the polyamide resin, and molded articles of the polyamide resin and the composition |
WO2010003277A1 (en) * | 2008-07-11 | 2010-01-14 | 金发科技股份有限公司 | A semi-aromatic polyamide and the process with low amount of waste water discharge for preparing the same |
JP2010031266A (en) * | 2008-06-30 | 2010-02-12 | Toray Ind Inc | Polyamide resin, polyamide resin composition and molded article of those |
WO2010084149A1 (en) | 2009-01-21 | 2010-07-29 | Dsm Ip Assets B.V. | Plastic containers and conduits |
WO2010081872A3 (en) * | 2009-01-16 | 2010-09-23 | Dsm Ip Assets B.V. | Polymer optical interconnect component |
WO2011069892A1 (en) * | 2009-12-08 | 2011-06-16 | Basf Se | Process for preparing polyamides |
US20110139258A1 (en) * | 2009-12-16 | 2011-06-16 | E.I. Du Pont De Nemours And Company | Multilayer structures comprising a barrier layer and their use to convey fluids |
WO2011135018A1 (en) * | 2010-04-29 | 2011-11-03 | Dsm Ip Assets B.V. | Semi-aromatic polyamide |
WO2013160454A2 (en) | 2012-04-27 | 2013-10-31 | Dsm Ip Assets B.V. | Electrically conductive polyamide substrate |
WO2014118278A1 (en) * | 2013-01-30 | 2014-08-07 | Dsm Ip Assets B.V. | Process for the preparation of a polyamide |
US8927647B2 (en) | 2008-09-18 | 2015-01-06 | Mitsubishi Gas Chemical Company, Inc. | Polyamide resin |
US9428613B2 (en) | 2010-09-10 | 2016-08-30 | Basf Se | Process for producing polyamide that is stable during processing |
US9732190B2 (en) | 2011-08-17 | 2017-08-15 | Toray Industries Inc. | Production method of crystalline polyamide resin |
WO2018104503A1 (en) | 2016-12-08 | 2018-06-14 | Dsm Ip Assets B.V. | Thermoplastic composition, molded part made thereof and use thereof in automotive and e&e applications |
EP2614105B2 (en) † | 2010-09-10 | 2022-05-18 | Basf Se | Method for producing processing-stable polyamide |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5369676B2 (en) * | 2008-12-26 | 2013-12-18 | 東レ株式会社 | Polyamide resin |
CN102348740A (en) * | 2009-03-11 | 2012-02-08 | 纳幕尔杜邦公司 | Salt resistant polyamide compositions |
US9200731B2 (en) * | 2011-03-28 | 2015-12-01 | E I Du Pont De Nemours And Company | Thermoplastic multilayer tubes and process for manufacturing |
US20130022786A1 (en) * | 2011-07-21 | 2013-01-24 | E I Du Pont De Nemours And Company | Device housings having excellent surface appearance |
KR101469264B1 (en) * | 2011-12-23 | 2014-12-04 | 제일모직주식회사 | Polyamide resin, a method for preparing the same, and an article comprising the same |
KR20150067761A (en) * | 2012-10-10 | 2015-06-18 | 인비스타 테크놀러지스 에스.에이 알.엘. | Polyamide compositions and processes |
FR2997089B1 (en) * | 2012-10-23 | 2015-11-13 | Arkema France | THERMOPLASTIC COMPOSITE MATERIAL BASED ON SEMI-CRYSTALLINE POLYAMIDE AND PROCESS FOR PRODUCING THE SAME |
KR102186863B1 (en) * | 2013-01-31 | 2020-12-07 | 디에스엠 아이피 어셋츠 비.브이. | Process for the preparation of diamine/dicarboxylic acid salts and polyamides thereof |
CN104163918A (en) * | 2013-05-20 | 2014-11-26 | 上海杰事杰新材料(集团)股份有限公司 | High-temperature-resistant nylon PA66T material and preparation method thereof |
CN103387667A (en) * | 2013-07-31 | 2013-11-13 | 上海凯赛生物技术研发中心有限公司 | Semi-aromatic nylon and preparation method thereof |
EP3094768B1 (en) * | 2014-01-17 | 2018-08-29 | DSM IP Assets B.V. | Polyamide fibers |
EP3143076B2 (en) * | 2014-05-12 | 2023-02-01 | Performance Polyamides, SAS | Polyamide composition comprising amorphous polyamide and/or polyester with enhanced and uniform electrical conductivity |
JP2017530228A (en) * | 2014-10-03 | 2017-10-12 | ディーエスエム アイピー アセッツ ビー.ブイ. | Chemical resistant thermoplastic composition |
WO2018200283A1 (en) | 2017-04-25 | 2018-11-01 | Advansix Resins & Chemicals Llc | Semi-aromatic copolyamides based on caprolactam |
SG11202000892XA (en) * | 2017-09-28 | 2020-02-27 | Dupont Polymers Inc | Polymerization process |
WO2019112910A1 (en) | 2017-12-05 | 2019-06-13 | A. Schulman, Inc. | High performance polyamide compounds and uses thereof |
CN112029090A (en) * | 2019-06-03 | 2020-12-04 | 上海凯赛生物技术股份有限公司 | High-temperature-resistant low-water-absorption polyamide copolymer 5XT and preparation method thereof |
US11485833B2 (en) * | 2019-10-23 | 2022-11-01 | Hexcel Corporation | Thermoplastic toughened matrix resins containing nanoparticles |
CN118684877A (en) * | 2021-08-30 | 2024-09-24 | 上海凯赛生物技术股份有限公司 | High-temperature-resistant semi-aromatic polyamide, preparation method, composition and molded product thereof |
CN114702664A (en) * | 2022-01-26 | 2022-07-05 | 江苏晋伦塑料科技有限公司 | High-melting-point polyamide and preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4868280A (en) * | 1986-01-04 | 1989-09-19 | Stamicarbon B.V. | Copolyamide from tetramethylene diamine, adipic acid and terephthalic acid |
US6140459A (en) * | 1996-08-29 | 2000-10-31 | E. I. Du Pont De Nemours And Company | Semi-crystalline, semi-aromatic copolymers with superior post-molding shrinkage and balance of mechanical performance |
US6747120B2 (en) * | 1999-10-05 | 2004-06-08 | Dsm Ip Assets B.V. | Copolyamide based on tetramethylene terephthalamide and hexamethylene terephthalamide |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60158220A (en) * | 1984-01-27 | 1985-08-19 | Mitsui Petrochem Ind Ltd | Molding material |
DE3526931A1 (en) | 1985-07-27 | 1987-02-05 | Bayer Ag | METHOD FOR PRODUCING POLY (TETRAMETHYLENE ADIPAMIDE) |
DE3912767A1 (en) * | 1989-04-19 | 1990-10-25 | Basf Ag | METHOD FOR THE CONTINUOUS PRODUCTION OF COPOLYAMIDES |
EP0540890A1 (en) | 1991-10-10 | 1993-05-12 | Hoechst Celanese Corporation | Copolyamides of terephthalic acid, hexamethylene diamine and 2-methyl pentamethylene diamine |
JPH07224164A (en) | 1993-12-13 | 1995-08-22 | Toray Ind Inc | Production of polyamide resin |
JP3242781B2 (en) * | 1994-02-16 | 2001-12-25 | 株式会社クラレ | Polyamide resin |
JP3125604B2 (en) * | 1994-11-08 | 2001-01-22 | 宇部興産株式会社 | Crystalline copolyamide and polyamide resin composition containing the same |
JPH093215A (en) * | 1995-06-22 | 1997-01-07 | Mitsui Petrochem Ind Ltd | Polyamide film, its production and use |
CN1090643C (en) * | 1995-10-27 | 2002-09-11 | 三井化学株式会社 | Semiaromatic polyamide, process for producing the same, and composition containing the same |
US5763561A (en) * | 1996-09-06 | 1998-06-09 | Amoco Corporation | Polyamide compositions having improved thermal stability |
CN1200044C (en) | 2000-08-09 | 2005-05-04 | 三井化学株式会社 | Fire-resistant polyamide composite, granules and formed body and their application |
JP2002138197A (en) | 2000-08-09 | 2002-05-14 | Mitsui Chemicals Inc | Flame-retardant polyamide composition, pellet and molding, and use thereof |
TW521082B (en) | 2000-09-12 | 2003-02-21 | Kuraray Co | Polyamide resin composition |
JP3680752B2 (en) | 2001-03-30 | 2005-08-10 | 富士ゼロックス株式会社 | Color toner for flash fixing |
JP4158399B2 (en) * | 2002-04-05 | 2008-10-01 | 東レ株式会社 | Polyamide resin |
US20060293435A1 (en) | 2005-06-10 | 2006-12-28 | Marens Marvin M | Light-emitting diode assembly housing comprising high temperature polyamide compositions |
US20070133007A1 (en) | 2005-12-14 | 2007-06-14 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method using laser trimming of a multiple mirror contrast device |
JP2007224164A (en) | 2006-02-23 | 2007-09-06 | Dai Ichi Kogyo Seiyaku Co Ltd | Emulsifier for emulsion polymerization, method for producing polymer emulsion, and the resultant polymer emulsion |
JP2008134207A (en) | 2006-11-29 | 2008-06-12 | Shin Etsu Polymer Co Ltd | Inspection device for frame and frame inspection method |
JP4934521B2 (en) | 2007-06-22 | 2012-05-16 | 株式会社沖データ | Image forming apparatus and color misregistration correction method thereof |
-
2007
- 2007-01-23 CN CN2007800033395A patent/CN101374884B/en active Active
- 2007-01-23 WO PCT/EP2007/000529 patent/WO2007085406A1/en active Application Filing
- 2007-01-23 EP EP07702942A patent/EP1976907B1/en active Active
- 2007-01-23 BR BRPI0707219-8A patent/BRPI0707219B1/en active IP Right Grant
- 2007-01-23 US US12/161,602 patent/US9428612B2/en active Active
- 2007-01-23 CA CA2636063A patent/CA2636063C/en not_active Expired - Fee Related
- 2007-01-23 JP JP2008551709A patent/JP5368111B2/en active Active
- 2007-01-23 RU RU2008134722/04A patent/RU2415156C2/en not_active IP Right Cessation
- 2007-01-23 KR KR1020087018209A patent/KR101377355B1/en active IP Right Grant
- 2007-01-25 TW TW096102816A patent/TWI453233B/en active
-
2008
- 2008-07-25 MX MX2008009628A patent/MX2008009628A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4868280A (en) * | 1986-01-04 | 1989-09-19 | Stamicarbon B.V. | Copolyamide from tetramethylene diamine, adipic acid and terephthalic acid |
US6140459A (en) * | 1996-08-29 | 2000-10-31 | E. I. Du Pont De Nemours And Company | Semi-crystalline, semi-aromatic copolymers with superior post-molding shrinkage and balance of mechanical performance |
US6747120B2 (en) * | 1999-10-05 | 2004-06-08 | Dsm Ip Assets B.V. | Copolyamide based on tetramethylene terephthalamide and hexamethylene terephthalamide |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009012932A1 (en) * | 2007-07-23 | 2009-01-29 | Dsm Ip Assets B.V. | Polyamide compositions and bobbins made thereof |
WO2009012936A1 (en) * | 2007-07-23 | 2009-01-29 | Dsm Ip Assets B.V. | E/e connector and polymer composition used therein |
WO2009012933A1 (en) * | 2007-07-23 | 2009-01-29 | Dsm Ip Assets B.V. | Plastic component for a lighting systems |
US9090750B2 (en) | 2007-07-23 | 2015-07-28 | Dsm Ip Assets B.V. | Plastic component for a lighting systems |
US9080029B2 (en) | 2007-07-23 | 2015-07-14 | Dsm Ip Assets B.V. | E/E connector and polymer composition used therein |
US20100279550A1 (en) * | 2007-07-23 | 2010-11-04 | Rudy Rulken | E/e connector and polymer composition used therein |
WO2010001846A1 (en) * | 2008-06-30 | 2010-01-07 | 東レ株式会社 | Polyamide resin, composition containing the polyamide resin, and molded articles of the polyamide resin and the composition |
EP2305735B1 (en) | 2008-06-30 | 2017-09-06 | Toray Industries, Inc. | Polyamide resin, composition containing the polyamide resin, and molded articles of the polyamide resin and the composition |
JP2010031266A (en) * | 2008-06-30 | 2010-02-12 | Toray Ind Inc | Polyamide resin, polyamide resin composition and molded article of those |
CN102131845B (en) * | 2008-06-30 | 2013-08-14 | 东丽株式会社 | Polyamide resin, composition containing polyamide resin, and molded articles of polyamide resin and composition |
US8420772B2 (en) | 2008-07-11 | 2013-04-16 | Kingfa Science & Technology Co., Ltd | Semi-aromatic polyamide and a method for preparation with low wastewater discharge |
WO2010003277A1 (en) * | 2008-07-11 | 2010-01-14 | 金发科技股份有限公司 | A semi-aromatic polyamide and the process with low amount of waste water discharge for preparing the same |
KR101183393B1 (en) * | 2008-07-11 | 2012-09-14 | 상하이 킹파 사이언스 앤 테크놀로지 컴퍼니 리미티드 | A semi-aromatic polyamide and the process with low amount of waste water discharge for preparing the same |
US8927647B2 (en) | 2008-09-18 | 2015-01-06 | Mitsubishi Gas Chemical Company, Inc. | Polyamide resin |
WO2010081872A3 (en) * | 2009-01-16 | 2010-09-23 | Dsm Ip Assets B.V. | Polymer optical interconnect component |
WO2010084149A1 (en) | 2009-01-21 | 2010-07-29 | Dsm Ip Assets B.V. | Plastic containers and conduits |
JP2015155543A (en) * | 2009-01-21 | 2015-08-27 | ディーエスエム アイピー アセッツ ビー.ブイ. | plastic container and conduit |
JP2012515805A (en) * | 2009-01-21 | 2012-07-12 | ディーエスエム アイピー アセッツ ビー.ブイ. | Plastic containers and conduits |
WO2011069892A1 (en) * | 2009-12-08 | 2011-06-16 | Basf Se | Process for preparing polyamides |
US9315626B2 (en) | 2009-12-08 | 2016-04-19 | Basf Se | Process for preparing polyamides |
US20110139258A1 (en) * | 2009-12-16 | 2011-06-16 | E.I. Du Pont De Nemours And Company | Multilayer structures comprising a barrier layer and their use to convey fluids |
EP2639257A1 (en) * | 2010-04-29 | 2013-09-18 | DSM IP Assets B.V. | Semi-aromatic polyamide |
WO2011135018A1 (en) * | 2010-04-29 | 2011-11-03 | Dsm Ip Assets B.V. | Semi-aromatic polyamide |
US9428613B2 (en) | 2010-09-10 | 2016-08-30 | Basf Se | Process for producing polyamide that is stable during processing |
EP2614105B2 (en) † | 2010-09-10 | 2022-05-18 | Basf Se | Method for producing processing-stable polyamide |
US9732190B2 (en) | 2011-08-17 | 2017-08-15 | Toray Industries Inc. | Production method of crystalline polyamide resin |
WO2013160454A2 (en) | 2012-04-27 | 2013-10-31 | Dsm Ip Assets B.V. | Electrically conductive polyamide substrate |
WO2014118278A1 (en) * | 2013-01-30 | 2014-08-07 | Dsm Ip Assets B.V. | Process for the preparation of a polyamide |
US9850348B2 (en) | 2013-01-30 | 2017-12-26 | Dsm Ip Assets B.V. | Process for the preparation of a polyamide |
EA031112B1 (en) * | 2013-01-30 | 2018-11-30 | ДСМ АйПи АССЕТС Б.В. | Process for the preparation of a polyamide and obtained copolyamide |
WO2018104503A1 (en) | 2016-12-08 | 2018-06-14 | Dsm Ip Assets B.V. | Thermoplastic composition, molded part made thereof and use thereof in automotive and e&e applications |
Also Published As
Publication number | Publication date |
---|---|
KR20080085187A (en) | 2008-09-23 |
RU2008134722A (en) | 2010-03-10 |
US20100063245A1 (en) | 2010-03-11 |
BRPI0707219A2 (en) | 2011-04-26 |
KR101377355B1 (en) | 2014-04-01 |
JP2009524711A (en) | 2009-07-02 |
TW200732376A (en) | 2007-09-01 |
MX2008009628A (en) | 2008-08-31 |
US9428612B2 (en) | 2016-08-30 |
JP5368111B2 (en) | 2013-12-18 |
BRPI0707219A8 (en) | 2017-12-12 |
TWI453233B (en) | 2014-09-21 |
CA2636063C (en) | 2014-07-22 |
CN101374884B (en) | 2011-09-28 |
EP1976907A1 (en) | 2008-10-08 |
EP1976907B1 (en) | 2012-08-22 |
CA2636063A1 (en) | 2007-08-02 |
RU2415156C2 (en) | 2011-03-27 |
CN101374884A (en) | 2009-02-25 |
BRPI0707219B1 (en) | 2018-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2636063C (en) | Semi-crystalline semi-aromatic polyamide | |
KR101606606B1 (en) | Polyamide resin | |
JP4676122B2 (en) | Copolyamides based on tetramethylene terephthalamide and hexamethylene terephthalamide | |
EP2563840B1 (en) | Semi-aromatic polyamide | |
EP2726537B1 (en) | Branched polyamide with different blocks | |
JPH04233943A (en) | Amorphous copolyamide, its manufacture, and manufacture of its molding | |
JP5652590B2 (en) | Packaging material with excellent anisole barrier properties | |
US4864009A (en) | Molding composition consisting of aliphatic/aromatic copolyamide | |
JP2020117588A (en) | Polyamide resin, composition and molded article | |
JP2011168329A (en) | Packaging material excellent in barrier property to anisoles | |
JPH05310923A (en) | Transparent copolyamide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007702942 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2636063 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6031/DELNP/2008 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200780003339.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087018209 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2008/009628 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008551709 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2008134722 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12161602 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0707219 Country of ref document: BR Kind code of ref document: A2 Effective date: 20080728 |