WO2006120997A1 - Cylindrical coil and cylindrical micro-motor using the same - Google Patents
Cylindrical coil and cylindrical micro-motor using the same Download PDFInfo
- Publication number
- WO2006120997A1 WO2006120997A1 PCT/JP2006/309239 JP2006309239W WO2006120997A1 WO 2006120997 A1 WO2006120997 A1 WO 2006120997A1 JP 2006309239 W JP2006309239 W JP 2006309239W WO 2006120997 A1 WO2006120997 A1 WO 2006120997A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- cylindrical
- pattern
- nozzle array
- coil pattern
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/04—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
- H02K15/0407—Windings manufactured by etching, printing or stamping the complete coil
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
- H01F41/041—Printed circuit coils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F5/00—Coils
- H01F5/003—Printed circuit coils
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/26—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors consisting of printed conductors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0284—Details of three-dimensional rigid printed circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
- H05K3/1241—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
Definitions
- the present invention relates to a coil having a very small diameter and a fine coil pattern, and a cylindrical micromotor using the same.
- the coil is formed by winding a copper wire with an insulating coating such as polyurethane on a core provided with a slot, or a fusion layer further on the outermost layer of the insulating coated copper wire.
- an insulating coating such as polyurethane
- a self-bonded copper wire provided with a coreless coil is formed in a cup shape or a bell shape.
- Coreless coils are preferred.
- Patent Document 1 JP 2004-007938 A
- the outer diameter of the cylindrical micromotor is 1.5 mm or less, particularly 1 because the wire is basically arranged.
- the inner rotor portion composed of a cylindrical magnet 14 and a shaft 15 penetrating through the center thereof is positioned at both end openings of the cylindrical housing case 16.
- the rotor is supported by a rotating magnetic field generated by commutating and energizing a field coil 19 that is rotatably supported by a bearing 18 at the axial center position of the flange 17 and is fixedly disposed on the inner surface of the casing 16.
- a DC brushless motor 20 that rotates the part.
- the coil may interfere with the magnet, so the air gap that is the gap between the magnet 14 and the field coil 19 is increased. Must be secured. Therefore, a large magnetic gap from the inner diameter of the housing case 16 to the outer diameter of the magnet 14 must be secured. As a result, the efficiency of torque generation is reduced, making it unsuitable for small diameters.
- the smaller the motor outer diameter the smaller the air gap is, and the smaller the motor gap, the smaller the motor gap. The effect will increase.
- the present invention forms a highly accurate and fine coil pattern, and has a high accuracy cylindrical coil with excellent mechanical accuracy such as roundness, A cylindrical micromotor using the cylindrical coil is provided.
- the invention according to claim 1 is a cylindrical coil characterized in that it is formed by directly printing a coil pattern on the surface of a cylindrical substrate with a conductive nanoparticle paste using an inkjet nozzle array. Coil.
- the invention according to claim 2 is the cylindrical coil according to claim 1, wherein the cylindrical substrate surface is formed by an inkjet nozzle array with an insulating layer having a through hole and a conductive nanoparticle paste. Coil pattern layer force Coil layers printed and stacked alternately are electrically connected to each other by the conductive nanoparticle paste printed and filled in the through-hole, and the outermost layer does not form a through-hole.
- a cylindrical coil comprising an insulating layer.
- the invention according to claim 3 is the cylindrical coil according to any one of claims 1 to 2.
- the coil pattern is formed with a pattern width of 20 m or less.
- An invention according to claim 4 is a cylindrical micromotor comprising the cylindrical coil according to any one of claims 1 to 3.
- the cylindrical coil of the present invention forms a coil pattern by directly printing a conductive nanoparticle paste on the surface of a cylindrical substrate with an inkjet nozzle array, so that a fine coil pattern can be formed. It becomes.
- the conductive nanoparticles are very fine, about 5 to: LOnm. Since the nanoparticles are covered with a dispersant, they exhibit almost the same behavior as a liquid and are in the form of a paste. Heating up to a certain temperature activates the supplementary substance, chemically removes the dispersant and cures and shrinks the surrounding resin, bringing the nanoparticles into contact, accelerating fusion and fusion, and wiring. (Circuit) is formed. Therefore, the width and thickness of the circuit can be set as appropriate, and fine wiring can be formed.
- the step of rolling the sheet-like coil into a cylindrical shape can be omitted.
- the dimensional effect of the sheet coil width Z thickness decreases
- the cross-sectional shape becomes saddle-shaped (non-circular)
- the mechanical accuracy such as roundness and flare is reduced
- the wiring due to shear stress caused by the difference in the inner and outer diameters of the coil In particular, it is possible to easily prevent problems such as breaking of the vertical wiring.
- the present invention it is possible to keep the mechanical accuracy such as the roundness and flare of the coil with high accuracy. Therefore, in the configuration of the micromotor using the coil, it is possible to reduce the size and the diameter. ⁇ It is possible to reduce the air gap and magnetic gap. Therefore, the permeance coefficient is increased, and the magnetic efficiency is improved. As a result, it is possible to obtain an effect such as an improvement of the torque constant.
- the upper and lower coil patterns are electrically connected by the conductive nanoparticle paste filled in the through hole, Multi-layered cylindrical coils can be formed, the number of coils can be increased, and effects such as an improvement in torque constant can be obtained.
- the pattern width of the coil pattern of the cylindrical coil is 20 ⁇ m or less, a coil pattern finer than the manufacturing limit of the wire rod is used for a conventional wire coil. Therefore, it is possible to provide a cylindrical coil that is smaller and has a smaller diameter.
- cylindrical coil of the present invention for the cylindrical micromotor, it is possible to reduce the size and diameter of the cylindrical micromotor.
- FIG. 1 shows a schematic diagram of an inkjet nozzle array in the present invention.
- the ink jet nozzle array 1 is provided with a large number of fine discharge holes 2, and as shown in FIG. 1, the conductive nanoparticle paste 3 is discharged onto a cylindrical substrate 4 to print a coil pattern 5.
- the coil pattern can be formed by opening a part of each discharge hole and closing the others.
- the cylindrical base material 4 that is an insulating material is disposed in the vicinity of the conductive nozzle paste array 6 and the insulating layer inkjet nozzle array 7 (FIG. 2 (a)).
- an insulating layer 8 is formed on the surface of the cylindrical base material 4 and the coil pattern 5 directly printed on the cylindrical base material 4 using an insulating layer inkjet nozzle array 7. At this time, a through hole 9 is provided in a part corresponding to the coil pattern 5 (FIG. 2 (c)).
- the conductive nanoparticle paste is printed and filled in the through hole 9 using the inkjet nozzle array 6 for conductive nanoparticle paste to form the vertical wiring 10 (FIG. 2 (d)).
- a coil pattern 11 is formed on the surface of the insulating layer 8 including the vertical wiring 10 by using the conductive nanoparticle paste ink jet nozzle array 6. The coil pattern 11 is electrically connected to the coil pattern 5 by the vertical wiring 10 (FIG. 2 (e)).
- the insulating layer 12 is formed on the surface of the insulating layer 8 and the coil pattern 11 printed directly on the insulating layer 8 by using the inkjet nozzle array 7 for insulating layer. At this time, a through hole 13 is provided in a part corresponding to the coil pattern 11 (FIG. 2 (f)). This coil pattern and insulating layer printing process is repeated, but no through hole is provided in the outermost insulating layer. As described above, it is possible to form a multilayered cylindrical coil.
- the coil pattern and the insulating layer alternately on the surface of the cylindrical substrate, it becomes possible to produce a cylindrical coil with excellent mechanical accuracy.
- the laminated coil pattern is electrically connected between layers by the vertical wiring arranged in the through hole, so that three-dimensional wiring is possible, and a cylindrical coil is produced that is difficult to cause wiring, particularly vertical wiring disconnection. Is possible.
- the discharge of the conductive nanoparticle paste and the insulating layer can be divided for each inkjet nozzle array, so steps such as inkjet nozzle array cleaning can be omitted, and productivity is improved. Can be achieved.
- the inkjet method includes, for example, a thermal method in which bubbles are generated by a heating element and pressure is applied to eject ink, and a piezo method in which ink is pushed out using a piezo element that deforms when a voltage is applied.
- the method is not limited and can be appropriately selected.
- FIG. 1 is a schematic diagram of an inkjet nozzle array in the present invention.
- FIG. 2 is a schematic diagram of a coil manufacturing process of a cylindrical micromotor according to the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Windings For Motors And Generators (AREA)
- Coils Of Transformers For General Uses (AREA)
- Manufacture Of Motors, Generators (AREA)
Abstract
[PROBLEMS] To form a highly accurate and fine-structure coil pattern and to provide highly accurate cylindrical coil having an excellent mechanical accuracy such as circularity and deviation and a cylindrical micro motor using the cylindrical coil. [MEANS FOR SOLVING PROBLEMS] The cylindrical coil is formed with a cylindrical base surface on which insulation layers having a through hole and coil pattern layers formed by conductive nano particle paste are alternately printed by an ink jet nozzle array. The coil patterns overlaid are electrically connected to one another by the conductive nano particle paste filled in the through holes. The outermost layer is formed by the insulation layer having no through hole.
Description
明 細 書 Specification
円筒状コイル及びそれを用いた円筒型マイクロモータ Cylindrical coil and cylindrical micromotor using the same
技術分野 Technical field
[0001] 本発明は、極小径かつ、微細なコイルパターンを有するコイル及びそれを用いた円 筒型マイクロモータに関する。 The present invention relates to a coil having a very small diameter and a fine coil pattern, and a cylindrical micromotor using the same.
背景技術 Background art
[0002] 近年、医療機器分野、分析機器分野、マイクロマシン分野等にて、ァクチユエータ 搭載による機器の高機能化を目的とした、マイクロモータの小型化が望まれて 、る。 In recent years, in the medical device field, the analytical device field, the micromachine field, and the like, there is a demand for miniaturization of a micromotor for the purpose of enhancing the function of the device by mounting an actuator.
[0003] このマイクロモータの小型化、特に小径化に伴い、同マイクロモータに内蔵されるコ ィルの小型 ·微細化が必要不可欠となる。 [0003] With the miniaturization of the micromotor, in particular, the diameter reduction, it is indispensable to reduce the size and size of the coil built in the micromotor.
[0004] 通常、前記コイルは、スロットを設けたコアに、例えばポリウレタン等の絶縁被膜を施 した銅線を卷回して形成するか、あるいは、前記絶縁被覆銅線の最表層にさらに融 着層を設けた自己融着銅線を、カップ状あるいはベル状に形成するコアレスコイルと するのが一般的である。また、円筒型マイクロモータの小径ィ匕を考えた場合、コアの な!、コアレスコイルが好適である。 [0004] Normally, the coil is formed by winding a copper wire with an insulating coating such as polyurethane on a core provided with a slot, or a fusion layer further on the outermost layer of the insulating coated copper wire. Generally, a self-bonded copper wire provided with a coreless coil is formed in a cup shape or a bell shape. Also, when considering the small diameter of a cylindrical micromotor, it is the core! Coreless coils are preferred.
[0005] 従来より、カップ状コアレスコイルの作製にあたり、図 3に示すような、コダック方式又 はファールノ、一バー方式と呼ばれる卷線方式が採用されている。更に、消費電流を 最小限に抑え、トルク特性の向上を図るために、上記方式にて作製したコイルを並列 に複数個配置し並列コイルを形成したものがある(特許文献 1)。 [0005] Conventionally, in manufacturing a cup-shaped coreless coil, a winding method called Kodak method, Farno, or one-bar method as shown in FIG. 3 has been adopted. Furthermore, in order to minimize current consumption and improve torque characteristics, there is one in which a plurality of coils produced by the above method are arranged in parallel to form a parallel coil (Patent Document 1).
特許文献 1 :特開 2004— 007938 Patent Document 1: JP 2004-007938 A
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0006] しかしながら、自己融着銅線を用いてコアレスコイルを形成する場合、基本的に線 材を配列しながら構成するため、円筒型マイクロモータ外径が 1. 5mm以下、特に 1[0006] However, when a coreless coil is formed using self-bonding copper wire, the outer diameter of the cylindrical micromotor is 1.5 mm or less, particularly 1 because the wire is basically arranged.
. Omm以下の場合、以下のような理由でコイル形成が困難となる。 If it is less than Omm, coil formation becomes difficult for the following reasons.
[0007] 第一に、概して、コイル形成時に形が崩れる傾向にあり、真円度ゃフレ等の機械的 精度が低下する。また、自己融着銅線の製造限界から、径 0. 02mm以下の配線を
形成することが困難である。 [0007] First, generally, the shape tends to be lost during coil formation, and the mechanical accuracy such as roundness is reduced. Also, due to the production limit of self-bonded copper wire, wiring with a diameter of 0.02 mm or less It is difficult to form.
[0008] 第二に、例えば、図 4に示すように、円筒状のマグネット 14とその中心を貫通するシ ャフト 15からなるインナーロータ部を、円筒状のハウジングケース 16の両端開口部に 位置するフランジ 17の軸中心位置で軸受 18により回転自在に軸支し、これをノ、ウジ ングケース 16内周面に固定配置した界磁コイル 19に転流通電することにより発生す る回転磁界によりロータ部を回転駆動させる DCブラシレスモータ 20がある。 Secondly, for example, as shown in FIG. 4, the inner rotor portion composed of a cylindrical magnet 14 and a shaft 15 penetrating through the center thereof is positioned at both end openings of the cylindrical housing case 16. The rotor is supported by a rotating magnetic field generated by commutating and energizing a field coil 19 that is rotatably supported by a bearing 18 at the axial center position of the flange 17 and is fixedly disposed on the inner surface of the casing 16. There is a DC brushless motor 20 that rotates the part.
[0009] このとき、真円度ゃフレ等の機械的精度が低いコイルでは、コイルがマグネットに干 渉してしまう恐れがあるため、マグネット 14と界磁コイル 19の間隙であるエアギャップ を大きく確保しなければならない。よって、ハウジングケース 16内径から、マグネット 1 4外径までの磁気ギャップも大きく確保しなくてはならない。そのため、トルク発生効 率が低下し、小径ィ匕に不向きであった。また、モータ外径が小さくなればなるほど、そ れに比例して、そのエアギャップが小さくなることはなぐその加工限界から所定のェ ァギャップを確保しなければならな 、ため、小径ィ匕が進むほどその影響は大きくなつ てしまう。 [0009] At this time, in a coil with low mechanical accuracy such as roundness, the coil may interfere with the magnet, so the air gap that is the gap between the magnet 14 and the field coil 19 is increased. Must be secured. Therefore, a large magnetic gap from the inner diameter of the housing case 16 to the outer diameter of the magnet 14 must be secured. As a result, the efficiency of torque generation is reduced, making it unsuitable for small diameters. In addition, the smaller the motor outer diameter, the smaller the air gap is, and the smaller the motor gap, the smaller the motor gap. The effect will increase.
[0010] よって、本発明は、上記課題を鑑み、高精度で微細なコイルパターンを形成し、且 つ、真円度ゃフレ等、機械的精度の優れた高精度な円筒状コイル、及び、その円筒 状コイルを用いた円筒型マイクロモータを提供するものである。 [0010] Therefore, in view of the above problems, the present invention forms a highly accurate and fine coil pattern, and has a high accuracy cylindrical coil with excellent mechanical accuracy such as roundness, A cylindrical micromotor using the cylindrical coil is provided.
課題を解決するための手段 Means for solving the problem
[0011] 請求項 1記載の発明は、円筒状コイルにおいて、円筒状基材表面に、導電性ナノ 粒子ペーストをインクジェットノズルアレイによってコイルパターンを直接印刷すること によって形成されることを特徴とする円筒状コイルである。 The invention according to claim 1 is a cylindrical coil characterized in that it is formed by directly printing a coil pattern on the surface of a cylindrical substrate with a conductive nanoparticle paste using an inkjet nozzle array. Coil.
[0012] 請求項 2記載の発明は、請求項 1記載の円筒状コイルにおいて、円筒状基材表面 に、インクジェットノズルアレイによって、スルーホールを備えた絶縁層と、導電性ナノ 粒子ペーストによって形成されるコイルパターン層力 交互に複数層印刷され、積層 されたコイルパターンは、前記スルーホールに印刷充填される導電性ナノ粒子ぺー ストによって電気的に層間接続され、最表層はスルーホールを形成しな 、絶縁層で 構成されることを特徴とする円筒状コイルである。 [0012] The invention according to claim 2 is the cylindrical coil according to claim 1, wherein the cylindrical substrate surface is formed by an inkjet nozzle array with an insulating layer having a through hole and a conductive nanoparticle paste. Coil pattern layer force Coil layers printed and stacked alternately are electrically connected to each other by the conductive nanoparticle paste printed and filled in the through-hole, and the outermost layer does not form a through-hole. A cylindrical coil comprising an insulating layer.
[0013] 請求項 3記載の発明は、請求項 1〜請求項 2のいずれかに記載の円筒状コイルに
おいて、コイルパターンのパターン幅が 20 m以下で形成されることを特徴とする円 筒状コイルである。 [0013] The invention according to claim 3 is the cylindrical coil according to any one of claims 1 to 2. In this case, the coil pattern is formed with a pattern width of 20 m or less.
[0014] 請求項 4記載の発明は、請求項 1〜請求項 3のいずれかに記載の円筒状コイルを 有することを特徴とする円筒型マイクロモータである。 [0014] An invention according to claim 4 is a cylindrical micromotor comprising the cylindrical coil according to any one of claims 1 to 3.
発明の効果 The invention's effect
[0015] 本発明の円筒状コイルは、円筒状基材表面にインクジェットノズルアレイによって導 電性ナノ粒子ペーストを直接印刷することによってコイルパターンを形成するため、 微細なコイルパターンを形成することが可能となる。 [0015] The cylindrical coil of the present invention forms a coil pattern by directly printing a conductive nanoparticle paste on the surface of a cylindrical substrate with an inkjet nozzle array, so that a fine coil pattern can be formed. It becomes.
[0016] 上記導電性ナノ粒子は、約 5〜: LOnmと非常に微細で、ナノ粒子は分散剤で覆わ れているために、液体とほとんど同じ挙動を示し、ペースト状となっている。また、一定 温度まで加熱すると補足物質が活性化し、化学的に分散剤を除去するとともに周囲 の榭脂が、硬化収縮することで、ナノ粒子間を接触させ、融合'融着を加速し、配線( 回路)を形成する。そのため、回路の幅及び厚みを適宜設定可能となり、微細な配線 を形成することができる。 [0016] The conductive nanoparticles are very fine, about 5 to: LOnm. Since the nanoparticles are covered with a dispersant, they exhibit almost the same behavior as a liquid and are in the form of a paste. Heating up to a certain temperature activates the supplementary substance, chemically removes the dispersant and cures and shrinks the surrounding resin, bringing the nanoparticles into contact, accelerating fusion and fusion, and wiring. (Circuit) is formed. Therefore, the width and thickness of the circuit can be set as appropriate, and fine wiring can be formed.
[0017] また、円筒状基材表面に直接印刷することにより、シート状コイルを丸めて円筒形 状にする工程 (ローリング工程)を省略することができる。このため、微細、且つ、ァス ぺクト比の高!、円筒状コイルを作製する場合、そのシート状コイルの寸法効果(巾 Z 厚みが小さくなる)により、同シート状コイルの剛性が高まり、ローリング工程時に、そ の断面形状が雩状 (非真円状)となってしまうといった、真円度、フレ等の機械的精度 の低下や、コイル内外径の差から生じるせん断応力による、配線、特に縦配線の破 断等の不具合を容易に防止することが可能となる。 [0017] Further, by directly printing on the surface of the cylindrical substrate, the step of rolling the sheet-like coil into a cylindrical shape (rolling step) can be omitted. For this reason, when manufacturing a cylindrical coil that is fine and has a high aspect ratio, the dimensional effect of the sheet coil (width Z thickness decreases) increases the rigidity of the sheet coil, During the rolling process, the cross-sectional shape becomes saddle-shaped (non-circular), the mechanical accuracy such as roundness and flare is reduced, and the wiring due to shear stress caused by the difference in the inner and outer diameters of the coil In particular, it is possible to easily prevent problems such as breaking of the vertical wiring.
[0018] 本発明によれば、コイルの真円度、フレ等の機械的精度を高精度に保つことが可 能であるため、そのコイルを用いたマイクロモータの構成において、小型化、小径ィ匕 にあたって、エアギャップの縮小化、磁気ギャップの縮小化が可能となる。よって、パ ーミアンス係数が上昇し、磁気効率の向上が得られ、その結果、トルク定数の向上等 の効果を得ることが可能となる。 [0018] According to the present invention, it is possible to keep the mechanical accuracy such as the roundness and flare of the coil with high accuracy. Therefore, in the configuration of the micromotor using the coil, it is possible to reduce the size and the diameter.匕 It is possible to reduce the air gap and magnetic gap. Therefore, the permeance coefficient is increased, and the magnetic efficiency is improved. As a result, it is possible to obtain an effect such as an improvement of the torque constant.
[0019] また、絶縁層とコイルパターンを交互に印刷し、スルーホールに充填される導電性 ナノ粒子ペーストによって上下のコイルパターンが電気的に接続されることによって、
多層化した円筒状コイルを形成することが可能となり、コイルの卷数を増加でき、トル ク定数の向上等の効果を得ることが可能となる。 [0019] In addition, by alternately printing the insulating layer and the coil pattern, the upper and lower coil patterns are electrically connected by the conductive nanoparticle paste filled in the through hole, Multi-layered cylindrical coils can be formed, the number of coils can be increased, and effects such as an improvement in torque constant can be obtained.
[0020] 上記円筒状コイルのコイルパターンのパターン幅を 20 μ m以下で形成することによ つて、従来の卷線コイルに用いて 、た線材の製造限界よりも微細なコイルパターンを 形成することが可能となり、より小型、小径ィ匕を実現した円筒状コイルを提供すること が可能となる。 [0020] By forming the pattern width of the coil pattern of the cylindrical coil to be 20 μm or less, a coil pattern finer than the manufacturing limit of the wire rod is used for a conventional wire coil. Therefore, it is possible to provide a cylindrical coil that is smaller and has a smaller diameter.
[0021] 更には、円筒型マイクロモータに本発明の円筒状コイルを用いることによって、円筒 型マイクロモータの小型化、小径ィ匕が可能となる。 Furthermore, by using the cylindrical coil of the present invention for the cylindrical micromotor, it is possible to reduce the size and diameter of the cylindrical micromotor.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 本発明におけるインクジェットノズルアレイの概略図を図 1に示す。このインクジエツ トノズルアレイ 1には多数の微細な吐出孔 2が備えられ、図 1に示すように、導電性ナ ノ粒子ペースト 3を円筒状基材 4に吐出し、コイルパターン 5を印刷する。 FIG. 1 shows a schematic diagram of an inkjet nozzle array in the present invention. The ink jet nozzle array 1 is provided with a large number of fine discharge holes 2, and as shown in FIG. 1, the conductive nanoparticle paste 3 is discharged onto a cylindrical substrate 4 to print a coil pattern 5.
[0023] このとき、例えば図 2 (b)に示すようなコイルパターンにおいて、円筒状基材 4中心 軸方向のパターンを印刷するときは、個々の吐出孔を全て開放し、また、円筒状基材 4円周方向のパターンを印刷するときは、個々の吐出孔の一部を開放し、その他は 閉塞することにより、コイルパターンを形成することが可能となる。 [0023] At this time, when printing a pattern in the central axis direction of the cylindrical base material 4 in the coil pattern as shown in Fig. 2 (b), for example, all the discharge holes are opened, and the cylindrical base When printing a pattern in the four-circumferential direction, the coil pattern can be formed by opening a part of each discharge hole and closing the others.
[0024] また、本発明の円筒状コイルを作製する工程を、図 2 (a)〜(f)に模式的に示す。 [0024] Further, the steps for producing the cylindrical coil of the present invention are schematically shown in FIGS. 2 (a) to (f).
[0025] まず、絶縁材カ なる円筒状基材 4を導電性ナノ粒子ペースト用インクジェットノズ ルアレイ 6、絶縁層用インクジェットノズルアレイ 7の近傍に配置する(図 2 (a) )。 [0025] First, the cylindrical base material 4 that is an insulating material is disposed in the vicinity of the conductive nozzle paste array 6 and the insulating layer inkjet nozzle array 7 (FIG. 2 (a)).
[0026] 次に、この円筒状基材 4を自転させながら、前記導電性ナノ粒子ペースト用インクジ エツトノズルアレイ 6により、前記円筒状基材 4表面に導電性ナノ粒子ペーストを吐出 することにより、コイルパターン 5を直接印刷する(図 2 (b) )。 Next, while rotating the cylindrical base material 4, by discharging the conductive nanoparticle paste onto the surface of the cylindrical base material 4 by the ink jet nozzle array 6 for conductive nanoparticle paste, Coil pattern 5 is printed directly (Fig. 2 (b)).
[0027] 次に、前記円筒状基材 4表面及び前記円筒状基材 4に直接印刷された前記コイル パターン 5上に、絶縁層用インクジェットノズルアレイ 7を用いて絶縁層 8を形成する。 このとき前記コイルパターン 5に相当する箇所の一部に、スルーホール 9を設ける(図 2 (c) )。 Next, an insulating layer 8 is formed on the surface of the cylindrical base material 4 and the coil pattern 5 directly printed on the cylindrical base material 4 using an insulating layer inkjet nozzle array 7. At this time, a through hole 9 is provided in a part corresponding to the coil pattern 5 (FIG. 2 (c)).
[0028] さらに、前記スルーホール 9に導電性ナノ粒子ペースト用インクジェットノズルアレイ 6を用いて導電性ナノ粒子ペーストを印刷充填し、縦配線 10を形成する(図 2 (d) )。
[0029] 次に、前記縦配線 10を含む前記絶縁層 8表面に前記導電性ナノ粒子ペースト用ィ ンクジェットノズルアレイ 6を用いてコイルパターン 11を形成する。このコイルパターン 11は、前記縦配線 10によりコイルパターン 5と電気的に接続される(図 2 (e) )。 [0028] Further, the conductive nanoparticle paste is printed and filled in the through hole 9 using the inkjet nozzle array 6 for conductive nanoparticle paste to form the vertical wiring 10 (FIG. 2 (d)). Next, a coil pattern 11 is formed on the surface of the insulating layer 8 including the vertical wiring 10 by using the conductive nanoparticle paste ink jet nozzle array 6. The coil pattern 11 is electrically connected to the coil pattern 5 by the vertical wiring 10 (FIG. 2 (e)).
[0030] さらに、前記絶縁層 8表面及び前記絶縁層 8に直接印刷された前記コイルパターン 11上に、前記絶縁層用インクジェットノズルアレイ 7を用いて絶縁層 12を形成する。 このとき前記コイルパターン 11に相当する箇所の一部に、スルーホール 13を設けて おく(図 2 (f) )。このコイルパターンと絶縁層の印刷工程を繰り返し行うが、最表層とな る絶縁層ではスルーホールを設けない。以上より、多層化した円筒状コイルを形成す ることが可能となる。 Furthermore, the insulating layer 12 is formed on the surface of the insulating layer 8 and the coil pattern 11 printed directly on the insulating layer 8 by using the inkjet nozzle array 7 for insulating layer. At this time, a through hole 13 is provided in a part corresponding to the coil pattern 11 (FIG. 2 (f)). This coil pattern and insulating layer printing process is repeated, but no through hole is provided in the outermost insulating layer. As described above, it is possible to form a multilayered cylindrical coil.
[0031] 上記に示すように、コイルパターンと絶縁層を交互に円筒状基板表面に直接形成 することにより、機械的精度の優れた円筒状コイルを作製することが可能となり、また 、絶縁層のスルーホールに配置される縦配線により、積層されたコイルパターンが電 気的に層間接続され、立体配線が可能となり、且つ、配線、特に縦配線の断線が生 じにくい円筒状コイルを作製することが可能となる。 [0031] As described above, by forming the coil pattern and the insulating layer alternately on the surface of the cylindrical substrate, it becomes possible to produce a cylindrical coil with excellent mechanical accuracy. The laminated coil pattern is electrically connected between layers by the vertical wiring arranged in the through hole, so that three-dimensional wiring is possible, and a cylindrical coil is produced that is difficult to cause wiring, particularly vertical wiring disconnection. Is possible.
[0032] また、インクジェットノズルアレイを複数台用いることにより、導電性ナノ粒子ペースト と絶縁層の吐出をインクジェットノズルアレイ毎に分けられるので、インクジェットノズル アレイ洗浄等の工程を省略でき、生産性の向上を図ることが可能となる。 [0032] By using a plurality of inkjet nozzle arrays, the discharge of the conductive nanoparticle paste and the insulating layer can be divided for each inkjet nozzle array, so steps such as inkjet nozzle array cleaning can be omitted, and productivity is improved. Can be achieved.
[0033] このとき、インクジェットの方式は、例えば、発熱体によって気泡を発生させて圧力を 加え、インクを発射するサーマル方式と、電圧を加えると変形するピエゾ素子を使つ てインクを押し出すピエゾ方式等が考えられる力 本発明の実施形態においては、そ の方式は限定せず、適宜選定可能である。 [0033] At this time, the inkjet method includes, for example, a thermal method in which bubbles are generated by a heating element and pressure is applied to eject ink, and a piezo method in which ink is pushed out using a piezo element that deforms when a voltage is applied. In the embodiment of the present invention, the method is not limited and can be appropriately selected.
[0034] こうして得られた円筒状コイルを用いて、マイクロモータを構成することにより、より小 型化、より小径ィ匕されたマイクロモータを構成することが可能となる。 [0034] By configuring the micromotor using the cylindrical coil thus obtained, it is possible to configure a micromotor with a smaller size and a smaller diameter.
図面の簡単な説明 Brief Description of Drawings
[0035] [図 1]本発明におけるインクジェットノズルアレイの概略図 [0035] FIG. 1 is a schematic diagram of an inkjet nozzle array in the present invention.
[図 2]本発明における円筒型マイクロモータのコイル作製工程の模式図 FIG. 2 is a schematic diagram of a coil manufacturing process of a cylindrical micromotor according to the present invention.
[図 3]従来技術によるコイル作製工程を示す説明図 [Fig. 3] Explanatory drawing showing coil manufacturing process by conventional technology
[図 4]従来の DCブラシレスモータの構成を示す側断面図
符号の説明 [Figure 4] Cross-sectional side view showing the configuration of a conventional DC brushless motor Explanation of symbols
1 1
2 吐出孔 2 Discharge hole
3 導電性ナノ粒子ペースト 3 Conductive nanoparticle paste
4 円筒状基材 4 Cylindrical substrate
5, 11 コイルパターン 5, 11 Coil pattern
6 導電性ナノ粒子ペースト用インクジェットノズルアレイ 6 Inkjet nozzle array for conductive nanoparticle paste
7 絶縁層用インクジェットノズルアレイ 7 Inkjet nozzle array for insulating layer
8, 12 絶縁層 8, 12 Insulation layer
9, 13 スノレーホ一ノレ 9, 13
10 縦配線 10 Vertical wiring
14 マグネット 14 Magnet
15 シャフト 15 shaft
16 ノ、ウジングケース 16, Uzing case
17 フランジ 17 Flange
18 軸受 18 Bearing
19 界磁コイル 19 Field coil
20 DCブラシレスモータ 20 DC brushless motor
21 FPC給電部 21 FPC feeder
22 FPC保持プレート
22 FPC holding plate
Claims
請求の範囲 The scope of the claims
円筒状コイルにおいて、 In the cylindrical coil,
円筒状基材表面に、導電性ナノ粒子ペーストをインクジェットノズルアレイによって コイルパターンを直接印刷することによって形成されることを特徴とする円筒状コイル A cylindrical coil formed by directly printing a coil pattern on a surface of a cylindrical substrate with a conductive nanoparticle paste using an inkjet nozzle array
請求項 1記載の円筒状コイルにおいて、 The cylindrical coil according to claim 1,
円筒状基材表面に、インクジェットノズルアレイによって、スルーホールを備えた絶 縁層と、導電性ナノ粒子ペーストによって形成されるコイルパターン層力 交互に複 数層印刷され、積層されたコイルパターンは、前記スルーホールに印刷充填される 導電性ナノ粒子ペーストによって電気的に層間接続され、最表層はスルーホールを 形成しな ヽ絶縁層で構成されることを特徴とする円筒状コイル。 On the surface of the cylindrical substrate, an insulating layer with through-holes is formed by an inkjet nozzle array, and a coil pattern layer force formed by a conductive nanoparticle paste. A cylindrical coil, wherein the through-holes are electrically connected to each other by a conductive nanoparticle paste, and the outermost layer is formed of an insulating layer without forming a through-hole.
請求項 1〜請求項 2の 、ずれかに記載の円筒状コイルにお!、て、 In the cylindrical coil according to claim 1 to claim 2,!
コイルパターンのパターン幅が 20 μ m以下で形成されることを特徴とする円筒状コ ィル。 A cylindrical coil characterized in that the pattern width of the coil pattern is 20 μm or less.
請求項 1〜請求項 3のいずれかに記載の円筒状コイルを有することを特徴とする円 筒型マイクロモータ。
A cylindrical micromotor comprising the cylindrical coil according to any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007528265A JPWO2006120997A1 (en) | 2005-05-11 | 2006-05-08 | Cylindrical coil and cylindrical micromotor using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005138257 | 2005-05-11 | ||
JP2005-138257 | 2005-05-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006120997A1 true WO2006120997A1 (en) | 2006-11-16 |
Family
ID=37396505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/309239 WO2006120997A1 (en) | 2005-05-11 | 2006-05-08 | Cylindrical coil and cylindrical micro-motor using the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2006120997A1 (en) |
WO (1) | WO2006120997A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008244277A (en) * | 2007-03-28 | 2008-10-09 | Nec Corp | Semiconductor device and manufacturing method therefor |
WO2014061354A1 (en) * | 2012-10-16 | 2014-04-24 | オリンパス株式会社 | Optical fiber scanning apparatus, method for driving optical fiber scanning apparatus, and optical scanning endoscope |
JP2015136831A (en) * | 2014-01-21 | 2015-07-30 | トヨタ自動車株式会社 | Method of producing stator |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61180560A (en) * | 1985-02-01 | 1986-08-13 | Kangiyou Denki Kiki Kk | Dc brushless micromotor |
JPH1189205A (en) * | 1997-09-01 | 1999-03-30 | Kokusan Denki Co Ltd | Motor with high frequency power-generator |
WO2002089157A1 (en) * | 2001-04-27 | 2002-11-07 | Ajinomoto Co., Inc. | Multilayer coil and its manufacturing method |
JP2004268449A (en) * | 2003-03-10 | 2004-09-30 | Yokogawa Electric Corp | Printer for board |
JP2005081159A (en) * | 2003-09-04 | 2005-03-31 | Ricoh Co Ltd | Apparatus for manufacturing functional substrate and manufactured functional substrate |
JP2005093814A (en) * | 2003-09-18 | 2005-04-07 | Harima Chem Inc | Method for forming multilayer wiring pattern |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07326845A (en) * | 1994-06-01 | 1995-12-12 | Fuji Xerox Co Ltd | Direct lithography device |
-
2006
- 2006-05-08 WO PCT/JP2006/309239 patent/WO2006120997A1/en active Application Filing
- 2006-05-08 JP JP2007528265A patent/JPWO2006120997A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61180560A (en) * | 1985-02-01 | 1986-08-13 | Kangiyou Denki Kiki Kk | Dc brushless micromotor |
JPH1189205A (en) * | 1997-09-01 | 1999-03-30 | Kokusan Denki Co Ltd | Motor with high frequency power-generator |
WO2002089157A1 (en) * | 2001-04-27 | 2002-11-07 | Ajinomoto Co., Inc. | Multilayer coil and its manufacturing method |
JP2004268449A (en) * | 2003-03-10 | 2004-09-30 | Yokogawa Electric Corp | Printer for board |
JP2005081159A (en) * | 2003-09-04 | 2005-03-31 | Ricoh Co Ltd | Apparatus for manufacturing functional substrate and manufactured functional substrate |
JP2005093814A (en) * | 2003-09-18 | 2005-04-07 | Harima Chem Inc | Method for forming multilayer wiring pattern |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008244277A (en) * | 2007-03-28 | 2008-10-09 | Nec Corp | Semiconductor device and manufacturing method therefor |
WO2014061354A1 (en) * | 2012-10-16 | 2014-04-24 | オリンパス株式会社 | Optical fiber scanning apparatus, method for driving optical fiber scanning apparatus, and optical scanning endoscope |
JP2014081484A (en) * | 2012-10-16 | 2014-05-08 | Olympus Corp | Optical fiber scanning device, driving method for optical fiber scanning device, and optical scanning type endoscope |
JP2015136831A (en) * | 2014-01-21 | 2015-07-30 | トヨタ自動車株式会社 | Method of producing stator |
Also Published As
Publication number | Publication date |
---|---|
JPWO2006120997A1 (en) | 2008-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006126662A1 (en) | Tubular coil and tubular micromotor employing it | |
EP0725450B1 (en) | Laminated piezoelectric element and vibration wave actuator | |
JP3387486B2 (en) | INK JET RECORDING APPARATUS AND MANUFACTURING METHOD THEREOF | |
JP4896542B2 (en) | Pattern film manufacturing method | |
US7364275B2 (en) | Piezoelectric actuator of an ink-jet printhead and method for forming the same | |
US20050285470A1 (en) | Laminate coil and brushless motor using same | |
US20020096488A1 (en) | Method for fabricating a micro-electro-mechanical fluid ejector | |
JP4917632B2 (en) | Method for producing components for passive electronic devices and components obtained thereby | |
JPH06334236A (en) | Manufacture of multilayer piezoelectric/electrostrictive actuator | |
JP4418810B2 (en) | ROTOR, VIBRATION MOTOR HAVING THE SAME, AND ROTOR MANUFACTURING METHOD (ROTOR, VIBRATIONMOTORHAVINGTHEMEANDFABRICATINGMETHODTHETHEFOR) | |
JPWO2002089157A1 (en) | Multilayer coil and method of manufacturing the same | |
WO2006120997A1 (en) | Cylindrical coil and cylindrical micro-motor using the same | |
US7071805B2 (en) | Multilayer ceramic coil and motor using the same | |
JPH10248224A (en) | Motor for hard disk drive | |
JP2013081327A (en) | Stator for motor and manufacturing method of the same | |
JP2005022909A (en) | Green sheet, its producing method, multilayer piezoelectric body, piezoelectric actuator, and inkjet recording head | |
JP5365768B2 (en) | Cylindrical coil, cylindrical micromotor, and manufacturing method of cylindrical coil | |
JP2006187188A (en) | Piezoelectric actuator and liquid discharge apparatus | |
KR100850716B1 (en) | Image forming element and manufacturing method thereof | |
JP2011212944A (en) | Liquid discharging head and method of manufacturing the same | |
JP2004336981A (en) | Piezoelectric actuator and ink jet recording head | |
JP4348418B2 (en) | Piezoelectric actuator and inkjet recording head | |
CN100459204C (en) | Electro-active actuator | |
JP2000183413A (en) | Displacement element and its manufacture | |
TWI324981B (en) | Micro-electromechanical device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007528265 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06746070 Country of ref document: EP Kind code of ref document: A1 |