WO2007061001A1 - ゲル担体とハイドロキシアパタイトとの複合体およびその製造方法 - Google Patents
ゲル担体とハイドロキシアパタイトとの複合体およびその製造方法 Download PDFInfo
- Publication number
- WO2007061001A1 WO2007061001A1 PCT/JP2006/323343 JP2006323343W WO2007061001A1 WO 2007061001 A1 WO2007061001 A1 WO 2007061001A1 JP 2006323343 W JP2006323343 W JP 2006323343W WO 2007061001 A1 WO2007061001 A1 WO 2007061001A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydroxyapatite
- gel
- solution
- gel carrier
- carrier
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/12—Phosphorus-containing materials, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/831—Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
- A61K6/838—Phosphorus compounds, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/884—Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
- A61K6/898—Polysaccharides
Definitions
- the present invention relates to a composite of a gel carrier and hydroxyapatite and a method for producing the same.
- nodoxyapatite is very similar to the components of bones and teeth, a complex in which hydroxyapatite is held on a base material such as an organic polymer material is used as an artificial bone or a human tooth root. Attempts have been made to use it as a forming material.
- Patent Document 1 International Publication W099Z58447 Pamphlet
- Patent Document 2 JP 2000-327313 A
- Patent Document 3 Japanese Patent Laid-Open No. 2000-327314
- Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-026653
- Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-081739
- the present invention provides a method for producing a composite that is excellent in the formation efficiency of hydroxyapatite and enables the formation of hydroxyapatite inside the substrate, and the composite produced thereby. For the purpose of provision.
- the present invention provides a method for producing a composite of a gel carrier and hydroxyapatite, wherein the gel carrier is disposed between the anode and the cathode, and the electrophoretic solution on the anode side is obtained.
- a solution containing calcium ions and a solution containing phosphate ions as an electrophoretic solution on the cathode side, and carrying out electrophoresis by energization to form hydroxyapatite in the gel carrier.
- a solution containing calcium ions is used as the electrophoretic solution on the anode side, and a solution containing phosphate ions is used as the electrophoretic solution on the cathode side.
- Uniform hydroxyapatite can be formed, and the formation speed can be improved. For this reason, it becomes possible to supply a complex in which hydroxyapatite is held on a gel carrier as a material for forming an artificial bone or an artificial tooth root more easily.
- FIG. 1 is a conceptual diagram of electrophoresis in an embodiment of the present invention
- FIG. 1 is a diagram showing an example of a reaction for forming hydroxyapatite.
- FIG. 2 is a photograph showing an electrophoresis apparatus in one example of the present invention.
- FIG. 3 is a photograph of the appearance of an agarose gel in the Example of the present invention.
- FIG. 4 is an SEM photograph of the agarose gel in the example of the present invention, in which (a) is a non-turbid region (X 3000) on the anode side of the agarose gel, and (b) is a cathode of the agarose gel. Side cloudiness regions (X1500) and (c) are SEM photographs in which the magnification of the cloudiness region (X15000) is changed.
- FIG. 5 is a SEM photograph of the agarose gel in the Example of the present invention, (A) is a SEM photograph of the central part of the cloudy area, and (B) is a SEM photograph of the surface part of the cloudy area. It is.
- FIG. 6 is a graph showing the results of XRD analysis of the nodoxyapatite formed in the Example of the present invention.
- FIG. 7A is a schematic view showing an example of an electrophoresis apparatus used in the production method of the present invention.
- FIG. 7B is a schematic diagram showing another example of the electrophoresis apparatus used in the production method of the present invention.
- the electrophoretic solution on the anode side only needs to contain calcium ions.
- a solution containing a calcium compound (calcium salt) such as calcium chloride, calcium acetate, or calcium nitrate is preferable.
- a solvent of the solution for example, an aqueous solvent such as water or a buffer solution is preferable, and a buffer solution capable of adjusting pH is particularly preferable.
- a Tris buffer such as Tris-HCl buffer can be used.
- Each of the calcium compounds and solvents can be one type! /, Or two or more types can be used together!
- the concentration of calcium ions in the anodic electrophoretic solution is not particularly limited !, but is, for example, 10 to 200 mmol ZL, preferably 10 to 160 mmol ZL, and more preferably 10 to 40 mmol ZL.
- the density of hydroxyapatite formed inside the gel carrier can be adjusted by, for example, the calcium ion concentration and the phosphate ion concentration of the cathode side electrophoresis solution described later.
- the concentration of phosphate ion that preferably contains substantially no phosphate ion is, for example, lOmmolZL or less. Preferably, it is below the measurement limit (for example, OmmolZL).
- the pH of the anodic electrophoretic solution is, for example, 4.6 to 9.2, preferably 5.8 to 8, and more preferably 6.6 to 7.4. It can be adjusted appropriately by using a buffer solution such as
- the electrophoretic solution on the cathode side contains phosphate ions, and for example, sodium hydrogen phosphate, sodium dihydrogen phosphate, ammonium dihydrogen phosphate, ammonium dihydrogen phosphate A solution containing a phosphate compound such as hum is preferred.
- a phosphate compound such as hum
- an aqueous solvent such as water or a buffer solution is preferable.
- the buffer for example, Tris buffer such as Tris-HCl buffer, phosphate buffer, etc. can be used, and the concentration thereof is, for example, 10 to 200 mmo 1 ZL, preferably 10 to 160 mmol ZL, and more. Preferably 10-40mmolZL It is. Either one type of phosphoric acid compound or solvent may be used, or two or more types may be used in combination.
- the concentration of phosphate ions in the cathodic electrophoresis solution is not particularly limited !, but is, for example, 10 to 200 mmol ZL, preferably 10 to 160 mmol ZL, and more preferably 10 to 40 mmol ZL.
- the pH of the electrophoresis solution is not particularly limited, but is, for example, 5.8 to 8, preferably 6.6 to 8, more preferably 7.4 to 8, for example, the buffer solution as described above. Can be adjusted as appropriate.
- the concentration of calcium ions that preferably contains substantially no calcium ions is, for example, lOmmolZL or less. Preferably, it is below the measurement limit (for example, OmmolZL).
- the combination of the calcium compound contained in the anodic electrophoretic solution and the phosphate compound contained in the cathodic electrophoretic solution is not particularly limited.
- a combination of calcium chloride and sodium hydrogen phosphate, acetic acid A combination of calcium and ammonium dihydrogen phosphate is exemplified.
- the ratio of the calcium ion concentration of the anodic electrophoretic solution to the phosphate ion concentration of the cathodic electrophoretic solution is, for example, in the range of 3: 5 to 5: 3, preferably 5: 5 to 5: The range of 3.
- These electrophoretic solutions may contain other ions, for example, as long as the formation of hydroxyapatite is not impaired.
- the type of the gel carrier in the present invention is not particularly limited.
- the gel carrier is substantially insoluble in the above-described electrophoresis solution. Gels that can move acid ions are preferred.
- An example of such a gel is Hyde Mouth Gel.
- Hyde mouth gel generally means a gel in water (aqueous solvent).
- the material of the hide-mouthed gel is not particularly limited as long as it is a substance that gels (swells). For example, it may be a substance that gels by heating and cooling a mixed solution with an aqueous solvent, or a hydrogen bond.
- a substance that gels due to, for example, a substance that gels by an additive such as an aggregating agent, a crosslinking agent, or a polymerizing agent may be used.
- the material of the gel carrier may contain an ionic group, but is preferably nonionic.
- the gel carrier is preferably biocompatible.
- examples of such materials include agarose, hyaluronic acid, alginic acid, pullulan, pectin, starch, mannan, chitin, chitosan, chitosan-chitin copolymer, dextran, dextran sulfate, and pregelatinized starch.
- Examples include polysaccharides such as starch, cellulose, and cellulose derivatives (such as methoxycellulose, ethoxycellulose, propoxycellulose, and hydroxyethylcellulose). Also, fibronectin, fib mouth-in, sericin, atelocollagen, collagen, gelatinized collagen, gelatin, casein, polyspartate, polyglutamate, poly-gamma-glutamic acid, polylysine and other proteins, polypeptides or polyamino acids; lignin , Polyortune, poly (oral taxane), poly (ethylene succinate), poly (bull alcohol), poly (bullyl pyrrolidone), polyethylene glycol, poly (acrylamide), poly (hydroxyethyl) methacrylate, darcosilethyl methacrylate (GEMA), partial sulfate Examples thereof include organic polymer gels obtained by crosslinking polymers such as GEMA.
- polysaccharides such as starch, cellulose, and cellulose derivatives (such as meth
- hydrophilic rosin partially crosslinked with polybulualcohol, polyacrylamide, polybylpyrrolidone or the like can be used.
- the cross-linked polybulal alcohol can be obtained, for example, by partially bridging polybulal alcohol with a bifunctional aldehyde such as dartalaldehyde.
- These materials may be natural products, semi-synthetic products, or synthetic products. Among these, agarose, hyaluronic acid, collagen and the like are preferable because they are excellent in human safety and degradability. In addition, these materials can be either one type, or two or more types can be used in combination.
- the method for preparing the gel carrier is not particularly limited, and can be prepared by a conventionally known method according to the type of the forming material.
- agarose or gelatin it can be prepared by dissolving in a solvent by heating, and cooling and solidifying the obtained solution.
- polybutyl alcohol, polyamino acid, and the like for example, they can be prepared by adding a crosslinking agent such as dartalaldehyde to these aqueous solutions and solidifying them.
- a solution that conducts electricity can be used as the solvent.
- aqueous solvents such as aqueous solutions of phosphoric acid and sodium phosphate, aqueous solutions of phosphoric acid such as sodium dihydrogen phosphate, and phosphate buffers, and Tris buffers such as Tris-HCl buffer.
- An aqueous phosphoric acid solution such as an aqueous solution of disodium hydrogen and sodium dihydrogen phosphate is preferred.
- concentration is 10-4 OmmolZL, for example, Preferably it is 10-20 mmolZL.
- the p H is, for example, 5.8 to 8, preferably 6.6 to 8, and more preferably 6.6 to 7.4.
- the pH of the gel carrier is not particularly limited, but is, for example, 5.8 to 8, preferably 6.6 to 8, and more preferably 6.6 to 7.4.
- the pH of the gel carrier can be adjusted to a desired value by, for example, the above-mentioned solvent used when producing the gel carrier.
- the content of the forming material in the gel carrier is not particularly limited, and is a force S that can be appropriately determined according to the type of the forming material, for example, 0.5 to: LO wt%, preferably 0. 5 to 5% by weight, more preferably 0.5 to 3% by weight.
- the shape and size of the gel carrier are not limited in any way, and can be appropriately determined according to the shape and size of the electrophoresis apparatus to be used.
- the length of the gel in the ion movement direction is, for example, 1 to 20 cm, preferably 3 to 10 cm, more preferably 3 to 6 cm, and the thickness is, for example, 0.1 to 1.5 cm, preferably 0.1 to 1.5 cm, 0.2 to 1.5 cm or younger or higher, 0.1 to Lcm, more preferably higher or lower to 0.2 to Lcm.
- the width of the gel is not particularly limited, but is, for example, 30 cm or less, preferably 20 cm or less, and more preferably 15 cm or less.
- the lower limit of the gel width is not particularly limited, and is, for example, 0.1 cm, 1 cm, 3 cm, 5 cm, 8 cm, 10 cm or more.
- Specific examples of the open shape of the genore include a general slab gel and a rod gel.
- a gel carrier is arranged at a predetermined position of the electrophoresis apparatus.
- the electrophoresis apparatus for example, a conventionally known apparatus can be used, and an anodic electrophoretic solution containing calcium ions at one end of the gel carrier and a cathodic electrophoretic solution containing phosphate ions at the other end can be arranged.
- the form is not limited at all.
- an electrophoresis apparatus as shown in FIGS. 7A and 7B may be used.
- Such an electrophoresis apparatus may be in the same form as a so-called submarine type electrophoresis apparatus generally used for electrophoresis of nucleic acids. That is, the electrophoresis apparatus of FIGS. 7A and 7B includes a main body 1 that constitutes a placement portion for placing the gel carrier 2 and two electrode tanks divided by the placement portion, and electrodes 3, 4 With.
- the electrophoresis solution containing calcium ions is poured into the electrode tank in which the anode is arranged, and the electrophoresis solution containing phosphate ions is poured into the electrode tank in which the cathode is arranged.
- the electrophoresis solution is injected into each electrode tank until one end of the gel carrier comes into contact with the anodic electrophoretic solution and the other end of the gel carrier comes into contact with the cathodic electrophoretic solution.
- the anodic electrophoretic solution and the cathodic electrophoretic solution are preferably separated by a gel carrier. For example, as shown in FIG.
- the anodic electrophoretic solution 5 and the cathodic electrophoretic solution 6 can be isolated by the gel carrier 2.
- the gel carrier 2 may be sandwiched between the gel mounting part and the member 7 using the member 7 to isolate the electrophoresis solutions 5 and 6 from each other.
- the shape of the member 7 is not particularly limited as long as the electrophoresis solution can be isolated.
- the shape of the member 7 may be concave as shown in FIG. 7B.
- the material of the member 7 is not particularly limited, and, for example, a conventionally known resin glass that can be the same as the main body 1 can be applied.
- Hydroxyapatite is then formed inside (and on the surface of) the gel carrier by carrying out electrophoresis with an electric charge.
- the reason why hydroxyapatite can be formed in the gel carrier by the method of the present invention is presumed to be that calcium ions and phosphate ions are forced to move the gel carrier by energization. For this reason, it is considered that the formation region of hydroxyapatite is not affected by the thickness of the gel carrier, for example.
- the conditions for energization are not particularly limited, but the voltage is, for example, 2 to 500 V, and the current is, for example, 2 to 200 mA.
- the migration time is not particularly limited, and is, for example, 1 to 60 minutes.
- the migration time can be adjusted according to the size of the gel carrier, for example, when the length of the gel in the direction of ion movement is 6 cm, for example, about 10 to 30 minutes, and a uniform nose inside the gel carrier. Idroxyapatite can be formed. The nodoxy oxide formed in the gel can be confirmed, for example, with a scanning electron microscope (SEM) or the like as described later.
- SEM scanning electron microscope
- Hydroxyapatite formed inside (and on the surface of) the gel carrier is preferably a crystal particle, and its particle size is not particularly limited, but is preferably 0.2 to 2 / ⁇ ⁇ , for example. It is between 0.5 and 111, and preferably between 1.0 and 1. According to the production method of the present invention, it is possible to accelerate the formation rate of hydroxyapatite, for example, about 100 times as compared with the conventional alternate dipping method.
- the density of hydroxyapatite in the composite can be adjusted by, for example, the force ion concentration and phosphate ion concentration in each electrophoresis solution, but practically, it is 0.1 wt% or more per equilibrium swelling volume (cm 3 ). More preferably, it is 1 to 25% by weight, particularly preferably 10 to 25% by weight.
- FIG. 1 shows a solution containing CaCl as the anodic migration solution, the cathode side
- (B) is a figure which shows the outline of the formation reaction of a hydroxyapatite. As shown in (a) of the figure, a solution containing CaCl on the anode side and a solution containing Na HPO as the cathode side running solution are used.
- the present invention includes a gel carrier-hydroxyapatite composite produced by the production method of the present invention described above.
- the obtained composite of the present invention has a good hemostatic effect and can be used as a medical material such as a material for forming an artificial bone or an artificial tooth root.
- the composite is embedded around a damaged living bone or tooth. By planting, it exhibits hemostasis and can form artificial bones and artificial roots. This complex can be stored in physiological saline until use, after various sterilization treatments such as ⁇ -ray sterilization, for example.
- the present invention provides a method of treatment using the gel carrier-hydroxyapatite of the present invention and a gel carrier-noid of the present invention in treatment of living bodies, for example, treatment including hemostasis or artificial osteoarthroplasty. It may also include the use of roxyapatite. Furthermore, the present invention provides a book comprising at least one of the above-described electrophoresis apparatus, anode side / cathode side electrophoresis solution, anode side / cathode side electrophoresis solution reagent, gel carrier, gel material powder, and instruction manual.
- the gel carrier-hydroxyapatite production kit of the invention may be included.
- a solution containing carbonate ions is used instead of a solution containing phosphate ions as the electrophoretic solution on the cathode side, by performing electrophoresis by energization, Since calcium carbonate is formed in the gel carrier, a complex of the gel carrier and calcium carbonate can also be produced.
- a solution containing carbonate ions for example, a solution containing a carbonate compound (carbonate) such as sodium carbonate or sodium hydrogen carbonate is preferable. Or an aqueous solvent such as a buffer.
- the carbonate ion concentration of the electrophoresis solution is not particularly limited, it is, for example, 10 to 200 mmol ZL, preferably 10 to 160 mmol ZL, and more preferably 10 to 40 mmol ZL.
- the pH of the electrophoresis solution is, for example, 5.8 to 8, preferably 6.6 to 8, and more preferably 7 to 8.
- a solution containing sulfate ions instead of a solution containing phosphate ions is used as the electrophoretic solution on the cathode side, and calcium ion is used as the electrophoretic solution on the anode side.
- a solution containing cadmium ions is used in place of the solution containing, a cadmium sulfate is formed in the gel carrier by carrying out electrophoresis by energization. Therefore, a composite of the gel carrier and cadmium sulfate Can also be manufactured.
- a solution containing sulfite ions for example, a solution containing cadmium acetate is preferable as a solution containing cadmium ions, which is preferable for a solution containing sodium sulfate.
- the solvent of the solution for example, an aqueous solvent such as water or a buffer solution can be used as described above.
- the sulfate ion concentration of the electrophoresis solution is not particularly limited, but is, for example, 10 to 200 mmol ZL, preferably 10 to 160 mmol ZL, and more preferably 10 to 40 mmol ZL.
- the cadmium ion concentration of the electrophoresis solution is not particularly limited, but is, for example, 10 to 200 mmolZL, preferably 10 to 160 mmolZL, and more preferably 10 to 40 mmolZL.
- the pH of the electrophoretic solution on each of the cathode side and the anode side is, for example, 5.8 to 8, preferably 6.6 to 8, and more preferably 7 to 8.
- a 3 weight o / o agarose gel (length 6 cm x width 11 cm x thickness 0.8 mm) was prepared by a conventional method using lOmmolZL Tris-HQ buffer (pH 7.4).
- the length of the agarose gel is the length in the ion movement direction (electrophoresis direction).
- this agarose gel is placed at a predetermined position of a commercially available electrophoresis apparatus (trade name: Mupid minigel electrophoresis tank: manufactured by ADVANCE Co. Ltd), and an anode is inside.
- 40 mmol / L CaCl aqueous solution was placed in the arranged electrode tank and 40 mmol ZL Tris-HC1 buffer.
- the mixed solution adjusted to pH 7.4 with a solution was poured into an electrode tank having a cathode disposed therein, and 40 mmol ZL Na HPO aqueous solution was respectively injected. And about 30 minutes under the condition of voltage 100V
- Electrophoresis was performed. 20 minutes after the start of electrophoresis, a cloudy band with a width of about 3 cm was observed near the center line of the agarose gel, and the band moved to the cathode side in the following 10 minutes.
- (a) is the anode-side non-cloudy region (X 3000) of the agarose gel
- (b) is the cathode-side cloudy region (X 1500) of the agarose gel
- (c) is the cloudy region (X 15000).
- X-ray diffraction was performed on the hydroxyapatite particles formed in the agarose gel using an X-ray diffraction apparatus (trade name: RINT in Plane ultra X18: manufactured by Rigaku Corporation).
- the diffraction results are shown in FIG. In the figure, the horizontal axis indicates the angle and the vertical axis indicates the intensity.
- diffraction peaks 25.8 ° (0 02) and 31.7 ° (211) peculiar to nodyl and idroxyapatite were observed. From this result, formation of hydroxyapatite inside the agarose gel was confirmed by electrophoresis.
- the sizes of the two peaks 25.8 ° (002) and 31.7 ° (211) in XRD diffraction are relatively related to the crystallinity of nodyl and adroxyapatite.
- the nodoxy hydroxyapatite obtained in this example can be said to have low crystallinity because these peaks are low. Since hydroxyapatite is easily decomposed if the crystallinity is low, the hydroxyapatite obtained in the present example is particularly useful for use in vivo where rapid decomposition is desired.
- a solution containing calcium ions is used as the electrophoretic solution on the anode side, and a solution containing phosphate ions is used as the electrophoretic solution on the cathode side.
- uniform hydroxyapatite can be formed inside the gel carrier, and the formation speed can be improved. For this reason, it becomes possible to more easily supply the composite in which the gel carrier holds the nodyl and the hydroxyapatite as a material for forming an artificial bone or an artificial tooth root.
Landscapes
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Transplantation (AREA)
- Materials For Medical Uses (AREA)
Abstract
ハイドロキシアパタイトの形成効率に優れ、基材内部でのハイドロキシアパタイト形成を可能とする、複合体の製造方法の提供。陽極と陰極との間にゲル担体を配置し、陽極側の泳動溶液としてカルシウムイオンを含む溶液、陰極側の泳動溶液としてリン酸イオンを含む溶液をそれぞれ使用し、通電により電気泳動を行うことによって、前記ゲル担体内にハイドロキシアパタイトを形成し、ゲル担体とハイドロキシアパタイトとの複合体を製造する。
Description
ゲル担体とハイドロキシアパタイトとの複合体およびその製造方法 技術分野
[0001] 本発明は、ゲル担体とハイドロキシアパタイトとの複合体およびその製造方法に関 する。
背景技術
[0002] ノ、イドロキシアパタイトは、骨や歯の構成成分に極めて類似していることから、有機 高分子材料等の基材にハイドロキシアパタイトを保持させた複合体を、人工骨や人 ェ歯根の形成材料として使用することが試みられている。
[0003] そして、このような複合体の製造方法として、本発明者らは、基材を、カルシウムィ オンを含む溶液とリン酸イオンを含む溶液とに、交互に浸漬することによって、前記基 材の表面にハイドロキシアパタイトを形成する方法 (以下、「交互浸漬法」という)を報 告して!/ヽる (特許文献 1〜5参照)。
特許文献 1:国際公開 W099Z58447号パンフレット
特許文献 2:特開 2000— 327313号公報
特許文献 3:特開 2000— 327314号公報
特許文献 4:特開 2004— 026653号公報
特許文献 5:特開 2004 - 081739号公報
発明の開示
発明が解決しょうとする課題
[0004] しかしながら、この交互浸漬法では、基材の表面にはハイドロキシアパタイトを形成 できるものの、内部にまで十分かつ均一にハイドロキシアパタイトを形成させることが 困難であった。また、基材に実用上十分なハイドロキシアパタイトを形成するには時 間が力かるため、ハイドロキシアパタイトのさらなる形成速度の向上が求められている
[0005] そこで、本発明は、ハイドロキシアパタイトの形成効率に優れ、基材内部でのハイド ロキシアパタイト形成を可能とする、複合体の製造方法ならびにそれによる複合体の
提供を目的とする。
課題を解決するための手段
[0006] 前記目的を達成するため、本発明は、ゲル担体とハイドロキシアパタイトとの複合体 の製造方法であって、陽極と陰極との間にゲル担体を配置し、陽極側の泳動溶液と してカルシウムイオンを含む溶液、陰極側の泳動溶液としてリン酸イオンを含む溶液 をそれぞれ使用し、通電により電気泳動を行うことによって、前記ゲル担体内にハイド ロキシアパタイトを形成する工程を含むことを特徴とする。
発明の効果
[0007] 本発明によれば、陽極側の泳動溶液としてカルシウムイオンを含む溶液、陰極側の 泳動溶液としてリン酸イオンを含む溶液をそれぞれ使用し、電気泳動を行うのみで、 ゲル担体の内部にまで均一なハイドロキシアパタイトを形成でき、且つ、その形成速 度の向上も実現できる。このため、ゲル担体にハイドロキシアパタイトが保持された複 合体をより一層簡便に、人工骨や人工歯根の形成材料として供給することが可能と なる。
図面の簡単な説明
[0008] [図 1]図 1は、(a)は、本発明の一実施形態における電気泳動の概念図、(b)は、ハイ ドロキシアパタイト形成の反応の一例を示す図である。
[図 2]図 2は、本発明の一実施例における電気泳動装置を示す写真である。
[図 3]図 3は、本発明の前記実施例におけるァガロースゲルの外観写真である。
[図 4]図 4は、本発明の前記実施例におけるァガロースゲルの SEM写真であり、 (a) は、前記ァガロースゲルの陽極側非白濁領域( X 3000)、 (b)は、前記ァガロースゲ ルの陰極側白濁領域( X 1500)、(c)は、前記白濁領域( X 15000)の倍率を変えた SEM写真である。
[図 5]図 5は、本発明の前記実施例におけるァガロースゲルの SEM写真であり、 (A) は、白濁領域の中心部分の SEM写真、(B)は、前記白濁領域の表面部分の SEM 写真である。
[図 6]図 6は、本発明の前記実施例において形成されたノヽイドロキシアパタイトの XR D回折の結果を示すグラフである。
[図 7A]図 7Aは、本発明の製造方法に用いる電気泳動装置の一例を示す概略図で ある。
[図 7B]図 7Bは、本発明の製造方法に用いる電気泳動装置のその他の例を示す概 略図である。
発明を実施するための最良の形態
[0009] 陽極側の泳動溶液は、カルシウムイオンを含んで ヽればよく、例えば、塩化カルシ ゥム、酢酸カルシウム、硝酸カルシウム等のカルシウム化合物(カルシウム塩)を含む 溶液が好ましい。前記溶液の溶媒としては、例えば、水や緩衝液等の水性溶媒が好 ましぐ特に、 pH調整が可能な緩衝液が好ましい。前記緩衝液としては、例えば、 Tr is-HCl緩衝液等の Tris緩衝液等が使用できる。カルシウム化合物や溶媒は、それ ぞれ 、ずれか一種類でもよ!/、し、二種類以上を併用してもよ!、。
[0010] 前記陽極側泳動溶液におけるカルシウムイオンの濃度は、特に制限されな!、が、 例えば、 10〜200mmolZLであり、好ましくは 10〜160mmolZLであり、より好まし くは 10〜40mmolZLである。なお、ゲル担体内部に形成するハイドロキシアパタイト の密度は、例えば、このカルシウムイオン濃度と、後述する陰極側泳動溶液のリン酸 イオン濃度とによって調整できる。なお、この陽極側泳動溶液は、ハイド口キシァバタ イトの形成速度の低下を十分に抑制できることから、実質的にリン酸イオンを含まない ことが好ましぐリン酸イオンの濃度は、例えば、 lOmmolZL以下であり、好ましくは 測定限界以下 (例えば、 OmmolZL)である。
[0011] また、前記陽極側泳動溶液の pHは、例えば、 4. 6〜9. 2であり、好ましくは 5. 8〜 8、より好ましくは 6. 6〜7. 4であり、例えば、前述のような緩衝液によって適宜調整 できる。
[0012] 陰極側の泳動溶液は、リン酸イオンを含んで 、ればよぐ例えば、リン酸水素ニナト リウム、リン酸二水素ナトリウム、リン酸水素二アンモ-ゥム、リン酸二水素アンモ-ゥ ム等のリン酸ィ匕合物を含む溶液が好ましい。前記溶液の溶媒としては、例えば、水や 緩衝液等の水性溶媒が好ましい。前記緩衝液としては、例えば、 Tris-HCl緩衝液 等の Tris緩衝液、リン酸緩衝液等が使用でき、その濃度は、例えば、 10〜200mmo 1ZLであり、好ましくは 10〜160mmolZLであり、より好ましくは 10〜40mmolZL
である。リン酸化合物や溶媒は、それぞれいずれか一種類でもよいし、二種類以上を 併用してちょい。
[0013] 前記陰極側泳動溶液におけるリン酸イオンの濃度は、特に制限されな!、が、例え ば、 10〜200mmolZLであり、好ましくは 10〜160mmolZLであり、より好ましくは 10〜40mmolZLである。また、泳動溶液の pHは、特に制限されないが、例えば、 5 . 8〜8であり、好ましくは 6. 6〜8、より好ましくは 7. 4〜8であり、例えば、前述のよう な緩衝液によって適宜調整できる。なお、この陰極側泳動溶液は、ハイドロキシァパ タイトの形成速度の低下を十分に抑制できることから、実質的にカルシウムイオンを 含まないことが好ましぐカルシウムイオンの濃度は、例えば、 lOmmolZL以下であ り、好ましくは測定限界以下 (例えば、 OmmolZL)である。
[0014] 陽極側泳動溶液に含まれるカルシウム化合物と陰極側泳動溶液に含まれるリン酸 化合物との組合せは、特に制限されず、例えば、塩ィ匕カルシウムとリン酸水素ニナト リウムとの組合せ、酢酸カルシウムとリン酸二水素アンモ-ゥムとの組合せ等があげら れる。また、陽極側泳動溶液のカルシウムイオン濃度と、陰極側泳動溶液のリン酸ィ オン濃度との比は、例えば、 3 : 5〜5 : 3の範囲であり、好ましくは、 5 : 5〜5 : 3の範囲 である。なお、これらの泳動溶液は、ハイドロキシアパタイトの形成を損なわない範囲 において、例えば、他のイオンが存在してもよい。
[0015] 本発明におけるゲル担体の種類は、特に制限されず、例えば、前述の泳動溶液に 対して実質的に非溶解性であり、電荷をかけることによって、ゲル担体の内部をカル シゥムイオンおよびリン酸イオンが移動できるゲルが好まし 、。このようなゲルとして、 例えば、ハイド口ゲルがあげられる。ハイド口ゲルは、一般に、水(水性溶媒)中でゲ ル状であるものを意味する。前記ハイド口ゲルの材料は、ゲル化 (膨潤)する物質であ れば特に制限されず、例えば、水性溶媒との混合液を加熱'冷却することによってゲ ル化する物質でもよいし、水素結合等によりゲル化する物質、凝集剤や架橋剤、重 合剤等の添カ卩によってゲルィ匕する物質でもよい。また、ゲル担体の材料は、イオン性 基を含んでいてもよいが、非イオン性であることが好ましい。また、製造したゲル担体 -ハイドロキシアパタイト複合体を生体内で使用する場合には、前記ゲル担体は生体 適合性であることが好ま 、。
[0016] このような材料としては、例えば、ァガロース、ヒアルロン酸、アルギン酸、プルラン、 ぺクチン、デンプン、マンナン、キチン、キトサン、キトサン-キチン共重合体、デキスト ラン、デキストラン硫酸、 α化デンプン等のデンプン、セルロース、セルロース誘導体 (メトキシセルロース、エトキシセルロース、プロポキシセルロースまたはヒドロキシェチ ルセルロース等)、等の多糖類があげられる。また、フイブロネクチン、フイブ口イン、セ リシン、ァテロコラーゲン、コラーゲン、ゼラチン化コラーゲン、ゼラチン、カゼイン、ポ リアスパラテート、ポリグルタメート、ポリ一 γ—グルタミン酸、ポリリジン等のタンパク質 、ポリペプチドまたはポリアミノ酸;リグニン、ポリオルチュン、ポリ口タキサン、ポリェチ レンサクシネート、ポリビュルアルコール、ポリビュルピロリドン、ポリエチレングリコー ル、ポリアクリルアミド、ポリヒドロキシェチルメタアタリレート、ダルコシルェチルメタタリ レート (GEMA)、部分硫酸ィ匕 GEMA等の重合体を架橋した有機高分子ゲルがあげ られる。また、ポリビュルアルコール、ポリアクリルアミド、ポリビュルピロリドン等を部分 架橋した親水性榭脂も使用できる。前記架橋ポリビュルアルコールは、例えば、ポリ ビュルアルコールを、ダルタルアルデヒド等の 2官能アルデヒドによって、部分的に架 橋すること〖こより得られる。なお、これらの材料は、天然物、半合成物または合成物で あってもよい。これらの中でも、人体に対する安全性や、分解性に優れることから、ァ ガロース、ヒアルロン酸、コラーゲン等が好ましい。また、これらの材料はいずれか一 種類でもよ 、し二種類以上を併用してもょ 、。
[0017] ゲル担体の調製方法は、特に制限されず、形成材料の種類に応じて従来公知の 方法により調製できる。例えば、ァガロースやゼラチンの場合には、加熱によって溶 媒中に溶解し、得られた溶液を冷却して固化することによって作製できる。また、ポリ ビュルアルコールやポリアミノ酸等の場合は、例えば、これらの水溶液に、さらにダル タルアルデヒド等の架橋剤を添加し、固化することによって作製できる。前記溶媒とし ては、例えば、電気を通す溶液が使用できる。具体例としては、リン酸水素ニナトリウ ム水溶液、リン酸二水素ナトリム等のリン酸水溶液、リン酸緩衝液、 Tris-HCl緩衝液 等の Tris緩衝液等の水性溶媒があげられ、中でも、リン酸水素ニナトリウム水溶液、リ ン酸ニ水素ナトリム等のリン酸水溶液が好ましい。また、その濃度は、例えば、 10〜4 OmmolZLであり、好ましくは 10〜20mmolZLである。また、緩衝液の場合、その p
Hは、例えば、 5. 8〜8であり、好ましくは 6. 6〜8、より好ましくは 6. 6〜7. 4である。
[0018] 前記ゲル担体の pHは、特に制限されないが、例えば、 5. 8〜8であり、好ましくは 6 . 6〜8、より好ましくは 6. 6〜7. 4である。ゲル担体の pHは、例えば、ゲル担体の作 製時に使用する前述のような溶媒によって、所望の値に調整することができる。
[0019] 前記ゲル担体における形成材料の含有量は、特に制限されず、その形成材料の 種類等に応じて適宜決定できる力 S、例えば、 0. 5〜: LO重量%であり、好ましくは 0. 5 〜5重量%、より好ましくは 0. 5〜3重量%である。
[0020] 前記ゲル担体の形状および大きさは、何ら制限されず、使用する電気泳動装置の 形状や大きさ等に応じて適宜決定できる。具体例としては、イオンの移動方向(泳動 方向)におけるゲルの長さは、例えば、 l〜20cmであり、好ましくは 3〜10cmであり 、より好ましくは 3〜6cmであり、厚みは、例えば、 0. l〜3cmであり、好ましくは 0. 1 〜1. 5cm, 0. 2〜1. 5cm若しく ίま 0. 1〜: Lcm、より好ましく ίま 0. 2〜: Lcmである。 ゲルの幅も特に制限されないが、例えば、 30cm以下であって、好ましくは 20cm以 下であり、より好ましくは 15cm以下である。ゲル幅の下限も特に制限されず、例えば 、 0. lcm、 lcm、 3cm、 5cm、 8cm、 10cm以上である。ゲノレの开状の具体例として は、一般的な平板ゲル (slab gel)、棒状ゲル (rod gel)等があげられる。
[0021] 次に、本発明の製造方法の一例を以下に説明するが、これらには限定されない。
[0022] 電気泳動装置の所定の位置にゲル担体を配置する。電気泳動装置としては、例え ば、従来公知のものが使用でき、ゲル担体の一端にカルシウムイオンを含む陽極側 泳動溶液、他端にリン酸イオンを含む陰極側泳動溶液をそれぞれ配置できるもので あれば、その形態は何ら制限されない。例えば、図 7A及び図 7Bに示すような電気 泳動装置を使用してもよい。このような電気泳動装置は、核酸の電気泳動に一般的 に使用されるいわゆる〃サブマリン式〃の電気泳動装置と同様の形態であってもよい。 すなわち、図 7A及び図 7Bの電気泳動装置は、ゲル担体 2を載置するための載置部 と該載置部によって分割された 2つの電極槽とを構成する本体 1と、電極 3、 4とを備 える。
[0023] 続いて、陽極が配置された電極槽に、前述のカルシウムイオンを含む泳動溶液を 注ぎ、陰極が配置された電極槽に、前述のリン酸イオンを含む泳動溶液を注ぐ。この
際、ゲル担体の一端が陽極側泳動溶液に、ゲル担体の他端が陰極泳動溶液に、そ れぞれ接触するまで、各電極槽に前記泳動溶液を注入する。なお、陽極側泳動溶 液と陰極側泳動溶液とは、ゲル担体によって隔離されることが好ましい。例えば、図 7 Aに示すとおり、電極 3を陽極、電極 4を陰極した場合、ゲル担体 2により陽極側泳動 溶液 5と陰極側泳動溶液 6とを隔離することができる。あるいは、図 7Bに示すとおり、 部材 7を用いてゲル載置部と部材 7とでゲル担体 2を挟持して泳動溶液 5と 6とを隔離 してもよい。部材 7の形状は泳動溶液を隔離できるものであれば特に制限されず、例 えば、図 7Bのように凹型でもよい。部材 7の材質は特に制限されず、例えば、本体 1 と同一であってよぐ従来公知の榭脂ゃガラスなどを適用できる。
[0024] そして、電荷をかけて電気泳動を行うことにより、ゲル担体の内部(および表面)に ハイドロキシアパタイトを形成させる。本発明の方法によりゲル担体の内部にまでハイ ドロキシアパタイトを形成できる理由は、カルシウムイオンとリン酸イオンとが、通電に より強制的にゲル担体を移動することによると推測される。このため、ハイドロキシアバ タイトの形成領域は、例えば、ゲル担体の厚みには影響を受けることがないと考えら れる。
[0025] 通電の条件は、特に制限されないが、電圧は、例えば、 2〜500Vであり、電流は、 例えば、 2〜200mAである。泳動時間も特に制限されず、例えば、 1〜60分である。 また、泳動時間は、例えば、ゲル担体の大きさに応じて調整でき、イオンの移動方向 におけるゲルの長さが 6cmの場合、例えば、 10〜30分程度で、ゲル担体内部に均 一なノ、イドロキシアパタイトを形成できる。ゲル内部に形成されたノヽイドロキシァパタ イトは、例えば、後述するように走査型電子顕微鏡 (SEM)等で確認することもできる。 また、ハイドロキシアパタイトが形成されると、ゲル担体におけるハイドロキシアパタイト 形成領域が白濁するため、例えば、目視確認により通電を終了することも可能である 。ゲル担体の内部(および表面)に形成されるハイドロキシアパタイトは、結晶粒子で あることが好ましぐその粒径としては、特に制限されないが、例えば 0. 2〜2 /ζ πιで あって、好ましく ίま 0. 5〜2 111でぁり、ょり好ましく【ま1. 0〜1. である。本発明 の製造方法によれば、従来のような交互浸漬法と比較して、例えば、 100倍程度、ハ イドロキシアパタイトの形成速度を促進することも可能である。
[0026] 複合体におけるハイドロキシアパタイトの密度は、例えば、各泳動溶液における力 ルシゥムイオン濃度とリン酸イオン濃度によって調整できるが、実用上、平衡膨潤体 積 (cm3)あたり 0. 1重量%以上であることが好ましぐより好ましくは 1〜25重量%、 特に好ましくは 10〜25重量%である。
[0027] 電気泳動によってゲル担体にハイドロキシアパタイトが形成されるメカニズムを、図 1 を用いて説明する。なお、同図は、陽極側泳動溶液として CaClを含む溶液、陰極側
2
泳動溶液として Na HPOを含む溶液を使用した例であり、(a)は電気泳動の概念図
2 4
、(b)はハイドロキシアパタイトの形成反応の概略を示す図である。同図(a)に示すよ うに、陽極側に CaClを含む溶液、陰極側泳動溶液として Na HPOを含む溶液をそ
2 2 4
れぞれ使用した場合、同図(b)に示すように、通電により発生したカルシウムイオンお よびリン酸イオン力 ハイド口ゲル内部において、陰極側および陽極側にそれぞれ移 動する。そして、ハイド口ゲル内部において両イオンが反応し、ハイドロキシアパタイト が形成される。
[0028] このようにして、ノ、イドロキシアパタイトがゲル担体に担持された複合体を製造できる 。したがって、その他の態様として、本発明は、上述した本発明の製造方法で製造さ れたゲル担体-ハイドロキシアパタイト複合体を含む。得られた本発明の複合体は、 例えば、止血効果に富み、人工骨や人工歯根の形成材料等、医用材料として使用 でき、例えば、損傷した生体骨や歯の周辺に、この複合体を埋植することによって、 止血能を発揮するとともに、人工骨や人工歯根を形成できる。この複合体は、例えば 、 γ線滅菌等の各種滅菌処理を施した後、使用時まで生理食塩水中で保存すること ができる。よって、本発明は、本発明のゲル担体-ハイドロキシアパタイトを使用した治 療方法、並びに、生体の治療、例えば、止血又は人工骨 Ζ人工歯根形成を含む治 療における本発明のゲル担体-ノヽイドロキシアパタイトの使用を含んでもよい。さらに 、本発明は、上述した電気泳動装置、陽極側 Ζ陰極側泳動溶液、陽極側 Ζ陰極側 泳動溶液用試薬、ゲル担体、ゲル材料粉末、及び、取扱説明書の少なくとも 1つを含 む本発明のゲル担体-ハイドロキシアパタイトの製造キットを含んでも良い。
[0029] また、本発明にお ヽて、陰極側の泳動溶液として、リン酸イオンを含む溶液に代え て、炭酸イオンを含む溶液を使用すれば、通電により電気泳動を行うことによって、
前記ゲル担体内に炭酸カルシウムが形成されるため、ゲル担体と炭酸カルシウムと の複合体を製造することもできる。炭酸イオンを含む溶液としては、例えば、炭酸ナト リウム、炭酸水素ナトリウム等の炭酸ィ匕合物 (炭酸塩)を含む溶液が好ましぐ前記溶 液の溶媒としては、例えば、前述と同様に水や緩衝液等の水性溶媒が使用できる。 また、前記泳動溶液の炭酸イオン濃度は、特に制限されないが、例えば、 10〜200 mmolZLであり、好ましくは 10〜160mmolZLであり、より好ましくは 10〜40mmol ZLである。また、泳動溶液の pHは、例えば、 5. 8〜8であり、好ましくは 6. 6〜8、よ り好ましくは 7〜8である。
[0030] さらに、本発明にお ヽて、陰極側の泳動溶液として、リン酸イオンを含む溶液に代 えて硫ィ匕物イオンを含む溶液を、また、陽極側の泳動溶液として、カルシウムイオン を含む溶液に代えてカドミウムイオンを含む溶液を使用すれば、通電により電気泳動 を行うことによって、前記ゲル担体内に硫ィ匕カドミウムが形成されるため、ゲル担体と 硫ィ匕カドミウムとの複合体を製造することもできる。硫ィ匕物イオンを含む溶液としては 、例えば、硫ィ匕ナトリウム等を含む溶液が好ましぐカドミウムイオンを含む溶液として は、例えば、酢酸カドミウム等を含む溶液が好ましい。前記溶液の溶媒としては、例え ば、前述と同様に水や緩衝液等の水性溶媒が使用できる。また、前記泳動溶液の硫 化物イオン濃度は、特に制限されないが、例えば、 10〜200mmolZLであり、好ま しくは 10〜160mmolZLであり、より好ましくは 10〜40mmolZLである。前記泳動 溶液のカドミウムイオン濃度は、特に制限されないが、例えば、 10〜200mmolZL であり、好ましくは 10〜160mmolZLであり、より好ましくは 10〜40mmolZLである 。また、陰極側および陽極側それぞれの泳動溶液の pHは、例えば、 5. 8〜8であり、 好ましくは 6. 6〜8、より好ましくは 7〜8である。
実施例 1
[0031] まず、 lOmmolZL Tris- HQバッファー(pH7. 4)を用いて、定法により、 3重量 o/oァガロースゲル(長さ 6cm X幅 11cm X厚み 0. 8mm)を調製した。なお、ァガロー スゲルの長さとは、イオンの移動方向(泳動方向)における長さである。そして、図 2の 写真に示すように、このァガロースゲルを、市販の電気泳動装置(商品名 Mupid ミ ニゲル泳動槽: ADVANCE Co. Ltd社製)の所定位置に配置し、内部に陽極が
配置された電極槽に、 40mmol/L CaCl水溶液を 40mmolZL Tris- HC1バッフ
2
ァ一で pH7. 4に調整した混合液を、内部に陰極が配置された電極槽に、 40mmol ZL Na HPO水溶液をそれぞれ注入した。そして、電圧 100Vの条件で約 30分間
2 4
電気泳動を行った。電気泳動開始後 20分で、ァガロースゲルの中心線付近に約 3c m幅の白濁したバンドが観察され、そして、続く 10分間でバンドは陰極側に移動した
[0032] 電気泳動後のァガロースゲルの外観を図 3の写真に示す。同図に示すように、ァガ ロースゲルの陰極側(同図における(b)領域)に、長さ 3cm ( X幅 l lcm X厚み 0. 8c m)の白濁バンドが形成された。
[0033] 電気泳動後のァガロースゲルを大量の蒸留水で洗浄してから、陽極側の非白濁領 域(図 3における (a)領域)と、陰極側の白濁領域(図 3における (b)領域)とに分離し 、各断片を凍結乾燥した。そして、凍結乾燥した各断片を四酸ィ匕オスミウムで染色し 、走査電子顕微鏡 (SEM)により、各断片の内部を確認した。この結果を、図 4の SE M写真に示す。同図において、(a)は、前記ァガロースゲルの陽極側非白濁領域( X 3000)、 (b)は、前記ァガロースゲルの陰極側白濁領域( X 1500)、(c)は、前記 白濁領域(X 15000)の倍率を変えた写真である。ァガロースゲルの陽極側領域で は、同図(a)に示すように、何ら析出は観察されな力つたのに対して、陰極側白濁領 域では、同図 (b)に示すように、多くの析出が確認された。また、倍率を上げて前記 白濁領域の確認したところ、同図(c)に示すように、表面が針状結晶で覆われた球形 形状である、粒径約 1. 5 m程度の細かい粒子が確認された。この結晶構造は、ハ イドロキシアパタイトに特有の構造であることから(Zhang, R. ; Ma, P. X. J. Biome d. Mater. Res. , 1999, 45, 285— 293、 Ma, P. X. ; Zhang, R. Y. ;Xiao, G . Z. ; Franceschi, R. J. Biomed. Mater. Res. , 2001, 54, 284— 293)、ァガ ロースゲルの白濁バンド領域にハイドロキシアパタイトが形成されたことは明らかであ る。
[0034] また、図 4 (b)に示す白濁領域の中心部分 (すなわち、白濁領域における泳動方向 、幅方向および厚み方向のいずれに対しても中心部分)と、白濁領域の表面部分( 泳動方向および幅方向に対して中心部分)を SEMにより確認した。この結果を図 5
に示す。同図において (A)が中心部分、(B)が表面部分の SEM写真である。その 結果、表面部分だけでなぐァガロースゲルの内部においても均一にハイド口キシァ パタイトが形成されて 、ることがわ力る。
[0035] さらに、ァガロースゲル中に形成したハイドロキシアパタイト粒子について、 X線回 折装置(商品名 RINT in Plane ultraX18 : (株)リガク社製)を用いて X線回折 (X RD)を行った。この回折結果を、図 6に示す。同図において、横軸は角度、縦軸は強 度を示す。同図に示すように、ノ、イドロキシアパタイトに特有の回折ピーク 25. 8° (0 02)および 31. 7° (211)が観察された。この結果から、電気泳動によりァガロース ゲル内部でのハイドロキシアパタイトの形成が確認できた。なお、従来のように、カル シゥム塩溶液とリン酸塩溶液にゲル担体を交互に浸漬させる方法によって、本実施 例と同様に厚み 0. 8cmのゲル担体にハイドロキシアパタイトを形成させる場合、わず 力 1サイクルの交互浸漬に 4400分(74時間)を要する。このことからも、本実施例に よれば、極めて短時間でゲル担体の表面および内部に均一にハイドロキシアパタイト を形成できたといえる。
[0036] なお、 XRD回折における二つのピーク 25. 8° (002)、 31. 7° (211)の大きさは 、 ノ、イドロキシアパタイトの結晶性と相対関係にあることが知られており、図 6に示すよ うに、本実施例で得られたノヽイドロキシアパタイトは、これらのピークが低いことから、 結晶性が低いと言える。そして、結晶性が低ければ、ハイドロキシアパタイトは分解し 易いため、本実施例で得られたハイドロキシアパタイトは、特に、速やかな分解が望 まれる生体内での使用に特に有用である。
産業上の利用可能性
[0037] 以上のように、本発明によれば、陽極側の泳動溶液としてカルシウムイオンを含む 溶液、陰極側の泳動溶液としてリン酸イオンを含む溶液をそれぞれ使用し、電気泳 動を行うのみで、ゲル担体の内部にまで均一なハイドロキシアパタイトを形成でき、且 つ、その形成速度の向上も実現できる。このため、ゲル担体にノ、イドロキシアパタイト が保持された複合体をより一層簡便に、人工骨や人工歯根の形成材料として供給す ることが可能となる。
Claims
請求の範囲
[I] 陽極と陰極との間にゲル担体を配置し、
陽極側の泳動溶液としてカルシウムイオンを含む溶液、陰極側の泳動溶液としてリ ン酸イオンを含む溶液をそれぞれ使用し、
通電により電気泳動を行うことによって、前記ゲル担体内部にハイド口キシァパタイ トを形成する工程を含む、ゲル担体とハイドロキシアパタイトとの複合体の製造方法。
[2] 陽極側の泳動溶液と陰極側の泳動溶液とが、前記ゲル担体によって隔離されて ヽ る、請求項 1記載の製造方法。
[3] 前記担体ゲルの pH力 5. 8〜8の範囲である、請求項 1記載の製造方法。
[4] 陽極側の泳動溶液の pH力 4. 6〜9. 2の範囲である、請求項 1記載の製造方法。
[5] 前記担体ゲルの材料が、ァガロースである、請求項 1記載の製造方法。
[6] 陽極側の泳動溶液におけるカルシウムイオン濃度が、 10〜200mmol/Lの範囲 である、請求項 1記載の製造方法。
[7] 陰極側の泳動溶液におけるリン酸イオン濃度力 10〜200mmolZLの範囲である
、請求項 1記載の製造方法。
[8] ゲル担体とハイドロキシアパタイトとの複合体であって、請求項 1〜7のいずれか一 項に記載の製造方法により得られる複合体。
[9] ゲル担体とハイドロキシアパタイトとの複合体であって、
前記ハイドロキシアパタイトが粒径約 1. 5 μ mの粒子であり、
前記ハイドロキシアパタイト粒子が前記ゲル担体の内部に均一に存在することを特 徴とするゲル-ノヽイドロキシアパタイト複合体。
[10] ゲル担体とハイドロキシアパタイトとの複合体であって、
前記ゲル担体が厚み 0. l〜3cmの平板状であり、
ノ、イドロキシアパタイトの粒子が前記ゲル担体の内部に均一に存在することを特徴 とするゲル-ノヽイドロキシアパタイト複合体。
[II] 前記ハイドロキシアパタイト粒子が、結晶性が低く生体内で分解可能である請求項 9または 10に記載のゲル -ノヽイドロキシアパタイト複合体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007546472A JPWO2007061001A1 (ja) | 2005-11-25 | 2006-11-22 | ゲル担体とハイドロキシアパタイトとの複合体およびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-340829 | 2005-11-25 | ||
JP2005340829 | 2005-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007061001A1 true WO2007061001A1 (ja) | 2007-05-31 |
Family
ID=38067226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/323343 WO2007061001A1 (ja) | 2005-11-25 | 2006-11-22 | ゲル担体とハイドロキシアパタイトとの複合体およびその製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2007061001A1 (ja) |
WO (1) | WO2007061001A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018130343A (ja) * | 2017-02-15 | 2018-08-23 | 国立大学法人東京工業大学 | 組成傾斜複合体及びその製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01305959A (ja) * | 1988-06-03 | 1989-12-11 | Arusu Japan:Kk | 人工軟骨材 |
WO1999058447A1 (fr) * | 1998-05-08 | 1999-11-18 | Nof Corporation | Hydroxyapatite, composite, procede de production et utilisation de ceux-ci |
JP2004026653A (ja) * | 2002-03-04 | 2004-01-29 | Mitsuru Akashi | ハイドロキシアパタイト−ポリマー複合材料の止血用組成物 |
JP2004081739A (ja) * | 2002-08-29 | 2004-03-18 | Mitsuru Akashi | ハイドロキシアパタイト−ポリマー複合材料の止血用組成物 |
-
2006
- 2006-11-22 WO PCT/JP2006/323343 patent/WO2007061001A1/ja active Application Filing
- 2006-11-22 JP JP2007546472A patent/JPWO2007061001A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01305959A (ja) * | 1988-06-03 | 1989-12-11 | Arusu Japan:Kk | 人工軟骨材 |
WO1999058447A1 (fr) * | 1998-05-08 | 1999-11-18 | Nof Corporation | Hydroxyapatite, composite, procede de production et utilisation de ceux-ci |
JP2004026653A (ja) * | 2002-03-04 | 2004-01-29 | Mitsuru Akashi | ハイドロキシアパタイト−ポリマー複合材料の止血用組成物 |
JP2004081739A (ja) * | 2002-08-29 | 2004-03-18 | Mitsuru Akashi | ハイドロキシアパタイト−ポリマー複合材料の止血用組成物 |
Non-Patent Citations (2)
Title |
---|
KAMIKOGEN M. ET AL: "Denki Eido ni Yoru Gelchu no Rinsan Calcium no Seisei", THE CERAMIC SOCIETY OF JAPAN NENKAI KOEN YOKOSHU, vol. 2006, March 2006 (2006-03-01), ABSTRACT, pages 306, XP003012684 * |
WATANABE J. ET AL: "Hone Saisei o Yudo suru Hydroxyapatite kara naru Composite Gel no Sosei", ANNUAL MEETING OF THE JAPANESE SOCIETY FOR BIOMATERIALS YOKOSHU, vol. 27, 28 November 2005 (2005-11-28), ABSTRACT, pages 109, XP003012685 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018130343A (ja) * | 2017-02-15 | 2018-08-23 | 国立大学法人東京工業大学 | 組成傾斜複合体及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007061001A1 (ja) | 2009-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4408603B2 (ja) | 有機無機複合生体材料およびその製造方法 | |
Mukherjee et al. | Repairing human tooth enamel with leucine-rich amelogenin peptide–chitosan hydrogel | |
Wang et al. | Biological sealing and integration of a fibrinogen-modified titanium alloy with soft and hard tissues in a rat model | |
CN102188754B (zh) | 纳米孔状羟基磷酸钙/水凝胶材料 | |
JP3770555B2 (ja) | 複合生体材料 | |
JP6157351B2 (ja) | 生体吸収性の傾斜した多孔質複合体及びそれを用いた人工骨、並びにそれらの製造方法 | |
US6395037B1 (en) | Hydroxyapatite, composite, processes for producing these, and use of these | |
JP3592920B2 (ja) | 有機無機配向性複合材料の製造方法 | |
CN1268307C (zh) | 再生性骨植入物 | |
WO2013157638A1 (ja) | HAp/Col複合体によって被覆された生体材料 | |
CN114028620B (zh) | 一种矿化人工骨膜及其制备方法和应用 | |
WO2007061001A1 (ja) | ゲル担体とハイドロキシアパタイトとの複合体およびその製造方法 | |
WO2014032800A1 (en) | Bioresorbable membrane | |
WO2003020316A1 (fr) | Matieres a liberation lente de medicament in vivo | |
JP2003154001A (ja) | セリシン含有複合体およびその製造方法 | |
CN114028619B (zh) | 一种双层人工骨膜及其制备方法和应用 | |
EP2703015A1 (en) | Bioresorbable membrane | |
CN113750289B (zh) | 基于磷酸钙的有机-无机复合生物活性材料及其制备方法 | |
Yang et al. | Effect of Dehydrothermal Treatment on the Structure and Properties of a Collagen-Based Heterogeneous Bilayer Membrane | |
JP4472805B2 (ja) | 炭酸カルシウム複合体および生体適合性材料 | |
JP3379088B2 (ja) | 生体材料用複合体およびその製造方法 | |
CN110075360A (zh) | 一种壳聚糖/ha基个性化颅、颌面、脊椎骨修复材料及其制备方法 | |
CN114870082B (zh) | 一种高强度复合胶原膜及其制备方法和应用 | |
RU148099U1 (ru) | Имплантант для замещения дефектов костной ткани | |
JP2013022036A (ja) | 生体用インプラント材とその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007546472 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06833165 Country of ref document: EP Kind code of ref document: A1 |