[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006134942A1 - 電界効果トランジスタ、それを具備するバイオセンサ、および検出方法 - Google Patents

電界効果トランジスタ、それを具備するバイオセンサ、および検出方法 Download PDF

Info

Publication number
WO2006134942A1
WO2006134942A1 PCT/JP2006/311871 JP2006311871W WO2006134942A1 WO 2006134942 A1 WO2006134942 A1 WO 2006134942A1 JP 2006311871 W JP2006311871 W JP 2006311871W WO 2006134942 A1 WO2006134942 A1 WO 2006134942A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
insulating film
biosensor
substance
Prior art date
Application number
PCT/JP2006/311871
Other languages
English (en)
French (fr)
Inventor
Koichi Mukasa
Kazuhisa Sueoka
Seiji Takeda
Satoshi Hattori
Yoshiki Yamada
Makoto Sawamura
Hiroichi Ozaki
Atsushi Ishii
Motonori Nakamura
Hirotaka Hosoi
Original Assignee
Mitsumi Electric Co., Ltd.
Hijikata, Kenji
Semicon Craft Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co., Ltd., Hijikata, Kenji, Semicon Craft Technologies filed Critical Mitsumi Electric Co., Ltd.
Priority to JP2007521312A priority Critical patent/JP4827144B2/ja
Priority to CN2006800286549A priority patent/CN101287986B/zh
Publication of WO2006134942A1 publication Critical patent/WO2006134942A1/ja
Priority to US11/956,002 priority patent/US8072008B2/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/745Carbon nanotubes, CNTs having a modified surface
    • Y10S977/746Modified with biological, organic, or hydrocarbon material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/745Carbon nanotubes, CNTs having a modified surface
    • Y10S977/746Modified with biological, organic, or hydrocarbon material
    • Y10S977/747Modified with an enzyme
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/92Detection of biochemical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/924Specified use of nanostructure for medical, immunological, body treatment, or diagnosis using nanostructure as support of dna analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/953Detector using nanostructure
    • Y10S977/957Of chemical property or presence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/953Detector using nanostructure
    • Y10S977/957Of chemical property or presence
    • Y10S977/958Of biomolecule property
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/953Detector using nanostructure
    • Y10S977/957Of chemical property or presence
    • Y10S977/958Of biomolecule property
    • Y10S977/959Of disease state

Definitions

  • the present invention relates to a field effect transistor. Furthermore, the present invention relates to a biosensor including the same and a method for detecting a substance to be detected using the same.
  • a field effect transistor (hereinafter abbreviated as “FET”) has three terminals: a source electrode, a drain electrode, and a gate electrode, and current flowing through a channel connected to the source electrode and the drain electrode is gated.
  • FET field effect transistor
  • a semiconductor element controlled by an electric field generated in a voltage applied to an electrode For example, a carbon nanotube field effect transistor (hereinafter abbreviated as “CNT-FET”) in which a channel between a source electrode and a drain electrode is composed of carbon nanotubes (hereinafter abbreviated as “CNT”) is known. Yes.
  • a source electrode 3 and a drain electrode 4 and a channel connecting these electrodes are formed on an insulating film 1 formed on the first surface of a substrate 2.
  • the gate electrode 5 is disposed on the second surface and electrically connected to the silicon substrate 2.
  • Such a FET is referred to as a back gate field effect transistor (hereinafter abbreviated as “back gate FET”) based on the arrangement of the gate electrodes.
  • a source electrode 3, a drain electrode 4, and a gate electrode 5 are disposed on an insulating film 1 formed on the first surface of a substrate 2.
  • Such FETs are called side-gate field effect transistors (hereinafter abbreviated as “side-gate FETs”) based on the arrangement of the gate electrodes.
  • Patent Document 1 International Publication No. 2004/104568 Pamphlet
  • Non-patent document 1 Kazuhiko Matsumoto, “Application of carbon nanotube SET / FET sensor”, Electrotechnical Society of Electronic Materials, Vol.EFM-03, No.35-44, 2003.12.19, p.47-50 Invention Disclosure of
  • the gate electrode can be brought close to the channel through only the insulating film formed on the substrate by acting as the back gate electrode. Therefore, it has been considered that the gate electrode needs to be in electrical contact with the substrate. In other words, when the gate electrode is placed in direct electrical contact with the electrically conductive substrate, the electric field changes in the vicinity of the channel due to the potential change of the gate electrode, that is, source-drain current or source-drain voltage. It was considered necessary to enhance the action of
  • the gate electrode since the source-drain current is controlled by the gate electrode, it was considered necessary to arrange the gate electrode close to the channel. That is, the gate electrode arranged on the same surface as the substrate on which the source electrode, the drain electrode and the channel are arranged is brought close to the channel formed between the source electrode and the drain electrode up to the nanometer level as much as possible. It was thought necessary to increase the effect on source-drain current or source-drain voltage.
  • the present inventor uses a material that forms a source electrode, a drain electrode, and a channel on an insulating film in a FET, and causes polarization due to the movement of free electrons in the supporting substrate on which the insulating film is formed.
  • the present inventor is studying improvement of FET performance and application of the FET to a biosensor.
  • the gate electrode of the FET is the back surface of the substrate on which the source electrode, the drain electrode, and the channel are arranged. In this case, the present inventors have found that the source-drain current can be controlled even if an insulating film is formed on the rear surface of the substrate, and the present invention has been completed.
  • the present inventor has found that when the gate electrode of the FET is disposed on the same surface as the substrate surface on which the source electrode, the drain electrode and the channel are disposed, the source electrode, the drain electrode and the channel are separated from each other. The inventors have found that even if they are spaced apart to some extent, they can control the source-drain current S and have completed the present invention.
  • the inventor of the present invention separates the source electrode, the drain electrode, and the channel on which the channel is disposed, but the gate electrode disposed on a separate electrically connected substrate is a source-drain The inventors have found that the current can be controlled and completed the present invention.
  • the first of the present invention relates to the following field effect transistor (FET).
  • the channel includes an ultrafine fiber body, and the gate electrode causes polarization due to movement of free electrons in the substrate.
  • the substrate includes a support substrate made of a semiconductor or metal, a first insulating film formed on the first surface of the support substrate, and a second insulation formed on the second surface of the support substrate.
  • the source electrode, the drain electrode and the channel are disposed on the first insulating film, and the gate electrode is disposed on the second insulating film, [1] or [ [2]
  • the substrate includes a support substrate made of a semiconductor or metal, and a first of the support substrates.
  • the apparatus further includes a second substrate electrically connected to the substrate, wherein the substrate is formed on a first surface of the support substrate and a support substrate made of a semiconductor or metal.
  • the source electrode, the drain electrode and the channel are disposed on the first insulating film, and the gate electrode is disposed on the first surface of the second substrate.
  • the field effect transistor according to [1] or [2].
  • the second substrate includes a support substrate made of a semiconductor or a metal, and a second insulating film formed on a first surface of the support substrate, and the gate electrode includes the second electrode
  • the field effect transistor according to [7] which is disposed on an insulating film.
  • the second surface of the substrate and the second surface of the second substrate are electrically connected by a conductive substrate or a conductive member.
  • [7] or [8] The field-effect transistor described.
  • this invention relates to the biosensor apparatus shown below.
  • a biosensor device comprising an element portion having a field effect transistor to which a substance to be detected is bound, wherein the field effect transistor is the field effect transistor according to [1] to [9]. Biosensor device.
  • the element unit can be attached to and detached from the biosensor device main body, and the source electrode and the drain electrode pass current through the channel when the element unit is mounted on the biosensor device main body,
  • a biosensor device body having the substrate, a source electrode, a drain electrode, and a channel, the second substrate, a gate electrode, and the second substrate or gate electrode And an element portion having a substance-recognizing molecule to be detected.
  • the element portion is detachable from the biosensor device body, and the gate electrode is attached to the biosensor device body.
  • the biosensor device having the field effect transistor according to any one of [7] to [9], wherein the current flowing in the channel is controlled.
  • the present invention relates to the following chip.
  • a chip comprising an element part detachable from the biosensor device body according to [11] or [12].
  • the present invention relates to the following biosensor device.
  • the biosensor device according to any one of [10] to [: 12], further comprising: a concentration determination unit that determines the concentration of a substance to be detected contained in the unknown sample using the calibration curve.
  • the concentration determining means includes means for measuring a source-drain current or a gate voltage at a predetermined point of the I-V characteristic curve or I-Vg characteristic curve for a sample whose concentration of the substance to be detected is unknown.
  • concentration calculation means for obtaining the concentration of the substance to be detected from the calibration curve based on the measured source / drain current or gate voltage.
  • the present invention relates to the following system, biosensor terminal device, and information processing device.
  • a biosensor capable of transmitting the detection result and detection position information of the substance to be detected Sensor terminal device, and an information processing device that receives and outputs the detection result and detection position information, and the biosensor terminal device is [10] to [: 12] or [14] to [: 17]
  • the biosensor terminal device further transmits detection time information, and the information processing device receives the detection time information and outputs the received detection time information.
  • the information processing device receives the detection time information and outputs the received detection time information.
  • the FET of the present invention can take various arrangements of gate electrodes, which is difficult with conventional FETs.
  • the FET of the present invention has excellent electrical characteristics. Therefore, by applying the FET of the present invention to a biosensor in particular, a biosensor having a higher degree of structural freedom than a conventional biosensor and exhibiting remarkably superior detection sensitivity can be provided.
  • the biosensor of the present invention can be miniaturized, it can be applied to scenes of use that have been difficult with conventional biosensors, such as outdoor detection.
  • FIG. 1 (A) is a schematic diagram of a conventional back gate FET.
  • (B) is a schematic diagram of a conventional side-gate FET.
  • 1 is an insulating film
  • 2 is a substrate
  • 3 is a source electrode
  • 4 is a drain electrode
  • 5 is a gate electrode.
  • FIG. 2 is a diagram showing an example of a back gate FET of the present invention.
  • 100 is the back gate type FET of the present invention
  • 102 is the support substrate
  • 104 is the first insulating film
  • 106 is the second insulating film
  • 108 is the source electrode
  • 110 is the drain electrode
  • 112 is the ultrafine fiber body
  • 114 Indicates a gate electrode.
  • FIG. 3 is a diagram showing an example of a side gate type FET of the present invention.
  • 150 is a side gate type FET of the present invention
  • 102 is a supporting substrate
  • 104 is a first insulating film
  • 106 is a second insulating film
  • 108 is a source electrode
  • 110 is a drain electrode
  • 112 is an ultrafine fiber body
  • 114 Indicates a gate electrode. 4] It is a diagram showing an example of the separation gate type FET of the present invention.
  • 200 is an isolated gate FET of the present invention
  • 102 is a first support substrate
  • 104 is a first insulating film
  • 106 is a second insulating film
  • 108 is a source electrode
  • 110 is a drain electrode
  • 112 is ultrafine Fibrous body
  • 202 is a second support substrate
  • 204 is a third insulating film
  • 206 is a fourth insulating film
  • 208 is a gate electrode
  • 210 is a conductive substrate
  • 212 is an ultrafine fiber element portion
  • 214 is A gate element part is shown.
  • FIG. 5 is a diagram showing an example of the separation gate type FET of the present invention.
  • 300 is the isolated gate FET of the present invention
  • 102 is the first support substrate
  • 104 is the first insulating film
  • 106 is the second insulating film
  • 108 is the source electrode
  • 110 is the drain electrode
  • 112 is ultrafine Fibrous body
  • 202 is a second support substrate
  • 204 is a third insulating film
  • 206 is a fourth insulating film
  • 208 is a gate electrode
  • 212 is an ultrafine fiber element part
  • 214 is a gate element part
  • 302 is A first conductive substrate
  • 304 is a second conductive substrate
  • 306 is a conductive member.
  • FIG. 6 A diagram showing an example of the FET substrate of the present invention.
  • Reference numeral 400 denotes a supporting substrate
  • 402 denotes a first insulating film
  • 404 denotes a second insulating film.
  • a diagram showing a state after adding a sample solution to the FET of the present invention (A) is a plan view and (B) is a cross-sectional view.
  • 1 is a first insulating film
  • 3 is a source electrode
  • 4 is a drain electrode
  • 28 is a sample solution.
  • FIG. 8 A diagram showing an example of the FET of the present invention that has been subjected to a technique for preventing the influence of the sample solution, (A) is a plan view, and (B) is a cross-sectional view.
  • 1 is the first insulating film
  • 3 is the source electrode
  • 4 is the drain electrode
  • 7 is the ultrafine fiber
  • G is the gap
  • L3 is the length of the electrode
  • W1 is the width of the tip of the electrode
  • W2 is the electrode Indicates the width of the part to which the probe is applied.
  • FIG. 9 is a diagram showing a state after adding a sample solution to the FET of the present invention in FIG. 8, (A) is a plan view, and (B) is a sectional view.
  • 1 is a first insulating film
  • 3 is a source electrode
  • 4 is a drain electrode
  • 7 is an ultrafine fiber body
  • 28 is a sample solution
  • 29 is a portion not covered with the sample solution
  • FIG. 10 (A) is a diagram showing an example of an FET of the present invention in which an ultrafine fiber body is protected with an insulating protective film. It is. (B) is a view showing an example of the FET of the present invention in which the connection site between the ultrafine fiber body and the electrode is protected by an insulating protective film.
  • 7608 is the support substrate
  • 7607 is the first insulating film
  • 7609 is the substrate
  • 7610 is the source electrode
  • 7611 is the drain electrode
  • 7612 is the ultrafine fiber body
  • 7613 ⁇ is the detection substance recognition molecule
  • 7616 is the second insulation 7803b is a gate electrode
  • 8501 is an insulating protective film.
  • FIG. 1 is a support substrate
  • 2 is a first insulating film
  • 7 is CNT
  • 9a and 9b are catalysts
  • 10 is a reaction vessel
  • 11 is a hydrocarbon gas.
  • [12] It is a diagram showing an example of connecting the catalysts with CNTs by the vapor phase growth method.
  • 1 is the first insulating film
  • 7 is CNT
  • 9a and 9b are catalysts
  • 22a and 22b are source and drain electrodes to be formed later.
  • FIG. 13 is a diagram showing an example of the structure of a catalyst used in the vapor phase growth method.
  • 9 is the catalyst
  • 25 is the support layer
  • 26 is the intermediate layer
  • 27 is the top layer
  • D is the diameter
  • H is the total height.
  • FIG. 14 It is a diagram showing an example of connecting the catalysts with CNTs by the vapor phase growth method.
  • 1 denotes a first insulating film
  • 7 denotes CNT
  • 9b— :! to 9b—6 denote catalysts
  • 22a and 22b denote source and drain electrodes to be formed later.
  • FIG. 15 is a view showing an arrangement example of catalysts.
  • 1 is a first insulating film
  • 9a— :! to 9a—6 and 9b—l to 9b—6 are catalysts
  • L1 is a distance between adjacent catalysts
  • L2 is a distance between catalyst rows.
  • Sono 16 It is a figure for explaining an example combining the vapor phase growth method and the dispersion fixing method.
  • (A) is a view showing a state in which CNTs are formed by a vapor phase growth method
  • (B) is a view showing a state in which CNTs are further provided by a dispersion fixing method.
  • 3 is a source electrode
  • 4 is a drain electrode
  • 44 is CNT formed by a vapor phase growth method
  • 43 is CNT fixed by a dispersion fixing method.
  • (A) is a view showing an example in which a CNT affinity substance fixes CNT
  • (B) is a view showing an example in which CNT is not fixed. 45a and 45b indicate CNT.
  • FIG. 18 is a diagram showing I_Vg characteristics of a back gate type FET of the present invention.
  • FIG. 19 is a diagram showing I_V characteristics of a back gate type FET of the present invention.
  • FIG. 20 is a diagram showing I_Vg characteristics of the back gate FET of the present invention.
  • FIG. 21 is a diagram showing IV characteristics of the side-gate FET of the present invention.
  • FIG. 22 (A) is a diagram showing the IVg characteristics of the side-gate FET of the present invention when the distance between the gate electrode and CNT is 50 ⁇ m, and (B) is the diagram of the gate electrode and CNT. It is a figure which shows the I_Vg characteristic of the side gate type FET of this invention in case a space
  • FIG. 23 is a diagram showing the I_V characteristics of the isolated gate FET of the present invention when the distance between the ultrafine fiber element part and the gate element part is 3 mm.
  • FIG. 24 This is a graph showing the I_Vg characteristics of the isolated gate FET of the present invention when the distance between the ultrafine fiber element part and the gate element part is 3 mm.
  • the back-gate FET of the present invention it is a diagram showing an example in which a molecule to be detected is bound to an ultrafine fiber.
  • 100 is a back gate FET of the present invention
  • 102 is a supporting substrate
  • 104 is a first insulating film
  • 106 is a second insulating film
  • 108 is a source electrode
  • 110 is a drain electrode
  • 112 is an ultrafine fiber body
  • 114 denotes a gate electrode
  • 472 denotes a substance to be detected
  • 482 denotes a sample solution.
  • FIG. 30 is a diagram showing an example in which a substance to be detected is bound to an insulating protective film in the back gate type FET of the present invention.
  • 100 is a back gate FET of the present invention
  • 102 is a supporting substrate
  • 104 is a first insulating film
  • 106 is a second insulating film
  • 108 is a source electrode
  • 110 is a drain electrode
  • 112 is an ultrafine fiber body
  • 114 denotes a gate electrode
  • 472 denotes a substance to be detected
  • 482 denotes a sample solution
  • 640 denotes an insulating protective film.
  • the substance-recognizing molecule is second insulated. It is a figure which shows the example combined with the film
  • 510, 520, and 520a are the back gate type FETs of the present invention, 102 is the support substrate, 104 is the first insulating film, 106 is the second insulating film, 108 is the source electrode, 110 ° to drain electrode, and 112 ° to ultra fine Itoda fiber body, 512, 522, 522a and 522b are gate electrodes, 472, 472a and 472b are detected substance recognition molecules, and 490, 490a and 490b are sample solutions.
  • FIG. 32 is a diagram showing another example in which a substance to be detected is bound to a second insulating film in the back gate type FET of the present invention.
  • 102 is a supporting substrate
  • 104 is a first insulating film
  • 106 is a second insulating film
  • 108 is a source electrode
  • 110 is a drain electrode
  • 112 is an ultrafine fiber body
  • 114 is a gate electrode
  • 116 is a recessed sidewall
  • 472 Represents a target substance recognition molecule
  • 482 represents a sample solution.
  • 530 and 530a are back gate type FETs of the present invention
  • 102 is a supporting substrate
  • 104 is a first insulating film
  • 106 is a second insulating film
  • 108 is a source electrode
  • 11 ⁇ or drain electrode 112 ⁇ or ultrafine yarn field Fibrous bodies
  • 532, 532a and 532bi gate electrodes, 472, 472a and 472b are detected substance recognition molecules
  • 490, 490a and 490b are sample solutions.
  • FIG. 34 is a diagram showing an example in which a substance to be detected is bound to an ultrafine fiber in the side-gate FET of the present invention.
  • Reference numeral 102 denotes a supporting substrate
  • 104 denotes a first insulating film
  • 108 denotes a source electrode
  • 110 denotes a drain electrode
  • 112 denotes an ultrafine fiber body
  • 114 denotes a gate electrode
  • 472 denotes a substance to be detected
  • 490 denotes a sample solution.
  • FIG. 35 is a diagram showing an example in which a substance to be detected is bound to an insulating protective film in the side gate type FET of the present invention.
  • 102 is a supporting substrate
  • 104 is a first insulating film
  • 108 is a source electrode
  • 110 is a drain electrode
  • 112 is an ultrafine fiber body
  • 114 is a gate electrode
  • 472 is a substance to be detected
  • 490 is a sample solution
  • 640 is a sample solution
  • An insulating protective film is shown.
  • FIG. 36 is a diagram showing an example in which a substance to be detected recognition molecule is bound to a first insulating film in the side-gate FET of the present invention.
  • Reference numeral 102 denotes a supporting substrate
  • 104 denotes a first insulating film
  • 108 denotes a source electrode
  • 110 denotes a drain electrode
  • 112 denotes an ultrafine fiber body
  • 114 denotes a gate electrode
  • 472 denotes a substance to be detected
  • 490 denotes a sample solution.
  • FIG. 37 is a diagram showing another example in which a substance to be detected is bound to a second insulating film in the side gate type FET of the present invention.
  • 102 is a supporting substrate
  • 104 is a first insulating film
  • 106 is a second insulating film
  • 108 is a source electrode
  • 110 is a drain electrode
  • 112 is an ultrafine fiber body
  • 114 is a gate electrode
  • 116 is a recessed sidewall
  • 472 Represents a target substance recognition molecule
  • 482 represents a sample solution.
  • FIG. 38 is a diagram showing an example in which a substance to be detected is bound to a gate electrode in the side gate type FET of the present invention.
  • 102 is a support substrate
  • 104 is a first insulating film
  • 108 is a source electrode
  • 110 is a drain electrode
  • 112 is an ultrafine fiber body
  • 114 is a gate electrode
  • 472 is a substance to be detected
  • 490 is a sample solution Show.
  • FIG. 39 is a diagram showing an example in which a substance to be detected recognition molecule is bonded to an insulating film of a gate element part in the separated gate FET of the present invention.
  • 600 is the isolation gate type FET of the present invention
  • 102 is the first support substrate
  • 104 is the first insulating film
  • 106 is the second insulating film
  • 108 is the source electrode
  • 110 is the drain electrode
  • 112 is the ultrafine fiber body 202 is a second supporting substrate
  • 204 is a third insulating film
  • 206 is a fourth insulating film
  • 472 is a substance to be detected
  • 490 is a sample solution
  • 602 is a gate electrode
  • 210 is a conductive substrate
  • Reference numeral 212 denotes an ultrafine fiber element part
  • 214 denotes a gate element part.
  • FIG. 40 A diagram showing another example in which a substance to be detected recognition molecule is bonded to an insulating film of a gate element portion in the separated gate type FET of the present invention.
  • 610 and 610a are gate element parts
  • 202 is a second supporting substrate
  • 204 is a third insulating film
  • 206 is a fourth insulating film, 472, 472a and 472bi, and 490
  • Samples 490a and 490bi, 612, 612a and 612b are gate electrodes.
  • FIG. 41 is a diagram showing an example in which a substance to be detected is bound to a gate electrode of a gate element part in the separated gate FET of the present invention.
  • 620 and 620a are gate element parts
  • 202 is a second support substrate
  • 204 is a third insulating film
  • 206 is a fourth insulating film
  • 472, 472a and 472bf , 490a and 490bf, and 622, 622a and 622b denote gate electrodes.
  • G. 42 In the separated gate FET of the present invention, when there are a plurality of gate element portions, it is a diagram showing an example in which a plurality of types of detection substance recognition molecules are bound to each gate electrode.
  • 630 is a book Invented isolation gate type FET, 102 is a first support substrate, 104 is a first insulating film, 106 is a second insulating film, 108 is a source electrode, 110 is a drain electrode, 112 is an ultrafine fiber body, 202 is Second supporting substrate, 204 is a third insulating film, 206 is a fourth insulating film, 472a and 472b are target substance recognition molecules, 490a and 490b are sample solutions, 622 is a gate electrode, 210 is a conductive substrate , 212 is an ultrafine fiber element part, and 214a and 214b are gate element parts.
  • the separated gate FET of the present invention it is a diagram showing an example in which a plurality of types of substances to be detected are bonded to the insulating film of the gate element portion.
  • 800 is the isolated gate FET of the present invention
  • 102 is the first support substrate
  • 104 is the first insulating film
  • 106 is the second insulating film
  • 108 is the source electrode
  • 110 is the drain electrode
  • 112 is ultrafine Fibrous body
  • 202 is a second supporting substrate
  • 204 is a third insulating film
  • 206 is a fourth insulating film
  • 472a and 472b are target substance recognition molecules
  • 490a and 490b are sample solutions
  • 612a and 612b are gates
  • Reference numeral 210 denotes a conductive substrate
  • 212 denotes an ultrafine fiber element portion
  • 214 denotes a gate element portion.
  • FIG. 44 is a diagram showing another example in which a plurality of types of substance-recognized molecules are bonded to the insulating film of the gate element portion in the separated gate FET of the present invention.
  • 900 is the separation gate type FET of the present invention
  • 102 is the first supporting substrate
  • 104 is the first insulating film
  • 106 is the second insulating film
  • 108 is the source electrode
  • 110 is the drain electrode
  • 112 is ultrafine Fibrous body
  • 202 is a second support substrate
  • 204 is a third insulating film
  • 206 is a fourth insulating film
  • 472a and 472b are analyte recognition molecules
  • 490a and 490b are sample solutions
  • 612a and 612b are gates
  • Reference numeral 302 denotes a first conductive substrate
  • 304 denotes a second conductive substrate
  • 306 denotes a conductive member
  • 212 denotes an ultrafine fiber element portion
  • FIG. 45 is a diagram for explaining a method for binding a substance-recognizing molecule.
  • 50 is an antibody
  • 51 is a histag
  • 52 is NTA
  • 53 is an IgG binding protein
  • 54 is a bivalent cross-linking reagent
  • 55 and 56 are functional groups.
  • FIG. 46 is a schematic view showing an example of a biosensor device of the present invention.
  • 7601 indicates a biosensor device body
  • 7604 indicates a display unit
  • 7702 indicates an element unit.
  • 7601 is the biosensor device body
  • 7602 is the element part
  • 760 3 is the power supply
  • 7604 is the display
  • 7605 is the ultra-fine fiber element
  • 7607 is the first insulating film
  • 76 08 ⁇ support substrate is the first insulating film
  • 7609 ⁇ substrate 7610 source electrode
  • 7613 is a substance to be detected
  • 7614 is a gate electrode
  • 7615 is a sample solution
  • 7616 is a second insulating film.
  • FIG. 48 (iii) is a cross-sectional view showing a schematic configuration of an example of a biosensor device having the side gate type FET of the present invention in an element portion.
  • ( ⁇ ) is a plan view of a chip used in the biosensor device of ( ⁇ ).
  • 7601 is the biosensor device main body
  • 7602 is the element part
  • 7603 is the power supply
  • 7604 is the display part
  • 7605 is the ultrafine fiber element
  • 7607 is the first insulating film
  • 7608 is the support substrate
  • 7609f substrate and 7610 ⁇ source Electrode, 7611 f to drain electrode, 7612 f to ultrafine fiber body, 7613 to be detected substance recognition molecule, 7614 to gate electrode, 7615 to sample solution, 7616 f to second insulating film, 7702 f to chip, 7703 f to case, 7704f shows conductive pins.
  • FIG. 49 is a cross-sectional view showing a schematic configuration of an example of a biosensor device having a gate element portion of an isolated gate FET of the present invention in the element portion.
  • (B) is a perspective view of a chip used in the biosensor device of (A).
  • (C) is a cross-sectional view of a chip used in the biosensor device of (A).
  • 7601 is a biosensor device body
  • 7603 is a power supply
  • 7604 is a display unit
  • 7605 is an ultrafine fiber element
  • 7607 is a first insulating film
  • 7608 is a first support substrate
  • 760 9 ⁇ substrate 7610 source electrode , 7611 ⁇ drain electrode, 7612 ⁇ ultrafine yarn fiber body
  • 7613 is a substance recognition molecule to be detected
  • 7614 is a gate electrode
  • 7615 is a sample solution
  • 7616 is a second insulating film
  • 7617 is a second supporting substrate
  • 7618 is the third insulating film
  • 7619 is the fourth insulating film
  • 7 620 ⁇ up to the second substrate 7703 up to the case, 7704 ⁇ up to the conductive pin
  • 7802 ⁇ up to the element ⁇ 7803, 78 03a and 7803b are the conductive substrate
  • 7804 is Indicates a chip.
  • FIG. 50 is a cross-sectional view showing a schematic configuration of another example of a biosensor device having the gate element portion of the isolated gate FET of the present invention in the element portion.
  • (B) is a perspective view of a chip used in the biosensor device of (A).
  • (C) is a cross-sectional view of a chip used in the biosensor device of (A).
  • 7601 is a biosensor device body
  • 7603 is a power supply
  • 7604 is a display unit
  • 7605 is an ultrafine fiber element
  • 7607 is a first insulating film
  • 7608 is a first support substrate
  • 76 09f substrate 7610 ⁇ source electrode
  • 7611 f to drain electrode 7612 f to ultrafine yarn field filament housing
  • 761 3 to be detected substance recognition molecule 7614 to gate electrode
  • 7617 is the second supporting substrate
  • 7618 is the third insulating film
  • 7619 is the fourth insulating film, 7703 ⁇ case, 7802 ⁇ element ⁇ 7803a and 7803bi conductive conductive substrate, 7804 ⁇ chip, 7901 Indicates a plate electrode.
  • FIG. 51 is a cross-sectional view showing an example of a chip used in a biosensor device having the gate element portion of the separation gate type FET of the present invention in the element portion.
  • Reference numeral 7613 denotes a molecule to be detected
  • 7614 denotes a gate electrode
  • 7620 denotes a second substrate
  • 7704 denotes a conductive pin
  • 7803a denotes a conductive substrate
  • 780 4 ⁇ chip 8001 ⁇ connection terminal
  • 8002 f lid denotes a conductive substrate
  • (A) is a perspective view showing an example of a chip having a recess.
  • (B) is a sectional view showing an example of a chip having a recess.
  • (C) is a cross-sectional view showing another example of a chip having a recess.
  • 7614 ⁇ gate electrode, 7704 ⁇ conductive pin, 7803af conductive substrate, 8001 [connection terminal] 8101 indicates a chip having a recess.
  • FIG. 53 is a perspective view showing an example of a microplate-type chip.
  • B is a perspective view showing another example of a microplate-type chip.
  • C is a sectional view of the chip of (B). 7614 ⁇ gate electrode, 7803 ⁇ conductive substrate, 8001 connection terminal, 8201 mic plate type chip, 8202 socket, 8203 electrical contact.
  • FIG. 54 is a cross-sectional view showing an example of a chip having a back gate FET.
  • (Ii) is a cross-sectional view showing an example of a chip having a gate element portion of an isolated gate type FET.
  • 7 607 ⁇ 1st insulating film, 7608 support substrate, 7609 ⁇ substrate, 7610 ⁇ source electrode, 7611 drain electrode, 7612 ultrafine fiber, 7613 sensing substance recognition molecule, 7614 gate electrode, 7615 is the sample solution
  • 7617 is the second supporting substrate
  • 7618 is the third insulating film
  • 7620 ⁇ up to the second substrate 7703 gates, 7704 conductive pins
  • 780 3a is conductive 1 shows a conductive substrate.
  • FIG. 55 (A) is a diagram showing an example of a battery-driven biosensor device of a notebook PC.
  • (B) is a diagram showing an example of a battery-driven small biosensor device.
  • FIG. 56 is a diagram showing an IV characteristic curve when nickel ions are detected by the biosensor of the present invention.
  • FIG. 57 is a diagram showing an example of an I_V characteristic curve when an anti-HA antibody is detected by the biosensor of the present invention.
  • FIG. 58 is a view showing another example of an IV characteristic curve when an anti-HA antibody is detected by the biosensor of the present invention.
  • FIG. 59 is a diagram showing still another example of an IV characteristic curve when an anti-HA antibody is detected by the biosensor of the present invention.
  • FIG. 60 is a diagram showing still another example of the I_V characteristic curve when an anti-HA antibody is detected by the biosensor of the present invention.
  • FIG. 61 is a diagram showing still another example of the I_V characteristic curve when an anti-HA antibody is detected by the biosensor of the present invention.
  • FIG. 62 is a diagram showing still another example of the I_V characteristic curve when anti-HA antibody is detected by the biosensor of the present invention.
  • FIG. 63 is a characteristic diagram showing the relationship between the dilution rate of the anti-CaM antibody and the current value when the anti-CaM antibody is detected by the biosensor of the present invention.
  • FIG. 64 This is a graph showing Id Vg characteristics when the concentration of anti-CaM antibody is changed.
  • FIG. 66 (A) is a diagram showing a case where the noise sensor of the present invention is in a measurable state.
  • (B) is a diagram showing a case where the biosensor of the present invention is in a state where measurement is difficult.
  • 0 is the site where the target substance recognition molecule is bound
  • 1002 is the target substance recognition molecule
  • FIG. 67 is a block diagram showing an example of a configuration of a biosensor device of the present invention.
  • 1100 is a biosensor device
  • 1110 is a biosensor main body
  • 1120 is a computer
  • 1130 is a D / A converter
  • 212 is an ultrafine fiber element portion
  • 214a is a gate element portion.
  • FIG. 68 is a flowchart showing an example of a processing procedure of a calibration function.
  • FIG. 69 is a flowchart showing a procedure of 1-Vg characteristic measurement processing.
  • FIG. 70 is a flowchart showing a procedure of inflection point determination processing.
  • FIG. 71 is a flowchart showing the procedure of a calibration curve determination process.
  • FIG. 72 (A) is a diagram showing a plot of data obtained from the ⁇ -Vg characteristic of FIG. 64 on a graph.
  • (B) is a diagram showing a line drawn on the graph of (A) by the method of least squares.
  • FIG. 73 is a flowchart showing a modified example of the processing procedure of the calibration function.
  • FIG. 74 is a flow chart showing an example of a processing procedure of a measurement function possessed by the biosensor device of the present invention.
  • FIG. 75 is a schematic block diagram showing an example of the configuration of a distribution inspection system of the present invention.
  • 500 is a distributed inspection system
  • 600 is a biosensor terminal device
  • 700 is an information processing device
  • 800 is a communication line.
  • FIG. 76 is a block diagram showing an example of a configuration of a biosensor terminal device.
  • 600 is a biosensor terminal device
  • 605 is an object recognition element unit
  • 610 is an ultrafine fiber element unit
  • 615 is an input unit
  • 620 is a position specifying unit
  • 625 is a time specifying unit
  • 630 is a detection result analyzing unit
  • 635 Is a storage unit
  • 640 is a calibration curve database
  • 645 is a display unit
  • 650 is a transmission unit.
  • FIG. 77 is a block diagram illustrating an example of a configuration of an information processing device.
  • 700 is an information processing device,
  • 705 is a receiving unit
  • 710 is an input unit
  • 715 is an item information adding unit
  • 720 is a distribution map creating unit
  • 25 is a distribution analysis unit
  • 730 is a storage unit
  • 735 is an item information database
  • 740 is a map information database
  • 745 is a distribution map database
  • 750 is an output unit.
  • FIG. 78 is a diagram showing an example of detection data transmitted by the biosensor terminal device.
  • FIG. 79 is a diagram showing an example of data after the item information adding unit assigns item information.
  • FIG. 80 is a diagram showing an example of a distribution map created by a distribution map creation unit.
  • FIG. 81 is a flowchart showing an operation procedure of the biosensor terminal device.
  • FIG. 82 is a flowchart showing an operation procedure of the information processing apparatus.
  • the FET of the present invention electrically supports a support substrate, a first insulating film covering the first surface of the support substrate, a source electrode and a drain electrode disposed on the first insulating film, and a source electrode and a drain electrode. And a gate electrode for controlling the current flowing in the ultrafine fiber body by causing polarization due to the movement of free electrons in the substrate.
  • a first example of the FET of the present invention includes a support substrate, a first insulating film covering the first surface of the support substrate, a source electrode and a drain electrode disposed on the first insulating film, and a source With electrodes It has an ultrafine fiber body which is a channel for electrically connecting the drain electrode, a second insulating film covering the second surface of the support substrate, and a gate electrode arranged on the second insulating film.
  • a back gate type FET of the present invention An example of the back gate type FET of the present invention is shown in FIG.
  • a second example of the FET of the present invention includes a support substrate, a first insulating film covering the first surface of the support substrate, a source electrode and a drain electrode disposed on the first insulating film, and a source An ultrafine fiber body which is a channel for electrically connecting the electrode and the drain electrode, and a gate electrode disposed on the first insulating film, and the distance between the gate electrode and the ultrafine fiber body is 10 xm or more.
  • the FET of the second example may further have a second insulating film covering the second surface of the support substrate.
  • side-gate FET of the present invention Example of side-gate FET of the present invention is shown in FIG.
  • a third example of the FET of the present invention includes a support substrate, a first insulating film covering the first surface of the support substrate, a source electrode and a drain electrode disposed on the first insulating film, and a source
  • the ultrafine fiber body which is a channel electrically connecting the electrode and the drain electrode, the supporting substrate, and the first insulating film are separated from each other, but are electrically connected to the second substrate, and the second A gate electrode is disposed on the first surface of the substrate.
  • the gate electrode disposed on the second substrate is disposed so that polarization due to the movement of free electrons occurs in the first substrate.
  • an FET is referred to as an “isolated gate FET of the present invention”.
  • the element portion having the support substrate, the first insulating film, the source electrode and the drain electrode, and the ultrafine fiber body is referred to as an “ultrafine fiber element portion”, and the element having the second substrate and the gate electrode.
  • the child part is referred to as a “gate element part”. Examples of the isolation gate type FET of the present invention are shown in FIGS.
  • the FET of the present invention has a substrate. On the substrate, a source electrode and a drain electrode connected to each other by an ultrafine fiber body that is a channel are arranged with an insulating film formed on the substrate interposed therebetween.
  • the structure and material of the substrate are not particularly limited as long as polarization (described later) due to the movement of free electrons occurs in the substrate by applying a voltage to the gate electrode (described later).
  • the substrate includes a support substrate made of a semiconductor or metal, a source electrode, and a drain. On the surface on which the in-electrode and the channel are disposed, the support substrate and the insulating film that electrically insulates the source electrode, the drain electrode, and the channel are provided.
  • FIG. 6 shows an example of the substrate.
  • the substrate shown in FIG. 6A includes a support substrate 400 and a first insulating film 402.
  • the substrate shown in FIG. 6B includes a support substrate 400, a first insulating film 402, and a second insulating film 404.
  • the support substrate is preferably a semiconductor or a metal.
  • the semiconductor include, but are not limited to, group 14 elements such as silicon and germanium, m_v compounds such as gallium arsenide and indium phosphide, and II-VI compounds such as zinc telluride.
  • the metal is not particularly limited, and examples thereof include aluminum and Nikkenore.
  • the thickness of the support substrate is not particularly limited, but it is preferably 0.:! To 1.0 mm, particularly preferably 0.3 to 0.5 mm.
  • the material of the first insulating film formed on the first surface of the support substrate is not particularly limited.
  • a functional group such as a hydroxyl group, an amino group, or a carboxyl group may be introduced on the surface of the first insulating film.
  • the thickness of the first insulating film is not particularly limited, but is preferably 10 to:! OOOnm force S, particularly preferably 20 to 50 Onm. If the first insulating film is too thin, tunnel current may flow. On the other hand, if the first insulating film is too thick, it may be difficult to control the source / drain current using the gate electrode.
  • the material of the second insulating film formed on the second surface of the support substrate (the back surface of the first surface) is the same as the material of the first insulating film.
  • the thickness of the second insulating film is not particularly limited, but as with the first insulating film, 10 nm or more is preferable, and 20 nm or more is particularly preferable.
  • the thickness of the second insulating film is not particularly limited, but like the first insulating film, lOOOnm or less is preferable, and particularly 500 nm or less. preferable.
  • the surface (first surface or second surface) covered with the insulating film of the supporting substrate is preferably smooth. That is, the interface between the support substrate and the insulating film is preferably smooth. Branch This is because if the surface of the holding substrate is smooth, the reliability of the insulating film covering the surface increases.
  • the surface of the supporting substrate that is covered with the insulating film is not particularly limited, but is preferably polished. The smoothness of the surface of the support substrate can be confirmed with a surface roughness measuring machine or the like.
  • the source electrode and the drain electrode are disposed on the first insulating film.
  • the material of the source electrode and the drain electrode is not particularly limited, but is, for example, a metal such as gold, platinum, or titanium.
  • the source electrode and the drain electrode are formed by evaporating these metals on the first insulating film.
  • the source electrode and the drain electrode may have a multilayer structure of two or more kinds of metals. For example, a gold layer may be superimposed on a titanium layer. When depositing metal, it is preferable to transfer the pattern using lithography.
  • the distance between the source electrode and the drain electrode is not particularly limited, but is usually about 2 to 10 zm. This interval may be further reduced in order to facilitate the connection between the electrodes by the ultrafine fiber body.
  • the FET of the present invention can be applied to a noise sensor.
  • a force S that allows a substance-to-be-detected molecule to be bound to an ultrafine fiber body that connects a source electrode and a drain electrode.
  • a sample solution containing a substance to be detected may be added onto the source electrode, the drain electrode, and the channel.
  • the added sample solution 28 covers the source electrode 3 and the drain electrode 4, a film is formed between the probe and the electrode of the current measuring device (for example, a prober), Source / drain current may not be measured accurately.
  • the source electrode and the drain electrode in the FET of the present invention are not entirely covered by the added sample solution.
  • the length L3 of both electrodes is 500 xm or more
  • the width W1 of the tip of both electrodes is about 10 zm
  • the width W2 of the body of both electrodes is about 150 zm I'll do it.
  • the probe of the measuring device may be applied to the portions of the source electrode 3 and the drain electrode 4 that are not covered with the sample solution 28. [0036] 1 3.
  • the source electrode and the drain electrode arranged on the first insulating film are electrically connected by an ultrafine fiber body.
  • the ultrafine fiber body that connects the source electrode and the drain electrode acts as a channel.
  • the ultrafine fiber body is a fiber body having a diameter of several nm having electrical conductivity.
  • the ultrafine fiber is not particularly limited, and examples thereof include CNT, DNA, conductive polymer, silicon fiber, silicon whisker, and graphene. Of these, CNT is preferred.
  • the number of ultrafine fiber bodies connecting the source electrode and the drain electrode may be one or more.
  • the state of the ultrafine fiber body connecting the source electrode and the drain electrode can be confirmed by AFM. There may be a gap between the ultrafine fiber body and the substrate.
  • the CNT When the ultrafine fiber body is CNT, the CNT may be either single-wall CNT or multi-wall CNT, but single-wall CNT is preferred. Also, CNTs may have defects. “Defect” means a state in which the carbon 5-membered ring or 6-membered ring constituting the CNT is opened. CNTs with defects introduced are forces that are presumed to be connected by force, but the actual structure is not clear. The method for introducing defects into the CNT is not particularly limited, but for example, the CNT may be annealed.
  • the ultrafine fiber body may be protected by an insulating protective film in order to prevent damage.
  • the entire FET can be ultrasonically cleaned, or cleaned using a strong acid or a strong base. Furthermore, by providing an insulating protective film, damage to the ultrafine fiber body is prevented, so that the lifetime of the FET can be significantly extended.
  • the ultrafine fiber body is CNT
  • the CNT easily interacts with various molecules such as water and changes its electronic state.
  • This change in the electronic state appears as a change in the source-drain current, and may be a noise source depending on the sensor mode. Therefore, the entire CNT, and part or all of the source electrode and drain electrode may be covered with an insulating protective film as necessary. As a result, the interaction between the CNT and the vapor of the sample solution is hindered, and noise can be reduced.
  • the insulating protective film is not particularly limited, for example, a film formed of an insulating adhesive And a passivation film.
  • the insulating protective film is a silicon oxide film, a substance-recognizing molecule (for example, an antibody) can be easily bound to the insulating protective film.
  • FIG. 10 is a view showing an example of the back gate type FET of the present invention in which the ultrafine fiber body is protected by the insulating protective film.
  • the entire ultrafine fiber body 7612 is protected with an insulating protective film 8501.
  • the connection portion between the ultrafine fiber body 7612 and the source electrode 7610 and the connection portion between the ultrafine fiber body 7612 and the drain electrode 7611 are protected by an insulating protective film 8501.
  • the substance-recognized molecule 7613 (described later) can be directly bound to the ultrafine fiber body 7612, so the sensitivity when used as a biosensor is improved, and single molecule detection is possible. Can be.
  • protecting the contact areas that are susceptible to damage can extend the life and prevent noise.
  • the source electrode and the drain electrode may be electrically connected with an ultrafine fiber body by an arbitrary method.
  • a method of electrically connecting the source electrode and the drain electrode with the ultrafine fiber body will be described in the case where the ultrafine fiber body is CNT.
  • the method of connecting the source electrode and the drain electrode with CNTs is not particularly limited, and examples thereof include (A) vapor phase growth method and (B) dispersion fixing method.
  • A vapor phase growth method
  • B dispersion fixing method
  • connection by the vapor phase growth method is performed by the following procedure, for example. (1) Place the catalyst at the site where the source and drain electrodes are to be formed on the substrate, and (2) place the substrate on which the catalyst is placed in the presence of hydrocarbon gas (such as methane gas) that is the raw material for CNT. (3) Electrodes are formed by producing CNTs with (a voltage may be applied between the catalysts at this time).
  • hydrocarbon gas such as methane gas
  • FIG. 11 A schematic diagram of connection by vapor deposition is shown in FIG.
  • 1 is a support substrate
  • 2 is a first insulating film
  • 9a and 9b are catalyst layers made of iron or the like
  • 10 is a reaction vessel
  • 11 is a hydrocarbon gas that is a raw material for NT.
  • the temperature during the reaction may be about 700 to 900 ° C. Adjust the catalyst material and shape, applied voltage, type and amount of hydrocarbon gas, etc. By doing so, a desired CNT7 can be formed.
  • CNT7 is, for example, a length of several ⁇ m (for example, about 3 ⁇ ), a diameter of about several nm, and is an ultrafine fibrous structure.
  • the method of disposing the catalyst at the site where the source electrode and drain electrode are to be formed is not particularly limited.
  • metal may be deposited by electron beam lithography.
  • the catalyst is a metal that is the growth nucleus of CNTs.
  • the metal used as a catalyst is not specifically limited, For example, they are transition metals, such as iron, nickel violet, cobalt, molybdenum, and tungsten.
  • FIG. 12 is a diagram showing an example of connecting the catalysts by the vapor phase growth method.
  • 1 is a first insulating film
  • 9a and 9b are catalysts
  • 22a and 22b are source and drain electrodes to be formed later
  • 7 is a formed CNT.
  • the pair of catalysts 9a and 9b is arranged on the substrate at a predetermined interval, and the CNTs 7 are grown from the catalyst 9a and the catalyst 9b to connect them.
  • FIG. 13 is a diagram showing one embodiment of the structure of the catalyst disposed on the substrate in the vapor phase growth method.
  • the catalyst 9 can have a three-layer structure of a support layer 25, an intermediate layer 26, and a top layer 27.
  • the support layer 25 is made of silicon or the like and can have a thickness of about 50 nm.
  • the intermediate layer 26 is made of a transition metal such as molybdenum, tantalum, or tungsten, and may have a thickness of about 10 ⁇ m.
  • the top layer 27 is made of a transition metal such as iron, nickel, and cobalt, and can have a thickness of about 3 nm.
  • the total height H of the catalyst 9 may be about 63 nm, and the diameter D may be about 2 / m.
  • the three-layered catalyst 9 can be formed by using a thin film forming technique such as vapor deposition, sputtering, or ion plating.
  • FIG. 14 is a diagram showing another embodiment in which the catalysts are connected by the vapor phase growth method.
  • a plurality of catalyst pairs are densely provided and the CNTs 7 are grown to facilitate the connection between the catalyst 9a and the catalyst 9b.
  • FIG. 15 is a diagram showing an arrangement example of the catalyst 9a and the catalyst 9b in the embodiment shown in FIG.
  • the distance between adjacent catalysts (for example, the distance between 9a_l and 9a_2) L1 is not particularly limited, but may be about 2 zm.
  • the distance between [9 & 11b1] and 9b—1, 9b—2 ⁇ '9b—n column) L2 is not particularly limited and should be about 4 ⁇ m. .
  • the structure, number, and position of the catalyst are important factors for connecting the electrodes with CNTs. For example, in order to increase the connection rate between electrode pairs, the number of catalysts per pair of electrode formation scheduled portions may be increased. In addition, in order to increase the conductive yield (the ratio of conductive electrode pairs to one substrate), the number of electrode pairs per substrate should be increased.
  • the size of the electrode (related to the number of catalysts per one electrode formation planned site) and the number of electrode pairs are limited by the size of the substrate and the restrictions on the manufacturing technology.
  • the number of electrode pairs per substrate is 24, and the number of catalysts per one electrode formation planned site is 1 to 3, so that the yield of conductivity is increased. From 20% to 87.5% at maximum. This number of electrode pairs and the number of catalysts can be achieved within the stable control limits of normal photolithography.
  • the substrate on which the catalyst is arranged is heated from room temperature to 900 ° C in a reaction vessel for 15 minutes. While heating, let argon flow into the reaction vessel at a flow rate of 1000 sccm (gas flow rate per minute). After the heating is completed, maintain at 900 ° C, let methane flow rate lOOOOsccm and hydrogen flow rate 500sccm flow in for 10 minutes. Then, cool down to room temperature over 120 minutes, and flow argon into the reaction vessel at a flow rate of lOOOOsccm.
  • the source electrode and the drain electrode are formed by vapor deposition or the like.
  • the electrode can be formed by directly depositing a target metal such as gold on the substrate, or by depositing another metal such as titanium and then coating the surface with the target metal such as gold. Formation by the latter can suppress the peeling of the electrode from the substrate and the generation of cracks.
  • the electrode width should be about ⁇ ⁇ ⁇ .
  • FIG. 16 is a schematic diagram (bird's eye view) for explaining the case where the dispersion fixing method is combined with the connection method by the vapor phase growth method.
  • 3 and 4 indicate a source electrode and a drain electrode, and 44 indicates a CNT formed (grown) by vapor phase epitaxy.
  • 44 indicates a CNT formed (grown) by vapor phase epitaxy.
  • FIG. 16 (B) it is shown that the CNTs 43 provided by the dispersion immobilization method connect the CNTs 44 formed by the vapor phase growth method.
  • connection by the dispersion immobilization method is performed by providing separately manufactured CNTs on a substrate on which a source electrode and a drain electrode are arranged or on a substrate to be arranged.
  • Commercially available CNTs can be used as separately produced CNTs.
  • high-quality (for example, few defects) CNTs manufactured by arc discharge can be used.
  • this method does not require high-temperature conditions (for example, 800 to 900 ° C), so that it is not necessary to prepare an expensive growth reactor and the choice of materials such as a substrate is widened. (For example, glass can be used).
  • a CNT-affinity substance for connection by the dispersion immobilization method.
  • the ability to modify the electrode formation site of the substrate with the CNT affinity substance, or the ability to modify the electrode formed on the substrate with the CNT affinity substance, or before being provided with the CNT affinity substance Qualify CNT. Since the CNT affinity substance binds to the CNT and also to the substrate or the electrode, the CNT can be fixed to the substrate or the electrode.
  • the CNT affinity substance is not particularly limited, and examples thereof include aromatic polycyclic molecules exhibiting ⁇ _ ⁇ interaction with CNT.
  • the aromatic polycyclic molecule is not particularly limited, and examples thereof include aromatic hydrocarbons such as pyrene, naphthalene, anthracene, and phenanthrene, and aromatic heterocycles.
  • the aromatic polycyclic molecule is preferably pyrene.
  • the CNT affinity substance may be a molecule having two or more aromatic functional groups. Two or more CNT-affinity substances having an aromatic functional group have a higher van der Waals force with CNTs, so that CNTs can be fixed stably.
  • a CNT affinity substance having two or more aromatic functional groups can selectively fix CNTs having a desired diameter according to the angle between the two functional groups.
  • FIG. 17 is a diagram showing a state in which a molecule having two aromatic functional groups (bonding angle ⁇ of the two functional groups) does not fix CNT45b having a diameter larger than the force for fixing CNT45a.
  • the molecule having two or more aromatic functional groups is not particularly limited, and examples thereof include a molecule obtained by crosslinking two molecules of pyrene via lysine.
  • the CNT affinity substance preferably has a functional group for bonding to the substrate surface or the surfaces of the source electrode and the drain electrode.
  • a functional group for bonding to the substrate surface or the surfaces of the source electrode and the drain electrode For example, when there is an amino group on the substrate surface or the electrode surface, it is preferable that a carboxynole group or an ester group is introduced into the CNT affinity substance. In addition, when a carboxylate group is present on the substrate or electrode surface, it is preferable that an amino group is introduced into the CNT affinity substance.
  • the CNT-affinity substance into which the force lpoxyl group is introduced is not particularly limited, and examples thereof include 1-py renebutyric acid.
  • the CNT affinity substance into which an ester group is introduced is not particularly limited, and, for example, 1-pyreneDutync acid N-hydroxysuccinimide ester is C.
  • the CNT affinity substance into which an amino group has been introduced is not particularly limited, but is, for example, 1-pyrenemethylamine.
  • a method for introducing a carboxyl group into the substrate surface is not particularly limited.
  • the substrate surface is treated with a silane coupling agent containing a functional group that can be converted into a force propyloxy group, and the functional group is introduced into the substrate surface. What is necessary is just to convert into a carboxy nore group.
  • the method for introducing an amino group into the substrate is not particularly limited.
  • the substrate surface may be treated with aminosilane.
  • the aminosilane is not particularly limited, and examples thereof include 3-aminopropyltriethoxysilane (APS).
  • the method for introducing a carboxyleno group into the electrode surface is not particularly limited.
  • the surface of the gold electrode may be treated with thiocarboxylic acid.
  • the thiocarboxylic acid is not particularly limited, and examples thereof include 11-meraptoundecanoic acid.
  • the method for introducing an amino group to the electrode surface is not particularly limited. Can be processed.
  • the aminothiol is not particularly limited, and examples thereof include ll-amino-1-undecanthiol.
  • the CNT provided in the dispersion immobilization method may be either single-walled CNT or multi-walled CNT, but is preferably single-walled CNT.
  • the average length of the CNT provided is usually 0.5 zm or more, more preferably 1.0 zm or more.
  • the upper limit of the average length is not particularly limited, but is preferably 10 ⁇ m or less, more preferably less, more preferably 3 ⁇ m or less. In any case, the length of the CNT is preferably longer than the distance between the source electrode and the drain electrode.
  • the average length of CNTs can be measured by AFM.
  • the provided CNT is, for example, a single-walled CNT manufactured by Carbon Nanotechnologies INC.
  • the provided CNTs may be acid-treated.
  • the acid treatment of CNT is not particularly limited.
  • CNT may be washed with sulfuric acid, nitric acid or a mixture thereof, and further ultrasonicated.
  • Carboxyl groups are introduced on the surface of CNT by acid treatment.
  • Acid-treated CNTs have improved hydrophilicity and therefore dispersibility in water. Therefore, it becomes easy to provide CNTs dispersed in water.
  • connections by the dispersion-immobilization method can be classified into the following modes [A] to [D], for example.
  • [A] (1) Modify the site where the source and drain electrodes of the substrate are to be formed with a CNT affinity substance, (2) provide CNT to the modified site where the electrode is to be formed, and (3) A drain electrode is formed.
  • Source and drain electrodes are formed on the substrate, (2) Source and drain electrodes are modified with a CNT affinity substance, and (3) CNT is applied to the modified source and drain electrodes. provide.
  • [C] (l) CNT is modified with a CNT affinity substance, (2) The source and drain electrodes are formed on the substrate, and (3) The CNT modified on the substrate electrode is provided.
  • [D] (l) CNT is modified with a CNT-affinity substance, (2) The modified CNT is provided at the electrode formation planned portion of the substrate, and (3) The source electrode and the drain electrode are formed on the substrate.
  • the material of the resist film is not particularly limited, and is, for example, PMMA.
  • the thickness of the resist film should be about 1 ⁇ m to 3 ⁇ m.
  • the method for introducing an amino group into the electrode formation planned site is not particularly limited.
  • the film to be formed is a polycondensation product such as APS, and its thickness is about 1 nm to 1 ⁇ m.
  • the CNT affinity substance may be provided by being dissolved in an organic solvent such as DMF.
  • an organic solvent such as DMF.
  • a solution of CNT affinity substance dissolved in an organic solvent may be added little by little to a solvent (for example, an aqueous solution) in which the substrate is immersed.
  • the solvent remaining on the substrate at the time of washing after the reaction is preferably removed by drying with an inert gas (the same applies to other embodiments).
  • the provision of CNTs to the modified electrode formation planned site is performed, for example, by providing a separately prepared CNT dispersion to the electrode formation planned site.
  • the CNT dispersion can be dripped onto the substrate, or the substrate can be immersed in the CNT dispersion.
  • the solvent of the dispersion is not particularly limited, and examples thereof include organic solvents such as DMF and water. Acid-treated CNTs are improved in water dispersibility by introducing carboxyl groups. Therefore, it is preferable to provide acid-treated CNTs by dispersing them in an aqueous solvent.
  • the pH of the aqueous dispersion is set to pKa (about 4) of the carboxyl group, preferably 7-8.
  • the concentration of CNT in the CNT dispersion is preferably 0.001 mgZml to 0.1 mgZml.
  • concentration is higher than O. lmg / ml, CNTs tend to aggregate and it may be difficult to prepare a dispersion.
  • the substrate By providing CNT at the modification site, at least a part of the CNT is fixed to the substrate, and the source electrode and the drain electrode are connected. However, all of the CNTs provided are not necessarily fixed to the electrode formation planned part of the substrate. Therefore, after providing the CNTs and before forming the electrodes, it is preferable to clean the substrate to remove the unfixed CNTs. substrate This cleaning is performed, for example, by rinsing the substrate with a solvent (for example, DMF) or ultrasonically treating the substrate in the solvent.
  • a solvent for example, DMF
  • the source electrode and the drain electrode for example, metal may be deposited by lithography.
  • the portion where the source or drain electrode and the channel overlap can be wound by a high electric field electron beam or a local applied electric field using STMZAFM to integrate the electrode and channel (the same applies hereinafter) .
  • the CNT on the substrate may be vapor-phase grown.
  • a substrate provided with CNTs may be placed in a reactor for vapor phase growth and the above-described treatment may be performed.
  • a metal may be deposited by using lithography.
  • a self-assembled film is formed on the electrode surface using a metal-thiol bond, and the electrode It is only necessary to provide a CNT affinity substance having a functional group (for example, an amino group or an ester group) that introduces a functional group (for example, a carboxyl group or an amino group) on the surface and reacts with the functional group that has been introduced on the electrode surface.
  • a functional group for example, an amino group or an ester group
  • the electrode surface is treated with a compound having a functional group (for example, thiol group) that specifically reacts with the electrode material (for example, thiolated carboxylic acid or aminothiol). Gore ,.
  • a functional group for example, thiol group
  • the electrode material for example, thiolated carboxylic acid or aminothiol.
  • the CNT affinity substance may be provided by being dissolved in an organic solvent such as DMF.
  • a reagent for example, calpositimide
  • a functional group for example, carboxyl group
  • the functional group for example, amino group
  • a dispersion liquid in which CNT is dispersed in an organic solvent such as DMF or water is used as the modification site.
  • the acid-treated CNTs are preferably provided dispersed in water.
  • the substrate that can be added to the substrate is immersed in the dispersion. May be.
  • the substrate is washed and not fixed after the CNT is provided. It is preferable to remove CNTs.
  • the substrate may be washed away with a solvent, or the substrate may be sonicated in a solvent.
  • Appropriate source-to-drain current eg, 0.:! ⁇ 1. ⁇ ⁇ A
  • an element that carries a current of about 0.1 to ⁇ . ⁇ is less likely to be damaged by several washes with water or the like.
  • the CNT on the substrate may be vapor-phase grown.
  • CNT in order to modify CNT with a CNT affinity substance, for example, CNT may be added to a solution containing CNT affinity substance (such as ethanol). Les. If the CNT is modified with a CNT affinity substance, the entire surface of the CNT can be coated with the CNT affinity substance.
  • CNT affinity substance such as ethanol
  • pyrene which is an example of a CNT affinity substance, and adding hydrophilicity
  • the CNT affinity substance that modifies CNT preferably has a functional group for binding to the electrode surface.
  • CNTs can be modified with CNT-affinity substances into which amino groups have been introduced.
  • the CNT affinity substance that modifies CNT has a functional group that binds to the substrate surface (preferably, the electrode formation planned site).
  • the substrate surface preferably, the electrode formation planned site.
  • CNTs can be modified with CNT-affinity substances into which amino groups have been introduced.
  • the silicon oxide film on the surface of the silicon substrate (support substrate) (first insulating film: the thickness should be about 300 nm) is washed with 50% sulfuric acid for 30 minutes at room temperature and then with water.
  • a photoresist film (OEPR-800) is spin-coated by spin coating on the cleaned silicon oxide film. Using photolithography, the pair of regions of the photoresist film, which are planned to form the source electrode and the drain electrode, are removed.
  • the obtained substrate is immersed in a mixed solution of ethanol and water (volume ratio 1: 4, 50 ml) and heated to 65 ° C. l. Dissolve in Omg of 1-pyreneDutync acid N-hydroxysuccimmide ester 20 ⁇ 1 of dimethylformamide. 10 / l of the obtained solution is dropped into the mixed solution in which the substrate is immersed and reacted at 65 ° C for 1 hour (this causes pyrene to bind to the substrate surface).
  • the obtained substrate is heated at 115 ° C for 5 minutes, and then immersed in DMF to remove the photoresist film.
  • a pattern for forming a source electrode and a drain electrode is formed on the obtained substrate.
  • the specific method should be the same as the method for patterning pyrene described above.
  • the source electrode and drain electrode are formed by evaporating 30 nm thick Pt film and lOOnm thick Au film using EB evaporation.
  • the distance between both electrodes should be about 3 x m.
  • a gold electrode is formed by vapor deposition on a silicon oxide film (first insulating film: the thickness should be about 300 nm) on a silicon substrate (support substrate).
  • the substrate on which the gold electrode is formed is immersed in an 11-mercaptoecanoic acid solution (0.5 mM) and left at room temperature for 10 hours. After washing with ethanol, nitrogen gas is blown to dry (this introduces carboxyl groups on the gold electrode surface).
  • the gold electrode formed on the substrate in this method is preferably sufficiently deposited so that a current of about 0.:! To : . ⁇ ⁇ A flows. This is to obtain an element that operates stably. Devices with excessively low source-drain currents have a change in conductivity during use, and may lose their conductivity S. Devices with a current of about 0.1 ⁇ A can be washed with water. However, stable conductivity is exhibited.
  • the obtained solution is added to a solution in which 0.6 mg of l-amino-1-undecanethiol is dissolved in 100 ⁇ l of DMF and allowed to react at room temperature for 1 hour.
  • the obtained reaction solution is added to 0.05 mg / ml acid-treated CNT-dispersed aqueous solution (500 ⁇ 1) and stirred at room temperature for 12 hours.
  • a substrate on which a gold electrode is formed is put into the obtained solution and reacted at room temperature for 12 hours to fix the CNT to the substrate.
  • a DMF solution of 1-pyrenebutyric acid (5 mgZml, 50 ⁇ 1) was added to a CNT DMF dispersion (0.00 mg / ml, 500 ⁇ ⁇ ) and sonicated at room temperature for 2 hours.
  • the resulting dispersion is filtered through a filter to remove a large excess of l_pyrenebutyric acid.
  • connection method between the electrodes in the CNTs by the dispersion-immobilization method is performed by arranging the provided CNTs along the steps of atoms on the crystal surface of the substrate, or by arranging them in a certain direction by electrophoresis. Can be controlled. By doing so, the source electrode and the drain electrode can be more efficiently and reproducibly connected by CNT.
  • the FET of the present invention has a gate electrode.
  • the gate electrode is arranged so that polarization can be caused by movement of free electrons on the substrate on which the source electrode and the drain electrode are arranged by applying a voltage to the gate electrode.
  • “Polarization due to the movement of free electrons” refers to the formation of a region biased toward positive charges and a region biased toward negative charges within the substrate as free electrons move within the substrate. .
  • polarization due to the movement of free electrons occurs in the support substrate having electrical conductivity. Whether or not the substrate is polarized can be confirmed by measuring the potential difference between both sides of the substrate.
  • the material of the gate electrode is not particularly limited, and examples thereof include gold, platinum, titanium, and brass. It is a metal. Among these, gold is particularly preferable. This is because gold has high conductivity and small error due to current leakage.
  • the gate electrode is formed by evaporating these metals.
  • the size of the gate electrode is not particularly limited, and may be determined with respect to the size of the ultrafine fiber element (the ultrafine fiber body serving as the source electrode, the drain electrode, and the channel). If the size of the gate electrode is too small for the ultrafine fiber element, it may be difficult for the gate electrode to control the source-drain current. For example, when the distance between the source electrode and the drain electrode is 2 to 10 ⁇ m, the size of the gate electrode may be about O.lmm ⁇ O.lmm or more.
  • the gate electrode arranged to polarize the substrate can be divided into (A) a back gate electrode, (B) a side gate electrode, and (C) an isolation gate electrode.
  • the back gate electrode is disposed on the second insulating film of the substrate. Since this gate electrode is disposed on the back surface of the substrate with respect to the source electrode, the drain electrode, and the channel, it is called a back gate electrode.
  • the back gate electrode may be disposed in direct contact with the second insulating film, or may be disposed physically separated from the second insulating film.
  • the back gate electrode may be disposed with respect to a part of the second insulating film, or may be disposed with respect to the entire surface of the second insulating film.
  • the FET of the present invention is used in a biosensor, if a gate electrode is provided on the entire second surface of the substrate, the substance to be detected is bonded to the entire surface of the second insulating film. be able to.
  • the conventional back gate FET In order to control the source-drain current by the back gate electrode, the conventional back gate FET has a back gate electrode placed in direct contact with a support substrate (made of a semiconductor or metal), thereby causing interaction. I was getting.
  • the present inventor has found that it is not always necessary to directly contact the gate electrode and the support substrate. That is, it was found that the source-drain current can be controlled even if an insulating film is provided between the gate electrode and the supporting substrate.
  • polarization occurs due to the presence of free electrons in the support substrate (made of semiconductor or metal), and the source-drain current is controlled by the polarization. It is thought. Polarization due to the movement of free electrons includes factors due to capacitive coupling, but does not exclude other factors.
  • the side gate electrode is disposed on the first insulating film of the substrate. This electrode is called a side gate electrode because it is disposed on the same surface of the substrate with respect to the source electrode, drain electrode and channel.
  • the side gate electrode may be disposed in direct contact with the first insulating film, or may be disposed physically separated from the first insulating film.
  • the distance between the side gate electrode disposed on the same surface of the substrate and the ultrafine fiber body can be 10 zm or more, further lOO xm or more, and further lmm or more.
  • the upper limit is not particularly limited, but is several cm or less.
  • the “distance between the gate electrode and the ultrafine fiber body” means the shortest distance between each other.
  • the conventional side-gate FET In order to control the source-drain current by the gate electrode, the conventional side-gate FET needs to obtain a direct interaction between the side gate electrode and the source electrode, the drain electrode and the channel. It was thought. Therefore, in the conventional side gate type FET, the distance between the side gate electrode and the channel is made as short as possible (about 1 / m at the longest).
  • the present inventor has found that the side gate electrode does not necessarily have to be close to the source electrode, the drain electrode, and the channel. Even if the side gate electrode, the source electrode, the drain electrode, and the channel are provided on the same insulating film, when a voltage is applied to the side gate electrode, a supporting substrate (semiconductor or metal force is formed under the insulating film). This is probably because polarization occurs due to the presence of free electrons in the support substrate, and the source-drain current is controlled by the polarization. Polarization does not exclude forces and other factors, including those due to capacitive coupling.
  • the side-gate FET of the present invention may be applied to a biosensor as described later.
  • the side gate electrode may be bound with a substance to be detected and a sample solution may be dropped.
  • the distance between the side gate electrode, the source electrode, the drain electrode, and the channel can be increased, so that the ultrafine fiber element is prevented from being contaminated by the sample solution. can do.
  • the separation gate electrode is separated from the substrate on which the source electrode, the drain electrode, and the channel are arranged, but is arranged on a second substrate that is electrically connected.
  • the second substrate may be a substrate having a support substrate made of a semiconductor or metal and an insulating film formed on at least one surface of the support substrate, or a substrate made of an insulator, but preferably the former substrate. is there.
  • the second substrate on which the gate electrode is disposed is separated from the substrate on which the source electrode, the drain electrode, and the channel are disposed.
  • the distance between the substrate on which the source electrode, the drain electrode and the channel are disposed and the second substrate on which the gate electrode is disposed is not particularly limited, and is 3 mm or more, further 10 mm or more, and further 15 mm or more. Can be more than that.
  • the second substrate on which the gate electrode is disposed is electrically connected to the substrate on which the source electrode, the drain electrode, and the channel are disposed.
  • the substrate and the second substrate are mounted on the same conductive substrate, or (b) the substrate and the second substrate are respectively connected to each other. It means that they are placed on different conductive substrates, and each conductive substrate is connected by a conductive member.
  • An example of the embodiment (a) is shown in FIG. 4, and an example of the embodiment (B) is shown in FIG.
  • the conductive substrate is not particularly limited, and examples thereof include a glass substrate on which a gold thin film is deposited and a substrate made of a material such as brass.
  • the conductive member is not particularly limited, and is, for example, a conductive wire such as a copper wire.
  • the isolated gate FET of the present invention may be applied to a biosensor as described later.
  • the separation gate type FET of the present invention can separate the substrate on which the source electrode, the drain electrode and the channel are arranged from the second substrate on which the gate electrode is arranged. The degree is high. Therefore, the separation gate type FET of the present invention can contribute to the production of a highly practical biosensor.
  • FIG. 18 is a diagram showing the characteristics of the back gate FET of the present invention.
  • gate voltage the voltage applied to the gate electrode (hereinafter referred to as “gate voltage”)
  • Vg 4 is a graph (hereinafter referred to as “1-V characteristic curve”) showing a relationship between ate) and source-drain current (Isd) (hereinafter referred to as “1-V characteristic curve”).
  • the supporting substrate is a silicon substrate with a thickness of 500 ⁇ m
  • the first insulating film and the second insulating film are 300 nm thick silicon oxide
  • the ultrafine fiber is a single-walled CNT
  • the source The area of the electrode and the drain electrode was 0.20 to 0.25 mm 2 , respectively, and the area of the substrate was lcm 2 (lcm ⁇ lcm).
  • AFM confirmed that the source and drain electrodes were connected by several CNTs.
  • a source-drain current of about several hundred nA can be observed when the gate voltage is between ⁇ 20V and ⁇ 5V, as shown in FIG.
  • the FET of the present invention has a change in electric charge (strictly, "electronic state") on the channel (ultrafine fiber body) or the potential between the channel and the source and drain electrodes (strictly, " The source-drain current changes sensitively to changes in the difference in the energy potential. These changes are induced by changing the potential of the gate electrode placed on the substrate, and the source-drain current changes sensitively to changes in the electrical state of the gate electrode.
  • the interface in contact with the insulating film covering the surface of the support substrate made of semiconductor or the like changes depending on the electrical state of the gate electrode, and the presence of free electrons on the support substrate. This is presumably because the change in the channel part is induced by the polarization effect caused by this and the capacitive coupling through the insulating film.
  • n-type semiconductor MOS metal-oxide semiconductor
  • MOS metal-oxide semiconductor
  • the capacitance between the metal and the semiconductor increases. Get smaller.
  • a p-type MOS inversion layer is formed at the interface between the n-type semiconductor and the oxide, so that the electric capacity increases again (for example, Iwanami, Physics and Chemistry Dictionary, No. 5). Edition, p. 1380).
  • the “depletion layer” means that almost no free electrons or holes exist in the pn junction surface of the semiconductor or the inside of the semiconductor of MOS structure. A thin layer. The thickness of the depletion layer changes sensitively with the applied voltage.
  • the "MOS inversion layer” refers to a surface formed by pushing a majority carrier near the surface into the semiconductor when a metal film is attached to the semiconductor surface via an insulating film (made of oxide or the like). Appearing inside means a layer of opposite conductivity type. The thickness of the inversion layer also changes depending on the applied voltage.
  • the fact that the interface with the insulating film of the supporting substrate operates like a variable capacitance diode by the gate voltage corresponds to the change of the thickness of the depletion layer or the inversion layer of the supporting substrate by the gate voltage.
  • the capacitance between the gate electrode and the source electrode (hereinafter referred to as “gate-source capacitance”)
  • the capacitance between the gate electrode and the drain electrode (hereinafter referred to as “gate-drain capacitance”)
  • the gate The capacitance between the electrode and the channel (hereinafter referred to as “the capacitance between the gate and channel” changes).
  • the channel potential changes, and as a result, the source-drain current changes.
  • the interface between the support substrate made of a semiconductor and the insulating film covering the support substrate operates like a variable capacitance diode by the gate voltage, that is, the thickness of the depletion layer or inversion layer in the support substrate. Changes. Then, video charges are generated according to the thickness of the depletion layer or inversion layer, and the generated video charges change the channel potential and the charge on the channel, thereby changing the source-drain current.
  • the FET of the present invention has a large change in the source-drain current with respect to the change in the channel potential or the charge on the channel when an electric field exceeding the threshold value in the substrate is applied.
  • a biosensor changes in the electronic state caused by molecules on the device can be reflected in the channel. That is, as a biosensor, an intermolecular interaction (for example, antigen-antibody reaction, enzyme reaction, etc.) on the element can be detected with high sensitivity by changing the source drain current.
  • new IV characteristics and I Vg characteristics gate gates using polarization (inversion layer formation) due to the movement of free electrons generated near the interface with the insulating film of the support substrate. The relationship between voltage and source / drain current is expected.
  • the FET of the present invention has the new characteristics described below, and exhibits different behavior from conventional FETs and CNT-FETs.
  • the “inversion layer” means that when a metal film (electrode) is attached to the semiconductor surface via an insulating film as described above, a high electric field is applied to the semiconductor surface. This layer is induced near the surface in the semiconductor (boundary region) with the opposite charge to cancel out, and is generated near the interface with the insulating film of the supporting substrate in the polarization due to the movement of free electrons.
  • I_V characteristic curve and I_Vg characteristic curve of the FET of the present invention using CNT as the ultrafine fiber body are shown below.
  • the substrate is a silicon substrate with a thickness of 500 / im
  • the first insulating film and the second insulating film are silicon oxide with a thickness of 300 nm
  • the area of the substrate is 1 cm 2 (lcm X 1cm)
  • the ultrafine fiber body was a single-walled CNT
  • the distance between the source and drain electrodes was 5 ⁇
  • the area of the gate electrode was 100 mm 2 .
  • AFM confirmed that the source and drain electrodes were connected by several CNTs.
  • FIG. 19 is a diagram showing an example of the IV characteristic curve of the back gate type FET of the present invention.
  • FIG. 20 is a diagram showing an example of an I-Vg characteristic curve of the back gate type FET of the present invention.
  • curve a is a characteristic curve when the source-drain voltage is set to IV
  • curve b is a characteristic curve when the source-drain voltage is set to + IV.
  • the supporting substrate is a silicon substrate with a thickness of 500 zm
  • the first insulating film and the second insulating film are silicon oxide with a thickness of 300 nm
  • the substrate area is lcm 2 (lcm X lcm)
  • ultrafine fibrous body the distance between the single-layer CNT, the source electrode and the drain electrode 5 zm
  • the area of the gate electrode was 0.25 mm 2.
  • AFM confirmed that the source and drain electrodes were connected by several CNTs.
  • FIG. 21 is a diagram showing an example of the IV characteristic curve of the side gate FET of the present invention.
  • Fig. 22 (A) and Fig. 22 (B) show an example of the I-Vg characteristic curve of the side-gate FET of the present invention in which the distance between the gate electrode and the CNT is 50 / im and lcm, respectively.
  • FIG. The I_Vg characteristic curve obtained using the back gate electrode is also shown in Fig. 22 (C). These are all measured using the same CNT.
  • ⁇ -Vg characteristic curve shown in Fig. 22 shows no significant change. Therefore, it can be said that even if the distance between the gate electrode and the CNT is changed, the electrical characteristics of the transistor do not change.
  • both the substrate and the second substrate support substrate are 500 ⁇ m thick silicon substrates, and the insulating films covering both surfaces of the substrate and the second substrate are all 300 nm thick silicon oxide,
  • the area of the second substrate was lcm 2 (lc m X lcm)
  • the ultrafine fiber was single-walled CNT
  • the distance between the source and drain electrodes was 5 ⁇ m
  • the area of the gate electrode was 0.1 mm 2 .
  • AFM confirmed that the source and drain electrodes were connected by several CNTs.
  • FIG. 23 and FIG. 24 are diagrams showing examples of the I-V characteristic curve and the I-Vg characteristic curve of the isolation gate type FET according to the present invention in which the distance between the substrate and the second substrate is 3 mm. is there.
  • FIG. 25 and FIG. 26 are diagrams showing examples of the IV characteristic curve and the I-Vg characteristic curve of the isolation gate type FET of the present invention in which the distance between the substrates is 1 Omm.
  • FIG. 27 and FIG. 28 are diagrams showing examples of the IV characteristic curve and the I Vg characteristic curve of the isolation gate type FET of the present invention in which the distance between the substrates is 15 mm.
  • the electronic state of the ultrafine fiber body is changed indirectly or directly. From the source-drain current change that occurs at this time, the attached molecules Can be detected.
  • a modified molecule can be detected from a change in current when the gate electrode or the ultrafine fiber is molecularly modified, or a reaction between the modified molecule and another molecule can be detected.
  • the gate electrode or ultrafine fiber body is modified with an antibody or an antigen
  • the FET of the present invention can be used for any application.
  • the FET of the present invention can be used for an integrated circuit, a pH meter, a biosensor, etc., but is preferably used for a biosensor.
  • the FET of the present invention preferably has a detection substance recognition molecule that reacts with the detection substance bound thereto.
  • the FET of the present invention can be applied to a biosensor.
  • a biosensor using the FET of the present invention (hereinafter referred to as “biosensor of the present invention”) has a detection substance-recognizing molecule capable of interacting (for example, binding) with the FET of the present invention and the detection substance.
  • the substance-recognizing molecule is preferably bound to the FET of the present invention.
  • the substance to be detected is not particularly limited, and examples thereof include antibodies, antigens, enzymes, receptors, nucleic acids, cells, and microorganisms.
  • the substance to be detected is not particularly limited, and examples thereof include antigens, antibodies, microorganisms (viruses, bacteria, etc.) and chemical substances (residual agricultural chemicals, etc.).
  • the biosensor of the present invention detects a substance to be detected based on a change in a source-to-drain current or a source-to-drain voltage caused by the substance to be detected interacting with a substance to be detected.
  • the change of the source-drain current can be confirmed from, for example, the I-V characteristic curve or the I_Vg characteristic curve.
  • the I_V characteristic curve is a curve showing the relationship between source-drain current and source-drain voltage when the gate voltage is fixed.
  • the I-Vg characteristic curve shows the relationship between the source-drain current and the gate voltage when the source-drain voltage is constant.
  • the biosensor of the present invention needs to be energized in order to perform a detection operation. Therefore, the biosensor of the present invention preferably takes the form of a biosensor device further having a power source or power acquisition means, as will be described later.
  • the site where the detection substance recognition molecule is bound to the FET of the present invention is not particularly limited.
  • an ultrafine fiber body or ultrafine fiber body that connects a source electrode and a drain electrode is used.
  • FIGS. 29 to 33 are diagrams showing examples in which a substance-to-be-detected molecule is bound to the back gate type FET of the present invention.
  • FIG. 29 is a diagram showing an example in which a substance to be detected-recognizing molecule is bound to an ultrafine fiber body.
  • the detection substance can be improved because the substance-recognizing molecule to be detected is directly bonded to the ultrafine fiber body as the channel.
  • FIG. 30 is a diagram showing an example in which a substance to be detected recognition molecule is bound to an insulating protective film.
  • the noise can be reduced.
  • FIG. 31 is a diagram showing an example in which the substance to be detected recognition molecule is bound to the second insulating film.
  • the second surface of the substrate can be cleaned without damaging the ultrafine fiber body, it can be easily reused.
  • the target substance recognition molecules can be bound to the entire second surface of the substrate, a relatively large amount of target substance recognition molecules can be bound.
  • FIG. 31 (A) is a diagram showing an example in which the substance to be detected recognition molecule is bonded to the second insulating film when the back gate electrode is arranged without being in contact with the second insulating film. It is.
  • FIG. 31 (B) and FIG. 31 (C) show that when the back gate electrode is placed in contact with the second insulating film, the substance-to-be-detected molecules are bonded to the second insulating film. It is a figure which shows the example. The sample solution may not contact the back gate electrode (FIG. 31 (B)) (FIG. 31 (C)).
  • Figure 31 (D) shows the case where multiple back gate electrodes are arranged on the second insulating film. It is a figure which shows the example which couple
  • FIG. 32 is a diagram showing an example in which a concave portion is formed on the second surface of the substrate, and a substance to be detected is bound to the second insulating film located at the bottom of the concave portion.
  • the material of the side wall of a recessed part is not specifically limited, For example, it is a silicon oxide.
  • a certain amount of sample solution can be provided by adjusting the volume of the recess.
  • the added sample solution is not easily dissipated and can be stably held at the site where the target substance recognition molecule is bound.
  • FIGS. 32A and 32B are diagrams showing an example in which the back gate electrode functions as a lid of a recess.
  • FIG. 32C shows an example in which the back gate electrode is arranged on the side wall of the recess.
  • FIG. 32 (D) is a diagram showing an example in which the back gate electrode is disposed on the side wall of the recess.
  • FIG. 32E shows an example in which the back gate electrode is disposed on the second insulating film outside the recess.
  • FIG. 33 is a diagram showing an example in which a substance to be detected-recognizing molecule is bound to a gate electrode.
  • the second surface of the substrate can be cleaned without damaging the ultrafine fiber body, it can be easily reused.
  • FIG. 33 (A) is a diagram showing an example in which the substance to be detected is coupled to the back gate electrode when one back gate electrode is arranged.
  • FIG. 32 (B) is a diagram showing an example in which a plurality of types of target substance recognition molecules are bonded to different back gate electrodes when a plurality of back gate electrodes are arranged.
  • FIG. 34 to FIG. 38 are diagrams showing examples in which a substance to be detected-recognizing molecule is bound to the side gate type FET of the present invention.
  • FIG. 34 is a diagram showing an example in which a substance-to-be-detected recognition molecule is bound to an ultrafine fiber body.
  • the detection substance can be improved because the substance-recognizing molecule to be detected is directly bonded to the ultrafine fiber body as the channel.
  • FIG. 35 is a diagram showing an example in which a substance to be detected recognition molecule is bound to an insulating protective film.
  • a highly sensitive sensor can be provided.
  • FIG. 35 (A) is a diagram showing an example in which a substance-to-be-detected molecule is bound to an insulating protective film that protects the ultrafine fiber element.
  • FIG. 35 (B) is a diagram showing an example in which a substance to be detected is bound to an insulating protective film that protects the ultrafine fiber element and the gate electrode.
  • FIG. 36 is a diagram showing an example in which the substance to be detected is bound to the second insulating film when the side gate electrode is arranged so as to be in contact with the second insulating film.
  • the sample solution may or may not contact the back gate electrode (Fig. 36 (A)) (Fig. 36 (B)).
  • FIG. 37 is a diagram showing an example in which a concave portion is formed on the second surface of the substrate, and the detection substance recognition molecule is bound to the second insulating film located at the bottom of the concave portion.
  • the material of the side wall of a recessed part is not specifically limited, For example, it is a silicon oxide.
  • the sample solution can be accurately positioned at the site where the detection substance recognition molecule is bound (that is, in the recess).
  • FIG. 38 is a diagram showing an example in which the substance to be detected recognition molecule is bound to the gate electrode.
  • FIG. 39 to FIG. 44 are diagrams showing examples in which a substance to be detected recognition molecule is bound to the separation gate type FET of the present invention.
  • the detection substance recognition molecule is preferably bound to the gate element portion.
  • FIG. 39 is a diagram showing an example in which the substance-recognizing molecule to be detected is bonded to the insulating film when the separation gate electrode is arranged without being in contact with the insulating film.
  • FIG. 40 is a diagram showing an example in which a substance to be detected-recognizing molecule is bonded to an insulating film when the separation gate electrode is arranged so as to be in contact with the insulating film.
  • the sample solution may or may not be in contact with the separation gate electrode (Fig. 40 (A)) (Fig. 40 (B)).
  • FIG. 40 (C) is a diagram showing an example in which a plurality of kinds of detection target substance recognition molecules are bonded to an insulating film when a plurality of separation gate electrodes are arranged.
  • FIG. 41 is a diagram showing an example in which the substance to be detected recognition molecule is bound to the gate electrode. Fig. 41
  • FIG. 41 is a diagram showing an example in which a substance to be detected is bound to a separation gate electrode when one separation gate electrode is arranged.
  • FIG. 41 (B) is a diagram showing an example in which a plurality of types of detection target substance recognition molecules are bonded to different separation gate electrodes when a plurality of separation gate electrodes are arranged.
  • FIG. 42 is a diagram showing an example in which when there are a plurality of gate element portions, a plurality of kinds of detection target substance recognition molecules are bonded to different separation gate electrodes.
  • FIG. 43 shows a plurality of types in the case where the ultrafine fiber element part and the gate element part are arranged so as to sandwich the conductive substrate, and a plurality of separation gate electrodes are arranged on the gate element part. It is a figure which shows the example which combined each to-be-detected substance recognition molecule
  • the gate element portion can be easily removed from the ultrafine fiber element portion. Therefore, it is possible to replace a plurality of gate element portions with respect to one ultrafine fiber element portion.
  • FIG. 44 shows a case where the ultrafine fiber element part and the gate element part are electrically connected by a conductive member and a plurality of separation gate electrodes are arranged on the gate element part. It is a figure which shows the example which couple
  • the substance to be detected is bound to the FET of the present invention.
  • the first method is a method using a histag fusion recognition molecule as a substance to be detected.
  • a method of binding a histag fusion antibody to a superfine fiber body (CNT) will be described with reference to FIG. In the same way, it is possible to bind the Histag fusion antibody to the substrate and the gate electrode.
  • antibody 50 fused with histag 51 is prepared by genetic manipulation.
  • the ultrafine fiber body of FET is directly modified with pyrene.
  • NTA52 is bonded to the modified ultrafine fiber body.
  • a solution containing transition metal ions (such as nickel ions and cobalt ions) is dropped onto the ultrafine fiber body to form a complex with NTA52 bonded to the ultrafine fiber body.
  • the antibody 50 is bound to the ultrafine fiber body as shown in FIG. 45 (A).
  • the antibody 50 thus bound has a certain orientation with respect to the binding surface.
  • NTA52 When NTA52 is immobilized on the insulating film of the substrate, a method of treating the insulating film with a silane coupling agent is effective. When fixing NTA52 to the gate electrode (metal), a method such as attaching a thiol group to the N-maleimide group of NTA52 is effective.
  • the antibody 50 thus bound has a certain orientation with respect to the binding surface.
  • the second method is protein A or protein when the detection substance recognition molecule is an IgG type antibody. , Protein L, or their IgG binding domain.
  • the antibody described herein includes a single chain antibody having a specific binding ability with an antigen.
  • Protein AZG a fusion protein that combines protein A, protein G, or their IgG binding properties, has the ability to bind to the Fc region of IgG immunoglobulins.
  • Protein L has the ability to bind to the kappa chain of the light chain of IgG type immunoglobulin. In addition, as with other proteins, all have the property of being easily attached to the gold surface.
  • a recombinant protein 53 (hereinafter referred to as “protein A”, “protein G”, “protein A / G”, “protein L”, or their IgG binding domain) is applied to a gate electrode made of gold.
  • the antibody 50 can be oriented to a certain extent by directly attaching the IgG-type antibody 50 used as a target substance recognition molecule to the attached IgG-binding protein 53. .
  • IgG-binding protein 53 is randomly bound to the electrode, so that sufficient orientation may not be obtained (see FIG. 45 (B)).
  • a histag is added to the IgG binding protein, and the IgG binding protein is bound to NTA-Ni via the histag, so that the detection substance recognition molecule ( Antibody). Further, by adding a histag, it is possible to orient the substance to be detected substance (antibody) to the insulating film or the ultrafine fiber body in addition to the gate electrode.
  • an IgG-binding protein 53 to which a histag 51 is added is prepared by genetic manipulation.
  • the histag tagged calo is taken into account the position of the antibody binding site. By setting the site, the orientation of the antibody can be increased.
  • the insulating film is treated with a silanizing coupling agent, NTA52 is bonded to the modified substrate, and a solution containing transition metal ions (such as nickel ions and cobalt ions) is dropped on the substrate and fixed on the substrate.
  • the IgG binding protein 53 is fixed to the insulating film by dropping a solution containing the IgG binding protein 53 to which a complex is formed with the NTA52 and further adding the histag 51.
  • the antibody can be oriented as shown in FIG. 45 (C).
  • the substance-to-be-detected molecule has two functional groups that form a covalent bond with each functional group (which may be the same or different from each other).
  • This is a method of bonding to an insulating film, a gate electrode or an ultrafine fiber body via a bivalent crosslinking reagent 54 having 55 and 56.
  • the bivalent crosslinking reagent 54 includes two functional groups 55 and 56 and a hydrophilic polymer chain such as polyethylene glycol or a hydrophobic chain such as an alkyl chain that binds the two functional groups 55 and 56.
  • Examples of the functional groups 55 and 56 include a group that forms a covalent bond with one amino group and the other with a thiol group.
  • the target substance-recognizing molecule to which the histag is added is prepared by genetic manipulation, and therefore, it takes several months for the preparation.
  • the target substance recognition molecule is an antibody
  • a hyperidoma that produces the target antibody is required to prepare an antibody with a histag added.
  • the method using IgG binding protein 53 can be applied to IgG-type antibodies as soon as these histo-tagged proteins are prepared. It can be detected in a short time.
  • Fig. 45 (D) In the method using the bridge reagent 54, since a genetic modification operation for introducing a histag is not required, a substance to be detected can be prepared more rapidly.
  • the biosensor device of the present invention may include an element unit having a substance to be detected that can be attached to and detached from the biosensor device body.
  • the electrodes one or more of the source electrode, drain electrode and gate electrode
  • the detection operation can be performed. become.
  • FIG. 46 is a schematic diagram showing an example of the biosensor device of the present invention having a detachable element portion. As shown in FIG. 46, the element portion is preferably formed into a chip.
  • the biosensor device is composed of a biosensor device body 7601 and an element portion 7702 including a substance to be detected-recognizing molecule.
  • the biosensor device main body 7601 includes a display unit 7604 for displaying the detection result.
  • the main body of the biosensor device usually has a power supply S, a D / A converter may be provided to use an external power supply, or power may be acquired from the outside via a USB interface.
  • the nokio sensor device main body can be used instead of displaying the detection result on the display unit.
  • An interface may be provided for external output.
  • the noise sensor device main body may be provided with storage means for temporarily storing the detection result.
  • the biosensor device main body can also centrally manage the detection results at the aggregation center or the like by transmitting the detection results by the wireless transmission means.
  • the element unit detachable from the biosensor device main body has at least a substance to be detected, (A) the back gate FET of the present invention to which the substance to be detected is bound, and (B) the object to be detected.
  • the noise sensor device main body includes a power source and a display unit.
  • the power source may be replaced with external power acquisition means for acquiring power from the outside.
  • the display unit may output externally.
  • the element portion has the back gate type FET of the present invention and the substance to be detected recognition molecule bound to the back gate type FET of the present invention.
  • the back gate type FET of the present invention used for the element part can take the above-described aspects of the back gate type FET.
  • the site where the detection substance recognition molecule is bound to the back gate type FET of the present invention is an ultrafine fiber body, an insulating protective film (if any), a second insulating film, a gate electrode, etc.
  • the second insulating film is preferable. This is because even if the sample solution is added to the site where the detection substance recognition molecule is bound, the ultrafine fiber body can be prevented from being contaminated. In addition, there is an advantage that it is possible to wash the site where the detection substance recognition molecule is bound without damaging the ultrafine fiber body.
  • the gate electrode may be disposed in direct contact with the second insulating film or may be disposed apart from the second insulating film.
  • the gate electrode is arranged separately from the second insulating film.
  • the size of the gate electrode is preferably large enough to cover the entire surface of the second insulating film. This is because the target substance recognition molecule can be bonded to the entire surface of the second insulating film.
  • one or more gate electrodes may be used.
  • FIG. 47 is a diagram showing an example of a biosensor device having the back gate FET of the present invention in the element portion. 47, the biosensor device includes a biosensor device main body 7601 and an element portion 7602 arranged on the biosensor device main body.
  • the biosensor device body 7601 includes a power source 7603 and a display unit 7604.
  • the element portion 7602 is detachably attached to the biosensor device body 7601, and the substrate 7609, ultrafine It has a fine fiber element 7605, a gate electrode 7614, and a substance to be detected recognition molecule 7613.
  • the substrate 7609 includes a support substrate 7608, a first insulating film 7607, and a second insulating film 7616.
  • the ultrafine fiber element 7605 includes a source electrode 7610 and a drain electrode 7611 arranged on the first insulating film 7607, and an ultrafine fiber body 7612 that electrically connects the source electrode 7610 and the drain electrode 7611. Consists of The source electrode 7610 and the drain electrode 7611 can be connected to a power source 7603 and controlled in voltage when the element portion 7602 is attached to the biosensor device body 7601.
  • FIG. 47 shows a state in which the sample solution 7615 exists between the second insulating film 7616 and the gate electrode 7614.
  • a sample solution 7615 is dropped on the second insulating film 7616 (if this is dried), the gate electrode 7614 is Install the element part 7602 placed on the biosensor device body 7601 and apply voltage to the gate electrode, drain electrode, and gate electrode. Thereby, for example, a change in source-drain current of the element portion 7602 is caused by an intermolecular interaction on the second insulating film 7616. The change is displayed on the display portion 7604.
  • the noise sensor device main body includes a power source and a display unit.
  • the power source may be replaced with external power acquisition means for acquiring power from the outside.
  • the display unit may output externally.
  • the element portion has the side gate type FET of the present invention and the substance to be detected recognition molecule bonded to the side gate type FET of the present invention.
  • the side gate type FET of the present invention used in the element portion can take the above-described aspects of the side gate type FET.
  • the source electrode, the drain electrode, and the gate electrode in the element unit can be electrically connected to the power source in the biosensor device body.
  • the site where the target substance recognition molecule is bound to the side gate type FET is an ultrafine fiber body, an insulating protective film (if any), a gate electrode, and the like. The pole is preferred. This is because, if the substance to be detected is limited on the electrode, the image charge is generated only in the electrode, so that it is difficult to interfere with the image charge in other electrodes.
  • the gate electrode may be disposed in direct contact with the first insulating film or may be disposed apart from the second insulating film.
  • the gate electrode is preferably disposed in direct contact with the second insulating film. Further, as described above, one or more gate electrodes may be provided.
  • FIG. 48 is a diagram showing an example of a biosensor device having the side gate type FET of the present invention in the element portion.
  • the biosensor device includes a biosensor device body 7601 and an element portion 7602 disposed on the biosensor device body.
  • the biosensor device body 7601 includes a power source 7603 and a display unit 7604.
  • the element portion 7602 is detachable from the biosensor device body 7601 and includes a substrate 7609, an ultrafine fiber element 7605, a plurality of gate electrodes 7614, and a substance to be detected-recognizing molecule 7613.
  • the substrate 7609 includes a supporting substrate 7608, a first insulating film 7607, and a second insulating film 7616.
  • the ultrafine fiber element 7605 includes a source electrode 7610 and a drain electrode 7611 arranged on the first insulating film 7607, and an ultrafine fiber body 7612 that electrically connects the source electrode 7610 and the drain electrode 7611. Consists of The source electrode 7610, the drain electrode 7611, and the gate electrode 7614 can be connected to a power source 7603 and controlled in voltage when the element portion 7602 is attached to the biosensor device body 7601.
  • FIG. 48 (A) shows a state in which the sample solution 7615 exists on the plurality of gate electrodes 7614.
  • the liquid 7615 may be dropped on the gate electrode 7614 (this may be dried in some cases), the element portion 7602 may be attached to the biosensor device body 7601, and a voltage may be applied to each element. Thereby, for example, a change in source-drain current of the element portion 7605 is caused by an intermolecular interaction in the gate electrode 7614. The change is displayed on the display portion 7604.
  • FIG. 48 (B) is a diagram showing an example of the element portion 7602 of the biosensor device shown in FIG. 48 (A).
  • the element portion 7602 is preferably chipped.
  • FIG. 48 (B) is a plan view of the chip 7702 of the biosensor device of FIG. 48 (A).
  • the chip 7702 has a case 7703 and an element portion 7602 accommodated therein.
  • the element portion 7602 includes four gate electrodes 7614, a source electrode 7610, a drain electrode 7611, and an ultrafine fiber body that are arranged adjacent to each other.
  • Each gate electrode 7614 is connected to a conductive pin 7704 fixed to the side of the case 7703 by bonding.
  • each gate electrode may be arranged in a fan shape and the set of gate electrodes may be arranged in a substantially circular shape.
  • the noise sensor device main body includes a power source, a display unit, and an ultrafine fiber element unit of the separation gate type FET of the present invention.
  • the power source may be replaced with external power acquisition means for acquiring power from the outside.
  • the display unit may output externally.
  • the source electrode, the drain electrode, and the channel in the ultrafine fiber element part are electrically connected to the power source.
  • the element part has the gate element part of the separation gate type FET of the present invention, and a substance to be detected recognition molecule bonded to the gate element part.
  • the gate element portion used for the element portion can take the above-described forms of the gate element portion.
  • the element part is Biosen When mounted on the main body of the device, the gate electrode in the element portion is electrically connected to the power source in the main body of the biosensor device, and the second substrate is the substrate of the ultrafine fiber element portion in the main body of the biosensor device. And can be electrically connected.
  • the site where the target substance recognition molecule is bound to the gate element portion of the separation gate type FET of the present invention is the gate electrode, the first surface of the second substrate (the gate electrode is disposed).
  • a gate electrode is preferable. This is because if the target substance recognition molecule is limited on the electrode, the image charge is generated only in the electrode, so that it interferes with the image charge in the other electrode.
  • multiple items can be detected by using multiple gate electrodes and combining different substances to be detected.
  • the gate electrode may be disposed in direct contact with the second substrate or may be disposed away from the second substrate. Further, as described above, one or a plurality of gate electrodes may be used.
  • FIG. 49 and FIG. 50 are diagrams showing an example of a biosensor device having a gate element part in the element part.
  • the biosensor device includes a biosensor device main body 7601 and an element portion 7802 arranged on the upper part of the biosensor device main body.
  • the biosensor device body 7601 includes a power source 7603, a display portion 7604, and an ultrafine fiber element portion 7801.
  • the ultrafine fiber element portion 7801 includes a substrate 7609 and an ultrafine fiber element 7605, and is placed on the conductive substrate 7803b.
  • the substrate 7609 includes a supporting substrate 7608, a first insulating film 7607, and a second insulating film 7616.
  • the ultrafine fiber element 7605 includes a source electrode 7610 and a drain electrode 7611 disposed on the first insulating film 7607, and an ultrafine fiber body 761 that electrically connects the source electrode 7610 and the drain electrode 7611. Composed of two forces.
  • the source electrode 7610 and the drain electrode 7611 are connected to a power source 7603 and controlled in voltage.
  • the element portion 7802 is detachably attached to the biosensor device body 7601 and includes a second substrate 762, a plurality of gate electrodes 7614, and a substance to be detected recognition molecule 7613, and a conductive substrate. Placed on 7803a.
  • the second substrate 7620 includes a second supporting substrate 7617, a third insulating film 7618 located on the first surface of the second supporting substrate 7617, and a second supporting substrate 7617. It is composed of a fourth insulating film 7619 located on the surface.
  • the gate electrode 7614 can be connected to a power source 7603 to control the voltage when the element portion 7802 is attached to the biosensor device body 7601.
  • the element portion 7802 can be electrically connected to the ultrafine fiber element portion 7801 via the conductive substrates 7803a and 7803b when attached to the biosensor device body 7601.
  • FIG. 49A shows a state where the sample solution 7615 exists on the plurality of gate electrodes 7614.
  • a sample solution 7615 is dropped onto the gate electrode 7614 (this may be dried in some cases), and the element portion 7802 is mounted. It only has to be attached to the biosensor device body 7601 and apply voltage to each element. Thereby, for example, a change in source-drain current of the ultrafine fiber element portion 7801 is caused by an intermolecular interaction on the gate electrode 7614. The change is displayed on the display portion 7604.
  • the ultrafine fiber element portion 7801 is separated from the gate element portion included in the element portion 7802 and arranged in the biosensor device main body 7601.
  • the ultrafine fiber element portion 7801 is not subjected to physical and chemical burdens. Therefore, the lifetime of the ultrafine fiber element portion 7801 is remarkably extended. Therefore, once the characteristics of the ultrafine fiber element part 7801 are measured and a calibration curve unique to the ultrafine fiber element part 7801 is created, the analyte can be detected from the calibration curve for the unknown sample. It is also possible to detect the concentration.
  • the ultrafine fiber element portion 7801 can be used over a long period of time, and the detected substance recognition element portion 7802 can be disposable.
  • the position of the ultrafine fiber element portion 7801 in the biosensor device main body 7601 is not particularly limited, and when the element portion 7802 is mounted, the conductive substrate 7803b of the ultrafine fiber element portion 7801 is attached. And the conductive substrate 7803a of the element portion 7802 may be electrically connected. For example, if the ultrafine fiber element portion 7801 is placed on the biosensor device body 7601 with the conductive substrate 7803b facing upward, and the element portion 7802 is mounted, the conductive substrate 7803b The conductive substrate 7803a may be contacted and connected (see the separation gate type FET in FIG. 43).
  • FIGS. 49B and 49C are diagrams showing an example of the element portion 7802 of the biosensor device shown in FIG. 49A.
  • the element portion 7802 is preferably formed as a chip.
  • 49B and 49C are a perspective view and a cross-sectional view of the chip 7804 of the biosensor device of FIG. 49A, respectively.
  • the chip 7804 includes a case 7703 and an element portion 7802 accommodated therein.
  • the element portion 7802 includes four gate electrodes 7614 arranged adjacent to each other, and is placed on the conductive substrate 7803.
  • Each gate electrode 7614 is bonded to a conductive pin 7704 fixed to the side portion of the case 7703, and the conductive substrate 7803 is connected to another conductive pin 7704.
  • each of the conductive pins 7704 is attached to the biosensor device.
  • the power source 7603 of the main body 7601 and the conductive substrate 7803b on which the ultrafine fiber element portion 7801 is placed are connected.
  • each of the gate electrodes 7614 is all arranged adjacent to each other so as to be located in the central portion, so that the sample solution is dropped into the central portion. Multiple items can be detected at once.
  • Each of the gate electrodes may be formed in a fan shape, and the set of gate electrodes may be formed in a substantially circular shape. These will be described later.
  • the biosensor device shown in Fig. 50 includes a biosensor device main body 7601 and an element portion 7802 arranged inside the biosensor device main body.
  • the biosensor device body 7 601 has an ultrafine fiber element portion 7801, a power source 7603, and a display portion 7604. This is the same as the biosensor device shown in FIG. In the biosensor device shown in FIG. 50, the element portion 7802 is moved in the direction of arrow A, so that it can be attached to and detached from the biosensor device body 7601.
  • the gate electrode 7614 is electrically connected to the power source 7603
  • the conductive substrate 7803a is electrically connected to the conductive substrate 7803b of the ultrafine fiber element portion 7801. Can be connected.
  • FIGS. 50B and 50C are a perspective view and a cross-sectional view of the chip 7804 of the biosensor device of FIG. 50A, respectively.
  • the chip 7804 includes a case 7703 and an element portion 7802 accommodated therein.
  • the element portion 7802 has four gate electrodes 7614 arranged adjacent to each other, and is placed on the conductive substrate 7803a.
  • Each of the gate electrodes 7614 is connected to a plate electrode 7901 formed on the side of the case 7703.
  • the conductive substrate 7803a is connected to another flat plate electrode 7901.
  • the plate electrode 7901 is connected to the power supply of the device body 7601. 7603 and the conductive substrate 7803b of the ultrafine fiber element portion 7801 can be connected.
  • each of the gate electrodes may be formed in a fan shape, and the set of gate electrodes may be formed in a substantially circular shape. In either case, all the gate electrodes 7614 and the flat plate electrode 7901 arranged in parallel at one end of the case are connected, but all the wiring paths from the gate electrode 7614 to the end flat plate electrode 7901 are all connected. It is preferable to be outside the group of gate electrodes 7614. By taking such a path, the end portions of the plurality of gate electrodes 7614 can be brought closer to each other in the vicinity of the center positions adjacent to each other.
  • the biosensor device of the present invention is a chip including the gate element portion of the isolated gate FET of the present invention that can be attached to and detached from the biosensor device body. 4 may be included.
  • FIG. 51 is a diagram showing an example of the chip 7804. The substance to be detected can be detected by dropping the sample solution onto the gate electrode.
  • a chip 7804 includes a conductive substrate 7803a, a gate electrode 7614, and a substance-to-be-detected molecule 7613 bonded to the gate electrode 7614.
  • the conductive substrate 7803a and the gate electrode 7614 in the chip 7804 are electrically connected to the connection terminal 8001 of the apparatus body through the conductive pins 7704.
  • a chip 7804 illustrated in FIG. 51A can include a plurality of gate electrodes 7614. In that case, one sample and many items can be detected by binding different substance-to-be-detected molecules 7613 to the plurality of gate electrodes 7614 and applying a voltage to each of the gate electrodes 7614.
  • a chip 7804 has a gate electrode 7614 and a target substance recognition molecule 7613 bonded to the gate electrode 7614.
  • the conductive substrate 7803a is disposed on the biosensor device main body.
  • the conductive substrate 7803a and the gate electrode 7614 in the chip 7804 are connected to the connection terminal 8001 of the device body through the conductive pins 7704.
  • the manufacturing cost of the chip 7804 can be further reduced.
  • a chip 7804 has a conductive substance 7803a and a substance-to-be-detected molecule 7613 bonded to the second substrate 7613.
  • the gate electrode 7614 is placed on the lid 8002 covering the chip 7804 of the biosensor device body.
  • a chip 7804 has a substance to be detected recognition molecule 7613 bonded to a conductive substrate 7803a and a second substrate 7620.
  • the gate electrode 7614 is disposed on the biosensor device main body so as to be located on the side of the chip 7804.
  • the example of the chip shown in Fig. 51 is based on the premise that a small amount of sample solution is dropped with a micropipette or the like, and has a planar shape. Therefore, if the amount of sample solution is large, the chip force sample solution may overflow and contaminate the surroundings. When the amount of the sample solution is large, it is preferable to make the shape of the chip concave instead of flat.
  • FIG. 52 is a diagram showing an example of a chip having a concave shape.
  • 52A is a perspective view showing an example of a chip having a concave shape
  • FIGS. 52B and 52C are concave shapes. It is sectional drawing which shows the example of the chip
  • the chip 8101 has a recess.
  • Four gate electrodes 7614 are disposed at the bottom of the recess, and a conductive substrate 7803a is provided below the gate electrode 7614 with an insulating plate such as plastic interposed therebetween.
  • the conductive substrate 7803a may be provided in the chip 8101 as shown in FIG. 52 (B), or may be provided in the biosensor device main body as shown in FIG. 52 (C).
  • Different target substance recognition molecules can be bound to the gate electrode 7614, respectively.
  • To detect the target substance for example, apply a voltage to one gate electrode 7614 and measure the source-drain current. By performing the same measurement for each of the four gate electrodes 7614, it is possible to detect multiple items per specimen.
  • the chip having the recess can be preferably applied particularly to a portable biosensor device used outdoors or in clinical settings because the sample solution can be stably retained on the gate element portion. Furthermore, by calibrating the tip, it is possible to add a certain amount of sample without using a micropipette. In addition, by providing a lid on the chip, evaporation of the sample can be suppressed, and noise can be reduced by increasing the pressure in the sample solution with the lid.
  • the chip may be a microplate type chip.
  • Microplate-type chips enable detection of multiple specimens and multiple items.
  • FIG. 53 shows an example of a microplate-type chip.
  • FIG. 53 (A) is a perspective view showing an example of a 24-hole microplate chip.
  • four gate electrodes are provided at the bottom of each hole of the chip 8201, and a conductive substrate is provided below the insulating film such as plastic.
  • Each gate electrode and the conductive substrate are electrically connected to conductive pins, respectively.
  • each gate electrode is electrically connected to the power source in the main body of the biosensor device, and each conductive substrate is connected to the ultrafine fiber body element. It can be electrically connected to the conductive substrate of the child part.
  • FIG. 53 (B) is a perspective view showing another example of a 24-hole microplate type chip. As shown in FIG. 53 (B), if an electrical connection portion 8203 to the biosensor device main body is provided on the side surface of the chip 8201, the chip 8201 can be inserted into the side portion of the biosensor device main body.
  • FIG. 53C is a cross-sectional view showing an example of wiring in the chip 8201 shown in FIG. 53B. Since the gate electrodes 7614 must be applied with voltages at different times, all have their own electric circuits. On the other hand, the conductive substrate 7803b only needs to have one common circuit.
  • Different detection target substance recognition molecules 7613 are bonded to the four gate electrodes 7614 in each hole of the 24-hole microplate type chip 8210.
  • a voltage may be applied to one gate electrode 7614 and a source-drain current may be measured. By performing this measurement for each gate electrode, four items can be detected for each of the 24 samples.
  • each gate electrode 7614 by sequentially connecting each gate electrode 7614 to one ultrafine fiber element part, different substances to be detected can be sequentially detected. Further, by connecting each gate electrode 7614 to each of a plurality of ultrafine fiber element portions simultaneously, a plurality of types of substances to be detected can be detected simultaneously.
  • the number of holes of the microplate chip and the number of gate electrodes can be selected as appropriate. For example, to increase the number of detection items, increase the number of gate electrodes per hole. In that case, for example, the force of expanding the bottom area by using a 6-hole microplate instead of 24 holes can be achieved. In order to increase the number of specimens, for example, a microplate having a larger number of holes (for example, a 96-well microplate) may be used.
  • the conductive substrate 7803a may be positioned on the biosensor device main body side as long as the force included in the microplate is directly below each hole.
  • the chip may have a flow cell that serves as a microchannel, and the sample solution may be supplied by a pump or the like.
  • the target substance recognition molecule is bound to the inner surface of the flow cell.
  • FIG. 54 (A) is a diagram showing an example of a chip including the back gate FET of the present invention provided with a flow cell.
  • the substance to be detected recognition molecule 7613 is bonded to the second insulating film 7616 constituting the upper surface of the flow cell.
  • the sample solution 7615 is continuously supplied into the flow cell from the left side of the figure by a sample solution supply means (not shown) such as a pump. Since the supply amount of the sample solution 7615 is adjusted by the sample solution supply means, the user does not need to measure the amount of the sample solution 7615 with a micropipette or the like, and a sufficient amount of the sample solution 7615 is supplied to the sample solution supply means. If you supply,
  • FIG. 54 (B) is a diagram showing an example of a chip including the gate element portion of the separation gate type FET of the present invention provided with the flow cell.
  • a substance-recognizing molecule 7613 is bound on a plurality of gate electrodes 7614 located on the bottom surface of the flow cell. In this example, detection can be performed for a plurality of items.
  • ⁇ TAS and liquid chromatography may be combined.
  • detection by UV and detection by the biosensor device of the present invention can be performed.
  • the same sample can be guided to another detection device or another detection site of the composite device, and a plurality of types of detection substances can be continuously detected.
  • detection over time can be performed.
  • the biosensor of the present invention can detect the substance to be detected from the change in the source-drain current.
  • the source-drain current required for this detection is usually on the order of ⁇ A. Therefore, sufficient detection sensitivity can be obtained with a measurement sensitivity of the order of a general-purpose tester (several hundred nA) without using an expensive device such as a semiconductor parameter analyzer. Therefore, a biosensor device (see FIG. 55A) driven by a battery of a notebook PC or a small biosensor device driven by a small battery (see FIG. 55B) can be manufactured. Furthermore, since a special detection device is not necessarily required, it can be downsized to the size of a mobile phone.
  • the substance to be detected can be detected by using the biosensor (device) of the present invention.
  • the biosensor of the present invention detects a substance to be detected from a change in source / drain current or source / drain voltage generated by binding to a substance to be detected substance recognition.
  • sample solution to the site where the target substance recognition molecule is bound to the biosensor.
  • it may be added to the back surface (on the second insulating film) of the substrate to which the target substance recognition molecule is bound. If the detected substance is contained in the sample solution, interaction between the detected substance and the detected substance recognition molecule (for example, antigen-antibody reaction) occurs.
  • the method of removing by transpiration is not particularly limited.
  • a heater that blows using nitrogen gas or the like may be used using a thermoelectric conversion element (Peltier element).
  • the blower is gradually evaporated while being slightly applied to form a uniform thin film. Therefore, normal spray can spraying may be used, but it may be difficult to control the amount and momentum of the gas.
  • the FET is energized by applying a gate electrode to the portion where the sample solution is added (preferably after the sample solution is evaporated or cooled). Then measure the I-V or I_Vg characteristics.
  • A detection of nickel ions which are divalent ions
  • B detection of anti-hemagglutinin (hereinafter abbreviated as “HAJ”) antibodies
  • C anti-calmodulin (hereinafter abbreviated as “CaM”) antibody
  • HJ anti-hemagglutinin
  • CaM anti-calmodulin
  • the back gate FET of the present invention used in the following detection examples (A;) to (C) has the configuration shown in FIG. 31 (A).
  • the support substrate is a silicon substrate with a thickness of 500 xm
  • the first insulating film and the second insulating film are silicon oxide with a thickness of 300 nm
  • the area of the substrate is lcm 2 (lcm X 1cm)
  • the ultrafine fiber body was a single-walled CNT
  • the distance between the source electrode and the drain electrode was 5 ⁇ m
  • the area of the second insulating film in contact with the gate electrode was lcm 2 .
  • AFM confirmed that the source and drain electrodes were connected by several CNTs.
  • the silicon oxide film surface (lcm 2 ) on the second surface (the surface on which the source electrode, drain electrode, and channel are not arranged) of the prepared back gate FET substrate is washed with a piranha solution and ethanol. Dried.
  • 31 (38 10) mercaptopropyltrimethoxysilane was dropped onto the surface of the silicon oxide film and heated at 180 ° C. for 2 hours. After cooling to 30 ° C, it was treated with 50 mM dithiothreitol (DTT) at the same temperature for 1 hour or longer, and then washed with water.
  • DTT dithiothreitol
  • the probe connected to the semiconductor parameter analyzer was connected to the source electrode and the drain electrode, and the IV characteristics were measured.
  • the I–V characteristic curve (showing the relationship between source-drain current and source-drain voltage) was obtained with the gate voltage set at 0V.
  • a maleimide-NTA solution (lm g / ml) prepared using a 10 mM phosphate buffer (pH 6.5) was layered on the surface of the silicon oxide film and allowed to stand at room temperature for 1 hour. Then, it was washed with water and dried with nitrogen gas (dried until no water droplets disappeared). Here, an IV characteristic curve was obtained in the same manner as described above.
  • nickel ions can be detected by the biosensor of the present invention in which NTA is bound as a substance-recognizing molecule. It is also suggested that not only nickel ions but also divalent ions (such as zinc ions and cobalt ions) that interact with NTA can be detected.
  • rHA hemagretinin
  • rHA protein expression plasmids corresponding to each level were introduced into 293T cells. Using monoclonal antibody E2 / 3 and polyclonal antibody, it was confirmed that rHA protein was expressed in cells. Furthermore, it was confirmed that rHA protein was secreted into the supernatant by Western blotting.
  • the secretion was purified on an NTA_Ni 2+ column. Fraction containing the target rHA protein was confirmed by ELISA and Western blot and fractionated. The aliquot was dialyzed against PBS to obtain rHA protein. Of rHA and rHA, rHA is monochrome
  • maleimide-NTA was bonded to the second surface of the prepared back gate type FET substrate and further treated with NiCl.
  • each anti-HA antibody diluted solution 50 / il was added and allowed to stand at 25 ° C for 15 minutes, then washed with water and dried with nitrogen gas (water drops visually). Dried until no more).
  • the IV characteristic curve was obtained in the same manner as described above (however, the gate voltage was set to 120V).
  • the mixture was allowed to stand at 25 ° C for 15 minutes, washed with water, and dried with nitrogen gas (dried until no water droplets disappeared visually).
  • an I-V characteristic curve was obtained in the same manner as described above (however, the gate voltage was set to 20 V).
  • Fig. 57 shows the I–V characteristic curve (dotted line) when the second surface of the substrate is treated with NiCl.
  • I-V characteristic curve (dotted line), rHA is applied to the second surface of the substrate treated with NiCl After fixation, the IV characteristic curve (solid line) is shown when 5 x 10 _b dilution is added.
  • r CaM recombinant CaM (hereinafter abbreviated as “r CaM”) protein, which is an antibody recognition molecule used as a substance to be detected, was prepared.
  • a DNA fragment containing the rat CaM gene cDNA was inserted into the Sad-Xbal site of the expression vector pBAD / glll (Invitrogen) to construct an rCaM expression vector.
  • the constructed expression vector was introduced into E. coli strain LMG194 to obtain an rCaM expression clone.
  • the obtained clone was inoculated into 2 ml of LB / ampicillin medium and cultured in a koji.
  • maleimide-NTA was bonded to the second surface of the prepared backgate FET substrate and further treated with NiCl.
  • the I–V characteristic curve was obtained in the same manner as above (however, the gate voltage was set to –20V).
  • calf serum albumin 34 mg / ml; 50 l
  • BS A calf serum albumin
  • FIG. 63 shows the source-drain current when the source-drain voltage is 1.5 V in each of the obtained I-V characteristic curves.
  • Ni is treated with NiCl.
  • CaM represents the source-drain current when rCaM protein was immobilized
  • BSA represents the source when calf serum albumin as a control was added. shows an drain current, "10” to 10-4 "indicates the source one drain currents upon addition of antibody dilution for each concentration.
  • FIG. 63 also shows the results of detection of anti-CaM antibody using ELISA.
  • RCaM was adsorbed and immobilized on each well of the microtiter plate using 100 ⁇ ⁇ of a 5 ⁇ g / ml rCaM solution.
  • the above primary antibody mixture is diluted to each dilution ratio, placed in each well, allowed to stand for 1 hour, washed with PBST (PBS containing 0.2% Triton X_100), and then diluted 5000 times 2
  • the next antibody HRP-labeled anti-mouse IgG antibody
  • a substrate having an absorption wavelength of 450 nm was generated with a TMB color former, and the absorbance was measured.
  • the detection method of the present invention has a detection sensitivity of 400,000 times I understand that.
  • FIG. 64 shows I vs. Vg characteristics when the dilution ratio of the antibody stock solution is changed.
  • A I-Vg characteristic curve when the dilution ratio of antibody stock solution is 10 -1 °
  • B I-Vg characteristic curve when the dilution ratio of antibody stock solution is 10-9
  • c denotes the I- Vg characteristic curve when the dilution of the antibody stock solution and 10_ 5.
  • the detection results in FIG. 63 and the detection results in FIG. 64 are obtained by independent experiments. When the dilution ratio of the antibody stock solution increases, the source-drain current increases.
  • the biosensor of the present invention can be used for measuring the concentration of a substance to be detected.
  • concentration (1) storage means for storing a calibration curve indicating the relationship between the concentration of the substance to be detected and a predetermined characteristic value, and (2) using the calibration curve, it is included in an unknown sample. It is preferable to further have a concentration determining means for determining the concentration of the substance to be detected.
  • concentration determining means may be a value having a one-to-one relationship with the concentration.
  • I-V characteristic curve curve showing the relationship between source-drain current and source-drain voltage when the gate voltage is constant
  • I_Vg characteristic curve source-drain voltage
  • FIG. 65 is an example of a graph showing the relationship between the concentration of a substance to be detected in a sample and the source-drain current at the inflection point of the IVg characteristic curve obtained by the biosensor of the present invention. .
  • the logarithmic value of the sample concentration and the current value can be proportional. It is possible to use this proportional relationship as a calibration curve.
  • the concentration of the substance to be detected exceeds a certain value, the concentration and the current value are not proportional. This is because, as shown in FIG. 66, the concentration of the substance to be detected becomes excessive with respect to the number of molecules to be detected that are bound to the biosensor.
  • the biosensor for measuring the concentration preferably includes a concentration determining means for determining the concentration based on the calibration curve.
  • the concentration determining means includes means for measuring a “predetermined characteristic value” for an unknown sample, and means for calculating the concentration by applying the measured “predetermined characteristic value” to the stored calibration curve. It is preferable to include.
  • the biosensor for measuring the concentration may further include calibration means for obtaining a calibration curve.
  • the calibration means obtains a calibration curve using three or more known samples (samples having a known concentration of the substance to be detected) having different concentrations. That is, for each of the three samples, the concentration and the “predetermined characteristic value” are obtained, and a calibration curve is obtained therefrom.
  • FIG. 67 is a diagram showing an example of a biosensor device for measuring the concentration of a substance to be detected.
  • a biosensor device 1100 includes a biosensor main body 1110, a computer 1120, and a D / A (digital-analog) converter 1130.
  • the biosensor main body 1110 includes the FET of the present invention to which a substance to be detected is bound.
  • the isolation gate type FET of the present invention is included.
  • the computer 1120 includes, for example, a personal computer (PC) or a dedicated computer.
  • the D / A converter 1130 has a function of converting a digital signal into an analog signal and converting the analog signal into a digital signal.
  • the digital signal from the computer 1120 is converted into an analog signal by the D / A converter 1130, and the applied voltage (gate voltage, source-drain voltage) to the biosensor main body 1110 is controlled.
  • the value of the drain current (source-drain current) of the biosensor main body 1110 is DZA converter 1130 Is taken into the computer 1120.
  • the computer 1120 has a CPU, a memory, and a display unit (not shown), and has a calibration function for determining a calibration curve and a measurement function for measuring an unknown sample. In the measurement of an unknown sample, the concentration of the target in the unknown sample is measured.
  • FIG. 68 is a flowchart showing an example of the processing procedure of the calibration function. This flowchart is stored as a control program in the memory of the computer 1120 and executed by the CPU.
  • I_Vg characteristics (relationship between source-drain current and gate voltage) are measured. For example, after dropping a sample with a known dilution ratio, the source-drain voltage is fixed to a predetermined value (for example, -IV), the gate voltage is within a predetermined range (for example, from -10V to + 10V), Measure and record the source-drain current (Isd) each time by changing it by a predetermined value (eg, 0.1V). This gives the I-Vg characteristic for a single dilution ratio.
  • a predetermined value eg, 0.1V
  • step S2100 the inflection point of the I-Vg characteristic obtained in step S2000 is determined.
  • This inflection point is one of the characteristic points of the I Vg characteristic and is the inflection point of the change of the source-drain current with respect to the gate voltage.
  • This inflection point is the portion where the change is most intense in the I Vg characteristic, and is the part (the gradient is large), and this part has the largest characteristic change in the dynamic range, so it is the detection most sensitive to the change. Expected to show results. The inflection point determination process will be described later with reference to FIG.
  • step S2200 it is determined whether or not to change the dilution rate. This determination is performed according to a manual operation by the user or according to a signal from the ⁇ _TAS system. That is, in order to determine the calibration curve, it is necessary to plot three or more points on the graph. Therefore, the dilution rate is determined by measuring the I-Vg characteristic and determining the inflection point. It is necessary to do this for three or more samples that are known and different from each other. Therefore, in this step S2200, it is determined whether or not the processing has been completed for all of the scheduled known samples.
  • step S2300 if the dilution ratio is to be changed (S2200: YES), it is determined that there is an unprocessed known sample, the process returns to step S2000, and the unprocessed sample is processed.
  • S220 0: NO When the above-described series of processing is performed on a known sample and the dilution ratio is not changed (S220 0: NO), it is determined that there is no unprocessed known sample, and the process proceeds to step S2300.
  • step S2300 a calibration curve is determined based on the processing results in steps S2000 to S2200, and this flow ends.
  • the calibration curve determination process will be described later using FIG.
  • step S2000 the V-Vg characteristic measurement process
  • FIG. 69 is a flowchart showing an example of the procedure of the I_Vg characteristic measurement process. This flowchart is stored as a control program in the memory of the computer 1120.
  • step S2010 a sample with a known dilution rate is dropped onto a predetermined position of biosensor main body 1110. This process is performed manually by the user or automatically by ⁇ -TAS.
  • step S2020 it is determined whether or not the switch is turned on.
  • the switch is turned on either manually by the user or automatically by a-TAS.
  • S2020: YES When the switch is turned on (S2020: YES), it is determined that the sample has been dropped, and the process proceeds to the next step S2030.
  • step S2030 the source-drain voltage (Vsd) is set to a predetermined value (eg, IV).
  • step S2040 the gate voltage (Vg) is set to an initial value (eg, 10V).
  • step S2050 the source-drain current (Isd: hereinafter also simply referred to as "I" at the set source-drain voltage and gate voltage is measured and stored (recorded) in the memory.
  • Isd the source-drain current
  • step S2070 it is determined whether or not to end the process. Specifically, for example, whether or not the gate voltage after the update exceeds a predetermined range ⁇ In other words, for example, if the gate voltage is changed in increments of 0.1V in the range of -10V to + 10V, Determine if the gate voltage is 10 • IV or higher. As a result of this determination, the updated gate voltage is If it exceeds the predetermined range (S2070: YES), the process returns to the main flowchart of FIG. 68 and ends this flow. On the other hand, if the updated gate voltage does not exceed the specified range (S2070: N0), the process returns to step S2050, and the source-drain current at the updated gate voltage is measured and recorded.
  • a predetermined range ⁇ for example, if the gate voltage is changed in increments of 0.1V in the range of -10V to + 10V, Determine if the gate voltage is 10 • IV or higher.
  • the updated gate voltage is If it exceeds the predetermined range (S20
  • step S2100 the inflection point determination process
  • FIG. 70 is a flowchart showing an example of the procedure of the inflection point determination process. This flow chart is stored as a control program in the memory of the computer 1120 and executed by the CPU.
  • step S2110 the differential value (dlZdVg) is calculated for each gate voltage (Vg) with respect to the I_Vg characteristic acquired in step S2000.
  • step S2120 the maximum value is selected from the differential values calculated in step S2110.
  • step S2130 the position corresponding to the maximum value selected in step S2120 is regarded as the inflection point, and the current value (source drain current) at this inflection point is stored (recorded) in the memory.
  • the current value source drain current
  • FIG. 71 is a flowchart showing an exemplary procedure of a calibration curve determination process. This flow chart is stored as a control program in the memory of the computer 1120 and executed by the CPU.
  • step S2310 plotting is performed on the graph. That is, on the graph where the horizontal axis is the dilution rate and the vertical axis is the current value, the current values at the inflection points corresponding to three or more different dilution rates (source-drain current) obtained in steps S2000 to S2300 Plot.
  • x is a dilution rate
  • y is an inflection point current value (source-drain current).
  • the dilution rate (logarithmic value) shown in (a) is _10.
  • Inflection point current value (X 10 " 6 ) Is 2.7
  • the current value at the inflection point (X ICT 6 ) is 2.6 when the dilution ratio (logarithmic value) shown in (b) is -9.
  • the current value (X 10_ 6 ) at the inflection point when the dilution ratio (logarithmic value) shown in (c) is -5 is 2.4
  • the current value at the inflection point for each dilution ratio may be an average value to compensate for variations in measurement results. This average value is obtained by repeating the treatment multiple times for each dilution factor and taking the average.
  • FIG. 73 is a flowchart showing an example of a change in the processing procedure of the calibration function.
  • part of the processing procedure of the I-one Vg characteristic determination process (step S2000) and the inflection point determination process (step S2100) is changed.
  • step S2140 and step S2150 are inserted into the flowchart shown in FIG. 69, as shown in FIG.
  • Steps S2010 to S2050 are the same as the respective steps in the flowchart shown in Fig. 69, and thus the description thereof is omitted. However, this change example is explained using specific numerical examples. That is, in step S2030, the source-drain voltage (Vsd) is set to 1 1 V, and in step S2040, the gate voltage (Vg) is set to the initial value of ⁇ 10 V.
  • step S2140 the differential value (dl / dVg) of the source-drain current (I) measured in step S2050 is obtained. Specifically, since the gate voltage increment (dVg) is a constant value (0.1 V), the difference (dl) between the previous measured value and the current measured value is obtained and dl / dVg is calculated.
  • step S2150 the maximum value is selected from the differential values (dlZdVg) calculated so far, and the current value at the position (inflection point) corresponding to this maximum value is updated together with the selected maximum value. Record.
  • the maximum value is selected, for example, by comparing the current maximum value with the differential value calculated this time.
  • Steps S2060 and S2070 are the same as the steps of the flowchart shown in Fig. 69, and thus the description thereof is omitted. However, in this change example, a specific numerical example It explains using. That is, in step S2060, the current gate voltage is calculated by 0.4V current to update the gate voltage value, and in step S2070, it is determined whether or not the updated gate voltage is 10.1V or higher.
  • FIG. 74 is a flowchart showing an example of the processing procedure of the measurement function. This flow chart is stored as a control program in the memory of the computer 1120 and is executed by the CPU.
  • step S3000 an I_Vg characteristic is measured for an unknown sample. Since this step S 3000 is the same as step S 2000 in the flowchart shown in FIG. 68, its description is omitted.
  • step S3100 the inflection point of the I—Vg characteristic obtained in step S3000 is determined, and the current value (source-drain current) at this inflection point is specified.
  • This step S3100 is the same as step S2100 of the flowchart shown in FIG. 68, and therefore its description is omitted.
  • step S3000 to step S3200 may be repeated.
  • the biosensor device of the present invention not only the presence or absence of a substance to be detected in an unknown sample, but also the concentration can be detected simultaneously.
  • the concentration of the sample does not enter the dynamic range, for example, if the concentration is very high and exceeds the dynamic range, prepare several diluted samples in advance and use for multiple samples.
  • the concentration can be determined using a biosensor device.
  • the computer 1120 can display the obtained data (for example, I_Vg characteristics, inflection points, calibration curve, presence / absence and concentration of sample) on the display unit.
  • the biosensor (device) of the present invention can be used to detect a substance to be detected or measure the concentration thereof as described above, but can also be used to examine the distribution of the substance to be detected.
  • the biosensor of the present invention has high detection sensitivity and can shorten the time required for detection.
  • the biosensor of the present invention can be miniaturized and can be driven by a battery. By combining these features, it is preferably used as a sensor for detecting in the field. “Detecting in the field” means, but not limited to, detecting an infectious disease virus in the field.
  • the object distribution detection system of the present invention includes a biosensor terminal device and an information processing device.
  • the biosensor of the present invention is used for this biosensor terminal device.
  • the biosensor terminal device has a communication function for transmitting the detection result of the detected substance (including information on the concentration of the detected substance) by the biosensor of the present invention and information on the detected position. is doing.
  • the NOCIO sensor terminal device has a communication function for transmitting detection time information in addition to the detection result and position information of the substance to be detected. This communication function is preferably a wireless communication function.
  • the transmission destination of the information is an information processing device (described later).
  • the object distribution inspection system includes one or more biosensor terminal devices. If two or more biosensor terminal devices are included, useful data can be generated based on information transmitted from them to the information processing device. When two or more biosensor terminal devices are included in the distribution test system, it is preferable that the ID is given to each biosensor terminal device. It is preferable to have a communication function.
  • An information processing device included in the object distribution inspection system can receive information transmitted from the biosensor terminal device described above, and can output the information.
  • “Output information” means, for example, indicating the detection result or detection time on a map, but is not particularly limited.
  • Figure 75 shows the distribution test. It is a schematic block diagram which shows the structure of an example of a stem.
  • the object distribution inspection system 500 shown in FIG. 75 includes one or more biosensor terminal devices 600 and an information processing device 700, and these devices are connected by a communication line 800.
  • the biosensor terminal device 600 is a device in which the biosensor device is further provided with a communication function and the like, and the presence or concentration of the substance to be detected is checked at a predetermined place (for example, a poultry farm) to obtain the obtained data. Is sent to the information processing device 700 through the communication line 800.
  • the information processing device 700 is, for example, a computer or workstation having a communication function, and includes an arithmetic processing unit (CPU), a memory, an input / output device, a storage device, and the like.
  • a program for causing the information processing apparatus 700 to function is installed in the storage device, and the information processing apparatus 700 is realized by loading this program on the memory and executing it by the CPU.
  • the information processing device 700 receives data sent from the biosensor terminal device 600, processes and analyzes the data, and outputs an analysis result such as a distribution map of the detection target.
  • the communication line 800 only needs to be able to establish a session with the information processing apparatus 700 and transmit information to the information processing apparatus 700 regardless of whether it is a wired, wireless, dedicated line, or exchange line.
  • the communication line 800 may be realized by combining a plurality of networks via a gateway like the Internet. Also, the connection may be a temporary connection such as a PPP connection, instead of connecting directly to the trunk line. Note that the communication line 800 includes a network that does not use an exchange such as a fixed dedicated line.
  • FIG. 76 is a block diagram showing a configuration of biosensor terminal device 600.
  • the biosensor terminal device 600 includes an object recognition element unit 605, an ultrafine fiber element unit 610, an input unit 615, a position specifying unit 620, a time specifying unit 625, a detection result analyzing unit 630, a storage unit 635, and a calibration curve database. 640, a display unit 645, and a transmission unit 650.
  • the target object recognition element unit 605 is a part where a target substance recognition molecule is bound, and generates an intermolecular interaction between the target substance recognition molecule and the target substance (detection target).
  • a part modified with a substance to be detected in the target recognition element part 605 gate electrode, substrate, etc.
  • the electronic state changes, and this change is transmitted to the electrically connected ultrafine fiber element portion 610. If there is no substance to be detected in the sample solution, the above electronic state does not change.
  • the configuration of the target object recognition element unit 605 the forces that have already been described in various aspects. Here, which aspect is used is not particularly limited.
  • the ultrafine fiber element unit 610 detects the change in the electronic state transmitted from the object recognition element unit 605 as the change in the source-drain current. When the electronic state has not changed (when there is no substance to be detected in the sample solution), such current change does not occur.
  • the relationship between the object recognition element portion 605 and the ultrafine fiber element portion 610 may be any of a back gate type, a side gate type, and a separation gate type.
  • the input unit 615 is an input interface when the user inputs ONZOFF of each function or inputs attribute data such as a data name as detection data.
  • the position specifying unit 620 specifies a measurement point. This can be done by manually inputting the position information, but it is also possible to use a global positioning system (hereinafter abbreviated as “GPS”). In this case, a GPS reception system should be installed in the location specifying unit 620.
  • GPS global positioning system
  • the time specifying unit 625 specifies the detection time and the transmission time during data transmission.
  • the time specified here is added to detection data and transmission data as time information. This may be input by the user, but can be realized by incorporating a clock (such as a quartz clock or a radio clock). If GPS is used by the position specifying unit 620, time information is received from the GPS satellite together with the position specifying information, so that the time 1J can be specified without adding a special function.
  • the detection result analysis unit 630 performs various processes on the raw data obtained by the ultrafine fiber element unit 610. For example, the raw data (such as the detected current value) is applied to the calibration curve data in the calibration curve database 640, and the concentration of the detection target in the sample solution is calculated. In addition, in the case of multi-sample / multi-item detection, it is also considered to collect and analyze data for each sample and each item.
  • the storage unit 635 stores a program and biotechnology for causing the biosensor terminal device 600 to function. Information generated in the sensor terminal device 600 is stored.
  • the calibration curve database 640 stores calibration curve data of the ultrafine fiber element unit 610. Since the characteristics of the ultrafine fiber body of the ultrafine fiber element portion 610 are different for each element, the relationship between the change in the concentration of the detection target and the change in the source-drain current (voltage) value is also different for each ultrafine fiber element. Therefore, the calibration curve database 640 stores calibration curve data unique to the ultrafine fiber element unit 610 in the biosensor terminal device 600. If there are multiple ultrafine fiber element parts in a single biosensor terminal device, the ultrafine fiber element parts are distinguished from each other and all the calibration curve data are stored. The concentration calculation based on the calibration curve may be performed in the biosensor terminal device 600 or in the information processing device 700.
  • the display unit 645 displays the execution state of the biosensor terminal device 600 and the biosensor terminal device.
  • Display information generated in 600 Note that the display unit 645 may be omitted if it is not necessary to display such information to the user.
  • Transmitting section 650 transmits the detection data to information processing apparatus 700.
  • detection data to be transmitted may be either raw data before processing or data after processing.
  • FIG. 77 is a block diagram showing the configuration of the information processing apparatus 700.
  • Information processing device 700
  • Receiving unit 705, input unit 710, item information adding unit 715, distribution map creation unit 720, distribution analysis unit 725, storage unit 730, item information database 735, map information database 740, distribution map database 745, and output unit 750 Have
  • the receiving unit 705 receives the detection data transmitted by the biosensor terminal device 600.
  • the input unit 710 allows the user to input ON / OFF of each function of the information processing device 700.
  • the item information giving unit 715 gives item information to the detection data sent from the biosensor terminal device 600.
  • the biosensor terminal device 6 In order to explain the function of the item information adding unit 715, the biosensor terminal device 6
  • FIG. 78 is an example of detection data transmitted by the biosensor terminal device 600.
  • a bird flu survey has been conducted at C poultry farm, and the detection data is collected for each detection item by biosensor terminal device 600 and then transmitted.
  • the format of the detection data is not limited to this.
  • the column of "terminal device” is the number (or name) of the biosensor terminal device. This is unique to each biosensor terminal device 600, and this information is automatically written when data is transmitted.
  • the column "Poultry farm name” is the name of the investigated chicken farm. This item is not particularly necessary if there is a “place” column as shown below, but it should be present to make the subject of the study easier. This field is manually input from the input unit 615 of the biosensor terminal device by the user.
  • the "place" column is information for specifying the investigated place.
  • the latitude and longitude information may be obtained using GPS. This information is indispensable for creating a distribution map. This field is not necessary if the user has separately entered information that can specify the location, such as the “Poultry farm name” field. .
  • the column "number of samples" is information indicating the number of specimens.
  • the user may input manually from the input unit 615 of the biosensor terminal device or may automatically detect the number of samples on the chip and automatically fill this field. .
  • the column of “Item 1, Item 2,..., Item 135” is a detection result for each detection item. For example, if we are investigating 135 subtypes of H1N1, H1N2, ..., H15N9 influenza viruses, there will be 135 items for 100 samples per test. Figure 78 shows that 5 of 100 samples are positive for item 37. At this time, the names in this column may contain specific detection items “H1N1, H1N2,..., H15N9”, respectively. In this case, item 37 corresponds to H5N1.
  • FIG. 79 is an example of data after the item information adding unit 715 of the information processing device 700 has assigned item information.
  • information from 10 biosensor terminal devices is summarized.
  • the columns from “terminal device” to “number of samples” are the same as those in FIG.
  • the items “H1N1, H1N2, ⁇ , H15N9” correspond to the temporary numbers (HD information) of the items “Item 1, Item 2,..., Item 13 5” in FIG.
  • the information giving unit 715 is replaced with actual item contents.
  • the biosensor terminal device 600 only assigns a temporary number (HD information) to each item to be detected, and the item information providing unit 715 of the information processing device 700 is based on the temporary number (HD information).
  • the first advantage is that the detection result is not known to the user. For example, when investigating that the detection results may cause significant economic losses to poultry farmers or have a significant impact on the lives of the surrounding residents, such as bird influenza It is not always good to know the results on the spot. In some cases, fraudulent acts may be performed on the detection results. Therefore, by setting the inspection item as a temporary number as described above, the user cannot know the detection result, so that such a problem can be prevented.
  • the second advantage is that detection items can be easily changed. For example, as above
  • biosensor terminal device 600 provides force item information that will replace the chip from 100 samples for 135 items to 100 samples for 18 items, every time the chip is changed, all biosensor terminal devices 600 Item information will have to be changed.
  • the provisional number (I Haruho) is given according to a predetermined rule, and the item information giving unit 715 of the information processing device 700 uses the temporary number ( If item information corresponding to (3 information) is added, the item information can be changed by changing the data in the item information database 735 of the information processing device 700 only once.
  • the item information giving unit 715 is sent from the biosensor terminal device 600. Item information is added to the detection data.
  • the distribution map creation unit 720 creates a distribution map based on the detection data and the map information in the map information database 740.
  • a distribution map can be created by incorporating a geographic information system (hereinafter abbreviated as “GIS”).
  • GIS geographic information system
  • FIG. 80 is an example of a distribution map.
  • “X” is C poultry farm, which is the first reporting point, and chicken farms A to J within 30 km of C poultry farm are subject to the survey and displayed on the map.
  • “ ⁇ ” and “ ⁇ ” are poultry farms that were subject to preparation, “ ⁇ ” indicates virus positive and “ ⁇ ” indicates virus negative.
  • next to each mark is the name of the poultry farm and the percentage of specimens positive for wineless (number of positive specimens / 100 specimens).
  • FIG. 80 shows a case where the name of the poultry farm and the ratio of the virus-positive specimen are displayed, but information received from the biosensor terminal device 600 such as the concentration of the detection target is displayed as necessary. All can be displayed.
  • the distribution analysis unit 725 analyzes changes in the distribution over time. For example, by surveying each poultry farm at predetermined intervals and mapping the virus infection rates as shown in FIG. 80, a distribution map over time can be obtained. The distribution analysis unit 725 analyzes the distribution map over time and simulates the future infection spread route and its range. [0404] Storage unit 730 stores a program for causing information processing device 700 to function, and data generated by information processing device 700.
  • the item information database 735 stores item information necessary for the item information adding unit 715 to add item information to the received detection data.
  • the map information database 740 stores map information (for example, a digital white map) that is the basis when the distribution map creation unit 720 creates an object distribution map.
  • the distribution map database 745 stores the object distribution map created by the distribution map creation unit 720.
  • the output unit 750 outputs data generated by the information processing device 700 such as a detection object distribution map. For example, output to a monitor or printer connected to the outside, or output to another computer connected via the Internet or the like.
  • biosensor terminal apparatus 600 First, the operation of biosensor terminal apparatus 600 will be described using the flowchart shown in FIG.
  • step S4000 the user prepares the sample and inputs attribute information such as information on the time and place where the sample was procured using the position specifying unit 620, the time specifying unit 625, and the input unit 615. .
  • the input attribute information is stored in the storage unit 635.
  • step S4100 the user drops the sample solution prepared in step S1000 onto the object recognition element unit 605.
  • step S4200 the object recognition element unit 605 and the ultrafine fiber element unit 610 detect whether there is a detection object in the sample solution.
  • the object recognition element unit 605 and the ultrafine fiber element unit 610 apply a voltage to each electrode.
  • the ultrafine fiber element unit 610 changes the source-drain current of the ultrafine fiber element unit 610 caused by an intermolecular interaction (for example, antigen-antibody reaction) in the object recognition element unit 605. Measure.
  • the ultrafine fiber element unit 610 passes the current change measurement value to the detection result analysis unit 630.
  • step S4300 the detection result analysis unit 630 calculates the current change measurement value from the sample solution.
  • the presence / absence of the detection target and its concentration are calculated.
  • the current change measurement value merely shows the correlation between the voltage and the current in the ultrafine fiber element part, and it is not known whether or not the detection target is present in the sample solution. Therefore, the detection result analyzing unit 630 applies the current change measurement value to the calibration curve data stored in the calibration curve database 640, and calculates the presence / absence of the detection target and its concentration.
  • the detection result analysis unit 630 passes the calculation result to the transmission unit 650.
  • step S4400 transmission section 650 creates detection data to be transmitted to information processing apparatus 700.
  • the transmission unit 650 adds attribute information such as position information and time information input in step S4000 to the calculation result calculated in step S4300, and transmits data necessary for the information processing device 700 to create a distribution map. Create detection data that includes everything.
  • step S4500 transmission section 650 transmits the detection data created in step S4400 to information processing apparatus 700.
  • step S5000 the receiving unit 705 receives the detection data transmitted from the biosensor terminal device 600.
  • the received data is passed to the item information adding unit 715.
  • step S5100 the item information assigning unit 715 assigns item information to the item to which the provisional number is assigned in the detection data, based on the item information stored in the item information database 735.
  • the detection data to which the item information is assigned is passed to the storage unit 730.
  • the storage unit 730 has detection data transmitted from various places.
  • step S5200 distribution map creating section 720 creates a detection object distribution map.
  • the distribution map creation unit 720 reads out detection data at a target time from the detection data stored in the storage unit 730. In addition, the distribution map creation unit 720 reads a map of the search target area from the map information database 740. Then, the distribution map creation unit 720 creates a detection object distribution map at a predetermined time. The created detection object distribution map is stored in the distribution map database 745.
  • step S5300 distribution analysis section 725 analyzes the distribution of the detection object.
  • the infection range is identified and the future infection range and infection route are predicted.
  • step S5400 output unit 750 outputs the analysis result.
  • the analysis result includes the distribution map created in step S5200, which includes only the analysis result in step S5300.
  • the designated organization identifies facilities (chicken farms, zoos, etc.) where there are a large number of birds within a radius of 30 km, centering on the reported C chicken farm.
  • facilities chicken farms, zoos, etc.
  • the system according to the present invention may not be used, but the map information data in the information processing apparatus according to the present invention may be used.
  • the case where all the specified facilities are poultry farms will be described as an example.
  • the staff of the specified organization will bring the biosensor terminal device according to the present invention to each facility specified in (2) above and check for the presence of avian influenza virus.
  • 100 chicken droppings are collected from each poultry house (in the case of a poultry farm) at a predetermined time. In the case of expensive chickens, they may be collected separately for each bird. At this time, the sampling time and the sampling location information are recorded using the time specifying function and the position specifying function of the biosensor terminal device.
  • the obtained sample solution is dropped onto the multi-analyte plate for detecting avian influenza virus of the biosensor terminal device according to the present invention.
  • the multi-analyte plate for detecting avian influenza virus is, for example, a multi-analyte plate as shown in FIG. 53, and various antibodies against avian influenza virus are fixed to the bottom of each well as a detection substance recognition molecule. .
  • Fig. 53 (C) if a multi-specimen multi-item plate is used, it is possible to know even its subtype by simply detecting the presence or absence of avian influenza virus.
  • the current characteristics of each sample For example, obtain the I-Vg characteristic and specify the current value at the voltage when the calibration curve is obtained. Separately, if a calibration curve is obtained using the inflection point of the I_Vg characteristic curve, specify the current value at the inflection point of the I-Vg curve of the sample solution. The obtained current value is applied to a calibration curve, and the concentration of the substance to be detected (trifluenza virus of each subtype) in the sample solution is specified, and detection data is generated.
  • the detection data After adding attribute information such as position information and time information to the detection data (presence / absence of avian influenza virus and concentration in the sample solution), it is sent to the information processing device inside the specified organization.
  • the detection data transmitted here is, for example, as shown in FIG. Note that detection results are not displayed here to prevent unauthorized processing of detection results.
  • the information processing device receives the detection data from each facility specified in (2) above, and creates a distribution map of the avian influenza virus based on the received detection data.
  • the distribution map created here is, for example, as shown in FIG. This distribution map can also display information such as the number of specimens discovered and the concentration of the substance to be detected in the sample solution.
  • the route of infection may be predictable. For example, if there is some relationship between the position of a forest with many wild birds, such as crows, and the position of an infected poultry farm, it can be estimated that the infection route is a wild bird.
  • the object distribution detection system of the present invention can also be used to predict human influenza. It is known that influenza viruses in the East Asian region are being carried by ducks flying from the northeastern part of Russia. Therefore, by using the object distribution detection system according to the present invention, the influenza virus subtypes are identified and mapped from duck feces and the like in lakes in the northeastern part of Russia before the ducks arrive in the East Asian region. By doing so, it is possible to predict the influenza virus subtype that prevails during the year. This makes it possible to prepare an appropriate vaccine. With conventional methods, this analysis takes weeks, so real-time forecasts of influenza virus subtypes and epidemics are not possible.
  • the above method enables the identification of the outbreak of any infectious disease, not just influenza, and the future forecast.
  • the object distribution detection system of the present invention can also be used to predict the increase or decrease of marine microorganisms.
  • Biosensors may be attached to buoys that do not need to be operated by humans, and fixed-point information may be collected at the center on a regular basis. This makes it possible to perform real-time mapping and prediction based on shellfish poisons, noroviruses, and so on, based on only predictions such as red tide. Such information is extremely important information for fishermen.
  • the object distribution inspection system of the present invention can also be used for detection of residual agricultural chemicals due to spraying of agricultural chemicals.
  • crops are added when detection results are obtained. Often entered the stage.
  • the detection results of residual pesticides can be quickly collected in a predetermined organization such as a health center, and a residual pesticide map can also be created immediately.
  • the surroundings such as PCBs in the soil, agricultural chemicals from neighboring farms, exhaust gas from neighboring roads, and smoke from neighboring factories are not limited to the agricultural chemicals that the farmers themselves have applied. The ability to identify the distribution and release source of chemicals that conform to the resulting pesticides.
  • the object distribution inspection system of the present invention aggregates the detection results of pollen such as cedar forests around densely populated areas and local data such as wind direction, air volume, and temperature, so that real-time pollen information and Pollen forecast can be provided.
  • pollen such as cedar forests around densely populated areas
  • local data such as wind direction, air volume, and temperature
  • the object distribution detection system of the present invention can also be used for bioterrorism.
  • the biosensor terminal device according to the present invention can detect multiple items, it can quickly identify the causative substance or organism and create a distribution map thereof.
  • a system that can quickly gather such information and transmit it to the surrounding area is as important as the tsunami forecast.
  • the FET of the present invention has excellent electrical properties. Therefore, when applied to a biosensor in particular, it is possible to provide a biosensor exhibiting detection sensitivity that is significantly superior to conventional biosensors. In addition, since the biosensor of the present invention can be miniaturized, it can be applied to scenes of use that are difficult with conventional biosensors, such as detection in the field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Thin Film Transistor (AREA)

Abstract

 本発明はカーボンナノチューブなどの超微細繊維体をチャネルとする高感度な電界効果トランジスタ、およびそれを用いたバイオセンサに関する。本発明の電界効果トランジスタは、基板、前記基板上に配置されたソース電極およびドレイン電極、前記ソース電極とドレイン電極とを電気的に接続するチャネル、ならびに前記基板に自由電子の移動による分極を生じさせるゲート電極を有する。例えば、前記基板は、半導体または金属から成る支持基板、および前記支持基板の第一の面に形成された第一の絶縁膜、および前記支持基板の第二の面に形成された第二の絶縁膜を有し、前記ソース電極、ドレイン電極およびチャネルは、前記第一の絶縁膜上に配置され、前記ゲート電極は、前記第二の絶縁膜上に配置される。

Description

明 細 書
電界効果トランジスタ、それを具備するバイオセンサ、および検出方法 技術分野
[0001] 本発明は電界効果トランジスタに関する。さらに本発明は、それを具備するバイオ センサ、およびそれを用いて被検出物質を検出する方法に関する。
背景技術
[0002] 電界効果トランジスタ(以下「FET」と略記する)は、ソース電極、ドレイン電極、およ びゲート電極の 3端子を有し、ソース電極およびドレイン電極に接続されるチャネル に流れる電流がゲート電極に印加される電圧に生じた電界によって制御される半導 体素子である。例えば、ソース電極とドレイン電極間のチャネルがカーボンナノチュー ブ(以下「CNT」と略記する)で構成されたカーボンナノチューブ電界効果トランジス タ(以下「CNT—FET」と略記する)などが知られている。
[0003] CNT—FETの一例として、図 1 (A)および図 1 (B)に示されるものが知られている( 例えば、非特許文献 1参照)。
[0004] 図 1 (A)に示される CNT—FETにおいては、基板 2の第一の面に形成された絶縁 膜 1上に、ソース電極 3およびドレイン電極 4、ならびにこれらの電極を接続するチヤ ネルが配置され、第二の面上にシリコン基板 2と電気的に接続されているゲート電極 5が配置されている。このような FETを、ゲート電極の配置に基づいて、バックゲート 型電界効果トランジスタ(以下「バックゲート型 FET」と略記する)とレ、う。
[0005] 図 1 (B)に示される FETにおいては、基板 2の第一の面に形成された絶縁膜 1上に 、ソース電極 3、ドレイン電極 4およびゲート電極 5が配置されている。このような FET を、ゲート電極の配置に基づいて、サイドゲート型電界効果トランジスタ(以下「サイド ゲート型 FET」と略記する)という。
[0006] また、 CNT— FETの電気特性を利用したセンサの開発が盛んに進められている( 例えば、特許文献 1を参照)。これらのセンサは、チャネルとなる CNTの電気特性が CNTに結合あるいは固定された分子認識部位の状態変化に依存して変化すること を利用しており、例えば、その分子認識部位と被検出物質の反応を、反応により誘起 される CNTの電気特性の変化を介して CNT— FETのソース電極とドレイン電極との 間の電流(以下「ソース ドレイン電流」という)または電圧(以下「ソース ドレイン電 圧」という)の変化として検出する。
特許文献 1:国際公開第 2004/104568号パンフレット
非特許文献 1 :松本和彦, 「カーボンナノチューブ SET/FETのセンサー応用」,電 気学会電子材料研究会資料, Vol.EFM-03, No.35-44, 2003.12.19, p.47-50 発明の開示
発明が解決しょうとする課題
[0007] FETでは、ソース ドレイン電流を制御するため、チャネルの電気特性を変化させ るゲート電極をチャネルの近傍に配置する必要があった。
[0008] バックゲート型 FETにおいては、基板をバックゲート電極として作用させることで、ゲ ート電極を基板上に形成した絶縁膜のみを隔ててチャネルに近接させることができる 。そのため、ゲート電極を基板と電気的に接触させる必要があると考えられてきた。す なわち、ゲート電極を電気伝導性を有する基板に電気的に直接接触させて配置させ て、できるだけゲート電極の電位変化によるチャネル近傍の電界変化、すなわちソー ス一ドレイン電流またはソース一ドレイン電圧への作用を高めることが必要であると考 えられていた。
[0009] また、サイドゲート型 FETにおいては、ゲート電極によりソース—ドレイン電流を制 御するため、ゲート電極をチャネルに近づけて配置させることが必要であると考えら れていた。すなわち、ソース電極、ドレイン電極およびチャネルが配置された基板と 同一の面に配置されたゲート電極は、ナノメートルレベルにまでソース電極とドレイン 電極との間に形成されるチャネルに接近させて、できるだけソース ドレイン電流また はソース ドレイン電圧への作用を高めることが必要であると考えられていた。
[0010] 本発明者は、 FETにおいて、ソース電極、ドレイン電極およびチャネルを絶縁膜上 に形成し、絶縁膜を形成される支持基板に自由電子の移動による分極を生じさせる 材料を用い、支持基板に自由電子の移動による分極を生じさせるようにゲート電極を 配置するという、新しい原理 (ソース ドレイン電流の制御原理)に基づく FETを開発 することを試みた。 [0011] そして、本発明者は、 FETの性能の向上、および FETのバイオセンサへの適用を 検討するなかで、 FETのゲート電極は、ソース電極、ドレイン電極およびチャネルが 配置された基板の裏面に配置された場合に、その基板裏面に絶縁膜が形成されて レ、ても、ソース一ドレイン電流を制御することができることを見出し、本発明を完成さ せた。
[0012] 同様に、本発明者は、 FETのゲート電極は、ソース電極、ドレイン電極およびチヤ ネルが配置された基板表面と同一の表面に配置された場合に、ソース電極、ドレイン 電極およびチャネルからある程度離されて配置されても、ソース—ドレイン電流を制 御すること力 Sできることを見出し、本発明を完成させた。
[0013] さらに本発明者は、ソース電極、ドレイン電極およびチャネルが配置された基板とは 分離されるが、電気的に接続されている別個の基板に配置されたゲート電極が、ソー ス一ドレイン電流を制御することができることを見出し、本発明を完成させた。
課題を解決するための手段
[0014] 本発明の第一は、以下に示す電界効果トランジスタ(FET)に関する。
[1]基板と、前記基板上に配置されたソース電極およびドレイン電極と、前記ソース 電極とドレイン電極とを電気的に接続するチャネルと、前記チャネルを流れる電流を 制御するゲート電極とを有し、前記チャネルは超微細繊維体を含み、前記ゲート電 極は前記基板に自由電子の移動による分極を生じさせる、電界効果トランジスタ。
[2]前記超微細繊維体はカーボンナノチューブである、 [1]記載の電界効果トラン ジスタ。
[3]前記基板は、半導体または金属から成る支持基板、前記支持基板の第一の面 に形成された第一の絶縁膜、および前記支持基板の第二の面に形成された第二の 絶縁膜を有し、前記ソース電極、ドレイン電極およびチャネルは、前記第一の絶縁膜 上に配置され、前記ゲート電極は、前記第二の絶縁膜上に配置されている、 [1]また は [2]記載の電界効果トランジスタ。
[4]前記第二の絶縁膜の厚さは 10nm以上である、 [3]記載の電界効果トランジス タ。
[5]前記基板は、半導体または金属から成る支持基板、および前記支持基板の第 一の面に形成された第一の絶縁膜を有し、前記ソース電極、ドレイン電極、チャネル およびゲート電極は、前記第一の絶縁膜上に配置され、前記ゲート電極と前記超微 細繊維体との間隔は 10 /i m以上である、 [1]または [2]記載の電界効果トランジスタ
[6]前記ゲート電極と前記超微細繊維体との間隔は 100 μ m以上である、 [5]記載 の電界効果トランジスタ。
[7]前記基板に電気的に接続されている第二の基板をさらに有し、前記基板は、半 導体または金属から成る支持基板、および前記支持基板の第一の面に形成された 第一の絶縁膜を有し、前記ソース電極、ドレイン電極およびチャネルは、前記第一の 絶縁膜上に配置され、前記ゲート電極は、前記第二の基板の第一の面上に配置さ れてレ、る、 [ 1]または [2]記載の電界効果トランジスタ。
[8]前記第二の基板は、半導体または金属から成る支持基板、および前記支持基 板の第一の面に形成された第二の絶縁膜を有し、前記ゲート電極は、前記第二の絶 縁膜上に配置されている、 [7]記載の電界効果トランジスタ。
[9]前記基板の第二の面と前記第二の基板の第二の面とは、導電性基板または導 電性部材により電気的に接続されてレ、る、 [7]または [8]記載の電界効果トランジス タ。
さらに本発明は、以下に示すバイオセンサ装置に関する。
[10]被検出物質認識分子が結合されている電界効果トランジスタを有する素子部 を備えるバイオセンサ装置であって、前記電界効果トランジスタは、 [1]〜[9]記載の 電界効果トランジスタである、バイオセンサ装置。
[11]前記素子部は、バイオセンサ装置本体に着脱可能であり、前記ソース電極、 ドレイン電極は、前記素子部が前記バイオセンサ装置本体に装着されたとき、前記チ ャネルに電流を流し、前記ゲート電極は、前記素子部が前記バイオセンサ装置本体 に装着されたとき、前記チャネルに流れる電流を制御する、 [10]記載のバイオセン サ装置。
[12]前記基板、ソース電極、ドレイン電極およびチャネルを有するバイオセンサ装 置本体と、前記第二の基板、ゲート電極、ならびに前記第二の基板またはゲート電極 に結合された被検出物質認識分子を有する素子部とを有し、前記素子部は前記バイ ォセンサ装置本体に着脱可能であり、前記ゲート電極は、前記素子部が前記バイオ センサ装置本体に装着されたとき、前記チャネルに流れる電流を制御する、 [7]〜[9 ]記載の電界効果トランジスタを有するバイオセンサ装置。
[0016] さらに本発明は、以下に示すチップに関する。
[13] [11]または [12]記載の、前記バイオセンサ装置本体に着脱可能な素子部を 含むチップ。
[0017] さらに本発明は、以下に示すバイオセンサ装置に関する。
[14]被検出物質の濃度と、 I一 V特性曲線または I一 Vg特性曲線の所定の点にお けるソース一ドレイン電流またはゲート電圧との関係を示す検量線を記憶する記憶手 段と、前記検量線を用いて、未知試料に含まれる被検出物質の濃度を決定する濃度 決定手段と、をさらに有する、 [10]〜[: 12]記載のバイオセンサ装置。
[15]前記濃度決定手段は、被検出物質の濃度が未知である試料について、前記 I —V特性曲線または I—Vg特性曲線の所定の点におけるソース ドレイン電流また はゲート電圧を測定する手段と、前記測定されたソース ドレイン電流またはゲート 電圧に基づいて、前記検量線から被検出物質の濃度を求める濃度算出手段と、を有 する [ 14]記載のバイオセンサ装置。
[16]被検出物質の濃度が既知である試料を用いて検量線を得るキヤリブレーショ ン手段をさらに有する、 [14]または [15]記載のバイオセンサ装置。
[17]前記キャリブレーション手段は、被検出物質の濃度が既知であって互いの濃 度が異なる 3以上の試料についてそれぞれ、 1ー¥特性曲線または1ー¥§特性曲線 の所定の点におけるソース一ドレイン電流またはゲート電圧を測定する測定手段と、 前記測定されたソース一ドレイン電流またはゲート電圧、および前記既知の被検出 物質の濃度から、検量線を算出する検量線算出手段とを有する、 [16]に記載のバイ ォセンサ装置。
[0018] さらに本発明は、以下に示すシステム、バイオセンサ端末装置、および情報処理装 置に関する。
[18]被検出物質の検出結果および検出位置情報を送信することができるバイオセ ンサ端末装置と、前記検出結果および検出位置情報を受信し、出力する情報処理 装置とを有し、前記バイオセンサ端末装置は、 [10]〜[: 12]または [14]〜[: 17]記載 のバイオセンサ装置を含む、被検出物質の分布検査システム。
[19]前記バイオセンサ端末装置は、前記検出結果を表示する表示手段を有しな レ、、 [18]記載の分布検查システム。
[20]前記バイオセンサ端末装置は、さらに検出時刻情報を送信し、前記情報処理 装置は、前記検出時刻情報を受信し、受信した検出時刻情報を出力する、 [18]また は [ 19]記載の分布検查システム。
[21]前記バイオセンサ端末装置は、さらに自らの ro情報を送信し、前記情報処理 装置は、前記 HD情報を受信し、受信した 情報を出力する、 [18]〜[20]記載の分 布検查システム。
[22] [18]〜[21]記載の分布検查システムのための、前記バイオセンサ端末装置
[23] [18]〜[21]記載の分布検査システムのための、前記情報処理装置。
発明の効果
[0019] 本発明の FETは、従来の FETでは困難であったさまざまなゲート電極の配置を取 ること力 Sできる。また、本発明の FETは、優れた電気特性を有する。したがって、本発 明の FETを特にバイオセンサに適用することにより、従来のバイオセンサよりも構造 の自由度が高ぐかつ顕著に優れた検出感度を示すバイオセンサが提供されうる。ま た、本発明のバイオセンサは小型化が可能であるので、野外における検出など、従 来のバイオセンサでは困難であった使用場面にも適用されうる。
図面の簡単な説明
[0020] [図 1] (A)は従来のバックゲート型 FETの概略図である。 (B)は従来のサイドゲート型 FETの概略図である。 1は絶縁膜、 2は基板、 3はソース電極、 4はドレイン電極、 5は ゲート電極を示す。
[図 2]本発明のバックゲート型 FETの一例を示す図である。 100は本発明のバックゲ ート型 FET、 102は支持基板、 104は第一の絶縁膜、 106は第二の絶縁膜、 108は ソース電極、 110はドレイン電極、 112は超微細繊維体、 114はゲート電極を示す。 [図 3]本発明のサイドゲート型 FETの一例を示す図である。 150は本発明のサイドゲ ート型 FET、 102は支持基板、 104は第一の絶縁膜、 106は第二の絶縁膜、 108は ソース電極、 110はドレイン電極、 112は超微細繊維体、 114はゲート電極を示す。 園 4]本発明の分離ゲート型 FETの一例を示す図である。 200は本発明の分離グー ト型 FET、 102は第一の支持基板、 104は第一の絶縁膜、 106は第二の絶縁膜、 10 8はソース電極、 110はドレイン電極、 112は超微細繊維体、 202は第二の支持基板 、 204は第三の絶縁膜、 206は第四の絶縁膜、 208はゲート電極、 210は導電性基 板、 212は超微細繊維体素子部、 214はゲート素子部を示す。
園 5]本発明の分離ゲート型 FETの一例を示す図である。 300は本発明の分離グー ト型 FET、 102は第一の支持基板、 104は第一の絶縁膜、 106は第二の絶縁膜、 10 8はソース電極、 110はドレイン電極、 112は超微細繊維体、 202は第二の支持基板 、 204は第三の絶縁膜、 206は第四の絶縁膜、 208はゲート電極、 212は超微細繊 維体素子部、 214はゲート素子部、 302は第一の導電性基板、 304は第二の導電性 基板、 306は導電性部材を示す。
園 6]本発明の FETの基板の例を示す図である。 400は支持基板、 402は第一の絶 縁膜、 404は第二の絶縁膜を示す。
園 7]本発明の FETに試料溶液を添加した後の状態を示す図であり、 (A)は平面図 、(B)は断面図である。 1は第一の絶縁膜、 3はソース電極、 4はドレイン電極、 28は 試料溶液を示す。
園 8]試料溶液の影響を防止するための手法を施した本発明の FETの一例を示す 図であり、(A)は平面図、(B)は断面図である。 1は第一の絶縁膜、 3はソース電極、 4はドレイン電極、 7は超微細繊維体、 Gは空隙、 L3は電極の長さ、 W1は電極の先 端部の幅、 W2は電極のプローブを当てる部分の幅を示す。
園 9]図 8の本発明の FETに試料溶液を添加した後の状態を示す図であり、 (A)は 平面図、(B)は断面図である。 1は第一の絶縁膜、 3はソース電極、 4はドレイン電極 、 7は超微細繊維体、 28は試料溶液、 29は試料溶液で覆われていない部分を示す
[図 10] (A)は超微細繊維体を絶縁性保護膜で保護した本発明の FETの例を示す図 である。 (B)は超微細繊維体と電極との接続部位を絶縁性保護膜で保護した本発明 の FETの例を示す図である。 7608は支持基板、 7607は第一の絶縁膜、 7609は基 板、 7610まソース電極、 7611まドレイン電極、 7612ま超微糸田繊維体、 7613ίま被 検出物質認識分子、 7616は第二の絶縁膜、 7803bはゲート電極、 8501は絶縁性 保護膜を示す。
園 11]気相成長法の一例を示す概略図である。 1は支持基板、 2は第一の絶縁膜、 7 は CNT、 9aおよび 9bは触媒、 10は反応容器、 11は炭化水素ガスを示す。
園 12]気相成長法により CNTで触媒間を接続する一例を示す図である。 1は第一の 絶縁膜、 7は CNT、 9aおよび 9bは触媒、 22aおよび 22bは後に形成されるべきソー ス電極およびドレイン電極を示す。
園 13]気相成長法に用いられる触媒の構造の一例を示す図である。 9は触媒、 25は 支持層、 26は中間層、 27はトップ層、 Dは直径、 Hは合計高さを示す。
園 14]気相成長法により CNTで触媒間を接続する一例を示す図である。 1は第一の 絶縁膜、 7は CNT、 9a—:!〜 9a— 6および 9b—:!〜 9b— 6は触媒、 22aおよび 22b は後に形成されるべきソース電極およびドレイン電極を示す。
[図 15]触媒の配置例を示す図である。 1は第一の絶縁膜、 9a—:!〜 9a— 6および 9b — l〜9b— 6は触媒、 L1は隣接する触媒間の距離、 L2は触媒列間の距離を示す。 園 16]気相成長法と分散固定化法を組み合わせた例を説明するための図である。 ( A)は気相成長法により CNTが形成された状態を示す図であり、 (B)は分散固定化 法によりさらに CNTが提供された状態を示す図である。 3はソース電極、 4はドレイン 電極、 44は気相成長法により形成された CNT、 43は分散固定化法により固定され た CNTを示す。
園 17]分散固定化法において、 CNT親和性物質が CNTを選択的に固定する例を 説明するための図である。(A)は CNT親和性物質が CNTを固定する例を示す図で あり、(B)は CNTを固定しない例を示す図である。 45aおよび 45bは CNTを示す。
[図 18]本発明のバックゲート型 FETの I_Vg特性を示す図である。
[図 19]本発明のバックゲート型 FETの I_V特性を示す図である。
[図 20]本発明のバックゲート型 FETの I_Vg特性を示す図である。 [図 21]本発明のサイドゲート型 FETの I V特性を示す図である。
[図 22] (A)はゲート電極と CNTとの間隔が 50 μ mの場合における本発明のサイドゲ ート型 FETの I Vg特性を示す図であり、 (B)はゲート電極と CNTとの間隔が lcm の場合における本発明のサイドゲート型 FETの I_Vg特性を示す図であり、 (C)は 本発明のバックゲート型 FETの I_Vg特性を示す図である。
園 23]超微細繊維体素子部とゲート素子部との間隔が 3mmの場合における本発明 の分離ゲート型 FETの I_V特性を示す図である。
園 24]超微細繊維体素子部とゲート素子部との間隔が 3mmの場合における本発明 の分離ゲート型 FETの I_Vg特性を示す図である。
園 25]超微細繊維体素子部とゲート素子部との間隔が 10mmの場合における本発 明の分離ゲート型 FETの I_V特性を示す図である。
園 26]超微細繊維体素子部とゲート素子部との間隔が 10mmの場合における本発 明の分離ゲート型 FETの I Vg特性を示す図である。
園 27]超微細繊維体素子部とゲート素子部との間隔が 15mmの場合における本発 明の分離ゲート型 FETの I V特性を示す図である。
園 28]超微細繊維体素子部とゲート素子部との間隔が 15mmの場合における本発 明の分離ゲート型 FETの I Vg特性を示す図である。
園 29]本発明のバックゲート型 FETにおいて、被検出物質認識分子を超微細繊維 体に結合させた例を示す図である。 100は本発明のバックゲート型 FET、 102は支 持基板、 104は第一の絶縁膜、 106は第二の絶縁膜、 108はソース電極、 110はド レイン電極、 112は超微細繊維体、 114はゲート電極、 472は被検出物質認識分子 、 482は試料溶液を示す。
園 30]本発明のバックゲート型 FETにおいて、被検出物質認識分子を絶縁性保護 膜に結合させた例を示す図である。 100は本発明のバックゲート型 FET、 102は支 持基板、 104は第一の絶縁膜、 106は第二の絶縁膜、 108はソース電極、 110はド レイン電極、 112は超微細繊維体、 114はゲート電極、 472は被検出物質認識分子 、 482は試料溶液、 640は絶縁性保護膜を示す。
園 31]本発明のバックゲート型 FETにおいて、被検出物質認識分子を第二の絶縁 膜に結合させた例を示す図である。 510、 520および 520aは本発明のバックゲート 型 FET、 102は支持基板、 104は第一の絶縁膜、 106は第二の絶縁膜、 108はソー ス電極、 110ίまドレイン電極、 112ίま超微糸田繊維体、 512、 522、 522aおよび 522b はゲート電極、 472、 472aおよび 472bは被検出物質認識分子、 490、 490aおよび 490bは試料溶液を示す。
園 32]本発明のバックゲート型 FETにおいて、被検出物質認識分子を第二の絶縁 膜に結合させた他の例を示す図である。 102は支持基板、 104は第一の絶縁膜、 10 6は第二の絶縁膜、 108はソース電極、 110はドレイン電極、 112は超微細繊維体、 114はゲート電極、 116は凹部側壁、 472は被検出物質認識分子、 482は試料溶液 を示す。
園 33]本発明のバックゲート型 FETにおいて、被検出物質認識分子をゲート電極に 結合させた例を示す図である。 530および 530aは本発明のバックゲート型 FET、 10 2は支持基板、 104は第一の絶縁膜、 106は第二の絶縁膜、 108はソース電極、 11 Οίまドレイン電極、 112ίま超微糸田繊維体、 532、 532aおよび 532biまゲー卜電極、 47 2、 472aおよび 472bは被検出物質認識分子、 490、 490aおよび 490bは試料溶液 を示す。
園 34]本発明のサイドゲート型 FETにおいて、被検出物質認識分子を超微細繊維 体に結合させた例を示す図である。 102は支持基板、 104は第一の絶縁膜、 108は ソース電極、 110はドレイン電極、 112は超微細繊維体、 114はゲート電極、 472は 被検出物質認識分子、 490は試料溶液を示す。
園 35]本発明のサイドゲート型 FETにおいて、被検出物質認識分子を絶縁性保護 膜に結合させた例を示す図である。 102は支持基板、 104は第一の絶縁膜、 108は ソース電極、 110はドレイン電極、 112は超微細繊維体、 114はゲート電極、 472は 被検出物質認識分子、 490は試料溶液、 640は絶縁性保護膜を示す。
園 36]本発明のサイドゲート型 FETにおいて、被検出物質認識分子を第一の絶縁 膜に結合させた例を示す図である。 102は支持基板、 104は第一の絶縁膜、 108は ソース電極、 110はドレイン電極、 112は超微細繊維体、 114はゲート電極、 472は 被検出物質認識分子、 490は試料溶液を示す。 園 37]本発明のサイドゲート型 FETにおいて、被検出物質認識分子を第二の絶縁 膜に結合させた他の例を示す図である。 102は支持基板、 104は第一の絶縁膜、 10 6は第二の絶縁膜、 108はソース電極、 110はドレイン電極、 112は超微細繊維体、 114はゲート電極、 116は凹部側壁、 472は被検出物質認識分子、 482は試料溶液 を示す。
園 38]本発明のサイドゲート型 FETにおいて、被検出物質認識分子をゲート電極に 結合させた例を示す図である。 102は支持基板、 104は第一の絶縁膜、 108はソー ス電極、 110はドレイン電極、 112は超微細繊維体、 114はゲート電極、 472は被検 出物質認識分子、 490は試料溶液を示す。
園 39]本発明の分離ゲート型 FETにおいて、被検出物質認識分子をゲート素子部 の絶縁膜に結合させた例を示す図である。 600は本発明の分離ゲート型 FET、 102 は第一の支持基板、 104は第一の絶縁膜、 106は第二の絶縁膜、 108はソース電極 、 110はドレイン電極、 112は超微細繊維体、 202は第二の支持基板、 204は第三 の絶縁膜、 206は第四の絶縁膜、 472は被検出物質認識分子、 490は試料溶液、 6 02はゲート電極、 210は導電性基板、 212は超微細繊維体素子部、 214はゲート素 子部を示す。
園 40]本発明の分離ゲート型 FETにおいて、被検出物質認識分子をゲート素子部 の絶縁膜に結合させた他の例を示す図である。 610および 610aはゲート素子部、 2 02は第二の支持基板、 204は第三の絶縁膜、 206は第四の絶縁膜、 472、 472aお よび 472biま被検出物質言忍識分子、 490、 490aおよび 490biま試料溶 ί夜、 612、 61 2aおよび 612bはゲート電極を示す。
園 41]本発明の分離ゲート型 FETにおいて、被検出物質認識分子をゲート素子部 のゲート電極に結合させた例を示す図である。 620および 620aはゲート素子部、 20 2は第二の支持基板、 204は第三の絶縁膜、 206は第四の絶縁膜、 472、 472aおよ び 472bfま被検出物質言忍識分子、 490、 490aおよび 490bfま試料溶 ί夜、 622、 622a および 622bはゲート電極を示す。
園 42]本発明の分離ゲート型 FETにおいて、複数のゲート素子部がある場合に複数 種の被検出物質認識分子を各ゲート電極に結合させた例を示す図である。 630は本 発明の分離ゲート型 FET、 102は第一の支持基板、 104は第一の絶縁膜、 106は 第二の絶縁膜、 108はソース電極、 110はドレイン電極、 112は超微細繊維体、 202 は第二の支持基板、 204は第三の絶縁膜、 206は第四の絶縁膜、 472aおよび 472 bは被検出物質認識分子、 490aおよび 490bは試料溶液、 622はゲート電極、 210 は導電性基板、 212は超微細繊維体素子部、 214aおよび 214bはゲート素子部を 示す。
園 43]本発明の分離ゲート型 FETにおいて、複数種の被検出物質認識分子をそれ ぞれゲート素子部の絶縁膜に結合させた例を示す図である。 800は本発明の分離ゲ ート型 FET、 102は第一の支持基板、 104は第一の絶縁膜、 106は第二の絶縁膜、 108はソース電極、 110はドレイン電極、 112は超微細繊維体、 202は第二の支持 基板、 204は第三の絶縁膜、 206は第四の絶縁膜、 472aおよび 472bは被検出物 質認識分子、 490aおよび 490bは試料溶液、 612aおよび 612bはゲート電極、 210 は導電性基板、 212は超微細繊維体素子部、 214はゲート素子部を示す。
園 44]本発明の分離ゲート型 FETにおいて、複数種の被検出物質認識分子をそれ ぞれゲート素子部の絶縁膜に結合させた他の例を示す図である。 900は本発明の分 離ゲート型 FET、 102は第一の支持基板、 104は第一の絶縁膜、 106は第二の絶 縁膜、 108はソース電極、 110はドレイン電極、 112は超微細繊維体、 202は第二の 支持基板、 204は第三の絶縁膜、 206は第四の絶縁膜、 472aおよび 472bは被検 出物質認識分子、 490aおよび 490bは試料溶液、 612aおよび 612bはゲート電極、 302は第一の導電性基板、 304は第二の導電性基板、 306は導電性部材、 212は 超微細繊維体素子部、 214はゲート素子部を示す。
[図 45]被検出物質認識分子を結合させる方法を説明する図である。 50は抗体、 51 はヒスタグ、 52は NTA、 53は IgG結合タンパク質、 54は二価性架橋試薬、 55および 56は官能基を示す。
[図 46]本発明のバイオセンサ装置の一例を示す概略図である。 7601はバイオセン サ装置本体、 7604は表示部、 7702は素子部を示す。
園 47]本発明のバックゲート型 FETを素子部に有するバイオセンサ装置の一例の概 略構成を示す断面図である。 7601はバイオセンサ装置本体、 7602は素子部、 760 3は電源、 7604は表示部、 7605は超微細繊維体素子、 7607は第一の絶縁膜、 76 08ίま支持基板、 7609ίま基板、 7610まソース電極、 7611 ίまド、レイン電極、 7612ίま 超微細繊維体、 7613は被検出物質認識分子、 7614はゲート電極、 7615は試料溶 液、 7616は第二の絶縁膜を示す。
[図 48] (Α)は、本発明のサイドゲート型 FETを素子部に有するバイオセンサ装置の 一例の概略構成を示す断面図である。 (Β)は、(Α)のバイオセンサ装置に用いるチ ップの平面図である。 7601はバイオセンサ装置本体、 7602は素子部、 7603は電 源、 7604は表示部、 7605は超微細繊維体素子、 7607は第一の絶縁膜、 7608は 支持基板、 7609fま基板、 7610ίまソース電極、 7611 fまドレイン電極、 7612fま超微 細繊維体、 7613は被検出物質認識分子、 7614はゲート電極、 7615は試料溶液、 7616fま第二の絶縁膜、 7702fまチップ、 7703fまケース、 7704fま導電ピンを示す。
[図 49] (A)は、本発明の分離ゲート型 FETのゲート素子部を素子部に有するバイオ センサ装置の一例の概略構成を示す断面図である。 (B)は、(A)のバイオセンサ装 置に用いるチップの斜視図である。 (C)は、(A)のバイオセンサ装置に用いるチップ の断面図である。 7601はバイオセンサ装置本体、 7603は電源、 7604は表示部、 7 605は超微細繊維体素子、 7607は第一の絶縁膜、 7608は第一の支持基板、 760 9ίま基板、 7610まソース電極、 7611 ίまドレイン電極、 7612ίま超微糸田繊維体、 7613 は被検出物質認識分子、 7614はゲート電極、 7615は試料溶液、 7616は第二の絶 縁膜、 7617は第二の支持基板、 7618は第三の絶縁膜、 7619は第四の絶縁膜、 7 620ίま第二の基板、 7703まケース、 7704ίま導電ピン、 7802ίま素子咅 7803、 78 03aおよび 7803bは導電性基板、 7804はチップを示す。
[図 50] (A)は、本発明の分離ゲート型 FETのゲート素子部を素子部に有するバイオ センサ装置の他の例の概略構成を示す断面図である。 (B)は、(A)のバイオセンサ 装置に用いるチップの斜視図である。 (C)は、(A)のバイオセンサ装置に用いるチッ プの断面図である。 7601はバイオセンサ装置本体、 7603は電源、 7604は表示部、 7605は超微細繊維体素子、 7607は第一の絶縁膜、 7608は第一の支持基板、 76 09fま基板、 7610ίまソース電極、 7611 fまドレイン電極、 7612fま超微糸田繊糸隹体、 761 3は被検出物質認識分子、 7614はゲート電極、 7615は試料溶液、 7616は第二の 絶縁膜、 7617は第二の支持基板、 7618は第三の絶縁膜、 7619は第四の絶縁膜、 7703ίまケース、 7802ίま素子咅 7803aおよび 7803biま導電十生基板、 7804ίまチッ プ、 7901は平板電極を示す。
園 51]本発明の分離ゲート型 FETのゲート素子部を素子部に有するバイオセンサ装 置に用いるチップの例を示す断面図である。 7613は被検出物質認識分子、 7614 はゲート電極、 7620は第二の基板、 7704は導電ピン、 7803aは導電性基板、 780 4ίまチップ、 8001 ίま接続端子、 8002fま蓋を示す。
園 52] (A)は、凹部を有するチップの一例を示す斜視図である。 (B)は、凹部を有す るチップの一例を示す断面図である。 (C)は、凹部を有するチップの他の例を示す断 面図である。 7614ίまゲー卜電極、 7704ίま導電ピン、 7803afま導電十生基板、 8001【ま 接続端子、 8101は凹部を有するチップを示す。
[図 53] (A)は、マイクロプレート型のチップの一例を示す斜視図である。 (B)は、マイ クロプレート型のチップの他の例を示す斜視図である。 (C)は、(B)のチップの断面 図である。 7614ίまゲー卜電極、 7803ίま導電十生基板、 8001ま接続端子、 8201まマ イク口プレート型のチップ、 8202はソケット、 8203は電気的接点を示す。
[図 54] (Α)は、バックゲート型 FETを有するチップの一例を示す断面図である。 (Β) は、分離ゲート型 FETのゲート素子部を有するチップの一例を示す断面図である。 7 607ίま第一の絶縁膜、 7608ま支持基板、 7609ίま基板、 7610ίまソース電極、 7611 はドレイン電極、 7612は超微細繊維体、 7613は被検出物質認識分子、 7614はゲ ート電極、 7615は試料溶液、 7617は第二の支持基板、 7618は第三の絶縁膜、 76 19ίま第四の絶縁膜、 7620ίま第二の基板、 7703まゲース、 7704ま導電ピン、 780 3aは導電性基板を示す。
[図 55] (A)は、ノート PCのバッテリー駆動のバイオセンサ装置の一例を示す図である
。 (B)は、電池駆動の小型のバイオセンサ装置の一例を示す図である。
[図 56]本発明のバイオセンサによるニッケルイオン検出時の I—V特性曲線を示す図 である。
[図 57]本発明のバイオセンサによる抗 HA抗体検出時の I_V特性曲線の一例を示 す図である。 [図 58]本発明のバイオセンサによる抗 HA抗体検出時の I V特性曲線の他の例を 示す図である。
園 59]本発明のバイオセンサによる抗 HA抗体検出時の I V特性曲線のさらに他の 例を示す図である。
[図 60]本発明のバイオセンサによる抗 HA抗体検出時の I_V特性曲線のさらに他の 例を示す図である。
[図 61]本発明のバイオセンサによる抗 HA抗体検出時の I_V特性曲線のさらに他の 例を示す図である。
[図 62]本発明のバイオセンサによる抗 HA抗体検出時の I_V特性曲線のさらに他の 例を示す図である。
[図 63]本発明のバイオセンサによる抗 CaM抗体検出時の抗 CaM抗体の希釈率と電 流値との関係を示す特性図である。
園 64]抗 CaM抗体の濃度を変化させたときの Id Vg特性を示す図である。
園 65]本発明のバイオセンサによって得られる検量線の例を示す図である。
[図 66] (A)は、本発明のノくィォセンサが測定可能な状態にある場合を示す図である
。 (B)は、本発明のバイオセンサが測定困難な状態にある場合を示す図である。 100
0は被検出物質認識分子が結合している部位、 1002は被検出物質認識分子、 100
4は被検出物質を示す。
[図 67]本発明のバイオセンサ装置の構成の一例を示すブロック図である。 1100はバ ィォセンサ装置、 1110はバイオセンサ本体部、 1120はコンピュータ、 1130は D/A コンバータ、 212は超微細繊維体素子部、 214aはゲート素子部を示す。
[図 68]キャリブレーション機能の処理手順の一例を示すフローチャートである。
[図 69]1— Vg特性測定処理の手順を示すフローチャートである。
[図 70]変曲点決定処理の手順を示すフローチャートである。
[図 71]検量線決定処理の手順を示すフローチャートである。
[図 72] (A)は、図 64の Ι—Vg特性から得られたデータをグラフ上にプロットしたところ を示す図である。 (B)は、最小二乗法により(A)のグラフに直線を引いたところを示す 図である。 [図 73]キャリブレーション機能の処理手順の一変更例を示すフローチャートである。
[図 74]本発明のバイオセンサ装置が有する測定機能の処理手順の一例を示すフロ 一チャートである。
[図 75]本発明の分布検查システムの構成の一例を示す概略ブロック図である。 500 は分布検查システム、 600はバイオセンサ端末装置、 700は情報処理装置、 800は 通信回線を示す。
[図 76]バイオセンサ端末装置の構成の一例を示すブロック図である。 600はバイオセ ンサ端末装置、 605は対象物認識素子部、 610は超微細繊維体素子部、 615は入 力部、 620は位置特定部、 625は時刻特定部、 630は検出結果解析部、 635は記 憶部、 640は検量線データベース、 645は表示部、 650は送信部を示す。
[図 77]情報処理装置の構成の一例を示すブロック図である。 700は情報処理装置、
705は受信部、 710は入力部、 715は項目情報付与部、 720は分布地図作成部、 7
25は分布解析部、 730は記憶部、 735は項目情報データベース、 740は地図情報 データベース、 745は分布地図データベース、 750は出力部を示す。
[図 78]バイオセンサ端末装置が送信する検出データの一例を示す図である。
[図 79]項目情報付与部が項目情報を付与した後のデータの一例を示す図である。
[図 80]分布地図作成部によって作成された分布地図の一例を示す図である。
[図 81]バイオセンサ端末装置の動作手順を示すフローチャートである。
[図 82]情報処理装置の動作手順を示すフローチャートである。
発明を実施するための最良の形態
[0021] 1.本発明の電界効果トランジスタ
本発明の FETは、支持基板、支持基板の第一の面を被覆する第一の絶縁膜、第 一の絶縁膜上に配置されたソース電極およびドレイン電極、ソース電極とドレイン電 極とを電気的に接続するチャネルである超微細繊維体、ならびに基板に自由電子の 移動による分極を生じさせ、超微細繊維体に流れる電流を制御するゲート電極とを 有する。
[0022] 本発明の FETの第一の例は、支持基板、支持基板の第一の面を被覆する第一の 絶縁膜、第一の絶縁膜上に配置されたソース電極およびドレイン電極、ソース電極と ドレイン電極とを電気的に接続するチャネルである超微細繊維体、支持基板の第二 の面を被覆する第二の絶縁膜、ならびに第二の絶縁膜上に配置されたゲート電極を 有する。以下、このような FETを「本発明のバックゲート型 FET」という。本発明のバッ クゲート型 FETの例が、図 2に示される。
[0023] 本発明の FETの第二の例は、支持基板、支持基板の第一の面を被覆する第一の 絶縁膜、第一の絶縁膜上に配置されたソース電極およびドレイン電極、ソース電極と ドレイン電極とを電気的に接続するチャネルである超微細繊維体、ならびに第一の 絶縁膜上に配置されたゲート電極を有し、前記ゲート電極と前記超微細繊維体との 間隔は 10 x m以上である。第二の例の FETは、支持基板の第二の面を被覆する第 二の絶縁膜をさらに有していてもよレ、。以下、このような FETを「本発明のサイドグー ト型 FET」という。本発明のサイドゲート型 FETの例力 図 3に示される。
[0024] 本発明の FETの第三の例は、支持基板、支持基板の第一の面を被覆する第一の 絶縁膜、第一の絶縁膜上に配置されたソース電極およびドレイン電極、ソース電極と ドレイン電極とを電気的に接続するチャネルである超微細繊維体、支持基板および 第一の絶縁膜とは分離されるが、電気的に接続されている第二の基板、ならびに第 二の基板の第一の面上に配置されたゲート電極を含む。第二の基板上に配置される ゲート電極は、第一の基板において自由電子の移動による分極が起こるように配置 される。以下、このような FETを「本発明の分離ゲート型 FET」という。また、支持基板 、第一の絶縁膜、ソース電極およびドレイン電極、ならびに超微細繊維体を有する素 子部を「超微細繊維体素子部」といい、第二の基板、ならびにゲート電極を有する素 子部を「ゲート素子部」という。本発明の分離ゲート型 FETの例が、図 4および図 5に 示される。
[0025] 基板について
本発明の FETは基板を有する。基板には、基板上に形成された絶縁膜を隔ててチ ャネルである超微細繊維体によって互いに接続されたソース電極およびドレイン電極 が配置されている。基板の構造および材質は、ゲート電極(後述)に電圧を印加する ことにより、基板内に自由電子の移動による分極 (後述)が生じるのであれば特に限 定されない。通常、基板は、半導体または金属からなる支持基板と、ソース電極、ドレ イン電極およびチャネルが配置されている面において、支持基板とソース電極、ドレ イン電極およびチャネルとを電気的に絶縁する絶縁膜と、を有する。
[0026] 図 6に基板の例が示される。図 6 (A)に示される基板は、支持基板 400、および第 一の絶縁膜 402を含む。図 6 (B)に示される基板は、支持基板 400、第一の絶縁膜 4 02、および第二の絶縁膜 404を含む。
[0027] 支持基板は、半導体または金属であることが好ましレ、。半導体は、特に限定されな レ、が、例えば、シリコン、ゲルマニウムなどの 14族元素、砒化ガリウム、リン化インジゥ ムなどの m_v化合物、テルル化亜鉛などの II—VI化合物などである。金属は、特に 限定されないが、例えば、アルミニウムやニッケノレなどである。支持基板の厚さは、特 に限定されないが、 0.:!〜 1.0mmであることが好ましぐ 0.3〜0.5mmが特に好まし レ、。
[0028] 支持基板の第一の面(ソース電極、ドレイン電極およびチャネルが配置された面)に 形成された第一の絶縁膜の材質は、特に限定されないが、例えば、酸化シリコン、窒 化シリコン、酸化アルミニウムや酸化チタンなどの無機化合物、およびアクリル樹脂や ポリイミドなどの有機化合物が挙げられる。第一の絶縁膜の表面には、水酸基、ァミノ 基またはカルボキシノレ基などの官能基が導入されていてもよい。
[0029] 第一の絶縁膜の厚さは、特に限定されないが、 10〜: !OOOnm力 S好ましく、 20〜50 Onmが特に好ましい。第一の絶縁膜が薄すぎると、トンネル電流が流れてしまう可能 性がある。一方、第一の絶縁膜が厚すぎると、ゲート電極を用いてソース ドレイン電 流を制御することが困難になる可能性がある。
[0030] 支持基板の第二の面 (第一の面の裏面)に形成された第二の絶縁膜の材質は、第 一の絶縁膜の材質の例と同様である。第二の絶縁膜の厚さは、特に限定されないが 、第一の絶縁膜と同様に、 10nm以上が好ましぐ 20nm以上が特に好ましい。一方 、バックゲート型 FETまたは分離ゲート型 FETである場合、第二の絶縁膜の厚さは、 特に限定されないが、第一の絶縁膜と同様に、 lOOOnm以下が好ましぐ 500nm以 下が特に好ましい。
[0031] 支持基板の絶縁膜に被覆される面(第一の面または第二の面)は、平滑であること が好ましい。すなわち、支持基板と絶縁膜との界面は平滑であることが好ましい。支 持基板の表面が平滑であると、その表面を被覆する絶縁膜の信頼性が高まるためで ある。支持基板の絶縁膜に被覆される面は、特に限定されないが、研磨されている方 が好ましい。支持基板の表面の平滑度は、表面粗さ測定機などにより確認することが できる。
[0032] 1 - 2.ソース電極およびドレイン電極について
ソース電極およびドレイン電極は、第一の絶縁膜上に配置される。ソース電極およ びドレイン電極の材質は、特に限定されないが、例えば、金、白金やチタンなどの金 属である。ソース電極およびドレイン電極は、これらの金属を第一の絶縁膜上に蒸着 することにより形成される。ソース電極およびドレイン電極は、二種以上の金属で多層 構造にされていてもよい。例えば、チタンの層に金の層を重ねてもよい。金属を蒸着 するときは、リソグラフィを用いてパターンを転写しておくことが好ましい。
[0033] ソース電極とドレイン電極との間隔は、特に限定されないが、通常は 2〜10 z m程 度であればよい。この間隔は、超微細繊維体による電極間の接続を容易にするため に、さらに縮めてもよい。
[0034] 本発明の FETは、ノくィォセンサに適用されうる。その一態様として、被検出物質認 識分子が、ソース電極とドレイン電極とを接続する超微細繊維体に結合させられるこ と力 Sある。このとき、被検出物質を含む試料溶液が、ソース電極、ドレイン電極および チャネル上に添加されることがある。図 7に示されるように、添加された試料溶液 28が ソース電極 3およびドレイン電極 4を覆ってしまうと、電流測定装置(例えばプローバ など)のプローブと電極との間に被膜が形成されて、ソース ドレイン電流を正確に 測定できない場合がある。
[0035] したがって、本発明の FETにおけるソース電極およびドレイン電極は、添加される 試料溶液により全体が覆われないようにすることが好ましい。例えば、ソース電極およ びドレイン電極の基板上に占める面積を大きくすればよレ、。例えば、図 8および図 9 に示されるように、両電極の長さ L3を 500 x m以上にし、両電極の先端部の幅 W1を 10 z m程度にし、両電極の本体の幅 W2を 150 z m程度にすればよレ、。図 9に示さ れるように、被検出物質の検出においては、ソース電極 3およびドレイン電極 4の試料 溶液 28に覆われていない部分に測定装置のプローブをあてればよい。 [0036] 1 3.超微細繊維体について
第一の絶縁膜上に配置されたソース電極およびドレイン電極は、超微細繊維体に よって電気的に接続されている。ソース電極とドレイン電極とを接続する超微細繊維 体は、チャネルとして作用する。
[0037] 超微細繊維体は、電気伝導性を有する直径が数 nmの繊維体である。超微細繊維 体は、特に限定されないが、例えば、 CNT、 DNA、導電性高分子、シリコン繊維、シ リコンゥイスカー、グラフェンなどが挙げられる。この中では、 CNTが好ましい。
[0038] ソース電極とドレイン電極とを接続する超微細繊維体は、一本でも複数本でもよい。
ソース電極とドレイン電極とを接続する超微細繊維体の状態は、 AFMにより確認さ れうる。また、超微細繊維体と基板との間には、空隙があってもよい。
[0039] 超微細繊維体が CNTである場合、 CNTは、単層 CNTまたは多層 CNTのいずれ でもよいが、単層 CNTが好ましレ、。また、 CNTには欠陥が導入されていてもよレ、。「 欠陥」とは、 CNTを構成する炭素五員環または六員環が開環している状態を意味す る。欠陥が導入された CNTは、力ろうじて繋がっているような構造をしていると推測さ れる力 実際の構造は明らかでない。 CNTに欠陥を導入する方法は、特に限定され ないが、例えば、 CNTを焼鈍しすればよい。
[0040] 超微細繊維体は、損傷を防ぐために絶縁性保護膜によって保護されていてもよい。
絶縁性保護膜で超微細繊維体を被覆することにより、 FET全体を超音波洗浄したり 、強酸や強塩基を用いて洗浄したりすることが可能となる。さらに、絶縁性保護膜を設 けることによって超微細繊維体の損傷が防止されるので、 FETの寿命を著しく延ば すことができる。
[0041] また、超微細繊維体が CNTの場合、 CNTは、水をはじめとする種々の分子と容易 に相互作用して、その電子状態を変化させる。この電子状態の変化は、ソース—ドレ イン電流の変化として現れるため、センサの態様によってはノイズ源となることがある。 したがって、 CNT全体、ならびに必要に応じてソース電極、ドレイン電極の一部また は全体を、絶縁性保護膜で被覆してもよい。これにより、 CNTと試料溶液の蒸気など との相互作用が妨げられ、ノイズが低減されうる。
[0042] 絶縁性保護膜は、特に限定されないが、例えば、絶縁性接着剤により形成される膜 やパッシベーシヨン膜などである。絶縁性保護膜が酸化シリコン膜の場合、絶縁性保 護膜に被検出物質認識分子 (例えば抗体など)を容易に結合させることができる。
[0043] 図 10は、絶縁性保護膜によって超微細繊維体が保護された本発明のバックゲート 型 FETの一例を示す図である。図 10 (A)では、超微細繊維体 7612全体が絶縁性 保護膜 8501で保護されている。図 10 (B)では、超微細繊維体 7612とソース電極 7 610との接続部位、および超微細繊維体 7612とドレイン電極 7611との接続部位が 絶縁性保護膜 8501で保護されている。この場合には、超微細繊維体 7612に被検 出物質認識分子 7613 (後述)を直接結合させることができるので、バイオセンサとし て用いた場合の感度が向上し、一分子検出などが可能になりうる。また、損傷を受け やすい接触部位を保護することにより、寿命の延長やノイズの防止などが達成されう る。
[0044] 1 -4.超微細繊維体によりソース電極とドレイン電極との間を接続する方法につい て
ソース電極およびドレイン電極は、任意の方法により、超微細繊維体で電気的に接 続されればよい。ここでは、ソース電極とドレイン電極とを超微細繊維体で電気的に 接続する方法を、超微細繊維体が CNTである場合にっレ、て説明する。
[0045] ソース電極とドレイン電極とを CNTで接続する方法は、特に限定されないが、例え ば、(A)気相成長法、(B)分散固定化法などがある。以下、 (A)および (B)の方法に ついて説明する。
[0046] (A)気相成長法
気相成長法による接続は、例えば、以下の手順で行われる。 (1)基板上のソース電 極およびドレイン電極の形成予定部位に触媒を配置し、 (2)触媒を配置された基板 を CNTの原料となる炭化水素ガス (例えばメタンガスなど)存在下におくことで CNT を作製し (このとき触媒間に電圧を印加してもよい)、(3)電極を形成する。
[0047] 気相成長法による接続の概略図が図 11に示される。図 11において、 1は支持基板 、 2は第一の絶縁膜、 9aおよび 9bは鉄などから成る触媒層、 10は反応容器、 11は〇 NTの原料となる炭化水素ガスを示す。反応時の温度は、約 700〜900°Cであれば よい。触媒の材質や形状、印加する電圧、炭化水素ガスの種類や量などを適宜調整 することにより、所望の CNT7を形成することができる。 CNT7は、例えば長さが数 μ m (例えば約 3 μ ΐη)、直径が数 nm程度であって、超微細な繊維状構造体となってい る。
[0048] ソース電極、ドレイン電極の形成予定部位に触媒を配置する方法は、特に限定され ないが、例えば、電子線リソグラフィ法により金属を蒸着させればよい。触媒は、 CNT の成長核となる金属である。触媒となる金属は、特に限定されないが、例えば、鉄、二 ッケノレ、コバルト、モリブデン、タングステンなどの遷移金属である。
[0049] 図 12は、気相成長法により触媒間を接続する一例を示す図である。 1は第一の絶 縁膜、 9aおよび 9bは触媒、 22aおよび 22bは後に形成されるべきソース電極および ドレイン電極、 7は形成された CNTである。このように、基板に所定の間隔をおいて 一対の触媒 9a, 9bを配置し、触媒 9aと触媒 9bから CNT7を成長させて両者を接続 する。
[0050] 図 13は、気相成長法において、基板に配置される触媒の構造の一態様を示す図 である。図 13に示されるように、触媒 9は、支持層 25、中間層 26、およびトップ層 27 の三層構造でありうる。支持層 25は、シリコンなどから成り、 50nm程度の厚さを有し うる。中間層 26は、モリブデン、タンタル、タングステンなどの遷移金属からなり、 10η m程度の厚さを有しうる。トップ層 27は、鉄、ニッケル、コバルトなどの遷移金属からな り、 3nm程度の厚さを有しうる。触媒 9の合計高さ Hは 63nm程度であればよぐまた 、直径 Dは 2 / m程度であればよい。この三層構造の触媒 9は、蒸着やスパッタリング 、イオンプレーティングなどの薄膜形成技術を用いて形成されうる。
[0051] 図 14は、気相成長法により触媒間を接続する別の態様を示す図である。この例で は、ソース電極 22aおよびドレイン電極 22bの形成予定部位に、それぞれ複数の触 媒 9a_ l, 9a- 2, · · · 9a_n、およびそれらに対向する 9b_ 1, 9b_ 2 ' · ' 9b_n力 S 形成される。このように、複数の触媒対を密に設けて、 CNT7を成長させることによつ て触媒 9aと触媒 9bとを接続しやすくする。
[0052] 図 15は、図 14に示された態様における触媒 9aおよび触媒 9bの配置例を示す図で ある。隣接する触媒間の距離 (例えば、 9a_ lと 9a_ 2との間の距離) L1は、特に限 定されないが、約 2 z m程度とすればよい。また、触媒列間の距離(9a_ l , 9a_ 2, . . .9& 11の歹1】と、 9b— 1, 9b— 2 · · ' 9b— nの列との間の距離) L2は、特に限定され なレヽが、 4 μ m程度とすればよい。
[0053] 触媒の構造、個数、および配置位置は、 CNTで電極間を接続するための重要な 要因となる。例えば、電極対間の接続率を高めるためには、 1対の電極形成予定部 位あたりの触媒の数を多くすればよい。また、導通性の歩留まり(導通性を有する電 極対が 1つの基板にある割合)を高めるためには、 1つの基板あたりの電極対の数を 多くすればよい。
[0054] 電極の大きさ(1対の電極形成予定部位あたりの触媒数に関係する)および電極対 の数は、基板の大きさおよび製造技術上の制約により制限される。本発明者らの予 備実験では、 1つの基板あたりの電極対の数を 24対とし、 1つの電極形成予定部位 あたりの触媒の数を 1個から 3個とすることで、導通性の歩留まりを 20%台から最大 8 7.5%まで向上させることができた。この電極対の数および触媒の数は、通常のフォト リソグラフィの安定的なコントロール限界内で達成することができる。
[0055] 気相成長法により電極間を CNTで接続する手順例を、より具体的に説明する。
[0056] まず、触媒を配置した基板を、反応容器内で 15分間かけて室温から 900°Cに加熱 する。加熱する間、反応容器内に流量 1000sccm (l分間あたりのガス流量)のアル ゴンを流入させる。加熱終了後、 900°Cに維持して、流量 lOOOsccmのメタン、およ び流量 500sccmの水素を、 10分間流入させる。その後、 120分かけて室温まで冷 却させ、冷却する間、流量 lOOOsccmのアルゴンを反応容器内に流入させる。
[0057] 触媒間を CNTで接続したのち、ソース電極およびドレイン電極を蒸着などにより形 成する。電極は、金などの目的の金属を基板に直接蒸着するか、またはチタンなどの 他の金属を蒸着した後、その表面を金などの目的の金属で被覆することにより形成さ れうる。後者による形成によれば、電極の基板からの剥離や、亀裂の発生を抑制しう る。電極の幅は ΙΟ μ πι程度にすればよレ、。
[0058] なお、気相成長法による接続法に、後述の分散固定化法を組み合わせてもよレ、。
つまり、気相成長法により電極間を CNTで接続したのち、さらに別個に製造された C NTを基板上に提供することによってより確実に接続するようにしてもよい(導通性の 歩留まりを向上させる)。 [0059] 図 16は、気相成長法による接続法に分散固定化法を組み合わせた場合を説明す るための概略図(鳥瞰図)である。図 16 (A)において、 3および 4はソース電極および ドレイン電極を示し、 44は気相成長法により形成 (成長)された CNTを示す。図 16 ( B)において、分散固定化法により提供された CNT43は、気相成長法により形成さ れた CNT44間を接続していることが示されている。
[0060] (B)分散固定化法
分散固定化法による接続は、別個に製造された CNTを、ソース電極およびドレイン 電極が配置された基板、または配置されるべき基板上に提供することによって行われ る。別個に製造された CNTは、市販の CNTを用いることができる。また、アーク放電 などによって製造された高品質の(例えば、欠陥が少ない) CNTを用いることができ る。
[0061] 本方法では、気相成長法とは異なり高温条件 (例えば 800〜900°C)を必要としな いため、高価な成長反応炉を用意する必要がなぐかつ基板などの材料の選択肢が 広がる(例えばガラスを用いることができる)。
[0062] し力しながら、 CNTを基板上にランダムに提供するだけでは、接続がされるかどう かは偶然に依存するため、制御することが困難である。そこで、分散固定化法による 接続においては、 CNT親和性物質が用いられることが好ましい。具体的には、 CNT 親和性物質で基板の電極形成予定部位を修飾するか、 CNT親和性物質で基板上 に形成された電極を修飾する力 \または、 CNT親和性物質で提供される前の CNT を修飾する。 CNT親和性物質は、 CNTに結合するとともに、基板または電極とも結 合するため、 CNTを基板または電極に固定することができる。 CNT親和性物質を用 レ、た分散固定化法による接続により、導通性についての歩留まりを向上させることが できる。
[0063] CNT親和性物質は、特に限定されないが、例えば、 CNTとの π _ π相互作用を 示す芳香族多環分子が挙げられる。芳香族多環分子は、特に限定されないが、例え ば、ピレン、ナフタレン、アントラセン、フヱナントレンなどの芳香族炭化水素や、芳香 族複素環などである。芳香族多環分子は、ピレンが好ましい。
[0064] また、 CNT親和性物質は、二以上の芳香族官能基を有する分子でもよい。二以上 の芳香族官能基を有する CNT親和性物質は、 CNTとのファンデルワールス力が高 まるため、 CNTを安定して固定することができる。また、二以上の芳香族官能基を有 する CNT親和性物質は、二つの官能基の角度に応じて所望の直径を有する CNT を選択的に固定することができる。図 17は、 2つの芳香族官能基 (その二つの官能基 の結合角度 Θ )を有する分子が、 CNT45aを固定する力 より大きい直径の CNT45 bを固定しない様子を示す図である。二以上の芳香族官能基を有する分子は、特に 限定されないが、例えば、 2分子のピレンをリジンなどを介して架橋させたものなどで ある。
[0065] また、 CNT親和性物質は、基板表面またはソース電極およびドレイン電極の表面 に結合するための官能基が導入されていることが好ましい。例えば、基板表面または 電極表面にァミノ基がある場合には、 CNT親和性物質にカルボキシノレ基またはエス テル基が導入されていることが好ましい。また、基板または電極表面にカルボキシノレ 基がある場合には、 CNT親和性物質にァミノ基が導入されていることが好ましい。力 ルポキシル基が導入された CNT親和性物質は、特に限定されないが、例えば、 1-py renebutyric acidなどである。また、エステル基が導入された CNT親和性物質は、特 に限 £ れない力、、 ί列えば、 1— pyreneDutync acid N-hydroxysuccinimide esterなと C ある。ァミノ基が導入された CNT親和性物質は、特に限定されないが、例えば、 1-py renemethylamineなと る。
[0066] 基板表面にカルボキシノレ基を導入する方法は、特に限定されないが、例えば、力 ルポキシル基に変換可能である官能基を含むシランカップリング剤で基板表面を処 理し、この官能基をカルボキシノレ基に変換すればよい。また、基板にアミノ基を導入 する方法は、特に限定されないが、例えば、基板表面をアミノシランで処理すればよ レ、。アミノシランは、特に限定されないが、例えば、 3-aminopropyltriethoxysilane (AP S)などである。
[0067] 電極表面にカルボキシノレ基を導入する方法は、特に限定されないが、例えば、金 電極の表面をチォカルボン酸で処理すればよレ、。チォカルボン酸は、特に限定され ないが、例えば、 11- mercaptoundecanoic acidが挙げられる。また、電極表面にァミノ 基を導入する方法は、特に限定されないが、例えば、金電極の表面をアミノチオール で処理すればよい。アミノチオールは、特に限定されないが、例えば、 ll-amino-1-u ndecanthiolなどである。
[0068] 分散固定化法において提供される CNTは、単層 CNTまたは多層 CNTのいずれ でもよいが、好ましくは単層 CNTである。提供される CNTの平均長さは、通常は 0.5 z m以上、より好ましくは 1.0 z m以上である。平均長さの上限は特に限定されない が、 10 x m以下であればよぐ好ましくは 以下、より好ましくは 3 μ m以下である 。いずれにしても CNTの長さは、ソース電極とドレイン電極との間隔以上の長さであ ることが好ましレ、。 CNTの平均長さは、 AFMによって測定されうる。提供される CNT は、例えば、 Carbon Nanotechnologies INC社の単層 CNTなどである。
[0069] また、提供される CNTは、酸処理されてレ、てもよレ、。 CNTの酸処理は、特に限定さ れないが、例えば、 CNTを、硫酸、硝酸またはその混合物で洗浄し、さらに超音波処 理すればよレ、。酸処理することにより、 CNTの表面にカルボキシル基が導入される。 酸処理された CNTは、その親水性が向上するため、水中での分散性が向上する。し たがって、 CNTを水中に分散させて提供することが容易になる。
[0070] 分散固定化法による接続は、例えば、以下の [A]〜[D]の態様に分類できる。
[A] (1)基板のソース電極およびドレイン電極の形成予定部位を CNT親和性物質 で修飾し、(2)修飾された電極形成予定部位に CNTを提供し、(3)ソース電極およ びドレイン電極を形成する。
[B] (1)ソース電極およびドレイン電極を基板に形成し、 (2)ソース電極およびドレ イン電極を CNT親和性物質で修飾し、 (3)修飾されたソース電極およびドレイン電 極に CNTを提供する。
[C] (l) CNTを CNT親和性物質で修飾し、(2)ソース電極およびドレイン電極を基 板に形成し、 (3)基板の電極に修飾された CNTを提供する。
[D] (l) CNTを CNT親和性物質で修飾し、 (2)基板の電極形成予定部位に修飾 された CNTを提供し、 (3)ソース電極およびドレイン電極を基板に形成する。
[0071] [A]の態様において、電極形成予定部位を CNT親和性物質で修飾するには、例 えば、リソグラフィ法などにより基板上の電極形成予定部位以外の領域をレジスト膜 でマスキングし、マスキングされていない電極形成予定部位に官能基(例えばァミノ 基)を導入し、電極形成予定部位に導入された官能基に反応しうる官能基 (例えばェ ステル基)を有する CNT親和性物質を提供すればょレ、。
[0072] レジスト膜の材質は、特に限定されないが、例えば、 PMMAなどである。レジスト膜 の厚さは、 1 μ m〜3 μ m程度であればよレヽ。
[0073] 電極形成予定部位にアミノ基を導入する方法は、特に限定されないが、例えば、 A
PSなどのアミノシラン溶液を電極形成予定部位に滴下し、それを乾燥させればょレ、。 形成される膜は APSなどの縮重合物などであり、その厚さは lnm〜l μ m程度であ れは'よレ、。
[0074] CNT親和性物質は、 DMFなどの有機溶媒に溶解されて提供されうる。具体的に は、例えば、有機溶媒に溶解された CNT親和性物質の溶液を、基板が浸されている 溶媒 (例えば水溶液)に少量ずつ添加すればよい。反応後の洗浄の際に基板に残つ た溶媒は、不活性ガスで乾燥させて除去することが好ましい(他の態様においても同 様)。
[0075] [A]の態様において、修飾された電極形成予定部位に CNTを提供するには、例え ば、別途製造された CNTの分散液を電極形成予定部位に提供することによって行 われる。 CNTの分散液を電極形成予定部位に提供するには、 CNTの分散液を基板 に滴下する力、または CNTの分散液に基板を浸漬すればよい。分散液の溶媒は、 特に限定されないが、例えば、 DMFなどの有機溶媒や水などが挙げられる。酸処理 された CNTは、カルボキシル基が導入されるなどして水への分散性が高められる。よ つて、酸処理された CNTの提供は、水性溶媒に分散させて行うことが好ましい。分散 水溶液の pHは、カルボキシル基の pKa (約 4)以上、好ましくは 7〜8にする。
[0076] CNT分散液における CNTの濃度は、 0.001mgZml〜0.1mgZmlであることが 好ましい。当該濃度が O. lmg/mlよりも高いと、 CNTが凝集しやすくなり、分散液の 調製が困難になることがある。
[0077] 修飾部位に CNTを提供することにより、少なくともその一部は基板に固定されて、ソ ース電極とドレイン電極とを接続させる。し力、しながら、提供した CNTの全てが基板 の電極形成予定部位に固定されるとは限らなレ、。よって、 CNTを提供した後、電極を 形成する前に、基板を洗浄して、固定されない CNTを除去することが好ましい。基板 の洗浄は、例えば、基板を溶媒 (例えば DMF)で洗い流すか、溶媒中で基板を超音 波処理することにより行われる。
[0078] [A]の態様において、ソース電極およびドレイン電極を形成するには、例えば、リソ グラフィを用いて金属を蒸着させて行えばよレ、。ソース電極またはドレイン電極とチヤ ネルとが重なる部分を、高電界の電子ビームまたは STMZAFMを使用する局所印 加電界によりゥヱルディングして、電極とチャネルを一体化することができる(以下に おいて同様)。
[0079] さらに [A]の態様において、 CNTを提供した後(さらに好ましくは洗浄した後)、基 板上の CNTを気相成長させてもよい。 CNTの気相成長は、例えば、 CNTを提供さ れた基板を気相成長用の反応炉に入れ、前述の処理を行えばよい。
[0080] [A]の態様の具体的な手順が、後述の「具体例 A」に示される。
[0081] [B]の態様において、ソース電極およびドレイン電極を基板に形成するには、リソグ ラフィを用いて金属を蒸着させればよい。
[0082] [B]の態様において、ソース電極およびドレイン電極を CNT親和性物質で修飾す るには、例えば、金属ーチオール結合を利用して電極表面に自己組織化膜を形成さ せて、電極表面に官能基(例えばカルボキシノレ基ゃァミノ基)を導入し、電極表面に 導入された官能基に反応する官能基 (例えばアミノ基ゃエステル基)を有する CNT 親和性物質を提供すればよい。電極表面に官能基を導入するには、例えば、電極 材質に特異的に反応する官能基 (例えば、チオール基)を有する化合物 (例えば、チ オール化カルボン酸やアミノチオール)で電極表面を処理すればょレ、。
[0083] CNT親和性物質は、 DMFなどの有機溶媒に溶解されて提供されうる。このとき必 要に応じて、電極に導入された官能基 (例えばカルボキシル基)と、 CNT親和性物 質の官能基 (例えばアミノ基)との反応を促進する試薬 (例えばカルポジイミド)を用い てもよい。
[0084] [B]の態様にぉレ、て、修飾されたソース電極およびドレイン電極に CNTを提供する には、 DMFなどの有機溶媒または水に CNTが分散された分散液を、修飾部位に提 供すればよい。 [A]の態様と同様に、酸処理された CNTは、水中に分散されて提供 されることが好ましい。また、分散液を基板に添加してもよぐ基板を分散液に浸漬し てもよい。
[0085] [B]の態様においても、 [A]の態様と同様に、提供された CNTの全てが基板に固 定されるとは限らないので、 CNT提供後に基板を洗浄して、固定されない CNTを除 去することが好ましい。基板の洗浄は、例えば、基板を溶媒で洗い流すか、基板を溶 媒中で超音波処理すればよい。
[0086] [B]の態様において、 CNTを提供した後(さらに好ましくは洗浄した後)に、既に基 板に設けられている電極上に、さらに金属を蒸着して電極を形成することが好ましい 。 CNT提供後にさらに金属を蒸着することにより、適切なソース一ドレイン電流 (例え ば 0.:!〜 1. Ο μ A程度)がより安定に流れうる。また、 0.1〜: ί.Ο μ Α程度の電流が流 れる素子は、水などによる数回の洗浄によっても破損しにくい。
[0087] さらに [Β]の態様においても、 [Α]の態様と同様に、 CNTを提供した後(さらに好ま しくは洗浄した後)、基板上の CNTを気相成長させてもよい。
[0088] [Β]の態様の具体的な手順が、後述の「具体例 Β」に示される。
[0089] [C]または [D]の態様において、 CNTを CNT親和性物質で修飾するには、例え ば、 CNT親和性物質を含む溶液 (溶媒はエタノールなど)に、 CNTを添加すればよ レ、。 CNT親和性物質で CNTを修飾すると、 CNTの表面の全体が CNT親和性物質 で被覆されうる。 CNT親和性物質の一例であるピレンで CNTを処理して、親水性を 付加すると、 CNTの水溶液中での分散性が向上するので、 CNTをより一様に基板 上に分散させること力 Sできる。
[0090] [C]の態様において、 CNTを修飾する CNT親和性物質は、電極表面に結合する ための官能基を有していることが好ましい。例えば、電極表面にカルボキシノレ基を導 入した場合には、アミノ基を導入された CNT親和性物質で CNTを修飾すればょレ、。
[0091] [D]の態様において、 CNTを修飾する CNT親和性物質は、基板表面 (好ましくは 、電極形成予定部位)に結合する官能基を有していることが好ましい。例えば、基板 表面にカルボキシル基を導入した場合には、アミノ基を導入された CNT親和性物質 で CNTを修飾すればょレ、。
[0092] [C]または [D]の態様において、基板または電極に修飾された CNTを提供するに は、 CNTの分散液を基板または電極に滴下する力 \または CNTの分散液に基板を 浸漬すればよい。また、 [C]または [D]の態様においても [A]の態様と同様に、 CNT 提供後に基板を洗浄して、固定されない CNTを除去することが好ましぐまた基板上 の CNTを気相成長させてもよい。さらに [C]の態様においても、 [B]の態様と同様に 、 CNTを提供した後(さらに好ましくは洗浄した後)、既に基板に設けられている電極 上に、さらに金属を蒸着して電極を形成することが好ましい。
[0093] [C]および [D]の態様のより具体的な手順が、後述の「具体例 C」および「具体例 D 」に示される。
[0094] 分散固定化法の具体例 A
シリコン基板(支持基板)表面の酸化シリコン膜 (第一の絶縁膜:厚さは 300nm程 度であればよい)を 50%硫酸で 30分間、室温で洗浄した後に水で洗浄する。
[0095] 洗浄された酸化シリコン膜上に、フォトレジスト膜(OEPR- 800)をスピンコート法によ りスピンコートする。フォトリソグラフィを用いて、ソース電極およびドレイン電極の形成 予定部位である一対の領域のフォトレジスト膜を除去する。
[0096] 一対の領域のフォトレジスト膜が除去された基板上に、 2%の 3-aminopropyltriethox ysilaneを添カ卩する。これを 45°Cで 30分間加熱して溶媒を蒸発させ、さらに 110°Cで 5分間加熱する。加熱後に、十分な量の水で洗浄する(これにより基板表面にァミノ 基が導入される)。
[0097] 得られた基板を、エタノールと水の混合溶液(体積比 1 : 4、 50ml)に浸して、 65°C にカロ熱する。 l.Omgの 1— pyreneDutync acid N— hydroxysuccimmide ester 20 μ 1の ジメチルホルムアミドに溶解する。得られた溶液の 10 / lを、基板が浸された混合溶 液中に滴下し、 65°Cで 1時間反応させる(これによりピレンが基板表面に結合する)。
[0098] 得られた基板を 115°Cで 5分間加熱したのち、 DMF中に浸して、フォトレジスト膜を 除去する。
[0099] 0.5mgの単層 CNT (Carbon Nanotechnologies INC社)を、硫酸および硝酸の混合 溶液で洗浄した後、 1mlの緩衝液に分散させる。得られた溶液を遠心分離して、得ら れた残渣を硫酸と過酸化水素水の混合溶媒に懸濁させて 1時間超音波処理する。 得られた黒色溶液を水で希釈して、蒸留水に透析させて溶液を中性にする。得られ た CNT溶液 (使用前に超音波処理する)を前述の基板に滴下した後に 1時間放置し て、 CNTをピレン修飾された領域に固定する。得られた基板を DMF、さらにエタノー ルで洗浄する。 CNTが固定された領域の状態を ACモードの AFMで観測して、電 極形成予定部位の間が CNTで接続されているかどうかを確認することができる。
[0100] 得られた基板に、ソース電極およびドレイン電極を形成するためのパターンを作る。
具体的な手法は、前述のピレンをパターユングするための手法と同様の手法を用い ればよレ、。 EB蒸着法を用いて 30nm厚の Ptフィルム、さらに lOOnm厚の Auフィルム を蒸着させ、ソース電極およびドレイン電極を形成する。両電極間の距離は 3 x m程 度とする。
[0101] 分散固定化法の具体例 B
シリコン基板(支持基板)の酸化シリコン膜 (第一の絶縁膜:厚さは 300nm程度であ ればよい)上に金電極を蒸着により形成する。金電極が形成された基板を、 11-merca ptoundecanoic acid溶液(0.5mM)に浸漬して、室温で 10時間放置する。エタノー ルで洗浄後、窒素ガスを吹き付けて乾燥させる(これにより、金電極表面にカルボキ シル基が導入される)。
[0102] DMFと緩衝溶液 (pH8)との混合溶液(体積比 1: 1)に、水溶性カルポジイミドと、 1 -pyrenemethylamine hydrochloride (ImM)を溶解させる。得られた溶液に、前述の 基板を入れて 35°Cにて 2時間放置する。その後、 DMFと純水で洗浄する(これによ り、金電極にピレンが結合する)。
[0103] 洗浄後、 CNTのジメチルホルムアミド溶液(0.5mg/5ml)を基板上に滴下して、 1 0時間放置する。その後、 DMF中で超音波洗浄し、エタノールで洗浄した後、基板 全体に窒素ガスを吹き付けて乾燥させる。
[0104] 本方法において基板に形成される金電極は、 0.:!〜 Ι.Ο μ A程度の電流が流れるよ うに、十分に蒸着されることが好ましい。安定に動作する素子を得るためである。ソー ス一ドレイン電流が過剰に低い素子は使用中に導電性に変化がみられ、導電性を失 うことがある力 S、 0.1 μ A程度の電流が流れる素子であれば、水などで洗浄されても安 定した導電性を示す。
[0105] 分散固定化法の具体例 C
l.Omgの l_pyrenebutyric acid N-nydroxysuccmimide ester 20 μ 1のンメテノレホノレ ムアミドに溶解する。得られた溶液を、 0.6mgの l l-amino-1-undecanethiolを 100 μ 1 の DMFに溶解した溶液に添加し、室温で 1時間反応させる。得られた反応液を、 0. 05mg/mlの酸処理した CNTの分散水溶液(500 μ 1)に加えて、室温で 12時間撹 拌する。得られた溶液に金電極を形成した基板を入れて、 12時間室温で反応させ、 CNTを基板に固定する。
[0106] 分散固定化法の具体例 D
1-pyrenebutyric acidの DMF溶液(5mgZml、 50 μ 1)を、 CNTの DMF分散液(0 . O lmg/ml, 500 μ ΐ)に添加し、室温にて 2時間、超音波処理した。得られた溶液( 100 μ \)に、テトラエチレンジァミン 50 μ 1、エタノーノレ 50 μ 1、水 25 μ 1を加えて分散 液を得る。得られた分散液をフィルターで濾過して、大過剰の l_pyrenebutyric acidを 除去する。濾液に、水—エタノール(1 : 1 )混合溶液をカ卩えて lmlとして、 CNT分散 溶液を得る。 1-pyrenebutyric acidで修飾した CNTの分散溶液を、アミノシラン化処 理した電極予定部位に、カルポジイミドなどの縮合試薬などを用いて固定する。
[0107] 分散固定化法による CNTでの電極間の接続方法は、提供した CNTを基板の結晶 表面にある原子の段差に沿って配列させること、または電気泳動により一定方向に 配列させることにより CNTの配列を制御することができる。このようにすることにより、 より効率的に、かつ再現性よぐソース電極とドレイン電極とを CNTで接続することが できる。
[0108] 1 - 5.ゲート電極について
前述の通り、本発明の FETはゲート電極を有する。ゲート電極は、ゲート電極に電 圧を印加することで、ソース電極およびドレイン電極が配置されている基板に自由電 子の移動による分極を生じさせることができるように配置される。 「自由電子の移動に よる分極」とは、 自由電子が基板内を移動することにより、プラスの電荷に偏った領域 およびマイナスの電荷に偏った領域が、基板内にそれぞれ形成されることをいう。半 導体または金属から成る支持基板と絶縁膜とから成る基板の場合、 自由電子の移動 による分極は、電気伝導性を有する支持基板において生じる。基板が分極している か否かは、基板両面の電位差の測定などによって確認されうる。
[0109] ゲート電極の材質は、特に限定されないが、例えば、金、白金、チタン、真鍮などの 金属である。この中では、金が特に好ましい。金は、導通性が高ぐ電流漏れによる 誤差が小さいためである。ゲート電極は、これらの金属を蒸着することにより形成され る。
[0110] ゲート電極の大きさは、特に限定されず、超微細繊維体素子(ソース電極、ドレイン 電極およびチャネルとなる超微細繊維体)の大きさに対して決定すればよレ、。ゲート 電極の大きさが超微細繊維体素子に対して小さすぎると、ゲート電極がソース一ドレ イン電流を制御することが困難になる場合がある。例えば、ソース電極とドレイン電極 との間の距離が 2〜10 x mである場合、ゲート電極の大きさは、およそ O. lmm X O. l mm以上であればよい。
[0111] 基板を分極させるように配置されたゲート電極は、(A)バックゲート電極、(B)サイド ゲート電極、および(C)分離ゲート電極の態様に分けられる。
[0112] (A)バックゲート電極について
バックゲート電極は、基板の第二の絶縁膜上に配置されている。このゲート電極は 、ソース電極、ドレイン電極およびチャネルに対して基板の裏面に配置されているの で、バックゲート電極といわれる。バックゲート電極は、第二の絶縁膜に直接接触して 配置されてレ、てもよく、第二の絶縁膜から物理的に離されて配置されてレ、てもよレ、。
[0113] バックゲート電極は、第二の絶縁膜の一部に対して配置されていても、第二の絶縁 膜の全面に対して配置されてレ、てもよレ、。本発明の FETがバイオセンサに用いられ た場合に、基板の第二の面の全面に対してゲート電極が設けられていれば、被検出 物質認識分子を第二の絶縁膜の全面に結合させることができる。
[0114] 従来のバックゲート型 FETは、バックゲート電極によりソース ドレイン電流を制御 するために、バックゲート電極を支持基板(半導体または金属から成る)に直接接触 させて配置することによって、相互作用を得ていた。
[0115] 一方、本発明者は、ゲート電極と支持基板とを直接接触させる必要は必ずしもない ことを見出した。つまり、ゲート電極と支持基板との間に絶縁膜を設けても、ソース一 ドレイン電流を制御することができることを見出した。ゲート電極に電圧が印加される と支持基板(半導体または金属から成る)において支持基板内の自由電子の存在に 起因する分極が起こり、その分極によってソース一ドレイン電流が制御されるからであ ると考えられる。 自由電子の移動による分極には、容量結合による要因も含まれるが 、他の要因も排除しない。
[0116] (B)サイドゲート電極について
サイドゲート電極は、基板の第一の絶縁膜上に配置されている。この電極は、ソー ス電極、ドレイン電極およびチャネルに対して基板の同一面に配置されているので、 サイドゲート電極といわれる。サイドゲート電極は、第一の絶縁膜に直接接触して配 置されてレ、てもよく、第一の絶縁膜から物理的に離されて配置されてレ、てもよレ、。
[0117] 基板の同一面上に配置されたサイドゲート電極と超微細繊維体との間の距離は、 本発明の FETでは 10 z m以上、さらに lOO x m以上、さらに lmm以上とすることが できる。上限も特に制限されないが、数 cm以下である。 「ゲート電極と超微細繊維体 との間の距離」とは、互いの最短距離を意味する。
[0118] 従来のサイドゲート型 FETは、ゲート電極によりソース—ドレイン電流を制御するた めには、サイドゲート電極とソース電極、ドレイン電極およびチャネルとの間で直接の 相互作用を得る必要があると考えられていた。したがって、従来のサイドゲート型 FE Tでは、サイドゲート電極とチャネルとの間の距離ができるだけ短くなるようにしていた (長くとも 1 / m程度)。
[0119] 一方、本発明者は、サイドゲート電極をソース電極、ドレイン電極およびチャネルに 接近させる必要が必ずしもないことを見出した。サイドゲート電極ならびにソース電極 、ドレイン電極およびチャネルが同一の絶縁膜上に設けられていても、サイドゲート電 極に電圧が印加されると、その絶縁膜の下の支持基板(半導体または金属力 成る) において支持基板内の自由電子の存在に起因する分極が起こり、その分極によって ソース一ドレイン電流が制御されるからであると考えられる。分極には、容量結合によ る要因も含まれる力 他の要因も排除しない。
[0120] 本発明のサイドゲート型 FETは、後述のとおり、バイオセンサに適用されることがあ る。この場合、サイドゲート電極は、被検出物質認識分子を結合され、さらに試料溶 液を滴下されることがある。本発明のサイドゲート型 FETでは、サイドゲート電極とソ ース電極、ドレイン電極およびチャネルとの間の距離を広げることができるので、超微 細繊維体素子が試料溶液により汚染されるのを防止することができる。 [0121] (C)分離ゲート電極について
分離ゲート電極は、ソース電極、ドレイン電極およびチャネルが配置された基板とは 分離されているが、電気的に接続されている第二の基板上に配置されている。第二 の基板は、半導体または金属からなる支持基板と、支持基板の少なくとも一方の面に 形成された絶縁膜とを有する基板、または絶縁体からなる基板でありうるが、好ましく は前者の基板である。
[0122] ゲート電極が配置されている第二の基板は、ソース電極、ドレイン電極およびチヤ ネルが配置されている基板とは分離されている。ソース電極、ドレイン電極およびチヤ ネルが配置されている基板とゲート電極が配置されている第二の基板との間隔は、 特に限定されず、 3mm以上、さらには 10mm以上、さらには 15mm以上とすることが でき、それ以上にすることもできる。
[0123] 前記の通り、ゲート電極が配置されている第二の基板は、ソース電極、ドレイン電極 およびチャネルが配置されている基板と電気的に接続されている。電気的に接続さ れているとは、例えば、(a)基板および第二の基板が、同一の導電性基板に載置さ れている、または (b)基板および第二の基板が、それぞれ異なる導電性基板に載置 され、かつそれぞれの導電性基板が導電性部材により接続されていることを意味する 。 (a)の態様の例が図 4に示され、(B)の態様の例が図 5に示される。
[0124] 導電性基板は、特に限定されないが、例えば、金薄膜を蒸着されたガラス基板や 真鍮などの材料からなる基板などである。導電性部材は、特に限定されないが、例え ば銅線などの導電性ワイヤなどである。
[0125] 本発明の分離ゲート型 FETは、後述のとおり、バイオセンサに適用されることがある 。この場合、本発明の分離ゲート型 FETは、ソース電極、ドレイン電極およびチヤネ ルを配置された基板を、ゲート電極が配置された第二の基板から分離することができ るため、構造上の自由度が高レ、。したがって、本発明の分離ゲート型 FETは、実用 性の高いバイオセンサの製造に寄与することができる。
[0126] 1 - 6.本発明の電界効果トランジスタの特性
図 18は、本発明のバックゲート型 FETの特性を示す図であり、ソース—ドレイン電 圧を IVに固定したときの、ゲート電極に印加する電圧(以下「ゲート電圧」という) (Vg ate)とソース一ドレイン電流(Isd)との関係(以下「1— V特性」という)を示すグラフ(以 下「1— V特性曲線」という)である。計測に用いた FETにおいて、支持基板は厚さ 50 0 μ mのシリコン基板、第一の絶縁膜および第二の絶縁膜は厚さ 300nmの酸化シリ コン、超微細繊維体は単層 CNT、ソース電極およびドレイン電極の面積はそれぞれ 0.20〜0.25mm2、基板の面積は lcm2 (lcm X lcm)であった。また、数本の CNT でソース電極とドレイン電極とが接続されていることが AFMにより確認された。本発 明の FETは、図 18に示されるように、ゲート電圧が— 20V〜― 5Vの間では、数百 n A程度のソース一ドレイン電流が観察されうる。
[0127] さらに、本発明の FETは、チャネル (超微細繊維体)上の電荷(厳密には「電子状 態」)の変化、またはチャネルとソース電極およびドレイン電極との電位 (厳密には「ィ匕 学ポテンシャル」)の差の変化に対して、ソース—ドレイン電流が敏感に変化する。基 板に配置したゲート電極の電位を変えることで、これらの変化を誘起し、ゲート電極の 電気的状態の変化にソース ドレイン電流が敏感に変化する。この理由は必ずしも 明らかではないが、本発明の基板構造では、半導体などから成る支持基板の表面を 被覆する絶縁膜と接する界面が、ゲート電極の電気状態により変化し、支持基板の 自由電子の存在による分極の効果ならびに絶縁膜を介した容量的結合により、チヤ ネル部の変化を誘起しているためであると推測される。
[0128] すなわち、ゲート電圧によって絶縁膜に被覆された支持基板に強い電界力 Sかかると 、絶縁膜との界面付近における支持基板内のキャリアの密度分布は、電極と支持基 板との間の電位差に依存して変化すると推測される。このことは、以下の知見によつ ても支持される。
[0129] n型半導体の MOS (metal-oxide semiconductor)ダイオードでは、金属の電位を低 くすると半導体内の自由電子は境界面から遠ざけられ空乏層が厚くなるため、金属と 半導体間の電気容量が小さくなる。しかし、金属の電位をさらに一層低くすると、 n型 半導体と酸化物の境界面に p型の MOS反転層が生じるため、電気容量が再び大き くなる(以上、例えば、岩波、理化学辞典、第 5版、 p. 1380参照)。 「空乏層」とは、半 導体の pn接合面や M〇S構造の半導体内部で自由電子も正孔もほとんど存在しな い薄層をいう。空乏層の厚さは、加えた電圧によって敏感に変化する。
[0130] また、「MOS反転層」とは、半導体表面に絶縁膜 (酸化物などからなる)を介して金 属膜を付けたとき、表面付近の多数キャリアを半導体内部に押しやることにより表面 に現れる、内部とは伝導型が反対の層をいう。反転層の厚さも、加えた電圧によって 変化する。
[0131] すなわち、支持基板の絶縁膜との界面が、ゲート電圧により可変容量ダイオード的 に動作することは、ゲート電圧により支持基板の空乏層または反転層の厚さが変化 することに相当する。
[0132] したがって、ゲート電極、超微細繊維体、ゲート電極と絶縁膜との界面、または超微 細繊維体近傍の絶縁膜表面に被検出物質認識分子が結合すると、ゲート電極、ソー ス電極、ドレイン電極およびチャネル近傍の空乏層または反転層に、被検出物質認 識分子の支持基板内での映像電荷 (image charge)が生じる(界面状態が出現する) 。それにより、ゲート電極とソース電極の間の電気容量(以下「ゲート ソース間電気 容量」という)、ゲート電極とドレイン電極の間の電気容量 (以下「ゲート ドレイン間電 気容量」という)、およびゲート電極とチャネルの間の電気容量 (以下「ゲート チヤネ ル間電気容量」が、それぞれ変化する。それにより、チャネルの電位に変化が生じ、 その結果、ソース ドレイン電流が変化する。
[0133] すなわち、半導体などからなる支持基板と支持基板を被覆する絶縁膜との界面が、 ゲート電圧により、可変容量ダイオード的に動作する、つまり、支持基板内の空乏層 または反転層の厚さが変化する。そして、空乏層または反転層の厚さに応じて映像 電荷が生じ、生じた映像電荷によってチャネルの電位およびチャネル上の電荷が変 化し、ソース一ドレイン電流が変化することになると考えられる。
[0134] 上記の仮説によれば、本発明の FETは、基板内にある閾値以上の電界がかかった ときに、チャネルの電位またはチャネル上の電荷の変化に対するソース一ドレイン電 流の変化が大きくなり、また、バイオセンサとしては、素子上の分子が引き起こす電子 状態の変化をチャネルに反映させることができる。すなわち、バイオセンサとしては、 素子上での分子間相互作用(例えば、抗原抗体反応や酵素反応など)をソースード レイン電流の変化によって高感度に検出することができる。 [0135] また、上記の仮説によれば、支持基板の絶縁膜との界面付近に生じる自由電子の 移動による分極 (反転層の形成)を利用した新しい I—V特性および I Vg特性 (ゲー ト電圧とソース ドレイン電流との関係)が予想される。実際に、本発明の FETは、後 述する新しい特性が得られており、従来の FETおよび CNT—FETとは異なる動作を 示す。
[0136] ここで、「反転層」とは、上記のように、半導体表面に絶縁膜を介して金属膜 (電極) を付けた場合において、半導体表面に高い電界がかかったときに、それを打ち消す ための逆の電荷を持つ、半導体内の表面付近 (境界領域)に誘起される層であり、 自 由電子の移動による分極のうち支持基板の絶縁膜との界面付近に生じるものである
[0137] 以下において、超微細繊維体として CNTを用いた本発明の FETの I_V特性曲線 および I_Vg特性曲線を示す。
[0138] まず、本発明のバックゲート型 FET (図 2に示される)の I— V特性曲線および I— Vg 特性曲線を示す。計測に用いた FETにおいて、基板は厚さ 500 /i mのシリコン基板 、第一の絶縁膜および第二の絶縁膜は厚さ 300nmの酸化シリコン、基板の面積は 1 cm2 (lcm X 1cm)、超微細繊維体は単層 CNT、ソース電極とドレイン電極との間隔 は 5 μ ΐη、ゲート電極の面積は 100mm2であった。また、数本の CNTでソース電極と ドレイン電極とが接続されていることが AFMにより確認された。
[0139] 図 19は、本発明のバックゲート型 FETの I V特性曲線の一例を示す図である。図 20は、本発明のバックゲート型 FETの I—Vg特性曲線の一例を示す図である。図 20 において、曲線 aはソース ドレイン電圧を IVに設定したときの特性曲線であり、 曲線 bはソース一ドレイン電圧を + IVに設定したときの特性曲線である。
[0140] 次に、本発明のサイドゲート型 FET (図 3に示される)の I—V特性曲線および I_Vg 特性曲線を示す。計測に用いた FETにおいて、支持基板は厚さ 500 z mのシリコン 基板、第一の絶縁膜および第二の絶縁膜は厚さ 300nmの酸化シリコン、基板の面 積は lcm2 (lcm X lcm)、超微細繊維体は単層 CNT、ソース電極とドレイン電極と の間隔は 5 z m、ゲート電極の面積は 0.25mm2であった。また、数本の CNTでソー ス電極とドレイン電極とが接続されていることが AFMにより確認された。 [0141] 図 21は、本発明のサイドゲート型 FETの I— V特性曲線の一例を示す図である。図 22 (A)および図 22 (B)は、ゲート電極と CNTとの間の間隔を、それぞれ 50 /i m、 lc mとした本発明のサイドゲート型 FETの I— Vg特性曲線の一例を示す図である。また 、バックゲート電極を用いて得られた I_Vg特性曲線も図 22 (C)に示す。これらはす ベて同じ CNTを用いて測定している。
[0142] 図 22に示された Ι—Vg特性曲線に大きな変化はみられなレ、。したがって、ゲート電 極と CNTとの間の距離を変化させても、トランジスタの電気特性は変化しないことが わ力る。
[0143] 次に、本発明の分離ゲート型 FET (図 4に示される)の I—V特性曲線および I_Vg 特性曲線を示す。計測に用いた FETにおいて、基板および第二の基板の支持基板 は共に厚さ 500 μ mのシリコン基板、基板および第二の基板の両面を覆う絶縁膜は すべて厚さ 300nmの酸化シリコン、基板および第二の基板の面積はともに lcm2 (lc m X lcm)、超微細繊維体は単層 CNT、ソース電極とドレイン電極との間隔は 5 μ m 、ゲート電極の面積は 0.1mm2であった。また、数本の CNTでソース電極とドレイン 電極とが接続されていることが AFMにより確認された。
[0144] 図 23および図 24は、基板と第二の基板との間の間隔を 3mmとした本発明の分離 ゲート型 FETの I— V特性曲線および I— Vg特性曲線の一例を示す図である。図 25 および図 26は、基板間の間隔を 1 Ommとした本発明の分離ゲート型 FETの I V特 性曲線および I—Vg特性曲線の一例を示す図である。図 27および図 28は、基板間 の間隔を 15mmとした本発明の分離ゲート型 FETの I V特性曲線および I Vg特 性曲線の一例を示す図である。
[0145] 図 23、図 25および図 27に示される I—V特性曲線に特に変化はみられなレ、。同様 に、図 24、図 26および図 28に示された Ι—Vg特性曲線に特に変化はみられない。 したがって、基板と第二の基板との間隔を変化させても、 FETとしての電気特性は変 化しないことがわかる。
[0146] 本発明の FETをバイオセンサに適用した場合に、ゲート電極または超微細繊維体
(例えば CNT)などに分子が付着すると、間接的または直接的に超微細繊維体の電 子状態が変化する。このときに生じるソース—ドレイン電流の変化から、付着した分子 を検出することができる。また、ゲート電極または超微細繊維体を分子修飾したときの 電流変化から、修飾分子を検出したり、あるいは修飾分子と他の分子との反応を検 出したりすることもできる。特に、ゲート電極または超微細繊維体を抗体ほたは抗原) で修飾した場合には、抗原抗体反応を利用して特定の抗原 (または抗体)を検出す ることが可能であるため、この手法により感染症のウィルスや細菌などの微生物を超 高感度に、し力も高速に検出することができる。
[0147] 1一 7.本発明の電界効果トランジスタの用途
本発明の FETは、任意の用途に用いることができる。例えば、本発明の FETは、集 積回路、 pHメータ、バイオセンサなどに用いることができるが、バイオセンサに用いら れることが好ましい。バイオセンサに用いられる場合、本発明の FETは、被検出物質 に反応する被検出物質認識分子が結合されていることが好ましい。
[0148] 2.本発明の FETを用いたバイオセンサ
前述の通り、本発明の FETは、バイオセンサに適用できる。本発明の FETを用い たバイオセンサ(以下「本発明のバイオセンサ」という)は、本発明の FET、および被 検出物質と相互作用(例えば結合など)することができる被検出物質認識分子を有す る。このとき、被検出物質認識分子は、本発明の FETに結合されていることが好まし レ、。
[0149] 被検出物質認識分子は、特に限定されないが、例えば、抗体、抗原、酵素、受容 体、核酸、細胞、微生物などである。また、被検出物質は、特に限定されないが、例 えば、抗原、抗体、微生物 (ウィルス、細菌など)、化学物質 (残留農薬など)などであ る。
[0150] 本発明のバイオセンサは、被検出物質が被検出物質認識分子と相互作用すること により生じるソース一ドレイン電流またはソース一ドレイン電圧の変化に基づいて被検 出物質の検出を行う。ソース一ドレイン電流の変化は、例えば、 I一 V特性曲線または I_Vg特性曲線から確認されうる。 I_V特性曲線は、ゲート電圧を一定にしたときの 、ソース一ドレイン電流とソース一ドレイン電圧との関係を示す曲線である。また、 I— Vg特性曲線は、ソース一ドレイン電圧を一定にしたときの、ソース一ドレイン電流とゲ ート電圧との関係を示す曲線である。 [0151] 本発明のバイオセンサは、検出動作をするためには通電する必要がある。したがつ て、本発明のバイオセンサは、後述するように、電源または電力取得手段をさらに有 するバイオセンサ装置の態様を採ることが好ましレ、。
[0152] 2- 1.被検出物質認識部位を結合させる部位について
本発明のバイオセンサにおいて、被検出物質認識分子が本発明の FETに結合さ れる部位は、特に限定されないが、例えば、ソース電極とドレイン電極とを接続する超 微細繊維体、超微細繊維体を保護する絶縁性保護膜、基板の第二の絶縁膜、グー ト電極などがある。
[0153] 以下、被検出物質認識分子を本発明の FETに結合させる例を示す。
[0154] 図 29〜図 33は、被検出物質認識分子を本発明のバックゲート型 FETに結合させ た例を示す図である。
[0155] 図 29は、被検出物質認識分子を超微細繊維体に結合させた例を示す図である。こ の例では、被検出物質認識分子がチャネルである超微細繊維体に直接結合してレ、 るため、検出感度が向上しうる。
[0156] 図 30は、被検出物質認識分子を絶縁性保護膜に結合させた例を示す図である。こ の例では、試料溶液が超微細繊維体と直接接触することがないので、ノイズを減らす こと力 Sできる。
[0157] 図 31は、被検出物質認識分子を第二の絶縁膜に結合させた例を示す図である。こ の例では、超微細繊維体を損傷させることなく基板の第二の面を洗浄することができ るので、再利用することが容易である。また、基板の第二の面全体に被検出物質認 識分子を結合させることができるため、比較的多くの被検出物質認識分子を結合さ せること力 Sできる。
[0158] 図 31 (A)は、バックゲート電極が第二の絶縁膜と接触せずに配置されている場合 に、被検出物質認識分子を第二の絶縁膜に結合させた例を示す図である。図 31 (B )および図 31 (C)は、バックゲート電極が第二の絶縁膜と接触するように配置されて レ、る場合に、被検出物質認識分子を第二の絶縁膜に結合させた例を示す図である。 試料溶液は、バックゲート電極に接触しなくても(図 31 (B) )しても(図 31 (C) )よい。 図 31 (D)は、バックゲート電極が第二の絶縁膜上に複数配置されている場合に、複 数種の被検出物質認識分子をそれぞれ第二の絶縁膜に結合させた例を示す図であ る。
[0159] 図 32は、基板の第二の面上に凹部を形成し、この凹部の底に位置する第二の絶 縁膜に被検出物質認識分子を結合させた例を示す図である。凹部の側壁の材質は 、特に限定されないが、例えば、酸化シリコンである。この例では、凹部の容積を調整 することにより、一定量の試料溶液を提供することができる。また、添加された試料溶 液が散逸されにくぐ被検出物質認識分子が結合された部位に安定して保持されうる
[0160] 図 32 (A)および図 32 (B)は、バックゲート電極を凹部の蓋として機能させる例を示 す図である。図 32 (C)は、バックゲート電極を凹部の側壁上に配置させた例を示す 図である。図 32 (D)は、バックゲート電極を凹部の側壁側面に配置させた例を示す 図である。図 32 (E)は、バックゲート電極を凹部外の第二の絶縁膜上に配置させた 例を示す図である。
[0161] 図 33は、被検出物質認識分子をゲート電極に結合させた例を示す図である。この 例では、超微細繊維体を損傷させることなく基板の第二の面を洗浄することができる ので、再利用することが容易である。
[0162] 図 33 (A)は、バックゲート電極が一つ配置されている場合に、被検出物質認識分 子をバックゲート電極に結合させた例を示す図である。図 32 (B)は、バックゲート電 極が複数配置されている場合に、複数種の被検出物質認識分子をそれぞれ異なる バックゲート電極に結合させた例を示す図である。
[0163] 図 34〜図 38は、被検出物質認識分子を本発明のサイドゲート型 FETに結合させ た例を示す図である。
[0164] 図 34は、被検出物質認識分子を超微細繊維体に結合させた例を示す図である。こ の例では、被検出物質認識分子がチャネルである超微細繊維体に直接結合してレ、 るため、検出感度が向上しうる。
[0165] 図 35は、被検出物質認識分子を絶縁性保護膜に結合させた例を示す図である。こ の例では、試料溶液が超微細繊維体および電極と直接接触することがないので、高 感度センサを提供しうる。 [0166] 図 35 (A)は、被検出物質認識分子を、超微細繊維体素子を保護する絶縁性保護 膜に結合させた例を示す図である。図 35 (B)は、被検出物質認識分子を、超微細繊 維体素子およびゲート電極を保護する絶縁性保護膜に結合させた例を示す図であ る。
[0167] 図 36は、サイドゲート電極が第二の絶縁膜と接触するように配置されている場合に 、被検出物質認識分子を第二の絶縁膜に結合させた例を示す図である。試料溶液 は、バックゲート電極に接触しても(図 36 (A) )しなくても(図 36 (B) )よい。
[0168] 図 37は、基板の第二の面上に凹部を形成し、この凹部の底に位置する第二の絶 縁膜に被検出物質認識分子を結合させた例を示す図である。凹部の側壁の材質は 、特に限定されないが、例えば、酸化シリコンである。この例では、被検出物質認識 分子が結合されている部位 (すなわち凹部内)に試料溶液を的確に位置させることが できる。
[0169] 図 38は、被検出物質認識分子をゲート電極に結合させた例を示す図である。
[0170] 図 39〜図 44は、被検出物質認識分子を本発明の分離ゲート型 FETに結合させた 例を示す図である。本発明の分離ゲート型 FETを含むバイオセンサである場合、被 検出物質認識分子は、ゲート素子部に結合されていることが好ましい。
[0171] 図 39は、分離ゲート電極が絶縁膜と接触せずに配置されている場合に、被検出物 質認識分子を絶縁膜に結合させた例を示す図である。
[0172] 図 40は、分離ゲート電極が絶縁膜と接触するように配置されている場合に、被検出 物質認識分子を絶縁膜に結合させた例を示す図である。試料溶液は、分離ゲート電 極に接触していても(図 40 (A) )しなくても(図 40 (B) )よい。図 40 (C)は、分離ゲート 電極が複数配置されてレ、る場合に、複数種の被検出物質認識分子をそれぞれ絶縁 膜に結合させた例を示す図である。
[0173] 図 41は、被検出物質認識分子をゲート電極に結合させた例を示す図である。図 41
(A)は、分離ゲート電極が一つ配置されている場合に、被検出物質認識分子を分離 ゲート電極に結合させた例を示す図である。図 41 (B)は、分離ゲート電極が複数配 置されている場合に、複数種の被検出物質認識分子をそれぞれ異なる分離ゲート電 極に結合させた例を示す図である。 [0174] 図 42は、ゲート素子部が複数ある場合に、複数種の被検出物質認識分子をそれ ぞれ異なる分離ゲート電極に結合させた例を示す図である。
[0175] 図 43は、超微細繊維体素子部およびゲート素子部が、導電性基板を挟むように配 置され、かつゲート素子部上に分離ゲート電極が複数配置されている場合に、複数 種の被検出物質認識分子をそれぞれ絶縁膜に結合させた例を示す図である。この 例では、ゲート素子部を超微細繊維体素子部から取り外すことを容易に行うことがで きる。したがって、一の超微細繊維体素子部に対して、複数のゲート素子部を付け替 えることが可能である。
[0176] 図 44は、超微細繊維体素子部およびゲート素子部が、導電性部材によって電気的 に接続され、かつゲート素子部上に分離ゲート電極が複数配置されてレ、る場合に、 複数種の被検出物質認識分子をそれぞれ絶縁膜に結合させた例を示す図である。
[0177] 2- 2.被検出物質認識分子を結合させる方法について
前述の通り、本発明のバイオセンサは、被検出物質認識分子が本発明の FETに結 合されていることが好ましい。
[0178] 以下において、基板、ゲート電極、または超微細繊維体に被検出物質認識分子を 結合させる 4つの方法を説明する。特に、被検出物質認識分子が抗体である場合を 例にとって説明する。
[0179] 第 1の方法は、被検出物質認識分子としてヒスタグ融合認識分子を用いる方法であ る。その一例として、ヒスタグ融合抗体を超微細繊維体(CNT)に結合する方法を、図 45を用いて説明する。同様の方法で、ヒスタグ融合抗体を基板およびゲート電極に も結合させること力 Sできる。
[0180] まず、遺伝子操作によってヒスタグ 51を融合した抗体 50を作製する。次に、 FETの 超微細繊維体をピレンで直接修飾する。 NTA52を、修飾した超微細繊維体に結合 させる。この後、遷移金属イオン (ニッケルイオンやコバルトイオンなど)を含む溶液を 超微細繊維体に滴下し、超微細繊維体に結合した NTA52と錯体を形成させる。さら に、ヒスタグ 51を融合した抗体 50を含む溶液を滴下することにより、図 45 (A)のよう に抗体 50を超微細繊維体に結合させる。このように結合された抗体 50は、結合面に 対して一定の配向性を有する。 [0181] 基板の絶縁膜に NTA52を固定化させる場合は、絶縁膜をシランィ匕カップリング剤 で処理するなどの方法が有効である。また、ゲート電極(金属)に NTA52を固定化さ せる場合は、 NTA52の N—マレイミド基にチオール基を付カ卩するなどの方法が有効 である。このように結合された抗体 50は、結合面に対して一定の配向性を有する。
[0182] 第 2の方法は、被検出物質認識分子が IgG型抗体の場合、プロテイン A、プロティ ン。、プロテイン L、またはそれらの IgG結合ドメインを用いる方法である。ここで述べ る抗体とは、抗原との特異的な結合能を有する一本鎖抗体などを含む。
[0183] プロテイン A、プロテイン G、またはその IgG結合特性を組み合わせた融合タンパク 質であるプロテイン AZGは、 IgG型免疫グロブリンの Fc領域に結合する能力を有す る。プロテイン Lは、 IgG型免疫グロブリンの軽鎖の κ鎖に結合する能力を有する。ま た、いずれも他のタンパク質と同様に、金表面に付着しやすい特性を有する。
[0184] これらの特性を利用して、金で作製されたゲート電極に、プロテイン A、プロテイン G 、プロテイン A/G、プロテイン L、またはそれらの IgG結合ドメインを有する組換えタ ンパク質 53 (以下「IgG結合タンパク質」ともいう)を直接付着させ、付着させた IgG結 合タンパク質 53に、被検出物質認識分子として用いる IgG型抗体 50を結合させるこ とで、抗体 50をある程度配向させることができる。ただしこの第 2の方法では、 IgG結 合タンパク質 53がランダムに電極に結合してしまうため、十分な配向性が得られない ことがある(図 45 (B)を参照)。
[0185] 第 3の方法は、 IgG結合タンパク質にヒスタグを付加し、 NTA—Niとヒスタグを介し て IgG結合タンパク質を結合させることで、第 1の方法と同じように被検出物質認識分 子 (抗体)を配向させる方法である。また、ヒスタグを付加することによって、ゲート電 極以外にも、絶縁膜や超微細繊維体に被検出物質認識分子 (抗体)を配向させるこ とができる。
[0186] 以下において、ヒスタグを付加された IgG結合タンパク質を絶縁膜に結合する方法 を、図 45 (C)を参照して説明する。超微細繊維体およびゲート電極にも同様の方法 で結合させることができる。
[0187] まず、遺伝子操作によってヒスタグ 51を付加した IgG結合タンパク質 53を作製する 。 IgG結合タンパク質 53において、抗体結合部位の位置を考慮してヒスタグの付カロ 部位を設定することにより、抗体の配向性を高めることができる。次に、絶縁膜をシラ ン化カップリング剤で処理し、修飾した基板に NTA52を結合させ、遷移金属イオン( ニッケルイオンやコバルトイオンなど)を含む溶液を基板上に滴下し、基板上に固定 した NTA52と錯体を形成させ、さらに、ヒスタグ 51を付加した IgG結合タンパク質 53 を含む溶液を滴下することにより、 IgG結合タンパク質 53を絶縁膜に固定する。固定 した IgG結合タンパク質 53に、被検出物質認識分子として用いる IgG型抗体 50を結 合させることで、図 45 (C)のように、抗体に配向性を持たせることができる。
[0188] 第 4の方法は、図 45 (D)に示されるように、被検出物質認識分子を、それぞれ官能 基(それぞれ同一でも異なっていてもよい)と共有結合を形成する二つの官能基 55, 56を有する二価性架橋試薬 54を介して、絶縁膜、ゲート電極または超微細繊維体 に結合する方法である。二価性架橋試薬 54は、二つの官能基 55, 56と、それを結 合するポリエチレングリコールなどの親水性ポリマー鎖またはアルキル鎖などの疎水 性鎖を含む。官能基 55, 56の例には、一方がアミノ基、他方がチオール基とそれぞ れ共有結合を形成する基が含まれる。
[0189] 例えば、絶縁膜に結合する場合は、 1)被検出物質認識分子 (抗体 50)と二価性架 橋試薬 54とを反応させた後、透析などにより未反応の二価性架橋試薬を除去し、シ ラン化カップリング剤で処理した基板絶縁膜と、被検出物質認識分子一二価性架橋 試薬複合体を反応させて固定する。または、 2)シラン化カップリング剤で処理した基 板絶縁膜面と二価性架橋試薬 54を反応させ、被検出物質認識分子 (抗体 50)を反 応させて固定する。
[0190] 図 45 (A)に示される NTAを用いる方法では、ヒスタグが付加された被検出物質認 識分子を遺伝子操作により調製するため、その調製に数ケ月単位の時間を要する。 被検出物質認識分子が抗体である場合、ヒスタグが付加された抗体を調製するため に、 目的の抗体を産生するハイプリドーマが必要となる。しかしながらハイプリドーマ の入手は通常困難であり、自ら作製することは多大な労力を要する。したがって図 45 (C)に示すように IgG結合タンパク質 53を用いる方法では、それらのヒスタグが付カロ されたタンパク質をいつたん作製すれば、 IgG型抗体に適用できるので、様々な被検 出物質を短時間で検出することができる。また、図 45 (D)に示されるように二価性架 橋試薬 54による方法では、ヒスタグを導入するための遺伝子改変操作が必要ないの で、被検出物質認識分子をさらに迅速に調製することができる。
[0191] さらには、抗体を被検出物質認識分子として用いる場合、 NTAを用いる方法では ポリクローナル抗体の使用が困難であるが、二価性架橋試薬による固定化法ではポ リクローナル抗体を使用できるので、バイオセンサとしての感度や精度の向上が期待 できる。また、二価性架橋試薬には、二つの官能基 55, 56の間に親水性ポリマー鎖 や疎水性鎖が存在するので、検出時のバックグラウンドが低減されうる。
[0192] 2- 3.着脱可能な素子部を有するバイオセンサ装置について
本発明のバイオセンサ装置は、バイオセンサ装置本体に着脱可能な、被検出物質 認識分子を有する素子部を備えていてもよい。素子部がバイオセンサ装置本体に装 着されると、素子部内の電極(ソース電極、ドレイン電極およびゲート電極のいずれか 一つまたは複数)が電気的に接続され、検出動作を行うことができるようになる。
[0193] 図 46は、着脱可能な素子部を有する本発明のバイオセンサ装置の一例を示す概 略図である。図 46に示されるように、素子部はチップ化されていることが好ましい。
[0194] 図 46において、バイオセンサ装置は、バイオセンサ装置本体 7601、および被検出 物質認識分子を含む素子部 7702から構成される。バイオセンサ装置本体 7601は、 検出結果を表示する表示部 7604を備える。
[0195] バイオセンサ装置本体は、通常は電源を備える力 S、 D/Aコンバータを設けて外部 電源を利用するか、または USBインタフェースにより外部から電力を取得するように してもよレ、。また、ノくィォセンサ装置本体は、表示部で検出結果を表示する代わりに
、インタフェースを設けて外部出力してもよい。さらに、ノくィォセンサ装置本体は、検 出結果を一時記憶する記憶手段を設けてもよい。これにより、バイオセンサ装置本体 は、検出結果を無線送信手段により送信することで、検出結果を集計センターなどで 集中管理することもできる。
[0196] バイオセンサ装置本体に着脱可能な素子部は、少なくとも被検出物質認識分子を 有し、 (A)被検出物質認識分子が結合された本発明のバックゲート型 FET、(B)被 検出物質認識分子が結合された本発明のサイドゲート型 FET、および (C)本発明の 分離ゲート型 FETにおける被検出物質認識分子が結合されたゲート素子部、のい ずれ力を有することが好ましい。以下、各態様について説明する。
[0197] (A)本発明のバックゲート型 FETを素子部に有するバイオセンサ装置
本態様において、ノくィォセンサ装置本体は、電源、および表示部を備える。電源は 、外部から電力を取得する外部電力取得手段に替えてもよい。また、表示部は、外部 出力するようにしてもよい。
[0198] 本態様において、素子部は、本発明のバックゲート型 FET、および本発明のバック ゲート型 FETに結合される被検出物質認識分子を有する。素子部に用いられる本発 明のバックゲート型 FETは、前述のバックゲート型 FETの各態様をとることができる。 素子部がバイオセンサ装置本体に装着されると、素子部内のソース電極、ドレイン電 極およびゲート電極は、バイオセンサ装置本体内の電源と電気的に接続されうる。
[0199] 被検出物質認識分子が本発明のバックゲート型 FETに結合される部位は、前述の 通り、超微細繊維体、絶縁性保護膜 (ある場合)、第二の絶縁膜、ゲート電極などで あるが、第二の絶縁膜が好ましい。被検出物質認識分子が結合された部位に試料溶 液を添加しても、超微細繊維体が汚染されるのを防ぐことができるからである。また、 超微細繊維体を損傷させることなく被検出物質認識分子が結合された部位を洗浄す ること力 Sできるとレ、うメリットもある。
[0200] ゲート電極は、第二の絶縁膜に直接接触して配置されていてもよぐ第二の絶縁膜 力 離されて配置されていてもよい。被検出物質認識分子が第二の絶縁膜に結合さ れる場合、ゲート電極は、第二の絶縁膜から離されて配置されるのが好ましい。また、 ゲート電極が第二の絶縁膜から離されて配置される場合、ゲート電極の大きさは、第 二の絶縁膜全面を被覆しうる大きさが好ましい。被検出物質認識分子を第二の絶縁 膜の全面に結合させることができるからである。ゲート電極は、前述の通り、一つでも 、複数でもよい。
[0201] 図 47は、本発明のバックゲート型 FETを素子部に有するバイオセンサ装置の一例 を示す図である。図 47において、バイオセンサ装置は、バイオセンサ装置本体 7601 、およびバイオセンサ装置本体上に配置された素子部 7602を備える。
[0202] バイオセンサ装置本体 7601は、電源 7603、および表示部 7604を備える。
[0203] 素子部 7602は、バイオセンサ装置本体 7601に着脱自在であり、基板 7609、超微 細繊維体素子 7605、ゲート電極 7614および被検出物質認識分子 7613を有する。
[0204] 基板 7609は、支持基板 7608、ならびに第一の絶縁膜 7607および第二の絶縁膜 7616から構成される。また、超微細繊維体素子 7605は、第一の絶縁膜 7607上に 配置されたソース電極 7610およびドレイン電極 7611、ならびにソース電極 7610とド レイン電極 7611とを電気的に接続する超微細繊維体 7612から構成される。ソース 電極 7610およびドレイン電極 7611は、素子部 7602がバイオセンサ装置本体 7601 に装着されたとき、電源 7603に接続されて電圧を制御されうる。
[0205] 基板 7609の第二の絶縁膜 7616上には、被検出物質と特異的に反応する被検出 物質認識分子 7613が結合される。ゲート電極 7614は、被検出物質認識分子が結 合された第二の絶縁膜 7616から垂直方向に離間配置されている。また、ゲート電極 7614は、素子部 7602がバイオセンサ装置本体 7601に装着されたとき、電源 7603 に接続されて電圧を制御されうる。図 47には、試料溶液 7615が、第二の絶縁膜 76 16とゲート電極 7614との間に存在している状態が示されている。
[0206] 図 47に示されたバイオセンサ装置により被検出物質を検出するには、試料溶液 76 15を第二の絶縁膜 7616上に滴下し (場合によりこれを乾燥し)、ゲート電極 7614を 配置した素子部 7602をバイオセンサ装置本体 7601に装着し、ゲート電極およびド レイン電極ならびにゲート電極に電圧をかければよレ、。それにより、例えば、第二の 絶縁膜 7616上における分子間相互作用によって素子部 7602のソース—ドレイン電 流の変化が引き起こされる。その変化を表示部 7604に表示する。
[0207] (B)本発明のサイドゲート型 FETを素子部に有するバイオセンサ装置
本態様において、ノくィォセンサ装置本体は、電源、および表示部を備える。電源は 、外部から電力を取得する外部電力取得手段に替えてもよい。また、表示部は、外部 出力するようにしてもよい。
[0208] 本態様において、素子部は、本発明のサイドゲート型 FET、および本発明のサイド ゲート型 FETに結合される被検出物質認識分子を有する。素子部に用いられる本発 明のサイドゲート型 FETは、前述のサイドゲート型 FETの各態様をとることができる。 素子部がバイオセンサ装置本体に装着されると、素子部内のソース電極、ドレイン電 極およびゲート電極は、バイオセンサ装置本体内の電源と電気的に接続されうる。 [0209] 被検出物質認識分子が本発明のサイドゲート型 FETに結合される部位は、前述の 通り、超微細繊維体、絶縁性保護膜 (ある場合)、ゲート電極などであるが、ゲート電 極が好ましい。被検出物質認識分子が電極上に限られると、その映像電荷が電極内 のみに生じるため、他の電極内の映像電荷と干渉しにくくなるからである。
[0210] ゲート電極は、第一の絶縁膜に直接接触して配置されていてもよぐ第二の絶縁膜 力 離されて配置されていてもよい。被検出物質認識分子がゲート電極に結合される 場合、ゲート電極は、第二の絶縁膜に直接接触して配置されるのが好ましい。また、 ゲート電極は、前述の通り、一つでも複数でもよい。
[0211] 図 48は、本発明のサイドゲート型 FETを素子部に有するバイオセンサ装置の一例 を示す図である。図 48 (A)において、バイオセンサ装置は、バイオセンサ装置本体 7 601、およびバイオセンサ装置本体の上部に配置された素子部 7602を備える。バイ ォセンサ装置本体 7601は、電源 7603、および表示部 7604を備える。
[0212] 素子部 7602は、バイオセンサ装置本体 7601に着脱自在であり、基板 7609、超微 細繊維体素子 7605、複数のゲート電極 7614および被検出物質認識分子 7613を 有する。
[0213] 基板 7609は、支持基板 7608、第一の絶縁膜 7607、および第二の絶縁膜 7616 力 構成される。また、超微細繊維体素子 7605は、第一の絶縁膜 7607上に配置さ れたソース電極 7610およびドレイン電極 7611、ならびにソース電極 7610とドレイン 電極 7611とを電気的に接続する超微細繊維体 7612から構成される。ソース電極 7 610およびドレイン電極 7611ならびにゲート電極 7614は、素子部 7602がバイオセ ンサ装置本体 7601に装着されたとき、電源 7603に接続されて電圧を制御されうる。
[0214] 第一の絶縁膜 7607上に配置されたゲート電極 7614上には、それぞれ被検出物 質と特異的に反応する被検出物質認識分子 7613が結合される。このとき、ゲート電 極 7614に結合される被検出物質認識分子 7613は、それぞれ異なるものであっても よい。それにより、一つの試料溶液 7615から複数種の被検出物質を検出することが できる。図 48 (A)には、試料溶液 7615が、複数のゲート電極 7614上に存在してい る状態が示されている。
[0215] 図 48 (A)に示されたバイオセンサ装置により被検出物質を検出するには、試料溶 液 7615をゲート電極 7614上に滴下し (場合によりこれを乾燥し)、素子部 7602をバ ィォセンサ装置本体 7601に装着し、各素子に電圧をかければよい。それにより、例 えば、ゲート電極 7614における分子間相互作用によって、素子部 7605のソース— ドレイン電流の変化が引き起こされる。その変化を表示部 7604に表示する。
[0216] 図 48 (B)は、図 48 (A)に示されるバイオセンサ装置の素子部 7602の一例を示す 図である。素子部 7602はチップ化されていることが好ましレ、。図 48 (B)は、図 48 (A )のバイオセンサ装置のチップ 7702の平面図である。
[0217] チップ 7702は、ケース 7703、およびその内部に収容される素子部 7602を有する 。素子部 7602は、互いに隣接配置される 4つのゲート電極 7614、ソース電極 7610 およびドレイン電極 7611、ならびに超微細繊維体を有する。各ゲート電極 7614はケ ース 7703側部に固定された導電ピン 7704にボンディング接続されている。
[0218] 試料溶液を滴下された (場合によりこれを乾燥された)チップ 7702を導電ピン 7704 を下にしてバイオセンサ装置本体 7601に装着することにより、各電極と接続された 導電ピン 7704は、装置本体 7601の電源 7603に接続される。
[0219] 図 48 (B)に示されるように、 4つのゲート電極 7614の端部力 すべて中心部に位 置するように隣接配置されてレヽれば、その中心部に試料溶液を滴下することにより、 一度に多項目の検出を行うことができる。同様に、ゲート電極各々を扇状に、かつ、 ゲート電極の集合をほぼ円形となるよう配置してもよい。
[0220] (C)本発明の分離ゲート型 FETのゲート素子部を素子部に有するバイオセンサ装 置
本態様において、ノくィォセンサ装置本体は、電源、表示部、および本発明の分離 ゲート型 FETの超微細繊維体素子部を備える。電源は、外部から電力を取得する外 部電力取得手段に替えてもよい。また、表示部は、外部出力するようにしてもよい。超 微細繊維体素子部内のソース電極、ドレイン電極およびチャネルは、電源と電気的 に接続されている。
[0221] 本態様において、素子部は、本発明の分離ゲート型 FETのゲート素子部、および ゲート素子部に結合される被検出物質認識分子を有する。素子部に用レ、られるグー ト素子部は、前述のゲート素子部の各態様をとることができる。素子部がバイオセン サ装置本体に装着されると、素子部内のゲート電極はバイオセンサ装置本体内の電 源と電気的に接続され、第二の基板はバイオセンサ装置本体内の超微細繊維体素 子部の基板と電気的に接続されうる。
[0222] 被検出物質認識分子が本発明の分離ゲート型 FETのゲート素子部に結合される 部位は、前述の通り、ゲート電極、第二の基板の第一の面(ゲート電極が配置される 面)の絶縁膜などであるが、ゲート電極が好ましい。被検出物質認識分子が電極上 に限られると、その映像電荷が電極内のみに生じるため、他の電極内の映像電荷と 干渉しに《なるからである。また、後述するように、ゲート電極を複数にし、それぞれ 異なる被検出物質認識分子を結合させることにより、多項目の検出を行うことができる
[0223] ゲート電極は、第二の基板に直接接触して配置されていてもよぐ第二の基板から 離されて配置されていてもよい。また、ゲート電極は、前述の通り、一つでも複数でも よい。
[0224] 図 49および図 50は、ゲート素子部を素子部に有するバイオセンサ装置の一例を示 す図である。
[0225] 図 49 (A)において、バイオセンサ装置は、バイオセンサ装置本体 7601、およびバ ィォセンサ装置本体の上部に配置された素子部 7802を備える。
[0226] バイオセンサ装置本体 7601は、電源 7603、表示部 7604および超微細繊維体素 子部 7801を備える。
[0227] 超微細繊維体素子部 7801は、基板 7609および超微細繊維体素子 7605を有し、 導電性基板 7803bに載置される。基板 7609は、支持基板 7608、第一の絶縁膜 76 07、および第二の絶縁膜 7616から構成される。また、超微細繊維体素子 7605は、 第一の絶縁膜 7607上に配置されたソース電極 7610およびドレイン電極 7611、なら びにソース電極 7610とドレイン電極 7611とを電気的に接続する超微細繊維体 761 2力、ら構成される。ソース電極 7610およびドレイン電極 7611は、電源 7603に接続さ れて電圧を制御される。
[0228] 素子部 7802は、バイオセンサ装置本体 7601に着脱自在であり、第二の基板 762 0、複数のゲート電極 7614、および被検出物質認識分子 7613を有し、導電性基板 7803aに載置される。また、第二の基板 7620は、第二の支持基板 7617、第二の支 持基板 7617の第一の面上に位置する第三の絶縁膜 7618、および第二の支持基板 7617の第二の面上に位置する第四の絶縁膜 7619から構成される。ゲート電極 761 4は、素子部 7802がバイオセンサ装置本体 7601に装着されたとき、電源 7603に接 続されて電圧を制御されうる。また、素子部 7802は、バイオセンサ装置本体 7601に 装着されたとき、導電性基板 7803a、 7803bを介して、超微細繊維体素子部 7801 に電気的に接続されうる。
[0229] 第三の絶縁膜 7618上に配置されたゲート電極 7614上には、それぞれ被検出物 質と特異的に反応する被検出物質認識分子 7613が結合される。このとき、ゲート電 極 7614に結合される被検出物質認識分子 7613は、それぞれ異なるものであっても よい。これにより、一つの試料溶液 7615から複数種の被検出物質を検出することが できる。図 49 (A)には、試料溶液 7615が、複数のゲート電極 7614上に存在してい る状態が示されている。
[0230] 図 49 (A)に示されたバイオセンサ装置により被検出物質を検出するには、試料溶 液 7615をゲート電極 7614上に滴下し (場合によりこれを乾燥し)、素子部 7802をバ ィォセンサ装置本体 7601に装着し、各素子に電圧をかければよい。それにより、例 えば、ゲート電極 7614上における分子間相互作用によって、超微細繊維体素子部 7801のソース一ドレイン電流の変化が引き起こされる。その変化を表示部 7604に 表示する。
[0231] 図 49 (A)に示されたバイオセンサ装置では、超微細繊維体素子部 7801が、素子 部 7802内に含まれるゲート素子部と分離されて、バイオセンサ装置本体 7601内に 配置される。素子部 7802は、バイオセンサ装置本体 7601に対して着脱自在にされ ているため、超微細繊維体素子部 7801は、物理的および化学的負担を受けなくな る。したがって、超微細繊維体素子部 7801の寿命が著しく延びる。そのため、超微 細繊維体素子部 7801の特性を一度計測し、その超微細繊維体素子部 7801独自 の検量線を作成しておくことにより、未知の試料に対して検量線から被検出物質の濃 度を検出することも可能となる。一の超微細繊維体素子部 7801を用いて、被検出物 質認識素子部 7802を都度交換しつつ、被検出物質の検出を行うことができるため、 超微細繊維体素子部 7801を長期にわたって使用でき、かつ被検出物質認識素子 部 7802を使い捨てることもできる。
[0232] 超微細繊維体素子部 7801のバイオセンサ装置本体 7601内での位置は、特に限 定されず、素子部 7802が装着されたときに、超微細繊維体素子部 7801の導電性 基板 7803bと素子部 7802の導電性基板 7803aとが電気的に接続されればよい。例 えば、超微細繊維体素子部 7801を、導電性基板 7803bが上方に向けられた状態 でバイオセンサ装置本体 7601上部に配置しておき、素子部 7802が装着されると、 導電性基板 7803bと導電性基板 7803aとが接触して接続するようにしてもよい(図 4 3の分離ゲート型 FET参照)。
[0233] 図 49 (B)および図 49 (C)は、図 49 (A)に示されるバイオセンサ装置の素子部 780 2の一例を示す図である。素子部 7802は、チップ化されていることが好ましレ、。図 49 (B)および図 49 (C)は、それぞれ図 49 (A)のバイオセンサ装置のチップ 7804の斜 視図および断面図である。
[0234] チップ 7804は、ケース 7703およびその内部に収容される素子部 7802を含む。素 子部 7802は、互いに隣接配置される 4つのゲート電極 7614を有し、導電性基板 78 03に載置される。各ゲート電極 7614は、ケース 7703側部に固定された導電ピン 77 04にボンディング接続され、導電性基板 7803は別の導電ピン 7704に接続される。
[0235] 試料溶液を滴下した (場合によりこれを乾燥した)チップ 7804を、導電ピン 7704を 下にしてバイオセンサ装置本体 7601に装着することにより、導電ピン 7704のそれぞ れは、バイオセンサ装置本体 7601の電源 7603および超微細繊維体素子部 7801 が載置される導電性基板 7803bと接続される。
[0236] 図 49 (B)に示されるように、 4つのゲート電極 7614の端部は、全て中心部に位置 するように隣接配置されているため、その中心部に試料溶液を滴下することにより、 一度に多項目の検出を行うことができる。ゲート電極各々を扇状に、かつ、ゲート電 極の集合をほぼ円形となるよう形成してもよい。これらについては後述する。
[0237] 図 50に示されるバイオセンサ装置は、バイオセンサ装置本体 7601、バイオセンサ装 置本体の内部に配置された素子部 7802とから構成される。バイオセンサ装置本体 7 601が、超微細繊維体素子部 7801、電源 7603および表示部 7604を有する点は、 図 49に示されるバイオセンサ装置と同様である。図 50に示されるバイオセンサ装置 では、素子部 7802が、矢印 A方向に移動されることにより、バイオセンサ装置本体 7 601に着脱自在にされてレ、る。
[0238] 素子部 7802がバイオセンサ装置本体 7601に装着されると、ゲート電極 7614は電 源 7603と、導電性基板 7803aは超微細繊維体素子部 7801の導電性基板 7803b と、それぞれ電気的に接続されうる。
[0239] 図 50 (B)および図 50 (C)は、それぞれ図 50 (A)のバイオセンサ装置のチップ 780 4の斜視図および断面図である。チップ 7804は、ケース 7703と、その内部に収容さ れる素子部 7802を含む。素子部 7802は、互いに隣接配置される 4つのゲート電極 7614を有し、導電性基板 7803aに載置される。ゲート電極 7614のそれぞれは、ケ ース 7703側部に形成された平板電極 7901に接続される。また、導電性基板 7803a は、別の平板電極 7901に接続される。
[0240] 試料溶液 7615を滴下した (場合によりこれを乾燥した)チップ 7804を、平板電極 7 901を前にして装置本体 7601に差し込むようにして装着すると、平板電極 7901は それぞれ装置本体 7601の電源 7603および超微細繊維体素子部 7801の導電性 基板 7803bと接続されうる。
[0241] 図 50 (B)に示されるように、 4つのゲート電極 7614の端部力 全て中心部に位置 するように隣接配置されているため、その中心部に試料溶液を滴下することにより、 一度に多項目の検出を行うことができる。また、ゲート電極のそれぞれを扇状に、か つ、ゲート電極の集合をほぼ円形となるよう形成してもよい。いずれの場合も、全ての ゲート電極 7614とケースの一方の端部に並列配置された平板電極 7901とが接続さ れているが、ゲート電極 7614から端部平板電極 7901への配線経路は、全てゲート 電極 7614の集まりの外側とすることが好ましい。このような経路をとることにより、複数 のゲート電極 7614の端部を、相互に隣接する中心位置付近でより近接させることが できる。
[0242] [チップについて]
本発明のバイオセンサ装置は、図 49および図 50に示されるように、バイオセンサ装 置本体に着脱可能な、本発明の分離ゲート型 FETのゲート素子部を含むチップ 780 4が含まれていてもよい。図 51は、チップ 7804の例を示す図である。ゲート電極に試 料溶液を滴下することにより被検出物質を検出することができる。
[0243] 図 51 (A)において、チップ 7804は、導電性基板 7803a、ゲート電極 7614および ゲート電極 7614に結合した被検出物質認識分子 7613を有する。チップ 7804内の 導電性基板 7803aおよびゲート電極 7614は、導電ピン 7704を通して装置本体の 接続端子 8001に電気的に接続される。
[0244] 図 51 (A)に示されるチップ 7804は、複数のゲート電極 7614を有しうる。その場合 、複数のゲート電極 7614にそれぞれ異なる被検出物質認識分子 7613を結合させ、 それぞれのゲート電極 7614に電圧を印加することで、一検体多項目の検出を行うこ とができる。
[0245] 図 51 (B)において、チップ 7804は、ゲート電極 7614およびゲート電極 7614に結 合した被検出物質認識分子 7613を有する。導電性基板 7803aは、バイオセンサ装 置本体に配置される。チップ 7804内の導電性基板 7803aおよびゲート電極 7614 は、導電ピン 7704を通して装置本体の接続端子 8001に接続される。この例では、 導電性基板 7803aがバイオセンサ装置本体に配置されるため、チップ 7804の製造 コストがより低減されうる。
[0246] 図 51 (C)において、チップ 7804は、導電性基板 7803a、および第二の基板 7613 に結合した被検出物質認識分子 7613を有する。ゲート電極 7614は、バイオセンサ 装置本体の、チップ 7804を覆う蓋 8002に酉己置される。
[0247] 図 51 (D)において、チップ 7804は、導電性基板 7803a、および第二の基板 7620 に結合した被検出物質認識分子 7613を有する。ゲート電極 7614は、バイオセンサ 装置本体に、チップ 7804の側方に位置するように配置される。
[0248] 図 51に示されるチップの例は、少量の試料溶液をマイクロピペットなどで滴下する ことを前提としており、平面状の形状を有する。したがって、試料溶液の量が多い場 合には、チップ力 試料溶液が溢れ出て周囲を汚染する可能性がある。試料溶液の 量が多い場合には、チップの形状を平面ではなく凹状にすることが好ましい。
[0249] 図 52は、凹状の形状を有するチップの例を示す図である。図 52 (A)は、凹状の形 状を有するチップの一例を示す斜視図であり、図 52 (B)および図 52 (C)は、凹状の 形状を有するチップの例を示す断面図である。
[0250] 図 52 (A)において、チップ 8101は凹部を有する。凹部の底には、 4つのゲート電 極 7614が配置され、その下にはプラスチックなどの絶縁板を挟んで導電性基板 780 3aが設けられている。導電性基板 7803aは、図 52 (B)に示されるようにチップ 8101 に設けられてもよぐ図 52 (C)に示されるようにバイオセンサ装置本体に設けられても よい。
[0251] ゲート電極 7614には、異なる被検出物質認識分子が、それぞれ結合されうる。被 検出物質を検出するには、例えば、一のゲート電極 7614に電圧を印加して、ソース —ドレイン電流を測定すればよレ、。 4つのゲート電極 7614のそれぞれについて同様 の測定を行うことにより、一検体多項目の検出ができる。
[0252] 図 52 (A)に示されるチップの各ゲート電極 7614を一の超微細繊維体素子部に順 次接続することにより、異なる検出対象物について順次検出することができる。また、 各ゲート電極 7614を複数の超微細繊維体素子部にそれぞれ同時に接続することに より、複数種の被検出物質について同時に検出することもできる。
[0253] 凹部を有するチップは、試料溶液をゲート素子部上に安定に留められるので、特に 、屋外や臨床の場で用いる可搬型バイオセンサ装置に好ましく適用されうる。さらに、 チップに目盛を付けることにより、マイクロピペットを用いなくても一定量の試料を添カロ すること力 Sできる。また、チップに蓋を設けることにより、試料の蒸発を抑えることがで き、その蓋で試料溶液に圧力をカ卩えることでノイズを低減させることができる。
[0254] また、チップはマイクロプレート型のチップであってもよレ、。マイクロプレート型のチッ プは、多検体多項目の検出を可能にする。図 53は、マイクロプレート型のチップの例 を示す図である。
[0255] 図 53 (A)は、 24穴マイクロプレート型のチップの一例を示す斜視図である。図 53 ( A)において、チップ 8201の各穴の底には 4つのゲート電極が設置されており、その 下にはプラスチックなどの絶縁膜を挟んで導電性基板が設けられている。各ゲート電 極および導電性基板は、それぞれ導電ピンに電気的に接続されている。チップ 820 1をバイオセンサ装置本体のソケット 8202に差し込むことにより、各ゲート電極はバイ ォセンサ装置本体内の電源と電気的に接続され、各導電性基板は超微細繊維体素 子部の導電性基板と電気的に接続することができる。
[0256] 図 53 (B)は、 24穴マイクロプレート型のチップの他の例を示す斜視図である。図 5 3 (B)に示されるように、バイオセンサ装置本体との電気的接続部 8203をチップ 820 1の側面に設ければ、チップ 8201をバイオセンサ装置本体の側部に差し込むことが できる。
[0257] 図 53 (C)は、図 53 (B)に示されるチップ 8201内の配線の一例を示す断面図であ る。ゲート電極 7614は、それぞれ異なる時間に電圧を印加しなければならないため 、全て独自の電気回路が必要となる。一方、導電性基板 7803bは、共通の回路が一 つあればよい。
[0258] 24穴マイクロプレート型のチップ 8210の各穴にある 4つのゲート電極 7614には、 それぞれ異なる被検出物質認識分子 7613が結合されている。被検出物質を検出す るには、例えば、一のゲート電極 7614に電圧を印加し、ソース一ドレイン電流を測定 すればよい。各ゲート電極についてこの測定を行うことにより、 24検体それぞれにつ いて 4項目の検出を行うことができる。
[0259] また、各ゲート電極 7614を一の超微細繊維体素子部に順次接続することにより、 異なる被検出物質を順次検出することができる。また、各ゲート電極 7614を複数の 超微細繊維体素子部にそれぞれ同時に接続することにより、複数種の被検出物質に ついて同時に検出することもできる。
[0260] マイクロプレート型のチップの穴の数およびゲート電極の数は適宜選択されうる。例 えば、検出項目数を多くしたければ、 1穴あたりのゲート電極数を増やせばよい。その 場合には、例えば、 24穴ではなく 6穴マイクロプレートを用いることによって底面積を 広げること力 Sできる。また、検体数を多くしたければ、例えば、より多数の穴のマイクロ プレート(例えば 96穴マイクロプレート)を用いればよい。
[0261] なお、図 53では、導電性基板 7803aはマイクロプレートに含まれている力 それぞ れの穴の直下であれば、バイオセンサ装置本体側に位置していても構わない。
[0262] また、チップは、マイクロ流路となるフローセルを有し、ポンプなどにより試料溶液を 供給されるようにしてもよレ、。この場合、被検出物質認識分子は、フローセル内部表 面に結合されている。フローセルを有する認識チップを用いることにより、 μ -TAS ( Micro Total Analysis System)と呼ばれる集積化検出システムを構築することができる
[0263] 図 54 (A)は、フローセルが設けられた本発明のバックゲート型 FETを含むチップの 一例を示す図である。被検出物質認識分子 7613は、フローセルの上面を構成する 第二の絶縁膜 7616に結合されている。この例では、ポンプなどの試料溶液供給手 段(図示しなレ、)により、試料溶液 7615が図の左側からフローセル内に連続供給さ れる様子を示している。試料溶液 7615の供給量は、試料溶液供給手段によって調 整されるので、ユーザは、試料溶液 7615の量をマイクロピペットなどで量る必要はな く、試料溶液供給手段に十分量の試料溶液 7615を供給すればょレ、。
[0264] 図 54 (B)には、フローセルが設けられた本発明の分離ゲート型 FETのゲート素子 部を含むチップの一例を示す図である。被検出物質認識分子 7613は、フローセル の底面に位置する複数のゲート電極 7614上に結合されている。この例では、複数の 項目につレ、て検出を行うことができる。
[0265] また、 μ TASと液体クロマトグラフィーとを組み合わせてもよい。例えば、液体クロ マトグラフィ一のカラムで処理した後のフラクションについて、 UVによる検出と本発明 のバイオセンサ装置による検出を行うことができる。このように、 μ—TASを用いれば 、同一試料を他の検出装置、または複合装置の他の検出部位まで導き、複数種の被 検出物質に対する検出を連続して行うことができる。さらには、 μ TASを用いれば 、経時的な検出を行うこともできる。
[0266] 本発明のバイオセンサは、前記の通り、ソース ドレイン電流の変化から被検出物 質を検出することができる。この検出に必要なソース ドレイン電流は、通常 μ Aォー ダ一でよい。したがって、半導体パラメータアナライザなどの高価な機器を用いること なぐ汎用テスター程度 (数百 nA)の測定感度で十分な検出感度を得ることができる 。そのため、ノート PCのバッテリーで駆動させるバイオセンサ装置(図 55 (A)参照)や 、小型電池で駆動させる小型バイオセンサ装置(図 55 (B)参照)などが作製されうる 。さらには、特殊な検出装置が必ずしも必要ないため、携帯電話サイズにまで小型化 されうる。
[0267] 2-4.本発明のバイオセンサによる検出 前述の通り、本発明のバイオセンサ (装置)を用いることにより被検出物質が検出さ れうる。本発明のバイオセンサは、被検出物質認識分子に結合することにより生じる ソース ドレイン電流またはソース ドレイン電圧の変化から被検出物質を検出する
[0268] 以下において検出手順の概略例を示す。この概略例では、試料として溶液を用い た場合について説明する。
[0269] (1)バイオセンサにぉレ、て、被検出物質認識分子が結合された部位に、試料溶液 を添加する。例えば、被検出物質認識分子が結合された基板の裏面(第二の絶縁膜 上)に添加すればよい。試料溶液に被検出物質が含まれていれば、被検出物質と被 検出物質認識分子との相互作用(例えば抗原抗体反応)が生じる。
[0270] (2)添加された試料溶液に含まれる溶媒 (例えば水)は、ソース—ドレイン電流に影 響を与えるため、検出におけるノイズを発生させることがある。このノイズを低減させる 方法として、例えば以下の方法がある。
[0271] (2— a)添加された試料溶液を蒸散により除去する。蒸散による除去する方法は、 特に限定されないが、例えば、窒素ガスなどを用いてブロアするカ ヒーターゃ熱電 変換素子 (ペルチヱ素子)などを利用して行えばよい。ブロアによる蒸散では、ブロア を僅かにあてながらゆっくりと蒸散させて、一様な薄膜状にすることが好ましい。した がって、通常のスプレー缶によるスプレーを用いてもよいが、ガスの量および勢いの 制御が困難である場合がある。
[0272] (2— b)添加された試料溶液を冷却する。このとき、凍結することにより絶縁化するこ とが好ましい。冷却する方法は、特に限定されないが、例えば、熱電変換素子(ペル チェ素子)や液体窒素などにより行えばよい。
[0273] (3)試料溶液が添加された部位に、(好ましくは試料溶液を蒸散または冷却した後 に)ゲート電極をあてて FETを通電させる。そして、 I—V特性または I_Vg特性を測 定する。
[0274] 本発明のバイオセンサによる検出法と、検出結果について簡単に説明する。具体 的には、 (A)二価イオンであるニッケルイオンの検出、 (B)抗へマグルチニン(以下「 HAJと略記する)抗体の検出、(C)抗カルモジュリン(以下「CaM」と略記する)抗体 の検出について説明する。いずれの場合も、本発明のバックゲート型 FETを用いた 例を示す。
[0275] 以下の検出例(A;)〜(C)で用いられる本発明のバックゲート型 FETは、図 31 (A) に示される構成を有する。計測に用いた FETにおいて、支持基板は厚さ 500 x mの シリコン基板、第一の絶縁膜および第二の絶縁膜は厚さ 300nmの酸化シリコン、基 板の面積は lcm2 (lcm X 1cm)、超微細繊維体は単層 CNT、ソース電極とドレイン 電極との間隔は 5 μ m、ゲート電極に接触する第二の絶縁膜の面積は lcm2であった 。また、数本の CNTでソース電極とドレイン電極とが接続されていることが AFMによ り確認された。
[0276] (A)ニッケルイオンの検出
まず、用意したバックゲート型 FET基板の第二の面(ソース電極、ドレイン電極およ びチャネルが配置されていない面)の酸化シリコン膜表面(lcm2)を、ピランハ溶液 およびエタノールで洗浄して乾燥した。次に、この酸化シリコン膜表面に、 3 1の(38 10)メルカプトプロピルトリメトキシシランを滴下して、 180°Cで 2時間加熱した。 30°C にまで冷却した後、同温度で 1時間以上 50mMのジチオスレィトール(DTT)で処理 した後、水で洗浄した。
[0277] ここで、半導体パラメータアナライザに接続したプローブを、ソース電極およびドレイ ン電極に接続して I—V特性を測定した。ゲート電圧を 0Vにして I— V特性曲線 (ソー スードレイン電流とソース ドレイン電圧との関係を示す)を求めた。
[0278] 次に、 10mMリン酸緩衝液(pH6.5)を用いて調製したマレイミドー NTA溶液(lm g/ml)を、前述の酸化シリコン膜表面に重層し、室温で 1時間静置した。その後、水 で洗浄し、窒素ガスで乾燥させた(目視で水滴がなくなるまで乾燥させた)。ここで、 前記と同様に I—V特性曲線を求めた。
[0279] さらに、前述の酸化シリコン膜表面に、 50 μ 1の NiCl溶液(50mM)を滴下した。 1
2
5分間静置した後、水で洗浄し、窒素ガスで乾燥させた(目視で水滴がなくなるまで 乾燥させた)。ここで、前記と同様に I—V特性曲線を求めた。
[0280] これらの結果を、図 56に示す。図 56において、「di」は NTA結合前の I—V特性曲 線、「nta」は NTA結合後の I—V特性曲線、「ni」はニッケルイオンを含む溶液の滴 下後の I— V特性曲線である。図 56に示されるように、いずれの場合にも、ソース—ド レイン電圧の上昇とともにソース ドレイン電流が上昇していることがわかる。また、い ずれの場合にも、ソース ドレイン電圧が 0Vの近傍ではソース ドレイン電流の変化 が少なぐ半導体的な性質が観察された。さらに、「ni」《「nta」と比較して、ソース一 ドレイン電流が上昇していることがわかる。よってニッケルイオンは、 NTAを被検出物 質認識分子として結合された本発明のバイオセンサによって検出可能であることがわ かる。また、ニッケルイオンのみならず、 NTAとの相互作用を示す 2価イオン(亜鉛ィ オンやコバルトイオンなど)についても、検出可能であることが示唆される。
[0281] (B)抗へマグルチニン抗体の検出
まず、被検出物質認識分子として用いる抗体認識分子である組換えへマグノレチニ ン (以下「rHA」と略記する)タンパク質を用意した。具体的には、 C末端にヒスチジン タグを付加された組換え HAタンパク質であって、種々のレベル(1— 220、 1一 250、 1 290、 1 320;数字は一次配列上のアミノ酸残基の番号を示す)でトランケート( truncate)されたタンパク質の発現を試みた。
[0282] 各レベルに対応する rHAタンパク質発現プラスミドを、 293T細胞へ導入した。モノ クローナル抗体 E2/3と、ポリクローナル抗体を用いて、細胞内で rHAタンパク質が 発現されていることを確認した。さらにウェスタンブロット法によって、上清に rHAタン パク質が分泌されることを確認した。
[0283] 大量に発現されたのは、 rHA および rHA であった。それぞれ、上清中の
1 - 290 1 -220
分泌物を NTA_Ni2+カラムで精製した。 ELISA、ウェスタンブロットで目的とする rH Aタンパク質が含まれるフラクションを確認してそれを分取した。分取物を PBSで透析 して、 rHAタンパク質を得た。 rHA および rHA のうち、 rHA はモノクロ
1 -290 1 -220 1 -220 ーナル抗体と反応しなかったため、 rHA を被検出物質認識分子として用いた。
1 - 290
[0284] また、抗 HA抗体(E2/3)のハイブリドーマ培養上清原液を、 1 X 10— 5、 1 X 10_6 、 1 X 10— 7、 1 X 10— 8、 1 X 10— 1Qにそれぞれ希釈した希釈液を得た。
[0285] 前述のニッケルイオンの検出の場合と同様に、用意したバックゲート型 FET基板の 第二の面にマレイミド一NTAを結合させて、さらに NiClで処理した。ここで、前記と
2
同様に I—V特性曲線を求めた(ただしゲート電圧は— 20Vとした)。 [0286] これに、前述の各抗 HA抗体希釈液(50 /il)を添加して、 25°Cで 15分間静置した 後、水で洗浄し、窒素ガスで乾燥させた(目視で水滴がなくなるまで乾燥させた)。こ こで、前記と同様に I V特性曲線を求めた(ただしゲート電圧は一 20Vとした)。
[0287] 次に、 NiClで処理された基板の第二の面に、前述のようにして得た rHA を(1
2 1-290
.9 zg/ml;50 xl)添加して固定した。ここで、前記と同様に I—V特性曲線を求め た(ただしゲート電圧は一20Vとした)。
[0288] rHA を固定された基板の第二の面に、前述の各希釈液(50 μΐ)を添加して、
1-290
25°Cで 15分間静置した後、水で洗浄し、窒素ガスで乾燥させた(目視で水滴がなく なるまで乾燥させた)。ここで、前記と同様に I一 V特性曲線を求めた(ただしゲート電 圧は一20Vとした)。
[0289] 得られた I—V特性曲線を図 57〜62に示す。
[0290] 図 57には、 NiClで基板の第二の面を処理したときの I—V特性曲線(点線)、 NiCl
2
で処理された基板の第二の面に rHA を固定したときの I V特性曲線(実線)
2 1-290
が示される。
[0291] 図 58には、 NiClで基板の第二の面を処理したのち、 1X10_1°の希釈液を添加し
2
た場合の I— V特性曲線(点線)、 NiClで処理された基板の第二の面に rHA を
2 1-290 固定したのち、 5 X 10_5の希釈液を添加した場合の I—V特性曲線(実線)が示され る。
[0292] 図 59には、 NiClで基板の第二の面を処理したのち、 1X10—8の希釈液を添加し
2
た場合の I— V特性曲線(点線)、 NiClで処理された基板の第二の面に rHA を
2 1-290 固定したのち、 5 X 10— 8の希釈液を添加した場合の I—V特性曲線(実線)が示され る。
[0293] 図 60には、 NiClで基板の第二の面を処理したのち、 1X1CT7の希釈液を添加し
2
た場合の I— V特性曲線(点線)、 NiClで処理された基板の第二の面に rHA を
2 1-290 固定したのち、 5 X 10— 7の希釈液を添加した場合の I—V特性曲線(実線)が示され る。
[0294] 図 61には、 NiClで基板の第二の面を処理したのち、 1X1CT6の希釈液を添加し
2
た場合の I— V特性曲線(点線)、 NiClで処理された基板の第二の面に rHA を 固定したのち、 5 X 10_bの希釈液を添加した場合の I— V特性曲線(実線)が示され る。
[0295] 図 62には、 NiClで基板の第二の面を処理したのち、 1 X 10_5の希釈液を添加し
2
た場合の I— V特性曲線(点線)、 NiClで処理された基板の第二の面に rHA を
2 1-290 固定したのち、 5 X 10— 5の希釈液を添加した場合の I—V特性曲線(実線)が示され る。
[0296] 図 57〜図 62に示されるように、ソース一ドレイン電圧が 0〜1Vの場合には、基板の 第二の面に固定された rHA の有無にかかわらず、ソース一ドレイン電流に差は
1-290
ほとんどみられなレ、。一方、ソース一ドレイン電圧力 ivを超えるあたりから、基板の背 面に固定された rHA があると、電流値が急激に上昇することがわかる。このこと
1-290
から、希釈度の高い領域でも抗 HA抗体の検出が可能であることがわかる。
[0297] (C)抗カルモジュリン抗体の検出
抗 CaM抗体については、独立した 2例の検出結果を示す。
[0298] まず、被検出物質認識分子として用いる抗体認識分子である組換え CaM (以下「r CaM」と略記する)タンパク質を用意した。
[0299] ラット CaM遺伝子 cDNAを含む DNA断片を、発現ベクター pBAD/glll (インビトロ ジェン社製)の Sad-Xbal部位に挿入して、 rCaM発現ベクターを構築した。構築した 発現ベクターを大腸菌 LMG194株に導入して、 rCaM発現クローンを得た。得られ たクローンを 2mlの LB/アンピシリン培地に植菌し、ー晚培養した。
[0300] 得られた培養液の 5mlを、 LB/アンピシリン培地に接種して、 OD600が 0.5になる まで 37°Cで震とう培養した。その後、終濃度が 0.02%になるように L—ァラビノースを カロえて、さらに 37°Cで 4時間震とう培養した。
[0301] 得られた培養物から遠心集菌して、それを Native Binding Buffer (インビトロジヱン社 製)に懸濁させ、超音波粉砕して、 Probond™Purification System (インビトロジヱン社 製)を用いて部分精製した。さらに HiLoad 26/60 Superdex 75 pg (アマシャムバイオ サイエンス社製)を用いて SDS _ PAGE的に均一に精製して、 C末端にヒスチジンタ グが導入された rCaMタンパク質を得た。
[0302] 一方、抗 CaMモノクローナル抗体 6D4、 1F11および 2D1 (シグマ社製)の混合液 の希釈液を、 PBSを用いて作製した。希釈系列は、各抗 CaMモノクローナル抗体原 液の 1 X 10— 1 X 10— 10、 1 X 10— 9、 1 X 10— 8、 1 X 10—7、 1 X 10— 6、 1 X 10—5、 1 X I 0—4とした。
[0303] 前述のニッケルイオンの検出の場合と同様に、用意したバックゲート型 FETの基板 の第二の面にマレイミド一 NTAを結合させて、さらに NiClで処理した。ここで、前記
2
と同様に I—V特性曲線を求めた (ただしゲート電圧は— 20Vとした)。
[0304] NiClで処理された第二の面に、 PBS中のrCaMタンパク質(12 1 gZml ; 50 1 l)
2
を添加して固定した。ここで、前記と同様に I—V特性曲線を求めた (ただしゲート電 圧は一20Vとした)。
[0305] rCaMタンパク質が固定された基板に、前述の抗 CaMモノクローナル抗体の各希 釈液(50 μ ΐ)を添加して、 25°Cで 15分間静置した後、水で洗浄し、窒素ガスで乾燥 させた(目視で水滴がなくなるまで乾燥させた)。ここで、前記と同様に I—V特性曲線 を求めた(ただしゲート電圧は 20Vとした)。
[0306] 一方、対照として、 rCaMタンパク質が固定された基板に、子牛血清アルブミン(BS A) (34mg/ml ; 50 l)を添加して、 25°Cで 15分間静置した後、水で洗浄し、窒素 ガスで乾燥させた(目視で水滴がなくなるまで乾燥させた)。ここで、前記と同様に I— V特性曲線を求めた(ただしゲート電圧は一 20Vとした)。
[0307] 図 63には、得られた I—V特性曲線それぞれにおける、ソース ドレイン電圧が 1.5 Vのときのソース一ドレイン電流が示される。図 63において、「Ni」は NiClで処理し
2 たときのソース一ドレイン電流を示し、「CaM」は rCaMタンパク質を固定したときのソ ース—ドレイン電流を示し、「BSA」は対照とした子牛血清アルブミンを添カ卩したとき のソース一ドレイン電流を示し、「10— "〜10— 4」は、各濃度の抗体希釈液を添加した ときのソース一ドレイン電流を示す。
[0308] 図 63に示されるように、抗 CaM抗体の濃度が上昇(10_"〜: 10_8)するにつれて、 ソース一ドレイン電流が上昇していることがわかる。ただし、抗 CaM抗体の濃度が一 定以上になると(すなわち、 10_8よりも高くなると)、ソース一ドレイン電流との関連が 認められなかった。
[0309] また、図 63に示されるように、 BSAを添加してもソース一ドレイン電流の変化はみら れな力 た。よって、抗 CaM抗体を特異的に検出することができることがわかる。
[0310] 図 63には、 ELISA法を用いた抗 CaM抗体の検出結果も示される。 5 μ g/mlの r CaM溶液 100 μ ΐを用いて、マイクロタイタープレートの各ゥエルに rCaMを吸着固定 した。上記 1次抗体の混合液を各希釈率に希釈して各ゥエルに入れ 1時間静置した 後、 PBST (0. 2%Triton X_ 100を含んだ PBS)で洗浄し、ついで 5000倍希釈 した 2次抗体 (HRP標識抗マウス IgG抗体)を各ゥエルに加えて再び 1時間静置し、 P BSTで洗浄後、 TMB発色剤で 450nmの吸収波長を有する基質を生成し、吸光度 を測定した。
[0311] 図 63に示される通り、 ELISA法では抗 CaM抗体の検出限界(10— 6希釈液)と比 較して、本発明の検出法は、 40万倍の検出感度を有していることがわかる。
[0312] 図 64に、抗体原液の希釈率を変化させたときの I一 Vg特性が示される。 (a)は抗体 原液の希釈率を 10_ 1°としたときの I一 Vg特性曲線、(b)は抗体原液の希釈率を 10— 9としたときの I— Vg特性曲線、(c)は抗体原液の希釈率を 10_5としたときの I— Vg特 性曲線を示す。なお、図 63の検出結果と図 64の検出結果は、それぞれ独立した実 験によって得られたものである。抗体原液の希釈率が上がると、ソース ドレイン電流 が上昇することがわ力る。
[0313] 3.本発明の被検出物質の濃度の測定について
本発明のバイオセンサは、被検出物質の濃度を測定するために用いられうる。濃度 を測定する場合には、(1)被検出物質の濃度と所定の特性値との関係を示す検量線 を記憶する記憶手段、および(2)前記検量線を用いて、未知試料に含まれる被検出 物質の濃度を決定する濃度決定手段とをさらに有することが好ましい。「所定の特性 値」とは、当該濃度と 1対 1の関係にある値であればよい。
[0314] 本発明者は、 I—V特性曲線 (ゲート電圧を一定にしたときの、ソース—ドレイン電流 とソース一ドレイン電圧との関係を示す曲線)、または I_Vg特性曲線 (ソース一ドレイ ン電圧を一定にしたときの、ソース一ドレイン電流とゲート電圧との関係を示す曲線) における所定の値が、試料濃度と明確な相関関係を有していることを見出した。した がって、「所定の特性値」の例には、 I一 V特性曲線または Ι—Vg特性曲線における 所定の値が含まれる。 「I_Vg特性曲線における所定の値」の例には、 I_Vg特性曲 線の変曲点におけるソース ドレイン電流またはゲート電圧が含まれる。
[0315] 図 65は、試料中の被検出物質の濃度と、本発明のバイオセンサによってその試料 力 求めた I Vg特性曲線の変曲点におけるソース ドレイン電流との関係を示す グラフの例である。図 65に示されるように、試料濃度の対数値と、当該電流値とは比 例関係になりうる。この比例関係になる領域を検量線として用レ、ること力できる。
[0316] また被検出物質の濃度が一定の値を超えると、前記濃度と前記電流値と比例しなく なる。これは、図 66に示されるように、バイオセンサに結合している被検出物質認識 分子の数に対して、被検出物質の濃度が過剰に高くなるためである。
[0317] 濃度を測定するためのバイオセンサは、前記検量線に基づいて濃度を決定する濃 度決定手段を備えることが好ましい。濃度決定手段には、未知試料について「所定 の特性値」を測定する手段、およびこの測定された「所定の特性値」を記憶された検 量線に適用して、濃度を算出する手段、を含むことが好ましい。
[0318] 濃度を測定するためのバイオセンサには、さらに検量線を求めるキャリブレーション 手段が具備されていてもよい。キャリブレーション手段は、互いに濃度が異なる 3以上 の既知試料 (被検出物質の濃度が既知である試料)を用いて検量線を求める。つまり 、 3つの試料について、それぞれ濃度と「所定の特性値」を求め、それらから検量線を 得る。
[0319] 図 67は、被検出物質の濃度を測定するためのバイオセンサ装置の一例を示す図 である。図 67において、バイオセンサ装置 1100は、バイオセンサ本体部 1110、コン ピュータ 1120、および D/A (デジタル—アナログ)コンバータ 1130を有する。バイ ォセンサ本体部 1110には、被検出物質認識分子が結合された本発明の FETが含 まれる。ここでは、本発明の分離ゲート型 FETが含まれている。
[0320] コンピュータ 1120は、例えば、パソコン (PC)や専用計算機などで構成される。 D/ Aコンバータ 1130は、デジタル信号をアナログ信号に変換し、アナログ信号をデジタ ル信号に変換する機能を有する。コンピュータ 1120からのデジタル信号は、 D/Aコ ンバータ 1130によってアナログ信号に変換され、バイオセンサ本体部 1110への印 加電圧(ゲート電圧、ソース一ドレイン電圧)をコントロールする。また、バイオセンサ 本体部 1110のドレイン電流(ソース—ドレイン電流)の値は、 DZAコンバータ 1130 によってコンピュータ 1120に取り込まれる。
[0321] コンピュータ 1120は CPUとメモリと表示部を有し (不図示)、検量線を決定するキヤ リブレーシヨン機能と、未知試料を測定する測定機能とを有する。未知試料の測定で は、未知試料中のターゲットの濃度の測定が行われる。
[0322] 図 67に示すバイオセンサ装置 1100のキャリブレーション機能について説明する。
[0323] 図 68は、キャリブレーション機能の処理手順の一例を示すフローチャートである。こ のフローチャートは、コンピュータ 1120のメモリに制御プログラムとして記憶されてお り、 CPUによって実行される。
[0324] まず、ステップ S2000では、 I_Vg特性(ソース一ドレイン電流とゲート電圧との関 係)を測定する。例えば、既知の希釈率を持つ試料を滴下した後、ソース一ドレイン 電圧を所定値 (例えば、—IV)に固定し、ゲート電圧を所定の範囲内で (例えば、― 10Vから + 10Vまで)、所定値 (例えば、 0.1V)ずつ変化させ、その度に、ソース—ド レイン電流(Isd)を測定し、記録する。これにより、ある 1つの希釈率に対する I—Vg 特性が得られる。 I—Vg特性測定処理については、図 69を用いて後述する。
[0325] そして、ステップ S2100では、ステップ S2000で得られた I—Vg特性の変曲点を決 定する。この変曲点は、 I Vg特性の特徴点の 1つであり、ゲート電圧に対するソース —ドレイン電流の変化の変曲点である。この変曲点は、 I Vg特性で最も変化が激し レ、(勾配が大きい)部分であり、この部分は、ダイナミックレンジの中で最も特性変化 が大きいため、変化に対して最も敏感な検出結果を示すことが予想される。変曲点決 定処理については、図 70を用いて後述する。
[0326] そして、ステップ S2200では、希釈率を変更するか否かを判断する。この判断は、 ユーザによる手動操作に従って、または、 μ _TASのシステムからの信号に従って 行われる。すなわち、検量線を決定するためには、グラフ上に 3つ以上の点をプロット する必要があるため、 I一 Vg特性を測定して変曲点を決定する処理を、希釈率がそ れぞれ既知でかつ互いに異なる 3つ以上の試料に対して行う必要がある。そこで、こ のステップ S2200では、予定された既知試料のすべてに対して処理が終了したか否 かを判断する。この判断の結果として、希釈率を変更する場合は(S2200 :YES)、 未処理の既知試料が存在するものと判断して、ステップ S2000に戻って、その未処 理の既知試料に対する上記一連の処理を行い、希釈率を変更しない場合は(S220 0 : NO)、未処理の既知試料が存在しないものと判断して、ステップ S2300に進む。
[0327] ステップ S2300では、ステップ S2000〜ステップ S2200の処理結果に基づレ、て検 量線を決定し、本フローを終了する。検量線決定処理については、図 71を用いて後 述する。
[0328] 次に、 Ι—Vg特性測定処理 (ステップ S2000)について説明する。
[0329] 図 69は、 I_Vg特性測定処理の手順の一例を示すフローチャートである。このフロ 一チャートは、コンピュータ 1120のメモリに制御プログラムとして記憶されており、 CP
Uによって実行される。
[0330] ステップ S2010では、希釈率が既知である試料をバイオセンサ本体部 1110の所 定位置に滴下する。この処理は、ユーザによって手動で、または、 μ—TASによって 自動的に行われる。
[0331] そして、ステップ S2020では、スィッチがオンされたか否かを判断する。スィッチの オン操作は、ユーザによって手動で、または、 a—TASによって自動的に行われる。 スィッチがオンされると(S2020 : YES)、試料が滴下されたものと判断して、次のステ ップ S2030に進む。
[0332] ステップ S2030では、ソース一ドレイン電圧(Vsd)を所定値(例えば、 IV)に設 定する。
[0333] ステップ S2040では、ゲート電圧 (Vg)を初期値(例えば、 10V)に設定する。
[0334] ステップ S2050では、それぞれ設定されたソース ドレイン電圧およびゲート電圧 におけるソース ドレイン電流 (Isd:以下単に「I」とも表記する)を測定し、メモリに記 憶 (記録)する。
[0335] ステップ S2060では、ゲート電圧を変更する。具体的には、例えば、現在のゲート 電圧に 0. IV加算してゲート電圧の値を更新する (Vg =Vg + 0.1)。
[0336] ステップ S2070では、処理を終了するか否かを判断する。具体的には、例えば、更 新後のゲート電圧が所定の範囲を超えたか否力 \つまり、一例として、ゲート電圧を — 10Vから + 10Vの範囲で 0.1Vずつ変化させる場合は、更新後のゲート電圧が 10 •IV以上になったか否力 ^判断する。この判断の結果として、更新後のゲート電圧が 所定の範囲を超えた場合は(S2070 : YES)、図 68のメインフローチャートにリターン し、本フローを終了する。一方、更新後のゲート電圧が所定の範囲を超えていない場 合は(S2070 : N〇)、ステップ S2050に戻って、更新後のゲート電圧におけるソース 一ドレイン電流を測定し、記録する。
[0337] 次に、変曲点決定処理 (ステップ S2100)について説明する。
[0338] 図 70は、変曲点決定処理の手順の一例を示すフローチャートである。このフローチ ヤートは、コンピュータ 1120のメモリに制御プログラムとして記憶されており、 CPUに よって実行される。
[0339] まず、ステップ S2110では、ステップ S 2000で取得した I_Vg特性に対して、その 微分値 (dlZdVg)をゲート電圧 (Vg)ごとに算出する。
[0340] そして、ステップ S2120では、ステップ S2110で算出した微分値の中から最大値を 選択する。
[0341] そして、ステップ S2130では、ステップ S2120で選択した最大値に対応する位置を 変曲点とみなし、この変曲点における電流値 (ソース ドレイン電流)をメモリに記憶( 記録)した後、図 68のメインフローチャートにリターンし、本フローを終了する。
[0342] 次に、検量線決定処理 (ステップ S2300)につレ、て説明する。
[0343] 図 71は、検量線決定処理の手順の一例を示すフローチャートである。このフローチ ヤートは、コンピュータ 1120のメモリに制御プログラムとして記憶されており、 CPUに よって実行される。
[0344] ステップ S2310では、グラフへのプロットを行う。すなわち、横軸を希釈率、縦軸を 電流値とするグラフ上に、ステップ S2000〜ステップ S2300で取得した 3つ以上の異 なる希釈率に対応する変曲点の電流値 (ソース—ドレイン電流)をプロットする。
[0345] ステップ S2320では、関係式の決定を行う。具体的には、例えば、ステップ S2310 のプロット結果に基づいて、グラフの線形領域に、最小二乗法により直線を引く。す なわち、 y=ax + bにおける係数 a、 bを決定する。ここで、 xは、希釈率、 yは、変曲点 の電流値(ソース—ドレイン電流)である。この直線 (y=ax + b)が検量線である。
[0346] 例えば、図 64に示す I一 Vg特性 (CaM抗原の濃度を変化させたときの I一 Vg特性 )におレ、て、(a)で示す希釈率(対数値)が _ 10のときの変曲点の電流値( X 10"6) は 2.7、 (b)で示す希釈率 (対数値)がー 9のときの変曲点の電流値(X ICT6)は 2.6
、(c)で示す希釈率 (対数値)が— 5のときの変曲点の電流値(X 10_6)は 2.4である
。この結果をグラフ上にプロットし(図 72 (A)参照)、最小二乗法により直線を引くと検 量線が得られる(図 72 (B)参照)。
[0347] 各希釈率に対する変曲点の電流値は、測定結果のばらつきを補償するため、平均 値であってもよい。この平均値は、各希釈率に対して、処理を複数回繰り返し、その 平均をとることによって得られる。
[0348] このようにして、線形領域をダイナミックレンジとする検量線が決定され、本フローを 終了する。
[0349] 図 73は、キャリブレーション機能の処理手順の一変更例を示すフローチャートであ る。本変更例は、 I一 Vg特性決定処理 (ステップ S2000)および変曲点決定処理 (ス テツプ S2100)の処理手順の一部を変更するものである。本変更例では、図 73に示 すように、ステップ S2140およびステップ S2150を図 69に示すフローチャートに挿入 している。
[0350] ステップ S2010〜ステップ S2050は、図 69に示すフローチャートの各ステップと同 様であるため、その説明を省略する。ただし、本変更例では具体的な数値例を用い て説明している。すなわち、ステップ S2030では、ソース一ドレイン電圧(Vsd)を一 1 Vに設定し、ステップ S2040では、ゲート電圧 (Vg)を初期値の— 10Vに設定する。
[0351] ステップ S2140では、ステップ S2050で測定したソース一ドレイン電流(I)の微分 値(dl/dVg)を求める。具体的には、ゲート電圧の増分(dVg)は一定値(0.1 V)で あるため、前回の測定値と今回の測定値との差分(dl)を求めて、 dl/dVgを計算す る。
[0352] ステップ S2150では、今まで計算した微分値(dlZdVg)の中から最大値を選択し 、選択した最大値とともに、この最大値に対応する位置 (変曲点)における電流値を 更新的に記録する。ここで、最大値の選択は、例えば、現在の最大値と今回計算し た微分値とを比較して行う。
[0353] ステップ S2060およびステップ S2070は、図 69に示すフローチャートの各ステップ と同様であるため、その説明を省略する。ただし、本変更例では、具体的な数値例を 用いて説明している。すなわち、ステップ S2060では、現在のゲート電圧に 0. IVカロ 算してゲート電圧の値を更新し、ステップ S2070では、更新後のゲート電圧が 10.1V 以上になったか否かを判断する。
[0354] 次に、図 67に示すバイオセンサ装置 1100の測定機能について説明する。
[0355] 図 74は、測定機能の処理手順の一例を示すフローチャートである。このフローチヤ ートは、コンピュータ 1120のメモリに制御プログラムとして記憶されており、 CPUによ つて実行される。
[0356] ステップ S3000では、未知の試料に対して I_Vg特性の測定を行う。このステップ S 3000は、図 68に示すフローチャートのステップ S2000と同様であるため、その説明 を省略する。
[0357] ステップ S3100では、ステップ S3000で取得した I— Vg特性の変曲点を決定し、こ の変曲点における電流値(ソース一ドレイン電流)を特定する。このステップ S3100は 、図 68に示すフローチャートのステップ S2100と同様であるため、その説明を省略す る。
[0358] そして、ステップ S3200では、あらかじめ決定した検量線を用いて未知試料の濃度 を決定する。具体的には、検量線を表す関係式 y = ax + b (係数 a、 bは決定済)に、 ステップ S3100で特定した変曲点の電流値 yを代入することにより、未知試料の希釈 率 Xを求め、得られた希釈率に基づいて濃度を決定する。
[0359] なお、別の未知試料に対して測定を行う場合は、ステップ S3000〜ステップ S320 0の処理を繰り返すようにすればよい。
[0360] このように、本発明に係るバイオセンサ装置によれば、未知試料中の被検出物質の 有無のみならず濃度をも同時に検出することができる。
[0361] なお、ダイナミックレンジに試料の濃度が入らない場合は、例えば、濃度が非常に 高くてダイナミックレンジを超えてしまう場合は、あらかじめ、希釈した試料をいくつか 用意しておき、多検体用のバイオセンサ装置を用いて濃度を決定することができる。
[0362] また、コンピュータ 1120は、得られたデータ(例えば、 I_Vg特性、変曲点、検量線 、試料の有無と濃度など)を表示部に表示することができる。
[0363] 4.被検出物質の分布検查システムについて 本発明のバイオセンサ(装置)は、前述の通り被検出物質を検出する、あるいはそ の濃度を測定するために用いられうるが、さらに被検出物質の分布を検査するため に用いることちできる。
[0364] 本発明のバイオセンサは検出感度が高ぐかつ検出に必要な時間を短くすることが できる。また、本発明のバイオセンサは小型化することができ、電池 (バッテリー)によ つて駆動させることもできる。これらの特徴を組み合わせることにより、フィールドにお いて検出を行うためのセンサとして好ましく用いられる。 「フィールドにおいて検出を 行う」とは、特に限定されないが、野外で感染症ウィルスなどの検出を行うことなどを 意味する。
[0365] 本発明の対象物分布検查システムには、バイオセンサ端末装置と、情報処理装置 が含まれる。このバイオセンサ端末装置に本発明のバイオセンサが用いられる。
[0366] バイオセンサ端末装置は、本発明のバイオセンサによる被検出物質の検出結果( 被検出物質の濃度の情報などを含む)と、その検出した位置の情報を送信するため の通信機能を有している。ノくィォセンサ端末装置は、被検出物質の検出結果、およ び位置情報に加えて、検出時刻の情報を送信するための通信機能を有してレ、てもよ レ、。この通信機能は、無線通信機能であることが好ましい。前記情報の送信先は情 報処理装置 (後述)である。
[0367] 対象物分布検査システムには、 1または 2以上のバイオセンサ端末装置が含まれて いる。 2以上のバイオセンサ端末装置が含まれていれば、それらから情報処理装置 に送信された情報に基づいて、有用なデータが生み出されうる。分布検査システムに 2以上のバイオセンサ端末装置が含まれてレ、る場合には、それぞれに IDが与えられ ていることが好ましぐそのバイオセンサ端末装置は、 Iひ晴報を送信するための通信 機能を有してレ、ることが好ましレ、。
[0368] 対象物分布検査システムに含まれる情報処理装置は、前述のバイオセンサ端末装 置から送信された情報を受信することができ、さらにその情報を出力することができる 。 「情報を出力する」とは、例えば、地図上に前記検出結果や検出時刻などを示すこ とを意味するが、特に限定されない。
[0369] 以下において、対象物分布検查システムの一例を説明する。図 75は、分布検查シ ステムの一例の構成を示す概略ブロック図である。図 75に示す対象物分布検査シス テム 500は、 1台以上のバイオセンサ端末装置 600と、情報処理装置 700とから構成 され、これらの装置は通信回線 800によって繋がっている。バイオセンサ端末装置 6 00は、上記バイオセンサ装置に通信機能などをさらに備えた装置で、所定の場所( 例えば、養鶏場など)で被検出物質の存在の有無または濃度を調べ、得られたデー タを通信回線 800を通して情報処理装置 700に送る。
[0370] 情報処理装置 700は、例えば、通信機能を備えたコンピュータやワークステーショ ンなどであって、演算処理装置 (CPU)、メモリ、入出力装置、記憶装置などを有する 。記憶装置には、情報処理装置 700を機能させるためのプログラムが搭載されており 、このプログラムをメモリ上に載せ、 CPUが実行することによって、情報処理装置 700 が実現される。情報処理装置 700は、バイオセンサ端末装置 600から送られてきた データを受け取り、そのデータを処理'解析し、検出対象物の分布地図などの解析結 果を出力する。
[0371] 通信回線 800は、有線、無線、専用回線、交換回線を問わず、バイオセンサ端末 装置 600力 情報処理装置 700とセッションを確立し、情報処理装置 700に情報を 送信できればよい。通信回線 800は、インターネットのようにゲートウェイを介して複 数のネットワークが組み合わされて実現しても構わない。また、その接続についても 基幹線に直接接続せず、 PPP接続などによる一時的な接続でも構わない。なお、通 信回線 800は、専用回線を固定的に張り巡らせたような、交換機を用いないネットヮ ークも含む。
[0372] 図 76は、バイオセンサ端末装置 600の構成を示すブロック図である。バイオセンサ 端末装置 600は、対象物認識素子部 605、超微細繊維体素子部 610、入力部 615 、位置特定部 620、時刻特定部 625、検出結果解析部 630、記憶部 635、検量線デ ータベース 640、表示部 645、および送信部 650を有する。
[0373] 対象物認識素子部 605は、被検出物質認識分子が結合した部位であり、被検出物 質認識分子と被検出物質 (検出対象物)との間で分子間相互作用を生じさせる。分 子間相互作用が生じた場合 (試料溶液中に被検出物質が存在する場合)、対象物 認識素子部 605の被検出物質認識分子で修飾された部分 (ゲート電極や基板など) の電子状態に変化が生じ、この変化は電気的に接続された超微細繊維体素子部 61 0に伝えられる。試料溶液中に被検出物質がない場合は、上記電子状態の変化は 生じない。対象物認識素子部 605の構成について、様々な態様のものを既に説明し た力 ここではどの態様のものを用いるかは特に限定しない。
[0374] 超微細繊維体素子部 610は、上記説明したように、対象物認識素子部 605から伝 えられた電子状態の変化を、ソース—ドレイン電流の変化として検出する。電子状態 が変化していない場合 (試料溶液中に被検出物質がない場合)は、このような電流変 化は生じない。
なお、対象物認識素子部 605と超微細繊維体素子部 610との関係は、バックゲート 型、サイドゲート型、分離ゲート型のいずれでも構わない。
[0375] 入力部 615は、ユーザが、各機能の ONZOFFを入力したり、検出データにデータ 名などの属性データを入力したりするときの入力インタフェースである。
[0376] 位置特定部 620は、測定地点を特定する。これは、位置情報をユーザが手で入力 するようにしてもよレ、が、全地球測位システム(Global Positioning System :以下「GPS 」と略記する)を利用することも考えられる。この場合は、位置特定部 620に GPS受信 システムを組み込めばよレ、。
[0377] 時刻特定部 625は、検出時刻やデータ送信時の送信時刻を特定する。ここで特定 された時刻は、時刻情報として検出データや送信データに付加される。これは、使用 者が入力するようにしてもよいが、時計(クォーツ時計または電波時計など)を組み込 むことで実現できる。なお、位置特定部 620で GPSを利用するのであれば、 GPS衛 星から位置特定情報とともに時刻情報も受信するので、特別な機能を付加せずに時 亥 1Jを特定することができる。
[0378] 検出結果解析部 630は、超微細繊維体素子部 610で得られた生データに様々な 処理を行う。例えば、検量線データベース 640内の検量線データに生データ(検出さ れた電流値など)を当てはめ、試料溶液中の検出対象物の濃度を計算する。他にも 、多検体多項目の検出の場合は、検体ごと、項目ごとにデータをまとめ、解析するこ とも考免られる。
[0379] 記憶部 635は、バイオセンサ端末装置 600を機能させるためのプログラムやバイオ センサ端末装置 600内で生成された情報を記憶する。
[0380] 検量線データベース 640は、超微細繊維体素子部 610の検量線データを格納す る。超微細繊維体素子部 610の超微細繊維体の特性は素子ごとに異なるため、検出 対象物の濃度変化とソース一ドレイン電流 (電圧)値の変化の関係も超微細繊維体 素子ごとに異なる。そのため、検量線データベース 640には、バイオセンサ端末装置 600内の超微細繊維体素子部 610固有の検量線データを格納する。 1台のバイオセ ンサ端末装置内に超微細繊維体素子部が複数ある場合は、超微細繊維体素子部を それぞれ区別し、それぞれの検量線データを全て格納する。なお、検量線に基づく 濃度算出は、バイオセンサ端末装置 600内で行われても、情報処理装置 700内で行 われてもよい。
[0381] 表示部 645は、バイオセンサ端末装置 600の実行状態や、バイオセンサ端末装置
600で生成された情報を表示する。なお、これらの情報をユーザに表示する必要が ない場合は、表示部 645はなくてもよい。
[0382] 送信部 650は、検出データを情報処理装置 700に送信する。このとき、送信する検 出データは、処理前の生データでも処理後のデータでもどちらでもよい。
[0383] 図 77は、情報処理装置 700の構成を示すブロック図である。情報処理装置 700は
、受信部 705、入力部 710、項目情報付与部 715、分布地図作成部 720、分布解析 部 725、記憶部 730、項目情報データベース 735、地図情報データベース 740、分 布地図データベース 745、および出力部 750を有する。
[0384] 受信部 705は、バイオセンサ端末装置 600が送信した検出データを受信する。
[0385] 入力部 710は、ユーザが、情報処理装置 700の各機能の ON/OFFを入力したり
、対象物分布地図などのデータにデータ名などを手で入力したりするときの入力イン タフエースである。
[0386] 項目情報付与部 715は、バイオセンサ端末装置 600から送られてきた検出データ に項目情報を付与する。
[0387] ここで、上記項目情報付与部 715の機能を説明するため、バイオセンサ端末装置 6
00が送信する検出データと、項目情報付与部 715による項目情報付与後のデータ について説明する。 [0388] 図 78は、バイオセンサ端末装置 600が送信する検出データの一例である。ここで は、 C養鶏場で鳥インフルエンザの調査を行った場合を想定しており、バイオセンサ 端末装置 600で検出データを検出項目ごとにまとめてから送信している。なお、検出 データの様式はこれに限定されない。
[0389] 「端末装置」の欄は、バイオセンサ端末装置の番号 (または名称)である。これはバ ィォセンサ端末装置 600それぞれ独自のものが付与されており、データを送信すると きには自動的にこの情報が書き込まれる。
[0390] 「養鶏場名」の欄は、調査した養鶏場の名称である。この項目は、次に示す「場所」 の欄があれば特に必要ないが、調查対象をわ力 やすくするためにはあったほうがよ レ、。この欄は、ユーザがバイオセンサ端末装置の入力部 615から手で入力する。
[0391] 「場所」の欄は、調査した場所を特定するための情報である。例えば、この場合、 G PSを用いて緯度および経度の情報を入手すればよい。この情報は分布地図を作成 するためには必須である力 「養鶏場名」の欄のようにユーザが場所を特定できる情 報を別途入力しているのであれば、この欄はなくてもよい。
[0392] 「年月日」および「時刻」の欄は、調査した時を特定するための情報である。この情 報は、分布範囲の経時的変化を知るためには必須である。
[0393] 「サンプル数」の欄は、検体数を示す情報である。これは、ユーザがバイオセンサ端 末装置の入力部 615から手で入力するようにしてもよいし、チップ上の検体数を自動 で検知して、自動的にこの欄を埋めるようにしてもよい。
[0394] 「項目 1、項目 2、 · · ·、項目 135」の欄は、検出項目ごとの検出結果である。例えば、 ここでは、 H1N1、 H1N2、 · · ·、 H15N9のインフルエンザウイルスの 135亜型につい て調査しているとすると、 1回の検查は 100検体 135項目となる。図 78では、 100検 体中 5検体が項目 37に関して陽性であることを示している。このとき、この欄の名称は 、それぞれ具体的検出項目「H1N1、 H1N2、 ·■·、 H15N9」が入っていてもよレ、。こ の場合、項目 37は、 H5N1に相当する。しかし、ユーザに検出結果を知らせる必要 がない場合、または知らせない方がよい場合は、この欄の名称は図 78のように「項目 1、項目 2、 · · ·、項目 135」と仮番号 (Π3情報)を付与するに留める。ここで仮番を付与 する利点については、次の図 79の説明で述べる。 [0395] 図 79は、情報処理装置 700の項目情報付与部 715が項目情報を付与した後のデ ータの一例である。ここでは、 10台のバイオセンサ端末装置からの情報をまとめたも のを示している。「端末装置」から「サンプノレ数」の欄は図 78と同じである。
[0396] 項目「H1N1、 H1N2、■·■、 H15N9」は、図 78の項目「項目 1、項目 2、 ·■·、項目 13 5」の仮番号 (HD情報)のそれぞれに対して、項目情報付与部 715が実際の項目内 容に置き換えたものである。このように、バイオセンサ端末装置 600では、検出対象 の各項目に仮番号 (HD情報)を付与するのみとし、情報処理装置 700の項目情報付 与部 715が仮番号 (HD情報)に基づレ、て項目情報を付与するようにすることにより、 以下の利点がある。
[0397] 一つ目の利点は、ユーザに検出結果を知られないことである。例えば、鳥インフル ェンザのように、検出結果によっては養鶏業者に大きな経済的損失を与えたり、周囲 の住民の生活に大きな影響を及ぼしたりする可能性があることについて調查する場 合、ユーザが検出結果をその場で知ることは必ずしもよいとは限らなレ、。場合によつ ては検出結果に不正行為が行われることも考えられる。そこで、上記のように検査項 目を仮番号とすることで、ユーザは検出結果を知ることができなくなるので、このような 問題を防止することができる。
[0398] 二つ目の利点は、検出項目の変更が容易であることである。例えば、上記のように
135項目について結果、今後の調査は H5型と H7型の 18項目(H5N1〜H5N9、 H7N1〜H7N9)だけを調査すればよいことが判明したとする。この場合、チップを 1 00検体 135項目用から 100検体 18項目用に置き換えることになる力 項目情報をバ ィォセンサ端末装置 600で付与すると、チップを変更するたびに、全てのバイオセン サ端末装置 600において、項目情報を変更しなければならなくなる。しかし、バイオ センサ端末装置 600ではどのようなチップを用いた場合でも所定の規則にしたがって 仮番号 (Iひ晴報)を付与するに留め、情報処理装置 700の項目情報付与部 715が 仮番号 (Π3情報)に対応した項目情報を付与するようにすれば、チップの変更に伴う 項目情報の変更は、情報処理装置 700の項目情報データベース 735内のデータを 一度だけ変更することで済む。
[0399] このように、項目情報付与部 715は、バイオセンサ端末装置 600から送られてきた 検出データに項目情報を付与する。
[0400] 分布地図作成部 720は、検出データと地図情報データベース 740内の地図情報を 基にして分布地図を作成する。例えば、地理情報システム(Geographic Information S ystem :以下「GIS」と略記する)を組み込むことにより、分布地図の作成が可能となる
[0401] 図 80は、分布地図の一例である。ここでは、図 79のデータに基づいて、所定の時 刻における H5N1型のウィルスの分布を表示している。 「 X」が第一通報地点である C養鶏場であり、 C養鶏場から 30km以内にある養鶏場 A〜Jを調查対象とし、地図に 表示している。 「★」および「☆」が調查対象となった養鶏場であり、「★」がウィルス陽 性、「☆」がウィルス陰性を示している。また、それぞれの印の隣には、養鶏場名とウイ ノレス陽性の検体の割合(陽性検体数/ 100検体)が記されている。なお、図 80では、 養鶏場名やウィルス陽性の検体の割合などを表示した場合を示しているが、検出対 象物の濃度などのバイオセンサ端末装置 600から受信した情報は、必要に応じて全 て表示できる。
[0402] このように分布地図をリアルタイムで作成することで、有用なデータが多数得られる 。例えば、図 80の地図が最初の調査で作成された場合、第一通報地点である C養鶏 場よりも E養鶏場が高いウィルス感染率であることがわかり、 E養鶏場が感染源である ことが推測できる。また、 E養鶏場に近い、 B養鶏場や H養鶏場ではウィルスにまだ感 染していないにも関わらず、 E養鶏場から離れた I養鶏場ではウィルスに感染しており 、感染拡大経路には指向性 (地図右下:南東方向)があることがわかる。もちろんこの データだけでは特定できないが、これは、 I養鶏場の近くに広葉樹林があることから、 森に住み着いている野鳥によって、ウィルスが拡散されていることが一つの仮説とし て立てられる。
[0403] 分布解析部 725は、分布の経時的変化を分析する。例えば、所定時間ごとに各養 鶏場を調査し、それぞれのウィルス感染率を図 80のようにマッピングしていくことによ り、経時的な分布地図を得ることができる。分布解析部 725は、この経時的分布地図 を解析することにより、将来の感染拡大経路やその範囲の推測などをシミュレーショ ンする。 [0404] 記憶部 730は、情報処理装置 700を機能させるためのプログラムや、情報処理装 置 700で生成されたデータを記憶する。
[0405] 項目情報データベース 735は、送られてきた検出データに項目情報付与部 715が 項目情報を付与する際に必要な項目情報を格納する。
[0406] 地図情報データベース 740は、分布地図作成部 720が対象物分布地図を作成す る際に基礎となる地図情報 (例えば、デジタルの白地図など)を格納する。
[0407] 分布地図データベース 745は、分布地図作成部 720が作成した対象物分布地図 を格納する。
[0408] 出力部 750は、検出対象物分布地図などの情報処理装置 700で生成されたデー タを出力する。例えば、外部に接続されたモニタやプリンタに出力することや、インタ 一ネットなどで接続された別のコンピュータに出力することなどが考えられる。
[0409] 次いで、上記構成を有する対象物分布検查システム 500の動作について、図 81お よび図 82に示すフローチャートを用いて説明する。
[0410] まず、バイオセンサ端末装置 600の動作を、図 81に示すフローチャートを用いて説 明する。
[0411] ステップ S4000では、ユーザが、試料を調製するとともに、試料を調達した時刻お よび場所に関する情報などの属性情報を、位置特定部 620、時刻特定部 625、入力 部 615を用いて入力する。入力された属性情報は、記憶部 635に記憶する。
[0412] ステップ S4100では、ユーザが、ステップ S 1000で調製した試料溶液を対象物認 識素子部 605に滴下する。
[0413] ステップ S4200では、対象物認識素子部 605および超微細繊維体素子部 610が、 試料溶液中に検出対象物があるかどうかを検出する。対象物認識素子部 605および 超微細繊維体素子部 610は、各電極に電圧を印加する。次に、超微細繊維体素子 部 610は、対象物認識素子部 605における分子間相互反応(例えば、抗原抗体反 応)によって引き起こされる、超微細繊維体素子部 610のソース—ドレイン電流の変 化を測定する。超微細繊維体素子部 610は、電流変化測定値を検出結果解析部 63 0へ渡す。
[0414] ステップ S4300では、検出結果解析部 630が、電流変化測定値から試料溶液中の 検出対象物の有無およびその濃度を算出する。前述のように、電流変化測定値は、 超微細繊維体素子部における電圧と電流の相関関係を示しているだけであり、その ままでは試料溶液中に検出対象物があるかどうかはわからない。そこで、検出結果解 析部 630は、検量線データベース 640に格納されている検量線データに電流変化 測定値を当てはめ、検出対象物の有無およびその濃度を算出する。検出結果解析 部 630は、算出結果を送信部 650へ渡す。
[0415] ステップ S4400では、送信部 650が、情報処理装置 700に送信するための検出デ ータを作成する。送信部 650は、ステップ S4300で算出された算出結果に、ステップ S4000で入力された位置情報および時刻情報などの属性情報を付与し、情報処理 装置 700が分布地図を作成する上で必要なデータを全て含む検出データを作成す る。
[0416] ステップ S4500では、送信部 650が、情報処理装置 700にステップ S4400で作成 した検出データを送信する。
[0417] 次に、情報処理装置 700全体の動作を、図 82に示すフローチャートを用いて説明 する。
[0418] ステップ S5000では、受信部 705が、バイオセンサ端末装置 600から送られてきた 検出データを受信する。受信したデータは、項目情報付与部 715へ渡される。
[0419] ステップ S5100では、項目情報付与部 715が、項目情報データベース 735に格納 されている項目情報に基づいて、検出データで仮番号を付与されている項目に項目 情報を付与する。項目情報を付与された検出データは、記憶部 730へ渡される。そ の結果、記憶部 730には、各地から送信されてきた検出データが揃うことになる。
[0420] ステップ S5200では、分布地図作成部 720が、検出対象物分布地図を作成する。
分布地図作成部 720は、記憶部 730に格納されている検出データのうち、 目的の時 間の検出データを読み出す。また、分布地図作成部 720は、地図情報データベース 740から、調查対象地域の地図を読み出す。そして、分布地図作成部 720は、ある 所定の時間における検出対象物分布地図を作成する。作成された検出対象物分布 地図は、分布地図データベース 745に格納される。
[0421] ステップ S5300では、分布解析部 725が、検出対象物の分布を解析する。ここでは 、例えば、感染範囲の特定や、今後の感染範囲および感染経路の予測などを行う。
[0422] ステップ S5400では、出力部 750が、解析結果を出力する。ここでレ、う解析結果と は、ステップ S5300の解析結果だけでなぐステップ S5200で作成された分布地図 なども含む。
[0423] [使用想定例]
本発明の被検出対象物の分布検查システムの使用が想定される事例を、鳥インフ ルェンザの発生を例として説明する。本使用想定例はあくまで提案であり、現在の日 本国の法律には準拠していない。もちろん、本発明の対象物分布検查システムの使 用目的および使用方法などはこれに限定されない。
[0424] (1)鳥インフルエンザの疑い例が発生
C養鶏場において、多数のニヮトリが、神経症状(首曲がり、元気消失など)、呼吸 器症状、消火器症状(下痢、食欲減退など)などの全身症状や、毛並みの乱れや産 卵数の低下などの軽微な症状が見られたとの報告が、地方自治体などの所定機関 に入る。
[0425] (2)周辺施設特定
所定機関は、報告があった C養鶏場を中心として、半径 30km以内の鳥が大量に いる施設 (養鶏場、動物園など)を特定する。これは、本発明に係るシステムを用いな くてもよいが、本発明に係る情報処理装置内の地図情報データを用いてもよい。以 下、特定された施設が全て養鶏場だった場合を例として説明する。
[0426] (3)現地でのウィルス検出
所定機関の職員が、本発明に係るバイオセンサ端末装置を上記(2)で特定された 各施設に持ち込み、トリインフルエンザウイルスの有無を確認する。
まず、所定の時刻に、各鶏舎 (養鶏場の場合)から 100個の鶏糞を採取する。高価 な鶏の場合は一羽ごとに区別して採取してもよい。このとき、バイオセンサ端末装置 の時刻特定機能および位置特定機能を用いて、採取時刻および採取場所情報を記 録する。
採取した試料 (鶏糞)をその場で緩衝液の入った蓋つき試験管に入れ、よく振り、懸 濁液を作製する。懸濁液はしばらく静置し、上澄み液のみを取り出して試料溶液とす る。
得られた試料溶液を、本発明に係るバイオセンサ端末装置のトリインフルエンザゥ ィルス検出用多検体用プレートに滴下する。トリインフルエンザウイルス検出用多検 体用プレートは、例えば、図 53のような多検体用プレートであり、被検出物質認識分 子としてトリインフルエンザウイルスに対する各種抗体がそれぞれのゥエルの底部に 固定されている。ここで、図 53 (C)のように多検体多項目のプレートを用いると、一度 の検出でトリインフルエンザウイルスの有無だけでなぐその亜型まで知ることができ る。
試料溶液滴下後、 10分静置し、抗原抗体反応を進行させる。 10分後、各サンプル の電流特性を取得する。例えば、 I一 Vg特性を取得し、検量線を取得した時の電圧 における電流値を特定する。これとは別に、 I_Vg特性曲線の変曲点を用いて検量 線を得た場合には、試料溶液の I一 Vg曲線の変曲点における電流値を特定する。 得られた電流値を検量線に当てはめ、試料溶液中の被検出物質 (各亜型のトリイン フルェンザウィルス)の濃度を特定し、検出データを生成する。
[0427] (4)データ送信
検出データ(トリインフルエンザウイルスの有無および試料溶液中の濃度)に、位置 情報、時刻情報などの属性情報を付加した後、所定機関内部の情報処理装置に送 信する。ここで送信される検出データは、例えば、図 78のようなものである。なお、検 出結果の不正処理を防ぐため、検出結果はここでは表示しないようにする。
[0428] (5)分布地図作成
情報処理装置は、上記(2)で特定された各施設からの検出データを受信し、受信 した検出データに基づいてトリインフルエンザウイルスの分布地図を作成する。ここで 作成される分布地図は、例えば、図 80のようなものである。この分布地図には、ウイ ノレスの有無だけでなぐ発見検体数や試料溶液中の被検出物質の濃度などの情報 もカロえて表示することもできる。
[0429] (6)経時的検査の継続と今後の予測
上記(3)〜(5)のプロセスを所定時間ごとに繰り返し、所定時間ごとの分布地図を 作成する。前回の検査で新たにウィルスが検出された養鶏場があった場合は、その 養鶏場を中心として、新たに半径 30kmの領域を検査対象とする。
[0430] このように経時的に検査することで、分布の変化の様子を経時的に知ることができ、 今後のウィルス分布の拡大範囲を予測することができるようになる。同様に、感染経 路も予測することができる可能性もある。例えば、カラスなどの野鳥が多い森の位置と 、感染養鶏場の位置に何らかの関係が見られれば、感染経路は野鳥であると推測す ること力 Sできる。
[0431] また、ウィルスの正確な分布範囲を迅速に知ることができるので、ウィルスに感染し ており全鶏を処分するべき鶏舎と、ウィルスに感染しておらず鶏肉および鶏卵を出荷 しても危険性は低い鶏舎を正確に区別することができ、経済的損失を抑えることがで きる (所定官庁が判断基準を作成する)。
[0432] 本発明の対象物分布検查システムは、人インフルエンザの予測にも用いることがで きる。東アジア地域のインフルエンザウイルスは、ロシア東北部から飛来するカモによ つて運ばれてきていることが知られている。したがって、本発明に係る対象物分布検 查システムによって、東アジア地域にカモが飛来してくる前に、ロシア東北部各地の 湖沼でカモの糞などからインフルエンザウイルスの亜型の特定およびマッピングをす ることで、その年に流行するインフルエンザウイルスの亜型を予測することができる。 これにより、適切なワクチンを準備することが可能となる。従来の手法では、この解析 に数週間を要するため、インフルエンザウイルスの亜型や流行時期のリアルタイムの 予報は不可能である。
[0433] 上記手法は、インフルエンザだけでなくあらゆる感染症の流行について、その発生 源の特定を可能にし、今後の予報を可能にする。
[0434] また、本発明の対象物分布検查システムは、海洋微生物の増減を予測するのにも 用いることができる。バイオセンサは人間により動作させる必要はなぐブイなどに取り 付け、定時に定点情報をセンターに集約させてもよい。これによつて、赤潮などの予 報だけでなぐ貝毒、ノロウィルスなどのリアルタイムマッピングとそれに基づく予測を 行うことができる。このような情報は、漁業者にとって極めて重要な情報となる。
[0435] また、本発明の対象物分布検査システムは、農薬散布に伴う残留農薬の検出に対 しても用いることができる。従来の手法では、検出結果が得られる頃には農作物が加 ェ段階に入ってしまうことが多かった。しかし、本発明に係る対象物分布検査システ ムを用いることにより、残留農薬の検出結果を保健所などの所定機関に迅速に集約 することができ、残留農薬地図もすぐに作成することができる。さらに、このように検出 結果をマッピングすることで、農家が自ら散布した農薬だけではなぐ土壌中の PCB 、隣接する農家力 の農薬、隣接する道路力もの排気ガス、近接する工場の煤煙な どの周囲力 もたらされる農薬に準じる化学物質について、その分布および放出源を 特定すること力 Sできる。
[0436] また、本発明の対象物分布検查システムは、人口密集地域周辺の杉林などの花粉 の検出結果と、風向き、風量、気温などの地域データを集約することで、リアルタイム の花粉情報および花粉予報を提供することができる。
[0437] また、本発明の対象物分布検查システムは、バイオテロに対しても用いることができ る。特に、本発明に係るバイオセンサ端末装置は多項目検出が可能であるため、迅 速に原因物質または生物を特定し、その分布地図を作成することができる。このよう な情報を迅速に集約し、周辺地域に発信できるシステムは、津波予報と同様に極め て重要だといえる。
[0438] 本願は、 2005年 6月 14曰出願の特願 2005— 174404、 2005年 6月 14曰出願の 特願 2005— 174408、 2005年 8月 17日出願の特願 2005— 237002および 2005 年 8月 31日出願の特願 2005— 252506に基づく優先権を主張する。当該出願明細 書に記載された内容はすべて、本願明細書に援用される。
産業上の利用可能性
[0439] 本発明の FETは優れた電気特性を有する。したがって、特にバイオセンサに適用 することにより、従来のバイオセンサよりも顕著に優れた検出感度を示すバイオセン サが提供されうる。また、本発明のバイオセンサは小型化が可能であるので、野外に おける検出など、従来のバイオセンサでは困難であった使用場面にも適用されうる。

Claims

請求の範囲
[1] 基板と、前記基板上に配置されたソース電極およびドレイン電極と、前記ソース電 極とドレイン電極とを電気的に接続するチャネルと、前記チャネルを流れる電流を制 御するゲート電極とを有し、
前記チャネルは、超微細繊維体を含み、
前記ゲート電極は、前記基板に自由電子の移動による分極を生じさせる、 電界効果トランジスタ。
[2] 前記超微細繊維体はカーボンナノチューブである、請求項 1記載の電界効果トラン ジスタ。
[3] 前記基板は、半導体または金属から成る支持基板、前記支持基板の第一の面に 形成された第一の絶縁膜、および前記支持基板の第二の面に形成された第二の絶 縁膜を有し、
前記ソース電極、ドレイン電極およびチャネルは、前記第一の絶縁膜上に配置され 前記ゲート電極は、前記第二の絶縁膜上に配置されている、
請求項 1記載の電界効果トランジスタ。
[4] 前記第二の絶縁膜の厚さは 10nm以上である、請求項 3記載の電界効果トランジス タ。
[5] 前記基板は、半導体または金属から成る支持基板、および前記支持基板の第一の 面に形成された第一の絶縁膜を有し、
前記ソース電極、ドレイン電極、チャネルおよびゲート電極は、前記第一の絶縁膜 上に配置され、
前記ゲート電極と前記超微細繊維体との間隔は 10 μ m以上である、
請求項 1記載の電界効果トランジスタ。
[6] 前記ゲート電極と前記超微細繊維体との間隔は 100 β m以上である、請求項 5記 載の電界効果トランジスタ。
[7] 前記基板に電気的に接続されている第二の基板をさらに有し、
前記基板は、半導体または金属から成る支持基板、および前記支持基板の第一の 面に形成された第一の絶縁膜を有し、
前記ソース電極、ドレイン電極およびチャネルは、前記第一の絶縁膜上に配置され 前記ゲート電極は、前記第二の基板の第一の面上に配置されてレ、る、 請求項 1記載の電界効果トランジスタ。
[8] 前記第二の基板は、半導体または金属から成る支持基板、および前記支持基板の 第一の面に形成された第二の絶縁膜を有し、
前記ゲート電極は、前記第二の絶縁膜上に配置されている、
請求項 7記載の電界効果トランジスタ。
[9] 前記基板の第二の面と前記第二の基板の第二の面とは、導電性基板または導電 性部材により電気的に接続されている、
請求項 7記載の電界効果トランジスタ。
[10] 被検出物質認識分子が結合されてレ、る電界効果トランジスタを有する素子部を備 えるバイオセンサ装置であって、
前記電界効果トランジスタは、請求項 1記載の電界効果トランジスタである、 バイオセンサ装置。
[11] 前記素子部は、バイオセンサ装置本体に着脱可能であり、
前記ソース電極およびドレイン電極は、前記素子部が前記バイオセンサ装置本体 に装着されたとき、前記チャネルに電流を流し、
前記ゲート電極は、前記素子部が前記バイオセンサ装置本体に装着されたとき、前 記チャネルに流れる電流を制御する、
請求項 10記載のバイオセンサ装置。
[12] 前記基板、ソース電極、ドレイン電極およびチャネルを有するバイオセンサ装置本 体と、
前記第二の基板、ゲート電極、ならびに前記第二の基板またはゲート電極に結合さ れた被検出物質認識分子を有する素子部と、
を有し、
前記素子部は、前記バイオセンサ装置本体に着脱可能であり、 前記ゲート電極は、前記素子部が前記バイオセンサ装置本体に装着されたとき、前 記チャネルに流れる電流を制御する、
請求項 7記載の電界効果トランジスタを有するバイオセンサ装置。
[13] 請求項 11または 12記載の、前記バイオセンサ装置本体に着脱可能な素子部を含 むチップ。
[14] 被検出物質の濃度と、 I_V特性曲線または I_Vg特性曲線の所定の点におけるソ ースードレイン電流またはゲート電圧との関係を示す検量線を記憶する記憶手段と、 前記検量線を用いて、未知試料に含まれる被検出物質の濃度を決定する濃度決 定手段と、をさらに有する、請求項 10記載のバイオセンサ装置。
[15] 前記濃度決定手段は、
被検出物質の濃度が未知である試料について、前記 I一 V特性曲線または I_Vg 特性曲線の所定の点におけるソース一ドレイン電流またはゲート電圧を測定する手 段と、
前記測定されたソース ドレイン電流またはゲート電圧に基づいて、前記検量線か ら被検出物質の濃度を求める濃度算出手段と、を有する請求項 14記載のバイオセ ンサ装置。
[16] 被検出物質の濃度が既知である試料を用いて検量線を得るキャリブレーション手段 をさらに有する、請求項 14記載のバイオセンサ装置。
[17] 前記キャリブレーション手段は、
被検出物質の濃度が既知であって互いの濃度が異なる 3以上の試料についてそ れぞれ、 I—V特性曲線または I—Vg特性曲線の所定の点におけるソース ドレイン 電流またはゲート電圧を測定する測定手段と、
前記測定されたソース—ドレイン電流またはゲート電圧、および前記既知の被検出 物質の濃度から、検量線を算出する検量線算出手段と
を有する、請求項 16に記載のバイオセンサ装置。
[18] 被検出物質の検出結果および検出位置情報を送信することができるバイオセンサ 端末装置と、
前記検出結果および検出位置情報を受信し、出力する情報処理装置と、 を有し、
前記バイオセンサ端末装置は、請求項 10記載のバイオセンサ装置を含む、 被検出物質の分布検査システム。
[19] 前記バイオセンサ端末装置は、前記検出結果を表示する表示手段を有しない、請 求項 18記載の分布検查システム。
[20] 前記バイオセンサ端末装置は、さらに検出時刻情報を送信し、
前記情報処理装置は、前記検出時刻情報を受信し、受信した検出時刻情報を出 力する、
請求項 18記載の分布検查システム。
[21] 前記バイオセンサ端末装置は、さらに自らの ro情報を送信し、
前記情報処理装置は、前記 HD情報を受信し、受信した Iひ晴報を出力する、 請求項 18記載の分布検查システム。
[22] 請求項 18記載の分布検査システムのための、前記バイオセンサ端末装置。
[23] 請求項 18記載の分布検査システムのための、前記情報処理装置。
PCT/JP2006/311871 2005-06-14 2006-06-13 電界効果トランジスタ、それを具備するバイオセンサ、および検出方法 WO2006134942A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007521312A JP4827144B2 (ja) 2005-06-14 2006-06-13 バイオセンサ装置
CN2006800286549A CN101287986B (zh) 2005-06-14 2006-06-13 场效应晶体管、具备该场效应晶体管的生物传感器及检测方法
US11/956,002 US8072008B2 (en) 2005-06-14 2007-12-13 Biosensor having ultra fine fiber

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005174404 2005-06-14
JP2005-174408 2005-06-14
JP2005-174404 2005-06-14
JP2005174408 2005-06-14
JP2005-237002 2005-08-17
JP2005237002 2005-08-17
JP2005252506 2005-08-31
JP2005-252506 2005-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/956,002 Continuation US8072008B2 (en) 2005-06-14 2007-12-13 Biosensor having ultra fine fiber

Publications (1)

Publication Number Publication Date
WO2006134942A1 true WO2006134942A1 (ja) 2006-12-21

Family

ID=37532301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311871 WO2006134942A1 (ja) 2005-06-14 2006-06-13 電界効果トランジスタ、それを具備するバイオセンサ、および検出方法

Country Status (5)

Country Link
US (1) US8072008B2 (ja)
JP (1) JP4827144B2 (ja)
CN (1) CN101287986B (ja)
TW (1) TW200707737A (ja)
WO (1) WO2006134942A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108371A1 (ja) * 2007-03-05 2008-09-12 Sharp Kabushiki Kaisha 化学物質センシング素子、化学物質センシング装置、及び化学物質センシング素子の製造方法
JP2008261726A (ja) * 2007-04-12 2008-10-30 Fuji Xerox Co Ltd センサーチップ及び検査装置
CN101573612A (zh) * 2007-01-04 2009-11-04 皇家飞利浦电子股份有限公司 用于测量样品浓度的方法、检测器和系统
US20100140110A1 (en) * 2008-12-05 2010-06-10 Nanoivd, Inc. Microfluidic-based lab-on-a-test card for a point-of-care analyzer
JP2010528297A (ja) * 2007-05-23 2010-08-19 アリゾナ ボード オブ リージェンツ フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティ 統合された電気化学的検出および電気的検出のためのシステムおよび方法
JP2010530063A (ja) * 2007-06-08 2010-09-02 バラス アール. タクラパリ, ナノ構造電界効果型センサならびに同センサを形成する方法および使用する方法
JP2010540263A (ja) * 2007-10-02 2010-12-24 プレジデント アンド フェロウズ オブ ハーバード カレッジ ナノポアデバイスのためのカーボンナノチューブ合成
JP2012505400A (ja) * 2008-10-10 2012-03-01 チュンブク ナショナル ユニヴァーシティ インダストリー−アカデミック コーポレイション ファウンデーション 超高速・高感度のdna塩基序列分析システム及びその分析方法
US20120258445A1 (en) * 2008-12-05 2012-10-11 NanolVD, Inc. Methods for using nanowire sensors
JP2012247189A (ja) * 2011-05-25 2012-12-13 Hitachi Ltd グラフェンセンサ、該センサを利用した物質種分析装置および該センサを利用した物質種検知方法
JP2014215292A (ja) * 2013-04-30 2014-11-17 国立大学法人東京大学 バイオセンサ及び分子識別部材
US9170228B2 (en) 2007-06-08 2015-10-27 Bharath R. Takulapalli Nano structured field effect sensor and methods of forming and using same
JP2015206763A (ja) * 2014-04-23 2015-11-19 バイオセンサー株式会社 測定装置および測定方法
CN107192747A (zh) * 2017-07-24 2017-09-22 徐林 一种可变电容式微纳米生物检测芯片及其加工方法
US10514380B2 (en) 2012-04-09 2019-12-24 Bharath Takulapalli Field effect transistor, device including the transistor, and methods of forming and using same
WO2020116012A1 (ja) * 2018-12-04 2020-06-11 株式会社村田製作所 ウイルス検出システム、ウイルス検出方法、及びウイルス検出プログラム
JP2021043169A (ja) * 2019-09-13 2021-03-18 株式会社東芝 センサ及び方法
US11977069B2 (en) 2016-04-19 2024-05-07 Bharath Takulapalli Nanopore sensor, structure and device including the sensor, and methods of forming and using same
JP7492669B2 (ja) 2020-09-29 2024-05-30 株式会社Cognano 情報処理装置及び感染症情報表示システム

Families Citing this family (282)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104568A1 (ja) * 2003-05-23 2004-12-02 Japan Science And Technology Agency 単一電子型トランジスタ、電界効果型トランジスタ、センサー、センサーの製造方法ならびに検出方法
US7544546B2 (en) * 2006-05-15 2009-06-09 International Business Machines Corporation Formation of carbon and semiconductor nanomaterials using molecular assemblies
WO2008153829A1 (en) * 2007-05-29 2008-12-18 Transphorm, Inc. Electrolysis transistor
KR101478540B1 (ko) * 2007-09-17 2015-01-02 삼성전자 주식회사 트랜지스터의 채널로 나노 물질을 이용하는 바이오 센서 및그 제조 방법
WO2009039298A2 (en) * 2007-09-18 2009-03-26 University Of Florida Research Foundation, Inc. Sensors using aigan/gan high electron mobility transistors
DE102008042859A1 (de) * 2008-10-15 2010-04-22 Robert Bosch Gmbh Elektronisches Bauelement
WO2010054159A2 (en) * 2008-11-06 2010-05-14 University Of Florida Research Foundation, Inc. Materials and methods for detecting toxins, pathogens and other biological materials
EP2350644B1 (en) * 2008-11-18 2015-01-07 THE UNITED STATES OF AMERICA as represented by the Secretary, Department of Health and Human Services A semiconductor for measuring biological interactions
JP4843077B2 (ja) * 2008-12-03 2011-12-21 韓國電子通信研究院 トランジスタ構造のバイオセンサー及びその製造方法
US8669778B1 (en) 2009-04-14 2014-03-11 Monolithic 3D Inc. Method for design and manufacturing of a 3D semiconductor device
US8754533B2 (en) 2009-04-14 2014-06-17 Monolithic 3D Inc. Monolithic three-dimensional semiconductor device and structure
US9711407B2 (en) * 2009-04-14 2017-07-18 Monolithic 3D Inc. Method of manufacturing a three dimensional integrated circuit by transfer of a mono-crystalline layer
US8058137B1 (en) 2009-04-14 2011-11-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8378715B2 (en) 2009-04-14 2013-02-19 Monolithic 3D Inc. Method to construct systems
US8427200B2 (en) 2009-04-14 2013-04-23 Monolithic 3D Inc. 3D semiconductor device
US8362482B2 (en) 2009-04-14 2013-01-29 Monolithic 3D Inc. Semiconductor device and structure
US7986042B2 (en) 2009-04-14 2011-07-26 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US9509313B2 (en) 2009-04-14 2016-11-29 Monolithic 3D Inc. 3D semiconductor device
US8373439B2 (en) 2009-04-14 2013-02-12 Monolithic 3D Inc. 3D semiconductor device
US8362800B2 (en) 2010-10-13 2013-01-29 Monolithic 3D Inc. 3D semiconductor device including field repairable logics
US8405420B2 (en) 2009-04-14 2013-03-26 Monolithic 3D Inc. System comprising a semiconductor device and structure
US8384426B2 (en) 2009-04-14 2013-02-26 Monolithic 3D Inc. Semiconductor device and structure
US9577642B2 (en) 2009-04-14 2017-02-21 Monolithic 3D Inc. Method to form a 3D semiconductor device
US8395191B2 (en) 2009-10-12 2013-03-12 Monolithic 3D Inc. Semiconductor device and structure
US11984445B2 (en) 2009-10-12 2024-05-14 Monolithic 3D Inc. 3D semiconductor devices and structures with metal layers
US8450804B2 (en) 2011-03-06 2013-05-28 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US10366970B2 (en) 2009-10-12 2019-07-30 Monolithic 3D Inc. 3D semiconductor device and structure
US10388863B2 (en) 2009-10-12 2019-08-20 Monolithic 3D Inc. 3D memory device and structure
US8742476B1 (en) 2012-11-27 2014-06-03 Monolithic 3D Inc. Semiconductor device and structure
US11018133B2 (en) 2009-10-12 2021-05-25 Monolithic 3D Inc. 3D integrated circuit
US10910364B2 (en) 2009-10-12 2021-02-02 Monolitaic 3D Inc. 3D semiconductor device
US8476145B2 (en) 2010-10-13 2013-07-02 Monolithic 3D Inc. Method of fabricating a semiconductor device and structure
US8536023B2 (en) 2010-11-22 2013-09-17 Monolithic 3D Inc. Method of manufacturing a semiconductor device and structure
US10043781B2 (en) 2009-10-12 2018-08-07 Monolithic 3D Inc. 3D semiconductor device and structure
US9099424B1 (en) 2012-08-10 2015-08-04 Monolithic 3D Inc. Semiconductor system, device and structure with heat removal
US8581349B1 (en) 2011-05-02 2013-11-12 Monolithic 3D Inc. 3D memory semiconductor device and structure
US12027518B1 (en) 2009-10-12 2024-07-02 Monolithic 3D Inc. 3D semiconductor devices and structures with metal layers
US8148728B2 (en) 2009-10-12 2012-04-03 Monolithic 3D, Inc. Method for fabrication of a semiconductor device and structure
US10157909B2 (en) 2009-10-12 2018-12-18 Monolithic 3D Inc. 3D semiconductor device and structure
US10354995B2 (en) 2009-10-12 2019-07-16 Monolithic 3D Inc. Semiconductor memory device and structure
US11374118B2 (en) 2009-10-12 2022-06-28 Monolithic 3D Inc. Method to form a 3D integrated circuit
KR101464776B1 (ko) * 2009-12-01 2014-11-25 엘지디스플레이 주식회사 탄소나노튜브 분산액, 이를 이용한 박막 및 표시장치의 제조방법
CN101738417B (zh) * 2009-12-08 2012-09-05 清华大学 基于冷场电子检测生化物质的芯片及检测方法
US20110215002A1 (en) * 2010-02-16 2011-09-08 William Emerson Martinez Sensing device and related methods
US9099526B2 (en) 2010-02-16 2015-08-04 Monolithic 3D Inc. Integrated circuit device and structure
US8026521B1 (en) 2010-10-11 2011-09-27 Monolithic 3D Inc. Semiconductor device and structure
US8461035B1 (en) 2010-09-30 2013-06-11 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8541819B1 (en) 2010-12-09 2013-09-24 Monolithic 3D Inc. Semiconductor device and structure
US8492886B2 (en) 2010-02-16 2013-07-23 Monolithic 3D Inc 3D integrated circuit with logic
US8373230B1 (en) 2010-10-13 2013-02-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
JP5402758B2 (ja) * 2010-03-19 2014-01-29 ミツミ電機株式会社 バイオセンサキット
JP5485772B2 (ja) * 2010-03-31 2014-05-07 株式会社エンプラス マイクロ流路チップ及びマイクロ分析システム
JP2011220803A (ja) * 2010-04-08 2011-11-04 Mitsumi Electric Co Ltd 電界効果トランジスタ素子を具備するバイオセンサ
CN101852763B (zh) * 2010-05-07 2013-06-26 中国科学院苏州纳米技术与纳米仿生研究所 一种基于场效应晶体管的手性传感器及其制备方法
WO2012050646A2 (en) 2010-06-29 2012-04-19 The Trustees Of The University Of Pennsylvania Biomimetic chemical sensors using nanoelectronic readout of olfactory receptors
US8901613B2 (en) 2011-03-06 2014-12-02 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US9953925B2 (en) 2011-06-28 2018-04-24 Monolithic 3D Inc. Semiconductor system and device
US10217667B2 (en) 2011-06-28 2019-02-26 Monolithic 3D Inc. 3D semiconductor device, fabrication method and system
US9219005B2 (en) 2011-06-28 2015-12-22 Monolithic 3D Inc. Semiconductor system and device
US8642416B2 (en) 2010-07-30 2014-02-04 Monolithic 3D Inc. Method of forming three dimensional integrated circuit devices using layer transfer technique
EP2426487A1 (en) 2010-09-03 2012-03-07 The Provost Fellows And Scholars Of The College Of The Holy and Undivided Trinity Of Queen Elizabeth Near Dublin Nano-carbon sensor and method of making a sensor
US10497713B2 (en) 2010-11-18 2019-12-03 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11482440B2 (en) 2010-12-16 2022-10-25 Monolithic 3D Inc. 3D semiconductor device and structure with a built-in test circuit for repairing faulty circuits
US8163581B1 (en) 2010-10-13 2012-04-24 Monolith IC 3D Semiconductor and optoelectronic devices
US8273610B2 (en) 2010-11-18 2012-09-25 Monolithic 3D Inc. Method of constructing a semiconductor device and structure
US11018191B1 (en) 2010-10-11 2021-05-25 Monolithic 3D Inc. 3D semiconductor device and structure
US10290682B2 (en) 2010-10-11 2019-05-14 Monolithic 3D Inc. 3D IC semiconductor device and structure with stacked memory
US11315980B1 (en) 2010-10-11 2022-04-26 Monolithic 3D Inc. 3D semiconductor device and structure with transistors
US11600667B1 (en) 2010-10-11 2023-03-07 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US11024673B1 (en) 2010-10-11 2021-06-01 Monolithic 3D Inc. 3D semiconductor device and structure
US11257867B1 (en) 2010-10-11 2022-02-22 Monolithic 3D Inc. 3D semiconductor device and structure with oxide bonds
US11227897B2 (en) 2010-10-11 2022-01-18 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US11469271B2 (en) 2010-10-11 2022-10-11 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US11158674B2 (en) 2010-10-11 2021-10-26 Monolithic 3D Inc. Method to produce a 3D semiconductor device and structure
US8114757B1 (en) 2010-10-11 2012-02-14 Monolithic 3D Inc. Semiconductor device and structure
US10896931B1 (en) 2010-10-11 2021-01-19 Monolithic 3D Inc. 3D semiconductor device and structure
US11163112B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US10998374B1 (en) 2010-10-13 2021-05-04 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11437368B2 (en) 2010-10-13 2022-09-06 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11327227B2 (en) 2010-10-13 2022-05-10 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US11063071B1 (en) 2010-10-13 2021-07-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US11984438B2 (en) 2010-10-13 2024-05-14 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11694922B2 (en) 2010-10-13 2023-07-04 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US10833108B2 (en) 2010-10-13 2020-11-10 Monolithic 3D Inc. 3D microdisplay device and structure
US9197804B1 (en) 2011-10-14 2015-11-24 Monolithic 3D Inc. Semiconductor and optoelectronic devices
US10943934B2 (en) 2010-10-13 2021-03-09 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11855100B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US12094892B2 (en) 2010-10-13 2024-09-17 Monolithic 3D Inc. 3D micro display device and structure
US10679977B2 (en) 2010-10-13 2020-06-09 Monolithic 3D Inc. 3D microdisplay device and structure
US11605663B2 (en) 2010-10-13 2023-03-14 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11043523B1 (en) 2010-10-13 2021-06-22 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11133344B2 (en) 2010-10-13 2021-09-28 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US12080743B2 (en) 2010-10-13 2024-09-03 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11404466B2 (en) 2010-10-13 2022-08-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11929372B2 (en) 2010-10-13 2024-03-12 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11855114B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US8379458B1 (en) 2010-10-13 2013-02-19 Monolithic 3D Inc. Semiconductor device and structure
US11869915B2 (en) 2010-10-13 2024-01-09 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11164898B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure
US10978501B1 (en) 2010-10-13 2021-04-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US11443971B2 (en) 2010-11-18 2022-09-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11164770B1 (en) 2010-11-18 2021-11-02 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US11862503B2 (en) 2010-11-18 2024-01-02 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US12068187B2 (en) 2010-11-18 2024-08-20 Monolithic 3D Inc. 3D semiconductor device and structure with bonding and DRAM memory cells
US11508605B2 (en) 2010-11-18 2022-11-22 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11018042B1 (en) 2010-11-18 2021-05-25 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11521888B2 (en) 2010-11-18 2022-12-06 Monolithic 3D Inc. 3D semiconductor device and structure with high-k metal gate transistors
US11923230B1 (en) 2010-11-18 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11004719B1 (en) 2010-11-18 2021-05-11 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11211279B2 (en) 2010-11-18 2021-12-28 Monolithic 3D Inc. Method for processing a 3D integrated circuit and structure
US11784082B2 (en) 2010-11-18 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11094576B1 (en) 2010-11-18 2021-08-17 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11854857B1 (en) 2010-11-18 2023-12-26 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US12136562B2 (en) 2010-11-18 2024-11-05 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11482439B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device comprising charge trap junction-less transistors
US12033884B2 (en) 2010-11-18 2024-07-09 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11615977B2 (en) 2010-11-18 2023-03-28 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11031275B2 (en) 2010-11-18 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11482438B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11569117B2 (en) 2010-11-18 2023-01-31 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11495484B2 (en) 2010-11-18 2022-11-08 Monolithic 3D Inc. 3D semiconductor devices and structures with at least two single-crystal layers
US12100611B2 (en) 2010-11-18 2024-09-24 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11355380B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. Methods for producing 3D semiconductor memory device and structure utilizing alignment marks
US11610802B2 (en) 2010-11-18 2023-03-21 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with single crystal transistors and metal gate electrodes
US11355381B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. 3D semiconductor memory device and structure
US12125737B1 (en) 2010-11-18 2024-10-22 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US11735462B2 (en) 2010-11-18 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11901210B2 (en) 2010-11-18 2024-02-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11804396B2 (en) 2010-11-18 2023-10-31 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11121021B2 (en) 2010-11-18 2021-09-14 Monolithic 3D Inc. 3D semiconductor device and structure
US11107721B2 (en) 2010-11-18 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure with NAND logic
CN102095769A (zh) * 2010-11-29 2011-06-15 中国科学院苏州纳米技术与纳米仿生研究所 碳纳米管气敏传感器及其制备方法
US8975670B2 (en) 2011-03-06 2015-03-10 Monolithic 3D Inc. Semiconductor device and structure for heat removal
CN102749379A (zh) * 2011-04-19 2012-10-24 国家纳米科学中心 场效应晶体管手性传感器
CN102299058B (zh) * 2011-05-10 2013-02-27 吉林大学 通过多级异质结构纳米材料构筑微电子器件的方法
US8471249B2 (en) * 2011-05-10 2013-06-25 International Business Machines Corporation Carbon field effect transistors having charged monolayers to reduce parasitic resistance
US9070686B2 (en) * 2011-05-31 2015-06-30 International Business Machines Corporation Wiring switch designs based on a field effect device for reconfigurable interconnect paths
EP2724347B1 (en) * 2011-06-24 2017-12-06 Brewer Science, Inc. Highly soluble carbon nanotubes with enhanced conductivity
US10388568B2 (en) 2011-06-28 2019-08-20 Monolithic 3D Inc. 3D semiconductor device and system
US10983117B2 (en) * 2011-08-31 2021-04-20 The Trustees Of The University Of Pennsylvania Carbon nanotube biosensors and related methods
WO2013036278A1 (en) * 2011-09-06 2013-03-14 Nanotech Biomachines, Inc. Integrated sensing device and related methods
US9164053B2 (en) 2011-09-26 2015-10-20 The Regents Of The University Of California Electronic device for monitoring single molecule dynamics
US8687399B2 (en) 2011-10-02 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US9029173B2 (en) 2011-10-18 2015-05-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
CN109256465B (zh) * 2012-03-06 2024-04-16 生命科学生物传感器诊断私人有限公司 有机薄膜晶体管及其在传感应用中的用途
US9000557B2 (en) 2012-03-17 2015-04-07 Zvi Or-Bach Semiconductor device and structure
US11410912B2 (en) 2012-04-09 2022-08-09 Monolithic 3D Inc. 3D semiconductor device with vias and isolation layers
US11616004B1 (en) 2012-04-09 2023-03-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US10600888B2 (en) 2012-04-09 2020-03-24 Monolithic 3D Inc. 3D semiconductor device
US11694944B1 (en) 2012-04-09 2023-07-04 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11594473B2 (en) 2012-04-09 2023-02-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11164811B2 (en) 2012-04-09 2021-11-02 Monolithic 3D Inc. 3D semiconductor device with isolation layers and oxide-to-oxide bonding
US11476181B1 (en) 2012-04-09 2022-10-18 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11735501B1 (en) 2012-04-09 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US8557632B1 (en) 2012-04-09 2013-10-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US11088050B2 (en) 2012-04-09 2021-08-10 Monolithic 3D Inc. 3D semiconductor device with isolation layers
US11881443B2 (en) 2012-04-09 2024-01-23 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US8623717B2 (en) 2012-06-12 2014-01-07 International Business Machines Corporation Side-gate defined tunable nanoconstriction in double-gated graphene multilayers
CN105408740A (zh) * 2012-07-25 2016-03-16 加州理工学院 具有功能化栅电极和基电极的纳米柱场效应和结型晶体管
KR20150039819A (ko) * 2012-07-30 2015-04-13 더 리전트 오브 더 유니버시티 오브 캘리포니아 생체 분자 검출 테스트 스트립 설계
WO2014061273A1 (ja) * 2012-10-18 2014-04-24 バイオセンサー株式会社 センサー、センサーモジュールおよび検出方法
US8574929B1 (en) 2012-11-16 2013-11-05 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US8686428B1 (en) 2012-11-16 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US8963215B2 (en) * 2012-11-30 2015-02-24 International Business Machines Corporation Integrated carbon nanotube field effect transistor and nanochannel for sequencing
US11916045B2 (en) 2012-12-22 2024-02-27 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11967583B2 (en) 2012-12-22 2024-04-23 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US8674470B1 (en) 2012-12-22 2014-03-18 Monolithic 3D Inc. Semiconductor device and structure
US12051674B2 (en) 2012-12-22 2024-07-30 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11961827B1 (en) 2012-12-22 2024-04-16 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11217565B2 (en) 2012-12-22 2022-01-04 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11784169B2 (en) 2012-12-22 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11018116B2 (en) 2012-12-22 2021-05-25 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11063024B1 (en) 2012-12-22 2021-07-13 Monlithic 3D Inc. Method to form a 3D semiconductor device and structure
US11309292B2 (en) 2012-12-22 2022-04-19 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US10600657B2 (en) 2012-12-29 2020-03-24 Monolithic 3D Inc 3D semiconductor device and structure
US10892169B2 (en) 2012-12-29 2021-01-12 Monolithic 3D Inc. 3D semiconductor device and structure
US11430667B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US10651054B2 (en) 2012-12-29 2020-05-12 Monolithic 3D Inc. 3D semiconductor device and structure
US11177140B2 (en) 2012-12-29 2021-11-16 Monolithic 3D Inc. 3D semiconductor device and structure
US11087995B1 (en) 2012-12-29 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US9871034B1 (en) 2012-12-29 2018-01-16 Monolithic 3D Inc. Semiconductor device and structure
US10903089B1 (en) 2012-12-29 2021-01-26 Monolithic 3D Inc. 3D semiconductor device and structure
US10115663B2 (en) 2012-12-29 2018-10-30 Monolithic 3D Inc. 3D semiconductor device and structure
US11430668B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US9385058B1 (en) 2012-12-29 2016-07-05 Monolithic 3D Inc. Semiconductor device and structure
US11004694B1 (en) 2012-12-29 2021-05-11 Monolithic 3D Inc. 3D semiconductor device and structure
US20140256918A1 (en) * 2013-01-18 2014-09-11 Sanofi Method for immobilizing membrane proteins on surfaces
US11869965B2 (en) 2013-03-11 2024-01-09 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US10325651B2 (en) 2013-03-11 2019-06-18 Monolithic 3D Inc. 3D semiconductor device with stacked memory
US8902663B1 (en) 2013-03-11 2014-12-02 Monolithic 3D Inc. Method of maintaining a memory state
US12094965B2 (en) 2013-03-11 2024-09-17 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US11935949B1 (en) 2013-03-11 2024-03-19 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US8994404B1 (en) 2013-03-12 2015-03-31 Monolithic 3D Inc. Semiconductor device and structure
US11923374B2 (en) 2013-03-12 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US12100646B2 (en) 2013-03-12 2024-09-24 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11398569B2 (en) 2013-03-12 2022-07-26 Monolithic 3D Inc. 3D semiconductor device and structure
US11088130B2 (en) 2014-01-28 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US10840239B2 (en) 2014-08-26 2020-11-17 Monolithic 3D Inc. 3D semiconductor device and structure
US10224279B2 (en) 2013-03-15 2019-03-05 Monolithic 3D Inc. Semiconductor device and structure
CA2927718C (en) 2013-03-15 2016-12-13 Bakercorp Dc power signal generation for electro-chemical reactor
US9117749B1 (en) 2013-03-15 2015-08-25 Monolithic 3D Inc. Semiconductor device and structure
US9021414B1 (en) 2013-04-15 2015-04-28 Monolithic 3D Inc. Automation for monolithic 3D devices
US11720736B2 (en) 2013-04-15 2023-08-08 Monolithic 3D Inc. Automation methods for 3D integrated circuits and devices
US11341309B1 (en) 2013-04-15 2022-05-24 Monolithic 3D Inc. Automation for monolithic 3D devices
US11487928B2 (en) 2013-04-15 2022-11-01 Monolithic 3D Inc. Automation for monolithic 3D devices
US11030371B2 (en) 2013-04-15 2021-06-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US11574109B1 (en) 2013-04-15 2023-02-07 Monolithic 3D Inc Automation methods for 3D integrated circuits and devices
US11270055B1 (en) 2013-04-15 2022-03-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US8890121B1 (en) 2013-05-06 2014-11-18 International Business Machines Corporation Integrated nanowire/nanosheet nanogap and nanopore for DNA and RNA sequencing
CN104345082B (zh) * 2013-08-06 2017-02-15 中国科学院苏州纳米技术与纳米仿生研究所 生物传感器、生物传感器的制作方法及其检测方法
US8895340B1 (en) 2013-09-10 2014-11-25 Georgetown University Biosensor and system and process for forming
US9178170B2 (en) * 2013-10-30 2015-11-03 The Hong Kong Polytechnic University Fiber-based organic electrochemical transistor
US9797976B2 (en) * 2013-12-11 2017-10-24 Taiwan Semiconductor Manufacturing Company Biosensor calibration system and related method
US10297586B2 (en) 2015-03-09 2019-05-21 Monolithic 3D Inc. Methods for processing a 3D semiconductor device
US11031394B1 (en) 2014-01-28 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure
US12094829B2 (en) 2014-01-28 2024-09-17 Monolithic 3D Inc. 3D semiconductor device and structure
US11107808B1 (en) 2014-01-28 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure
US20150318070A1 (en) * 2014-05-01 2015-11-05 Wisconsin Alumni Research Foundation Transparent conducting films containing single-walled carbon nanotubes dispersed in an azo dye
CN105470313B (zh) * 2014-08-12 2018-11-02 北京纳米能源与系统研究所 基于接触起电的背栅场效应晶体管
US11415546B2 (en) 2014-09-05 2022-08-16 The Trustees Of The University Of Pennsylvania Volatile organic compound-based diagnostic systems and methods
US9859394B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US9618474B2 (en) 2014-12-18 2017-04-11 Edico Genome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US9857328B2 (en) * 2014-12-18 2018-01-02 Agilome, Inc. Chemically-sensitive field effect transistors, systems and methods for manufacturing and using the same
US11782057B2 (en) 2014-12-18 2023-10-10 Cardea Bio, Inc. Ic with graphene fet sensor array patterned in layers above circuitry formed in a silicon based cmos wafer
US10020300B2 (en) 2014-12-18 2018-07-10 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US11921112B2 (en) 2014-12-18 2024-03-05 Paragraf Usa Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
US10006910B2 (en) 2014-12-18 2018-06-26 Agilome, Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
EP3235010A4 (en) * 2014-12-18 2018-08-29 Agilome, Inc. Chemically-sensitive field effect transistor
WO2016157118A1 (en) * 2015-03-31 2016-10-06 Rg Smart Pte. Ltd. Optoelectronic pixel sensor
US10825779B2 (en) 2015-04-19 2020-11-03 Monolithic 3D Inc. 3D semiconductor device and structure
US10381328B2 (en) 2015-04-19 2019-08-13 Monolithic 3D Inc. Semiconductor device and structure
US11011507B1 (en) 2015-04-19 2021-05-18 Monolithic 3D Inc. 3D semiconductor device and structure
US11056468B1 (en) 2015-04-19 2021-07-06 Monolithic 3D Inc. 3D semiconductor device and structure
US10107824B2 (en) * 2015-04-20 2018-10-23 National Tsing Hua University Method for detecting cardiovascular disease biomarker
ITUB20152574A1 (it) * 2015-07-29 2017-01-29 Hft Smartsensors Inc Sensore elettrochimico organico per la misurazione di parametri corporei
US11956952B2 (en) 2015-08-23 2024-04-09 Monolithic 3D Inc. Semiconductor memory device and structure
EP3348999A4 (en) 2015-09-10 2019-04-17 Kabushiki Kaisha Toshiba MOLECULAR DETECTION DEVICE, MOLECULAR DETECTION METHOD AND ORGANIC PROBE
DE112016004265T5 (de) 2015-09-21 2018-06-07 Monolithic 3D Inc. 3d halbleitervorrichtung und -struktur
US11114427B2 (en) 2015-11-07 2021-09-07 Monolithic 3D Inc. 3D semiconductor processor and memory device and structure
US12100658B2 (en) 2015-09-21 2024-09-24 Monolithic 3D Inc. Method to produce a 3D multilayer semiconductor device and structure
US11978731B2 (en) 2015-09-21 2024-05-07 Monolithic 3D Inc. Method to produce a multi-level semiconductor memory device and structure
US11937422B2 (en) 2015-11-07 2024-03-19 Monolithic 3D Inc. Semiconductor memory device and structure
US10522225B1 (en) 2015-10-02 2019-12-31 Monolithic 3D Inc. Semiconductor device with non-volatile memory
US11296115B1 (en) 2015-10-24 2022-04-05 Monolithic 3D Inc. 3D semiconductor device and structure
US11991884B1 (en) 2015-10-24 2024-05-21 Monolithic 3D Inc. 3D semiconductor device and structure with logic and memory
US10418369B2 (en) 2015-10-24 2019-09-17 Monolithic 3D Inc. Multi-level semiconductor memory device and structure
US11114464B2 (en) 2015-10-24 2021-09-07 Monolithic 3D Inc. 3D semiconductor device and structure
US12120880B1 (en) 2015-10-24 2024-10-15 Monolithic 3D Inc. 3D semiconductor device and structure with logic and memory
US12035531B2 (en) 2015-10-24 2024-07-09 Monolithic 3D Inc. 3D semiconductor device and structure with logic and memory
US12016181B2 (en) 2015-10-24 2024-06-18 Monolithic 3D Inc. 3D semiconductor device and structure with logic and memory
US10847540B2 (en) 2015-10-24 2020-11-24 Monolithic 3D Inc. 3D semiconductor memory device and structure
KR101872484B1 (ko) * 2016-03-31 2018-06-28 주식회사 엔디디 바이오 감지 장치
WO2017201081A1 (en) 2016-05-16 2017-11-23 Agilome, Inc. Graphene fet devices, systems, and methods of using the same for sequencing nucleic acids
US11715772B1 (en) * 2016-08-30 2023-08-01 Femtodx, Inc. Field-controlled sensor architecture and related methods
US10588526B2 (en) 2016-09-16 2020-03-17 International Business Machines Corporation Flexible neural probes
US11329059B1 (en) 2016-10-10 2022-05-10 Monolithic 3D Inc. 3D memory devices and structures with thinned single crystal substrates
US11869591B2 (en) 2016-10-10 2024-01-09 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11812620B2 (en) 2016-10-10 2023-11-07 Monolithic 3D Inc. 3D DRAM memory devices and structures with control circuits
US11251149B2 (en) 2016-10-10 2022-02-15 Monolithic 3D Inc. 3D memory device and structure
US11930648B1 (en) 2016-10-10 2024-03-12 Monolithic 3D Inc. 3D memory devices and structures with metal layers
US11711928B2 (en) 2016-10-10 2023-07-25 Monolithic 3D Inc. 3D memory devices and structures with control circuits
CN106546772B (zh) * 2016-11-01 2019-02-05 中山大学 一种基于afm快速检测药物浓度的方法
KR102000592B1 (ko) * 2017-07-04 2019-07-16 주식회사 엔디디 바이오 감지 장치 및 그 제조방법
US11905552B2 (en) 2017-08-04 2024-02-20 Keck Graduate Institute Of Applied Life Sciences Immobilized RNPs for sequence-specific nucleic acid capture and digital detection
TWI648864B (zh) * 2017-09-26 2019-01-21 國立清華大學 感測裝置及離子檢測方法
CN112955926A (zh) * 2018-10-23 2021-06-11 Asml荷兰有限公司 用于自适应对准的方法和装置
US11296106B2 (en) 2019-04-08 2022-04-05 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US10892016B1 (en) 2019-04-08 2021-01-12 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11018156B2 (en) 2019-04-08 2021-05-25 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11763864B2 (en) 2019-04-08 2023-09-19 Monolithic 3D Inc. 3D memory semiconductor devices and structures with bit-line pillars
US11158652B1 (en) 2019-04-08 2021-10-26 Monolithic 3D Inc. 3D memory semiconductor devices and structures
EP3977120A1 (en) 2019-05-31 2022-04-06 Life Science Inkubator Sachsen GmbH & Co. KG Semiconductor based biosensor utilizing the field effect of a novel complex comprising a charged nanoparticle
CN110596222A (zh) * 2019-09-16 2019-12-20 北京大学 一种碳纳米管场效应晶体管型传感器及其制备方法
SG10202103157SA (en) * 2020-03-30 2021-10-28 Helios Bioelectronics Inc Method for pathogen detection
CN111599920B (zh) * 2020-05-21 2023-04-18 苏州大学 柔性温度传感器及其制备方法及应用
WO2021237182A1 (en) * 2020-05-22 2021-11-25 Roswell Biotechnologies, Inc. Shape-altered graphene nanobridge array, transfer-aligned for biomolecular sensing and information storage
CN113684463B (zh) * 2021-08-19 2023-08-01 北京北方华创真空技术有限公司 一种平板连续pvd设备及其载板偏压导入装置
WO2023034113A2 (en) * 2021-08-30 2023-03-09 The Curators Of The University Of Missouri Mxene-graphene field effect transistor virus sensor
CN114624302B (zh) * 2022-03-28 2024-01-26 湘潭大学 高灵敏度在片集成伪参比栅极的pH传感器及其制备方法
CN115266879B (zh) * 2022-08-15 2024-09-24 清华大学 高灵敏度悬架二维纳米生物分子传感器及其用途
CN115901862A (zh) * 2022-11-04 2023-04-04 湖南元芯传感科技有限责任公司 一种延栅型场效应气体传感器及制备方法
CN115963161B (zh) * 2023-02-13 2024-11-01 湘潭大学 波浪状传感界面的碳纳米管场效应晶体管生物传感器、制备方法及应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282152A (ja) * 1988-09-20 1990-03-22 Seiko Epson Corp 酵素センサー
JP2595757B2 (ja) * 1990-04-13 1997-04-02 日本電気株式会社 薄膜電界効果型トランジスタおよびその製造方法
JP2002296229A (ja) * 2001-03-30 2002-10-09 Seiko Epson Corp バイオセンサ
JP2003156469A (ja) * 2001-11-22 2003-05-30 Matsushita Electric Ind Co Ltd バイオセンサ、バイオセンサ用測定装置及び基質の定量方法
JP2003215086A (ja) * 2002-01-18 2003-07-30 Matsushita Electric Ind Co Ltd バイオセンサカートリッジ、及びそれを取り付けたバイオセンサ分与装置
JP2004101253A (ja) * 2002-09-06 2004-04-02 Hitachi Ltd 生体および化学試料検査装置
WO2004104568A1 (ja) * 2003-05-23 2004-12-02 Japan Science And Technology Agency 単一電子型トランジスタ、電界効果型トランジスタ、センサー、センサーの製造方法ならびに検出方法
JP2005079342A (ja) * 2003-08-29 2005-03-24 Japan Science & Technology Agency 電界効果トランジスタ及び単一電子トランジスタ並びにそれを用いたセンサ
JP2005513802A (ja) * 2001-12-11 2005-05-12 シーメンス アクチエンゲゼルシヤフト オフセット閾値電圧を有する有機電界効果トランジスタおよびその使用
JP7058276B2 (ja) * 2017-02-27 2022-04-21 ソク キム,グァン 男性用陰茎ジェルク運動装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142453A (ja) 1983-02-02 1984-08-15 Nec Corp イオンセンサ
JPH0713611B2 (ja) * 1987-02-25 1995-02-15 帝人株式会社 免疫センサ及び免疫検出方法
JPH01112453A (ja) 1987-10-27 1989-05-01 Nec Corp 磁気記録装置の情報記憶器
JPH0395432A (ja) * 1989-09-08 1991-04-19 Terumo Corp 測定装置
AU635314B2 (en) * 1989-09-08 1993-03-18 Terumo Kabushiki Kaisha Measuring apparatus
JP3026012B2 (ja) * 1990-03-09 2000-03-27 太陽誘電株式会社 塩素イオンセンサ及びその分割部品
JP3095432B2 (ja) 1991-01-28 2000-10-03 株式会社ブリヂストン フィラー付きビードの取出し装置
JPH04280474A (ja) * 1991-03-08 1992-10-06 Oki Electric Ind Co Ltd Mos型トランジスタ
JPH04290473A (ja) * 1991-03-19 1992-10-15 Fujitsu Ltd 半導体装置の製造方法
JPH05243255A (ja) * 1992-02-28 1993-09-21 Fujitsu Ltd 半導体装置
JP3259739B2 (ja) 1992-12-18 2002-02-25 大同特殊鋼株式会社 電気炉排出物の処理方法
JPH0713611A (ja) 1993-06-24 1995-01-17 Hitachi Ltd プロセスモデル評価装置およびプロセスモデル評価方法
JP3110922B2 (ja) * 1993-08-12 2000-11-20 富士通株式会社 マルチチップ・モジュール
FR2710413B1 (fr) * 1993-09-21 1995-11-03 Asulab Sa Dispositif de mesure pour capteurs amovibles.
JP3296274B2 (ja) 1997-11-20 2002-06-24 イビデン株式会社 多層電子部品搭載用基板及びその製造方法
EP3364187B1 (en) * 2000-11-30 2019-09-18 PHC Holdings Corporation Method of quantifying substrate
JP2003017508A (ja) * 2001-07-05 2003-01-17 Nec Corp 電界効果トランジスタ
US8154093B2 (en) * 2002-01-16 2012-04-10 Nanomix, Inc. Nano-electronic sensors for chemical and biological analytes, including capacitance and bio-membrane devices
US20060263255A1 (en) * 2002-09-04 2006-11-23 Tzong-Ru Han Nanoelectronic sensor system and hydrogen-sensitive functionalization
JP4280474B2 (ja) 2002-09-20 2009-06-17 原子燃料工業株式会社 沸騰水型原子炉用燃料集合体
JP4290473B2 (ja) 2003-05-08 2009-07-08 日本下水道事業団 耐硫酸性セメント組成物および耐硫酸性セメント硬化物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282152A (ja) * 1988-09-20 1990-03-22 Seiko Epson Corp 酵素センサー
JP2595757B2 (ja) * 1990-04-13 1997-04-02 日本電気株式会社 薄膜電界効果型トランジスタおよびその製造方法
JP2002296229A (ja) * 2001-03-30 2002-10-09 Seiko Epson Corp バイオセンサ
JP2003156469A (ja) * 2001-11-22 2003-05-30 Matsushita Electric Ind Co Ltd バイオセンサ、バイオセンサ用測定装置及び基質の定量方法
JP2005513802A (ja) * 2001-12-11 2005-05-12 シーメンス アクチエンゲゼルシヤフト オフセット閾値電圧を有する有機電界効果トランジスタおよびその使用
JP2003215086A (ja) * 2002-01-18 2003-07-30 Matsushita Electric Ind Co Ltd バイオセンサカートリッジ、及びそれを取り付けたバイオセンサ分与装置
JP2004101253A (ja) * 2002-09-06 2004-04-02 Hitachi Ltd 生体および化学試料検査装置
WO2004104568A1 (ja) * 2003-05-23 2004-12-02 Japan Science And Technology Agency 単一電子型トランジスタ、電界効果型トランジスタ、センサー、センサーの製造方法ならびに検出方法
JP2005079342A (ja) * 2003-08-29 2005-03-24 Japan Science & Technology Agency 電界効果トランジスタ及び単一電子トランジスタ並びにそれを用いたセンサ
JP7058276B2 (ja) * 2017-02-27 2022-04-21 ソク キム,グァン 男性用陰茎ジェルク運動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKEKASA K.: "Carbon Nanotube o Mochiita Jisedai Bio Sensor", KAGAKU KOGYO, vol. 57, no. 1, 1 January 2006 (2006-01-01), pages 1 - 7 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101573612A (zh) * 2007-01-04 2009-11-04 皇家飞利浦电子股份有限公司 用于测量样品浓度的方法、检测器和系统
JP5204758B2 (ja) * 2007-03-05 2013-06-05 シャープ株式会社 化学物質センシング素子
WO2008108371A1 (ja) * 2007-03-05 2008-09-12 Sharp Kabushiki Kaisha 化学物質センシング素子、化学物質センシング装置、及び化学物質センシング素子の製造方法
JP2008261726A (ja) * 2007-04-12 2008-10-30 Fuji Xerox Co Ltd センサーチップ及び検査装置
US8166835B2 (en) 2007-04-12 2012-05-01 Fuji Xerox Co., Ltd. Sensor chip and inspection device
JP2010528297A (ja) * 2007-05-23 2010-08-19 アリゾナ ボード オブ リージェンツ フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティ 統合された電気化学的検出および電気的検出のためのシステムおよび方法
US9170228B2 (en) 2007-06-08 2015-10-27 Bharath R. Takulapalli Nano structured field effect sensor and methods of forming and using same
JP2010530063A (ja) * 2007-06-08 2010-09-02 バラス アール. タクラパリ, ナノ構造電界効果型センサならびに同センサを形成する方法および使用する方法
JP2010540263A (ja) * 2007-10-02 2010-12-24 プレジデント アンド フェロウズ オブ ハーバード カレッジ ナノポアデバイスのためのカーボンナノチューブ合成
JP2012505400A (ja) * 2008-10-10 2012-03-01 チュンブク ナショナル ユニヴァーシティ インダストリー−アカデミック コーポレイション ファウンデーション 超高速・高感度のdna塩基序列分析システム及びその分析方法
US20120258445A1 (en) * 2008-12-05 2012-10-11 NanolVD, Inc. Methods for using nanowire sensors
US20100140110A1 (en) * 2008-12-05 2010-06-10 Nanoivd, Inc. Microfluidic-based lab-on-a-test card for a point-of-care analyzer
US8323466B2 (en) * 2008-12-05 2012-12-04 Nanoivd, Inc. Microfluidic-based lab-on-a-test card for a point-of-care analyzer
JP2012247189A (ja) * 2011-05-25 2012-12-13 Hitachi Ltd グラフェンセンサ、該センサを利用した物質種分析装置および該センサを利用した物質種検知方法
US10514380B2 (en) 2012-04-09 2019-12-24 Bharath Takulapalli Field effect transistor, device including the transistor, and methods of forming and using same
JP2014215292A (ja) * 2013-04-30 2014-11-17 国立大学法人東京大学 バイオセンサ及び分子識別部材
JP2015206763A (ja) * 2014-04-23 2015-11-19 バイオセンサー株式会社 測定装置および測定方法
US11977069B2 (en) 2016-04-19 2024-05-07 Bharath Takulapalli Nanopore sensor, structure and device including the sensor, and methods of forming and using same
CN107192747B (zh) * 2017-07-24 2023-12-15 梁鑫 一种可变电容式微纳米生物检测芯片及其加工方法
CN107192747A (zh) * 2017-07-24 2017-09-22 徐林 一种可变电容式微纳米生物检测芯片及其加工方法
WO2020116012A1 (ja) * 2018-12-04 2020-06-11 株式会社村田製作所 ウイルス検出システム、ウイルス検出方法、及びウイルス検出プログラム
US20210239687A1 (en) * 2018-12-04 2021-08-05 Murata Manufacturing Co., Ltd. Virus detection system, virus detection method, and virus detection program
JPWO2020116012A1 (ja) * 2018-12-04 2021-09-02 株式会社村田製作所 ウイルス検出システム、ウイルス検出方法、及びウイルス検出プログラム
JP7104378B2 (ja) 2018-12-04 2022-07-21 株式会社村田製作所 ウイルス検出システム、ウイルス検出方法、及びウイルス検出プログラム
CN113167763A (zh) * 2018-12-04 2021-07-23 株式会社村田制作所 病毒检测系统、病毒检测方法以及病毒检测程序
JP7293059B2 (ja) 2019-09-13 2023-06-19 株式会社東芝 センサ及び方法
JP2021043169A (ja) * 2019-09-13 2021-03-18 株式会社東芝 センサ及び方法
JP7492669B2 (ja) 2020-09-29 2024-05-30 株式会社Cognano 情報処理装置及び感染症情報表示システム

Also Published As

Publication number Publication date
CN101287986A (zh) 2008-10-15
CN101287986B (zh) 2012-01-18
US8072008B2 (en) 2011-12-06
US20080283875A1 (en) 2008-11-20
JPWO2006134942A1 (ja) 2009-07-09
TW200707737A (en) 2007-02-16
JP4827144B2 (ja) 2011-11-30

Similar Documents

Publication Publication Date Title
JP4827144B2 (ja) バイオセンサ装置
US9506892B2 (en) Field-effect transistor, single-electron transistor and sensor using the same
US12044651B2 (en) Sensor device and methods
Tran et al. Detection of a secreted protein biomarker for citrus Huanglongbing using a single-walled carbon nanotubes-based chemiresistive biosensor
US9841416B2 (en) Systems and methods for single-molecule nucleic-acid assay platforms
JP2008258594A (ja) カーボンナノチューブ電界効果トランジスタの製造方法およびバイオセンサ装置
JP4528986B2 (ja) カーボンナノチューブ電界効果トランジスタおよびその製造方法
Okuda et al. Horizontally aligned carbon nanotubes on a quartz substrate for chemical and biological sensing
Gobi et al. Highly sensitive regenerable immunosensor for label-free detection of 2, 4-dichlorophenoxyacetic acid at ppb levels by using surface plasmon resonance imaging
Zhao et al. Protein functionalized ZnO thin film bulk acoustic resonator as an odorant biosensor
US10983117B2 (en) Carbon nanotube biosensors and related methods
US20110237000A1 (en) Method for detecting an analyte molecule
WO2006103872A1 (ja) カーボンナノチューブ電界効果トランジスタ
US11726056B2 (en) Field-effect transistor sensor
Chiang et al. Nanowire transistor‐based ultrasensitive virus detection with reversible surface functionalization
Mandal et al. Carbon nanotube thin film biosensors for sensitive and reproducible whole virus detection
Ishikawa et al. Rapid and label-free cell detection by metal-cluster-decorated carbon nanotube biosensors
JP5424227B2 (ja) 被検物質検知センサー
WO2005108966A1 (ja) バイオセンサ
Martínez et al. Electronic anabolic steroid recognition with carbon nanotube field-effect transistors
CN114401792A (zh) 分析物的传送和检测
US20190107508A1 (en) Sensor, method of forming a sensor and use thereof
JP5023326B2 (ja) 検出装置および検出方法
WO2023164157A1 (en) Integrated circuit chip with 2d field-effect transistors and on-chip thin film layer deposition with electrical characterization
JP5294339B2 (ja) 試料中の被検出物質の検出方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680028654.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007521312

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06757306

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)