[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007046174A1 - Biodegradable multilayered film with sealant layer - Google Patents

Biodegradable multilayered film with sealant layer Download PDF

Info

Publication number
WO2007046174A1
WO2007046174A1 PCT/JP2006/314253 JP2006314253W WO2007046174A1 WO 2007046174 A1 WO2007046174 A1 WO 2007046174A1 JP 2006314253 W JP2006314253 W JP 2006314253W WO 2007046174 A1 WO2007046174 A1 WO 2007046174A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealant layer
film
biodegradable
based resin
multilayer film
Prior art date
Application number
PCT/JP2006/314253
Other languages
French (fr)
Japanese (ja)
Inventor
Hisao Koike
Yosuke Takahashi
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to JP2007540886A priority Critical patent/JP4916447B2/en
Publication of WO2007046174A1 publication Critical patent/WO2007046174A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • B32B2307/7163Biodegradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2581/00Seals; Sealing equipment; Gaskets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • Multilayer film with biodegradable sealant layer Multilayer film with biodegradable sealant layer
  • the present invention relates to a multilayer film with a biodegradable sealant layer having excellent packaging machine suitability.
  • the present invention relates to a multilayer film with a biodegradable sealant layer having excellent slipperiness and a low-temperature sealing function, and a method for producing the same.
  • the present invention relates to a bag-like article and a cushioning material using the film.
  • Synthetic polymer compounds have come to be used extensively as plastics with excellent properties.
  • the amount of waste is increasing with the increase in the amount of use, and how to dispose of this plastic is a big social problem.
  • incinerated there is a problem that the amount of heat generated is large, so that the incinerator is likely to be damaged, and that harmful substances may be generated.
  • it will remain in the environment indefinitely because it is difficult to disassemble when it is landfilled.
  • complete problem solving is difficult by recycling alone.
  • one of the packaging forms of plastic film is bag-packed packaging, such as pillow packaging, overlap packaging, two-sided / three-sided / four-sided sealed packaging, liquid bags, and retort packaging.
  • bag-packed packaging such as pillow packaging, overlap packaging, two-sided / three-sided / four-sided sealed packaging, liquid bags, and retort packaging.
  • continuous packaging machines for performing such packaging have been on the development trend of higher speed, and the required characteristics for the packaging film to be used have become severe!
  • Low temperature sealability is a seal characteristic that enables high-speed packaging (bag making) of films by enabling heat sealing at lower temperatures.
  • the heat seal is to stack a plurality of films, and heat and pressurize them using a heating bar, a heating plate or a heating roll, and adhere the films. Therefore, it has excellent low-temperature sealability.
  • Lums are those that can be bonded in a short time in a wide range of temperatures and have sufficient adhesive strength for practical use.
  • sealing and airtightness of the seal part is one of the very important sealing functions.
  • the slipperiness means the dynamic friction coefficient d) between the metal surface of the packaging machine and the film surface in the film packaging process.
  • a film having an appropriate coefficient of dynamic friction (d) is required for use in a packaging machine having a half-fold function or a packaging machine that changes the film feeding direction.
  • the dynamic friction coefficient d) between the seal surface and the metal surface is important.
  • higher packaging speeds will tighten the requirements for film! /.
  • Patent Document 1 synthesized from glycol and an aliphatic dibasic acid or an acid derivative thereof having a sealing function and a melting point of 70 ° C to 200 ° C.
  • Aliphatic polyesters are disclosed.
  • Patent Document 2 discloses a biaxially stretched laminated film of substantially amorphous polylactic acid and an aliphatic polyester copolymer
  • Patent Document 3 discloses a copolymer of substantially amorphous polylactic acid and aliphatic polyester.
  • Compositions of coalesced and aliphatic aromatic polyester copolymers are disclosed. These disclosed films are films having a low-temperature sealing property, and low melting point aliphatic polyesters having a melting point of 70 ° C. to 120 ° C., in particular, have a stable dynamic friction coefficient ( ⁇ d) over time.
  • Patent Document 4 3 to 70 parts by weight of a biodegradable aliphatic polyester having a glass transition point Tg of 0 ° C or less is blended with 100 parts by weight of a crystalline polylactic acid polymer.
  • a method is described in which the stretchability of the stretched polylactic acid film is improved by stretching in at least a uniaxial direction and applying heat treatment.
  • Patent Document 5 discloses a lactic acid polymer in which an aliphatic amide and an antiblocking agent are added to the lactic acid polymer.
  • Patent Document 6 discloses a polylactic acid film in which the static friction coefficient and surface roughness between one side of the film are in a specific range.
  • Patent Document 7 discloses a plastic packaging cushion as a pillow-type air cushioning material.
  • the purpose of this publication is to form an inexpensive cushioning material that can be obtained from raw materials by connecting and forming hollow units so that the units can work together as a unit.
  • Patent Document 8 discloses an airbag cushioning material sheet that is inflatable and includes a self-sealing valve.
  • Nylon and polyethylene laminate films have been disclosed as heat-sealable, non-breathable, flexible and have some mechanical strength. An airbag cushioning material using a degradable film is not disclosed.
  • Patent Document 1 Japanese Patent No. 2759596
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-306482
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-244553
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-10900
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2005-146200
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2004-331860
  • Patent Document 7 Japanese Utility Model Publication No. 59-10274
  • Patent Document 8 Japanese Patent Laid-Open No. 4 154570 Disclosure of the invention
  • the present invention provides a multilayer with a biodegradable sealant layer that expresses a specific dynamic friction coefficient (d) immediately after film formation, has a small change in the dynamic friction coefficient d) within the period of use, and can be sealed at low temperature.
  • the object is to provide a film. That is, an object of the present invention is to provide a multilayer film with a biodegradable sealant layer that can smoothly feed a film in a packaging (bag making) machine and has excellent suitability for a high-speed packaging machine. It is another object of the present invention to provide a biodegradable packaging film, a bag-like article, and an air cushioning material that have a sufficient sealing function and are excellent in holding contents.
  • the present invention is as follows.
  • the polylactic acid-based resin (A) is a substantially non-crystalline polylactic acid-based resin having a molar ratio of L-lactic acid and D-lactic acid constituting the resin of 92 Z8 to 8Z92.
  • a crystal nucleating agent (C) is further included, and the amount of the crystal nucleating agent (C) added is 100 parts by mass of the total amount of the polylactic acid-based resin (A) and the aliphatic polyester-based resin (B).
  • the multilayer film with a biodegradable sealant layer according to the above (3) which is 0.5 parts by mass or more and 43 parts by mass or less.
  • the crystal nucleating agent (C) is an aliphatic polyester-based resin (C2), and the melting point of the aliphatic polyester-based resin (C2) is higher than 85 ° C and lower than 170 ° C.
  • the molar ratio of L-lactic acid and D-lactic acid that make up the fat is 95Z5 ⁇ : LOOZO polylactic acid and the nucleating power, and the differential scanning calorimetry at 10 ° CZ min.
  • Tm melting point
  • ⁇ He heat of crystallization
  • the multilayer film with a biodegradable sealant layer according to any one of the above (1) to (7), comprising at least one layer.
  • the invention's effect [0014]
  • the multilayer film with a biodegradable sealant layer of the present invention has a low-temperature sealing property and has little change with time in the dynamic friction coefficient d) during the period of use immediately after film formation. Therefore, it is possible to smoothly feed the film in a packaging (bag making) machine, and there is an effect that expresses excellent suitability for a packaging (bag making) machine even in high-speed packaging. In addition, in order to develop sufficient seal strength, there is an effect of holding liquid or gas contents without leaking.
  • the multilayer film with a sealant layer of the present invention comprises a base material layer and a sealant layer.
  • the base material layer is a layer that provides mechanical properties generally required as a packaging film, for example, physical properties such as tensile strength, elastic modulus (rigidity), tear strength, puncture strength, and layers that provide functionality. It consists of an adhesive layer for bonding these layers. Specific examples of functionality include barrier properties, heat resistance, light shielding properties, and chemical resistance.
  • the sealant layer of the present invention comprises an aliphatic polyester-based resin (B) and an aliphatic polyester-based resin (B) having a glass transition temperature Tg of 10 ° C or lower and a melting point of 70 ° C or higher and 120 ° C or lower.
  • Tg glass transition temperature
  • Tg glass transition temperature
  • D lubricant
  • the polylactic acid-based rosin ( ⁇ ) used in the present invention is an aliphatic polyester mainly composed of lactic acid, and a copolymer containing 50% or more of lactic acid homopolymer and Z or lactic acid monomer units.
  • hydroxycarboxylic acids include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid, etc. Is mentioned.
  • Examples of the aliphatic cyclic ester include glycolide, lactide, ⁇ -proviolatatone, ⁇ butyrorataton, ⁇ valerolataton, ⁇ -one-prolataton, and latatones substituted with various groups such as a methyl group.
  • substantially amorphous polylactic acid-based rosin (mushroom) in which the molar ratio of L-lactic acid to D-lactic acid constituting the rosin is 92 to 8 to 92.
  • Substantially amorphous polylactic acid-based resin is the heat of fusion ( ⁇ Hm) and crystallization heat ( ⁇ He) determined by differential scanning calorimetry (according to CFIS-K7122) at 10 ° CZ min. This means a polylactic acid-based resin (A) having a relationship ( ⁇ Hm— ⁇ He) of 3J Zg or less.
  • the polylactic acid resin (A) easily crystallizes depending on the film forming conditions. Since this crystal does not melt at the sealing temperature, it functions to reduce the sealing strength.
  • the more realistic and preferred molar ratios of L-lactic acid and D-lactic acid are 90 ZlO to 75 Z25 and 10 to 90 to 25 75.
  • the aliphatic polyester-based resin (B) having a glass transition temperature Tg of 10 ° C or lower and a melting point of 70 ° C or higher and 120 ° C or lower used in the present invention was produced by a microorganism.
  • Aliphatic polyester-based resin for example, aliphatic polyesters such as poly (hydroxyalkanoic acid) biosynthesized in bacterial cells, and chemically synthesized aliphatic polyester-based resin, such as aliphatic dicarboxylic acids and aliphatic diols.
  • Examples include polycondensed aliphatic polyesters, aliphatic polyesters obtained by ring-opening polymerization of cyclic lanthanides, synthetic aliphatic polyesters, and types of resins and mixtures thereof partially modified in their chemical structure. Can be mentioned.
  • Aliphatic carboxylic acids such as succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid, which are polycondensed from aliphatic dicarboxylic acid and aliphatic diol as main components, Examples thereof include polycondensation in which one or more aliphatic diols such as ethylene glycol, 1,3 propion glycol, 1,4 butanediol and 1,4-cyclohexanedimethanol are selected.
  • aliphatic polyesters obtained by ring-opening polymerization of polymers include ring-opening polymers selected from one or more cyclic monomers such as ⁇ -force prolatatatone, ⁇ -valerolacton, and j8-methyl- ⁇ valerolataton.
  • synthetic aliphatic polyesters include copolymers of cyclic acid anhydrides such as cono anhydride, succinic acid and ethylene oxide, propylene oxide, and oxiranes.
  • preferred examples include polybutylene succinate, poly (butylene succinate ⁇ adipate), polyethylene succinate, poly (ethylene succinate ⁇ adipate), polyhydroxyalkano Eate.
  • the melting point of the above-mentioned aliphatic polyester resin ( ⁇ ) is less than 70 ° C, problems such as blocking occur during storage of the raw film when handling the film during film formation and immediately exceed 120 ° C. In view of the high-speed bag-making property, the low-temperature sealing property is hardly exhibited. More preferably, it is 70 ° C or higher and 90 ° C or lower, more preferably 70 ° C or higher and 85 ° C or lower, and most preferably 75 ° C or higher and 85 ° C or lower.
  • lubricant (D) used in the present invention an inorganic lubricant or an organic lubricant is used.
  • inorganic lubricants include talc, silica, zeolite, and mica.
  • organic lubricants include fatty acid amides, fatty acid salts, silicon compounds, and waxes.
  • fatty acid amides include caproic acid amide, force prillic acid amide, force puric acid amide, lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, arachidic acid amide, behenic acid amide, and palmitoleic acid amide.
  • the fatty acid salt include zinc stearate, calcium stearate, magnesium stearate, aluminum stearate, barium stearate, lithium stearate, lead stearate, sodium oleate, barium laurate, and zinc laurate.
  • monoester organic lubricants such as octyl, lauryl laurate, stearyl long stearate, long-chain fatty acid higher alcohol ester, behenine behenate, cetyl myristate and the like.
  • organic lubricants are preferably used.
  • fatty acid amides are preferred, and L-force acid amide, ethylenebisstearic acid amide, stearic acid amide and the like are used.
  • the addition amount of the lubricant (D) is 100 parts by mass with respect to the total amount of the polylactic acid-based resin (A) and the aliphatic polyester-based resin (B) having a glass transition temperature Tg of 10 ° C or less. 0.01 to 0.5 parts by mass. If it is less than 01 parts by mass, it is difficult to obtain the effect of reducing the dynamic friction coefficient d) on the surface of the packaging film. If it exceeds 0.5 parts by mass, the dynamic friction coefficient (d) on the surface of the packaging film will be too low, which will be described later. This may affect handling problems and reduce seal strength. A more preferable range is 0.05 to 0.3 parts by mass.
  • the dynamic friction coefficient ( ⁇ d) is a physical property related to the slipperiness of the packaging film.
  • the dynamic friction coefficient ( ⁇ d) in the range of 0.15 or more and 0.5 or less, excellent suitability for the packaging machine is achieved. To express. If it is less than 0.15, the roll will be unwound by itself, or it may be difficult to handle the roll when the film is formed and wound. If it exceeds 0.5, troubles such as film breakage due to poor sliding are likely to occur in the packaging machine.
  • a more preferable dynamic friction coefficient d) is 0.17 or more and 0.45 or less, and more preferably 0.2 or more and 0.4 or less.
  • the crystal nucleating agent (C) when the melting point of the aliphatic polyester-based resin (B) is 70 ° C. or higher and 85 ° C. or lower, the crystal nucleating agent (C) is preferably used.
  • the aliphatic polyester resin (B) having a melting point in the above-mentioned range has a low crystallization rate and a low crystallinity, and therefore has a non-slip property when used on the film surface. Therefore, by using the crystal nucleating agent (C), it is possible to improve the crystallinity and crystallization speed of the aliphatic polyester resin (B). As a result, the bleed-out speed of the lubricant (D) is improved, and it is considered that more stable slidability can be expressed over time.
  • crystal nucleating agent (C) in addition to inorganic fillers and layered silicates having a particle size of 10 ⁇ m or less, fatty acid salts and aliphatic polyester-based rosins can be used.
  • the inorganic filler talc and silica can be used, and as the layered silicates, montmorillonite and mica are used.
  • the surface of the inorganic filler is treated with silane power.
  • a filler that has been surface-treated by pulling or the like can also be used.
  • fatty acid salts include zinc stearate, calcium stearate, magnesium stearate, aluminum stearate, barium stearate, lithium stearate, lead stearate, sodium oleate, barium laurate, zinc laurate and the like.
  • the crystalline nucleating agent (C) is preferably an aliphatic polyester-based resin.
  • the melting point (Tmc) of the aliphatic polyester-based resin (C2) is preferably higher than 85 ° C and lower than 170 ° C.
  • Tmc melting point
  • a Tmc of 170 ° C or higher is not preferable because it affects the melting characteristics during extrusion. More preferable (Tmc) is 90 ° C or higher and 120 ° C or lower.
  • the relationship between the crystallization temperature (Tec) of the aliphatic polyester resin (C2) used as the crystal nucleating agent (C) and the crystallization temperature (Tcb) of the aliphatic polyester resin (B) is 10 ° C. Those with ⁇ (Tcc-Tcb) ⁇ 100 ° C are preferably used. If 10 ° C> (Tec—Tcb), the aliphatic polyester-based resin (C2) may not be effective enough as a crystal nucleating agent, and if (Tcc-Tcb)> 100 ° C The crystallization temperature is too high, which may cause problems with low-temperature sealing. More preferably, 15 ° C ⁇ (Tec—Tcb) ⁇ 50 ° C.
  • the aliphatic polyester-based resin (C2) those having a weight average molecular weight (Mw) of 80,000 to 170,000 are suitably used. By setting it as such molecular weight, there exists an effect which makes the crystallization speed
  • the mixture of the aliphatic polyester-based resin (B) and the crystal nucleating agent (C) used in the sealant layer of the present invention is cooled at 10 ° CZ by differential scanning calorimetry CFIS-K-7122).
  • the crystallization heat amount ⁇ He sometimes obtained is preferably from lOjZg to 50jZg.
  • Such crystallization By having the degree, more stable slipperiness can be expressed. If it is less than lojZg, the stability of slipperiness may be a problem, and if it exceeds 50 jZg, flexibility may be a problem.
  • AHc is more preferably 18jZg or more and 40jZg, and still more preferably 20jZg or more and 35jZg or less.
  • the content of the crystal nucleating agent (C) is preferably 0.5% by mass to 40% by mass in the sealant layer in a range that does not inhibit the function of the sealant layer. If it is less than 5% by mass, the effect as a crystal nucleating agent such as improvement in crystallization degree and crystallization speed is difficult to be manifested. If it exceeds 40% by mass, problems such as hindering the sealability at low temperatures. May occur.
  • a more preferred amount of added calories is 1% to 30% by mass, more preferably 2% to 20% by mass, and most preferably 3% to 15% by mass.
  • the packaging film of the present invention preferably has a heat seal strength of 15 NZl5 mm or more and 40 NZl5 mm or less. 15NZ If it is less than 15mm, when some force is applied to the packaged film, if the seal surface peels off immediately and exceeds 40NZl5mm, it is easy to form a packaging film that is difficult to open.
  • a more preferable seal strength is 17 NZl 5 mm or more and 35 N Zl 5 mm or less, and further preferably 20 NZl 5 mm or more and 30 NZl 5 mm or less.
  • the sealing can be performed within a second of sealing because packaging at a higher speed is possible. More preferably, it is preferable to be able to seal within a short time of 0.5 seconds or less, and more preferably within 0.2 seconds! /.
  • the multilayer film with a biodegradable sealant layer of the present invention has a base material layer in addition to the sealant layer, and the layer structure is an asymmetrical structure such as a two-type two-layer or a three-type three-layer, or a two-type three-layer. It can be a symmetrical structure such as a layer, 3 types, 5 layers, etc.
  • the base material layer is composed of a layer having mechanical properties required for a packaging film or a functional layer, such as a heat-resistant layer, a barrier layer, a light-shielding layer, a chemical-resistant layer, and the like. It consists of an adhesive layer for bonding these layers.
  • each layer is 3 ⁇ m or more and 50 ⁇ m or less.
  • the thickness is preferably 5 ⁇ m or more and 35 ⁇ m or less, and more preferably 8 ⁇ m or more and 20 ⁇ m or less.
  • the heat-resistant layer preferably has a thickness of 3 ⁇ m to 40 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m. Since the intermediate layer differs depending on the required function, it cannot be determined unconditionally, but it can be 5% to 80% of the total film thickness.
  • a heat-resistant layer may be provided as one of the base material layers.
  • the melting point (Tm) determined by differential scanning calorimetry CFIS-K 7121 and 7122 when heated at 10 ° CZ is 140 ° C to 170 ° C and the heat of fusion ( ⁇ ) and crystals It is preferably used as a main component of a polylactic acid based resin heat-resistant layer having a heat generation amount ( ⁇ He) relationship ( ⁇ Hm— ⁇ He) of 15 jZg to 60 jZg.
  • the melting point (Tm) is 140 ° C or higher, and the relationship between the heat of fusion ( ⁇ Hm) and the heat of crystallization ( ⁇ He) ( ⁇ Hm— ⁇ He) is 15jZg or higher. Thus, heat resistance can be exhibited, and bag-making stability can be imparted. If Tm exceeds 170 ° C, from the viewpoint of influence on extrusion, and if ( ⁇ -AHc) exceeds 60 jZg, it is not preferable from the viewpoint of film flexibility.
  • Preferred (AHm- ⁇ - ⁇ ) is 20 jZg or more, more preferably 30 jZg or more.
  • the preferred Tm is 150 ° C or higher, more preferably 160 ° C or higher.
  • a polylactic acid-based resin having a molar ratio of L-lactic acid to D-lactic acid of 100Z0 to 95Z5 or 5Z95 to 0Z100 can be used.
  • a polylactic acid-based resin of ⁇ 95 to 5 is preferably used.
  • a crystal nucleating agent and a crystallization accelerator can be added to the heat-resistant layer in order to facilitate the crystallization of the polylactic acid-based resin.
  • Preferred crystal nucleating agents are inorganic fillers and layered silicates having a particle size of 10 m or less.
  • the inorganic filler talc or silica can be used.
  • the layered silicates montmorillonite, mica and the like can be used.
  • a filler obtained by subjecting the surface of the inorganic filler to a surface treatment such as silane coupling can also be used. Two or more types of crystal nucleating agents Can be used in combination.
  • the amount of the crystal nucleating agent used in this case is 0.5 to 30 parts by mass, more preferably 1 to 20 parts by mass, and still more preferably 100 parts by mass of the resin in the heat-resistant layer. 2 parts by mass or more and 15 parts by mass or less. When the addition amount exceeds 30 parts by mass, the viewpoint power of transparency and flexibility of the film is not preferable.
  • a plasticizer the above-described aliphatic polyester-based resin having a Tg of 10 ° C. or less, and Z or aromatic-aliphatic polyester-based resin can be added simultaneously.
  • aliphatic polyester-based resin (Butylene terephthalate Z adipate).
  • polylactic acid and aliphatic polyester-based resin and Z or aromatic-aliphatic polyester-based resin can also be used.
  • the plasticizer include aliphatic polycarboxylic acid esters, fatty acid polyhydric alcohol esters, oxyesters, and epoxy plasticizers.
  • TA triacetin
  • TB tributyrin
  • BPBG butylphthalyl butyl dalicolate
  • ATBC tributyl acetyl citrate
  • dioctyl sebacate triethylene glycol diacetate
  • glycerin esters examples include butyl oleate (BO), adipate ether'ester, epoxidized soybean oil (ESO), and the like.
  • the addition amount of these crystallization accelerators is preferably less than 30% by mass in the mass of the heat-resistant layer. If it exceeds 30% by mass, the film will be deformed at the temperature at the time of heat sealing, and the function of the heat-resistant layer cannot be performed immediately. Preferably, it is 20 mass% or less.
  • the multilayer film with a biodegradable sealant layer of the present invention includes an inorganic filler, an antiblocking agent, a heat stabilizer, an antioxidant, an ultraviolet absorber, an antifogging agent, an antistatic agent, an antifungal agent, and an anti-resistance. Do not impair the properties of the present invention with known additives such as impact modifiers! It is possible to mix in a range.
  • a surfactant carbon, conductive polymer, or the like can be used.
  • Various known surfactants for example, nonionic surfactants such as partial fatty acid esters of polyhydric alcohols, ionic surfactants typified by alkyl sulfonates, and quaternary grades.
  • ionic surfactants typified by alkyl sulfonates, and quaternary grades.
  • cationic surfactants typified by ammonium salt Rukoto can.
  • a surfactant-based antistatic agent is Riken Master GSR350 (trade name) manufactured by Riken Vitamin Co., Ltd., and a static master BO (trade name) manufactured by Riken Technos Co., Ltd. is used as an antistatic agent for conductive polymers. )and so on.
  • the addition of these antistatic agents, surface resistance of 10 9 ⁇ : can be controlled in a range of L0 12.
  • Various known pigments may be added for the purpose of blocking ultraviolet rays and visible light.
  • Dairy Seika Co., Ltd.'s Early Master (product name) is a product containing facial and carbon. In particular, 1 to 5% by mass of carbons can be added in order to develop light shielding properties.
  • a method for producing a multilayer film with a biodegradable sealant layer of the present invention will be described.
  • a method for forming the biodegradable multilayer film of the present invention a conventional casting method such as a method of casting from a T die to a cooling roll, an inflation method, a tenter method, etc., unstretched, uniaxially stretched, or simultaneously Alternatively, there is a sequential biaxial stretching method. More specifically, it can be obtained by the following method.
  • the tube-shaped or sheet-shaped resin extruded in the molten state is rapidly cooled and solidified in a state close to the amorphous state, the tube-shaped or sheet-shaped resin is subsequently converted into the glass transition temperature.
  • a film is obtained by heat treatment while holding the film.
  • the stretching ratio of the film or sheet is such that the final stretched film or sheet thickness is in the range of 1 Z200 times to 1Z40 times with respect to the distance between the extrusion die (die lip) regardless of the stretching method.
  • the film is stretched at least in one axial direction so that the area force of the final stretched film or sheet is 0 to 200 times the area of the film or sheet immediately after the exit of the extrusion die (die lip).
  • (area of film or sheet immediately after extrusion die (die lip) opening) ratio of Z (area of final stretched film or sheet) Is referred to as “area magnification”.
  • a method for forming a multilayer film in addition to the method for forming a multilayer film by coextrusion as described above, a method for producing a film by lamination (extrusion lamination or dry lamination) may be used. .
  • a method of stretching by 40 to 200 times the area magnification from the die outlet by melt stretching is particularly preferable. At this time, since the surface is roughened by cooling the surface of the packaging film, it is easier to express slipperiness.
  • the area ratio of the die exit force during melt drawing is more preferably 60 to 150 times, and still more preferably 80 to 140 times.
  • the multilayer film with a biodegradable sealant layer formed by the melt drawing method is annealed at a temperature in the vicinity of Tg of the heat-resistant layer, more specifically in a temperature range of Tg ⁇ 30 ° C.
  • Tg the temperature in the vicinity of the heat-resistant layer
  • the heat resistance that is, the adhesion prevention property to the seal bar can be exhibited.
  • Annealing at temperatures above 30 ° C above Tg causes film deformation and blocking, and annealing at temperatures below 30 ° C below Tg does not produce sufficient effects.
  • a more preferable annealing temperature is (Tg—20) or more and 0 ⁇ + 15) or less, and more preferably (Tg ⁇ 15) ° C. or more and Tg or less.
  • the biodegradable packaging film obtained as described above is used for packaging in pillow packaging or overlap packaging, continuous high-speed packaging can be performed more stably.
  • it can also be used for packaging of pocket tissues, ink cartridges, toner cartridges and the like.
  • a bag that can be stored and retained for a long period of time without the liquid or gas of the contents leaking from the seal portion can be obtained.
  • composition ratio of L-lactic acid and Z- or D-lactic acid monomer units constituting the polylactic acid polymer was adjusted with 1 N-HC1 after the sample was decomposed with 1 N NaOH and neutralized with distilled water, and the concentration was adjusted with distilled water.
  • the hydrolyzed sample (liquid) was subjected to high-performance liquid chromatography (trade name: HPLC: LC-10A-VP) manufactured by Shimadzu Corporation equipped with an optical isomer separation column.
  • the seal pressure is 0.665 MPa
  • the seal time is 0.2 seconds
  • the seal strength is increased every 10 ° C in the temperature range from 80 ° C to the film fusing.
  • the maximum value was measured as the seal strength of the film.
  • a seal bar with a width of 5 mm was used.
  • Tricon air cushion bag-making machine 150 bags were made at a rate of 150 pieces / minute, and evaluated according to the following indicators.
  • the thickness after 7 days is 80% or more of the initial thickness.
  • The thickness after 7 days is 20% or more of the initial thickness.
  • biodegradable polymers used in the following examples and comparative examples are shown below.
  • the composition of rosin in the present invention is not limited to this.
  • L-force amide and raw material B1 were mixed in the ratio shown in Table 1 to prepare a master batch.
  • prepare a master batch of raw material A1 and talc 39% by mass blend the raw materials so that the final composition becomes the composition shown in Table 1, and then use a single screw extruder to show in Table 1.
  • the extruder of each layer was controlled so that the layer structure and the thickness of each layer were obtained, and the molten resin was extruded using a three-layer die.
  • the outer die lip diameter is 110mm
  • the inner die lip diameter is 105mm
  • the lip clearance is 2.5mm
  • the tube is extruded from the cooling ring to the molten resin extruded in a tube shape while blowing air at about 25 ° C. Air was injected into the inside to form bubbles.
  • the obtained film was guided to a pinch roll, and the tube-like film was wound up as a flat two film with a winding mouth.
  • the resin extrusion speed, the amount of air injected into the bubbles, and the film winding speed on the pinch roll were finely adjusted to obtain the final thickness films shown in Table 1.
  • the film was slit to a width of 190 mm, and an air cushioning material having a length of 140 mm was prepared using an air cushioning bag making machine 150 manufactured by Tricon Sales Co., Ltd.
  • Example 2 In the same manner as in Example 1, a film was produced with the composition and layer structure shown in Table 1, and an air shock absorbing material was produced.
  • the multilayer film with a biodegradable sealant layer of the present invention can be smoothly fed in a packaging (bag making) machine, has an excellent suitability for a high-speed packaging machine, and has a sufficient sealing strength. It can be suitably used for a biodegradable packaging film, a bag-like article, and an air cushioning material that are excellent in holding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Bag Frames (AREA)

Abstract

A biodegradable packaging film which has a specific coefficient of dynamic friction (µd) even immediately after film formation, changes little in the coefficient of dynamic friction (µd) during use, and has excellent suitability for use on packaging machines. It is a biodegradable multilayered film having a sealant layer on at least one surface thereof, and is characterized in that the sealant layer comprises a mixture of a polylactic acid resin (A), an aliphatic polyester resin (B) having a glass transition temperature Tg of 10°C or lower and a melting point of 70-120°C, and a lubricant (D), the (A)/(B) mixing ratio being from 55/45 to 13/87 by mass and the amount of (D) being 0.01-0.5 parts by mass per 100 parts by mass of the sum of (A) and (B), and that the surface has a coefficient of dynamic friction (µd) of 0.15-0.5.

Description

明 細 書  Specification
生分解性シーラント層付き多層フィルム  Multilayer film with biodegradable sealant layer
技術分野  Technical field
[0001] 本発明は、優れた包装機適性を有する生分解性シーラント層付き多層フィルムに 関するものである。特に、優れた滑り性と低温シール機能を有する生分解性シーラン ト層付き多層フィルムおよびその製造方法に関するものである。さらに、そのフィルム を用いた袋状物品、緩衝材に関するものである。  The present invention relates to a multilayer film with a biodegradable sealant layer having excellent packaging machine suitability. In particular, the present invention relates to a multilayer film with a biodegradable sealant layer having excellent slipperiness and a low-temperature sealing function, and a method for producing the same. Furthermore, the present invention relates to a bag-like article and a cushioning material using the film.
背景技術  Background art
[0002] 合成高分子化合物は、その優れた特性力 プラスチックとして広範囲に使用される ようになった。しかし、その使用量の増加と共に廃棄物量も増大しており、この廃棄プ ラスチックをどの様に処理するかが大きな社会問題になっている。焼却処理すると発 熱量が大き 、ため焼却炉を傷めやす 、ことや、有害物質を生成するおそれがあるこ と等の問題点がある。埋め立て処理すると分解しにくいためいつまでも環境中に残留 するという問題点もある。更に、分別'回収、再生のコストを考えるとリサイクルだけで は完全な問題解決は困難である。  [0002] Synthetic polymer compounds have come to be used extensively as plastics with excellent properties. However, the amount of waste is increasing with the increase in the amount of use, and how to dispose of this plastic is a big social problem. When incinerated, there is a problem that the amount of heat generated is large, so that the incinerator is likely to be damaged, and that harmful substances may be generated. There is also a problem that it will remain in the environment indefinitely because it is difficult to disassemble when it is landfilled. Furthermore, considering the cost of separation / recovery and regeneration, complete problem solving is difficult by recycling alone.
[0003] この様な環境問題への関心の高まりの中で、環境への負荷を低減して、社会を持 続可能なものにするために、廃棄後に自然環境下で分解する生分解性プラスチック が求められるようになって!/、る。  [0003] Amid the growing interest in such environmental problems, biodegradable plastics that decompose in the natural environment after disposal in order to reduce environmental burden and make society sustainable Is now required! /
[0004] 一方、プラスチックフィルムの包装形態の一つに、袋詰め包装があり、ピロ 包装、 オーバーラップ包装、二方 ·三方 ·四方シール包装、液体用袋、レトルト包装などがあ げられる。これらの包装を行うための連続包装機は、近年高速化の開発傾向にあり、 それに伴、、使用される包装フィルムへの要求特性は厳 、ものとなってきて!/、る。  [0004] On the other hand, one of the packaging forms of plastic film is bag-packed packaging, such as pillow packaging, overlap packaging, two-sided / three-sided / four-sided sealed packaging, liquid bags, and retort packaging. In recent years, continuous packaging machines for performing such packaging have been on the development trend of higher speed, and the required characteristics for the packaging film to be used have become severe!
[0005] これらの連続包装機に用いるフィルムに求められる主な特性として、低温シール性 と滑り性が上げられる。低温シール性とは、より低温でヒートシールを可能にすること で、結果的にフィルムの高速包装 (製袋)を可能にするシール特性である。ヒートシ一 ルとは、複数のフィルムを重ね、加熱バーや加熱板あるいは加熱ロール等を用いて、 加熱、加圧し、フィルムを接着させることである。従って、低温シール性に優れるフィ ルムとは、より低い温度力 広い温度範囲において、短時間で接着可能で、かつ、実 用上十分な接着強度を有すものである。さらに、液体や気体の内容物を密閉し、保 存、保持することを目的とするようなシール機能を有するフィルム用途においては、内 容物である液体や気体のシール部からの漏洩を防止するために、シール部の密閉 性や気密性も非常に重要なシール機能の一つである。 [0005] The main characteristics required for the film used in these continuous packaging machines are low-temperature sealability and slipperiness. Low temperature sealability is a seal characteristic that enables high-speed packaging (bag making) of films by enabling heat sealing at lower temperatures. The heat seal is to stack a plurality of films, and heat and pressurize them using a heating bar, a heating plate or a heating roll, and adhere the films. Therefore, it has excellent low-temperature sealability. Lums are those that can be bonded in a short time in a wide range of temperatures and have sufficient adhesive strength for practical use. Furthermore, in film applications that have a sealing function for the purpose of sealing, storing, and holding the contents of liquids and gases, leakage of the liquids and gases that are the contents from the sealing part is prevented. Therefore, the sealing and airtightness of the seal part is one of the very important sealing functions.
[0006] 滑り性とは、フィルムの包装工程における包装機の金属面とフィルム表面との動摩 擦係数 d)を意味する。特に、半折機能を有する包装機やフィルムの送り方向を変 換する包装機に用いるためには、適切な動摩擦係数( d)を有するフィルムが求め られている。特に、シール面が半折用冶具の金属面と接触する場合、シール面と金 属面の動摩擦係数 d)が重要となる。さらに包装速度の高速化が、フィルムに対す る要求水準をより厳し!/、ものとして 、る。  [0006] The slipperiness means the dynamic friction coefficient d) between the metal surface of the packaging machine and the film surface in the film packaging process. In particular, a film having an appropriate coefficient of dynamic friction (d) is required for use in a packaging machine having a half-fold function or a packaging machine that changes the film feeding direction. In particular, when the seal surface is in contact with the metal surface of the half-folding jig, the dynamic friction coefficient d) between the seal surface and the metal surface is important. In addition, higher packaging speeds will tighten the requirements for film! /.
[0007] このような状況の中で、特許文献 1には、融点 70°C〜200°Cで、シール機能を有す る、グリコールと脂肪族二塩基酸またはその酸誘導体とから合成された脂肪族ポリエ ステルが開示されている。特許文献 2には、実質的に非晶のポリ乳酸と脂肪族ポリエ ステル共重合体の二軸延伸積層フィルムが、特許文献 3には、実質的に非晶のポリ 乳酸と脂肪族ポリエステル共重合体と脂肪族 芳香族ポリエステル共重合体の組成 物が開示されて 、る。これらの開示されて 、るフィルムは低温シール性を有するフィ ルムである力 融点 70°C〜120°Cといった低融点の脂肪族ポリエステルは、特に動 摩擦係数( μ d)の経時における安定性と!ヽぅ点にお!ヽては課題を有して 、た。  [0007] Under such circumstances, Patent Document 1 synthesized from glycol and an aliphatic dibasic acid or an acid derivative thereof having a sealing function and a melting point of 70 ° C to 200 ° C. Aliphatic polyesters are disclosed. Patent Document 2 discloses a biaxially stretched laminated film of substantially amorphous polylactic acid and an aliphatic polyester copolymer, and Patent Document 3 discloses a copolymer of substantially amorphous polylactic acid and aliphatic polyester. Compositions of coalesced and aliphatic aromatic polyester copolymers are disclosed. These disclosed films are films having a low-temperature sealing property, and low melting point aliphatic polyesters having a melting point of 70 ° C. to 120 ° C., in particular, have a stable dynamic friction coefficient (μd) over time. There was a problem with this!
[0008] 特許文献 4には、結晶性のポリ乳酸系重合体 100重量部に対して、ガラス転移点 T gが 0°C以下である生分解性脂肪族ポリエステルを 3〜70重量部配合し、かつ少なく とも 1軸方向に延伸し熱処理を施すことで、延伸ポリ乳酸フィルムの滑性を高める方 法が記載されている。特許文献 5には、乳酸系ポリマーに脂肪族アミド及び耐ブロッ キング剤を添加した乳酸系ポリマーが開示されている。特許文献 6には、フィルムの 片面同士の静摩擦係数と表面粗さが特定の範囲にあるポリ乳酸系フィルムが開示さ れている。これら開示されているポリ乳酸系フィルムは、いずれも、フィルム表面の滑 り性に関するものである力 低温シール特性と滑り性を両立するフィルムについては 開示されていなかった。 [0009] また、滑り性を制御するために滑剤、特に有機系滑剤を用いる場合、滑り性はフィ ルム表面にブリードアウトした滑剤量に依存する。このため、製膜直後から滑り性を発 現させるためには、滑剤のブリードアウト速度が早 、組成のフィルムが求められて!/ヽ た。さらに、フィルム表面に存在する滑剤量は、保管温度で平衡状態となるため、例 えば、フィルムが高温下で保管されると、一度ブリードアウトした滑剤が再度フィルム 内に含浸し、滑り性が悪ィ匕することがある。そのため、保管温度や保管期間によって は、フィルムの滑り性が低下し、包装 (製袋)時のトラブルの原因となることもあった。こ のため、製膜直後から使用期間内において、常に一定の滑り性を発現し、かつ十分 な低温シール性を有する高速の包装機に適応しうる製袋性に優れた生分解性シー ラント層付きフィルムが求められて ヽた。 [0008] In Patent Document 4, 3 to 70 parts by weight of a biodegradable aliphatic polyester having a glass transition point Tg of 0 ° C or less is blended with 100 parts by weight of a crystalline polylactic acid polymer. In addition, a method is described in which the stretchability of the stretched polylactic acid film is improved by stretching in at least a uniaxial direction and applying heat treatment. Patent Document 5 discloses a lactic acid polymer in which an aliphatic amide and an antiblocking agent are added to the lactic acid polymer. Patent Document 6 discloses a polylactic acid film in which the static friction coefficient and surface roughness between one side of the film are in a specific range. None of these disclosed polylactic acid-based films disclosed a film that has both low-temperature sealing properties and slipperiness, which are related to slipperiness of the film surface. [0009] Further, when a lubricant, particularly an organic lubricant, is used to control the slipperiness, the slipperiness depends on the amount of lubricant bleed out on the film surface. For this reason, in order to express the slippery immediately after film formation, a film with a composition having a high bleedout speed is required! Furthermore, since the amount of lubricant present on the film surface is in an equilibrium state at the storage temperature, for example, when the film is stored at a high temperature, the lubricant once bleeded out is impregnated into the film again and the slipperiness is poor. There are times. Therefore, depending on the storage temperature and storage period, the slipperiness of the film may be reduced, causing troubles during packaging (bag making). For this reason, a biodegradable sealant layer with excellent bag-making properties that can be applied to a high-speed packaging machine that always expresses a certain level of slipperiness immediately after film formation and within a period of use and has sufficient low-temperature sealability. I was asked for an attached film.
[0010] ピロ—タイプのエアー系緩衝材として、特許文献 7にはプラスチック製包装用緩衝 体が開示されている。該公報では、中空ユニットを連結して成形する事でユニット相 互が一体として作用すると共に少な!/、原料で得られる安価な緩衝材とすることを目的 としている。包装機 (製袋機)適性を満たすような、フィルムの滑り性に関しては開示さ れておらず、素材も生分解性ポリマーについては何も開示されていない。特許文献 8 には、膨張可能でセルフシール型の弁を備えたエアーバッグ緩衝材シートに関する 開示がある。ヒートシール性があり、非通気性で、可撓性とある程度の機械的強度を 有する材料として、ナイロンとポリエチレンのラミネートフィルムが開示されているが、 特定の滑り性やシール機能カゝらなる生分解性フィルムを用いたエアーバッグ緩衝材 は開示されていない。  [0010] Patent Document 7 discloses a plastic packaging cushion as a pillow-type air cushioning material. The purpose of this publication is to form an inexpensive cushioning material that can be obtained from raw materials by connecting and forming hollow units so that the units can work together as a unit. There is no disclosure about the slipperiness of the film that satisfies the suitability of the packaging machine (bag making machine), and nothing about the material and the biodegradable polymer. Patent Document 8 discloses an airbag cushioning material sheet that is inflatable and includes a self-sealing valve. Nylon and polyethylene laminate films have been disclosed as heat-sealable, non-breathable, flexible and have some mechanical strength. An airbag cushioning material using a degradable film is not disclosed.
[0011] 特許文献 1 :特許第 2759596号公報  [0011] Patent Document 1: Japanese Patent No. 2759596
特許文献 2:特開 2004— 306482号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-306482
特許文献 3:特開 2004— 244553号公報  Patent Document 3: Japanese Patent Laid-Open No. 2004-244553
特許文献 4:特開 2004— 10900号公報  Patent Document 4: Japanese Unexamined Patent Application Publication No. 2004-10900
特許文献 5 :特開 2005— 146200号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2005-146200
特許文献 6:特開 2004 - 331860号公報  Patent Document 6: Japanese Patent Application Laid-Open No. 2004-331860
特許文献 7:実開昭 59— 10274号公報  Patent Document 7: Japanese Utility Model Publication No. 59-10274
特許文献 8:特開平 4 154570号公報 発明の開示 Patent Document 8: Japanese Patent Laid-Open No. 4 154570 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 本発明は、製膜直後から、特定の動摩擦係数( d)を発現し、使用期間内におい て動摩擦係数 d)の変化が小さぐかつ、低温シール可能な生分解性シーラント層 付き多層フィルムを提供することを目的とする。即ち、包装 (製袋)機において円滑な フィルム送りが可能で、優れた高速包装機適性を有する生分解性シーラント層付き 多層フィルムを提供することを目的とする。さらには、十分なシール機能を有し、内容 物の保持に優れた生分解性包装フィルムや袋状物品、エアー緩衝材を提供すること を目的とする。  [0012] The present invention provides a multilayer with a biodegradable sealant layer that expresses a specific dynamic friction coefficient (d) immediately after film formation, has a small change in the dynamic friction coefficient d) within the period of use, and can be sealed at low temperature. The object is to provide a film. That is, an object of the present invention is to provide a multilayer film with a biodegradable sealant layer that can smoothly feed a film in a packaging (bag making) machine and has excellent suitability for a high-speed packaging machine. It is another object of the present invention to provide a biodegradable packaging film, a bag-like article, and an air cushioning material that have a sufficient sealing function and are excellent in holding contents.
課題を解決するための手段  Means for solving the problem
[0013] 本発明者達は、前記課題を解決するために鋭意研究を重ねた結果、生分解性シ 一ラント層付き多層フィルムにおいて、低融点の脂肪族ポリエステル系榭脂(B)とポリ 乳酸 (A)と滑剤 (D)を特定の比率で混合することにより、滑剤のブリードアウト速度を 早めた組成物を見出した。この結果、製膜直後より適切な動摩擦係数( d)を発現さ せ、包装 (製袋)機において円滑なフィルム送りと低温シールを可能とした。さらに、フ イルムが高温で保管された場合でも、常温 (使用環境温度)に戻されると、すぐに滑 剤がブリードアウトして適切な動摩擦係数 d)を発現させることを可能とした。その 結果、製膜直後から試用期間内において、安定した動摩擦係数( d)を示し、高速 包装適性を有するフィルムを得、本発明をなすに至った。さらに、特定のシール強度 や多層構造とすることで、生分解性の袋状物品、エアー緩衝材を見出し、本発明を 完成するに至った。 [0013] As a result of intensive studies to solve the above problems, the present inventors have found that in a multilayer film with a biodegradable sealant layer, a low melting point aliphatic polyester resin (B) and polylactic acid. By mixing (A) and the lubricant (D) at a specific ratio, a composition was found in which the bleed-out speed of the lubricant was increased. As a result, an appropriate dynamic friction coefficient (d) was developed immediately after film formation, enabling smooth film feeding and low-temperature sealing in a packaging (bag making) machine. Furthermore, even when the film is stored at a high temperature, the lubricant bleeds out as soon as it is returned to room temperature (use environment temperature), and an appropriate dynamic friction coefficient d) can be developed. As a result, a film having a stable dynamic friction coefficient (d) and having high-speed packaging suitability was obtained immediately after film formation within the trial period, and the present invention was achieved. Furthermore, by using a specific seal strength and multilayer structure, a biodegradable bag-like article and an air cushioning material were found, and the present invention was completed.
すなわち、本発明は以下の通りである。  That is, the present invention is as follows.
(1)シーラント層を少なくとも一表面に有する生分解性多層フィルムであって、シーラ ント層は、ポリ乳酸系榭脂 (A)とガラス転移温度 Tgが 10°C以下で、かつ融点が 70°C 以上 120°C以下の脂肪族ポリエステル系榭脂 (B)と滑剤 (D)との混合物からなり、 ( A)と(B)の混合質量比が(A) / (B) = 55Z45〜13Z87であり、 (A)と(B)との合 計量 100質量部に対して、(D)が 0. 01-0. 5質量部であり、シーラント層を有する 表面の動摩擦係数 d)が 0. 15以上 0. 5以下である生分解性シーラント層付き多 層フィルム。 (1) A biodegradable multilayer film having a sealant layer on at least one surface, and the sealant layer has a polylactic acid resin (A) and a glass transition temperature Tg of 10 ° C or lower and a melting point of 70 ° It consists of a mixture of aliphatic polyester-based resin (B) and lubricant (D) at a temperature not lower than C and not higher than 120 ° C. The mixing mass ratio of (A) and (B) is (A) / (B) = 55Z45-13Z87 (D) is 0.01 to 0.5 parts by mass with respect to 100 parts by mass of (A) and (B), and the coefficient of dynamic friction d) of the surface with the sealant layer is 0. Many with biodegradable sealant layer 15 or more and 0.5 or less Layer film.
(2)前記ポリ乳酸系榭脂 (A)が、榭脂を構成する L—乳酸と D—乳酸のモル比率が 9 2Z8〜8Z92であり、実質的に非晶のポリ乳酸系榭脂である上記(1)に記載の生分 解性シーラント層付き多層フィルム。  (2) The polylactic acid-based resin (A) is a substantially non-crystalline polylactic acid-based resin having a molar ratio of L-lactic acid and D-lactic acid constituting the resin of 92 Z8 to 8Z92. A multilayer film with a biodegradable sealant layer as described in (1) above.
(3)前記脂肪族ポリエステル系榭脂(B)の融点が 70°C以上 85°C以下である上記(1 )または(2)に記載の生分解性シーラント層付き多層フィルム。  (3) The multilayer film with a biodegradable sealant layer according to (1) or (2) above, wherein the aliphatic polyester-based resin (B) has a melting point of 70 ° C or higher and 85 ° C or lower.
(4)更に結晶核剤 (C)を含み、結晶核剤 (C)の添加量が、ポリ乳酸系榭脂 (A)と脂 肪族ポリエステル系榭脂(B)との合計量 100質量部に対して、 0. 5質量部以上 43質 量部以下である上記(3)に記載の生分解性シーラント層付き多層フィルム。  (4) A crystal nucleating agent (C) is further included, and the amount of the crystal nucleating agent (C) added is 100 parts by mass of the total amount of the polylactic acid-based resin (A) and the aliphatic polyester-based resin (B). The multilayer film with a biodegradable sealant layer according to the above (3), which is 0.5 parts by mass or more and 43 parts by mass or less.
(5)前記結晶核剤 (C)が脂肪族ポリエステル系榭脂 (C2)であり、該脂肪族ポリエス テル系榭脂(C2)の融点力 85°Cより高ぐ 170°C未満である上記 (4)に記載の生分 解性シーラント層付き多層フィルム。  (5) The crystal nucleating agent (C) is an aliphatic polyester-based resin (C2), and the melting point of the aliphatic polyester-based resin (C2) is higher than 85 ° C and lower than 170 ° C. A multilayer film with a biodegradable sealant layer as described in (4).
(6)前記脂肪族ポリエステル系榭脂(C2)の分子量が 17万以下である上記(5)に記 載の生分解性シーラント層付き多層フィルム。  (6) The multilayer film with a biodegradable sealant layer according to the above (5), wherein the aliphatic polyester-based resin (C2) has a molecular weight of 170,000 or less.
(7)前記滑剤 (D)が脂肪酸アミド類である上記(1)〜(6)の 、ずれかに記載の生分 解性シーラント層付き多層フィルム  (7) The multilayer film with a biodegradable sealant layer according to any one of (1) to (6), wherein the lubricant (D) is a fatty acid amide
(8)榭脂を構成する L -乳酸と D -乳酸のモル比率が 95Z5〜: LOOZOのポリ乳酸 系榭脂と結晶核剤力 なり、かつ、 10°CZ分で昇温時に示差走査熱量測定で求め た融点 (Tm)が 140°C〜 170°Cで、かつ融解熱量( Δ Hm)と結晶化熱量( Δ He)の 関係( Δ Hm— Δ He)が 15jZg〜60jZgである耐熱層を少なくとも一層含む上記( 1)〜(7)の 、ずれかに記載の生分解性シーラント層付き多層フィルム。  (8) The molar ratio of L-lactic acid and D-lactic acid that make up the fat is 95Z5 ~: LOOZO polylactic acid and the nucleating power, and the differential scanning calorimetry at 10 ° CZ min. A heat-resistant layer with a melting point (Tm) of 140 ° C to 170 ° C and a relationship between heat of fusion (ΔHm) and heat of crystallization (ΔHe) (ΔHm—ΔHe) of 15jZg to 60jZg The multilayer film with a biodegradable sealant layer according to any one of the above (1) to (7), comprising at least one layer.
(9)各層を構成する榭脂を共押出しし、溶融状態のまま、延伸倍率が面積倍率で 40 倍以上 200倍以下の条件で溶融延伸して製膜する上記(1)〜(7)の 、ずれかに記 載の生分解性シーラント層付き多層フィルムの製造方法。  (9) Co-extrusion of the resin constituting each layer, and in the molten state, the film is melt-stretched under the conditions where the draw ratio is 40 to 200 times in terms of area magnification. A method for producing a multilayer film with a biodegradable sealant layer as described in any of the above.
(10)上記(1)〜(7)の 、ずれかに記載の生分解性包装フィルムを用いた袋状物品。 (10) A bag-like article using the biodegradable packaging film according to any one of (1) to (7) above.
(11)上記(1)〜(7)の 、ずれかに記載の生分解性包装フィルムを用いたエアーバッ グ緩衝材。 (11) An airbag cushioning material using the biodegradable packaging film described in any one of (1) to (7) above.
発明の効果 [0014] 本発明の生分解性シーラント層付き多層フィルムは、低温シール特性を有し、かつ 製膜直後から使用期間内において、動摩擦係数 d)の経時変化が少ない。そのた め、包装 (製袋)機において円滑なフィルム送りを可能とし、高速包装においても、優 れた包装 (製袋)機適性を発現する効果がある。また、十分なシール強度を発現する ために、液体や気体の内容物を漏洩させることなく保持する効果がある。 The invention's effect [0014] The multilayer film with a biodegradable sealant layer of the present invention has a low-temperature sealing property and has little change with time in the dynamic friction coefficient d) during the period of use immediately after film formation. Therefore, it is possible to smoothly feed the film in a packaging (bag making) machine, and there is an effect that expresses excellent suitability for a packaging (bag making) machine even in high-speed packaging. In addition, in order to develop sufficient seal strength, there is an effect of holding liquid or gas contents without leaking.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明について、以下具体的に説明する。本発明のシーラント層付き多層フィルム は、基材層とシーラント層からなる。基材層は、包装フィルムとして一般的に必要な機 械物性、例えば、引張強度、弾性率 (剛性)、引裂き強度、突き刺し強度などの物性 を付与する層や機能性を付与する層、及びそれらの層を接着するための接着層から なる。機能性の具体例としてはバリア性、耐熱性、遮光性、耐薬品性などがある。  [0015] The present invention will be specifically described below. The multilayer film with a sealant layer of the present invention comprises a base material layer and a sealant layer. The base material layer is a layer that provides mechanical properties generally required as a packaging film, for example, physical properties such as tensile strength, elastic modulus (rigidity), tear strength, puncture strength, and layers that provide functionality. It consists of an adhesive layer for bonding these layers. Specific examples of functionality include barrier properties, heat resistance, light shielding properties, and chemical resistance.
[0016] 本発明のシーラント層は、ポリ乳酸系榭脂 (A)とガラス転移温度 Tgが 10°C以下で 、かつ融点が 70°C以上 120°C以下の脂肪族ポリエステル系榭脂 (B)の混合質量比 が (A) Z (B) =55Z45〜13Z87であり、かつ前記混合組成物に滑剤(D)を含むこ とが肝要である。滑剤のブリードアウト速度が速くなるメカニズムは正確に把握されて V、な 、が、脂肪族ポリエステル系榭脂 (B)に非相溶であるポリ乳酸 (A)がブレンドさ れることで、フィルム内部にブレンドされた樹脂の界面が形成され、滑剤のブリードア ゥト速度を速めていると考えられる。このため、使用期間における動摩擦係数 d) の経時変化も小さなものになって!/、ると考えられる。ポリ乳酸系榭脂 (A)の混合質量 比が (A) / (B) = 55/45よりも多い場合は、ポリ乳酸系榭脂がマトリックスを形成す るため、低温シール性、つまり短いシール時間では、適切なシール強度が得られにく い。ポリ乳酸系榭脂 (A)の混合質量比力 S (A) Z (B) = 13Z87よりも少ない場合は、 (B)のマトリックス中に形成されるポリ乳酸系榭脂の界面が少なぐ製膜初期より滑り 性を発現させることが困難である。より好ましい混合質量比は (A) Z (B) = 55/45 〜15/85であり、さら【こ好ましく ίま(A) / (B) = 30/70〜15/85であり、さら【こより 好ましくは、(Α) Ζ (Β) =25Ζ75〜15Ζ85である。  [0016] The sealant layer of the present invention comprises an aliphatic polyester-based resin (B) and an aliphatic polyester-based resin (B) having a glass transition temperature Tg of 10 ° C or lower and a melting point of 70 ° C or higher and 120 ° C or lower. ) Is a mixture mass ratio of (A) Z (B) = 55Z45 to 13Z87, and it is important that the mixed composition contains a lubricant (D). The mechanism by which the bleed-out speed of the lubricant is increased is accurately grasped. V, N, but the polylactic acid (A), which is incompatible with the aliphatic polyester-based rosin (B), is blended into the film. It is thought that the interface of the resin blended with the resin is formed, and the bleed-out speed of the lubricant is increased. For this reason, it is considered that the change with time of the dynamic friction coefficient d) during the period of use becomes small! When the mixing mass ratio of polylactic acid-based resin (A) is higher than (A) / (B) = 55/45, polylactic acid-based resin forms a matrix, so it has a low-temperature sealing property, that is, a short seal. In time, it is difficult to obtain an appropriate seal strength. Specific mass ratio of polylactic acid-based rosin (A) S (A) Z (B) = When less than 13Z87, it can be manufactured with fewer interfaces of polylactic acid-based rosin formed in the matrix of (B). It is difficult to develop slipperiness from the beginning of the film. A more preferable mixing mass ratio is (A) Z (B) = 55/45 to 15/85, and this is more preferable (A) / (B) = 30/70 to 15/85, and More preferably, (Α) Ζ (Β) = 25Ζ75 to 15Ζ85.
[0017] 本発明で用いられるポリ乳酸系榭脂 (Α)は、乳酸を主成分とする脂肪族ポリエステ ルで、乳酸単独重合体及び Zまたは乳酸単量体単位を 50%以上含有する共重合 体であって、乳酸と他のヒドロキシカルボン酸及び zまたはラタトン類力 なる群より 選ばれたィヒ合物との共重合体である。乳酸との共重合成分として用いられる単量体 として、ヒドロキシカルボン酸としては、グリコール酸、 3—ヒドロキシ酪酸、 4ーヒドロキ シ酪酸、 3—ヒドロキシ吉草酸、 4ーヒドロキシ吉草酸、 6—ヒドロキシカプロン酸等が 挙げられる。また、脂肪族環状エステルとしては、グリコリド、ラクチド、 β—プロビオラ タトン、 Ύ ブチロラタトン、 δ バレロラタトン、 ε一力プロラタトンおよびこれらにメチ ル基などの種々の基が置換したラタトン類が挙げられる。 [0017] The polylactic acid-based rosin (Α) used in the present invention is an aliphatic polyester mainly composed of lactic acid, and a copolymer containing 50% or more of lactic acid homopolymer and Z or lactic acid monomer units. A copolymer of lactic acid with another hydroxycarboxylic acid and a ich compound selected from the group consisting of z or latatones. As monomers used as a copolymerization component with lactic acid, hydroxycarboxylic acids include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid, etc. Is mentioned. Examples of the aliphatic cyclic ester include glycolide, lactide, β-proviolatatone, Ύbutyrorataton, δ valerolataton, ε-one-prolataton, and latatones substituted with various groups such as a methyl group.
[0018] 本発明では、榭脂を構成する L 乳酸と D—乳酸のモル比率が 92Ζ8〜8Ζ92で ある、実質的に非晶のポリ乳酸系榭脂 (Α)を用いることが好ましい。実質的に非晶の ポリ乳酸系榭脂とは、 10°CZ分で昇温時に示差走査熱量測定 CFIS— K7122に準 拠)で求めた融解熱量( Δ Hm)と結晶化熱量( Δ He)の関係( Δ Hm— Δ He)が 3J Zg以下であるポリ乳酸系榭脂 (A)を意味する。 L 乳酸もしくは D 乳酸のモル比 率が 92%を超えると、製膜条件によっては、ポリ乳酸系榭脂 (A)が容易に結晶化す る。この結晶はシール温度で融解しないため、シール強度を低下させる働きがある。 より現実的な、好ましい L 乳酸と D 乳酸のモル比率は 90ZlO〜75Z25及び 10 Ζ90〜25Ζ75である。  [0018] In the present invention, it is preferable to use a substantially amorphous polylactic acid-based rosin (mushroom) in which the molar ratio of L-lactic acid to D-lactic acid constituting the rosin is 92 to 8 to 92. Substantially amorphous polylactic acid-based resin is the heat of fusion (ΔHm) and crystallization heat (ΔHe) determined by differential scanning calorimetry (according to CFIS-K7122) at 10 ° CZ min. This means a polylactic acid-based resin (A) having a relationship (ΔHm—ΔHe) of 3J Zg or less. If the molar ratio of L-lactic acid or D-lactic acid exceeds 92%, the polylactic acid resin (A) easily crystallizes depending on the film forming conditions. Since this crystal does not melt at the sealing temperature, it functions to reduce the sealing strength. The more realistic and preferred molar ratios of L-lactic acid and D-lactic acid are 90 ZlO to 75 Z25 and 10 to 90 to 25 75.
[0019] 本発明で用いられる、ガラス転移温度 Tgが 10°C以下で、かつ融点が 70°C以上 12 0°C以下の脂肪族ポリエステル系榭脂 (B)としては、微生物によって生産された脂肪 族ポリエステル系榭脂、例えば、菌体内で生合成されるポリ(ヒドロキシアルカン酸)な どの脂肪族ポリエステルや、化学合成による脂肪族ポリエステル系榭脂、例えば脂肪 族ジカルボン酸と脂肪族ジオールを主成分として重縮合した脂肪族ポリエステル、環 状ラ外ン類を開環重合した脂肪族ポリエステル、合成系脂肪族ポリエステル、及び それらの化学構造を一部変性したタイプの榭脂およびこれらの混合物等が挙げられ る。脂肪族ジカルボン酸と脂肪族ジオールを主成分として重縮合した脂肪族ポリエス テルとしては、コハク酸、グルタル酸、アジピン酸、スベリン酸、ァゼライン酸、セバシ ン酸、ドデカン二酸等の脂肪族カルボン酸と、エチレングリコール、 1, 3 プロピオン グリコール、 1, 4 ブタンジオール、 1, 4ーシクロへキサンジメタノール等の脂肪族ジ オールの中からそれぞれ 1種以上選んだ重縮合が例として挙げられる。環状ラタトン 類を開環重合した脂肪族ポリエステルとしては、 ε—力プロラタトン、 δ—バレロラクト ン、 j8—メチルー δ バレロラタトン等の環状モノマーの中から 1種以上選んだ開環 重合体が例として挙げられる。合成系脂肪族ポリエステルとしては、無水コノ、ク酸とェ チレンオキサイド、プロピレンオキサイド等の環状酸無水物とォキラン類の共重合体 が例として挙げられる。上記の内で、結晶化速度や結晶化度を考慮すると、好ましい 例としてポリブチレンサクシネート、ポリ(ブチレンサクシネート Ζアジペート)、ポリエ チレンサクシネート、ポリ(エチレンサクシネート Ζアジペート)、ポリヒドロキシアルカノ エートなどが挙げられる。 [0019] The aliphatic polyester-based resin (B) having a glass transition temperature Tg of 10 ° C or lower and a melting point of 70 ° C or higher and 120 ° C or lower used in the present invention was produced by a microorganism. Aliphatic polyester-based resin, for example, aliphatic polyesters such as poly (hydroxyalkanoic acid) biosynthesized in bacterial cells, and chemically synthesized aliphatic polyester-based resin, such as aliphatic dicarboxylic acids and aliphatic diols. Examples include polycondensed aliphatic polyesters, aliphatic polyesters obtained by ring-opening polymerization of cyclic lanthanides, synthetic aliphatic polyesters, and types of resins and mixtures thereof partially modified in their chemical structure. Can be mentioned. Aliphatic carboxylic acids such as succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid, which are polycondensed from aliphatic dicarboxylic acid and aliphatic diol as main components, Examples thereof include polycondensation in which one or more aliphatic diols such as ethylene glycol, 1,3 propion glycol, 1,4 butanediol and 1,4-cyclohexanedimethanol are selected. Annular rataton Examples of the aliphatic polyesters obtained by ring-opening polymerization of polymers include ring-opening polymers selected from one or more cyclic monomers such as ε-force prolatatatone, δ-valerolacton, and j8-methyl-δ valerolataton. Examples of synthetic aliphatic polyesters include copolymers of cyclic acid anhydrides such as cono anhydride, succinic acid and ethylene oxide, propylene oxide, and oxiranes. Of the above, taking into account the crystallization speed and crystallinity, preferred examples include polybutylene succinate, poly (butylene succinate Ζ adipate), polyethylene succinate, poly (ethylene succinate Ζ adipate), polyhydroxyalkano Eate.
[0020] 前述した脂肪族ポリエステル榭脂 (Β)の融点が 70°C未満では製膜時のハンドリン グ性ゃ原反フィルムの保管時にブロッキング等の問題が発生しやすぐ 120°Cを超え ると、低温シール性が発現しにくいため、高速製袋性という観点からは好ましくない。 より好ましくは 70°C以上 90°C以下、さらに好ましくは 70°C以上 85°C以下、最も好ま しくは、 75°C以上 85°C以下である。  [0020] If the melting point of the above-mentioned aliphatic polyester resin (Β) is less than 70 ° C, problems such as blocking occur during storage of the raw film when handling the film during film formation and immediately exceed 120 ° C. In view of the high-speed bag-making property, the low-temperature sealing property is hardly exhibited. More preferably, it is 70 ° C or higher and 90 ° C or lower, more preferably 70 ° C or higher and 85 ° C or lower, and most preferably 75 ° C or higher and 85 ° C or lower.
[0021] 本発明に用いられる滑剤 (D)としては、無機系滑剤や有機系滑剤が用いられる。  [0021] As the lubricant (D) used in the present invention, an inorganic lubricant or an organic lubricant is used.
無機系滑剤のものとしては、タルク、シリカ、ゼォライト、雲母などがあり、有機系滑剤 としては、脂肪酸アミドゃ脂肪酸塩、シリコン系化合物、ワックス類が挙げられる。脂肪 酸アミドとしては、カプロン酸アミド、力プリル酸アミド、力プリン酸アミド、ラウリン酸アミ ド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ァラキジン酸アミド、ベ へニン酸アミド、パルミトレイン酸アミド、ォレイン酸アミド、エイコセン酸アミド、エルシ ン酸アミド、エライジン酸アミド、トランス— 11—エイコセン酸アミド、トランス— 13 ド コセン酸アミド、リノール酸アミド、リノレン酸アミド、リシノール酸アミド、エチレンビスス テアリン酸アミド、エル力酸アミド等がある。脂肪酸塩としては、ステアリン酸亜鉛、ステ アリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン 酸バリウム、ステアリン酸リチウム、ステアリン酸鉛、ォレイン酸ソーダ、ラウリン酸バリウ ム、ラウリン酸亜鉛等が挙げられる。また、ラウリン酸メチル、ミリスチン酸メチル、パル ミチン酸メチル、ステアリン酸メチル、ォレイン酸メチル、エルカ酸メチル、ベへニン酸 メチル、ラウリン酸ブチル、ステアリン酸プチル、ミリスチン酸イソプロピル、パルミチン 酸イソプロピル、パルミチン酸ォクチル、ヤシ脂肪酸ォクチルエステル、ステアリン酸 ォクチル、ラウリン酸ラウリル、長ステアリン酸ステアリル、長鎖脂肪酸高級アルコール エステル、ベへニン酸べへニン、ミリスチン酸セチル等のモノエステル系有機滑剤な ども挙げられる。これらの中でも、有機系滑剤が好適に用いられ、中でも、脂肪酸アミ ドが好適で、エル力酸アミド、エチレンビスステアリン酸アミド、ステアリン酸アミドなど が用いられる。 Examples of inorganic lubricants include talc, silica, zeolite, and mica. Examples of organic lubricants include fatty acid amides, fatty acid salts, silicon compounds, and waxes. Examples of fatty acid amides include caproic acid amide, force prillic acid amide, force puric acid amide, lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, arachidic acid amide, behenic acid amide, and palmitoleic acid amide. , Oleic acid amide, eicosenoic acid amide, erucic acid amide, elaidic acid amide, trans-11-eicosenoic acid amide, trans-13 docosenoic acid amide, linoleic acid amide, linolenic acid amide, ricinoleic acid amide, ethylenebis stearic acid amide , L force acid amide and the like. Examples of the fatty acid salt include zinc stearate, calcium stearate, magnesium stearate, aluminum stearate, barium stearate, lithium stearate, lead stearate, sodium oleate, barium laurate, and zinc laurate. Also, methyl laurate, methyl myristate, methyl palmitate, methyl stearate, methyl oleate, methyl erucate, methyl behenate, butyl laurate, butyl stearate, isopropyl myristate, isopropyl palmitate, palmitate Octyl acid, palm fatty acid octyl ester, stearic acid Examples thereof include monoester organic lubricants such as octyl, lauryl laurate, stearyl long stearate, long-chain fatty acid higher alcohol ester, behenine behenate, cetyl myristate and the like. Among these, organic lubricants are preferably used. Among these, fatty acid amides are preferred, and L-force acid amide, ethylenebisstearic acid amide, stearic acid amide and the like are used.
[0022] 滑剤 (D)の添加量は、ポリ乳酸系榭脂 (A)とガラス転移温度 Tgが 10°C以下である 脂肪族ポリエステル系榭脂(B)の合計量 100質量部に対して 0. 01〜0. 5質量部で ある。 0. 01質量部未満では、包装フィルム表面の動摩擦係数 d)を低減する効 果が得られにくぐ 0. 5質量部を超えると、包装フィルム表面の動摩擦係数( d)が 低下しすぎ、後述するようなハンドリング性の問題や、シール強度低下への影響を及 ぼす。より好ましい範囲は 0. 05-0. 3質量部である。  [0022] The addition amount of the lubricant (D) is 100 parts by mass with respect to the total amount of the polylactic acid-based resin (A) and the aliphatic polyester-based resin (B) having a glass transition temperature Tg of 10 ° C or less. 0.01 to 0.5 parts by mass. If it is less than 01 parts by mass, it is difficult to obtain the effect of reducing the dynamic friction coefficient d) on the surface of the packaging film. If it exceeds 0.5 parts by mass, the dynamic friction coefficient (d) on the surface of the packaging film will be too low, which will be described later. This may affect handling problems and reduce seal strength. A more preferable range is 0.05 to 0.3 parts by mass.
[0023] 動摩擦係数( μ d)は包装フィルムの滑り性に関与する物性であり、動摩擦係数( μ d)を 0. 15以上 0. 5以下の範囲とすることで、優れた包装機適性を発現する。 0. 15 未満となると原反が独りでに巻きほどけたり、製膜して巻き取る際に、巻き姿の不良が 発生し易くなり、原反の取扱いが困難となる。 0. 5を超えると包装機において滑り不 良に伴うフィルム破断等のトラブルが発生しやすくなる。高速製袋性を考慮して、より 好ましい動摩擦係数 d)は、 0. 17以上 0. 45以下で、さらに好ましくは、 0. 2以上 0. 4以下である。  [0023] The dynamic friction coefficient (μd) is a physical property related to the slipperiness of the packaging film. By setting the dynamic friction coefficient (μd) in the range of 0.15 or more and 0.5 or less, excellent suitability for the packaging machine is achieved. To express. If it is less than 0.15, the roll will be unwound by itself, or it may be difficult to handle the roll when the film is formed and wound. If it exceeds 0.5, troubles such as film breakage due to poor sliding are likely to occur in the packaging machine. In consideration of the high-speed bag-making property, a more preferable dynamic friction coefficient d) is 0.17 or more and 0.45 or less, and more preferably 0.2 or more and 0.4 or less.
[0024] 本発明では、脂肪族ポリエステル系榭脂(B)の融点が 70°C以上 85°C以下の場合 は、結晶核剤(C)を用いることが好ましい。融点が前述した範囲の脂肪族ポリエステ ル系榭脂(B)は、結晶化速度が遅ぐ結晶化度が低いため、フィルム表面に用いると 、滑りにくい特性を有している。そのため、結晶核剤(C)を用いることで、脂肪族ポリ エステル系榭脂(B)の結晶化度、結晶化速度を向上させることが出来る。その結果、 滑剤 (D)のブリードアウト速度が向上し、より経時で安定した滑り性が発現できると考 えられる。このような結晶核剤 (C)として、粒径 10 μ m以下の無機フィラーや層状ケィ 酸塩類の他に、脂肪酸塩や脂肪族ポリエステル系榭脂を用いることができる。無機フ イラ一としてはタルクやシリカを用いることができ、層状ケィ酸塩類としては、モンモリロ ナイト、雲母などである。また、分散性向上を目的に、無機フィラーの表面をシラン力 ップリングなどによる表面処理を行ったフィラーも用いることができる。脂肪酸塩として は、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン 酸アルミニウム、ステアリン酸バリウム、ステアリン酸リチウム、ステアリン酸鉛、ォレイン 酸ソーダ、ラウリン酸バリウム、ラウリン酸亜鉛等が挙げられる。シール性の観点から 結晶核剤 (C)は脂肪族ポリエステル系榭脂が好ま ヽ。 In the present invention, when the melting point of the aliphatic polyester-based resin (B) is 70 ° C. or higher and 85 ° C. or lower, the crystal nucleating agent (C) is preferably used. The aliphatic polyester resin (B) having a melting point in the above-mentioned range has a low crystallization rate and a low crystallinity, and therefore has a non-slip property when used on the film surface. Therefore, by using the crystal nucleating agent (C), it is possible to improve the crystallinity and crystallization speed of the aliphatic polyester resin (B). As a result, the bleed-out speed of the lubricant (D) is improved, and it is considered that more stable slidability can be expressed over time. As such a crystal nucleating agent (C), in addition to inorganic fillers and layered silicates having a particle size of 10 μm or less, fatty acid salts and aliphatic polyester-based rosins can be used. As the inorganic filler, talc and silica can be used, and as the layered silicates, montmorillonite and mica are used. In addition, for the purpose of improving dispersibility, the surface of the inorganic filler is treated with silane power. A filler that has been surface-treated by pulling or the like can also be used. Examples of fatty acid salts include zinc stearate, calcium stearate, magnesium stearate, aluminum stearate, barium stearate, lithium stearate, lead stearate, sodium oleate, barium laurate, zinc laurate and the like. From the viewpoint of sealing properties, the crystalline nucleating agent (C) is preferably an aliphatic polyester-based resin.
[0025] 結晶核剤 (C)として用いられる脂肪族ポリエステル系榭脂(C2)としては、前述した 脂肪族ポリエステル系榭脂 (B)と同様の構造のものを用いることができる。特に、脂 肪族ポリエステル系榭脂(C2)の融点 (Tmc)は、 85°Cよりも高く 170°C未満であるこ とが好ましい。 Tmcが 85°Cよりも高いことで、低温シーラント層の結晶核剤(C)として その効果が発現可能である。 Tmcが 170°C以上となると、押出し時の溶融特性に影 響を与えるため好ましくない。より好ましい (Tmc)は 90°C以上 120°C以下である。  [0025] As the aliphatic polyester-based resin (C2) used as the crystal nucleating agent (C), those having the same structure as the aliphatic polyester-based resin (B) described above can be used. In particular, the melting point (Tmc) of the aliphatic polyester-based resin (C2) is preferably higher than 85 ° C and lower than 170 ° C. When Tmc is higher than 85 ° C, the effect can be exhibited as a crystal nucleating agent (C) for a low-temperature sealant layer. A Tmc of 170 ° C or higher is not preferable because it affects the melting characteristics during extrusion. More preferable (Tmc) is 90 ° C or higher and 120 ° C or lower.
[0026] 結晶核剤 (C)として用いる脂肪族ポリエステル系榭脂(C2)の結晶化温度 (Tec)と 脂肪族ポリエステル系榭脂(B)の結晶化温度 (Tcb)の関係が 10°C≤ (Tcc-Tcb) ≤100°Cであるものが好適に用いられる。 10°C> (Tec— Tcb)であると脂肪族ポリエ ステル系榭脂 (C2)は結晶核剤として十分な効果が発現でき無いことがあり、(Tcc- Tcb) > 100°Cであると、結晶化温度が高すぎるため、低温シール性に問題を起こす ことがある。より好ましくは、 15°C≤ (Tec— Tcb)≤50°Cである。  [0026] The relationship between the crystallization temperature (Tec) of the aliphatic polyester resin (C2) used as the crystal nucleating agent (C) and the crystallization temperature (Tcb) of the aliphatic polyester resin (B) is 10 ° C. Those with ≤ (Tcc-Tcb) ≤100 ° C are preferably used. If 10 ° C> (Tec—Tcb), the aliphatic polyester-based resin (C2) may not be effective enough as a crystal nucleating agent, and if (Tcc-Tcb)> 100 ° C The crystallization temperature is too high, which may cause problems with low-temperature sealing. More preferably, 15 ° C ≦ (Tec—Tcb) ≦ 50 ° C.
[0027] 脂肪族ポリエステル系榭脂(C2)は重量平均分子量 (Mw)が 8万以上 17万以下の ものが好適に用いられる。このような分子量とすることで、脂肪族ポリエステル系榭脂 (B)の結晶化速度を、より早くさせる効果がある。さらに、シール時の樹脂の流動性が 向上するため、より気密性に優れたシールを可能とする効果もある。重量平均分子量 が 17万を超えると、シール時における気密性を向上させる効果が小さいし、重量平 均分子量 8万未満では、脂肪族ポリエステル系榭脂 (B)の加水分解を促進させ、シ ール強度を低下させることもある。より好ましい重量平均分子量は 10万以上 15万以 下である。  [0027] As the aliphatic polyester-based resin (C2), those having a weight average molecular weight (Mw) of 80,000 to 170,000 are suitably used. By setting it as such molecular weight, there exists an effect which makes the crystallization speed | rate of an aliphatic polyester type | system | group resin (B) faster. Furthermore, since the fluidity of the resin at the time of sealing is improved, there is also an effect that enables sealing with better airtightness. When the weight average molecular weight exceeds 170,000, the effect of improving airtightness at the time of sealing is small, and when the weight average molecular weight is less than 80,000, hydrolysis of the aliphatic polyester-based resin (B) is promoted. May reduce the strength of the steel. A more preferred weight average molecular weight is 100,000 or more and 150,000 or less.
[0028] 本発明のシーラント層に用いられる脂肪族ポリエステル系榭脂 (B)と結晶核剤 (C) の混合物は、示差走査熱量測定 CFIS— K— 7122に準拠)で 10°CZ分で降温時に 求めた結晶化熱量 Δ Heが、 lOjZg以上 50jZg以下が好ましい。このような結晶化 度を有することで、より安定した滑り性を発現することができる。 lojZg未満では、滑 り性の安定性が問題になることがあるし、 50jZgを超えると、可撓性が問題になること もある。より好ましい AHcは 18jZg以上 40jZgであり、さらに好ましくは、 20jZg以 上 35jZg以下である。 [0028] The mixture of the aliphatic polyester-based resin (B) and the crystal nucleating agent (C) used in the sealant layer of the present invention is cooled at 10 ° CZ by differential scanning calorimetry CFIS-K-7122). The crystallization heat amount ΔHe sometimes obtained is preferably from lOjZg to 50jZg. Such crystallization By having the degree, more stable slipperiness can be expressed. If it is less than lojZg, the stability of slipperiness may be a problem, and if it exceeds 50 jZg, flexibility may be a problem. AHc is more preferably 18jZg or more and 40jZg, and still more preferably 20jZg or more and 35jZg or less.
[0029] 結晶核剤 (C)の含有量は、シーラント層の機能を阻害しな 、範囲でシーラント層中 に 0. 5質量%〜40質量%が好ましい。 0. 5質量%未満では、結晶化度や結晶化速 度の向上などといった結晶核剤としての効果が発現されにくぐ 40質量%よりも多い と、低温でのシール性を阻害する等の問題が発生することもある。より好ましい添カロ 量は 1質量%〜30質量%であり、さらに好ましくは 2質量%〜20質量%、最も好まし くは、 3質量%〜15質量%である。  [0029] The content of the crystal nucleating agent (C) is preferably 0.5% by mass to 40% by mass in the sealant layer in a range that does not inhibit the function of the sealant layer. If it is less than 5% by mass, the effect as a crystal nucleating agent such as improvement in crystallization degree and crystallization speed is difficult to be manifested. If it exceeds 40% by mass, problems such as hindering the sealability at low temperatures. May occur. A more preferred amount of added calories is 1% to 30% by mass, more preferably 2% to 20% by mass, and most preferably 3% to 15% by mass.
[0030] 本発明の包装フィルムは、ヒートシール強度が 15NZl5mm以上 40NZl5mm以 下である事が好ましい。 15NZ 15mm未満であると、包装したフィルムに何らかの力 が加わった際、シール面の剥離が起きやすぐ 40NZl5mmを超えると、開封が困 難な包装フィルムとなりやすい。より好ましいシール強度は、 17NZl5mm以上 35N Zl5mm以下であり、さらに好ましくは、 20NZl5mm以上 30NZl5mm以下であ る。また、シール時間 1秒以内で前記シールできる事が、より高速での包装が可能と なり好ましい。より好ましくは、 0. 5秒以内、さらに好ましくは 0. 2秒以内の短時間で シールできることが好まし!/、。  [0030] The packaging film of the present invention preferably has a heat seal strength of 15 NZl5 mm or more and 40 NZl5 mm or less. 15NZ If it is less than 15mm, when some force is applied to the packaged film, if the seal surface peels off immediately and exceeds 40NZl5mm, it is easy to form a packaging film that is difficult to open. A more preferable seal strength is 17 NZl 5 mm or more and 35 N Zl 5 mm or less, and further preferably 20 NZl 5 mm or more and 30 NZl 5 mm or less. Further, it is preferable that the sealing can be performed within a second of sealing because packaging at a higher speed is possible. More preferably, it is preferable to be able to seal within a short time of 0.5 seconds or less, and more preferably within 0.2 seconds! /.
[0031] 本発明の生分解性シーラント層付き多層フィルムは、シーラント層のほかに、基材 層を有し、層構成としては、二種二層や三種三層等の非対称構成や二種三層、三種 五層等の対称構成にすることができる。基材層は、前述したように、包装フィルムとし て求められる機械特性を有する層や機能性を有する層、例えば、耐熱層、バリア層、 遮光層、耐薬品層などからなり、さらには、それらの層を接着するための接着層から なる。また、二つ以上の機能を発現する層、例えば機械特性に優れた接着層や遮光 機能を有した接着層であってもよい。このような組み合わせの中で、耐熱層、中間層( 機械特性に優れた層、または他の機能を発現する層)、シーラント層の三種三層構 成や三種五層構成が好適に用いられる。各層の厚みは、必要とされる機能を発現で きるものであればよぐ具体的な例としては、シーラント層は 3 μ m以上 50 μ m以下、 好ましくは、 5 μ m以上 35 μ m以下、更に好ましくは、 8 μ m以上 20 μ m以下の厚み にすることができる。 3 m以下では、シール強度が十分に発揮できないことがあるし 、 50 μ m以上では経済的な観点力も好ましくない。耐熱層としては、 3 μ m以上 40 μ m以下の厚みが好ましぐより好ましくは、 5 μ m以上 20 μ m以下にすることができる。 中間層は、求められる機能によって異なるため、一概に決めることは出来ないが、フィ ルム全体の厚みの 5%以上 80%以下の厚みとすることができる。 [0031] The multilayer film with a biodegradable sealant layer of the present invention has a base material layer in addition to the sealant layer, and the layer structure is an asymmetrical structure such as a two-type two-layer or a three-type three-layer, or a two-type three-layer. It can be a symmetrical structure such as a layer, 3 types, 5 layers, etc. As described above, the base material layer is composed of a layer having mechanical properties required for a packaging film or a functional layer, such as a heat-resistant layer, a barrier layer, a light-shielding layer, a chemical-resistant layer, and the like. It consists of an adhesive layer for bonding these layers. Further, it may be a layer that exhibits two or more functions, for example, an adhesive layer having excellent mechanical properties or an adhesive layer having a light shielding function. Among such combinations, a three-layer three-layer structure or a three-layer five-layer structure of a heat-resistant layer, an intermediate layer (a layer excellent in mechanical properties or a layer that exhibits other functions), and a sealant layer is preferably used. As a specific example, the thickness of each layer is 3 μm or more and 50 μm or less. The thickness is preferably 5 μm or more and 35 μm or less, and more preferably 8 μm or more and 20 μm or less. If it is 3 m or less, the sealing strength may not be sufficiently exhibited, and if it is 50 μm or more, economical viewpoint power is not preferable. The heat-resistant layer preferably has a thickness of 3 μm to 40 μm, more preferably 5 μm to 20 μm. Since the intermediate layer differs depending on the required function, it cannot be determined unconditionally, but it can be 5% to 80% of the total film thickness.
[0032] 本発明の生分解性シーラント層付き多層フィルムは、基材層の一つに耐熱層を設 けても良い。特に、 10°CZ分で昇温時に示差走査熱量測定 CFIS— K 7121及び 7 122に準拠)で求めた融点(Tm)が 140°C〜170°Cで、かつ融解熱量( ΔΗπι)と結 晶化熱量( Δ He)の関係( Δ Hm— Δ He)が 15jZg〜60jZgであるポリ乳酸系榭脂 力 耐熱層の主成分として好ましく用いられる。融点 (Tm)が 140°C以上で、かつ融 解熱量( Δ Hm)と結晶化熱量( Δ He)の関係( Δ Hm— Δ He)が 15jZg以上である ことで、シール時の温度に対して、耐熱性を示すことができ、製袋の安定性を付与す ることができる。 Tmが 170°Cを超えると、押出し時への影響の観点から、また(ΔΗπι - AHc)が 60jZgを超えると、フィルムの可撓性の観点力 好ましくない。好ましい( AHm- ΔΗο)は 20jZg以上であり、より好ましくは 30jZg以上である。また、好まし い Tmは 150°C以上、より好ましくは 160°C以上である。このようなポリ乳酸系榭脂とし て、 L—乳酸と D—乳酸のモル比率が 100Z0〜95Z5または 5Z95〜0Z100のポ リ乳酸系榭脂を用いることができ、経済的理由より鑑みて、 100Ζ0〜95Ζ5のポリ乳 酸系榭脂が好適に用いられる。また、前述した比率のポリ乳酸系榭脂と他のヒドロキ シカルボン酸及び Ζまたはラタトン類力 なる群より選ばれたィ匕合物との共重合体等 を用いることちでさる。 [0032] In the multilayer film with a biodegradable sealant layer of the present invention, a heat-resistant layer may be provided as one of the base material layers. In particular, the melting point (Tm) determined by differential scanning calorimetry CFIS-K 7121 and 7122 when heated at 10 ° CZ is 140 ° C to 170 ° C and the heat of fusion (ΔΗπι) and crystals It is preferably used as a main component of a polylactic acid based resin heat-resistant layer having a heat generation amount (ΔHe) relationship (ΔHm—ΔHe) of 15 jZg to 60 jZg. The melting point (Tm) is 140 ° C or higher, and the relationship between the heat of fusion (ΔHm) and the heat of crystallization (ΔHe) (ΔHm—ΔHe) is 15jZg or higher. Thus, heat resistance can be exhibited, and bag-making stability can be imparted. If Tm exceeds 170 ° C, from the viewpoint of influence on extrusion, and if (ΔΗπι-AHc) exceeds 60 jZg, it is not preferable from the viewpoint of film flexibility. Preferred (AHm-Δ-ο) is 20 jZg or more, more preferably 30 jZg or more. The preferred Tm is 150 ° C or higher, more preferably 160 ° C or higher. As such a polylactic acid-based resin, a polylactic acid-based resin having a molar ratio of L-lactic acid to D-lactic acid of 100Z0 to 95Z5 or 5Z95 to 0Z100 can be used. A polylactic acid-based resin of ˜95 to 5 is preferably used. In addition, it is possible to use a copolymer of polylactic acid-based resin having the above-mentioned ratio with other hydroxycarboxylic acid and a compound selected from the group consisting of Ζ or ratatones.
[0033] 前記耐熱層には、ポリ乳酸系榭脂の結晶化をより促進させやすくするために、結晶 核剤や結晶化促進剤を加えることができる。好ましい結晶核剤としては、粒径 10 m 以下の無機フィラーや層状ケィ酸塩類である。無機フイラ一としてはタルクやシリカを 用いることができる。層状ケィ酸塩類としては、モンモリロナイト、雲母などを用いること ができる。また、分散性向上を目的に、無機フィラーの表面をシランカップリングなど による表面処理を行ったフィラーも用いることもできる。また、二種類以上の結晶核剤 を併用することができる。この際用いる結晶核剤の添加量は耐熱層の榭脂 100質量 部に対して 0. 5質量部以上 30質量部以下であり、より好ましくは 1質量部以上 20質 量部以下、さらに好ましくは 2質量部以上 15質量部以下である。添加量が 30質量部 を超えるとフィルムの透明性や可撓性という観点力も好ましくない。また、前記結晶化 促進剤として、可塑剤や前述した Tgが 10°C以下の脂肪族ポリエステル系榭脂及び Zまたは芳香族—脂肪族ポリエステル系榭脂を同時に添加することもできる。例えば 脂肪族ポリエステル系榭脂としてポリブチレンサクシネート、ポリ(ブチレンサクシネー ト Zアジペート)、ポリエチレンサクシネート、ポリ(エチレンサクシネート Zアジペート) などであり、芳香族一脂肪族ポリエステル系榭脂としてポリ(ブチレンテレフタレート Z アジペート)などである。またポリ乳酸と脂肪族ポリエステル系榭脂及び Zまたは芳香 族—脂肪族ポリエステル系榭脂の共重合体なども用いることができる。可塑剤として は、脂肪族多価カルボン酸エステル、脂肪酸多価アルコールエステル、ォキシ酸ェ ステル、エポキシ系可塑剤等が含まれる。具体例としては、トリァセチン (TA)、トリブ チリン(TB)、ブチルフタリルブチルダリコレート(BPBG)、ァセチルクェン酸トリブチ ル (ATBC)、ジォクチルセバケート、トリエチレングリコールジアセテート、グリセリン エステル類、ォレイン酸ブチル(BO)、アジピン酸エーテル 'エステル、エポキシ化大 豆油(ESO)、等が挙げられる。 [0033] A crystal nucleating agent and a crystallization accelerator can be added to the heat-resistant layer in order to facilitate the crystallization of the polylactic acid-based resin. Preferred crystal nucleating agents are inorganic fillers and layered silicates having a particle size of 10 m or less. As the inorganic filler, talc or silica can be used. As the layered silicates, montmorillonite, mica and the like can be used. For the purpose of improving dispersibility, a filler obtained by subjecting the surface of the inorganic filler to a surface treatment such as silane coupling can also be used. Two or more types of crystal nucleating agents Can be used in combination. The amount of the crystal nucleating agent used in this case is 0.5 to 30 parts by mass, more preferably 1 to 20 parts by mass, and still more preferably 100 parts by mass of the resin in the heat-resistant layer. 2 parts by mass or more and 15 parts by mass or less. When the addition amount exceeds 30 parts by mass, the viewpoint power of transparency and flexibility of the film is not preferable. In addition, as the crystallization accelerator, a plasticizer, the above-described aliphatic polyester-based resin having a Tg of 10 ° C. or less, and Z or aromatic-aliphatic polyester-based resin can be added simultaneously. For example, polybutylene succinate, poly (butylene succinate Z adipate), polyethylene succinate, poly (ethylene succinate Z adipate), etc. as aliphatic polyester-based resin, (Butylene terephthalate Z adipate). In addition, polylactic acid and aliphatic polyester-based resin and Z or aromatic-aliphatic polyester-based resin can also be used. Examples of the plasticizer include aliphatic polycarboxylic acid esters, fatty acid polyhydric alcohol esters, oxyesters, and epoxy plasticizers. Specific examples include triacetin (TA), tributyrin (TB), butylphthalyl butyl dalicolate (BPBG), tributyl acetyl citrate (ATBC), dioctyl sebacate, triethylene glycol diacetate, glycerin esters, Examples include butyl oleate (BO), adipate ether'ester, epoxidized soybean oil (ESO), and the like.
[0034] これら、結晶化促進剤の添加量は、耐熱層質量中 30質量%未満が好ま 、。 30 質量%を超えると、ヒートシール時の温度でフィルムが変形しやすぐ耐熱層の機能 を果たすことができなくなる。好ましくは、 20質量%以下である。  [0034] The addition amount of these crystallization accelerators is preferably less than 30% by mass in the mass of the heat-resistant layer. If it exceeds 30% by mass, the film will be deformed at the temperature at the time of heat sealing, and the function of the heat-resistant layer cannot be performed immediately. Preferably, it is 20 mass% or less.
[0035] 本発明の生分解性シーラント層付き多層フィルムには、無機フィラー、アンチブロッ キング剤、熱安定剤、酸化防止剤、紫外線吸収剤、防曇剤、帯電防止剤、防鲭剤、 および耐衝撃性改良剤などの公知の添加剤を、本発明の特性を損なわな!/、範囲で 配合することが可能である。  [0035] The multilayer film with a biodegradable sealant layer of the present invention includes an inorganic filler, an antiblocking agent, a heat stabilizer, an antioxidant, an ultraviolet absorber, an antifogging agent, an antistatic agent, an antifungal agent, and an anti-resistance. Do not impair the properties of the present invention with known additives such as impact modifiers! It is possible to mix in a range.
[0036] 帯電防止剤としては、界面活性剤やカーボン、導電性ポリマーなどを用いることが 出来る。界面活性剤として、種々公知のもの、例えば、多価アルコールの部分脂肪 酸エステルなどのノ-オン系界面活性剤、アルキルスルホン酸塩に代表されるァ-ォ ン系界面活性剤や第 4級アンモ-ゥム塩に代表されるカチオン系界面活性剤を用い ることが出来る。界面活性剤系の帯電防止剤としては、理研ビタミン株式会社製のリ ケマスター GSR350 (商品名)があり、また導電性ポリマーの帯電防止剤としてはリケ ンテクノス株式会社製のスタティクマスター BO (商品名)などがある。これらの帯電防 止剤を加えることで、表面抵抗値を 109〜: L012の範囲に制御することが出来る。 [0036] As the antistatic agent, a surfactant, carbon, conductive polymer, or the like can be used. Various known surfactants, for example, nonionic surfactants such as partial fatty acid esters of polyhydric alcohols, ionic surfactants typified by alkyl sulfonates, and quaternary grades. Using cationic surfactants typified by ammonium salt Rukoto can. A surfactant-based antistatic agent is Riken Master GSR350 (trade name) manufactured by Riken Vitamin Co., Ltd., and a static master BO (trade name) manufactured by Riken Technos Co., Ltd. is used as an antistatic agent for conductive polymers. )and so on. The addition of these antistatic agents, surface resistance of 10 9 ~: can be controlled in a range of L0 12.
[0037] 紫外線や可視光を遮断することを目的に種々公知の顔料を加えることもできる。顔 料やカーボン入りの商品として、大日精化株式会社製アーリーマスター (製品名)な どがある。特に遮光性を発現させるためには、 1〜5質量%のカーボン類を加えること ができる。 [0037] Various known pigments may be added for the purpose of blocking ultraviolet rays and visible light. Dairy Seika Co., Ltd.'s Early Master (product name) is a product containing facial and carbon. In particular, 1 to 5% by mass of carbons can be added in order to develop light shielding properties.
[0038] 次に、本発明の生分解性シーラント層付き多層フィルムの製造方法について説明 する。本発明の生分解性多層フィルムの製膜方法としては、 Tダイより冷却ロールに キャストする方法やインフレーション法やテンター法などの従来公知の製膜方法にて 、未延伸、一軸延伸、或いは、同時又は逐次二軸延伸する方法がある。より詳しく説 明すると、下記の様な方法によって得られる。  [0038] Next, a method for producing a multilayer film with a biodegradable sealant layer of the present invention will be described. As a method for forming the biodegradable multilayer film of the present invention, a conventional casting method such as a method of casting from a T die to a cooling roll, an inflation method, a tenter method, etc., unstretched, uniaxially stretched, or simultaneously Alternatively, there is a sequential biaxial stretching method. More specifically, it can be obtained by the following method.
(1)溶融状態で押出されたチューブ状またはシート状の榭脂を溶融状態のままイン フレーシヨン法又はキャスト法により溶融延伸(融点以上の温度での延伸)して製膜 する方法。  (1) A method of forming a film by melting and stretching (stretching at a temperature equal to or higher than the melting point) a tube-shaped or sheet-shaped resin extruded in a molten state by an infusion method or a cast method in a molten state.
(2)溶融状態で押出されたチューブ状又はシート状の榭脂を急冷して非晶状態に近 い状態で固化させた後、続いてそのチューブ状又はシート状の榭脂をガラス転移温 度以上融点以下に再加熱してインフレーション法又はロール'テンター法で延伸する 冷間延伸法で製膜する方法、そして必要に応じて、溶融延伸又は冷間延伸の後に、 フィルムの熱収縮性抑制の為にフィルムを把持した状態等で熱処理を行ってフィル ムを得る様な方法。  (2) After the tube-shaped or sheet-shaped resin extruded in the molten state is rapidly cooled and solidified in a state close to the amorphous state, the tube-shaped or sheet-shaped resin is subsequently converted into the glass transition temperature. Reheated to the melting point or lower and stretched by the inflation method or roll tenter method to form a film by the cold stretching method, and if necessary, after the melt stretching or cold stretching, to suppress the heat shrinkability of the film For this purpose, a film is obtained by heat treatment while holding the film.
[0039] フィルム又はシートの延伸倍率としては、延伸方法に関わらず、押出し口金 (ダイリ ップ)間隔に対して、最終の延伸フィルム又はシートの厚みが 1 Z200倍〜 1Z40 倍の範囲になる様に、即ち、押出し口金 (ダイリップ)出口直後のフィルム又はシート の面積に対して、最終の延伸フィルム又はシートの面積力 0倍〜 200倍になる様に 、少なくとも 1軸方向に延伸することが好ましい。(以下、(押出し口金 (ダイリップ)出 口直後のフィルム又はシートの面積) Z (最終の延伸フィルム又はシートの面積)の比 を、「面積倍率」という。) [0039] The stretching ratio of the film or sheet is such that the final stretched film or sheet thickness is in the range of 1 Z200 times to 1Z40 times with respect to the distance between the extrusion die (die lip) regardless of the stretching method. In other words, it is preferable that the film is stretched at least in one axial direction so that the area force of the final stretched film or sheet is 0 to 200 times the area of the film or sheet immediately after the exit of the extrusion die (die lip). . (Hereafter, (area of film or sheet immediately after extrusion die (die lip) opening) ratio of Z (area of final stretched film or sheet) Is referred to as “area magnification”. )
また、多層フィルムを製膜する方法として、上記のように共押出しで多層フィルムを 製膜する方法の他にフィルムをラミネート (押出しラミネートやドライラミネート)によつ て製造する方法を用いても良い。  Further, as a method for forming a multilayer film, in addition to the method for forming a multilayer film by coextrusion as described above, a method for producing a film by lamination (extrusion lamination or dry lamination) may be used. .
[0040] これらの方法の中でも、溶融延伸でダイ出口からの面積倍率 40倍〜 200倍の延伸 を行う方法が特に好ましい。この際、包装フィルムの表面を冷却することにより、表面 が粗面化されるため、より滑り性を発現しやすい。より好ましい溶融延伸時のダイ出口 力もの面積倍率は 60倍から 150倍で、さらに好ましくは 80倍から 140倍である。  [0040] Among these methods, a method of stretching by 40 to 200 times the area magnification from the die outlet by melt stretching is particularly preferable. At this time, since the surface is roughened by cooling the surface of the packaging film, it is easier to express slipperiness. The area ratio of the die exit force during melt drawing is more preferably 60 to 150 times, and still more preferably 80 to 140 times.
[0041] さらに、前記溶融延伸法で製膜された生分解性シーラント層付き多層フィルムを、 前述した耐熱層の Tg近傍の温度、より具体的には、 Tg± 30°Cの温度範囲でァニー ル処理することで、前記耐熱層の結晶化度がより向上し、耐熱性、つまり、シールバ 一への付着防止性を示すことが出来る。 Tgよりも 30°Cを超える温度でのァニール処 理では、フィルムの変形やブロッキングが発生し、 Tgよりも 30°Cを下回る温度でのァ ニール処理では、十分な効果を発現できない。より好ましいァニール温度は (Tg— 2 0)で以上0^+ 15)で以下でぁり、さらに好ましくは、(Tg— 15) °C以上 Tg以下であ る。  [0041] Further, the multilayer film with a biodegradable sealant layer formed by the melt drawing method is annealed at a temperature in the vicinity of Tg of the heat-resistant layer, more specifically in a temperature range of Tg ± 30 ° C. By performing the treatment, the crystallinity of the heat-resistant layer is further improved, and the heat resistance, that is, the adhesion prevention property to the seal bar can be exhibited. Annealing at temperatures above 30 ° C above Tg causes film deformation and blocking, and annealing at temperatures below 30 ° C below Tg does not produce sufficient effects. A more preferable annealing temperature is (Tg—20) or more and 0 ^ + 15) or less, and more preferably (Tg−15) ° C. or more and Tg or less.
[0042] 以上のようにして得られた生分解性包装フィルムを、ピロ 包装やオーバーラップ 包装の袋詰包装に用いると、連続した高速包装をより安定して行うことができる。特に 、ポケットティッシュやインクカートリッジ、トナーカートリッジなどの包装にも用いること ができる。さらに本発明の多層フィルムでは、内容物の液体や気体がシール部から 漏洩せずに、長期間の保存、保持が可能な袋が得られる。  [0042] When the biodegradable packaging film obtained as described above is used for packaging in pillow packaging or overlap packaging, continuous high-speed packaging can be performed more stably. In particular, it can also be used for packaging of pocket tissues, ink cartridges, toner cartridges and the like. Furthermore, with the multilayer film of the present invention, a bag that can be stored and retained for a long period of time without the liquid or gas of the contents leaking from the seal portion can be obtained.
[0043] また、ピロ タイプのエアー緩衝材ゃ逆支弁つきエアー緩衝材に用いると、空気の 漏洩が少なぐ優れた耐圧縮クリープ性や耐圧強度を有し、実用上十分な緩衝性能 を長期間持続できるエアー緩衝材が得られる。  [0043] In addition, when used as a pillow type air cushioning material or an air cushioning material with a reverse support valve, it has excellent compression creep resistance and pressure strength with less air leakage, and practically sufficient cushioning performance for a long time. Sustainable air cushioning material is obtained.
実施例  Example
[0044] 本発明を実施例に基づいて説明する。  The present invention will be described based on examples.
[0045] 実施例および比較例で用いた評価方法につ!、て以下に説明する。  [0045] The evaluation methods used in the examples and comparative examples are described below.
(1)動摩擦係数 d)の測定 ASTMD— 1894に基づいて測定し、その測定に用いるライダーを 500gの梨地金 属製のものにして測定を行った。尚、製膜後、室温で 24時間保管したものを測定し、 製膜直後の動摩擦係数 d)とし、常温で一年保管したものを測定して、一年後の 動摩擦係数 d)とした。 (1) Measurement of dynamic friction coefficient d) Measurement was performed based on ASTMD-1894, and the rider used for the measurement was made of 500 g of satin metal. In addition, after film formation, what was stored at room temperature for 24 hours was measured and used as the dynamic friction coefficient d) immediately after film formation, and after storage at room temperature for one year, the dynamic friction coefficient d) after one year was measured.
(2)ポリ乳酸重合体の D—、 L 乳酸組成、光学純度  (2) D- and L-lactic acid composition and optical purity of polylactic acid polymer
ポリ乳酸重合体を構成する L 乳酸及び Z又は D 乳酸単量体単位の構成比率 は、試料を 1 N— NaOHでアル力リ分解後に 1 N— HC1で中和して蒸留水で濃度調 整した加水分解試料 (液)について、光学異性体分離カラムを装着した島津製作所 製の高速液体クロマトグラフィー(商品名、 HPLC :LC— 10A— VP)にて、紫外線 U V254nmでの L 乳酸と D 乳酸の検出ピーク面積比(垂線法による面積測定)か ら、ポリ乳酸重合体を構成する L 乳酸の重量比率 [L] (単位%)、ポリ乳酸重合体を 構成する D 乳酸の重量比率 [D] (単位%)を求め、 1重合体当り 3点の算術平均( 四捨五入)をもって測定値とした。  The composition ratio of L-lactic acid and Z- or D-lactic acid monomer units constituting the polylactic acid polymer was adjusted with 1 N-HC1 after the sample was decomposed with 1 N NaOH and neutralized with distilled water, and the concentration was adjusted with distilled water. The hydrolyzed sample (liquid) was subjected to high-performance liquid chromatography (trade name: HPLC: LC-10A-VP) manufactured by Shimadzu Corporation equipped with an optical isomer separation column. From the detected peak area ratio (area measurement by perpendicular method), the weight ratio of L-lactic acid constituting the polylactic acid polymer [L] (unit%), the weight ratio of D-lactic acid constituting the polylactic acid polymer [D] (Unit%) was determined, and the arithmetic value (rounded off) of 3 points per polymer was taken as the measured value.
(3)融解熱量( Δ Hm)、結晶化熱量( Δ He)、結晶化温度 (Tc)、融点 (Tm) JIS—K— 7121及び 7122に準拠して、パーキンエルマ一(Perkin— Elmer)社製 の示差走査熱量計(DSC)を用いて、窒素ガス流量 25mlZ分で、 0°Cから 200°Cま で 10°CZ分で昇温し、昇温時の結晶化熱量 Δ Η 融解熱量 Δ Ηπι、融点 Tmを測 疋した。  (3) Heat of fusion (ΔHm), heat of crystallization (ΔHe), crystallization temperature (Tc), melting point (Tm) Perkin-Elmer in accordance with JIS-K-7121 and 7122 Using a differential scanning calorimeter (DSC) manufactured at a nitrogen gas flow rate of 25 mlZ, the temperature was raised from 0 ° C to 200 ° C at 10 ° CZ, and the crystallization heat during the temperature rise Δ Η heat of fusion Δ Ηπι and melting point Tm were measured.
(4)シーノレ強度 (N/ 15mm)  (4) Sinore strength (N / 15mm)
フィルムのシール強度 ίお IS—Z1707に従い、シール圧力を 0. 65MPa、シール時 間を 0. 2秒として、 80°Cからフィルムが溶断するまでの温度範囲で 10°Cごとにシー ル強度を測定し、その最大値をそのフィルムのシール強度とした。シールバーは 5m m幅の物を用いた。  Film seal strength In accordance with IS-Z1707, the seal pressure is 0.665 MPa, the seal time is 0.2 seconds, and the seal strength is increased every 10 ° C in the temperature range from 80 ° C to the film fusing. The maximum value was measured as the seal strength of the film. A seal bar with a width of 5 mm was used.
(5)包装機適性  (5) Packing machine suitability
トリコン社性エアー緩衝材製袋機 150を用いて 150個/分での製袋を行い、以下 の指標にて評価した。  Using a Tricon air cushion bag-making machine 150, bags were made at a rate of 150 pieces / minute, and evaluated according to the following indicators.
〇:原反 1000m分 製袋した際に、フィルム切れが 0回  ◯: Film breakage 0 times when the bag is made for 1000m
△:原反 1000m分 製袋した際に、フィルム切れが 1〜2回 X :原反 1000m分 製袋した際に、フィルム切れが 3回以上 △: 1000m of raw fabric When the bag is made, the film breaks once or twice X: For 1000m of original fabric, the film breaks 3 times or more when the bag is made
(6)エアー緩衝材 圧縮クリープ (6) Air cushioning material Compression creep
JIS— K— 6767に準拠して、エアー緩衝材 1個に対して、荷重 2kgの重りを用いて 、圧縮クリープ試験を行った。この際、 1日後のエアー緩衝材の厚みを初期厚みとし て、以下の指標にて評価した。  In accordance with JIS-K-6767, a compression creep test was performed on one air cushion using a weight of 2 kg. At this time, the thickness of the air cushioning material after 1 day was used as the initial thickness, and the following indices were used for evaluation.
◎: 7日後の厚みが初期厚みの 80%以上  A: The thickness after 7 days is 80% or more of the initial thickness.
〇: 7日後の厚みが初期厚みの 20%以上  ○: The thickness after 7 days is 20% or more of the initial thickness.
△: 7日後には、完全に空気が抜けて 、た。  Δ: After 7 days, the air was completely removed.
X :1日後には、完全に空気が抜けていた。  X: After one day, it was completely out of air.
以下の実施例および比較例に用いた生分解性ポリマーを下記に示す。ただし、本 発明における榭脂の組成がこれに限定されるものではな 、。  The biodegradable polymers used in the following examples and comparative examples are shown below. However, the composition of rosin in the present invention is not limited to this.
A1:ポリ乳酸 (カーギルダウ株式会社製 4032D (商品名)、 D乳酸含量 =1.4%、 分子量 =24万、 Tg = 58°C、 Tm=166°C) A1: Polylactic acid (Cargill Dow 4032D (trade name), D lactic acid content = 1.4%, molecular weight = 240,000, Tg = 58 ° C, Tm = 166 ° C)
A2:ポリ乳酸 (カーギルダウ株式会社製 4042D (商品名)、 D乳酸含量 =4.2%、 分子量 =23万、 Tg = 58。C、 Tm=158°C)  A2: Polylactic acid (4042D (trade name) manufactured by Cargill Dow Co., Ltd., D lactic acid content = 4.2%, molecular weight = 230,000, Tg = 58.C, Tm = 158 ° C)
A3:ポリ乳酸 (カーギルダウ株式会社製 4060D (商品名)、 D乳酸含量 =12.6% 、分子量 =25万、 Tg = 58°C)  A3: Polylactic acid (Cargildau 4060D (trade name), D lactic acid content = 12.6%, molecular weight = 250,000, Tg = 58 ° C)
B1:ポリブチレンサクシネートアジペート(昭和高分子株式会社製 ピオノーレ 5001 B1: Polybutylene succinate adipate (Pionore 5001 manufactured by Showa Polymer Co., Ltd.)
D (商品名)、分子量 =24万、 Tg=— 53°C、 Tm=79°C、 Tc=47°C) D (trade name), molecular weight = 240,000, Tg = —53 ° C, Tm = 79 ° C, Tc = 47 ° C)
B2:ポリブチレンサクシネートアジペート(昭和高分子株式会社製 ピオノーレ # 300 B2: Polybutylene succinate adipate (Pionore # 300, Showa Polymer Co., Ltd.)
1 (商品名)、分子量 =23万、 Tg=— 43°C、 Tm=93°C、 Tc = 66°C) 1 (trade name), molecular weight = 230,000, Tg =-43 ° C, Tm = 93 ° C, Tc = 66 ° C)
B3:ポリブチレンサクシネートアジペート(昭和高分子株式会社製 ピオノーレ # 302 B3: Polybutylene succinate adipate (Pionole # 302, Showa Polymer Co., Ltd.)
0(商品名)、分子量 =14万、 Tg=— 45°C、 Tm=92°C、 Tc = 66°C) 0 (trade name), molecular weight = 140,000, Tg = 45 ° C, Tm = 92 ° C, Tc = 66 ° C)
B4:ポリブチレンサクシネート(昭和高分子株式会社製 ピオノーレ #1001 (商品名 B4: Polybutylene succinate (Pionore # 1001 manufactured by Showa Polymer Co., Ltd. (trade name)
)、分子量 =25万、 Tg=— 32。C、 Tm=113。C、 Tc = 88°C) ), Molecular weight = 250,000, Tg = -32. C, Tm = 113. C, Tc = 88 ° C)
B5:ポリブチレンサクシネート(昭和高分子株式会社製 ピオノーレ # 1050 (商品名 B5: Polybutylene succinate (Pionore # 1050 (product name, Showa Polymer Co., Ltd.)
)、分子量 =11万、 Tg=— 33°C、Tm=112°C Tc = 86°C) ), Molecular weight = 110,000, Tg = —33 ° C, Tm = 112 ° C Tc = 86 ° C)
タルク:富士タルク工業社製 LMS200(商品名) 滑り剤 :ェルカ酸アミド Talc: LMS200 (trade name) manufactured by Fuji Talc Industrial Co., Ltd. Lubricant: erucic acid amide
[実施例 1]  [Example 1]
二軸押出し機を用いて、エル力酸アミドと原料 B1を表 1の比率になるように混合し、 マスターバッチを作成した。また同様に、原料 A1とタルク 39質量%濃度のマスター バッチを作成し、最終組成が表 1に示した組成となる様に各原料をブレンドした後、 単軸押出機を用いて表 1に示した層構成、各層厚みになる様に各層の押出機をコン トロールして、 3層ダイを用いて溶融榭脂を押出した。押出時には、外側ダイリップ直 径 110mm、内側ダイリップ直径を 105mm、リップクリアランス 2. 5mmの円筒ダイよ り押出し、チューブ状に押出された溶融樹脂に冷却リングより約 25°Cのエアーを吹き 付けながらチューブ内へエアーを注入してバブルを形成した。得られたフィルムをピ ンチロールへ導きチューブ状のフィルムをフラット状 2枚のフィルムとして巻き取り口一 ルで卷き取った。次に、バブルが安定してから、榭脂押出速度、バブル中へのエア 一注入量、ピンチロールにおけるフィルム巻き取り速度を微調整し、表 1に示した最 終厚みのフィルムを得た。該フィルムを幅 190mmとなるようにスリットして、トリコン販 売株式会社製エアー緩衝材製袋機 150を用いて、長さ 140mmのエアー緩衝材を 作成した。  Using a twin screw extruder, L-force amide and raw material B1 were mixed in the ratio shown in Table 1 to prepare a master batch. Similarly, prepare a master batch of raw material A1 and talc 39% by mass, blend the raw materials so that the final composition becomes the composition shown in Table 1, and then use a single screw extruder to show in Table 1. The extruder of each layer was controlled so that the layer structure and the thickness of each layer were obtained, and the molten resin was extruded using a three-layer die. When extruding, the outer die lip diameter is 110mm, the inner die lip diameter is 105mm, the lip clearance is 2.5mm, and the tube is extruded from the cooling ring to the molten resin extruded in a tube shape while blowing air at about 25 ° C. Air was injected into the inside to form bubbles. The obtained film was guided to a pinch roll, and the tube-like film was wound up as a flat two film with a winding mouth. Next, after the bubbles were stabilized, the resin extrusion speed, the amount of air injected into the bubbles, and the film winding speed on the pinch roll were finely adjusted to obtain the final thickness films shown in Table 1. The film was slit to a width of 190 mm, and an air cushioning material having a length of 140 mm was prepared using an air cushioning bag making machine 150 manufactured by Tricon Sales Co., Ltd.
[実施例 2〜4、比較例 1〜3]  [Examples 2 to 4, Comparative Examples 1 to 3]
実施例 1と同様に、表 1に示した組成、及び層構成で、フィルムを作成し、エアー緩 衝材を作成した。  In the same manner as in Example 1, a film was produced with the composition and layer structure shown in Table 1, and an air shock absorbing material was produced.
[表 1] [table 1]
Figure imgf000020_0001
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000020_0002
本発明の生分解性シーラント層付き多層フィルムは、包装 (製袋)機において円滑 なフィルム送りが可能で、優れた高速包装機適性を有し、十分なシール強度を有す るので、内容物の保持に優れた生分解性包装フィルムや袋状物品、エアー緩衝材に 好適に利用できる。 The multilayer film with a biodegradable sealant layer of the present invention can be smoothly fed in a packaging (bag making) machine, has an excellent suitability for a high-speed packaging machine, and has a sufficient sealing strength. It can be suitably used for a biodegradable packaging film, a bag-like article, and an air cushioning material that are excellent in holding.

Claims

請求の範囲 The scope of the claims
[1] シーラント層を少なくとも一表面に有する生分解性多層フィルムであって、シーラン ト層は、ポリ乳酸系榭脂 (A)とガラス転移温度 Tgが 10°C以下で、かつ融点が 70°C 以上 120°C以下の脂肪族ポリエステル系榭脂 (B)と滑剤 (D)との混合物からなり、 ( A)と(B)の混合質量比が(A) / (B) = 55Z45〜13Z87であり、 (A)と(B)との合 計量 100質量部に対して、(D)が 0. 01-0. 5質量部であり、シーラント層を有する 表面の動摩擦係数 d)が 0. 15以上 0. 5以下である生分解性シーラント層付き多 層フィルム。  [1] A biodegradable multilayer film having a sealant layer on at least one surface. The sealant layer has a polylactic acid-based resin (A) and a glass transition temperature Tg of 10 ° C or less and a melting point of 70 °. It consists of a mixture of aliphatic polyester-based resin (B) and lubricant (D) at a temperature not lower than C and not higher than 120 ° C. The mixing mass ratio of (A) and (B) is (A) / (B) = 55Z45-13Z87 (D) is 0.01 to 0.5 parts by mass with respect to 100 parts by mass of (A) and (B), and the coefficient of dynamic friction d) of the surface with the sealant layer is 0. A multilayer film with a biodegradable sealant layer that is 15 or more and 0.5 or less.
[2] 前記ポリ乳酸系榭脂 (A)が、榭脂を構成する L—乳酸と D—乳酸のモル比率が 92 Z8〜8Z92であり、実質的に非晶のポリ乳酸系榭脂である請求項 1に記載の生分 解性シーラント層付き多層フィルム。  [2] The polylactic acid-based resin (A) is a substantially non-crystalline polylactic acid-based resin having a molar ratio of L-lactic acid and D-lactic acid constituting the resin of 92 Z8 to 8Z92. The multilayer film with a biodegradable sealant layer according to claim 1.
[3] 前記脂肪族ポリエステル系榭脂(B)の融点が 70°C以上 85°C以下である請求項 1 または 2に記載の生分解性シーラント層付き多層フィルム。  [3] The multilayer film with a biodegradable sealant layer according to claim 1 or 2, wherein the aliphatic polyester-based resin (B) has a melting point of 70 ° C or higher and 85 ° C or lower.
[4] 更に結晶核剤 (C)を含み、結晶核剤 (C)の添加量が、ポリ乳酸系榭脂 (A)と脂肪 族ポリエステル系榭脂(B)との合計量 100質量部に対して、 0. 5質量部以上 43質量 部以下である請求項 3に記載の生分解性シーラント層付き多層フィルム。  [4] Further, a crystal nucleating agent (C) is added, and the addition amount of the crystal nucleating agent (C) is 100 parts by mass of the total amount of the polylactic acid-based resin (A) and the aliphatic polyester-based resin (B). 4. The multilayer film with a biodegradable sealant layer according to claim 3, which is 0.5 parts by mass or more and 43 parts by mass or less.
[5] 前記結晶核剤 (C)が脂肪族ポリエステル系榭脂 (C2)であり、該脂肪族ポリエステ ル系榭脂(C2)の融点力 85°Cより高ぐ 170°C未満である請求項 4に記載の生分解 性シーラント層付き多層フィルム。  [5] The crystal nucleating agent (C) is an aliphatic polyester-based resin (C2), and the melting point of the aliphatic polyester-based resin (C2) is higher than 85 ° C and lower than 170 ° C. Item 5. The multilayer film with a biodegradable sealant layer according to Item 4.
[6] 前記脂肪族ポリエステル系榭脂 (C2)の分子量が 17万以下である請求項 5に記載 の生分解性シーラント層付き多層フィルム。  6. The multilayer film with a biodegradable sealant layer according to claim 5, wherein the aliphatic polyester-based resin (C2) has a molecular weight of 170,000 or less.
[7] 前記滑剤 (D)が脂肪酸アミド類である請求項 1〜6のいずれかに記載の生分解性 シーラント層付き多層フィルム  7. The multilayer film with a biodegradable sealant layer according to claim 1, wherein the lubricant (D) is a fatty acid amide.
[8] 榭脂を構成する L -乳酸と D -乳酸のモル比率が 95Z5〜: L00Z0のポリ乳酸系 榭脂と結晶核剤からなり、かつ、 10°CZ分で昇温時に示差走査熱量測定で求めた 融点 (Tm)が 140°C〜 170°Cで、かつ融解熱量( Δ Hm)と結晶化熱量( Δ He)の関 係( ΔΗπι— ΔΗο)が 15j/g〜60j/gである耐熱層を少なくとも一層含む請求項 1 〜7のいずれかに記載の生分解性シーラント層付き多層フィルム。 [8] The molar ratio of L-lactic acid and D-lactic acid that make up the fat is 95Z5 ~: L00Z0 polylactic acid based on fat and crystal nucleating agent, and the differential scanning calorimetry at 10 ° CZ min. The melting point (Tm) determined in (1) is 140 ° C to 170 ° C, and the relationship between the heat of fusion (ΔHm) and the heat of crystallization (ΔHe) (ΔΗπι— ΔΗο) is 15j / g-60j / g The multilayer film with a biodegradable sealant layer according to any one of claims 1 to 7, comprising at least one heat-resistant layer.
[9] 各層を構成する榭脂を共押出しし、溶融状態のまま、延伸倍率が面積倍率で 40倍 以上 200倍以下の条件で溶融延伸して製膜する請求項 1〜7のいずれかに記載の 生分解性シーラント層付き多層フィルムの製造方法。 [9] In any one of claims 1 to 7, the resin constituting each layer is co-extruded and melt-stretched in a molten state under a condition where the stretch ratio is 40 to 200 times in terms of area ratio. The manufacturing method of the multilayer film with a biodegradable sealant layer of description.
[10] 請求項 1〜7のいずれかに記載の生分解性包装フィルムを用いた袋状物品。 [10] A bag-like article using the biodegradable packaging film according to any one of claims 1 to 7.
[11] 請求項 1〜7のいずれかに記載の生分解性包装フィルムを用いたエアーバッグ緩 衝材。 [11] An air bag cushioning material using the biodegradable packaging film according to any one of claims 1 to 7.
PCT/JP2006/314253 2005-10-17 2006-07-19 Biodegradable multilayered film with sealant layer WO2007046174A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007540886A JP4916447B2 (en) 2005-10-17 2006-07-19 Multilayer film with biodegradable sealant layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-301361 2005-10-17
JP2005301361 2005-10-17

Publications (1)

Publication Number Publication Date
WO2007046174A1 true WO2007046174A1 (en) 2007-04-26

Family

ID=37962273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314253 WO2007046174A1 (en) 2005-10-17 2006-07-19 Biodegradable multilayered film with sealant layer

Country Status (2)

Country Link
JP (1) JP4916447B2 (en)
WO (1) WO2007046174A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051210A (en) * 2007-07-31 2009-03-12 Mitsubishi Chemicals Corp Biodegradable resin laminate and its manufacturing process
US7951438B2 (en) 2007-12-10 2011-05-31 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with high barrier
WO2011123165A1 (en) 2010-03-31 2011-10-06 Toray Plastics (America), Inc. Biaxially oriented polyactic acid film with reduced noise level
JP2013010199A (en) * 2011-06-28 2013-01-17 Asahi Kasei Chemicals Corp Heat shrinkable oriented multilayer film, and top seal package and pillow shrink package including the same
US8734933B2 (en) 2009-09-25 2014-05-27 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
US9150004B2 (en) 2009-06-19 2015-10-06 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with improved heat seal properties
US9221213B2 (en) 2009-09-25 2015-12-29 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
US9314999B2 (en) 2008-08-15 2016-04-19 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with high barrier
US9492962B2 (en) 2010-03-31 2016-11-15 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with reduced noise level and improved moisture barrier
WO2018181500A1 (en) * 2017-03-29 2018-10-04 株式会社カネカ Method for producing biodegradable polyester film
WO2020256090A1 (en) * 2019-06-21 2020-12-24 大倉工業株式会社 Resin composition for heat-shrinkable film and heat-shrinkable film using same
JP2021133586A (en) * 2020-02-26 2021-09-13 大日本印刷株式会社 Laminate, tube container and capped tube container

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004224870A (en) * 2003-01-21 2004-08-12 Mitsui Chemicals Inc Film sheet comprising biodegradable resin and its manufacturing method
JP2004237625A (en) * 2003-02-07 2004-08-26 Mitsui Chemicals Inc Multi-layer film formed of biodegradable resin and its manufacturing method
JP2004306482A (en) * 2003-04-08 2004-11-04 Tohcello Co Ltd Biaxially oriented laminated film and its application
JP2004315659A (en) * 2003-04-16 2004-11-11 Unitika Ltd Biodegradable polyester film and method for producing the same
JP2005028615A (en) * 2003-07-08 2005-02-03 Asahi Kasei Life & Living Corp Biodegradable film and its manufacturing method
JP2005105150A (en) * 2003-09-30 2005-04-21 Toray Ind Inc Polyester film
JP2005170417A (en) * 2003-12-09 2005-06-30 Unitika Ltd Food container

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004224870A (en) * 2003-01-21 2004-08-12 Mitsui Chemicals Inc Film sheet comprising biodegradable resin and its manufacturing method
JP2004237625A (en) * 2003-02-07 2004-08-26 Mitsui Chemicals Inc Multi-layer film formed of biodegradable resin and its manufacturing method
JP2004306482A (en) * 2003-04-08 2004-11-04 Tohcello Co Ltd Biaxially oriented laminated film and its application
JP2004315659A (en) * 2003-04-16 2004-11-11 Unitika Ltd Biodegradable polyester film and method for producing the same
JP2005028615A (en) * 2003-07-08 2005-02-03 Asahi Kasei Life & Living Corp Biodegradable film and its manufacturing method
JP2005105150A (en) * 2003-09-30 2005-04-21 Toray Ind Inc Polyester film
JP2005170417A (en) * 2003-12-09 2005-06-30 Unitika Ltd Food container

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009051210A (en) * 2007-07-31 2009-03-12 Mitsubishi Chemicals Corp Biodegradable resin laminate and its manufacturing process
US7951438B2 (en) 2007-12-10 2011-05-31 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with high barrier
US9314999B2 (en) 2008-08-15 2016-04-19 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with high barrier
US9150004B2 (en) 2009-06-19 2015-10-06 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with improved heat seal properties
US9221213B2 (en) 2009-09-25 2015-12-29 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
US9023443B2 (en) 2009-09-25 2015-05-05 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
US8734933B2 (en) 2009-09-25 2014-05-27 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
US8795803B2 (en) 2009-09-25 2014-08-05 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
US9492962B2 (en) 2010-03-31 2016-11-15 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with reduced noise level and improved moisture barrier
US9238324B2 (en) 2010-03-31 2016-01-19 Toray Plastics (Amercia), Inc. Biaxially oriented polylactic acid film with reduced noise level
WO2011123165A1 (en) 2010-03-31 2011-10-06 Toray Plastics (America), Inc. Biaxially oriented polyactic acid film with reduced noise level
JP2013010199A (en) * 2011-06-28 2013-01-17 Asahi Kasei Chemicals Corp Heat shrinkable oriented multilayer film, and top seal package and pillow shrink package including the same
WO2018181500A1 (en) * 2017-03-29 2018-10-04 株式会社カネカ Method for producing biodegradable polyester film
JPWO2018181500A1 (en) * 2017-03-29 2020-02-13 株式会社カネカ Method for producing biodegradable polyester film
JP7011647B2 (en) 2017-03-29 2022-01-26 株式会社カネカ Manufacturing method of biodegradable polyester film
WO2020256090A1 (en) * 2019-06-21 2020-12-24 大倉工業株式会社 Resin composition for heat-shrinkable film and heat-shrinkable film using same
CN113993949A (en) * 2019-06-21 2022-01-28 大仓工业株式会社 Resin composition for heat shrinkable film and heat shrinkable film using same
JP2021133586A (en) * 2020-02-26 2021-09-13 大日本印刷株式会社 Laminate, tube container and capped tube container
JP7470298B2 (en) 2020-02-26 2024-04-18 大日本印刷株式会社 Laminate, tube container, and tube container with cap

Also Published As

Publication number Publication date
JPWO2007046174A1 (en) 2009-04-23
JP4916447B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4916447B2 (en) Multilayer film with biodegradable sealant layer
JP4198058B2 (en) Polylactic acid resin biaxially stretched film
US6984443B2 (en) Aliphatic polyester resin composition and films containing the same
KR100233184B1 (en) Oriented polyglycolic acid film and production process thereof
WO2006121118A1 (en) Heat-shrinkable film, moldings and heat-shrinkable labels made by using the film, and containers made by using the moldings or fitted with the labels
JP2000302956A (en) Aliphatic polyester composition and oriented film therefrom
JP4243926B2 (en) Biodegradable heat shrinkable film and shrink package using the same
JP4522868B2 (en) Biodegradable multilayer film with sealing function
JP2003276143A (en) Multilayered film of aliphatic polyester
JP5269642B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP2005313998A (en) Biodegradable baglike product
JP3739311B2 (en) Biodegradable film
JP5777133B2 (en) Polylactic acid resin film
JP2007106067A (en) Film with biodegradable sealant layer
JP4999524B2 (en) Polylactic acid film
JP2003136592A (en) Biodegradable biaxially stretched film
JP4815214B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP2005007610A (en) Biodegradable multilayered heat-shrinkable film and package
JP3773440B2 (en) Biodegradable resin products
JP4836194B2 (en) Transparent biodegradable resin stretched film and resin product with improved gas barrier properties
JP2003072010A (en) Heat-shrinkable polylactic acid type film
JP2005028615A (en) Biodegradable film and its manufacturing method
JP6780794B1 (en) Heat-shrinkable films, articles made from them, heat-shrinkable labels, and containers
JP2006088518A (en) Heat-shrinkable polylactic acid film
JP6828846B1 (en) Heat-shrinkable films, articles made from them, heat-shrinkable labels, and containers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007540886

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06768279

Country of ref document: EP

Kind code of ref document: A1