[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007072757A1 - 放収音装置 - Google Patents

放収音装置 Download PDF

Info

Publication number
WO2007072757A1
WO2007072757A1 PCT/JP2006/325063 JP2006325063W WO2007072757A1 WO 2007072757 A1 WO2007072757 A1 WO 2007072757A1 JP 2006325063 W JP2006325063 W JP 2006325063W WO 2007072757 A1 WO2007072757 A1 WO 2007072757A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
signal
microphone
speaker
collection device
Prior art date
Application number
PCT/JP2006/325063
Other languages
English (en)
French (fr)
Inventor
Toshiaki Ishibashi
Kosuke Saito
Original Assignee
Yamaha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005364617A external-priority patent/JP4929703B2/ja
Priority claimed from JP2005368052A external-priority patent/JP4929711B2/ja
Application filed by Yamaha Corporation filed Critical Yamaha Corporation
Priority to US12/095,652 priority Critical patent/US8243951B2/en
Priority to EP06842831.7A priority patent/EP1965603B1/en
Priority to CN200680047589.4A priority patent/CN101331793B/zh
Publication of WO2007072757A1 publication Critical patent/WO2007072757A1/ja
Priority to US13/544,002 priority patent/US9049504B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones

Definitions

  • the present invention relates to a sound emission and collection device that is integrally provided with a speaker and a microphone, and more particularly to a sound emission and collection device that suppresses the sound that circulates from a speaker to a microphone while having a compact configuration.
  • an audio conference apparatus that is integrally provided with a speech force and a microphone is widely used.
  • the audio conferencing apparatus transmits the collected sound signal collected by the microphone to the connection destination and emits the audio signal received from the connection destination from the speaker.
  • an audio conference device is often installed at the center of the conference participant (the center of the conference desk, etc.). Therefore, it is desired that such an audio conference apparatus be miniaturized.
  • Patent Document 1 a miniaturized audio conference apparatus has been proposed in which a speaker box is omitted.
  • the audio conference apparatus is configured to include a speaker and a microphone in the same space, when the audio signal received at the connection destination is emitted from the speaker, the audio is picked up by the microphone as a single sound. The collected sound signal including this echo is transmitted to the connection destination. Therefore, as shown in Patent Document 2, an audio conference apparatus having an echo canceller function is proposed in which a microphone is accommodated at the tip of a cylindrical elastic body and acoustic coupling between a speaker and a microphone is suppressed. Speak.
  • An object of the present invention is to provide a sound emission and collection device that has a compact configuration and suppresses the sound that the speaker power sneaks into a microphone and improves the SZN ratio.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-204803
  • Patent Document 2 JP-A-8-298696
  • a sound emitting and collecting apparatus includes a plurality of unidirectional microphones arranged on a first circumference around one axis and directed toward the center, and the axis as a center. And a plurality of speakers arranged in a direction opposite to the center on the second circumference.
  • a plurality of unidirectional microphones and speakers are respectively installed on a circumference centered on the same axis.
  • the directivity of the unidirectional microphone and the speaker is installed in opposite directions. Therefore, it is possible to suppress the sound that circulates from the speaker to the unidirectional microphone. Since both the speaker and unidirectional microphone are installed on the circumference around the same axis, the structure is compact.
  • the first circumference has a larger diameter than the second circumference.
  • the present invention further includes a casing in which the plurality of unidirectional microphones and the plurality of speakers are arranged, and the plurality of unidirectional microphones are arranged on an upper surface of the casing.
  • the plurality of speakers are preferably arranged on the side surface side of the casing.
  • the direction of the sound source is estimated based on the level of the sound signal picked up by each unidirectional microphone, and the direction of the sound source is directed to the unidirectional microphone. It is preferable to include signal processing means for outputting the audio signal picked up by the phone to the subsequent stage.
  • a signal having the highest sound pressure level is selectively output among the audio signals picked up by the respective unidirectional microphones. This further increases SZN The ratio can be improved.
  • the signal processing means further adds the audio signals picked up by a plurality of adjacent unidirectional microphones to estimate a sound source direction, and a plurality of adjacent unidirectional microphones.
  • a signal obtained by adding the audio signals picked up by may be output to the subsequent stage.
  • the sound emitting and collecting apparatus of the present invention further includes a housing having two opposing surfaces, and a sound emitting surface parallel to a second surface facing the first surface of the housing.
  • the directional microphone is disposed on the first surface side of the housing, the center of the sound emitting surface and the center of the circle are on the same vertical line with respect to the first surface and the second surface, and the speaker is Preferably, sound is emitted from the second surface to the outside of the housing.
  • the sound emitted from the speaker installed on the second surface side which is the sound emitting surface
  • the sound emitted from the speaker installed on the second surface side is reflected on the top surface of the desk on which the sound emitting and collecting device is installed and reflected on the housing. Propagated to the side. At this time, the sound intensity propagated to each part of the side surface is substantially equal. Then, part of the sound emitted from the speaker goes through the side surface to the first surface side where a plurality of unidirectional microphones are installed.
  • Each of the plurality of unidirectional microphones is circumferentially arranged on the first surface side.
  • the center of the circle and the center of the sound emitting surface are on the same vertical line with respect to the first surface and the second surface, and the center direction of the circle is the direction of the directivity, that is, the sound collection sensitivity. It is installed so as to be in a high direction.
  • the sound that wraps around the first surface side is the side surface position where the sound wraps around the unidirectional microphone arranged at the closest position to the side surface position where the sound wraps around.
  • the sound is collected mainly by a unidirectional microphone placed at the farthest opposite position.
  • the propagation path (echo path) of the wraparound sound is lengthened, and the wraparound sound is greatly attenuated before being picked up by the unidirectional microphone mouthphone.
  • the arrangement positions of a plurality of unidirectional microphones in the sound emission and collection device of the present invention Is preferably point-symmetric with respect to the center of the circle.
  • the wraparound sound to each unidirectional microphone is substantially equal because the positions of the plurality of unidirectional microphones are point-symmetric.
  • the sound emission and collection device of the present invention is arranged at a point-symmetrical position with respect to the center of each unidirectional microphone and the circle from the sound collection signal of each unidirectional microphone arranged symmetrically. It is preferable to provide a difference calculation means for generating a difference corrected sound pickup signal by calculating a difference of the sound pickup signal with the unidirectional microphone.
  • the wraparound sound picked up by each unidirectional microphone hardly changes, and in particular, the wraparound sound is substantially equal between unidirectional microphones arranged symmetrically with respect to points. Therefore, by subtracting the collected sound signals of these unidirectional microphones, a difference-corrected collected sound signal from which the signal component due to the wraparound sound is removed can be obtained.
  • the sound emission and collection device of the present invention detects the sound source direction based on the signal intensity of the sound collection signal of the plurality of unidirectional microphones, and the directivity axis is directed to the sound source direction. It is preferable to provide a signal processing means for outputting the collected sound signal of the microphone to the subsequent stage.
  • the collected signal of the unidirectional microphone whose directivity axis is directed toward the sound source has a higher signal strength than the collected signal of other unidirectional microphones, that is, has a sound pressure level.
  • the sound pickup signal with the highest signal strength is selectively output among the sound pickup signals of the respective unidirectional microphones.
  • the signal strength of the collected sound signal from the sound source direction becomes relatively high, and a sound collected signal with a high SZN ratio can be obtained.
  • the sound emission and collection device of the present invention detects a sound source direction based on the signal intensity of the difference corrected sound collection signal, and outputs a differential correction sound collection signal corresponding to the sound source direction to the subsequent stage. Means may be provided.
  • the sound collection signal strength of the unidirectional microphone with the directivity axis facing the sound source direction is subtracted from the sound collection signal of the unidirectional microphone with the directivity axis facing the opposite direction.
  • the difference-corrected sound pickup signal is obtained by suppressing the wraparound sound component and further enhancing the sound pickup signal from the sound source direction.
  • a differential correction sound pickup signal with a high sound pressure level is selectively output. By doing so, a sound pickup signal with a higher SZN ratio can be obtained.
  • FIG. 1 is a top view of a sound emission and collection device.
  • FIG. 2A is a cross-sectional view taken along the line AA in FIG.
  • FIG. 2B is a cross-sectional view taken along the line AA of the modified example of the housing 1.
  • FIG. 3 is a block diagram of the sound emission and collection device.
  • FIG. 4 is a detailed block diagram of a microphone signal processing circuit.
  • FIG. 5 is a detailed block diagram of an echo canceller.
  • FIG. 6 is a detailed block diagram of an application example of a microphone signal processing circuit.
  • FIG. 7A is a top view of a sound emission and collection device in another embodiment 1.
  • FIG. 7A is a top view of a sound emission and collection device in another embodiment 1.
  • FIG. 7B is a cross-sectional view taken along line AA of the sound emitting and collecting apparatus according to the other embodiment 1.
  • FIG. 8A is a top view of a sound emitting and collecting apparatus according to another embodiment 2.
  • FIG. 8B is a cross-sectional view taken along line AA of the sound emitting and collecting apparatus according to another embodiment 2.
  • FIG. 9A is a top view of a sound emission and collection device in another example 3.
  • FIG. 9A is a top view of a sound emission and collection device in another example 3.
  • FIG. 9B is a cross-sectional view taken along line AA of the sound emitting and collecting apparatus according to another embodiment 3.
  • FIG. 10A is a cross-sectional view taken along line AA of the sound emission and collection device of the other embodiment 4.
  • FIG. 10B is a cross-sectional view taken along line AA of the sound emission and collection device in the other embodiment 4.
  • FIG. 11 is a block diagram of a microphone signal processing circuit.
  • FIG. 12 is a diagram showing a concept of a virtual microphone.
  • FIG. 13A is a diagram showing a configuration of a main part of the sound emitting and collecting apparatus according to the embodiment of the present invention.
  • FIG. 13B is an AA cross-sectional view of the sound emission and collection device of the embodiment of the present invention.
  • FIG. 14A is a diagram showing a case where the sound emitting and collecting apparatus 100 according to the embodiment of the present invention is used by two users 201 and 202.
  • FIG. 14B is a diagram showing a case where the sound emitting and collecting apparatus 100 according to the embodiment of the present invention is used by two users 201 and 202.
  • FIG. 15A is a diagram illustrating a main sound collecting process performed by the sound emitting and collecting apparatus 100 according to the embodiment of the present invention. It is a conceptual diagram showing the transmission distance Lvl of the utterance sound with respect to iku mouthphone.
  • FIG. 15B is a conceptual diagram showing the transmission distance LvO of the uttered sound with respect to the microphone that performs the main sound collection in the conventional sound emitting and collecting apparatus.
  • FIG. 15C is a conceptual diagram showing a transmission distance Lsl of the wraparound sound to the microphone.
  • FIG. 15D is a conceptual diagram showing a transmission distance LsO of the wraparound sound with respect to the microphone in the conventional sound emitting and collecting apparatus in which the speaker is arranged on the side surface of the casing.
  • FIG. 16 is a block diagram showing a configuration of a sound emission and collection device according to the embodiment of the present invention.
  • FIG. 17 is a detailed block diagram of microphone signal processing circuit 23.
  • FIG. 18 is a detailed block diagram of the echo canceller 24.
  • FIG. 19A is a diagram showing a configuration of a main part of a sound emitting and collecting apparatus of another configuration of the present embodiment.
  • FIG. 19B is a diagram showing a configuration of a main part of a sound emission and collection device of another configuration of the present embodiment.
  • FIG. 20 is a block diagram showing another configuration of microphone signal processing circuit 23.
  • FIG. 21 is a block diagram of a signal synthesis unit in still another microphone signal processing circuit 23.
  • FIG. 22A is a diagram showing an example of the sound emitting and collecting apparatus described above.
  • FIG. 22B is a diagram illustrating an example of the sound emitting and collecting apparatus described above.
  • FIG. 22C is a diagram illustrating an example of the sound emitting and collecting apparatus described above.
  • FIG. 22D is a diagram illustrating an example of the sound emitting and collecting apparatus described above.
  • FIG. 22E is a diagram illustrating an example of the sound emitting and collecting apparatus described above.
  • FIG. 22F is a cross-sectional view of the example of the sound emission and collection device described above.
  • FIG. 23 is a diagram illustrating an example of the sound emitting and collecting apparatus described above.
  • FIG. 1 is a top view of the sound emitting and collecting apparatus according to this embodiment
  • FIG. 2A is a cross-sectional view taken along line AA in FIG.
  • the right side of the page is the X direction
  • the left side is the X direction
  • the upper side is the Y direction
  • the lower side is the Y direction
  • the right side of the page is the X direction
  • the left side is the X direction
  • the upper side is the Z direction
  • the lower side is the Z direction.
  • This sound emission and collection device is composed of a cylindrical casing 1, and a plurality of (four in this example) speakers arranged concentrically on the outermost peripheral portion of the casing 1 at equal intervals.
  • 11 A to 11D a plurality of (eight in this example) microphones 12A to 12H (unidirectional microphones) arranged at equal intervals in a concentric circle inside the housing 1, and It has.
  • the microphones 12A to 12H are connected to the front-end amplifiers 13A to 13H (see FIG. 3), and output audio signals based on the collected sounds.
  • the speakers 11A to 11D are connected to the amplifier 19A to the amplifier 19D (see FIG. 3), and emit sound based on the input sound signal.
  • the casing 1 has a compact cylindrical shape with a cross-sectional diameter of about 30 cm as viewed from above, and is high enough to arrange the sound emission surface of the speaker 11 on the side surface of the cylinder (for example, about 10 cm).
  • Each speaker 11 uses a cone type speaker unit, a horn type speaker unit, or the like. Force Other forms may be used.
  • Each microphone 12 is a directional microphone having strong sensitivity in a predetermined direction.
  • the microphone 12 may be a force using a dynamic microphone unit, a condenser microphone unit, or the like, or other types.
  • Each speaker 11 is installed on the side surface of the housing 1 such that the sound emission direction is outside the housing 1, and the four speakers 11 emit sound in different directions.
  • the speaker 11B emits sound in the X direction
  • the speaker 11D emits sound in the X direction. Therefore, each speaker 11 can emit sound in the entire circumferential direction (X, —X, Y, —Y directions) of the sound emission and collection device.
  • Each microphone 12 has a sound collection direction (a direction with strong sensitivity) as viewed from the top of the housing 1 in the center direction (for example, the sound collection direction of the microphone 12C is the X direction, and the sound collection direction of the microphone 12G is It is installed on the top surface of case 1 so that it is in the X direction.
  • the sound collection direction of each microphone 12 is the central direction of the housing 1, but a plurality of microphones 12 are installed facing each other. Direction) can be picked up.
  • the sound emission direction and sound collection direction of the adjacent speaker 11 and microphone 12 are substantially opposite directions. Further, the sound force 11 and the microphone 12 (for example, the speaker 11B and the microphone 12G) whose sound emission and sound collection directions are the same direction are arranged in the housing 1 at a position farthest from each other. Therefore, the sound that circulates from the speaker 11 to the microphone 12 becomes extremely small, compared to a general sound emitting and collecting device (for example, when the speaker emitting surface is on the upper side of the housing and the microphone sound collecting surface is on the outer side of the housing). This improves the SZN ratio.
  • FIG. 3 is a block diagram showing the configuration of the sound emission and collection device.
  • the sound emission and collection devices are connected to the above-described speaker power 11A to speaker 11D, microphone 12A to microphone 12H, front end amplifier 13A to amplifier 13H connected to each microphone 12A to microphone 12H, and each amplifier 13A to amplifier 13H.
  • AZD converter 14A to AZD converter 14H connected, microphone signal processing circuit 15 to which each AZD converter 1 4A to AZD converter 14H is connected, echo canceller 16 connected to microphone signal processing circuit 15, and echo canceller 16 Connected to the input / output interface 17 connected, the DZA converter 18A to D ZA converter 18D connected to the echo canceller 16, and each DZA converter 18A to DZA converter 18D And an amplifier 19A to an amplifier 19D for supplying audio signals to the speakers 11A to 11D.
  • the audio signals output from the microphones 12A to 12H are amplified by the front-end amplifiers 13A to 13H, and are digitally converted by the A / D converters 14A to 14A.
  • the microphone signal processing circuit 15 selects and outputs the signal with the highest sound pressure level among the digital signals from which the AZD converter 14A to AZD converter 14H are also output.
  • FIG. 4 shows a detailed block diagram of the microphone signal processing circuit 15.
  • the microphone signal processing circuit 15 includes an adder 151A to an adder 151H, a select Z mixing circuit 152, and a maximum signal intensity detection circuit 153.
  • Each of the adders 151A to 151H receives the digital signals A to H from the AZD converter 14A to AZD converter 14H, respectively.
  • each adder 151 receives a signal adjacent to the signal input to each adder 151 (a microphone corresponding to each adder and a signal output from an adjacent microphone are adjacent). For example, a digital signal A and a digital signal B are input to the adder 151A, and a digital signal B and a digital signal C are input to the adder 151B.
  • Each adder 151 adds the input digital signals and outputs the result.
  • the maximum digital signal strength detection circuit 153 compares the added digital signals with their sound pressure levels.
  • the maximum signal strength detection circuit 153 compares the sound pressure levels of the respective digital signals, and as a result, selects the digital signal having the highest sound pressure level and sets it in the select Z mixing circuit 152.
  • the select Z mixing circuit 152 selects only the set digital signal and outputs it to the echo canceller 16.
  • the maximum signal intensity detection circuit 153 may select the plurality of digital signals in order and set them in the select Z mixing circuit 152 with the highest sound pressure level and digital signal power. In this case, the select Z mixing circuit 152 mixes the set digital signals and outputs them to the echo canceller 16.
  • the SZN ratio is further improved.
  • the signals of the adjacent microphones 12 are calculated and output, but the signals collected by each microphone 12 may be output individually, or two or more adjacent signals may be output. Add it and output it.
  • the output signal of the microphone signal processing circuit 15 is input to the echo canceller 16.
  • the output signal of the echo canceller 16 is transmitted to another device via the input / output interface 17.
  • the input / output interface 17 has a LAN terminal, an analog audio terminal, a digital audio terminal, and the like, and transmits the signal to a device connected to these terminals. When outputting to the LAN terminal, it is transmitted as audio information to a remote device connected via the network.
  • the input / output interface 17 outputs audio information (received signal) received from another device to the echo canceller 16.
  • the echo canceller 16 estimates a sneak component from the speaker 11 to the microphone 12 and subtracts the estimated sneak component from the output signal force of the microphone signal processing circuit 15.
  • FIG. 5 shows a detailed block diagram of the echo canceller 16.
  • the echo canceller 16 includes an adaptive filter 161 and a calorie calculator 162.
  • the adaptive filter 161 includes a digital filter such as an FIR filter.
  • the adaptive filter 161 estimates the transfer function of the acoustic transfer system (sound propagation path from the speaker 11 to the microphone 12), and calculates the filter coefficient of the FIR filter so as to simulate the estimated transfer function.
  • the adaptive filter 161 generates a simulation signal of a wraparound component from the speaker 11 to the microphone 12 with the estimated filter coefficient.
  • the simulated signal is subtracted by the adder 162 from the output signal force of the microphone signal processing circuit 15. Therefore, the output signal of the adder 162 is a signal obtained by removing the wraparound component from the collected sound signal of the microphone 12.
  • the transfer function is estimated and the filter coefficient is calculated based on the signal supplied to the speaker 11 using the residual signal output from the adder 162 as a reference signal. It is done using.
  • the adaptive algorithm is an algorithm that calculates filter coefficients so that the residual signal is as small as possible.
  • the adaptive filter 161 generates a signal simulating the sneak signal of the acoustic transmission system (the audio signal from the speaker 11 to the microphone 12), and the adder 162 collects the sound.
  • the echo canceller 16 can prevent an echo generated by the sneak signal.
  • this sound emission and collection device is used as a loudspeaker that emits sound collected by the microphone 12 from the speaker 11 via the input / output interface 17, the echo canceller 16 is generated due to the loop phenomenon of the wraparound signal. Howling can also be prevented.
  • the output signal of the echo canceller 16 (received signal from another device) is output to each of the DZA converter 18A to DZA converter 18D and converted into an analog audio signal.
  • These analog audio signals are amplified by amplifiers 19A to 19D and emitted from speakers 11A to 11D.
  • FIG. 6 shows the configuration of an application example of the microphone signal processing circuit 15.
  • signals A to H are input to delay 154A to delay 154H, delay 155A to delay 155H, and delay 156A to delay 156H, respectively.
  • the output signals of delay 154A to delay 154H are input to adder 157A to adder 157H, respectively.
  • the adder 157A to the adder 157H are input to the adder 157 which is shifted from the output signal force of the delay 155A to the delay 155H.
  • the output signal of delay 155B is to adder 157A
  • the output signal of delay 155C is to adder 157B
  • the output signal of delay 155D is to adder 157C
  • the output signal and the output signal of the adjacent microphone 12 are added.
  • the adder 157A to the adder 157H are input with the output signal power of the delay 156A to the delay 156H shifted by one stage. That is, the output signal of the delay 156C is added to the adder 157A, the output signal of the delay 156D is added to the adder 157B, the output signal of the delay 156E is added to the adder 157C, and so on.
  • the 12 output signals and the output signals of the microphones 12 on both sides are added.
  • Each delay 154, 155, 156 gives a delay time to the input audio signal so that the three signals added in adder 157 have the same phase. Therefore, the sound picked up by the microphone 12 is recorded in the two adjacent microphones 1 in the corresponding adders 157. The two collected sound signals are added with the same phase. Since they are added at the same phase, the signal in a specific direction is strengthened, and the SZN ratio is improved and the directivity is improved.
  • the number of signals to be added is not limited to three as described above, and the SZN ratio in a predetermined direction can be improved by adding or subtracting a plurality of signals.
  • a dome-shaped (hemispherical) cover 122 having a bulge in the Z direction may be attached to the upper surface of the housing 1.
  • the cover 122 has a size that covers all of the plurality of microphones 12 installed on the upper surface of the housing 1.
  • the cover 122 is made of a punch mesh steel plate so as not to interfere with the sound collection of the microphone 12 installed on the upper surface of the housing 1.
  • the sound emission direction and sound collection direction of the adjacent speaker 11 and microphone 12 are substantially opposite directions.
  • the speaker 11 and the microphone 12 (for example, the speaker 11B and the microphone 12G) having the same sound emitting and collecting directions are arranged at positions farthest from each other in the housing 1. Therefore, even in the example of FIG. 2 (B), the sound that circulates from the speaker 11 to the microphone 12 becomes extremely small, and the SZN ratio is improved.
  • FIG. 7 shows the structure of a sound emission and collection device in another example.
  • FIG. 7 is a top view and a cross-sectional view showing another example of the sound emission and collection device.
  • 7A is a top view of the sound emission and collection device
  • FIG. 7B is a cross-sectional view taken along the line AA in FIG. 7A.
  • the right side of the page is the X direction
  • the left side is the -X direction
  • the upper side is the Y direction
  • the lower side is the -Y direction
  • the right side of the page is the X direction
  • the left side is the X direction
  • the upper side is the Z direction
  • the lower side is the Z direction.
  • Components that are the same as those of the sound emission and collection device shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.
  • the sound emission and collection device in this example includes a cylindrical casing 2, and a plurality of (four in this example) speakers 11A arranged concentrically on the outermost peripheral portion of the casing 2 at equal intervals.
  • ⁇ Spi One power 11D and a plurality (eight in this example) of microphones 12A to 12H arranged at equal intervals on the upper surface of the housing 2 are provided.
  • the case 2 has a compact cylindrical shape with a diameter of a cross-sectional circle of about 30 cm as viewed from above, and is high enough to arrange the sound emitting surface of the speaker 11 on the side surface of the cylinder (for example, about 10 cm).
  • the housing 2 has a trapezoidal bulge in the Z direction near the center of the upper surface.
  • the microphone 12 is installed at the top of this bulge surface.
  • This bulging surface has a flat central portion, such as V, which prevents the microphone 12 from collecting sound.
  • Each speaker 11 is installed such that the sound emission direction is outside the housing 2.
  • Each microphone 1 2 is installed so that the sound collection direction is the center direction when viewed from the top of the housing 2 (for example, the sound collection direction of the microphone 12C is the X direction, and the sound collection direction of the microphone 12G is the X direction). Yes. Since each microphone 12 is installed on the top surface of the housing 2, the sound inside the housing 2 (the sound emitted from the speaker 11 in the housing 2) cannot be collected. !
  • Each speaker 11 and each microphone 12 are installed at different heights.
  • the sound output direction and sound collection direction of adjacent speaker force 11 and microphone 12 are substantially opposite to each other.
  • the speaker 11 and the microphone 12 (for example, the speaker 11B and the microphone 12G) whose sound emission and sound collection directions are the same are arranged at positions farthest from each other in the housing 2. Therefore, even in this example, the sound that circulates from the speaker 11 to the microphone 12 is extremely small, and the SZN ratio is lower than that of a general sound emitting and collecting device (for example, the speaker emitting surface is on the upper side and the microphone sound collecting surface is on the outer side). improves.
  • the sound emission and collection device may have a structure as shown in FIG.
  • FIG. 8 is a top view and a cross-sectional view showing another example of the sound emission and collection device.
  • FIG. 8A is a top view of the sound emission and collection device
  • FIG. 8B is a cross-sectional view taken along line AA in FIG. 8A.
  • the right side of the page is the X direction
  • the left side is the X direction
  • the upper side is the Y direction
  • the lower side is the Y direction
  • the right side of the page is the X direction
  • the left side is the X direction
  • the upper side is the Z direction
  • the lower side is the Z direction.
  • the same components as those in the sound emitting and collecting apparatus shown in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • the sound emission and collection device in the example of the figure includes a plurality of cylindrical housings (upper housing 3A and lower housing).
  • a plurality of microphones 12A to 12H that are concentrically arranged on the upper surface of the outermost periphery of the upper housing 3A, and a lower housing.
  • a plurality of speakers 11 A to 11 D arranged at equal intervals on a concentric circle on the outermost peripheral portion of the body 3 B.
  • the upper housing 3A and the lower housing 3B are joined so that the center of the bottom surface is on the same axis, and the upper housing 3A has a larger volume than the lower housing 3B and is seen from the top surface.
  • the side surface of the body 3A is the outer peripheral side, and the side surface of the lower housing 3B is the inner peripheral side.
  • Each speaker 11 is installed so that the sound emission direction is outside the housing 3.
  • Each microphone 1 2 is installed so that the sound collection direction is the center direction when viewed from the top of the housing 3 (for example, the sound collection direction of the microphone 12C is the X direction, and the sound collection direction of the microphone 12G is the X direction). Yes. Since each microphone 12 is installed on the top surface of the housing 3, the sound inside the housing 3 (the sound emitted from the speaker 11 in the housing 3) cannot be collected. !
  • the speakers 11 and the microphones 12 (for example, the speaker 11B and the microphones) adjacent to each other are arranged even when the speakers 11 are arranged on the inner circumference of the concentric circle and the microphones 12 are arranged on the outer circumference side when viewed from the upper side of the casing.
  • the sound emission direction and sound collection direction of 12C) are substantially opposite directions.
  • the speaker 11 and the microphone 12 (for example, the speaker 11B and the microphone 12G) having the same direction of sound emission and sound collection are arranged at positions farthest from each other in the housing 3. Therefore, also in the example of FIG. 8, the sound that circulates from the speaker 11 to the microphone 12 becomes extremely small, and the SZN ratio is improved.
  • FIG. 9 is a top view and a cross-sectional view showing still another example of the sound emission and collection device.
  • FIG. 9A is a top view of the sound emission and collection device
  • FIG. 9B is a cross-sectional view taken along line AA in FIG. 9A.
  • the right side of the page is the X direction
  • the left side is the X direction
  • the upper side is the Y direction
  • the lower side is the Y direction
  • the right side of the page is the X direction
  • the left side is the X direction
  • the upper side is the Z direction
  • the lower side is the Z direction.
  • components common to the sound emitting and collecting apparatus shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.
  • the sound emitting and collecting apparatus in this example has four forces of a substantially cylindrical housing, and a plurality of (four in this example) are arranged on the outermost peripheral portion of the housing 4 at equal intervals on a concentric circle.
  • the casing 4 has a compact cylindrical shape with a cross-sectional diameter of about 30 cm as viewed from above, and is high enough to arrange the sound emission surface of the speaker 11 on the side surface of the cylinder (for example, about 10 cm).
  • Each speaker 11 is installed on each side so that the sound emission direction is outside the housing 4.
  • Each microphone 12 is installed such that the sound collection direction is the center direction when viewed from the top of the housing 4 (for example, the sound collection direction of the microphone 12C is the X direction, and the sound collection direction of the microphone 12G is the X direction).
  • Case 4 has a hemispherical recess in the vicinity of the center of the upper surface in the internal direction of the case (one Z direction), and a plurality of holes are formed in a part of the recessed surface.
  • Sealed boxes 121A to 121H are installed in the holes, and microphones 12A to 12H are embedded in the boxes 121A to 121H, respectively.
  • the hole becomes the opening surface of the box 121, and the sound collection surface of the microphone 12 is directed to the opening surface of the box 121.
  • the box 121 is an elastic body such as rubber, and blocks the propagation of sound emitted from the speaker 11 in the housing 4.
  • the sound collection direction of each microphone 12 is the central direction of the housing 4, but a plurality of microphones 12 are installed facing each other. Direction)) can be picked up.
  • Each speaker 11 and each microphone 12 are installed at substantially the same height. Therefore, the sound emission direction and the sound collection direction of the adjacent speaker 11 and microphone 12 (for example, the speaker 11B and microphone 12C) are opposite directions. Further, the speaker 11 and the microphone 12 (for example, the speaker 11B and the microphone 12G) whose sound emission and sound collection directions are the same are arranged at positions farthest from each other in the housing 4. Therefore, the sound that circulates from the speaker 11 to the microphone 12 becomes extremely small, compared to a general sound emitting and collecting device (for example, when the speaker emitting surface is on the upper side of the housing and the microphone sound collecting surface is on the outer side of the housing). SZN ratio is improved.
  • FIG. 10 is a top view and a cross-sectional view showing still another example of the sound emission and collection device.
  • FIG. 10A is a top view of the sound emission and collection device
  • FIG. 10B is a cross-sectional view taken along line AA in FIG. 10A.
  • the right side of the page is the X direction
  • the left side is the -X direction
  • the upper side is the Y direction
  • the lower side is the -Y direction
  • the right side of the page is the X direction
  • the left side is the X direction
  • the upper side is the Z direction.
  • Direction and lower side are Z direction.
  • the same components as those in the sound emission and collection device shown in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • the sound emission and collection device in this example includes a substantially rectangular parallelepiped casing 5, and is installed on the Y side of the speaker 11A installed on the Y side of the casing 5, the speaker 11B installed on the X side, and the -Y side.
  • Speaker 11C equipped with speaker 1 ID installed on the -X side.
  • Microphone 12B installed in the direction of Y45 degrees inside the housing 5, X, — Microphone 12D installed in the direction of Y45 degrees, Microphone 12F installed in the direction of -X, —Y45 degrees, —X , It has a microphone 12H installed in the direction of Y45 degrees.
  • the casing 5 has a square cross-sectional shape with a side length of about 30 cm when viewed from above, and has a sound-emitting surface with a sound power of 11 that can be arranged on the side of the rectangular parallelepiped (for example, about 10 cm). Has height.
  • Each speaker 11 is installed on each side so that the sound emission direction is outside the housing 5.
  • Each microphone 12 has a sound collection direction centered when viewed from the top surface of the housing 5 (for example, the sound collection direction of the microphone 12B is X, — Y45 degrees, the sound collection direction of the microphone 12H is X, — Y45 degrees) ).
  • Case 5 has a hemispherical depression in the vicinity of the center of the top surface (in the Z direction), and a part of this recessed surface is exposed to the inside (by a punch mesh or the like) to collect the microphone 12. The sound is getting ugly.
  • the microphones 12B to 12H are fitted in sealed boxes 121B to 121H installed in the casing of the exposed surface, respectively.
  • the box 121 is an elastic body such as rubber, and blocks the propagation of sound emitted from the speaker 11 in the housing 5.
  • microphone 12B to microphone 12H may be installed on the upper surface of housing 5 and a hemispherical cover may be attached. Good.
  • FIG. 11 is a block diagram showing the configuration of the microphone signal processing circuit 15 of the sound emission and collection device in FIG.
  • the signals B to H output from the microphones 12B to 12H are respectively input to the select Z mixing circuit 152.
  • Branch to 158 For example, signal B is branched and input to delay 158B1 and delay 158B2.
  • signal D is branched into delay 158D1 and delay 158D2
  • signal F is branched into delay 158F1 and delay 158F2
  • signal H is branched into delay 158H1 and delay 158H2.
  • Output signals of delay 158B2 and delay 158D1 are input to adder 159C.
  • output signals of delay 158D2 and delay 158F1 are input to adder 159E
  • output signals of delay 158F2 and delay 158H1 are input to adder 159G
  • output signals of delay 158H2 and delay 158B1 are adders. Input to 159A.
  • each Karo arithmetic unit 159 two signals of adjacent microphones 12 are added after being given a delay time in delay 158, so that the output signal of each adder 159 Corresponds to the sound picked up at the position between For example, if the delay time of signal B in delay 158B1 is equal to the delay time of signal H in delay 158H2, signal A added and output in adder 159A is output from microphone 12B and microphone 12H as shown in FIG. It is the same as the sound picked up by the microphones installed at the same distance. That is, the signal A shown in FIG. 11 represents the output signal of the virtual microphone 32A shown in FIG. Similarly, signal C shown in FIG. 11 represents the output signal of virtual microphone 32C, signal E represents the output signal of virtual microphone 32E, and signal G represents the output signal of virtual microphone 32G. Therefore, in this example, four microphones 12 can pick up sounds in eight directions.
  • FIGS. 13A and 13B are diagrams showing the configuration of the main part of the sound emitting and collecting apparatus 100 of the present embodiment
  • FIG. 13A is a plan view
  • FIG. 13B is a cross-sectional view along AA ′ in FIG. 13A.
  • the right side toward the paper surface is the + X direction
  • the left side toward the paper surface is the X direction
  • the upper side toward the paper surface is the + Y direction
  • the lower side toward the paper surface is the ⁇ Y direction
  • the upper side is directed to the + Z direction with respect to the page
  • the lower side is set to the Z direction with respect to the page.
  • the sound emission and collection device 100 of the present embodiment includes a housing 1S, a plurality of microphones 2A to 2H, and a spinner. It has the power 3 and the signal processing function unit shown in FIG.
  • the casing 1S has a substantially cylindrical outer shape, and has a first surface 10A and a second surface 10B that are substantially the same size and are flat, and are circular.
  • the first surface 10A and the second surface 10B It has a side surface 10C having a circumferential shape that is connected at the edges and arranged at predetermined intervals. Near the edge portion of the second surface 10B, there are four foot portions 4 arranged at intervals of about 90 degrees.
  • a concave portion 11S having a circular planar shape is formed, and a circular center in plan view of the first plane 10A and a circular center in plan view of the concave portion 11S. Matches.
  • This center point is hereinafter referred to as “center point o”.
  • the microphones 2A to 2H are unidirectional microphones, and are arranged at point-symmetric positions with the center point O as a reference point. Further, each of the microphones 2A to 2H is installed at a predetermined distance or more from the center point O, and more preferably is installed at a position near the edge portion of the first plane 10A.
  • the microphones 2A to 2H are respectively arranged along the inner peripheral wall surface 12S having the same distance from the center point O, with the center point O as a reference point. Placed in the + X direction, microphone 2E is placed in the X direction. Similarly, with the center point O as a reference point, the microphone 2B is arranged in a 45 degree direction in the + X direction and the + Y direction, and the microphone mouthphone 2F is arranged in a 45 degree direction in the ⁇ X direction and the Y direction. With the center point O as the reference point, the microphone 2C is arranged in the + Y direction, and the microphone 2G is arranged in the Y direction. Furthermore, with the center point O as the reference point, the microphone 2D is placed in the 45 degree direction in the X and + Y directions, and the microphone 2H is placed in the 45 degree direction in the + X and Y directions.
  • Each of the microphones 2A to 2H is installed such that the direction of directivity is a direction that faces the center point O. Thereby, each microphone is set so that the sound collection sensitivity in the center point O direction is higher than the sound collection sensitivity in the other direction.
  • the second surface 10B of the housing 1S has a relationship in which the second surface 10B and the sound emitting surface substantially coincide with each other, and the sound emission direction is the same as the second surface 10B force and the external direction of the housing 1S.
  • the speaker 3 is arranged.
  • the speaker 3 is an omnidirectional speaker composed of a cone-type speaker unit, a horn-type speaker unit, etc., and the center of the sound emitting surface of the speaker 3 is set to the center point O of the first plane 10A. It is arranged so as to be located on a line perpendicular to the first surface 10A.
  • the signal processing function unit described later is installed in an empty space other than the arrangement positions of the microphones 2A to 2H and the speaker 3 in the housing 1S.
  • the input / output connector 26 is installed on the side surface 10C of the housing 1S, for example.
  • Such a sound emitting and collecting apparatus 100 is arranged and used as shown in FIG.
  • FIG. 14 is a view showing a case where two users 201 and 202 use the sound emitting and collecting apparatus 100 of the present embodiment
  • FIG. 14A is a plan view
  • FIG. 14B is a side view.
  • the right side is set to the + X direction and the left side is set to the X direction.
  • the upper side is the + Y direction and the lower side is the one Y direction.
  • the upper side is the + Z direction and the lower side is the Z direction.
  • the sound emission and collection device 100 is disposed on the top surface at a substantially central position of the top surface of the desk 200. At this time, the plurality of feet 4 are brought into contact with the top surface of the desk, so that the housing 1S is arranged at a predetermined distance from the top surface.
  • the sound emitting and collecting apparatus 100 is connected to the LAN via the input / output connector 26 described above, and is separated from, for example, a room where the apparatus is installed. Connect to another sound emitting and collecting device located in a completely different location.
  • Users 201 and 202 face each other on opposite sides of the desk 200 on which the sound emitting and collecting apparatus 100 is disposed.
  • the user 201 is in the ⁇ X direction with respect to the sound emitting and collecting apparatus 100
  • the user 202 is in the + X direction with respect to the sound emitting and collecting apparatus 100.
  • These users 201 and 202 speak to the sound emitting and collecting apparatus 100 when talking to the other user in the room of another sound emitting and collecting apparatus.
  • the uttered sound 301 reaches the microphones 2A to 2H of the sound emitting and collecting apparatus 100 while diffusing and attenuating.
  • the microphone 2A has a directivity having high sound collection sensitivity in the direction of the center point O of the housing 1S, that is, in the —X direction where the user 201 exists, with respect to the microphone 2A. ing. Therefore, the microphone 2A is located farthest from the user 201 as compared to the other microphones 2B to 2H. 1S utterance 301 can be picked up with high sensitivity.
  • the microphone 2E that is point-symmetric with the microphone 2A is located closest to the user 201 as compared with the other microphones 2A to 2D and 2F to 2H.
  • the microphone 2E has a high sound pickup sensitivity in the + X direction, almost no sound pickup sensitivity in the X direction, and directivity is set, so that the uttered sound 301 is hardly picked up.
  • the uttered sound 302 reaches the microphones 2A to 2H of the sound emitting and collecting apparatus 100 while being diffused and attenuated.
  • the microphone 2E is set to have directivity having high sound collection sensitivity in the direction of the center point O of the housing 1S, that is, the + X direction where the user 202 exists, with respect to the microphone 2E. .
  • the microphone 2E is located farthest from the user 202 as compared with the other microphones 2A to 2D and 2F to 2H, but can utter the uttered sound 302 with high sensitivity.
  • the microphone 2A that is point-symmetric with respect to the microphone 2E is located closest to the user 202 as compared with the other microphones 2B to 2H.
  • the microphone 2A has a high sound pickup sensitivity in the X direction and almost no sound pickup sensitivity in the + X direction and a directivity is set, the utterance sound 302 is hardly picked up.
  • the voice of the user is mainly collected by the microphone arranged at the opposite side extending from the side surface on which the user passes through the center point O.
  • the above-mentioned invention of Patent Document 2 is a sound emitting and collecting apparatus in which a speaker is arranged on the upper surface and a microphone is arranged on the side surface, which are shown in FIGS. 15B and 15D described later.
  • the spinning force 93 on the lower surface.
  • the microphone 92A disposed on the side surface of the casing 91 is set so that the directivity is directed outward of the side surface of the casing 91, and the sound generated by the user 201 closest to the microphone 92A is collected.
  • the sound emitting and collecting apparatus having the configuration shown in FIGS. 15B and 15D is a representative example of a conventional sound emitting and collecting apparatus as a comparison target of the present embodiment.
  • FIG. 15A is a conceptual diagram showing the transmission distance Lvl of the uttered sound to the microphone that performs main sound collection in the sound emitting and collecting apparatus 100 of the present embodiment
  • FIG. 15B is a microphone on the side of the housing
  • FIG. 5 is a conceptual diagram showing a transmission distance LvO of a uttered sound with respect to a microphone that performs main sound collection in a sound emission and collection device in which is arranged. Note that FIG. 15A and FIG. The case where the sound generated is picked up by microphone 2A and microphone 92A is shown.
  • the sound transmission distance Lvl in the sound emitting and collecting apparatus of the present embodiment shown in FIG. 15A is longer than the sound transmission distance LvO in the conventional sound emitting and collecting apparatus shown in FIG. 15B.
  • the difference in the distance from the side surface on the user 201 side to the microphone 2A is extremely short.
  • the increase in the amount of attenuation of the uttered sound is hardly considered. Therefore, the sound emitting and collecting apparatus according to the present embodiment can collect the uttered sound at the sound pressure level, that is, the sensitivity that is substantially the same as the conventional one.
  • These users 201 and 202 hear the output sound from the speaker 3 of the sound emitting and collecting apparatus 100 when listening to the voice of the other user in the room of another sound emitting and collecting apparatus.
  • the speaker 3 is disposed on the second surface 10B (lower surface) of the housing 1S, that is, the surface facing the top surface of the desk 200, and emits sound from the partner user.
  • the emitted sound 300 is reflected on the top surface of the desk 200 and propagates while being diffused in the horizontal direction in the horizontal direction, and is diffused from the area of the second surface 10B including the upward direction. However, it is transmitted uniformly to the space including the users 201 and 202. At this time, a part of the sound 300 is propagated to the first surface 10A side of the housing 1S via the side surface 10C of the housing 1S. This sound is hereinafter referred to as wraparound sound.
  • each of the microphones 2A to 2H has a wraparound sound that propagates the end portion in the direction extending through the center point O, that is, the side surface 10C side force at the farthest position. Picks up sound and picks up almost no wraparound sound that propagates the side 10C force closest to each microphone 2A to 2H. That is, the wraparound sound with the longest propagation path is collected.
  • FIG. 15 (C) is a conceptual diagram showing the transmission distance Lsl of the wraparound sound with respect to the microphone in the sound emitting and collecting apparatus 100 of the present embodiment
  • FIG. 15 (D) is a diagram of FIG. 15 (B).
  • FIG. 6 is a conceptual diagram showing a transmission distance LsO of a wraparound sound with respect to a microphone in a conventional sound emitting and collecting apparatus having the same configuration as FIG.
  • the wraparound sound transmission distance Lsl of the present embodiment shown in FIG. 15C is longer than the conventional wraparound sound transmission distance LsO shown in FIG. 15D. Because conventional transmission distance The separation LsO substantially matches the length from the speaker 93 to the side surface 10C on which the microphone 92A having the direction of directivity on the outside of the casing 91 is installed. On the other hand, the transmission distance Lsl of the present embodiment is approximately the length from the speaker 3 to the side surface 10C, the height of the side surface 10C, and the length from the position of the side surface 10C to the microphone 2A farthest disposed at this position. Matches the total distance.
  • the transmission distance Lsl of the wraparound sound of the present embodiment is at least twice as long as the conventional transmission distance LsO.
  • the sound emitting and collecting apparatus according to the present embodiment can significantly attenuate the wraparound sound that is collected compared to the conventional sound emitting and collecting apparatus.
  • the second surface 10B force is also a force that only changes the 90-degree propagation direction to the side surface 10C.
  • the 90-degree propagation direction further changes from the side surface 10C to the first surface 10A.
  • the 90-degree change in the propagation direction is one more time than in the past.
  • such a change in the propagation direction of the wraparound sound is a natural wraparound rather than a forcible change due to the reflection by the wall surface due to the presence of a reflection wall or the like ahead of the propagation direction.
  • a significant attenuation is obtained. Therefore, the sound emission and collection device of the present embodiment can attenuate the wraparound sound very significantly compared to the conventional sound emission and collection device.
  • the voice that is uttered from the user which is the required voice, is collected with high sensitivity, and the sound that wraps around from the speaker to the microphone while keeping the housing small. Can be significantly attenuated. As a result, a high SZN ratio can be realized.
  • FIG. 16 is a block diagram showing a configuration of the sound emission and collection device of the present embodiment.
  • the sound emission and collection device of the present embodiment includes the input / output connector 26 described above in addition to the microphones 2A to 2H and the speaker 3 described above, and further includes input amplifiers 21A to 21H, A / D converters 22A to 22H, microphone signal processing circuit 23, echo canceller 24, input / output interface 25, DZA converter 31, and output amplifier 32 are provided.
  • the input / output interface 25 gives the input audio signal input from the input / output connector 26 to the D / A converter 31 via the echo canceller 24.
  • D / A converter 31 is input sound
  • the voice signal is converted into an analog signal and applied to the output amplifier 32.
  • the output amplifier 32 amplifies the input voice signal and outputs it to the speaker 3.
  • Speaker 3 converts the input audio signal into sound and emits it.
  • Each microphone 2A to 2H picks up the sound of external force, converts it into a sound pickup signal, and outputs it to the input amplifiers 21A to 21H.
  • Each input amplifier 21A to 21H amplifies the collected sound signal and outputs it to the AZD converters 22A to 22H.
  • the AZD converters 22 ⁇ / b> A to 22 ⁇ / b> H convert each collected sound signal into a digital signal and output it to the microphone signal processing circuit 23.
  • the collected sound signals collected by the microphones 2A to 2H and output from the AZD converters 22A to 22H are simply referred to as signals A to H, respectively.
  • FIG. 17 is a detailed block diagram of the microphone signal processing circuit 23.
  • the microphone signal processing circuit 23 includes adders (subtracters) 231A to 231H, a select Z mixing circuit 232, and a maximum signal strength detection circuit 233.
  • the signal A output from the AZD converter 22A is input to the adder 231A, and the signal E output from the AZD converter 22E is input to the adder 231A.
  • Adder 231A subtracts signal E from signal A and outputs correction signal A.
  • the signal A is a sound collection signal by the microphone 2A
  • the signal E is a sound collection signal by the microphone E.
  • the microphone mouthphone 2A and the microphone 2E are arranged at point-symmetrical positions with respect to the center point O, so that the sneak sound collected by each is substantially the same. Thus, by subtracting the signal E from the signal A, this wraparound audio component can be reduced.
  • the correction signal B is generated by subtracting the signal F from the signal B by the adder 231B
  • the correction signal C is generated by subtracting the signal C from the signal C by the adder 231C
  • the signal D is generated by subtracting the signal D force signal H in the adder 231D.
  • the adder 231E receives the signal E output from the AZD converter 22E and the signal A output from the AZD converter 22A. Adder 231E subtracts signal A from signal E and outputs correction signal E. Similarly, the correction signal F is generated by subtracting the signal B from the signal F force by the adder 231F, the correction signal G is generated by subtracting the signal C from the signal G force by the adder 231G, and the correction signal H is added. It is generated by subtracting the signal H force signal D in the device 231H. [0110] As a result, the correction signal A to the correction signal H can each reduce the wraparound audio component.
  • the generated correction signals A to H are input to the select Z mixing circuit 232 and the maximum signal strength detection circuit 233.
  • the maximum signal strength detection circuit 233 compares the signal strengths of the correction signals A to H, that is, the sound pressure level, selects the correction signal with the highest signal strength, and selects the correction signal with the highest signal strength. Provide information to Select Z Mixing Circuit 232.
  • the select Z mixing circuit 232 selects a corresponding correction signal from the input correction signals A to H based on the selection information given from the maximum signal strength detection circuit 233 and outputs the selected correction signal to the echo canceller 24.
  • the maximum signal strength detection circuit 233 detects the correction signal with the highest signal strength, selects the correction signal with the maximum signal strength and a plurality of correction signals adjacent to the correction signal, and selects Z mixing.
  • circuit 232 It may be provided to circuit 232. Further, in consideration of the case where there are a plurality of sound sources in different directions, a plurality of correction signals may be selected in order from the correction signal having the highest signal intensity and may be supplied to the select Z mixing circuit 232. In these cases, the select Z mixing circuit 232 selects a plurality of corresponding correction signals based on the selection information, mixes them, and outputs them to the echo canceller 24.
  • FIG. 18 is a detailed block diagram of the echo canceller 24.
  • the echo canceller 24 includes an adaptive filter 241 and an adder 242.
  • the adaptive filter 241 includes a digital filter such as an FIR filter, estimates the transfer function of the acoustic propagation path from the speaker 3 to the microphones 2A to 2H, and simulates the estimated transfer function. The filter coefficient of is calculated.
  • the adaptive filter 241 generates a pseudo-regression sound signal using the estimated filter coefficient and outputs it to the adder 242.
  • the adder 242 subtracts the pseudo regression sound signal from the output signal of the microphone signal processing circuit 23 and outputs the result to the input / output interface 25 as an output audio signal.
  • the estimation of the transfer function and the calculation of the filter coefficient are performed by feeding back the residual signal, which is the signal output from the adder 242, to the adaptive filter 241 as a reference signal and supplying the input speech supplied to the speaker 3 It is repeated using an adaptive algorithm based on the signal. As a result, the transfer function is estimated. Constant and filter coefficient settings are optimized.
  • the wraparound audio component is further suppressed, and the SZN ratio of the audio signal output to the input / output interface 25 is further improved.
  • the wraparound sound can be mechanically reduced by making the positional relationship between the speaker and the microphone as described above.
  • the microphone installation pattern as described above, it is possible to effectively suppress the sneak sound component included in the collected sound signal of each microphone, and by performing echo canceling, the sneak sound The component can be further suppressed. This makes it possible to achieve a very good SZN ratio for the output audio signal.
  • the force shown in FIG. 19 shows an example in which the recess 11S of the first surface 10A of the housing 1S is formed and the microphones 2A to 2H are arranged on the inner peripheral wall surface 12S of the recess 11S. Microphones 2A to 2H may be arranged in such a structure!
  • FIG. 19 is a diagram showing the configuration of the main part of the sound emitting and collecting apparatus of the present embodiment of the sound emitting and collecting apparatus of another configuration of the present embodiment
  • FIG. 19A is a plan view
  • FIG. It is an A—A ′ sectional view in 19A.
  • microphones 2A to 2H are arranged on the first surface 10A, and these microphones 2A to 2H are covered with a mesh-like cover 13.
  • the other configurations are the same. is there. Even with such a configuration, the above-described effects can be achieved.
  • the short cylindrical housing 1S has been described as an example. However, it may be an elliptical column shape having a planar cross section, or may be a rectangular parallelepiped shape.
  • the user shows the second surface 10B side having the speaker 3 with the force speaker shown as an example in which the second surface 10B side having the speaker 3 is arranged facing the top surface of the desk 200. It may be arranged so that the foot 4 is connected to the ceiling surface facing the ceiling of the room.
  • the force indicating the case where there are eight microphones and one speaker is used.
  • the microphone and the speaker are arranged on the opposite surfaces of the casing, and the microphone is used as described above. If the directivity of the mouthphone is set, the number of microphones and the number of speakers can be set as appropriate.
  • FIG. 20 is a block diagram showing another configuration of the microphone signal processing circuit 23. As shown in FIG. The microphone signal processing circuit 23 shown in FIG. 20 differs from the microphone signal processing circuit 23 shown in FIG. 17 only in the signal synthesis portion.
  • the adder 231A receives the signal A output from the AZD converter 22A and the signal B output from the AZD converter 22B.
  • Adder 231A adds signal A and signal B and outputs the result.
  • adder 231B adds signal B and signal C and outputs the result
  • adder 231C adds signal C and signal D and outputs the result
  • adder 231D adds signal D and signal E.
  • the adder 231E adds and outputs the signal E and the signal F
  • the adder 231F adds and outputs the signal F and the signal G
  • the adder 231G adds the signal G and the signal H.
  • the adder 231H adds the signal H and the signal A and outputs the result.
  • the microphone signal processing circuit 23 shown in FIG. 20 adds and outputs the collected sound signals obtained from two adjacent microphones.
  • the collected sound signal component from the front direction of the microphone that is, the direction where high sound collection sensitivity is set
  • the signal component is weakened. Thereby, a signal with higher directivity can be obtained.
  • the configuration of the microphone signal processing circuit 23 may be as follows.
  • FIG. 21 is a block diagram of a signal synthesizer in another microphone signal processing circuit 23.
  • the microphone signal processing circuit 23 shown in FIG. 21 is also different from the microphone signal processing circuit 23 shown in FIG. Are different.
  • a microphone signal processing circuit 23 shown in FIG. 21 includes calorimeters 237A to 237H and delay circuits 234A to 234H, 235A to 235H, and 236A to 236H.
  • Signals A to H are input to delay circuits 234A to 234H, 235A to 235H, and 236A to 236H, respectively.
  • the signal A is input to the delay circuits 234A, 235A, and 236A, and the other signals B to H are processed in the same manner.
  • Each delay circuit 234A to 234H, 235A to 235H, 236A to 236H delays the input signal so that the three signals input to adders 237A to 237H are in phase.
  • Adder 237A adds the output signal of delay 234A (signal A), the output signal of delay 235B (signal B), and the output signal of delay 236C (signal C).
  • adder 237B adds and outputs delayed signals B, C, and D, respectively
  • adder 237C adds delayed signals C, D, and E, respectively.
  • the adder 237D adds the delayed signals D, E, and F and outputs the result.
  • adder 237E adds and outputs the delayed signals E, F, and G
  • adder 237F adds the delayed signals F, G, and H to the output.
  • the adder 237G adds the delayed signal G, signal H, and signal A to each other and outputs the result
  • the adder 237H adds the delayed signal H, signal A, and signal B, respectively. Output.
  • the collected sound signals from three adjacent microphones are added together in phase.
  • the signal intensity in the specific direction is further increased, the SZN ratio is improved, and the directivity in the specific direction is further increased.
  • the number of signals to be added is not limited to three, and the SZN ratio in a specific direction can be improved by adding or subtracting more signals.
  • the microphone signal processing circuit 23 shown in FIG. 20 and FIG. 21 uses a circuit as shown in FIG. 17 to show the configuration for directly processing the output signals A to H of the AZD converters 22A to 22H.
  • the generated correction signals A to H may be input. This further improves the SZN ratio.
  • FIG. 22A to 22F and FIG. 23 are diagrams showing examples of the sound emitting and collecting apparatus described above.
  • 22A to 22E show the top and side surfaces of the sound emitting and collecting device
  • FIG. 22F is a cross-sectional view of the sound emitting and collecting device
  • FIG. 23 shows the bottom surface of the sound emitting and collecting device.
  • the speaker 11 of the sound emission and collection device is provided on the curved surface portion extending from the side surface to the bottom surface. For this reason, the speaker is not visually recognized from above the sound emitting and collecting device, and the design freedom can be improved.
  • the punching metal 1P in FIG. 22F has an inwardly inclined shape, and for this reason, the cross section of the sound emitting and collecting device has a shape in which the center is depressed.
  • the microphones 12A to H are provided inside the punching metal IP. With such a configuration, each of the microphones 12A to H has directivity toward the inside of the sound emitting and collecting device, and The appearance is not visible Therefore, there is an effect that the degree of freedom in design can be improved.
  • the microphone is separated from the speaker while having a compact configuration. Can suppress the voice that wraps around and improve the SZN ratio.
  • a plurality of unidirectional microphones are arranged circumferentially on one surface of the casing, and are installed with high sensitivity directivity set in the center direction of the circle.

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

 コンパクトな構成でありながら、スピーカからマイクに回り込む音声を抑え、S/N比を向上した放収音装置を提供するために、該放収音装置においては、複数のスピーカ(11)が、放音面が筐体(1)の側面に設置されており、放収音装置の全周方向に音声を放音することができる。各マイク(12)は、収音方向が筐体(1)の中心方向になるように設置されている。マイク(12)とスピーカ(11)の指向性は、相反する方向に設置される。したがって、スピーカ(11)からマイク(12)に回り込む音声を極めて小さくすることができる。また、スピーカ(11)、マイク(12)ともに同心円の円周に設置されるため、コンパクトな構成となる。

Description

明 細 書
放収音装置
技術分野
[0001] この発明は、スピーカとマイクロホンとを一体に備えた放収音装置に関し、特に、コ ンパタトな構成でありながらスピーカからマイクロホンに回り込む音声を抑えた放収音 装置に関する。
本願は、 2005年 12月 19日に出願された特願 2005— 364617号、及び、 2005年 12月 21日に出願された特願 2005— 368052号に対し優先権を主張し、その内容 をここに援用する。
背景技術
[0002] 遠隔地において音声会議 (通信会議)を行うための音声通信システムとして、スピー 力とマイクロホンとを一体に備えた音声会議装置が普及している。音声会議装置は、 マイクロホンで収音した収音信号を接続先に送信し、接続先から受信した音声信号 をスピーカから放音する。複数人同士で会議を行う場合、この様な音声会議装置は 会議参加者の中心 (会議机の中心等)に設置されることが多い。したがって、この様 な音声会議装置は小型化されることが望まれ、例えば特許文献 1に示すようにスピー 力用のボックスを省略して小型化した音声会議装置が提案されている。
[0003] また、音声会議装置は、同一空間内にスピーカとマイクロホンを備えた構成のため 、接続先力 受信した音声信号をスピーカから放音すると、この音声がマイクにェコ 一として収音され、このエコーを含む収音信号が接続先に送信されてしまう。そこで、 特許文献 2に示すように、エコーキャンセラ機能を備えた音声会議装置において、筒 状の弾性体の先端にマイクを収容し、スピーカとマイクロホンとの音響結合を抑えた 音声会議装置が提案されて ヽる。
[0004] し力しながら、特許文献 1の構成では、コンパクトな構成である力 スピーカとマイク 口ホンとが近接し、スピーカ力もマイクロホンへの回り込み音量が大きくなつてしまう。 一方で、特許文献 2の構成では、エコーキャンセラ機能によって回り込み音声を抑制 し、さらに、弾性体により筐体内部の音響結合を抑えるものであるが、特許文献 1と同 様に、コンパクトな構成であるためにスピーカとマイクロホンは近接している。このため 、スピーカから放音された音声がマイクロホンに回り込みやすいという問題は依然とし て有しており、エコーキャンセラ機能に大きな処理負担が力かってしまう。
[0005] この発明は、コンパクトな構成でありながら、スピーカ力もマイクロホンに回り込む音 声を抑え、 SZN比を向上した放収音装置を提供することを目的とする。
特許文献 1:特開平 8— 204803号公報
特許文献 2:特開平 8 - 298696号公報
発明の開示
[0006] この発明の放収音装置は、 1つの軸を中心とする第 1の円周上に、前記中心に向け て配置されている複数の単一指向性マイクロホンと、前記軸を中心とする第 2の円周 上に、前記中心と反対方向に向けて配置されている複数のスピーカと、を備えたこと を特徴とする。
[0007] この発明において、複数の単一指向性マイクロホンとスピーカが同一軸を中心とす る円周上にそれぞれ設置されている。単一指向性マイクロホンとスピーカの指向性は 、相反する方向に設置される。したがって、スピーカから単一指向性マイクロホンに回 り込む音声を抑えることができる。スピーカ、単一指向性マイクロホンともに同一軸を 中心とする円周上に設置されるため、コンパクトな構成となる。
[0008] この発明において、前記第 1の円周は、前記第 2の円周よりも径が大きいことが好ま しい。
[0009] この発明においては、さらに、前記複数の単一指向性マイクロホン、および前記複 数のスピーカを配置する筐体を備え、前記複数の単一指向性マイクロホンは、前記 筐体の上面に配置され、前記複数のスピーカは、前記筐体の側面側に配置されてい ることが好ましい。
[0010] この発明においては、さらに、各単一指向性マイクロホンが収音した音声信号のレ ベルに基づ 、て音源方向を推定し、この音源方向を向 、て 、る単一指向性マイクロ ホンが収音した音声信号を後段に出力する信号処理手段を備えることが好ましい。
[0011] 上記構成において、それぞれの単一指向性マイクロホンにおいて収音した音声信 号のうち、最も音圧レベルの高い信号を選択的に出力する。これによりさらに SZN 比を向上することができる。
[0012] この発明においては、さらに、前記信号処理手段は、隣接する複数の単一指向性 マイクロホンが収音した音声信号を加算して音源方向を推定し、隣接する複数の単 一指向性マイクロホンが収音した音声信号を加算した信号を後段に出力してもよい。
[0013] 上記構成において、それぞれの単一指向性マイクロホンにおいて、隣接する単一 指向性マイクロホン力 収音した音声信号を加算する。さらに、これらの加算後の音 声信号のうち、最も音圧レベルの高い信号を選択的に出力する。これによりさらに S ZN比を向上することができる。
[0014] この発明の放収音装置は、対向する二面を有する筐体と、前記筐体の前記第 1面 に対向する第 2面に平行な放音面を更に具備し、前記単一指向性マイクロホンは、 該筐体の第 1面側に配置され、前記放音面の中心と前記円の中心とが前記第 1面お よび第 2面に対する同一の垂直線上にあり、前記スピーカは、前記第 2面から前記筐 体の外側へ放音することが好まし 、。
[0015] この構成では、放音面となる第 2面側に設置されたスピーカから放音された音声は 、当該放収音装置が設置された机の天面等に反射して筐体の側面側に伝搬される。 この際、側面の各部分に伝搬される音声強度は略同等になる。そして、スピーカから 放音された音声の一部は、側面を介して、複数の単一指向性マイクロホンが設置さ れた第 1面側に回り込む。
[0016] 複数の単一指向性マイクロホンのそれぞれは、第 1面側に円周状に配置される。こ の際、この円の中心と放音面の中心とが第 1面および第 2面に対する同一の垂直線 上にあり、且つこの円の中心方向が指向性の軸方向、すなわち、収音感度の高い方 向となるように設置されている。
[0017] このため、第 1面側に回り込んだ音声は、当該音声が回り込んだ側面位置に対して 最も近い位置に配置された単一指向性マイクロホンではなぐ前記音声が回り込んだ 側面位置と逆の最も遠い位置に配置された単一指向性マイクロホンで主に収音され る。これにより、回り込み音声の伝搬経路 (エコーパス)が長くなり、単一指向性マイク 口ホンで収音されるまでに、回り込み音声の大幅な減衰が得られる。
[0018] また、この発明の放収音装置における複数の単一指向性マイクロホンの配置位置 は、前記円の中心を基準点として点対称に設定されていることが好ましい。
[0019] この構成では、複数の単一指向性マイクロホンの配置位置が点対称であることによ り、各単一指向性マイクロホンへの回り込み音声は略同等になる。
[0020] また、この発明の放収音装置は、点対称に配置された各単一指向性マイクロホンの 収音信号から、各単一指向性マイクロホンと円の中心に関して点対称位置に配置さ れた単一指向性マイクロホンとの収音信号を差分演算して差分補正収音信号を生成 する差分演算手段を備えることが好まし 、。
[0021] この構成では、前述のように各単一指向性マイクロホンに収音される回り込み音声 が殆ど変わらず、特に点対称に配置された単一指向性マイクロホン同士では回り込 み音声が略同等となることから、これらの単一指向性マイクロホンの収音信号同士を 減算すれば、回り込み音声による信号成分が除去された差分補正収音信号が得ら れる。
[0022] また、この発明の放収音装置は、複数の単一指向性マイクロホンの収音信号の信 号強度に基づいて音源方向を検出し、指向性の軸が音源方向に向いている指向性 マイクロホンの収音信号を後段に出力する信号処理手段を備えることが好ましい。
[0023] この構成では、音源方向に指向性の軸が向いた単一指向性マイクロホンの収音信 号が他の単一指向性マイクロホンの収音信号よりも信号強度が高い、すなわち音圧 レベルの高いことを利用し、それぞれの単一指向性マイクロホンの収音信号のうち、 最も信号強度が高い収音信号を選択的に出力する。これにより、音源方向からの収 音信号の信号強度が相対的に高くなり、 SZN比の高い収音信号が得られる。
[0024] また、この発明の放収音装置は、差分補正収音信号の信号強度に基づいて音源 方向を検出し、該音源方向に対応する差分補正収音信号を後段に出力する信号処 理手段を備えてもよい。
[0025] この構成では、音源方向に指向性の軸が向いた単一指向性マイクロホンの収音信 号力 対向する方向に指向性の軸が向いた単一指向性マイクロホンの収音信号を 減算してなる差分補正収音信号は、回り込み音声成分が抑圧され、音源方向からの 収音信号がさらに強調されることを利用し、それぞれの差分補正収音信号のうち、最 も信号強度が高い、すなわち音圧レベルの高い差分補正収音信号を選択的に出力 することで、 SZN比のさらに高い収音信号が得られる。
図面の簡単な説明
[図 1]図 1は、放収音装置の上面図である。
[図 2A]図 2Aは、図 1の A— A断面図である。
[図 2B]図 2Bは、筐体 1の変形例の A— A断面図である。
[図 3]図 3は、放収音装置のブロック図である。
[図 4]図 4は、マイク信号処理回路の詳細なブロック図である。
[図 5]図 5は、エコーキャンセラの詳細なブロック図である。
[図 6]図 6は、マイク信号処理回路の応用例における詳細なブロック図である。
[図 7A]図 7Aは、他の実施例 1における放収音装置の上面図である。
[図 7B]図 7Bは、他の実施例 1における放収音装置の A— A断面図である。
[図 8A]図 8Aは、他の実施例 2における放収音装置の上面図である。
[図 8B]図 8Bは、他の実施例 2における放収音装置の A— A断面図である。
[図 9A]図 9Aは、他の実施例 3における放収音装置の上面図である。
[図 9B]図 9Bは、他の実施例 3における放収音装置の A— A断面図である。
[図 10A]図 10Aは、他の実施例 4における放収音装置の上面図 A— A断面図である
[図 10B]図 10Bは、他の実施例 4における放収音装置の A— A断面図である。
[図 11]図 11は、マイク信号処理回路のブロック図である。
[図 12]図 12は、仮想マイクの概念を示す図である。
圆 13A]図 13Aは、本発明の実施形態の放収音装置の主要部の構成を示す図であ る。
圆 13B]図 13Bは、本発明の実施形態の放収音装置の A— A断面図である。
[図 14A]図 14Aは、本発明の実施形態の放収音装置 100を 2人のユーザ 201, 202 による使用する場合を示した図である。
[図 14B]図 14Bは、本発明の実施形態の放収音装置 100を 2人のユーザ 201, 202 による使用する場合を示した図である。
[図 15A]図 15Aは、本発明の実施形態の放収音装置 100における主な収音を行うマ イク口ホンに対する発声音の伝達距離 Lvlを表す概念図である。
[図 15B]図 15Bは、従来の放収音装置における主な収音を行うマイクロホンに対する 発声音の伝達距離 LvOを表す概念図である。
[図 15C]図 15Cは、マイクロホンに対する回り込み音声の伝達距離 Lslを表す概念図 である。
[図 15D]図 15Dは、筐体側面にスピーカを配置した従来の放収音装置における、マ イク口ホンに対する回り込み音声の伝達距離 LsOを表す概念図である。
[図 16]図 16は、本発明の実施形態の放収音装置の構成を示すブロック図である。
[図 17]図 17は、マイク信号処理回路 23の詳細なブロック図である。
[図 18]図 18は、エコーキャンセラ 24の詳細なブロックである。
[図 19A]図 19Aは、本実施形態の他の構成の放収音装置の主要部の構成を示す図 である。
[図 19B]図 19Bは、本実施形態の他の構成の放収音装置の主要部の構成を示す図 である。
[図 20]図 20は、マイク信号処理回路 23の他の構成を示すブロック図である。
[図 21]図 21は、更に他のマイク信号処理回路 23における信号合成部のブロック図で ある。
[図 22A]図 22Aは、上述の放収音装置の例を表す図である。
[図 22B]図 22Bは、上述の放収音装置の例を表す図である。
[図 22C]図 22Cは、上述の放収音装置の例を表す図である。
[図 22D]図 22Dは、上述の放収音装置の例を表す図である。
[図 22E]図 22Eは、上述の放収音装置の例を表す図である。
[図 22F]図 22Fは、上述の放収音装置の例における断面図である。
[図 23]図 23は、上述の放収音装置の例を表す図である。
符号の説明
1 筐体
1S—筐体
11 スピーカ is 凹部
2—マイク
2S—内周壁面
3 アンプ
4— AZDコンバータ
5 マイク信号処理回路6 エコーキャンセラ
7 入出力インタフェース8— DZ Aコンバータ
9 アンプ
P—パンチングメタル
00—放収音装置
00—机
01, 202—ユーザ
00 放音音声
01, 302—発声音
, 91 筐体
0A—筐体 1の第 1面
0B—筐体 1の第 2面
0C—筐体 1の側面
A〜2H, 92A マイクロホン —スピーカ
一足部
1A〜21H—入力アンプ2A〜22H—AZDコンバータ3 マイク信号処理回路31A〜231H, 237A〜237H32-セレクト Zミキシング回路 233-最大信号強度検出回路
234A〜234H, 235A〜235H, 236A〜236H ディレイ回路
24 エコーキャンセラ
241 適応型フィルタ
242 加算器
25 入出力インタフェース
26 入出力コネクタ
31— DZ Aコンバータ
32 出力アンプ
発明を実施するための最良の形態
[0028] <第 1の実施の形態 >
図面を参照して、本発明の実施形態に係る放収音装置について説明する。図 1は この実施形態に係る放収音装置の上面図、図 2Aは図 1における A— A断面図である 。図 1において紙面右側を X方向、左側を X方向、上側を Y方向、下側を Y方向 とする。図 2Aにおいて紙面右側を X方向、左側を X方向、上側を Z方向、下側を Z方向とする。
[0029] この放収音装置は、円柱形状の筐体 1からなり、筐体 1の最外周部分に同心円上に 等間隔に配置された複数(この例にぉ ヽては 4つ)のスピーカ 11 A〜スピーカ 11Dと 、筐体 1の内部に同心円上に等間隔に配置された複数 (この例にお 、ては 8つ)のマ イク 12A〜マイク 12H (単一指向性マイクロホン)と、を備えている。各マイク 12A〜 マイク 12Hは、フロントエンドのアンプ 13A〜アンプ 13Hに接続され(図 3参照)、収 音した音声に基づいて音声信号を出力する。各スピーカ 11 A〜スピーカ 11Dは、ァ ンプ 19A〜アンプ 19Dに接続され (図 3参照)、入力された音声信号に基づいて音 声を放音する。
[0030] 筐体 1は、上面から見た断面円の直径が約 30cmほどのコンパクトな円柱形状であ り、スピーカ 11の放音面を円柱側面に配置可能な程度 (例えば 10cm程度)の高さを 有する。
[0031] 各スピーカ 11は、コーン型スピーカユニット、ホーン型スピーカユニット等を用いる 力 その他の形式であってもよい。各マイク 12は、所定方向に強い感度を有する指 向性マイクである。マイク 12にはダイナミックマイクユニット、コンデンサマイクユニット 等を用いる力 その他の形式であってもよい。
[0032] 各スピーカ 11は、放音方向が筐体 1の外側になるように筐体 1の側面に設置されて おり、 4つのスピーカ 11がそれぞれ異なる方向に音声を放音する。例えば図 2に示す ように、スピーカ 11Bは、 X方向に音声を放音し、スピーカ 11Dは、 X方向に音声を 放音する。したがって、それぞれのスピーカ 11により、放収音装置の全周方向(X, — X, Y,—Y方向)に音声を放音することができる。
[0033] 各マイク 12は、収音方向(強い感度を有する方向)が筐体 1の上面から見て中心方 向(例えばマイク 12Cの収音方向は— X方向、マイク 12Gの収音方向は X方向)にな るように筐体 1の上面に設置されている。各マイク 12は、収音方向が筐体 1の中心方 向であるが、複数のマイク 12がそれぞれ対向して設置されているため、それぞれの マイク 12により放収音装置の全周方向(8方向)の音声を収音することができる。
[0034] 隣接するスピーカ 11とマイク 12 (例えばスピーカ 11 Bとマイク 12C)の放音方向、収 音方向は、略相反する方向となる。また、放音、および収音方向が同一方向であるス ピー力 11とマイク 12 (例えばスピーカ 11Bとマイク 12G)は、筐体 1にお!/、て互いに最 も遠い位置に配置される。したがって、スピーカ 11からマイク 12に回り込む音声は極 めて小さくなり、一般的な放収音装置 (例えばスピーカ放音面が筐体上側、マイク収 音面が筐体外側である場合)に比較して SZN比が向上する。
[0035] 次に、放収音装置の信号処理系統の構成について図 3を参照して詳細に説明する 。図 3は、放収音装置の構成を示すブロック図である。放収音装置は、上述のスピー 力 11A〜スピーカ 11Dと、マイク 12A〜マイク 12Hと、各マイク 12A〜マイク 12Hに 接続されるフロントエンドのアンプ 13A〜アンプ 13Hと、各アンプ 13A〜アンプ 13H に接続される AZDコンバータ 14A〜AZDコンバータ 14Hと、各 AZDコンバータ 1 4A〜AZDコンバータ 14Hが接続されるマイク信号処理回路 15と、マイク信号処理 回路 15に接続されるエコーキャンセラ 16と、エコーキャンセラ 16に接続される入出 力インタフェース 17と、エコーキャンセラ 16に接続される DZAコンバータ 18A〜D ZAコンバータ 18Dと、各 DZAコンバータ 18A〜DZAコンバータ 18Dに接続され 、スピーカ 11A〜スピーカ 11Dに音声信号を供給するアンプ 19A〜アンプ 19Dと、 を備えている。
[0036] 各マイク 12A〜マイク 12Hが出力した音声信号は、フロントエンドのアンプ 13A〜 アンプ 13Hで増幅され、 A/Dコンバータ 14A〜A/Dコンバータ 14Hでデジタル変 換される。マイク信号処理回路 15は、 AZDコンバータ 14A〜AZDコンバータ 14H 力も出力されるデジタル信号のうち、最も音圧レベルの高い信号を選択して出力する
[0037] 図 4にマイク信号処理回路 15の詳細なブロック図を示す。マイク信号処理回路 15 は、加算器 151A〜加算器 151H、セレクト Zミキシング回路 152、および最大信号 強度検出回路 153を備えている。各加算器 151A〜加算器 151Hには、 AZDコン バータ 14A〜AZDコンバータ 14Hからそれぞれデジタル信号 A〜デジタル信号 H が入力される。また、各加算器 151にはそれぞれの加算器 151に入力される信号の 隣接する信号 (各加算器に対応するマイクと隣接するマイクが出力した信号が隣接し ている)が分岐入力される。例えば、加算器 151Aには、デジタル信号 Aとデジタル信 号 Bが入力され、加算器 151Bには、デジタル信号 Bとデジタル信号 Cが入力される。 各加算器 151は、入力されたデジタル信号を加算して出力する。隣接するマイクの 信号を加算することにより、マイクの正面方向の信号が強められ、それ以外の方向の 信号が弱められるので、マイクの指向性が向上する。
[0038] 加算された各デジタル信号は、最大信号強度検出回路 153において、その音圧レ ベルが比較される。最大信号強度検出回路 153は、それぞれのデジタル信号の音 圧レベルを比較し、その結果最も音圧レベルが高 、デジタル信号を選択してセレクト Zミキシング回路 152に設定する。セレクト Zミキシング回路 152は、設定されたデジ タル信号のみを選択してエコーキャンセラ 16に出力する。また、最大信号強度検出 回路 153は、最も音圧レベルが高 、デジタル信号力も順に複数のデジタル信号を選 択してセレクト Zミキシング回路 152に設定するようにしてもよい。その場合、セレクト Zミキシング回路 152は、設定された複数のデジタル信号をミキシングしてエコーキ ヤンセラ 16に出力する。
[0039] 最も音圧レベルが高!、信号、または最も音圧レベルが高!、信号から順に複数の信 号をミキシングした信号を出力し、他のレベルの低い信号が出力されることがないた め、さらに SZN比が向上する。なお、上記構成では、隣接するマイク 12の信号をカロ 算して出力したが、各マイク 12の収音した信号をそれぞれ単独で出力するようにして もよ 、し、隣接する 2以上の信号を加算して出力するようにしてもょ 、。
[0040] マイク信号処理回路 15の出力信号は、エコーキャンセラ 16に入力される。エコーキ ヤンセラ 16の出力信号は、入出力インタフェース 17を介して他の装置に送信される。 入出力インタフェース 17は、 LAN端子、アナログオーディオ端子、デジタルオーディ ォ端子などを有しており、これらの端子に接続される装置に上記信号を送信する。 L AN端子に出力する場合は、ネットワークを介して接続される遠隔地の装置等に音声 情報として送信する。また、入出力インタフェース 17は、他の装置から受信した音声 情報 (受信信号)をエコーキャンセラ 16に出力する。エコーキャンセラ 16は、スピーカ 11からマイク 12に至る回り込み成分を推定し、この推定した回り込み成分をマイク信 号処理回路 15の出力信号力 差し引くものである。
[0041] 図 5にエコーキャンセラ 16の詳細なブロック図を示す。エコーキャンセラ 16は、適応 フィルタ 161と、カロ算器 162と、を備えている。適応フィルタ 161は、 FIRフィルタ等の デジタルフィルタを含んでいる。適応フィルタ 161は、音響伝達系(スピーカ 11からマ イク 12に至る音響伝搬経路)の伝達関数を推定し、推定した伝達関数を模擬するよ うに FIRフィルタのフィルタ係数を算出する。適応フィルタ 161は、この推定したフィル タ係数でスピーカ 11からマイク 12へ至る回り込み成分の模擬信号を生成する。この 模擬信号を加算器 162においてマイク信号処理回路 15の出力信号力 差し引く。し たがって、加算器 162の出力信号は、マイク 12の収音信号から回り込み成分を除去 した信号となる。
[0042] 伝達関数の推定及びフィルタ係数の算出は、加算器 162から出力された信号であ る残差信号を参照信号として用いてスピーカ 11への供給信号に基づ!ヽて、適応アル ゴリズムを用いて行われる。適応アルゴリズムは、残差信号ができるだけ小さくなるよう にフィルタ係数を算出するアルゴリズムである。
[0043] これにより、適応フィルタ 161において音響伝達系の回り込み信号 (スピーカ 11か らマイク 12に至る音声信号)を模擬した信号が生成され、加算器 162において収音 信号から模擬信号を差し引くことで、回り込み信号のみを効率的に減衰させることが できる。これにより、エコーキャンセラ 16は、回り込み信号により発生するエコーを防 止することができる。また、この放収音装置を、マイク 12で収音した音声を入出力イン タフエース 17を経てスピーカ 11から放音する拡声器として用いた場合、エコーキャン セラ 16は回り込み信号のループ現象により発生するハウリングを防止することもでき る。
[0044] エコーキャンセラ 16の出力信号 (他の装置からの受信信号)は、 DZAコンバータ 1 8A〜DZAコンバータ 18Dにそれぞれ出力され、アナログ音声信号に変換される。 これらのアナログ音声信号はアンプ 19A〜 19Dで増幅され、スピーカ 11 A〜スピー 力 11Dで放音される。
[0045] なお、マイク信号処理回路 15の構成は、上記例に限るものではない。図 6にマイク 信号処理回路 15の応用例の構成を示す。この例において、各信号 A〜信号 Hは、 ディレイ 154A〜ディレイ 154H、ディレイ 155A〜ディレイ 155H、およびディレイ 15 6A〜ディレイ 156Hにそれぞれ入力される。加算器 157A〜加算器 157Hには、そ れぞれディレイ 154A〜ディレイ 154Hの出力信号が入力される。また、加算器 157 A〜加算器 157Hには、ディレイ 155A〜ディレイ 155Hの出力信号力 隣接する加 算器 157にずれて入力される。つまり、ディレイ 155Bの出力信号が加算器 157Aに 、ディレイ 155Cの出力信号が加算器 157Bに、ディレイ 155Dの出力信号が加算器 157Cに、といった様にそれぞれの加算器 157には対応するマイク 12の出力信号と 、隣接するマイク 12の出力信号が加算される。
[0046] また、加算器 157A〜加算器 157Hには、ディレイ 156A〜ディレイ 156Hの出力信 号力 さらに 1段ずれて入力される。つまり、ディレイ 156Cの出力信号が加算器 157 Aに、ディレイ 156Dの出力信号が加算器 157Bに、ディレイ 156Eの出力信号が加 算器 157Cに、といった様にそれぞれの加算器 157には対応するマイク 12の出力信 号と、両隣のマイク 12の出力信号が加算されることとなる。
[0047] 各ディレイ 154、 155、 156は、加算器 157において加算される 3つの信号が同じ 位相となるように入力された音声信号に遅延時間を付与する。したがって、マイク 12 が収音した音声は、それぞれの対応する加算器 157において隣接する 2つのマイク 1 2の収音信号がそれぞれ同じ位相で加算される。同じ位相で加算されるため、特定 の方向の信号が強められ、 SZN比が向上するとともに指向性が向上する。無論、加 算する信号は上記の様に 3つに限るものではなぐさらに複数の信号を加算、あるい は減算することにより所定方向の SZN比を向上させることも可能である。
[0048] なお、本発明の放収音装置の構造、ならびにスピーカ 11、マイク 12の個数は、図 1 、図 2Aに示した例に限るものではない。
[0049] (筐体 1の変形例)
例えば、図 2 (B)に示すように、筐体 1の上面に Z方向に膨らみを有するドーム状( 半球状)のカバー 122を取り付けてもよい。カバー 122は、筐体 1上面に設置された 複数のマイク 12を全てカバーする大きさを有する。このカバー 122はパンチメッシュ 状の鋼板からなり、筐体 1の上面に設置されたマイク 12の収音を妨げないようになつ ている。
[0050] 図 2 (B)に示す状態においても、隣接するスピーカ 11とマイク 12 (例えばスピーカ 1 1Bとマイク 12C)の放音方向、収音方向は、略相反する方向となる。また、放音、収 音方向が同一方向であるスピーカ 11とマイク 12 (例えばスピーカ 11 Bとマイク 12G) は、筐体 1において互いに最も遠い位置に配置される。したがって、図 2 (B)の例に おいてもスピーカ 11からマイク 12に回り込む音声は極めて小さくなり、 SZN比が向 上する。
[0051] (他の実施例 1)
図 7に他の例における放収音装置の構造を示す。図 7は、他の例の放収音装置を 示す上面図、および断面図である。同図 7Aは、放収音装置の上面図であり、同図 7 Bは同図 7Aにおける A— A断面図である。同図 7Aにおいて紙面右側を X方向、左 側を—X方向、上側を Y方向、下側を—Y方向とする。同図(B)において紙面右側を X方向、左側を X方向、上側を Z方向、下側を Z方向とする。なお、図 1、および 図 2に示した放収音装置と共通する構成部分については同一の符号を付し、その説 明を省略する。
[0052] この例における放収音装置は、円柱形状の筐体 2からなり、筐体 2の最外周部分に 同心円上に等間隔に配置された複数(この例においては 4つ)のスピーカ 11A〜スピ 一力 11Dと、筐体 2の上面に同心円上に等間隔に配置された複数 (この例において は 8つ)のマイク 12A〜マイク 12Hと、を備えている。
[0053] 筐体 2は、上面から見た断面円の直径が約 30cmほどのコンパクトな円柱形状であ り、スピーカ 11の放音面を円柱側面に配置可能な程度 (例えば 10cm程度)の高さを 有する。筐体 2は、上面の中心付近に Z方向に台形状の膨らみを有する。マイク 12は 、この膨らみ面の上部に設置されている。この膨らみ面は、マイク 12の収音を妨げな V、ように中央部分が平面となって 、る。
[0054] 各スピーカ 11は、放音方向が筐体 2の外側になるように設置されている。各マイク 1 2は、収音方向が筐体 2の上面から見て中心方向(例えばマイク 12Cの収音方向は — X方向、マイク 12Gの収音方向は X方向)になるように設置されている。各マイク 12 は、筐体 2の上面に乗るようにして設置されているため、筐体 2の内部の音声(筐体 2 内にお 、てスピーカ 11の発する音声)を収音することがな!、。
[0055] 各スピーカ 11、および各マイク 12は、異なる高さに設置される力 隣接するスピー 力 11とマイク 12 (例えばスピーカ 11Bとマイク 12C)の放音方向、収音方向は、略相 反する方向となる。また、放音、収音方向が同一方向であるスピーカ 11とマイク 12 ( 例えばスピーカ 11Bとマイク 12G)は、筐体 2において互いに最も遠い位置に配置さ れる。したがって、この例においてもスピーカ 11からマイク 12に回り込む音声は極め て小さくなり、一般的な放収音装置 (例えばスピーカ放音面が上側、マイク収音面が 外側)に比較して SZN比が向上する。
[0056] (他の実施例 2)
また、放収音装置は、図 8に示すような構造であってもよい。図 8は、他の例の放収 音装置を示す上面図、および断面図である。同図 8Aは、放収音装置の上面図であ り、同図 8Bは同図 8Aにおける A— A断面図である。同図 8Aにおいて紙面右側を X 方向、左側を— X方向、上側を Y方向、下側を— Y方向とする。同図 8Bにおいて紙 面右側を X方向、左側を X方向、上側を Z方向、下側を Z方向とする。なお、この 例にお 、ても図 1、および図 2に示した放収音装置と共通する構成部分にっ 、ては 同一の符号を付し、その説明を省略する。
[0057] 同図の例における放収音装置は、複数の円柱形状の筐体 (上筐体 3A、および下 筐体 3B)を上下方向に重ねた構造である筐体 3からなり、上筐体 3Aの最外周部の 上面に同心円上に等間隔に配置された複数のマイク 12A〜マイク 12Hと、下筐体 3 Bの最外周部に同心円上に等間隔に配置された複数のスピーカ 11 A〜スピーカ 11 Dと、を備えている。
[0058] 上筐体 3Aと下筐体 3Bは底面の中心が同一軸上となるように接合されており、上筐 体 3Aは下筐体 3Bよりも容積が大きぐ上面から見て上筐体 3Aの側面は外周側、下 筐体 3Bの側面は内周側となる。
[0059] 各スピーカ 11は、放音方向が筐体 3の外側になるように設置されている。各マイク 1 2は、収音方向が筐体 3の上面から見て中心方向(例えばマイク 12Cの収音方向は — X方向、マイク 12Gの収音方向は X方向)になるように設置されている。各マイク 12 は、筐体 3の上面に乗るようにして設置されているため、筐体 3の内部の音声(筐体 3 内にお 、てスピーカ 11の発する音声)を収音することがな!、。
[0060] このように、筐体の上側から見て各スピーカ 11が同心円の内周、各マイク 12が外周 側に配置されて 、る場合でも隣接するスピーカ 11とマイク 12 (例えばスピーカ 11Bと マイク 12C)の放音方向、収音方向は、略相反する方向となる。また、放音、収音方 向が同一方向であるスピーカ 11とマイク 12 (例えばスピーカ 11 Bとマイク 12G)は、 筐体 3において互いに最も遠い位置に配置される。したがって、図 8の例においても スピーカ 11からマイク 12に回り込む音声は極めて小さくなり、 SZN比が向上する。
[0061] (他の実施例 3)
図 9は、さらに他の例の放収音装置を示す上面図、および断面図である。同図 9A は、放収音装置の上面図であり、同図 9Bは同図 9Aにおける A— A断面図である。 同図 9Aにおいて紙面右側を X方向、左側を X方向、上側を Y方向、下側を Y方 向とする。同図 9Bにおいて紙面右側を X方向、左側を X方向、上側を Z方向、下 側を Z方向とする。なお、この例においても図 1、および図 2に示した放収音装置と 共通する構成部分については同一の符号を付し、その説明を省略する。
[0062] この例における放収音装置は、略円柱形状の筐体 4力 なり、筐体 4の最外周部分 に同心円上に等間隔に配置された複数 (この例にお ヽては 4つ)のスピーカ 11 A〜ス ピー力 11Dと、筐体 1の内部に同心円上に等間隔に配置された複数 (この例にお!/ヽ ては 8つ)のマイク 12A〜マイク 12Hと、を備えている。
[0063] 筐体 4は、上面から見た断面円の直径が約 30cmほどのコンパクトな円柱形状であ り、スピーカ 11の放音面を円柱側面に配置可能な程度 (例えば 10cm程度)の高さを 有する。
[0064] 各スピーカ 11は、放音方向が筐体 4の外側になるように各側面に設置されている。
各マイク 12は、収音方向が筐体 4の上面から見て中心方向(例えばマイク 12Cの収 音方向は— X方向、マイク 12Gの収音方向は X方向)になるように設置されている。 筐体 4は、上面の中心付近が筐体内部方向(一 Z方向)に半球状に凹んでおり、この 凹み面の一部に孔が複数空いている。この孔には密閉型のボックス 121A〜ボックス 121Hが設置されており、このボックス 121A〜ボックス 121Hの内部にマイク 12A〜 マイク 12Hがそれぞれ埋め込まれている。上記孔がボックス 121の開口面となり、マ イク 12の収音面がボックス 121の開口面に向けられる。このボックス 121は、ゴム等の 弾性体であり、筐体 4内においてスピーカ 11の発する音声の伝搬を遮断する。各マ イク 12は、収音方向が筐体 4の中心方向であるが、複数のマイク 12がそれぞれ対向 して設置されているため、それぞれのマイク 12により放収音装置の全周方向(8方向 )の音声を収音することができる。
[0065] 各スピーカ 11、および各マイク 12は、略同じ高さに設置される。したがって、隣接す るスピーカ 11とマイク 12 (例えばスピーカ 11 Bとマイク 12C)の放音方向、収音方向 は、相反する方向となる。また、放音、および収音方向が同一方向であるスピーカ 11 とマイク 12 (例えばスピーカ 11 Bとマイク 12G)は、筐体 4において互いに最も遠い位 置に配置される。したがって、スピーカ 11からマイク 12に回り込む音声は極めて小さ くなり、一般的な放収音装置 (例えばスピーカ放音面が筐体上側、マイク収音面が筐 体外側である場合)に比較して SZN比が向上する。
[0066] (他の実施例 4)
図 10は、さらに他の例の放収音装置を示す上面図、および断面図である。同図 10 Aは、放収音装置の上面図であり、同図 10Bは同図 10Aにおける A— A断面図であ る。同図 10Aにおいて、紙面右側を X方向、左側を— X方向、上側を Y方向、下側を —Y方向とする。同図 10Bにおいて紙面右側を X方向、左側を— X方向、上側を Z方 向、下側を Z方向とする。なお、この例においても図 1、および図 2に示した放収音 装置と共通する構成部分については同一の符号を付し、その説明を省略する。
[0067] この例における放収音装置は、略直方体形状の筐体 5からなり、筐体 5の Y側面に 設置されたスピーカ 11A、 X側面に設置されたスピーカ 11B、—Y側面に設置された スピーカ 11C、—X側面に設置されたスピーカ 1 IDを備えている。また、筐体 5内部 に Y45度の方向に設置されたマイク 12B、X, —Y45度の方向に設置されたマイ ク 12D、 -X, —Y45度の方向に設置されたマイク 12F、—X, Y45度の方向に設置 されたマイク 12Hを備えている。
[0068] 筐体 5は、上面から見て一辺の長さが 30cmほどの正方形状の断面形状であり、ス ピー力 11の放音面を直方体側面に配置可能な程度 (例えば 10cm程度)の高さを有 する。
[0069] 各スピーカ 11は、放音方向が筐体 5の外側になるように各側面に設置されている。
各マイク 12は、収音方向が筐体 5の上面から見て中心方向(例えばマイク 12Bの収 音方向は X, — Y45度の方向、マイク 12Hの収音方向は X, — Y45度の方向)に なるように設置されている。筐体 5は、上面の中心付近が筐体内部方向(一 Z方向)に 半球状に凹んでおり、この凹み面の一部が(パンチメッシュ等で)内部に露出し、マイ ク 12の収音面が覼くようになつている。さらに、マイク 12B〜マイク 12Hはそれぞれ、 上記露出された面の筐体内部に設置された密閉型のボックス 121B〜ボックス 121H に嵌めこまれている。このボックス 121は、ゴム等の弾性体であり、筐体 5内において スピーカ 11の発する音声の伝搬を遮断する。
[0070] なお、この例における放収音装置においても、図 2 (B)に示したように、マイク 12B 〜マイク 12Hを筐体 5上面に設置して半球状のカバーを取り付けるようにしてもよい。
[0071] この様に、筐体の形状は円柱に限らず、直方体形状であってもよい。また、マイク、 スピーカの個数は上記例に限定されない。さらに、図 10に示した放収音装置におい ては、マイクの個数力 つである例を示した力 仮想的にさらに複数のマイクを設置す ることが可能である。図 11は、図 10における放収音装置のマイク信号処理回路 15の 構成を示すブロック図である。マイク 12B〜マイク 12Hから出力される信号 B〜信号 Hは、それぞれセレクト Zミキシング回路 152に入力されるが、各信号は複数のディレ ィ 158に分岐入力される。例えば信号 Bは、ディレイ 158B1、およびディレイ 158B2 に分岐入力される。同様に、信号 Dは、ディレイ 158D1、およびディレイ 158D2に分 岐入力され、信号 Fは、ディレイ 158F1、およびディレイ 158F2に分岐入力され、信 号 Hは、ディレイ 158H1、およびディレイ 158H2に分岐入力される。
[0072] ディレイ 158B2、およびディレイ 158D1の出力信号は加算器 159Cに入力される。
同様に、ディレイ 158D2、およびディレイ 158F1の出力信号は加算器 159Eに入力 され、ディレイ 158F2、およびディレイ 158H1の出力信号は加算器 159Gに入力さ れ、ディレイ 158H2、およびディレイ 158B1の出力信号は加算器 159Aに入力され る。
[0073] 各カロ算器 159においては、隣接するマイク 12の 2つの信号がディレイ 158において 遅延時間を付与された後、加算されるため、各加算器 159の出力信号は、各マイク 1 2の間の位置で収音した音声に対応する。例えばディレイ 158B1における信号 Bの 遅延時間と、ディレイ 158H2における信号 Hの遅延時間が等しい場合、加算器 159 Aにおいて加算されて出力された信号 Aは、図 12に示すようにマイク 12Bとマイク 12 Hとの距離が等しい位置に設置したマイクで収音した音声と同一となる。すなわち図 11に示す信号 Aは、図 12の仮想マイク 32Aの出力信号を表す。同様に、図 11に示 す信号 Cは仮想マイク 32Cの出力信号を表し、信号 Eは仮想マイク 32Eの出力信号 を表し、信号 Gは仮想マイク 32Gの出力信号を表す。したがって、この例においては 4つのマイク 12によって 8方向の音声を収音することができる。
[0074] <第 2の実施の形態 >
本発明の実施形態に係る放収音装置について図を参照して説明する。 図 13A及び Bは、本実施形態の放収音装置 100の主要部の構成を示す図であり、 図 13Aは平面図、図 13Bは図 13Aにおける A— A'断面図である。図 13A,図 13B において、紙面に向かって右側を +X方向とし、紙面に向かって左側を X方向とす る。また、図 13Aにおいて、紙面に向かって上側を +Y方向とし、紙面に向かって下 側を— Y方向とする。また、図 13Bにおいて、紙面に向力つて上側を +Z方向とし、紙 面に向力つて下側を Z方向とする。
[0075] 本実施形態の放収音装置 100は、筐体 1Sと、複数のマイクロホン 2A〜2Hと、スピ 一力 3と、図 16に示す信号処理機能部とを備える。
[0076] 筐体 1Sは略円柱状の外観形状であり、略同寸法且つ平面状で円形の第 1面 10A および第 2面 10Bを有し、これら第 1面 10Aと第 2面 10Bとのエッジで接続し、これら を所定間隔で配置する円周面形状の側面 10Cを有する。第 2面 10Bのエッジ部付近 には、それぞれが略 90度の間隔で配置された 4つの足部 4が設置されている。
[0077] 筐体 1Sの第 1面 10Aには、平面形状が円形である凹部 11Sが、形成されており、 第 1平面 10Aを平面視した円形の中心と凹部 11Sを平面視した円形の中心とは一致 する。この中心点を、以下、「中心点 o」と称す。
[0078] マイクロホン 2A〜2Hは単一指向性マイクロホンであり、中心点 Oを基準点として、 点対称の位置に配置されている。さらに、各マイクロホン 2A〜2Hは、中心点 Oから 所定距離以上離れて設置され、より好ましくは、第 1平面 10Aのエッジ部に近い位置 に設置されている。
[0079] 具体的に、図 13Aに示すように、マイクロホン 2A〜2Hは、それぞれに中心点 Oか ら同距離となる内周壁面 12Sに沿って、中心点 Oを基準点として、マイクロホン 2Aは +X方向に配置され、マイクロホン 2Eは X方向に配置される。同様に、中心点 Oを 基準点として、マイクロホン 2Bは +X方向、 +Y方向の 45度方向に配置され、マイク 口ホン 2Fは—X方向、 Y方向の 45度方向に配置される。また、中心点 Oを基準点 として、マイクロホン 2Cは +Y方向に配置され、マイクロホン 2Gは Y方向に配置さ れる。さらに、中心点 Oを基準点として、マイクロホン 2Dは X方向、 +Y方向の 45 度方向に配置され、マイクロホン 2Hは +X方向、 Y方向の 45度方向に配置される
[0080] 各マイクロホン 2A〜2Hは、指向性の向きが中心点 Oに向力う方向となるように設 置されている。これにより、各マイクロホンは、中心点 O方向の収音感度が他方向の 収音感度よりも高く設定される。
[0081] 筐体 1Sの第 2面 10Bには、当該第 2面 10Bと放音面とが略一致する関係にあり、且 つ放音方向が第 2面 10B力も筐体 1Sの外部方向となるように、スピーカ 3が配置され ている。スピーカ 3は、コーン型スピーカユニット、ホーン型スピーカユニット等からな る無指向性スピーカであり、スピーカ 3の放音面の中心が第 1平面 10Aの中心点 Oを 通り第 1面 10Aに垂直な線上に位置するように配置されて 、る。
[0082] また、後述する信号処理機能部は、図 13に図示していないが、筐体 1S内のマイク 口ホン 2A〜2Hおよびスピーカ 3の配置位置以外の空きスペースに設置されている。 そして、入出力コネクタ 26は、例えば筐体 1Sの側面 10Cに設置されている。
[0083] このような放収音装置 100は、図 14に示すように配置されて使用される。
[0084] 図 14は、本実施形態の放収音装置 100を 2人のユーザ 201, 202が使用する場合 を示した図であり、図 14Aは平面図、図 14Bは側面図である。図 14A,図 14Bにお いても、紙面に向力つて右側を +X方向とし、紙面に向力つて左側を一 X方向とする 。また、図 14Aにおいて、紙面に向力つて上側を +Y方向とし、紙面に向かって下側 を一 Y方向とする。また、図 14Bにおいて、紙面に向力つて上側を +Z方向とし、紙面 に向かって下側を Z方向とする。
[0085] 放収音装置 100は、机 200の天面の略中央位置で天面上に配置される。この際、 複数の足部 4を机の天面に接触されることで、筐体 1Sを天面から所定距離離れた状 態で配置する。
[0086] また、図示して ヽな 、が、この放収音装置 100は、前述の入出力コネクタ 26を介し て LANに接続し、離れた位置、例えば、本装置が設置された部屋とは全く異なる別 の場所、に配置された別の放収音装置に接続して 、る。
[0087] この放収音装置 100の配置された机 200を挟んで対向する両側には、ユーザ 201 , 202が対畤する。図 14の例では、放収音装置 100に対して—X方向にユーザ 201 がおり、放収音装置 100に対して +X方向にユーザ 202がいる。
[0088] (1)ユーザ 201, 202からの発声音
これらユーザ 201, 202は、別の放収音装置の部屋にいる相手ユーザに話しかける 場合、放収音装置 100に向かって発声する。
[0089] ユーザ 201が発声すると、その発声音 301は拡散、減衰しながら放収音装置 100 のマイクロホン 2A〜2Hに到達する。ここで、前述のように、マイクロホン 2Aは、マイク 口ホン 2Aに対して筐体 1Sの中心点 O方向、すなわち、ユーザ 201が存在する—X 方向に高い収音感度を有する指向性が設定されている。このため、マイクロホン 2A は、他のマイクロホン 2B〜2Hと比較して、ユーザ 201から最も遠い位置に存在する 1S 発声音 301を高感度で収音することができる。一方で、マイクロホン 2Aと点対称 の位置にあるマイクロホン 2Eは、他のマイクロホン 2A〜2D, 2F〜2Hと比較して、ュ 一ザ 201から最も近い位置に存在する。しかしながら、マイクロホン 2Eは、 +X方向 に高 、収音感度を有し、 X方向には殆ど収音感度の無 、指向性が設定されて 、る ので、発声音 301を殆ど収音しない。
[0090] また、ユーザ 202が発声すると、その発声音 302は拡散、減衰しながら放収音装置 100のマイクロホン 2A〜2Hに到達する。ここで、前述のように、マイクロホン 2Eは、 マイクロホン 2Eに対して筐体 1Sの中心点 O方向、すなわち、ユーザ 202が存在する +X方向に高い収音感度を有する指向性が設定されている。このため、マイクロホン 2Eは、他のマイクロホン 2A〜2D, 2F〜2Hと比較して、ユーザ 202から最も遠い位 置に存在するが、発声音 302を高感度で収音することができる。一方で、マイクロホ ン 2Eと点対称の位置にあるマイクロホン 2Aは、他のマイクロホン 2B〜2Hと比較して 、ユーザ 202から最も近い位置に存在する。しかしながら、マイクロホン 2Aは、 X方 向に高 ヽ収音感度を有し、 +X方向には殆ど収音感度の無 、指向性が設定されて いるので、発声音 302を殆ど収音しない。
[0091] このように、ユーザの発声音は、ユーザがいる側面から中心点 Oを通って延びる反 対側の位置に配置されたマイクロホンで、主に収音される。
[0092] ところで、前述の特許文献 2の発明は、上面にスピーカが配置され、側面にマイクロ ホンが配置される放収音装置であるが、後述する図 15 (B) , (D)に示すように、スピ 一力 93を下面に配置することも考えられる。この場合、筐体 91の側面に配置された マイクロホン 92Aは、筐体 91側面の外側方向に指向性が向くように設定されており、 このマイクロホン 92Aに最も近いユーザ 201の発生音を収音する。なお、以下の説明 では、図 15 (B) , (D)に示す構成の放収音装置を、本実施形態の比較対象としての 従来の放収音装置の代表例とする。
[0093] 図 15Aは、本実施形態の放収音装置 100における、主な収音を行うマイクロホンに 対する発声音の伝達距離 Lvlを表す概念図であり、図 15Bは、筐体側面にマイクロ ホンを配置した放収音装置における、主な収音を行うマイクロホンに対する発声音の 伝達距離 LvOを表す概念図である。なお、これらの図 15A,図 15Bは、ユーザ 201 の発生音を、それぞれマイクロホン 2A、マイクロホン 92Aで収音する場合を示す。
[0094] 図 15Aに示す本実施形態の放収音装置における発声音の伝達距離 Lvlは、図 15 Bに示す従来の放収音装置における発生音の伝達距離 LvOと比較して長くなる。し 力しながら、ユーザ 201から放収音装置までの距離(ユーザ 201からマイクロホン 92 Aまでの距離に相当)と比較して、ユーザ 201側の側面からマイクロホン 2Aまでの距 離の差は極めて短ぐこれによる発声音の減衰量の増加は殆ど考慮する必要がない 程度である。したがって、本実施形態の放収音装置は、従来と略同等の感度すなわ ち音圧レベルで発声音を収音することができる。
[0095] (2)別部屋の相手からの音声
これらユーザ 201, 202は、別の放収音装置の部屋にいる相手ユーザ力 音声を 聞く場合、放収音装置 100のスピーカ 3からの出力音声を聞くこととなる。
[0096] スピーカ 3は、筐体 1Sの第 2面 10B (下面)、すなわち机 200の天面に対向する面 に配置され、相手ユーザからの音声を放音する。放音された音声 300は、机 200の 天面で反射して、水平方向へ円周状に拡散しながら伝搬され、第 2面 10Bの領域か ら外部では、上方向をも含んで拡散しながら、ユーザ 201, 202を含む空間へ均一 に伝搬される。この際、音声 300の一部は、筐体 1Sの側面 10Cを介して、筐体 1Sの 第 1面 10A側に伝搬される。この音声を、以下に、回り込み音声と称する。
[0097] ここで、前述の発声音の場合と同様に、各マイクロホン 2A〜2Hは、中心点 Oを通り 延びる方向の端部、すなわち最も遠い位置の側面 10C側力も伝搬される回り込み音 声を収音し、各マイクロホン 2A〜2Hにそれぞれ最も近い位置の側面 10C力も伝搬 される回り込み音声を殆ど収音しない。すなわち、最も伝搬経路の長い回り込み音声 を収音する。
[0098] 図 15 (C)は、本実施形態の放収音装置 100における、マイクロホンに対する回り込 み音声の伝達距離 Lslを表す概念図であり、図 15 (D)は、図 15 (B)と同じ構成であ る従来の放収音装置における、マイクロホンに対する回り込み音声の伝達距離 LsO を表す概念図である。
[0099] 図 15 (C)に示す本実施形態の回り込み音声の伝達距離 Lslは、図 15 (D)に示す 従来の回り込み音声の伝達距離 LsOと比較して長くなる。なぜならば、従来の伝達距 離 LsOは、スピーカ 93から、筐体 91の外側を指向性の向きとするマイクロホン 92Aが 設置された側面 10Cまでの長さに略一致する。一方で、本実施形態の伝達距離 Lsl は、略スピーカ 3から側面 10Cまでの長さと、側面 10Cの高さと、この側面 10C位置 から、この位置に最も遠く配置されたマイクロホン 2Aまでの長さとの合算距離に一致 する。これにより、本実施形態の回り込み音声の伝達距離 Lslは、従来の伝達距離 L sOと比較して 2倍以上の長さになる。この結果、本実施形態の放収音装置は、従来 の放収音装置と比較して、収音される回り込み音声を大幅に減衰することができる。
[0100] さらに、従来では、第 2面 10B力も側面 10Cへ 90度伝搬方向が変化するだけであ る力 本実施形態の構成では、さらに側面 10Cから第 1面 10Aへ 90度伝搬方向が 変化する。すなわち、本実施形態では、従来よりも伝搬方向の 90度変化が 1回多い 。ここで、このような回り込み音声の伝搬方向変化は、伝搬方向の先に反射壁等が存 在し、この壁面による反射により強制的に変化するものではなぐ自然に回り込むもの であるので、変化数に応じて大幅な減衰が得られる。したがって、本実施形態の放収 音装置は、従来の放収音装置と比較して、非常に大幅に回り込み音声を減衰させる ことができる。
[0101] このように、本実施形態の構成を用いることで、必要音声であるユーザからの発声 音等を高感度で収音し、且つ筐体を小さく維持しながらもスピーカからマイクロホンに 回り込む音声を大幅に減衰することができる。これにより、高い SZN比を実現するこ とがでさる。
[0102] 次に、前述のように収音された収音信号を処理する信号処理機能部について説明 する。
[0103] 図 16は、本実施形態の放収音装置の構成を示すブロック図である。
本実施形態の放収音装置は、前述のマイクロホン 2A〜2H、スピーカ 3の他に、前 述の入出力コネクタ 26を備え、さらに、信号処理機能部として、入力アンプ 21A〜2 1H、 A/Dコンバータ 22A〜22H、マイク信号処理回路 23、エコーキャンセラ 24、 入出力インタフェース 25、 DZAコンバータ 31、出力アンプ 32を備える。
[0104] 入出力インタフェース 25は入出力コネクタ 26から入力される入力音声信号を、ェコ 一キャンセラ 24を介して D/Aコンバータ 31に与える。 D/Aコンバータ 31は入力音 声信号をアナログ変換して、出力アンプ 32に与え、出力アンプ 32は、入力音声信号 を増幅してスピーカ 3に出力する。スピーカ 3は、入力音声信号を音声変換して放音 する。
[0105] 各マイクロホン 2A〜2Hは、外部力 の音声を収音し、収音信号に変換して、入力 アンプ 21A〜21Hにそれぞれ出力する。各入力アンプ 21A〜21Hは、収音信号を 増幅し、 AZDコンバータ 22A〜22Hに出力する。 AZDコンバータ 22A〜22Hは、 各収音信号をデジタル変換して、マイク信号処理回路 23に出力する。以下、各マイ クロホン 2A〜2Hで収音され、 AZDコンバータ 22A〜22Hから出力される収音信号 をそれぞれ、単に、信号 A〜信号 Hと称する。
[0106] 図 17は、マイク信号処理回路 23の詳細なブロック図である。
マイク信号処理回路 23は、加算器 (減算器) 231A〜231Hと、セレクト Zミキシン グ回路 232と、最大信号強度検出回路 233とを備える。
[0107] 加算器 231Aには、 AZDコンバータ 22Aから出力された信号 Aが入力されるととも に、 AZDコンバータ 22Eから出力された信号 Eが入力される。加算器 231Aは信号 A力も信号 Eを減算して補正信号 Aを出力する。ここで、信号 Aはマイクロホン 2Aによ る収音信号であり、信号 Eはマイクロホン Eによる収音信号である。前述のようにマイク 口ホン 2Aとマイクロホン 2Eとは、中心点 Oを基準に点対称の位置に配置されている ので、それぞれに収音される回り込み音声は略同等である。これにより、信号 Aから 信号 Eを減算することで、この回り込み音声成分を低減させることができる。
[0108] 同様に、補正信号 Bは加算器 231Bで信号 Bから信号 Fを減算することで生成され 、補正信号 Cは加算器 231Cで信号 C力も信号 Gを減算することで生成され、補正信 号 Dは加算器 231Dで信号 D力 信号 Hを減算することで生成される。
[0109] また、加算器 231Eには、 AZDコンバータ 22Eから出力された信号 Eが入力される とともに、 AZDコンバータ 22Aから出力された信号 Aが入力される。加算器 231Eは 信号 Eカゝら信号 Aを減算して、補正信号 Eを出力する。同様に、補正信号 Fは加算器 231Fで信号 F力も信号 Bを減算することで生成され、補正信号 Gは加算器 231Gで 信号 G力も信号 Cを減算することで生成され、補正信号 Hは加算器 231Hで信号 H 力 信号 Dを減算することで生成される。 [0110] これらにより、補正信号 A〜補正信号 Hは、それぞれ回り込み音声成分を低減させ ることがでさる。
[0111] 生成された補正信号 A〜Hは、セレクト Zミキシング回路 232と最大信号強度検出 回路 233とに入力される。最大信号強度検出回路 233は、これら補正信号 A〜Hの 信号強度、すなわち音圧レベルを比較し、最も高い信号強度の補正信号を選択して 、この最も高 、信号強度の補正信号を選択する情報をセレクト Zミキシング回路 232 に与える。セレクト Zミキシング回路 232は、最大信号強度検出回路 233から与えら れる選択情報に基づき、入力された補正信号 A〜Hから、該当する補正信号を選択 して、エコーキャンセラ 24に出力する。なお、最大信号強度検出回路 233は、最も高 い信号強度の補正信号を検出し、最大信号強度の補正信号と、この補正信号に隣り 合う複数の補正信号とを、選択して、セレクト Zミキシング回路 232に与えてもよい。さ らに、音源が異なる方向に複数ある場合に鑑み、最も信号強度の高い補正信号から 順に複数の補正信号を選択して、セレクト Zミキシング回路 232に与えてもよい。これ らの場合、セレクト Zミキシング回路 232は、選択情報に基づき、該当する複数の補 正信号を選択し、ミキシングしてエコーキャンセラ 24に出力する。
[0112] このような選択処理を行うことで、ユーザ力 の発声音とは考え難い、低い信号強度 の補正信号を削除するので、さらに SZN比を向上させることができる。
[0113] 図 18はエコーキャンセラ 24の詳細なブロックである。
エコーキャンセラ 24は、適応型フィルタ 241および加算器 242を備える。適応型フ ィルタ 241は、 FIRフィルタ等のデジタルフィルタを含んでおり、スピーカ 3からマイク 口ホン 2A〜2Hに至る音響伝搬経路の伝達関数を推定し、推定した伝達関数を模擬 するように FIRフィルタのフィルタ係数を算出する。適応型フィルタ 241は、この推定 したフィルタ係数を用いて擬似回帰音信号を生成し、加算器 242に出力する。加算 器 242は、マイク信号処理回路 23の出力信号から擬似回帰音信号を減算して、出 力音声信号として入出力インタフェース 25に出力する。ここで、伝達関数の推定およ びフィルタ係数の算出は、加算器 242から出力された信号である残差信号を参照信 号として適応型フィルタ 241にフィードバックし、スピーカ 3に供給される入力音声信 号に基づき適応アルゴリズムを用いて、繰り返し行われる。これにより、伝達関数の推 定およびフィルタ係数の設定が最適化される。
[0114] このような処理を行うことにより、さらに回り込み音声成分が抑圧され、入出力インタ フェース 25に出力される音声信号は、より一層 SZN比が向上する。
[0115] 以上のように、本実施形態の放収音装置では、スピーカとマイクロホンとの位置関 係を前述のようにすることで、機構的に回り込み音声を低減することができる。また、 マイクロホンの設置パターンを前述のようにすることで、各マイクロホンの収音信号に 含まれる回り込み音声成分を効果的に抑圧することができ、さらに、エコーキャンセリ ングを行うことで、回り込み音声成分をより一層抑圧することができる。これにより、出 力音声信号に対して、非常に優れた SZN比を実現することができる。
[0116] なお、本実施形態では、筐体 1Sの第 1面 10Aの凹部 11Sを形成し、該凹部 11Sの 内周壁面 12Sにマイクロホン 2A〜2Hを配置した例を示した力 図 19に示すような構 造でマイクロホン 2A〜2Hを配置してもよ!/、。
[0117] 図 19は、本実施形態の他の構成の放収音装置の本実施形態の放収音装置の主 要部の構成を示す図であり、図 19Aは平面図、図 19Bは図 19Aにおける A— A'断 面図である。図 19に示す放収音装置は、マイクロホン 2A〜2Hを第 1面 10A上に配 置し、これらマイクロホン 2A〜2Hをメッシュ状のカバー 13で覆ったものであり、その 他の構成は同じである。このような構成であっても、前述の効果を奏することができる
[0118] また、本実施形態では、短円柱状の筐体 1Sを例に説明したが、平面断面が楕円と なる楕円柱形状であっても良ぐさらには直方体形状であっても良 、。
[0119] また、本実施形態では、スピーカ 3を有する第 2面 10B側を机 200の天面に対向さ せて配置する例を示した力 スピーカ 3を有する第 2面 10B側を、ユーザがいる部屋 の天井に向け、足部 4を天井面に接続するように配置しても良い。
[0120] また、本実施形態では、マイクロホンが 8個、スピーカが 1個の場合を示した力 前 述のようにマイクロホンとスピーカとが筐体の対向する面に配置され、前述のようにマ イク口ホンの指向性が設定されれば、マイクロホンの数およびスピーカ数は、適宜設 定することができる。
[0121] また、マイク信号処理回路 23の構成は、前述の例に限るものではない。 図 20は、マイク信号処理回路 23の他の構成を示すブロック図である。図 20に示す マイク信号処理回路 23は、図 17に示したマイク信号処理回路 23に対して、信号合 成部分のみが異なるものである。
加算器 231Aには、 AZDコンバータ 22Aから出力された信号 Aが入力されるととも に、 AZDコンバータ 22Bから出力された信号 Bが入力される。加算器 231Aは信号 Aと信号 Bとを加算して出力する。同様に、加算器 231Bは信号 Bと信号 Cとを加算し て出力し、加算器 231Cは信号 Cと信号 Dとを加算して出力し、加算器 231Dは信号 Dと信号 Eとを加算して出力する。また、加算器 231Eは信号 Eと信号 Fとを加算して 出力し、加算器 231Fは信号 Fと信号 Gとを加算して出力し、加算器 231Gは信号 G と信号 Hとを加算して出力し、加算器 231Hは信号 Hと信号 Aとを加算して出力する 。このように、図 20に示すマイク信号処理回路 23は、隣り合う 2つのマイクロホンから 得られる収音信号同士を加算して出力する。このように、隣接するマイクロホンの収 音信号を加算することで、マイクロホンの正面方向、すなわち高い収音感度が設定さ れた方向からの収音信号成分が強められ、他の方向からの収音信号成分が弱めら れる。これにより、さらに指向性の強い信号が得られる。
[0122] さらに、マイク信号処理回路 23の構成は、次に示すようなものであってもよい。
図 21は、また他のマイク信号処理回路 23における信号合成部のブロック図である この図 21に示すマイク信号処理回路 23も、図 17に示したマイク信号処理回路 23 に対して信号合成部分のみが異なるものである。
図 21に示すマイク信号処理回路 23は、カロ算器 237A〜237H、ディレイ回路 234 A〜234H, 235A〜235H, 236A〜236Hを備える。 信号 A〜Hは、それぞれデ ィレイ回路 234A〜234H, 235A〜235H, 236A〜236Hに入力される。例えば、 信号 Aは、ディレイ回路 234A, 235A, 236A〖こ入力され、他の信号 B〜Hも同様に 処理される。
[0123] 各ディレイ回路 234A〜234H, 235A〜235H, 236A〜236Hは、加算器 237A 〜237Hに入力される 3つの信号が同相になるように、入力された信号を遅延処理す る。 [0124] 加算器 237Aはディレイ 234Aの出力信号 (信号 A)と、ディレイ 235Bの出力信号( 信号 B)と、ディレイ 236Cの出力信号 (信号 C)とを加算して出力する。同様に、加算 器 237Bはそれぞれに遅延処理された信号 B、信号 C、信号 Dを加算して出力し、加 算器 237Cはそれぞれに遅延処理された信号 C、信号 D、信号 Eを加算して出力し、 加算器 237Dはそれぞれに遅延処理された信号 D、信号 E、信号 Fを加算して出力 する。さらに、加算器 237Eはそれぞれに遅延処理された信号 E、信号 F、信号 Gを 加算して出力し、加算器 237Fはそれぞれに遅延処理された信号 F、信号 G、信号 H を加算して出力し、加算器 237Gはそれぞれに遅延処理された信号 G、信号 H、信 号 Aを加算して出力し、加算器 237Hはそれぞれに遅延処理された信号 H、信号 A、 信号 Bを加算して出力する。これにより、隣り合う 3つのマイクロホンからの収音信号が 同相で合算される。この結果、より一層特定方向の信号強度が高くなり、 SZN比が 向上するとともに、前記特定方向への指向性がより一層高められる。なお、加算する 信号数は、 3つに限るものではなぐさらに多くの信号を加算したり、減算することによ り、特定方向の SZN比を向上させることができる。
[0125] なお、図 20、図 21に示すマイク信号処理回路 23では、 AZDコンバータ 22A〜22 Hの出力信号 A〜Hを直接処理する構成を示した力 図 17に示すような回路を用い て生成した補正信号 A〜Hを入力するようにしてもよい。これにより、さらに SZN比が 向上される。
[0126] 図 22A〜図 22F及び図 23は、上述の放収音装置の例を表す図である。図 22A〜 図 22Eは放収音装置の上面及び側面を表し、図 22Fは放収音装置の断面図であり 、図 23は放収音装置の底面を表している。
[0127] これらの図において、放収音装置のスピーカ 11は側面力 底面にかけての曲面部 分に備えられている。このため、放収音装置の上方向からはスピーカが視認されず、 デザイン上の自由度を向上させることができる効果がある。
[0128] 更に、図 22Fのパンチングメタル 1Pは内側に傾斜した形状となり、このために放収 音装置の断面は中央が窪んだ形状となる。この図 22Fに示すようにマイク 12A〜H はこのパンチングメタル IPの内側に備えられ、このような構成により、マイク 12A〜H はそれぞれ放収音装置の内側方向への指向性を有し、また、外観上は視認されな いためにデザイン上の自由度を向上させることができる効果がある。
[0129] また、この放収音装置においては、収音、放音の動作は上述の他の実施形態と同 様であってもよい。
産業上の利用可能性
[0130] この発明によれば、複数のマイクとスピーカが同心円の円周に、収音方向と放音方 向が相反する方向に設置されるので、コンパクトな構成でありながら、スピーカからマ イクに回り込む音声を抑え、 SZN比を向上することができる。
[0131] 更に、この発明によれば、複数の単一指向性マイクロホンが筐体の一方面に円周 状に配置され、当該円の中心方向に高い感度の指向性を設定して設置され、スピー 力が筐体の他方面に配置されることで、スピーカ力 マイクロホンへの回り込み音声 の伝搬距離を効果的に稼ぐことができる。これにより、コンパクトな構成でありながら、 スピーカからマイクロホンに回り込む音声を抑え、 SZN比を向上することができる。

Claims

請求の範囲
[1] 1つの軸を中心とする第 1の円周上に、前記中心に向けて配置されている複数の単 一指向性マイクロホンと、
前記軸を中心とする第 2の円周上に、前記中心と反対方向に向けて配置されてい る複数のスピーカと、
を備えた放収音装置。
[2] 前記第 1の円周は、前記第 2の円周よりも径が大き 、ことを特徴とする請求項 1に記 載の放収音装置。
[3] 前記複数の単一指向性マイクロホン、および前記複数のスピーカを配置する筐体 を備え、
前記複数の単一指向性マイクロホンは、前記筐体の上面に配置され、 前記複数のスピーカは、前記筐体の側面側に配置されて 、る請求項 1に記載の放 収音装置。
[4] 前記各単一指向性マイクロホンが収音した音声信号のレベルに基づいて音源方向 を推定し、この音源方向を向 、て 、る前記単一指向性マイクロホンが収音した音声 信号を後段に出力する信号処理手段を備えた請求項 1に記載の放収音装置。
[5] 前記信号処理手段は、隣接する複数の前記単一指向性マイクロホンが収音した音 声信号を加算して音源方向を推定し、隣接する複数の前記単一指向性マイクロホン が収音した音声信号を加算した信号を後段に出力する請求項 4に記載の放収音装 置。
[6] 前記放収音装置は、
対向する二面を有する筐体と、
前記筐体の前記第 1面に対向する第 2面に平行な放音面を更に具備し、 前記単一指向性マイクロホンは、該筐体の第 1面側に配置され、
前記放音面の中心と前記円の中心とが前記第 1面および第 2面に対する同一の垂 直線上にあり、
前記スピーカは、前記第 2面から前記筐体の外側へ放音する
ことを特徴とする請求項 1に記載の放収音装置。
[7] 前記複数の単一指向性マイクロホンの配置位置は、前記円の中心を基準点として 点対称である請求項 6に記載の放収音装置。
[8] 前記点対称に配置された各単一指向性マイクロホンの収音信号から、各単一指向 性マイクロホンと前記円の中心に関して点対称位置に配置された単一指向性マイク 口ホンとの収音信号を差分演算して差分補正収音信号を生成する差分演算手段を 備えた請求項 7に記載の放収音装置。
[9] 前記複数の単一指向性マイクロホンの収音信号の信号強度に基づいて音源方向 を検出し、前記指向性の軸が音源方向に向いている指向性マイクロホンの収音信号 を後段に出力する信号処理手段を備えた、請求項 6に記載の放収音装置。
[10] 前記差分補正収音信号の信号強度に基づいて音源方向を検出し、該音源方向に 対応する差分補正収音信号を後段に出力する信号処理手段を備えた、請求項 8に 記載の放音装置。
PCT/JP2006/325063 2005-12-19 2006-12-15 放収音装置 WO2007072757A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/095,652 US8243951B2 (en) 2005-12-19 2006-12-15 Sound emission and collection device
EP06842831.7A EP1965603B1 (en) 2005-12-19 2006-12-15 Sound emission and collection device
CN200680047589.4A CN101331793B (zh) 2005-12-19 2006-12-15 声音发射和采集装置
US13/544,002 US9049504B2 (en) 2005-12-19 2012-07-09 Sound emission and collection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-364617 2005-12-19
JP2005364617A JP4929703B2 (ja) 2005-12-19 2005-12-19 放収音装置
JP2005-368052 2005-12-21
JP2005368052A JP4929711B2 (ja) 2005-12-21 2005-12-21 放収音装置

Publications (1)

Publication Number Publication Date
WO2007072757A1 true WO2007072757A1 (ja) 2007-06-28

Family

ID=38188536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325063 WO2007072757A1 (ja) 2005-12-19 2006-12-15 放収音装置

Country Status (3)

Country Link
US (2) US8243951B2 (ja)
EP (1) EP1965603B1 (ja)
WO (1) WO2007072757A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021657A (ja) * 2007-07-10 2009-01-29 Yamaha Corp 放収音装置、および放収音システム
JP2011029765A (ja) * 2009-07-22 2011-02-10 Audio Technica Corp バウンダリーマイクロホン
EP2346268A4 (en) * 2008-10-22 2012-08-22 Yamaha Corp ACOUSTIC DEVICE
US20120281854A1 (en) * 2005-12-19 2012-11-08 Yamaha Corporation Sound emission and collection device

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929740B2 (ja) * 2006-01-31 2012-05-09 ヤマハ株式会社 音声会議装置
JP4867516B2 (ja) * 2006-08-01 2012-02-01 ヤマハ株式会社 音声会議システム
US8111838B2 (en) * 2007-02-28 2012-02-07 Panasonic Corporation Conferencing apparatus for echo cancellation using a microphone arrangement
JP5309953B2 (ja) * 2008-12-17 2013-10-09 ヤマハ株式会社 収音装置
JP5304293B2 (ja) 2009-02-10 2013-10-02 ヤマハ株式会社 収音装置
EP2661906B1 (en) * 2011-01-06 2020-07-01 Naxos Finance SA Innovative sound system
US9084057B2 (en) * 2011-10-19 2015-07-14 Marcos de Azambuja Turqueti Compact acoustic mirror array system and method
US20130304476A1 (en) * 2012-05-11 2013-11-14 Qualcomm Incorporated Audio User Interaction Recognition and Context Refinement
US9746916B2 (en) 2012-05-11 2017-08-29 Qualcomm Incorporated Audio user interaction recognition and application interface
DE102013005049A1 (de) * 2013-03-22 2014-09-25 Unify Gmbh & Co. Kg Verfahren und Vorrichtung zur Steuerung einer Sprachkommunikation sowie Verwendung derselben
GB201321852D0 (en) * 2013-12-10 2014-01-22 Thales Holdings Uk Plc Acoustic Detector
US9271069B2 (en) * 2014-01-27 2016-02-23 Revolabs, Inc Microphone housing arrangement for an audio conference system
US10609473B2 (en) * 2014-09-30 2020-03-31 Apple Inc. Audio driver and power supply unit architecture
JP6526185B2 (ja) 2014-09-30 2019-06-05 アップル インコーポレイテッドApple Inc. 表面からの反射により引き起こされるオーディオカラーレーションを低減したラウドスピーカ
USRE49437E1 (en) 2014-09-30 2023-02-28 Apple Inc. Audio driver and power supply unit architecture
KR200487541Y1 (ko) 2014-11-27 2018-10-02 선전 티아나 테크놀로지 컴퍼니.,리미티드 마이크로폰 사운드박스 일체형 장치
US9565493B2 (en) 2015-04-30 2017-02-07 Shure Acquisition Holdings, Inc. Array microphone system and method of assembling the same
US9554207B2 (en) 2015-04-30 2017-01-24 Shure Acquisition Holdings, Inc. Offset cartridge microphones
JP6597053B2 (ja) * 2015-08-24 2019-10-30 ヤマハ株式会社 放収音装置
CN107046659B (zh) 2016-02-06 2019-11-26 深圳唐恩科技有限公司 一种麦克风音箱一体设备
US20170366897A1 (en) * 2016-06-15 2017-12-21 Robert Azarewicz Microphone board for far field automatic speech recognition
US10631071B2 (en) 2016-09-23 2020-04-21 Apple Inc. Cantilevered foot for electronic device
WO2018061956A1 (ja) * 2016-09-30 2018-04-05 ヤマハ株式会社 会話アシスト装置および会話アシスト方法
CN206260057U (zh) * 2016-12-01 2017-06-16 辜成允 扬声器装置
US10367948B2 (en) 2017-01-13 2019-07-30 Shure Acquisition Holdings, Inc. Post-mixing acoustic echo cancellation systems and methods
JP6828804B2 (ja) 2017-03-24 2021-02-10 ヤマハ株式会社 収音装置および収音方法
JP6841743B2 (ja) * 2017-09-29 2021-03-10 Kddi株式会社 音響信号のミキシング装置及びプログラム
JP7028307B2 (ja) * 2018-02-16 2022-03-02 日本電信電話株式会社 ハウリング抑圧装置、その方法、およびプログラム
CN112335261B (zh) 2018-06-01 2023-07-18 舒尔获得控股公司 图案形成麦克风阵列
US11297423B2 (en) 2018-06-15 2022-04-05 Shure Acquisition Holdings, Inc. Endfire linear array microphone
WO2020061353A1 (en) 2018-09-20 2020-03-26 Shure Acquisition Holdings, Inc. Adjustable lobe shape for array microphones
KR102607863B1 (ko) 2018-12-03 2023-12-01 삼성전자주식회사 음원 분리 장치 및 음원 분리 방법
US11438691B2 (en) 2019-03-21 2022-09-06 Shure Acquisition Holdings, Inc. Auto focus, auto focus within regions, and auto placement of beamformed microphone lobes with inhibition functionality
US11303981B2 (en) 2019-03-21 2022-04-12 Shure Acquisition Holdings, Inc. Housings and associated design features for ceiling array microphones
US11558693B2 (en) 2019-03-21 2023-01-17 Shure Acquisition Holdings, Inc. Auto focus, auto focus within regions, and auto placement of beamformed microphone lobes with inhibition and voice activity detection functionality
US11445294B2 (en) 2019-05-23 2022-09-13 Shure Acquisition Holdings, Inc. Steerable speaker array, system, and method for the same
CN114051637A (zh) 2019-05-31 2022-02-15 舒尔获得控股公司 集成语音及噪声活动检测的低延时自动混波器
CN114467312A (zh) 2019-08-23 2022-05-10 舒尔获得控股公司 具有改进方向性的二维麦克风阵列
US12028678B2 (en) 2019-11-01 2024-07-02 Shure Acquisition Holdings, Inc. Proximity microphone
US11552611B2 (en) 2020-02-07 2023-01-10 Shure Acquisition Holdings, Inc. System and method for automatic adjustment of reference gain
WO2021243368A2 (en) 2020-05-29 2021-12-02 Shure Acquisition Holdings, Inc. Transducer steering and configuration systems and methods using a local positioning system
JP2024505068A (ja) 2021-01-28 2024-02-02 シュアー アクイジッション ホールディングス インコーポレイテッド ハイブリッドオーディオビーム形成システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639667A (en) * 1979-09-08 1981-04-15 Nec Corp Directional transmission-reception unit
JPS5856563A (ja) * 1981-09-30 1983-04-04 Fujitsu Ltd 拡声電話機用送受話ユニツト
JPS6322702B2 (ja) * 1981-09-30 1988-05-12 Fujitsu Ltd
JPH02288455A (ja) * 1989-04-27 1990-11-28 Fujitsu Ltd 会議用通話装置
JP2000253134A (ja) * 1999-03-03 2000-09-14 Mitsubishi Electric Corp ハンズフリー通話装置
JP2005065217A (ja) * 2003-07-31 2005-03-10 Sony Corp 通話装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2424634A (en) * 1944-05-19 1947-07-29 Interval Instr Inc Theater amplifying and sound distribution system
GB1329575A (en) * 1970-01-26 1973-09-12 Reid A A L Group communication apparatus
JPS6135699A (ja) 1984-07-27 1986-02-20 Nec Corp 無指向性スピ−カシステム
JPS6322702A (ja) 1986-07-16 1988-01-30 Yokohama Rubber Co Ltd:The 重荷重用空気入りラジアルタイヤ
JPH01162465A (ja) 1987-12-18 1989-06-26 Fujitsu Ltd 話者検出装置
JPH0570094U (ja) 1992-02-26 1993-09-21 株式会社ケンウッド 無指向性スピーカシステム
JPH08204803A (ja) 1995-01-30 1996-08-09 Nec Eng Ltd 音声会議装置
JP2739835B2 (ja) 1995-04-27 1998-04-15 日本電気株式会社 音声会議装置
US6173059B1 (en) 1998-04-24 2001-01-09 Gentner Communications Corporation Teleconferencing system with visual feedback
US6845163B1 (en) * 1999-12-21 2005-01-18 At&T Corp Microphone array for preserving soundfield perceptual cues
JP2005086365A (ja) 2003-09-05 2005-03-31 Sony Corp 通話装置、会議装置および撮像条件調整方法
JP2005101800A (ja) 2003-09-24 2005-04-14 Iwatsu Electric Co Ltd 会議通話装置
US7190775B2 (en) * 2003-10-29 2007-03-13 Broadcom Corporation High quality audio conferencing with adaptive beamforming
US20060132595A1 (en) * 2004-10-15 2006-06-22 Kenoyer Michael L Speakerphone supporting video and audio features
JP4674505B2 (ja) * 2005-08-01 2011-04-20 ソニー株式会社 音声信号処理方法、音場再現システム
WO2007072757A1 (ja) * 2005-12-19 2007-06-28 Yamaha Corporation 放収音装置
JP4867516B2 (ja) * 2006-08-01 2012-02-01 ヤマハ株式会社 音声会議システム
US8433061B2 (en) * 2007-12-10 2013-04-30 Microsoft Corporation Reducing echo

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639667A (en) * 1979-09-08 1981-04-15 Nec Corp Directional transmission-reception unit
JPS5856563A (ja) * 1981-09-30 1983-04-04 Fujitsu Ltd 拡声電話機用送受話ユニツト
JPS6322702B2 (ja) * 1981-09-30 1988-05-12 Fujitsu Ltd
JPH02288455A (ja) * 1989-04-27 1990-11-28 Fujitsu Ltd 会議用通話装置
JP2000253134A (ja) * 1999-03-03 2000-09-14 Mitsubishi Electric Corp ハンズフリー通話装置
JP2005065217A (ja) * 2003-07-31 2005-03-10 Sony Corp 通話装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1965603A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120281854A1 (en) * 2005-12-19 2012-11-08 Yamaha Corporation Sound emission and collection device
US9049504B2 (en) * 2005-12-19 2015-06-02 Yamaha Corporation Sound emission and collection device
JP2009021657A (ja) * 2007-07-10 2009-01-29 Yamaha Corp 放収音装置、および放収音システム
EP2346268A4 (en) * 2008-10-22 2012-08-22 Yamaha Corp ACOUSTIC DEVICE
JP2011029765A (ja) * 2009-07-22 2011-02-10 Audio Technica Corp バウンダリーマイクロホン

Also Published As

Publication number Publication date
EP1965603B1 (en) 2017-01-11
US20100166212A1 (en) 2010-07-01
EP1965603A1 (en) 2008-09-03
US8243951B2 (en) 2012-08-14
US20120281854A1 (en) 2012-11-08
US9049504B2 (en) 2015-06-02
EP1965603A4 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2007072757A1 (ja) 放収音装置
JP5338040B2 (ja) 音声会議装置
CN101331793B (zh) 声音发射和采集装置
US8111838B2 (en) Conferencing apparatus for echo cancellation using a microphone arrangement
CA2582473C (en) Acoustic apparatus and telephone conversation apparatus
US7263196B2 (en) Mobile communications terminal with flat loudspeaker disposed in the terminal housing
JP4894353B2 (ja) 放収音装置
CN102177731B (zh) 音频设备
CN110913293A (zh) 主动抗噪式的耳内麦克风
US20220301537A1 (en) Electronic stethoscope device with noise cancellation
JPH0936940A (ja) 音声入力装置
JP5082878B2 (ja) 音声会議装置
JP5417821B2 (ja) 音声信号再生装置、携帯電話端末
JP4797617B2 (ja) 放収音装置
JP4262383B2 (ja) 拡声型通話装置
JP2004015415A (ja) マイクロホン及びマイクロホンを有する携帯電話機、卓上電話機
JP4929711B2 (ja) 放収音装置
JP2006157199A (ja) スライド型携帯端末
JP4874029B2 (ja) 音響装置及び通話装置
US20020131582A1 (en) Method and system for noise cancellation in communication terminal
JP2008294997A (ja) 通話装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680047589.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2006842831

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006842831

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12095652

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE