[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006134189A1 - Turbina eólica - Google Patents

Turbina eólica Download PDF

Info

Publication number
WO2006134189A1
WO2006134189A1 PCT/ES2006/000342 ES2006000342W WO2006134189A1 WO 2006134189 A1 WO2006134189 A1 WO 2006134189A1 ES 2006000342 W ES2006000342 W ES 2006000342W WO 2006134189 A1 WO2006134189 A1 WO 2006134189A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor shaft
rotor
bearing
housing
multiplier unit
Prior art date
Application number
PCT/ES2006/000342
Other languages
English (en)
French (fr)
Inventor
José Ignacio LLORENTE GONZÁLEZ
Original Assignee
Gamesa Innovation And Technology, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamesa Innovation And Technology, S.L. filed Critical Gamesa Innovation And Technology, S.L.
Priority to CN2006800210963A priority Critical patent/CN101198790B/zh
Priority to EP06778462.9A priority patent/EP1900939B1/en
Priority to US11/921,718 priority patent/US8207624B2/en
Publication of WO2006134189A1 publication Critical patent/WO2006134189A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a turbine of a wind turbine and more particularly, to the structuring of the coupling between the rotor and the multiplier unit.
  • the power train which comprises the multiplier unit, the high speed shaft and the generator and especially, the low speed shaft, responsible for coupling the rotor with the multiplier unit.
  • the rotor shaft is subjected to sharp bending moments that involve very robust designs of the power train components, even needing torsion arms in the multiplier unit to absorb the transmitted loads.
  • the rotor shaft attached to a fixed support connected to the tower through a flange, whose function is to absorb the bending moments transmitted by the rotor.
  • Patent application WO9611338 describes in relation to its Figures 1 and 2 the couplings used in known turbines.
  • the rotor shaft is supported by two supports directly supported by the frame in addition to a third placed in the multiplier.
  • the rotor shaft is supported by two supports supported directly by the frame Io which implies a high transmission of unwanted forces to the multiplier.
  • Patent application WO03031811 describes a coupling mechanism in which the rotor shaft is supported on the wind turbine frame through two bearings.
  • Patent application WO04046582 such as WO02079644, describes a turbine in which the multiplier unit is directly coupled to the rotor hub, thus dispensing with a rotor shaft and consequently transmitting the forces and moments generated by the blades to the frame through the bearings of the multiplier unit.
  • the present invention proposes a wind turbine driven by a rotor of blades of the type including a rotor shaft, a multiplier unit with at least one planetary stage and a generator, the rotor shaft being mounted on two bearing supports. separated, one of them integrated in the multiplier unit, characterized in that: a) the rotor shaft is integrally connected on one side to the rotor hub and, on the other hand, to the planet carrier where the planets of the multiplier unit will be housed; b) comprises a first casing, tubular in shape, fixedly fixed to the frame structure, which houses the rotor shaft inside, including a bearing supporting the rotor shaft at a point close to the rotor bushing; c) comprises a second housing, where the support bearing of the planet carrier is included, which is fixedly fixed on one of its sides to the crown of the planetary gear of the multiplier unit, on the other hand to the first housing, and also to the structure of the frame.
  • the coupling between the rotor shaft and the multiplier unit is configured by a fixed part, formed by the two aforementioned housings, anchored to the frame, and a mobile part formed by the rotor shaft and the planet carrier, responsible for transmitting the torque generated by the rotor to the rest of the moving elements.
  • Figure 1 is a cross-sectional view of a possible configuration of the coupling of the rotor shaft to the multiplier unit according to the invention.
  • the rotor shaft 11 is attached, on the one hand, to the blade rotor bushing (not shown) through fixing elements 31 and, on the other hand, to the plane holder 21 through fixing elements 33, constituting The mobile part of the coupling.
  • the first housing 13 is joined in solidarity on one side to the frame 1 through fixing elements 35 and on the other to the second housing 17 through fixing elements 37 constituting the fixed part of the coupling.
  • the second housing 17 is connected on the other side to the crown of the multiplier unit 3 through fixing elements 39.
  • the second housing 17 is thus fixed to the frame 1 through the anchors arranged in your nerves 5 (not represented in true magnitude).
  • the rotor shaft 11 rests on the bearing 15 and the plane holder 21 does on the bearing 19.
  • the fixed and mobile parts of the coupling work as a single integrated assembly.
  • the rotor shaft 11 rests on a bearing 15 located in the first housing 13 and is fixed to the plane holder 21, which rests on a bearing 19 located in the second housing 17.
  • the fixed part is anchored to the frame 1 and the moving part transmits the torque generated by the blade rotor.
  • the rotor shaft 11 cannot work without being fixed to the planet carrier 21, and the latter cannot drive the satellites of the multiplier unit 3 if it is not coupled to the rotor shaft 11.
  • the bearing 15 is mounted on the first housing 13 of the part fixed of the coupling at the height of the fixing elements 35.
  • the bearing 19 is mounted on the second housing 17 of the fixed part of the coupling. At the same time, the second housing 17 joins through the fixing elements 37 with the first housing 13.
  • the bearings 15 and 19 are used simultaneously by the mobile coupling part as well as by the mobile elements of the multiplier 3, avoiding The redundancy of bearings in the assembly formed by the main shaft and the satellite carrier existing in those prior art solutions that included two bearings for the rotor shaft and another for the multiplier carrier, and thus avoiding a hyperstatic system.
  • the design of the bearings has the characteristic that one of the two bearings 15 or 19 must have the axial displacement restricted by means of the configuration of the tapered bearings in X in order to withstand the bending moments and the axial thrust received by the set, while the second bearing 15 or 19 goes axially free.
  • the lubrication of the bearings is done through a tank connected to the tank of the multiplier through a conduit 7.
  • the lengths of the different elements of the coupling are calculated based on the normal and tangential axial bending moments and forces provided on the rotor shaft.
  • the dimensions of the rotor shaft 11 are reduced, which, together with the direct connection to the plane holder 21, allows to achieve an isostatic structure capable of absorbing the vibrations from the blade rotor.
  • a coupling is achieved that is able to take advantage of the torque generated by the rotor of blades and dissipate the rest of forces and harmful vibrations, thanks to the bearings 15 and 19 that direct them towards the frame and, ultimately, towards The wind turbine tower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

Turbina eólica que comprende un eje del rotor (11), una unidad multiplicadora (3) con al menos una etapa de tipo planetario y un generador dentro de un bastidor (1), así como una primera carcasa (13), de forma tubular, fijada solidariamente al bastidor (1), que alberga al eje del rotor (11), que está unido solidariamente por un lado al buje del rotor y, por otro lado, al portaplanetas (21) de la unidad multiplicadora, e incluye un cojinete (15) de apoyo del eje del rotor (11) y una segunda carcasa (17) donde se incluye un cojinete (19) de apoyo del portaplanetas (21), que está fijada solidariamente por uno de sus lados a la corona de la primera etapa planetaria de la unidad multiplicadora (3), por otro lado a la primera carcasa (13), y también a la estructura del bastidor (1).

Description

TURBINA EÓLICA
CAMPO DE LA INVENCIÓN
La presente invención se refiere a una turbina de un aerogenerador y más en particular, a Ia estructuración del acoplamiento entre el rotor y Ia unidad multiplicadora.
ANTECEDENTES DE LA INVENCIÓN
El desarrollo actual de los aerogeneradores pasa por el aumento de Ia energía que producen, Io cual supone un mayor tamaño de los elementos que Io componen, pasando estos a estar sometidos a mayores cargas externas, con Io que su vida útil se reduce, al tiempo que su coste se ve claramente incrementado.
Uno de los elementos más afectados a este respecto es el tren de potencia, que comprende Ia unidad multiplicadora, el eje de alta velocidad y el generador y especialmente, el eje de baja velocidad, encargado de acoplar el rotor con Ia unidad multipicadora. Comentaremos seguidamente diversos acoplamientos conocidos en Ia técnica para unir el rotor de un aerogenerador con los elementos del tren de potencia del mismo.
A nivel teórico, en Ia publicación de J. L. Rodríguez Amedo, J. C. Burgos Díaz y S. Arnalte Gómez, "Sistemas Eólicos de Producción de Energía Eléctrica" (Ed. Rueda S. L., Madrid 2003) se mencionan tres tipos de uniones entre el eje del rotor y Ia unidad multiplicadora:
- Mediante el apoyo del eje del rotor sobre dos cojinetes separados entre sí y solidarios a Ia base del bastidor, de manera que todas las fuerzas no deseadas sean transmitidas a Ia torre, y Ia unidad multiplicadora únicamente soporte el par transmitido por el rotor de palas. En este tipo de configuraciones, se utiliza normalmente un disco elástico en el acoplamiento entre el eje del rotor y Ia multiplicadora para absorber las pequeñas desalineaciones entre ellos. - Mediante un apoyo del eje del rotor sobre un cojinete solitario a Ia base del bastidor y otro apoyo sobre un cojinete integrado en Ia unidad multiplicadora, utilizándose así mismo un disco elástico en el acoplamiento entre el eje del rotor y Ia multiplicadora. De esta manera las cargas transmitidas a Ia torre se reducen debido a que se puede minimizar Ia distancia entre los cojinetes. Aun así, en estas dos primeras configuraciones, el eje del rotor está sometido a momentos flectores acentuados que implican diseños muy robustos de los componentes del tren de potencia, necesitando incluso unos brazos de torsión en Ia unidad multiplicadora para absorber las cargas transmitidas. - Con el eje del rotor unido a un soporte fijo conectado a Ia torre a través de una brida, cuya función es absorber los momentos flectores transmitidos por el rotor.
También se conocen propuestas de acoplamientos entre el eje de rotor y Ia unidad multiplicadora en documentos de patentes como los que se indican seguidamente.
La solicitud de patente WO9611338 describe en relación a sus Figuras 1 y 2 los acoplamientos utilizados en las turbinas conocidas. En el descrito en Ia relación a Ia Figura 1 el eje del rotor se sustenta en dos apoyos soportados directamente por el bastidor además de un tercero colocado en Ia multiplicadora. En el descrito en relación a Ia Figura 2 el eje del rotor se sustenta en dos apoyos soportados directamente por el bastidor Io que implica una transmisión elevada de fuerzas no deseadas a Ia multiplicadora.
En Ia solicitud de patente WO02079644 se describe una turbina en Ia que Ia unidad multiplicadora está acoplada directamente al buje del rotor, prescindiéndose pues de un eje de rotor.
La solicitud de patente WO03031811 describe un mecanismo de acoplamiento en el que el eje del rotor está apoyado en el bastidor del aerogenerador a través de dos cojinetes.
La solicitud de patente WO04046582, como Ia WO02079644, se describe una turbina en Ia que Ia unidad multiplicadora está acoplada directamente al buje del rotor, prescindiéndose pues de un eje de rotor y transmitiendo consiguientemente las fuerzas y momentos generados por las palas al bastidor a través de los cojinetes de Ia unidad multiplicadora.
Ninguno de los sistemas mencionados resuelve satisfactoriamente las exigencias planteadas por las turbinas eólicas de gran potencia que está requiriendo Ia industria. La presente invención está orientada a Ia satisfacción de esas demandas.
SUMARIO DE LA INVENCIÓN
La presente invención propone una turbina eólica accionada por un rotor de palas del tipo de las que incluyen un eje del rotor, una unidad multiplicadora con, al menos, una etapa planetaria y un generador, estando el eje del rotor montado sobre dos apoyos de cojinetes separados, uno de ellos integrado en Ia unidad multiplicadora, caracterizada porque: a) el eje del rotor está unido solidariamente por un lado al buje del rotor y, por otro lado, al portaplanetas donde se alojarán los planetas de Ia unidad multiplicadora; b) comprende una primera carcasa, de forma tubular, fijada solidariamente a Ia estructura del bastidor, que alberga en su interior al eje del rotor, incluyendo un cojinete de apoyo del eje del rotor en un punto próximo al buje del rotor; c) comprende una segunda carcasa, donde se incluye el cojinete de apoyo del portaplanetas, que está fijada solidariamente por uno de sus lados a Ia corona del engranaje planetario de Ia unidad multiplicadora, por otro lado a Ia primera carcasa, y también a Ia estructura del bastidor.
Con esta estructuración, el acoplamiento entre el eje del rotor y Ia unidad multiplicadora queda configurado por una parte fija, formada por las dos carcasas mencionadas, ancladas al bastidor, y una parte móvil formada por el eje del rotor y el portaplanetas, encargada de transmitir el par generado por el rotor al resto de elementos móviles. - A -
Otras características y ventajas de Ia presente invención se desprenderán de Ia descripción detallada que sigue de Ia misma en relación con las figuras que se acompañan.
DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 es una vista en sección transversal de una posible configuración del acoplamiento del eje del rotor a Ia unidad multiplicadora según Ia invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Siguiendo Ia figura 1 pueden observarse los elementos fundamentales del acoplamiento: el eje del rotor 11 , Ia primera carcasa 13 con el cojinete 15, Ia segunda carcasa 17 con el cojinete 19 y el portaplanetas 21.
El eje del rotor 11 se une, por un lado, al buje del rotor de palas (no representado) a través de unos elementos de fijación 31 y, por el otro lado, al portaplanetas 21 a través de unos elementos de fijación 33, constituyendo Ia parte móvil del acoplamiento. La primera carcasa 13 está unida solidariamente por un lado al bastidor 1 a través de unos elementos de fijación 35 y por otro a Ia segunda carcasa 17 a través de unos elementos de fijación 37 constituyendo Ia parte fija del acoplamiento. A su vez, Ia segunda carcasa 17 está unida por el otro lado a Ia corona de Ia unidad multiplicadora 3 a través de unos elementos de fijación 39. La segunda carcasa 17 queda, pues, fijada al bastidor 1 a través de los anclajes dispuestos en sus nervios 5 (no representados en verdadera magnitud).
El eje del rotor 11 se apoya en el cojinete 15 y el portaplanetas 21 Io hace en el cojinete 19. Las partes fija y móvil del acoplamiento trabajan como un conjunto único integrado. El eje del rotor 11 se apoya sobre un cojinete 15 situado en Ia primera carcasa 13 y se fija al portaplanetas 21 , que se apoya sobre un cojinete 19 situado en Ia segunda carcasa 17. La parte fija está anclada al bastidor 1 y Ia parte móvil transmite el par generado por el rotor de palas. El eje del rotor 11 no puede funcionar sin estar fijado al portaplanetas 21 , y éste no puede accionar los satélites de Ia unidad multiplicadora 3 si no está acoplado al eje del rotor 11. El cojinete 15 se monta sobre Ia primera carcasa 13 de Ia parte fija del acoplamiento a Ia altura de los elementos de fijación 35.
El cojinete 19 se monta sobre Ia segunda carcasa 17 de Ia parte fija del acoplamiento. A Ia vez, Ia segunda carcasa 17 se une a través de los elementos de fijación 37 con Ia primera carcasa 13. Los cojinetes 15 y 19 son utilizados simultáneamente por Ia parte móvil de acoplamiento así como por los elementos móviles de Ia multiplicadora 3, evitando Ia redundancia de cojinetes en el conjunto formado por el eje principal y el portasatélites existente en aquellas soluciones de Ia técnica anterior que se incluían dos cojinetes para el eje del rotor y otro para el portaplanetas de Ia multiplicadora, y evitando por tanto un sistema hiperestático. En este sentido el diseño de los rodamientos tiene Ia característica de que uno de los dos cojinetes 15 o 19 debe tener el desplazamiento axial restringido mediante Ia configuración de los rodamientos cónicos en X al efecto de soportar los momentos flectores y los empujes axiales que recibe el conjunto, mientras que el segundo cojinete 15 o 19 va axialmente libre.
La lubricación de los cojinetes se hace a través de un tanque conectado al depósito de Ia multiplicadora a través de un conducto 7.
Como bien comprenderá el experto en Ia materia, las longitudes de los distintos elementos del acoplamiento se calculan en función de los momentos flectores y fuerzas axiales normales y tangenciales previstos en el eje del rotor.
Mediante esta configuración, se reducen las dimensiones del eje del rotor 11 Io cual, junto con Ia unión directa al portaplanetas 21 , permite conseguir una estructura isostática capaz de absorber las vibraciones provenientes del rotor de palas. De esta forma, se consigue un acoplamiento que es capaz de aprovechar el par generado por el rotor de palas y disipar el resto de fuerzas y vibraciones perjudiciales, gracias a los cojinetes 15 y 19 que las dirigen hacia el bastidor y, en definitiva, hacia Ia torre del aerogenerador. Se consigue con ello tanto proteger a la unidad multiplicadora 3 de los efectos perjudiciales transmitidos por el rotor de palas, disminuyendo igualmente el riesgo de daños en el resto de componentes de Ia turbina, Io que permite un mejor dimensionamiento y una duración mayor de todos sus elementos, sin necesidad de elementos adicionales como los discos elásticos o los brazos de torsión utilizados en Ia técnica anterior.
En las realizaciones que acabamos de describir pueden introducirse aquellas modificaciones comprendidas dentro del alcance definido por las siguientes reivindicaciones.

Claims

REIVINDICAC1ONES
1. Turbina eólica accionada por un rotor de al menos dos palas que comprende un eje del rotor (11), una unidad multiplicador (3) con al menos una etapa de tipo planetario y un generador dentro de un bastidor (1), del tipo en el que el eje del rotor (11) se monta sobre dos apoyos de cojinetes separados, uno de ellos integrado en Ia unidad multiplicadora (3), caracterizada porque: a) el eje del rotor (11) está unido solidariamente por un lado al buje del rotor y, por otro lado al portaplanetas (21) de Ia unidad multiplicadora; b) también comprende una primera carcasa (13), de forma tubular, fijada solidariamente a Ia estructura del bastidor (1), que alberga en su interior al eje del rotor (11) e incluye un cojinete (15) de apoyo del eje del rotor (11) próximo al buje del rotor; c) también comprende una segunda carcasa (17) donde se incluye el cojinete (19) de apoyo del portaplanetas (21), que está fijada solidariamente por uno de sus lados a Ia corona de Ia primera etapa planetaria de Ia unidad multiplicadora (3), por otro lado a Ia primera carcasa (13), y también a Ia estructura del bastidor (1).
2. Turbina eólica según Ia reivindicación 1 , caracterizada porque el cojinete (15) de apoyo del eje de rotor (11) está montado en Ia primera carcasa (13) a Ia altura de los elementos de fijación (35) en el bastidor (1).
3. Turbina eólica según Ia reivindicación 1 , caracterizada porque el cojinete (19) de apoyo del portaplanetas (21) está montado en Ia segunda carcasa (17) junto a los elementos de fijación (37) a Ia primera carcasa (13).
4. Turbina eólica según las reivindicaciones 2 ó 3, caracterizada porque uno de los dos cojinetes (15, 19) de apoyo del eje de rotor (11) o el portaplanetas (21), está configurado de manera que quede axialmente libre, mientras que el otro cojinete tiene el movimiento axial restringido mediante Ia configuración de rodamientos cónicos en X.
5. Turbina eólica según Ia reivindicación 1 , caracterizada porque también comprende un conducto (7) de comunicación de Ia unidad multiplicadora (3) y Ia primera carcasa (13) para compartir el aceite lubricante.
PCT/ES2006/000342 2005-06-13 2006-06-13 Turbina eólica WO2006134189A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800210963A CN101198790B (zh) 2005-06-13 2006-06-13 风力涡轮机
EP06778462.9A EP1900939B1 (en) 2005-06-13 2006-06-13 Wind turbine
US11/921,718 US8207624B2 (en) 2005-06-13 2006-06-13 Wind turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200501417A ES2274696B1 (es) 2005-06-13 2005-06-13 Turbina eolica.
ESP200501417 2005-06-13

Publications (1)

Publication Number Publication Date
WO2006134189A1 true WO2006134189A1 (es) 2006-12-21

Family

ID=37531972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000342 WO2006134189A1 (es) 2005-06-13 2006-06-13 Turbina eólica

Country Status (5)

Country Link
US (1) US8207624B2 (es)
EP (1) EP1900939B1 (es)
CN (1) CN101198790B (es)
ES (1) ES2274696B1 (es)
WO (1) WO2006134189A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101514678B (zh) * 2008-02-18 2012-07-18 美商洁能科技股份有限公司 风力驱动涡轮装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ569819A (en) * 2006-01-25 2010-07-30 Vestas Wind Sys As A wind turbine comprising at least one gearbox and an epicyclic gearbox
EP2063114A1 (en) * 2007-11-26 2009-05-27 Siemens Aktiengesellschaft Wind turbine
ATE501356T1 (de) 2008-01-17 2011-03-15 Gamesa Innovation And Technology S L Getriebeeinheit für eine windturbine
EP2253843A1 (en) * 2009-05-12 2010-11-24 Ecotecnia Energias Renovables S.L. Wind turbine
KR101206017B1 (ko) 2010-06-24 2012-11-28 삼성중공업 주식회사 풍력발전장치용 동력전달 유닛
US8536726B2 (en) 2010-09-17 2013-09-17 Vestas Wind Systems A/S Electrical machines, wind turbines, and methods for operating an electrical machine
US8568099B2 (en) 2010-12-17 2013-10-29 Vestas Wind Systems A/S Apparatus for harvesting energy from a gearbox to power an electrical device and related methods
KR101349867B1 (ko) 2012-02-01 2014-01-10 삼성중공업 주식회사 풍력 발전장치용 동력 전달 유닛, 조립 방법 및 이를 포함하는 풍력 발전장치
US9062654B2 (en) 2012-03-26 2015-06-23 American Wind Technologies, Inc. Modular micro wind turbine
US9331534B2 (en) 2012-03-26 2016-05-03 American Wind, Inc. Modular micro wind turbine
EP2657519B1 (en) * 2012-04-26 2015-06-17 Siemens Aktiengesellschaft Wind turbine
DE102014203508B9 (de) * 2014-02-26 2018-07-19 youWINenergy GmbH Rotorblattlageranordnung für eine Windenergieanlage
CN105649885B (zh) * 2015-12-31 2019-01-22 北京金风科创风电设备有限公司 风力发电机、风力发电机组及其安装方法
DE102016004343A1 (de) * 2016-04-13 2017-10-19 Senvion Gmbh Windenergieanlage mit einem Triebstrang
DE102017223356A1 (de) * 2017-12-20 2019-06-27 Zf Friedrichshafen Ag Flexible Verbindung zwischen Eingangswelle und Planetenträger

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991019916A1 (en) 1990-06-09 1991-12-26 Hicks Transmissions Limited Epicyclic gear train
WO1996011338A1 (de) 1994-10-07 1996-04-18 Gerald Hehenberger Planetengetriebe für windturbine
US5663600A (en) 1995-03-03 1997-09-02 General Electric Company Variable speed wind turbine with radially oriented gear drive
WO2002079644A1 (en) 2001-04-02 2002-10-10 Vestas Wind Systems A/S Wind turbine comprising a planetary gear
WO2003014567A1 (en) * 2001-08-03 2003-02-20 Hansen Transmissions International Nv Drive assembly
WO2003031811A2 (en) 2001-10-05 2003-04-17 Hansen Transmissions International Nv Modular wind turbine gearbox
WO2004027260A1 (de) 2002-09-13 2004-04-01 Aerodyn Engineering Gmbh Windenergieanlage mit konzentrischer getriebe-/generator-anordnung
GB2395529A (en) * 2002-11-19 2004-05-26 Hansen Transmissions Int Wind turbine with integrated rotor bearing
ES2226631T3 (es) * 1999-04-12 2005-04-01 Winergy Ag Caja de engranajes para una instalacion de energia eolica.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBZ20010043A1 (it) * 2001-09-13 2003-03-13 High Technology Invest Bv Generatore elettrico azionato da energia eolica.
US7008348B2 (en) * 2003-02-18 2006-03-07 General Electric Company Gearbox for wind turbine
US7935020B2 (en) * 2007-08-27 2011-05-03 General Electric Company Integrated medium-speed geared drive train
US7815536B2 (en) * 2009-01-16 2010-10-19 General Electric Company Compact geared drive train

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991019916A1 (en) 1990-06-09 1991-12-26 Hicks Transmissions Limited Epicyclic gear train
WO1996011338A1 (de) 1994-10-07 1996-04-18 Gerald Hehenberger Planetengetriebe für windturbine
US5663600A (en) 1995-03-03 1997-09-02 General Electric Company Variable speed wind turbine with radially oriented gear drive
ES2226631T3 (es) * 1999-04-12 2005-04-01 Winergy Ag Caja de engranajes para una instalacion de energia eolica.
WO2002079644A1 (en) 2001-04-02 2002-10-10 Vestas Wind Systems A/S Wind turbine comprising a planetary gear
WO2003014567A1 (en) * 2001-08-03 2003-02-20 Hansen Transmissions International Nv Drive assembly
WO2003031811A2 (en) 2001-10-05 2003-04-17 Hansen Transmissions International Nv Modular wind turbine gearbox
WO2004027260A1 (de) 2002-09-13 2004-04-01 Aerodyn Engineering Gmbh Windenergieanlage mit konzentrischer getriebe-/generator-anordnung
GB2395529A (en) * 2002-11-19 2004-05-26 Hansen Transmissions Int Wind turbine with integrated rotor bearing
WO2004046582A2 (en) 2002-11-19 2004-06-03 Hansen Transmissions International Nv Wind turbine gear unit with integrated rotor bearing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.L. RODRIGUEZ AMEDO; J.C. BURGOS DIAZ; S. ARNALTE GOMEZ: "Electrical Energy Propipeion Wind Systems'' (Sistemas Eoiicos de Energia Electrica", 2003
See also references of EP1900939A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101514678B (zh) * 2008-02-18 2012-07-18 美商洁能科技股份有限公司 风力驱动涡轮装置

Also Published As

Publication number Publication date
US20090309369A1 (en) 2009-12-17
CN101198790B (zh) 2011-09-21
CN101198790A (zh) 2008-06-11
US8207624B2 (en) 2012-06-26
ES2274696B1 (es) 2008-05-01
EP1900939B1 (en) 2019-07-24
EP1900939A1 (en) 2008-03-19
ES2274696A1 (es) 2007-05-16
EP1900939A4 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
WO2006134189A1 (es) Turbina eólica
ES2708452T5 (es) Sistema de transmisión de potencia de turbina eólica
ES2382678T3 (es) Engranaje eólico con reparto de potencia
JP4919524B2 (ja) 荷重伝達構成部品を有する風力タービン
RU2280786C2 (ru) Ветроэнергетическая установка (варианты)
ES2348818T3 (es) Un sistema de engranajes para una turbina eã“lica.
US7642668B2 (en) Power transmission apparatus for wind generator
ES2395133T3 (es) Tren de accionamiento entre un rotor y una tramsmisión de una instalación de energía eólica
ES2540783T3 (es) Conjunto de guiñada para uso en turbinas eólicas
KR100752510B1 (ko) 단일 메인베어링을 갖는 풍력 발전기
ES2398519T3 (es) Dispositivo de accionamiento para una turbina eólica
US7621843B2 (en) Apparatus for restraining axial movement of a ring gear in a gearbox for a wind turbine
ES2582752T3 (es) Propulsor para bote
ES2561041T3 (es) Instalación de accionamiento de hélice azimutal con altura de montaje reducida para una instalación flotante
ES2639861T3 (es) Módulo para desacoplar la energía de rotación del buje de rotor de la rueda eólica de una instalación de energía eólica
ES2322012B1 (es) Un tren de potencia mejorado de un aerogenerador.
CN103807105B (zh) 一种风轮在集风罩内位置可调的小型高效风力发电机
WO2011061363A1 (es) Un tren de potencia de un aerogenerador accionado directamente
ES2354560B1 (es) Dispositivo posicionador para captadores cilindro parabólicos y captador cilindro parabólico que incorpora dicho dispositivo posicionador
JP2005121124A (ja) ソーラーパネルを駆動するための減速装置
CA2710896C (en) Axial flow fan for external rotor
ES2927327T3 (es) Sistema de engranajes
CN103821671B (zh) 风轮在集风罩内位置可调的小型风力发电机
ES2777610T3 (es) Reductor para trituradora de agitación, trituradora y uso correspondiente
ES2612332T3 (es) Caja de engranajes para una instalación de energía eólica

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680021096.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2006778462

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006778462

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11921718

Country of ref document: US