[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006118346A1 - 固体高分子型燃料電池用の疎水性触媒層及びその製造方法、固体高分子型燃料電池及びその製造方法 - Google Patents

固体高分子型燃料電池用の疎水性触媒層及びその製造方法、固体高分子型燃料電池及びその製造方法 Download PDF

Info

Publication number
WO2006118346A1
WO2006118346A1 PCT/JP2006/309356 JP2006309356W WO2006118346A1 WO 2006118346 A1 WO2006118346 A1 WO 2006118346A1 JP 2006309356 W JP2006309356 W JP 2006309356W WO 2006118346 A1 WO2006118346 A1 WO 2006118346A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
hydrophobic
catalyst
fuel cell
polymer electrolyte
Prior art date
Application number
PCT/JP2006/309356
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Yamada
Kazuya Miyazaki
Original Assignee
Canon Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kabushiki Kaisha filed Critical Canon Kabushiki Kaisha
Priority to EP06732508.4A priority Critical patent/EP1879249B1/en
Priority to CA2605342A priority patent/CA2605342C/en
Priority to BRPI0608135-5A priority patent/BRPI0608135A2/pt
Publication of WO2006118346A1 publication Critical patent/WO2006118346A1/ja
Priority to US13/799,970 priority patent/US8722220B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8867Vapour deposition
    • H01M4/8871Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a hydrophobic catalyst layer for a polymer electrolyte fuel cell and a production method thereof, a solid polymer fuel cell and a production method thereof.
  • the polymer electrolyte fuel cell is expected as a future energy generator due to its high energy conversion efficiency, cleanliness, and quietness.
  • solid polymer fuel cells have high energy density and low operating temperature. In recent years, they have been used not only for power supplies such as automobiles and household generators, but also for mobile phones, laptop computers, digital cameras, etc. Power supply applications such as small electricity are also being considered. Solid polymer fuel cells are attracting attention because they may be able to be driven for a longer time than conventional secondary batteries.
  • Polymer electrolyte fuel cell while having the advantage of operating temperatures can be driven even less 1 oo D c, perforated with the passage of power generation time voltage gradually drops, the problem that the final power generation is stopped is doing.
  • a method of hydrophobizing the catalyst layer a method of mixing a fluorine resin-based fine particle powder such as polytetrafluoroethylene (PTFE) as a hydrophobic agent together with a solvent or a surfactant when forming the catalyst layer is used.
  • PTFE polytetrafluoroethylene
  • JP-A-2001-76734 discloses a method of mixing fine particles made of dimethylpolysiloxane in addition to fluorine-based resin fine particles.
  • JP-A-2001-76734 discloses that the hydrophobic fine particles have the same particle size as that of the carbon carrier particles and preferably 10 ⁇ m or less.
  • Japanese Patent Application Laid-Open No. 2006-49278 and Japanese Patent Publication No. 200 1-5 1 959 disclose a method of forming a catalyst layer for a fuel cell using a sputtering method or an ion plating method.
  • hydrophobic fine particles such as those described in JP-A No. 20 1-7 6 7 3 4, have neither conductivity nor proton conductivity, and together with catalyst particles, electrolytes, carrier particles, and the like. Mixed and randomly distributed.
  • the diameter of the fluororesin-based hydrophobic fine particles that have been widely used in the past is about 100 nm to several 100 m, and the diameter of the secondary aggregated particles is even larger.
  • the hydrophobic particles described in JP-A No. 20 0 1-7 6 7 3 4 were also about 10 ⁇ which was the same as the carbon carrier particles.
  • hydrophobic particles have such a particle size: In principle, it is impossible to hydrophobize the inside of the voids smaller than 100 nm in the catalyst layer (hereinafter referred to as “micro voids”). In this case, since the inside of the Miku mouth gap remains hydrophilic, if the outside of the micro gap is hydrophobized by large hydrophobic particles, the generated water may be confined in the Miku mouth gap. As a result, there was a problem that local flooding occurred in the micro voids and the catalyst utilization rate was lowered.
  • the conventional hydrophobic agent is granular, if the size of the hydrophobic fine particles is the same as the size of the voids, the voids are blocked by the hydrophobic fine particles, and the air permeability of the reaction gas is reduced. . As a result, the reaction in the voids stopped, and as a result, the catalyst utilization rate was lowered. As described above, the conventional technology has a problem that the catalyst utilization rate is lowered at the same time although the hydrophobicity is imparted to the catalyst layer incompletely.
  • the voltage of the fuel cell in the high current density region has been improved compared to the case where no hydrophobicity is imparted, but the voltage has decreased in the low current density region.
  • the pore size of the catalyst layer is about several hundred nm, which is smaller than the hydrophobic fine particles.
  • the present invention has been made in view of the circumstances as described above, and is a solid polymer type that effectively imparts hydrophobicity to the micropores in the catalyst layer, and at the same time, improves the effective surface area and the catalyst utilization rate.
  • a hydrophobic catalyst layer for a fuel cell is provided.
  • the present invention can also improve the hydrophobicity and the effective surface area of a catalyst layer formed by a sputtering method.
  • the present invention provides a polymer electrolyte fuel cell having stable power generation characteristics at a low cost by using the hydrophobic catalyst layer imparted with the hydrophobic property.
  • the present invention has been made to solve the above-described problems.
  • the present invention provides a catalyst layer for a solid polymer fuel cell comprising a catalyst, a hydrophobic agent, and a proton conductive electrolyte.
  • the catalyst is a dendritic catalyst formed by reducing platinum oxide
  • the hydrophobic agent comprises a compound having a Si atom, an O atom and a hydrophobic substituent, Hydrophobic for polymer electrolyte fuel cells, wherein the atomic ratio S i / P t of S i in the hydrophobic agent and P t in the catalyst is 0.15 or more and 0.25 or less It is a reactive catalyst layer.
  • the hydrophobic agent is preferably composed of a siloxane polymer having a hydrophobic substituent.
  • the hydrophobic agent is preferably made of alkylsiloxane.
  • the present invention provides a step of bringing a Si compound containing a hydrophobic substituent into contact with the platinum oxide, which generates a polymerizable group by causing a hydrolysis reaction by the catalytic action of a platinum oxide compound, It comprises a step of causing a Si compound to undergo a polymerization reaction in the vicinity of the platinum oxide, thereby generating the hydrophobic agent on the surface of the platinum oxide, and a step of subsequently reducing the platinum oxide.
  • This is a method for producing a hydrophobic catalyst layer for a polymer electrolyte fuel cell.
  • the S compound includes 2, 4, 6, 8-tetraalkylcyclotetrasiloxane, 1, 1, 1, 3, 3, 3, monohexanolealkyldisilazane, monoalkyl silane, dialkyl silane It is preferably at least one compound or mixture selected from the group consisting of trialkylsilanes.
  • the present invention also provides a polymer electrolyte fuel cell having the hydrophobic catalyst layer.
  • the hydrolysis and polymerization reaction of the Si compound containing a hydrophobic substituent is initiated on the surface of the platinic acid hydrate, thereby sparse in the catalyst layer pores including the inside of the pores of the mixture.
  • the hydrophobic agent is generated by polymerization reaction in the catalyst layer pores from Si 'compound molecules that are smaller than the microvoids, so that hydrophobicity is also imparted inside the microvoids of 1 OO nm or less, which has been difficult in the past. can do.
  • the present invention also provides a polymer electrolyte fuel cell having stable characteristics at a low cost by using the catalyst layer with improved dispersibility of the generated water. - Furthermore, a polymer electrolyte fuel cell having stable characteristics can be provided at a low cost. Furthermore, according to the present invention, the contact area between the catalyst and the electrolyte, that is, the effective surface area that can contribute to the catalytic reaction can be improved, and therefore the catalyst utilization rate can be improved.
  • the present invention also provides a polymer electrolyte fuel cell having stable power generation characteristics at low cost by using the above-mentioned catalyst with improved water dissipation and catalyst utilization rate (hereinafter referred to as “hydrophobic catalyst”).
  • hydrophobic catalyst water dissipation and catalyst utilization rate
  • the method for producing a catalyst layer of the present invention can realize a catalyst layer for a polymer electrolyte fuel cell at low cost by a simple, inexpensive and reproducible process.
  • the present invention can provide a polymer electrolyte fuel cell having stable power generation characteristics at a low cost by using the hydrophobic catalyst cage provided with the hydrophobic property.
  • FIG. 1 is a schematic view showing the structure of a single cell of a polymer electrolyte fuel cell using the hydrophobic catalyst layer of the present invention.
  • FIG. 2 is a schematic diagram showing an example of a hydrophobic catalyst in the hydrophobic catalyst layer of the present invention.
  • Fig. 3 is a schematic diagram of an evaluation apparatus for a polymer electrolyte fuel cell. .
  • FIG. 4 is a scanning electron micrograph (magnification 2500 ⁇ ) of the surface of the hydrophobic catalyst layer of Example 1 of the present invention.
  • FIG. 5 is a scanning electron micrograph (magnification: 20,000 times) of the surface of the hydrophobic catalyst layer of Example 1 of the present invention.
  • FIG. 6 is a scanning electron micrograph (magnification: 100,000 times) of the surface of the hydrophobic catalyst layer of Example 1 of the present invention.
  • FIG. 7 is a graph showing the characteristics of the polymer electrolyte fuel cells of Example 1 and Comparative Example 1 of the present invention.
  • FIG. 8 is a graph showing a change with time in voltage at an output current density of 600 mA / cm 2 in the polymer electrolyte fuel cells of Example 1 and Comparative Example 1 of the present invention.
  • FIG. 9 is a graph showing the characteristics of the polymer electrolyte fuel cells of Example 2 and Comparative Example 1 of the present invention.
  • FIG. 10 is a graph showing a change with time of voltage at an output current density of 500 mA / cm 2 in the polymer electrolyte fuel cells of Example 2 and Comparative Example 1 of the present invention.
  • FIG. 11 is a graph showing characteristics of solid polymer fuel cells of Example 3 and Comparative Examples 2 to 5 and 7 to 8 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic view showing an example of a cross-sectional configuration of a single fuel cell using the hydrophobic catalyst layer for a solid polymer fuel cell of the present invention (hereinafter abbreviated as “hydrophobic catalyst layer”).
  • reference numeral 1 denotes a solid polymer electrolyte membrane, and a pair of catalyst layers, that is, a catalyst layer 2 on the anode side and a catalyst layer 3 on the cathode side are arranged.
  • the hydrophobic catalyst layer of the present invention is disposed only on the force sword (air electrode) side, but the arrangement configuration of the catalyst layer is not limited to this.
  • the hydrophobic catalyst layer of the present invention may be disposed on both electrodes or only on the anode side.
  • the cathode side catalyst layer 3 includes a hydrophobic catalyst 4 and a catalyst carrier 5 that supports the hydrophobic catalyst 4.
  • a force sword side gas diffusion layer: 7 and a force sword side electrode (air electrode) 9 are arranged outside the catalyst layer 3 on the force sword side.
  • an anode side gas diffusion layer 6 and an anode side electrode (fuel electrode) 8 are arranged on the outside of the catalyst layer 2 on the anode side.
  • a perfluorocarbon polymer having a sulfonic acid group can be suitably used as the solid polymer electrolyte membrane 1.
  • perfluorosulfonic acid polymer is naphthion (registered trademark, manufactured by DuPont).
  • the electrolyte membrane When proton H + moves in the electrolyte membrane toward the force sword side, the electrolyte membrane also has a function of holding water molecules because it often moves in the hydrophilic part of the electrolyte using water molecules as a medium. It is preferable. '
  • the solid polymer electrolyte membrane functions as follows: Proton H + generated on the anode side is transmitted to the force sword side and unreacted reaction gases (hydrogen and oxygen) do not pass through it. Preferably there is. Any material having such functions can be selected and used for the polymer electrolyte membrane in consideration of various conditions.
  • the gas diffusion layers 6 and 7 preferably have the following functions.
  • the function is to supply fuel gas or air uniformly and sufficiently to the electrode reaction region in the catalyst layer of the fuel electrode or air electrode. It also has a function of releasing the charge generated by the electrode reaction to the outside of the single cell. In addition, it is a function that efficiently discharges reaction product water and unreacted gas to the outside of the single cell.
  • a porous body having electron conductivity such as carbon cloth or carbon paper, can be preferably used.
  • the expected roles of the catalyst carrier 5 include improving the catalytic activity as a co-catalyst, maintaining the shape of the hydrophobic catalyst 4 ′, securing the electron conduction channel, and increasing the specific surface area.
  • a carbon black layer or a gold fine particle layer can be preferably used as the catalyst carrier.
  • the hydrophobic catalyst 4 is composed of a catalyst 11, a hydrophobic agent 1 2, and an electrolyte 1 3, and the hydrophobic agent 1 2 also enters the micro voids 14 in the catalyst layer.
  • the electrolyte 1 3 is formed after forming the hydrophobic agent 1 2 on the catalyst 1 1, the electrolyte 1 3 is also covered on the hydrophobic agent 1 2 as shown in FIG. There are places.
  • the hydrophobic agent 12 is an amount such that the atomic ratio of Pt in the catalyst 11 and Si contained in the hydrophobic agent 12 is in the range of 0.15 or more and 0.25 or less. Preferably, the amount is in the range of 0.18 or more and 0.22 or less.
  • the catalyst 11 is composed of an aggregate of platinum nanoparticles obtained by reducing platinum oxide, and has a dendritic shape. ⁇
  • dendritic in this specification refers to a structure in which a large number of flake-like structures composed of contact particles are gathered with branch points.
  • the one flake-like structure preferably has a short-side length of 5 nm or more and 200 nm or less.
  • the “length in the short direction” here means the smallest dimension in the plane of one flake.
  • the platinum nanoparticles having a diameter of about 3 to 20 nm are preferable because of their high catalytic activity, and those having a diameter of 3 to 10 nm are particularly preferable because of their large surface area.
  • the catalytic activity becomes low, and the performance of the fuel cell may be reduced.
  • the method for producing a hydrophobic catalyst layer according to the present invention comprises contacting a platinum compound with an Si compound containing a hydrophobic substituent, which generates a polymerizable group by a catalytic action of platinum oxide and generates a polymerizable group.
  • the step of bringing the Si compound into contact with the platinum oxide after the reduction step it is not preferable to perform the step of bringing the Si compound into contact with the platinum oxide after the reduction step. If the reduced platinum and the Si compound are reversed, the hydrolysis reaction proceeds rapidly, so that excess alkylsiloxane is generated in the catalyst layer, resulting in poor adhesion to the electrolyte membrane. Or the pores in the catalyst layer are blocked. Further, the step of bringing the Si compound into contact with the platinic acid salt is preferably between 3 and 30 minutes. If the contact time is too short, sufficient effects may not be obtained. • If the contact time is too long, excessive alkylsiloxane may be generated, resulting in poor adhesion to the electrolyte membrane or blocking the pores in the catalyst layer, which may reduce the output of the fuel cell. is there.
  • the catalyst 11 has a dendritic shape, and the porosity of the catalyst layer increases. More preferred.
  • the term “diacid-platinum” includes not only chemical formula P to 2 but also chemical formula P tOx (X> 2). Even if a compound represented by the chemical formula P tOx (X> 2) is used, the effect of the present invention can be obtained by the production method of the present invention. .
  • the hydrophobic substituent used in the present invention is an alkyl group (the carbon chain may be branched or may have a double bond. In either case, the hydrogen atom is a halogen atom. As an example, a methyl group may be preferably used.
  • the Si compounds containing the hydrophobic substituents are 2, 4, 6, 8-tetraalkylcyclotetrasiloxane, 1, 1, 1, 3, 3, 3-hexaalkyldisilazane, monoalkylsilane.
  • a compound or a mixture selected from dialkylsilane and trialkylsilane is preferable.
  • the above si compound undergoes a hydrolysis reaction upon contact with a metal or the like to generate a si-OH group, and therefore, a dehydration condensation polymerization reaction between Si-OH groups occurs, resulting in a Si atom, o atom, and hydrophobicity. It is generally known to produce siloxane polymers having substituents. Here, when the hydrophobic substituent in the Si compound is an alkyl group, an alkylsiloxane polymer is produced.
  • the production method of the present invention utilizes this phenomenon.
  • an appropriate amount of an alkylsiloxane polymer is produced in the catalyst layer, which is effectively hydrophobic. Can be granted. :
  • the dehydration condensation polymerization reaction of Si and H groups proceeds even at room temperature, it is more preferable to add an operation of heating the catalyst layer after the formation of the hydrophobic agent.
  • the hydrophobicity can be further improved by polymerizing unpolymerized Si—OH groups in the hydrophobic agent by heating. .
  • the temperature at the time of the heat treatment is preferably about a temperature at which the hydrophobic substituent and the material in the catalyst layer are not thermally decomposed, and more preferably 200 ° C. or lower.
  • the hydrophobic catalyst 4 of the present invention is characterized in that the proton adsorption area on the catalyst surface, that is, the effective surface area is large and the catalyst utilization rate is high as compared with the case where the hydrophobic treatment is not performed.
  • a proton conductive electrolyte in the catalyst layer by adding a perfluorosulfonic acid polymer solution after forming the hydrophobic agent. More preferably, the proton conducting electrolyte is formed after the reduction of the platinum oxide.
  • the entanglement between the spherical aqueous part of the electroangular molecule and the water-repellent agent is increased.
  • the wettability between the catalyst surface portion not in contact with the hydrophobic agent and the hydrophilic portion of the proton conducting electrolyte molecule is relatively improved, so that the effective surface area is desensitized in the hydrophobic catalyst 4. It is preferable to be larger than the catalyst which is not.
  • Examples of the method for producing the hydrophobic catalyst layer of the present invention include various methods. Taking the case of the configuration shown in FIG. 1 as an example, an example will be described below. In addition, this invention is not limited to the following manufacturing method at all.
  • PTFE polytetrafluoroethylene
  • Au as a catalyst carrier was formed by electron beam evaporation.
  • a porous platinic acid catalyst layer is formed by reactive sputtering.
  • 'Hydrophobic agent is formed on the catalyst surface by contacting the catalyst layer obtained in (1) above with the gas of the Si compound containing the spherical aqueous substituent. Thereafter, the polymerization reaction of the hydrophobic agent may be promoted by heating.
  • this platinum oxide layer is reduced by hydrogen to produce porous platinum.
  • a Z gold catalyst layer is obtained. After that, an appropriate amount of Nafion IPA solution (5 wt%, manufactured by Wako Pure Chemical Industries, Ltd.), a proton conductive electrolyte, was dropped on the resulting catalyst layer, and then the solvent was volatilized in the middle. A proton path is formed on the catalyst surface.
  • Nafion IPA solution 5 wt%, manufactured by Wako Pure Chemical Industries, Ltd.
  • a platinum-supported carbon catalyst layer is formed on a PTFE sheet using a doctor blade.
  • the thickness of the catalyst layer is preferably in the range of 20 to 40 ⁇ m.
  • the catalyst slurry used here is a mixture of platinum-supported carbon (manufactured by Jhons on Matthey, Hi SPEC4000), Nafion, PTFE, IPA (isopropyl alcohol), and water.
  • Hot pressing is performed by sandwiching the solid polymer electrolyte membrane (manufactured by DuPont, Nafion 112) with the pair of catalyst layers prepared as described above with the PTFE sheet facing outward. Further, by peeling the PTFE sheet, the pair of catalyst layers are transferred to the solid polymer electrolyte membrane, and the electrolyte membrane and the pair of catalyst layers are joined to form a membrane-electrode assembly (hereinafter abbreviated as “MEA”). Get.
  • MEA membrane-electrode assembly
  • the method for producing a catalyst layer according to the present invention is not limited to the solid polymer fuel cell having a single cell configuration, and can also be applied to a solid polymer fuel cell having a configuration in which a plurality of single cells are stacked. ⁇ - Example .
  • This example shows the production of a polymer electrolyte fuel cell having the configuration shown in FIG. 1 in the embodiment.
  • a gold thin film having a thickness of 5 Onm was formed on a PTFE sheet (Nitto Denko, Nitofon) by electron beam vacuum deposition.
  • a porous platinum oxide layer was formed to a thickness of 2 m by reactive sputtering. Reactive sputtering was performed under the conditions of ⁇ J £ 5Pa, oxygen flow ratio (Q 02 Z (Q ⁇ + Q) 70%, substrate temperature 25 ° C, RF input power 5.4 WZ cm 2 .
  • this porous platinum oxide layer was contacted with a vapor (partial pressure 0.05 Pa) of 2, 4, 6, 8—tetramethylcyclotetrasiloxane (hereinafter referred to as “TMCTS”) at 25 ° C for 30 minutes.
  • TCTS 2, 4, 6, 8—tetramethylcyclotetrasiloxane
  • a methyl cyclohexane polymer was formed on the platinum oxide surface.
  • heat treatment was carried out at 180 ° C in the atmosphere for 3 hours to promote condensation polymerization of unpolymerized S i -OH groups.
  • the obtained catalyst layer was subjected to a reduction treatment in 2% H 2 / He atmosphere 0. IMP a for 30 minutes to obtain a porous platinum catalyst layer on the PTFE sheet.
  • the amount of Pt supported was 0.85 mg / cm 2 .
  • the equilibrium contact angle of the catalyst layer with respect to water was 138 °, and the surface of the catalyst layer was hydrophobic.
  • FIGS. 4 to 6 the presence of methylsiloxane polymer in the catalyst layer was confirmed with a scanning electron microscope.
  • the dark spots are methylsiloxane polymer produced on the catalyst.
  • Fig. 6 it can be seen that the methyl siloxane polymer has also entered the micro pores of 10 Onm or less in the catalyst layer. '
  • methylsiloxane polymer shown in FIG. 6 has a relatively large portion close up in the entire catalyst layer so that the gist of the present invention can be easily understood. There were many polymers with a size of several tens of nm.
  • the portions other than the variegated portion in FIG. 5 show a dendritic catalyst, and a large number of flake-like structures are gathered with branch points.
  • the flakes were aggregates of platinum particles with a diameter of about 5 to 10 nm.
  • a platinum-supported carbon catalyst layer was prepared as a catalyst layer to be paired with the catalyst layer prepared in (Step 3) above.
  • a platinum-supported carbon catalyst layer was formed on a PTFE sheet as a transfer layer to the polymer electrolyte membrane using a doctor blade.
  • the catalyst slurry used here is a mixture of platinum-supported carbon (manufactured by Jhons on Ma'tthey, Hi SPEC4000), Na fion, IPA, and water. The amount of Pt supported at this time was 0.35 mg Z cm 2 .
  • a solid polymer electrolyte membrane (Dupont Na fi on ll 2) is sandwiched between the two catalyst layers prepared in (Step 3) and (Step 4) above, and the pressing conditions are 8 MPa, 150 ° C, 1 min. A hot press was performed. Peel off the PTFE sheet Thus, the pair of catalyst layers was transferred to the polymer electrolyte membrane, and the electrolyte membrane and the pair of catalyst layers were joined.
  • the hydrophobic catalyst layer of the present invention is the force sword side, the platinum-supported carbon catalyst layer is the 'anode side, and this joined body is a carbon cloth (E-TEK LT-1400W) as a gas diffusion layer, and the fuel electrode A single cell was formed by sandwiching it in the order shown in Fig. 1 with the air electrode.
  • the evaluation was performed using the evaluation apparatus having the configuration shown in FIG.
  • the cathode electrode was filled with hydrogen gas at the dead end, the cathode electrode was opened to the air and tested at a battery temperature of 80 ° C, the current-miE characteristics shown in Fig. 9 were obtained. It was.
  • FIG. 7 shows an example in which a catalyst layer prepared in the same manner as in Example 1 was used as Comparative Example 1 except that (Step 2) was omitted.
  • the amount of Pt supported on this catalyst layer was 0.85 mgZcm 2 as in Example 1.
  • the equilibrium contact angle with respect to the catalyst layer water in Comparative Example 1 was 6.3 °, and the surface of the catalyst layer was hydrophilic.
  • t ratio is 0 and i—o
  • Example 1 force S was 12.3 mAZ cm 2 , whereas in Comparative Example 1, it was 7.6 mA “cm 2 . Furthermore, when the specific activity of the catalyst obtained by dividing this by the amount of Pt supported was compared, Example 1 was 14.5 AZg, while Comparative Example 1 was 8.9 A / g.
  • Example 1 was significantly less deteriorated in battery characteristics due to activation polarization than the catalyst layer of Comparative Example 1. This result indicates that the methylsiloxane polymer of Example 1 does not inhibit the redox reaction on the catalyst surface, but rather improves the activity of the catalyst layer. As described later, the effective surface area of the catalyst layer increased. It is thought that.
  • the single cell of Example 1 can take a voltage of 0.4 2 V or more, whereas Comparative Example 1 has a voltage of about 0.3 V. That is, the catalyst layer of Example 1 was significantly less inferior in battery characteristics due to diffusion polarization than the catalyst layer of Comparative Example 1. This indicates that the hydrophobic catalyst layer of Example 1 is superior to the catalyst layer of Comparative Example 1 in terms of water dissipation.
  • Fig. 8 shows the time variation of the voltage when the single cell of Example 1 is subjected to continuous power generation at a current density of 600 mA / cm 2 together with the result of the single cell of Comparative Example 1.
  • H + adsorption area per unit electrode area that is, the effective surface area was measured.
  • the effective surface area per electrode unit area of the catalyst layer of Example 1 was 2 82 cm 2
  • the effective surface area of the catalyst layer of Comparative Example 1 was 20 8 cm 2 .
  • the hydrophobized catalyst layer of Example 1 has an effective surface area increased by 30% or more while maintaining the same platinum loading, and the utilization rate of hornworm media is greatly improved. It was.
  • the configuration of the polymer electrolyte fuel cell shown in FIG. 1 in the embodiment was produced by the catalyst layer of the present invention and the manufacturing method thereof.
  • PTFE sheet As a transfer layer to the polymer electrolyte membrane, PTFE sheet (Nitto Denko, Nittofu mouth A gold thin film was formed to a thickness of 50 nm by electron beam vacuum deposition. A porous platinum oxide layer with a thickness of 2 ⁇ m was formed by reactive sputtering. Reactive sputtering was performed under the conditions of ⁇ JE5Pa, oxygen flow rate ratio (Q 02 / (Q ⁇ + Q 02 )) 70%, substrate temperature 25 ° C, and RF input power 5.4 WZ cm 2 .
  • this porous platinum oxide layer was irradiated with 1,1,1,3,3,3-hexamethyldisilazane vapor (partial pressure 105 h Pa) at 50 ° C for 10 minutes while irradiating with ultraviolet rays.
  • a methylsiloxane polymer film was formed on the platinum oxide surface.
  • heat treatment was performed in the atmosphere at 180 ° C for 3 hours to promote condensation polymerization of unpolymerized Si—OH groups.
  • -Subsequent steps ((Step 3) Kazu et al. (Step 6)) were performed in the same manner as in Example 1 to form a single cell.
  • the supported amount was 0.8 SiigZcm 2 .
  • the equilibrium contact angle of the catalyst layer with water was 138 °, and the surface of the catalyst layer was hydrophobic.
  • the S i / P t ratio was 0.18.
  • Example 2 when comparing the current density in the reaction-controlling region of 0.9 V, Example 2 was 14.9 mAZ cm 2 , while Comparative Example 1 was 7.6 mA / cm 2 . Furthermore, when the specific activity of the catalyst obtained by dividing this by the amount of Pt supported was compared, Example 2 was 17.5 AZg, while Comparative Example 1 was 8.9 AZg.
  • the catalyst layer of Example 2 was significantly less inferior in battery characteristics due to activation polarization than the catalyst layer of Comparative Example 1.
  • This result shows that the methylsiloxane polymer of Example 2 does not inhibit the acid reduction reaction on the catalyst surface, but rather improves the activity of the catalyst.
  • the single cell of Example 2 can take a voltage of 0.5 3 V, whereas Comparative Example 1 has a voltage of 0.4. The voltage was less than V. That is, the catalyst layer of Example 2 was significantly less inferior in battery characteristics due to diffusion polarization than the catalyst layer of Comparative Example 1.
  • a single cell using the spherical aqueous catalyst layer of Example 2 is still 0.5 minutes after 50 minutes.
  • the effective surface area per electrode unit area of the catalyst layer of Example 1 was 2 3 6 cm 2
  • the effective surface area of the catalyst layer of Comparative Example 1 was 20 8 cm 2 .
  • the effective surface area increased by 13% or more compared to the case where the catalyst not subjected to the hydrophobization treatment was used, and the catalyst utilization rate was greatly improved.
  • a porous platinum oxide layer of 2 m was formed on the surface made of carbon fine particles of carbon cloth (E—TEK LT-1400 W) by reactive sputtering. The thickness was formed. Reactive sputtering is ⁇ i £ 5 Pa, oxygen flow ratio (Q. 2 Z (Q + Qj) 70%, substrate temperature 25 ° C, RF input power is 5.4 W / cm 2 I went in.- (Process 2)
  • Example 3 did not carry out the subsequent heat treatment.
  • the obtained catalyst layer was subjected to a reduction treatment in 2% H 2 / He atmosphere 0. IMP a for 30 minutes to obtain a porous platinum catalyst layer-gas diffusion layer composite.
  • the supported amount was 0.85 mg / cm 2 .
  • the contact angle of the catalyst layer with respect to ⁇ water was 131 °, and the surface of the catalyst layer was hydrophobic.
  • Solid polymer electrolyte membrane (Dup on t Na fi on 112) using the hydrophobic catalyst layer prepared in the above (Step 3) and the platinum-supported carbon catalyst layer obtained in Step 1 of Example 1 4MPa, 150. Hot pressing was performed under the pressing conditions of C and 20 min. By peeling off the PTFE sheet on the platinum-supported carbon catalyst layer side, the pair of catalyst layers was transferred to the polymer electrolyte membrane to obtain MEA with an integrated gas diffusion layer.
  • FIG. 11 shows the result of a discharge test performed on the single cell manufactured by the above process in the same manner as in Example 1.
  • FIG. 11 shows the current characteristics of each comparative example.
  • Table 1 shows the comparison between Example 3 and Comparative Example. Current density at 9 V, specific activity of catalyst, limit current value, effective surface area, and Si '/ P't atomic ratio are listed as ci.
  • a single cell was formed using the catalyst layer prepared in the same manner as in Example 3 except that (Step 2) was omitted. Note that the amount of Pt supported on this catalyst layer was 0.
  • Step 2 instead of contacting the porous platinum oxide layer with the TMCTS vapor, PTFE (tetrafluoroethylene) deep purge solution (Polyfron, 6 Ow t%, Daikin Industries, average particle size) A single cell was formed using a catalyst layer prepared in the same manner as in Example 3 except that the sample was immersed in a solution diluted to 20% in diameter (300 ⁇ m in diameter) and then pulled up and air-dried at room temperature. did.
  • PTFE tetrafluoroethylene
  • the amount of Pt supported was 0.'84 mg / cm 2 , the equilibrium contact angle of the catalyst layer with water was 146 °, and the surface of the catalyst layer was hydrophobic.
  • TMCTS vapor partial pressure 0.05 Pa
  • the supported amount of Pt is 0, 84 mg Z cm 2 and the equilibrium contact angle of the catalyst layer with water is
  • the surface of the catalyst layer was hydrophilic.
  • a porous platinum oxide layer was prepared in the same manner as in Example 3 except that the porous platinum oxide layer was contacted with TMCTS vapor (min j £ 0. 05Pa) for 60 minutes at 25 ° C. A single cell was formed using the prepared catalyst layer.
  • the supported amount of Pt was 0.84 mg / cm 2 , the equilibrium contact angle of the catalyst layer with respect to water was 1 38 °, and the surface of the catalyst layer was hydrophobic.
  • Step 2 was carried out after the hydrogen reduction treatment in (Step 3), except that it was contacted with TMC TS vapor (partial pressure 0.05 P a) at 25 ° C for 3 minutes in (Step 2).
  • TMC TS vapor partial pressure 0.05 P a
  • Step 1 the thickness of the platinum oxide layer was set to about 1.8 ⁇ ⁇ , and (Step 2) of Example +3 was performed after the hot pressing in (Step 5) (rearranged), (Process 2).
  • Step 2 the catalyst layer prepared in the same manner as in Example 3 except that it was brought into contact with the TMC TS vapor (partial pressure 0.02 Pa) for 3 minutes at 4 ° C. A single cell was formed.
  • the supported amount of Pt is 0.71 mg / cm 2 and the equilibrium contact angle of the catalyst layer with water is
  • the surface of the catalyst layer was hydrophobic.
  • the thickness of the gold oxide layer is set to about 3 ⁇
  • (Step 2 ) is performed after (reordering) and (Step 5) after hot pressing, and in (Step 2) at 25 ° C. ⁇
  • a single cell was formed using the catalyst layer prepared in the same manner as in Example 3 except that it was brought into contact with MCTS vapor (partial pressure 0.05 P a) for 6 minutes.
  • the amount of Pt supported was 1.1 mg / cm 2 , the equilibrium contact angle of the catalyst layer with respect to water was 1 38 °, and the surface of the catalyst layer was hydrophobic.
  • Example 3 and Comparative Examples 2 to 5 and 7 to 8 are shown in FIG.
  • the effective surface areas of Comparative Examples 7 and 8 were not measured because the amount of Pt supported was significantly different from that of Example 3 and comparison was difficult.
  • Comparative Examples 2 and 3 since no methylsiloxane was added, Si atoms were not observed.
  • Example 3 has the highest specific activity, and all other comparative examples over a wide current density range of 10 0 -500 m AZ cm 2 Higher voltage values were obtained. In addition, the limiting current density was greatly improved as compared with Comparative Example 2.
  • Example 3 the specific activity and effective surface area of Example 3 are greatly improved as compared to Comparative Example 2 that was not hydrophobized, as in Examples 1 and 2, and the catalyst utilization rate was improved.
  • Comparative Example 3 Further, the specific activity of Comparative Example 3 and the voltage up to 4500 mA / cm 2 were lower than those of Comparative Example 2 that had not been hydrophobized.
  • Comparative Example 3 the PTFE fine particles were able to impart hydrophobicity to the spinous medium layer, but the P. TFE fine particles were excessive and small in the catalyst layer. It is thought that the catalyst utilization rate decreased as a result of hindering gas diffusion.
  • Comparative Example 4 the current-voltage characteristics were slightly improved as compared with the case where the hydrophobizing treatment of Comparative Example 2 was not performed, but the results were inferior to those of Example 3. ,
  • Example 5 the specific activity, the limiting current, and the effective surface area were greatly reduced as compared with Example 3. This is thought to be due to the excessive contact time with the TMC TS vapor resulting in the formation of excess methylsiloxane polymer in the catalyst layer. That is, excess methylsiloxane caused (1) too much catalyst surface covered with methylsiloxane to decrease the contact surface between the electrolyte Nafion and the catalyst, and (2) in the catalyst layer. It is considered that the performance of the fuel cell was reduced due to the fact that the vacancies in the were blocked with methylsiloxane and the diffusibility of oxygen gas was reduced.
  • the Si / Pt ratio is approximately 0.15 or more and 0.2. It can be seen that it is preferably in the range of 5 or less. We also show that it is important to properly control the contact time between TMC TS vapor and platinum oxide.
  • Comparative Examples 6, 7 and 8 show that, in order to obtain a high-performance hydrophobic catalyst layer with the configuration of the present invention, after contacting TMC TS vapor with platinum oxide, platinum oxide It is necessary to reduce the amount of
  • the hydrophobic catalyst layer according to the present invention as the catalyst layer of the polymer electrolyte fuel cell, the generated water dissipation in the catalyst layer and the catalyst utilization rate are greatly improved.
  • a fuel cell having excellent battery characteristics was obtained.
  • the catalyst layer purification method according to this example is a simple, inexpensive and highly reproducible process, a solid polymer fuel cell having stable characteristics could be realized at low cost.
  • the hydrophobic catalyst layer of the present invention can improve the water dissipation and the catalyst utilization rate in the catalyst layer: Therefore, it can be used as a catalyst layer of a polymer electrolyte fuel cell.
  • the polymer electrolyte fuel cell having the catalyst layer may be a mobile phone or a notebook personal computer. It can be used as a fuel cell for small electrical devices such as digital cameras and digital cameras. This application is Japanese patent application number filed on April 2, 2008

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

 触媒層に疎水性を付与して生成水の散逸性を向上させ、同時に有効表面積及び触媒利用率を向上させた固体高分子型燃料電池用の疎水性触媒層およびその製造方法を提供する。白金酸化物を還元してなる触媒と、疎水剤とプロトン導電性電解質とからなる、固体高分子型燃料電池用触媒層であって、前記疎水剤は、主にアルキルシロキサンからなる。疎水性置換基を含むSi化合物を、白金酸化物に接触させ、白金酸化物の触媒作用によって、前記Si化合物を加水分解及び重合反応させ、その後還元処理することで、アルキルシロキサン重合体を担持した疎水性触媒層を得る。

Description

明 細 書 固体高分子型燃料電池用の練水性触媒層及びその製造方法、
固体高分子型燃料電池及びその製造方法 技術分野
本発明は固体高分子型燃料電池用の疎水性触媒層及ぴその製造方法、 固体高分 子型燃料電池及びその製造方法に関するものである。 背景技術
固体高分子型燃料電池は、 エネルギー変換効率が高いこと、 クリーンであるこ. と、 静かであることなどから、 将来のエネルギー生成装置とし.て期待されている。 固体高分子型燃料電池はエネルギー密度が高く、 運転温度が低レ、こと力ゝら、 近年 では、 自動車や家庭用発電機などの電源用途だけではなく、 携帯電話、 ノート型 パソコン、 デジタルカメラなど小型の電気 などの電源用途も検討されている。 固体高分子型燃料電池は、 従来の二次電池に比べ長時間駆動できる可能性があり、 注目を集めている。
固体高分子型燃料電池は、 運転温度が 1 o oDc以下でも駆動できるという利点 を有する一方、 発電時間の経過に伴って次第に電圧が低下し、 終には発電が停止 するという問題点を有している。
このような問題点は、 反応で生じる水が触媒層の空隙内に滞留し、 触媒層中の 空隙を水が塞いで、 反応物質である燃料ガスの供給を妨げることにより、 発電反 応が停止するという、 所謂 「フラッデイング現象」 に起因している。 特に水が生 成する力ソード側の触媒層でフラッディングが起きやすい。
また、 小型の電気機器用燃料電池として実用化するためには、 システム全体の コンパクト化が必須である。 特に燃料電池を小型電気機器に搭載する場合におい ては、 システム舍体だけでなく電池自体も小型化する必要がある。 そのため、 ポ ンプゃプロヮーなどを用いずに空気を通気孔から自然拡散によって空気極へ供給 される方式 (A i r B r e a t h i n g) が有力視されている。 ' このような場合、 生成水は自然蒸発によってのみ燃料電池外へ排出されるので、 生成水が触媒層に滞留しフラッデイングが起こることが多い。 このため、 触媒層 に疎水性を付与して生成水の散逸性を向上させることが燃料電池の性能安定性を 左右する重要な要素となると考えられる。
' 従来、 触媒層の疎水化方法としては、 触媒層を形成する際にポリテトラフルォ 口エチレン (PTFE) などのフッ素樹月旨系微粒子粉末を溶剤や界面活性剤と共 に疎水剤として混合する方法が知られている。
また、 更に生成水の散逸性を向上させるため、 触媒層の厚み方向に疎水性に濃 度分布を持たせる方法 (特許第 3245929号公報) や、 疎水性を付与する部 分を触媒層面内で偏在させる方法 (特開 2004— 1 71 847号公報) が提案 されている。
また、 特開 2001— 76734号公報には、 フッ素系樹脂微粒子以外にジメ チルポリシロキサンからなる微粒子を混合する方法が開示されている。 この疎水 性微粒子の粒径はカーボン担体粒子と同等で、 10 μ m以下とすることが好まし いと、 特開 2001— 76734号公報には記載されている。
一方、 特開 2006— 49278号公報及ぴ特表 200 1-5 1 959号公報 には、 スパッタ法ゃイオンプレーディング法を用いて、 燃料電池用触媒層を形成 する方法が開示されている。
このように最近、 スパッタ法などの真空成膜プロセスを用いて、 触媒層を形成 する手法が開発されてきている。 従来は、 触媒粒子と電解質及び溶媒とを混合し たスラリ一に疎水性粒子を混合して疎水ィヒを行うのに対し、 特開 2006— 49 278号公報及ぴ特表 2.001 -5 1 959号公報のような製造方法では、 触媒 層の形成時に疎水性微粒子を混合しない製法となっている。 すなわち、 混合法で の疎水性の付与はなされていない。 発明の開示
特開 2 0 0 1— 7 6 7 3 4 ,公報に記載のような従来用いられてきた疎水性微 粒子は、 導電性もプロトン伝導性もなく、 さらに触媒粒子や電解質、 担体粒子な どと共に混合されランダムに分散してい 。
そのため、 従来の疎水微粒子を用いた場合、 触媒層の疎水性は向上するものの、 疎水性微粒子の一部は触媒粒子間または触媒と電解質との間に入り込んでしまレヽ、 触媒表面におけるプロトン吸着面積、 即ち有効表面積が低下して、 触媒利用率が 低下してしまう:という問題点があった。
さらに、 従来一般に広く用いられてきたフッ素樹脂系の疎水性微粒子の直径は 約 1 0 0 n m〜数 1 0 0 m程度であり、 2次凝集粒子の直径は更に大きかつた。 特開 2 0 0 1— 7 6 7 3 4号公報に記載の疎水性粒子でもカーボン担体粒子と同 程度の 1 0 μ ηι程度であった。
従来は疎水性粒子がこのような粒径であったので: 触媒層中の 1 0 0 n mより 小さい空隙 (以下 「ミクロ空隙」 ) 内を疎水化することが原理的に不可能である。 この場合、 ミク口空隙内は親水性のままなので、 大きな疎水性粒子によりミクロ 空隙の外側が疎水化されてしまうと、 このミク口空隙内に生成水が'閉じ込められ てしまうことがあった。 この結果、 ミクロ空隙内で局所的なフラッデイングが起 こり、 触媒利用率が低下するという問題があった。
また従来の疎水剤は粒状であるため、 疎水性微粒子の大きさが空隙の大きさと 同 度の場合には、 空隙が疎水性微粒子で塞がれてしまレヽ反応ガスの通気性が低 下する。 そのため、 空隙内での反応が停止する結果、 やはり触媒利用率が低下す るという問題があった。 以上のように従来技術では触媒層への不完全な疎水性付与はなされるものの、 同時に触媒利用率の低下が起こるという問題があった。
その結果として、 従来、 疎水性を付与しない場合に比べて、 高電流密度镇域に おける燃料電池池の電圧は向上するものの、 低電流密度領域では逆に電圧が低下 してしまっていた。
このため触媒層の疎水化と触媒利用率の向上を両立する技術が求められてレ、た。 また一方で、 特開 2 0 0 6— 4 9 2 7 8号公報及ぴ特表 2 0 0 1— 5 1 9 5 9 号公報に示されているように、 スパッタ法などを用いて触媒層を形成する場合に は、 従来技術のように疎水性微粒子を混合して触媒層を形成することができず、 従来の混合法では疎水性を付与できない。 この場合、 触媒層形成後に従来のフッ 素樹脂系の疎水性微粒子を塗布しても、 触媒層の空孔径の多くが数 1 0 0 n m程 度と疎水性微粒子より小さいため、 疎水性粒子が触媒層中に分散されず、 触媒層 の内部に効果的に疎水性を付与することができないという問題点があった。
本発明は、 以上のような事情に鑑みてなされたもので、 触媒層中のミクロ空隙 内にも疎水性を効果的に付与し、 同時に有効表面積及び触媒利用率を向上させた 固体高分子型燃料電池用の疎水性触媒層を提供するものである。 また本発明はス パッタ法で形成された触媒層に対しても、 疎水性と有効表面積の向上をもたらす ことができる。
'また本発明は、 上記の疎水性を付与した疎水性触媒層を用いて、 安定な発電特 性を有する固体高分子型燃料電池を低コストで提供するものである。
本発明は、 上述した課題を解決するためになされたものである。
すなわち本発明は、 触媒と疎水剤とプロ.トン導電性電解質とからなる、 固体高 分子型燃料電池用触媒層において、
前記触媒は、 白金酸化物を還元してなる樹枝状形状触媒であり、
前記疎水剤は、 S i原子、 O原子および疎水性置換基を有する化合物からなり、 . 前記疎水剤中の S iと前記触媒中の P tの原子数比 S i / P tが 0 . 1 5以上 0 . 2 5以下であることを特徴とする固体高分子型燃料電池用疎水性触媒層であ る。
前記疎水剤は、 疎水性置換基を有するシロキサン重合体からなることが好まし い。
また前記疎水剤は、 アルキルシロキサンからなることが好ましい。
また本発明は、 白金酸ィ匕物の触媒作用で、 加水^ ¥反応を起こし重合可能基を 生成する、 疎水性置換基を含む S i化合物を、 前記白金酸化物に接触させる工程 と、 前記 S i化合物を前記白金酸化物の近傍で重合反応させることで、 前記疎水 剤を前記白金酸化物の表面に生じさせる工程と、 その後に前記白金酸化物を還元 する工程を有することを特徴とする固体高分子型燃料電池用疎水性触媒層の製造 方法である。
前記 S 匕合物は、 2 , 4, 6, 8—テトラアルキルシクロテトラシロキサン、 1, 1 , 1, 3, 3, 3一へキサァノレキルジシラザン、 モノアルキルシラン、 ジ アルキルシランおょぴトリアルキルシランからなる群より選ばれた少なくとも一 種類以上の化合物または混合物であることが好ましい。
また、 本発明は、 上記の疎水性触媒層を有する固体高分子型燃料電池である。 本発明によれば、 白金酸ィヒ物表面で、,疎水性置換基を含む S i化合物の加水分 解及び重合反応を開始させることにより、 ミク口空隙内を含む触媒層空孔中に疎 7剤を形成させ、 その後に前記酸化物を還元することにより、 触媒利用率と生成 水の散逸†生を同時に向上させることができる。
前記疎水性剤は、 ミクロ空隙より小さな S i'化合物分子から、 触媒層空孔内で 重合反応により生成されるため、 従来困難であった 1 O O n m以下のミクロ空隙 内部にも疎水性を付与することができる。
また本発明は、 上記の生成水の散逸性を向上させた触媒層を用いて、 安定な特 性を有する固体高分子型燃料電池を低コストで提供するものである。 - さらに安定な特性を有する固体高分子型燃料電池を低コストで提供することが できる。 - さらに本発明によれば、 触媒と電解質との接触面積、 即ち触媒反応に寄与し得 る有効表面積を向上させることができ、 このため触媒利用率を向上させることが できる。
これにより従来困難であった疎水性の付与と,触媒利用率の向上を同時に達成す ることができる。 また触媒の利用率が向上することにより、 触媒担持量を低減す ることもできるため、 製造コストを下げることができる。
また本発明は、 上記の生成水散逸性及び触媒利用率を向上した触媒 (以後、 「疎水性触媒」 という) を用いて、 安定な発電特性を有する固体高分子型燃料電 池を低コストで提供することができる。 さらに、 本発明の触媒層の製造方法は、 簡易かつ安ィ面で再現性のよレ、工程により、 固体高分子型燃料電池用の触媒層を低 コストで実現できる。
' 本発明によれば、 触媒層中の生成水の散逸性の向上と触媒利用率の向上とを両 立させた固体高分子型燃料電池用の疎水性触媒層を提供することができる。
また、 本発明は、 上記の疎水性を付与した疎水性触媒麿を用いて、 安定な発電 特性を有する固体高分子型燃料電池を低コストで提供することができる。 図面の簡単な説明
図 1は、 本発明の疎水性触媒層を用い^固体高分子型燃料電池の単セルの構造 を表す模式図である。
図 2は、 本発明の疎水性触媒層における疎水性触媒の一例を示す模式図である。 図 3は、 固体高分子型燃料電池の評価装置の模式図である。 .
図 4は、 本発明の実施例 1の疎水性触媒層の表面の走查電子顕微鏡写真 (倍率 2 5 0 0倍) である。 図 5は、 本発明の実施例 1の疎水性触媒層の表面の走査電子顕微鏡写真 (倍率 ' 2万倍) である。
• 図 6は、 本発明の実施例 1の疎水性触媒層の表面の走査電子顕微鏡写真 (倍率 1 0万倍) である。
図 7は、 本発明の実施例 1および比較例 1の固体高分子型燃料電池の特性を示 す図である。
図 8は、 本発明の実施例 1および比較例 1の固体高分子型燃料電池の出力電流 密度 6 0 0 mA/ c m2における電圧の時間変化を示す図である。
図 9は、 本発明の実施例 2および比較例 1の固体高分子型燃料電池の特性を示 す図である。
図 1 0は、 本発明の実施例 2および比較例 1の固体高分子型燃料電池の、 出力 電流密度 5 0 0 mA/ c m2における電圧の時間変化を示す図である。
図 1 1は、 本発明の実施例 3およぴ比較例 2 ~ 5及び 7〜 8の固体高分子型燃 料電池の特性を示す図である。 発明を実施するための最良の形態
以下図面を参照して、 本努明の固体高分子型燃料電池用の疎水性触媒層の実施 の形態を示して説明する。 ただし、 この実施の形態に記載されている材質、 寸法、 形状、 配置等は、 特に特定的な記載がない限りは、 この発明の範囲を限定するも のではない。 以下に記述する製造方法も同様である。
図 1は、 本発明の固体高分子型燃料電池用疎水性触媒層 (以後、 「疎水性触媒 層」 と略記する。 ) を用いた燃料電池単セルの断面構成の一例を示す模式図であ る。 図 1において、 1は固体高分子電解質膜、 これを挟んで一対の触媒層、 すな わちアノード側の触媒層 2と、 カソード側の触媒層 3が配置されている。
本実施例においては、 力ソード (空気極) 側のみに本発明の疎水性触媒層が配 置された例を示すが、 触媒層の配置構成はこれに限定されるものではない。 .例え ば、 本発明の疎水性触媒層を両極に配置しても、 あ.るいはアノード側のみに配置 してもよい。 もっとも、 水が生成するカソード側の触媒層でフラッディングが起 きやすいことからすれば、 少なくともカソード側には本発明の疎水性触媒層を配 置することが好ましい。
' カソ一ド側触媒層 3は、 疎水性触媒 4と、摩疎水性触媒 4を支持する触媒担体 5とカゝら構成される。 力ソード側の触媒層 3の外側には、 力ソード側ガス拡散層: 7と力ソード側電極 (空気極) 9が配置される。
ァノード側の触媒層 2の外側には、 ァノード側ガス拡散層 6とァノード側電極 (燃料極) 8が配置される。
固体高分子電解質膜 1としては、 スル^ン酸基を有するパーフルォロカーボン 重合体を好適に使用することができる。
パーフルォロスルホン酸重合体の例としてナフイオン (登録商標、 デュポン社 製) が挙げられる。
なお、 プロトン H+が電解質膜中を力ソード側に向かって移動する場合には水 分子を媒体として電解質中の親水性部分を移動する場合が多いので、 電解質膜は 水分子を保有する機能も有していることが好ましい。'
固体高分子電解質膜の機能としては、 アノード側で生成したプロ.トン H+を力 ソード側に伝達するとともに未反応の反応ガス (水素およぴ酸素) を通さないこ と、 所定の保水機能があることが好ましい。 高分子電解質膜には、 このような機 能を有する材料のうち、諸条件を考慮して任意の材料を選択して使用することが できる。
ガス拡散層 6 , 7は、 以下の機能を有することが好ましい。 まず、 電極反応を 効率良く行わせるために、 燃料ガスまたは空気を燃料極または空気極の触媒層中 の電極反応領域へ、 面内で均一に充分に供給する機能である。 また、 電極反応に よって生じる電荷を単セル外部に放出させる機能である。 さらに、 反応生成水や 未反応ガスを単セル外部に効率よく排出する機能である。 ガス拡散層としては、 電子伝導性を有する多孔質体、 例えばカーボンクロスやカーボンペーパーを好ま しく用いることができる。
.触媒担体 5に期待される役割としては、 助触媒としての触媒活性向上、 疎水性 触媒 4'の形態保持、 電子伝導チャネルの確保、 比表面積増大等が挙げられる。 触 媒担体としては、 例えばカーボンブラック層や金微粒子層を好ましく用いること ができる。
つづいて、 疎水性触媒 4の構造を図 2に模式的に示す。 疎水性触媒 4は、 触媒 1 1と疎水剤 1 2及び電解質 1 3とからなり、 疎水剤 1 2は、 触媒層中のミクロ 空隙内 1 4にも入り込んでいる。
本発明の好適な製造方法では、 触媒 1 1上に疎水剤 1 2を形成した後に電解質 1 3を形成するため、 図 2のように疎水剤 1 2の上にも電解質 1 3が被さってい る箇所がある。
ここで、 疎水剤 1 2は、 触媒 1 1中の P tと疎水剤 1 2中に含まれる S iの原 子数比が、 0 . 1 5以上 0 . 2 5以下の範囲となる量であることが好ましく、 0 . 1 8以上 0 . 2 2以下の範囲 なる量がより好ましい。
疎水剤 1 2が多すぎると、 (1 ) 触媒層の空孔の多くが塞がれてガス拡散性が 低下する、 (2 ) 触媒表面が疎水剤 1 2で覆われ過ぎて、 電解質と触媒の接触面 積が低下する、 という理由で触媒層の性能が低下する。
逆に疎水剤 1 2が少なすぎると、 触媒層が十分な疎水性を得られない。
触媒 1 1は白金酸化物を還元して得られる白金ナノ粒子の集合体からなり、 樹枝状形状を有している。 ·
ここで本明細書における 『樹枝状』 とは、 触 粒子が集まって構成されるフレ → (薄片) 状組織が、 分岐点を有して多数集まった構造を指す。 '
—つのフレーク状組織は、 その短手方向の長さが 5 n m以上 2 0 0 n m以下で あることが好ましい。 なお、 ここにいう 「短手方向の長さ」 とは、 一つのフレー クの面内における最小の寸法を意味する。 『樹枝状』形状の白金ナノ粒子の集合 体に関しては、 特開 2006— 49278号公報に開示されている技術を本発明 に適用することが可能である。
前記白金ナノ粒子としては直径は 3〜20 nm程度のものが、 触媒活性が高い ため好ましく、 3〜10 nmのものが表面積が大きいため特に好ましい。
20 nm以上では触媒活性が低くなってしまい、 燃料電池の性能が低下する恐 れがある。
. 本発明の疎水性触媒層の製造方法は、 白金酸化物の触媒作用で、 加水^军反応 を起こし重合可能基を生成する、 疎水性置換基を含む S i化合物を、 白金酸化物 に接触させる工程と、 前記 S i化合物を白金酸ィ匕物の近傍で加水分解及び重合反 応させることで、 前記疎水剤を白金酸化物表面に生じさせる工程と、 その後に白 金酸化物を還元する工程を有することを特徴とする。
ここで前記 S i化合物を接触させる工程を、 白金酸化物の還元工程後に行うこ とは好ましくない。 還元後の白金と、 前記 S i化合物とを翻虫させてしまうと、 加水分解反応が速く進行するので、 過剰なアルキルシロキサンが触媒層中に生成 して、 電解質膜との接着性を悪くしだり、 触媒層中の空孔が塞がれてしまう。 また前記 S i化合物を、 白金酸ィ匕物に接触させる工程は、 3〜30分の間であ ることが好ましい。 接触時間が短すぎると、 十分な効果が得られない場合がある。 • また接触時間が長すぎると、 過剰なアルキルシロキサンが生成して、 電解質膜と の接着性を悪くしたり、 触媒層中の空孔を塞いだりして、 燃料電池の出力が低下 する場合がある。
前記工程に使用する白金酸化物としては、 二酸化白金または二酸化白金を主成 分とする金属酸化物の混合物を用いると、 触媒 11が樹枝状形状となり、 触媒層 の空孔率が高くなるので、 より好ましい。
また本明細書中における、 二酸ィ匕白金とは、 化学式 P to2のみならず、 化学 式 P tOx (X>2) で表されるものを含む。 化学式 P tOx (X>2) で表さ れるものを使用しても、.本発明の製法で本発明の効果を得られる。 . ' 本発明で用いられる疎水性置換基としては、 アルキル基 (炭素鎖が分岐してい てもよいし、 二重結合を有していてもよレ、。 また、 いずれも、 水素原子がハロゲ ン原子で置換されていてもよレ、) が例として挙げられ、 メチル基を特に好ましく 用いることができる。
また、 前記疎水性置換基を含む S i化合物は、 2 , 4 , 6 , 8—テトラアルキ ルシクロテトラシロキサン、 1, 1 , 1 , 3, 3, 3—へキサアルキルジシラザ ン、 モノアルキルシラン、 ジアルキルシランおよびトリアルキルシランからなる より選ばれた化合物または混合物であることが好ましい。
上記 s i化合物は、 金属などとの接触により、 加水分解反応を起こして s i - OH基を生成するので、 S i—OH基同士の脱水縮重合反応が起こり、 S i原子、 o原子および疎水性置換基を有するシロキサン重合体を生成することが一般に知 られている。 ここで、 前記 S i化合物中の疎水性置換基がアルキル基である場合 には、 アルキルシロキサン重合体が生成される。
上記加水分解反応は金属との接触で起こることが知られているが、 白金酸化物 との接触でも、 加水分解及ひ、重合'反応は進行する。
本発明の製造方法はこの現象を利用したもので、 白金酸化物と前記 S i化合物 を、 適度な時間接触させることで、 触媒層中にアルキルシロキサン重合体を適量 生成させ、 効果的に疎水性を付与できる。 :
白金と接触させることによって前記 S i化合物の加水^^反応を行った場合、 反応速度が速くなってしまうため、 短時間でアルキルシロキサン重合体が過剰に 生成し、 電角早質膜との接着性を悪くしたり、 触媒層中の空孔が塞がれてしまう可 能性が高い。
このため、 前記 S i化合物を接触させる工程は、 白金酸化物の還元工程前に行 うこと力 S強く推奨される。
また、 1, 1 , 1, 3, 3 , 3—へキサアルキルジシラザンゃトリアルキルシ ランを単独で用いる場合には、 一分子中の重合可能基が少ないので、 UV光照射 などの手法で疎水性置換基の一部を加水分解して S i— ΌΗ基に置換すると、 重 合反応を促進できるので好ましレ、。
S i一ひ H基の脱水縮重合反応は室温下でも進行するが、 疎水剤が形成された 後に触媒層を加熱する操作を加えることがより好ましい。 そのようにした場合、 加熱により疎水剤中の未重合 S i—OH基を重合させ疎水性をさらに向上させる ことができる。 .
加熱処理時の温度は疎水性置換基及び触媒層中の材料が熱分解しなレヽ程度の温 度が好ましく、 2 0 0 °C以下であることがより好ましい。
一般に、 高性能な触媒層を得るには、 疎水性のみならず触媒の利用効率を高く することも重要である。 本発明の疎水性触媒 4は、 疎水化処理を行わない場合に 比べて、 触媒表面におけるプロトン吸着面積、 すなわち有効表面積が大きく、 触 媒利用率が高いという特徴を有する。
この特徴を得るためには、 前記疎水剤を形成した後に、 パーフルォロスルホン 酸ポリマー溶液などの添加によりプロトン伝導性電解質を触媒層中に形成するこ とが好ましい。 白金酸化物の還元後にプロトン伝導性電解質を形成することがよ り好ましい。
上記のようにすることで、 電角军質分子の球水性部と咪水剤との儒れ' I·生が高くな る。 これにより、 疎水剤と接していない触媒表面部分とプロトン伝導性電解質分 子の親水性部 の濡れ性が相対的に向上するため、 疎水性触媒 4中では有効表面 積が疎本化処理をしていない触媒に比べて大きくなって好ましい。
本発明の疎水性触媒層の製造方法としては、'様々な方法が挙げられる。 図 1に 示した構成の場合を例として、 以下にその一例を挙げて説明する。 なお、 本発明 は下記の製法になんら限定されるものではない。
( 1 ) カソ'一ド側の触媒層を準備する。
固体高分子電解質膜への転写層としての P T F E (ポリテトラフルォロェチレ ン) シート上に、 電子ビーム蒸着法により触媒担体としての A uを成膜した.後、 反応性スパッタ法により多孔質白金酸ィヒ物触媒層を形成する。
(2) 触媒層を疎水化処理する。
' 上記 (1) で得られた触媒層を、 球水性置換基を含む S i化合物の気体とを接 触させることによって、 触媒表面上に疎水剤を形成する。 その後加熱によって、 疎水剤の重合反応を促進しても良い。
つづいて、 この白金酸ィ匕物層を水素還元処理することによって、 多孔質な白金
Z金触媒層を得る。 さらにその後、 得られた触媒層上にプロトン伝導性電解質で ある Na f i o nの I PA溶液 ( 5 w t %, 和光純薬製) を適量滴下し、 その後 真^中にて溶媒を揮発させることで、 触媒表面にプロトンパスを形成する。
(3) アノード側の触媒層を準備する。
上記 (1) と同様に PTFEシート上に、 ドクターブレードを用いて白金担持 カーボン触媒層を形成する。 触媒層の厚さは 20〜 40 μ mの範囲が好ましい。 ここで使用する触媒スラリ一は、 白金担持カーボン (J h o n s on Ma t t h e y製、 H i SPEC4000) 、 及び N a f i o n、 PTFE、 I PA (イソプロピルアルコール) 、 水の混鍊物である。
(4) 上記により作製した一対の触媒層によって固体高分子電解質膜 (Dup on t製、 Na f i o n 112) を、 P T F Eシートが外側になる様に挟みこん でホットプレスを行う。 さらに PTFEシートを剥離することにより、 一対の触 媒層を固体高分子電解質膜に転写して、 電解質膜と一対の触媒層を接合し膜ー電 極接合体 (以下、 「MEA」 と略す) を得る。
(5) この MEAをガス拡散層としてのカーボンクロス (E— TEK製 LT
1400 -W) 、 さらに燃料極電極おょぴ空気極電極によって挟んで単セルを作 製する。 '
本発明の触媒層の製造方法はこの単セル構成の固体高分子型燃料電池に限定さ れるものではなく、 単セルを複数スタックした構成の固体高分子型燃料電池にも 適用可能である。 · - 実施例 .
次に、 具体的な実施例を示し、 本発明を詳細に説明する。
実施例 1
本実施例は、 実施形態の中の図 1に示した構成からなる固体高分子型燃料電池 を作製した伊 |]である。
以下、 本実施例に係わる固体高分子型燃料電池の製造工程を詳細に説明する。
(工程 1) ' '
高分子電解質膜への転写層として、 PTFEシート (日東電工製、 二トフ口 ン) 上に電子ビーム真空蒸着法により金薄膜を 5 Onmの厚さに形成した。 これ に反応性スパッタ法により、 多孔質白金酸ィ匕物層を 2 mの厚さに形成した。 反 応性スパッタは、 ^J£5Pa、 酸素流量比 (Q02Z (Q^+Q ) 70%、 基板 温度 25°C、. RF投入パワーは、 5. 4 WZ cm2 の条件にて行った。
(工程 2)
引き続き、 この多孔質白金酸化物層を、 25°Cで 2, 4, 6, 8—テトラメチ ルシクロテトラシロキサン (以下 「TMCTS」 と略す) の蒸気 (分圧 0. 05 Pa) と 30分間接触させ、 白金酸化物表面上にメチルシ口キサン重合体を生成 させた。 その後、 大気中 180°Cで 3時間の加熱処理を行い、 未重合 S i -OH 基の縮重合を促進した。
(工程 3)
続いて得られた触媒層を 2 %H2 /H e雰囲気 0. IMP aにて 30分間の還 元処理を行い、 P T F Eシート上に多孔質白金触媒層を得た。 P t担持量は 0. 85mg/cm2であった。 この時の触媒層の水に対する平衡接触角は 138° であり、 触媒層表面は疎水性であった。
また、 図 4〜図 6に示すように、 触媒層にメチルシロキサン重合体が存在して いるのを走査電子顕微鏡で確認した。 図 4〜図 6におレ、て、 暗斑状部分が触媒上 に生成したメチルシロキサン重合体である。 - 図 6から判るように、 触媒層中の 10 Onm以下のミクロ空隙内部にもメチルシ ロキサン重合体が入り込んでいる様子が判る。 '
なお、 図 6に示したメチルシロキサン重合体は、 本発明の主旨が判りやすくな るように、 全体の中で比較的大きい箇所をクローズアップしており、 触媒層中に は、 これより小さな、 数 10 nmの大きさの重合体も多数 在していた。
また、 図 5の喑斑状部分以外の部分は樹枝状形状の触媒を示すものであり、 多 数のフレーク状組織が分岐点を有して集まつた形状となっている。 透過型顕微鏡 (TEM) を用いて観察したところ、 このフレーク部分は直径約 5〜10 nmの 白金微粒子の集合体であつた。
走査型蛍光 X線分析装置 (リガタネ ±B、 ZSXI O O e) によって、 得られた 触媒層中の S iと P tの原子数比を測定したところ、 S 1 /P t = 0..22であ た 0
その後、 得られた触媒層を 5wt%の Na f i on溶液 (和光純薬工業製) を · 触媒面積 1 cm2当たり 8.μ 1滴下し、 真空中にて溶媒を揮発させることで、 触 媒表面にプロトンパスを形成した。 . ,
(工程 4)
本工程では、 上記の (工程 3) で作製した触媒層と対になる触媒層として、. 白 金担持カーボン触媒層を作製した。 高分子電解質膜への転写層としての PTFE シート上に、 ドクターブレードを用いて白金担持カーボン触媒層を形成した。 こ こで使用する触媒スラリーは、 白金担持カーボン (J h o n s on Ma 't t h e y製、 Hi SPEC4000) 、 Na f i on、 I PA、 水の混鍊物である。 このときの P t担持量は 0. 35m gZ cm2であつ.た。
(工程 5)
上記の (工程 3) および (工程 4) によって作製した 2つの触媒層で固体高分 子電解質膜 (Dup o n t製 Na f i on l l 2) を挟み、 8MP a、 150°C、 1 m i nのプレス条件でホットプレスを行った。 P T F Eシートを剥離する'こと により、 一対の触媒層を高分子電解質膜に転写して、 電解質膜と一対の触媒層を 接合した。
(工程 6)
本発明の疎水性触媒層を力ソード側、 白金担持カーボン触媒層を'アノード側と して、 この接合体をガス拡散層としてのカーボンクロス (E— TEK製 LT一 1400W) 、 さらに燃料極電極およぴ空気極電極によって図 1のような順で挟 んで単セルを形成した。
以上の工程によつて作製した単セルに関して、 図 3に示した構成の評価装置を 用レ、て特性評価を行つた。 ァノード電極側に水素ガスをデッドエンドで充填し、 カソード電極倒は空気に開放して、 電池温度 80 °Cにて放 験を行つたところ、 図 9に示すような電流一 miE特性が得られた。
比較例 1
比較例 1として、 上記の (工程 2) を省略した以外はすべて実施例 1と同様に して作成した触媒層を用いた場合の例を図 7中に示した。 なお、 この触媒層の P t担持量は実施例 1と同じく 0. 85mgZcm2であった。 また比較例 1の触 媒層め水に対する平衡接触角は 6. 3° であり、 触媒層表面は親水性であった」 また比較例 1はメチルシロキサンを付与していないため、 S i/P t比は 0であ つ i— o
まず反応律速領域である 0. 9 Vでの電流密度を比較すると、 実施例 1力 S 12. 3 mAZ cm2であったのに対し、 比較例 1では 7. 6 mA " c m2であった。 さらに、 これを P t担持量で除した触媒比活性を比較すると、 実施例 1が 14. 5 AZgであったのに対し、 比較例 1では 8. 9A/gであった。.
すなわち実施例 1の触媒層は比較例 1の触媒層に対し、 活性化分極による電池 特性の劣化が大幅に抑えられていた。 この結果'は実施例 1のメチルシロキサン重 合体が触媒表面における酸化還元反応を阻害せず、 むしろ触媒層の活性を向上さ せていることを示す。 これは後述するように触媒層の有効表面積が増カ卩した.ため であると考えられる。
また拡散分極律速領域である 6 0 0 mA/ c m2での flffiを比較すると、 実施 例 1の単セルが 0 . 4 2 V以上の電圧が取れるのに対し、 比較例 1では約 0 . 3 Vであった。 すなわち、 実施例 1の触媒層は比較例 1の触媒層に対し、 拡散分極 による電池特性の劣ィ匕が大幅に抑えられていた。 このことは、 実施例 1の疎水性 触媒層が比較例 1の触媒層に対し、 生成水散逸性に優れてレ、ることを示す。
次に実施例 1の単セルを 6 0 0 mA/ c m2の電流密度で、. 連続発電を行った 場合の電圧の時間変化を、 比較例 1の単セルの結果とともに図 8に示す。
実施例 1の疎水性触媒層を用レ、た単セルが、 1時間 4 0分を経過してもなお電 圧が 0 . · 3 V以上あったのに対し、 比較例 1の単セルでは 1 2分で電圧が 0にな り発電が停止してしまつた。
このことは、 実施例 1の疎水性触媒層が比較例 1の触媒層に対し生成水散逸性 に優れていたため、 燃料電池性能の安定性を大幅に向上させたことを示す。
次に、 アノード電極側に水素ガスを 2 0 s c c mで流し、 力ソード電極側は N 2ガスを 4 0 s .c c mで流し、 電池温度 8 0 °Cにてサイタリックボルタンムダラ ム測定を行い、 単位電極面積当たりの H+吸着面積、 即ち有効表面積を測定した。 実施例 1の触媒層の電極単位面積当 りの有効表面積は 2 8 2 c m2であり、 比較例 1の触媒層の有効表面積は 2 0 8 c m2であった。 実施例 1の疎水化触媒 層は、 比較例 1の触媒層に比べて、 同じ白金担持量でありながら有効表面積が 3 0 %以上も増加しており、 角虫媒利用率が大幅に向上していた。
実施例 2 .
本実施例は、 実施形態の中の図 1に示した固体高分子型燃料電池の構成を本発 明の触媒層およびその製造方法によって作製した例である。
以下、 本実施例に係わる固体高分子型燃料電池の製造工程を詳細に説明する。
(工程 1 )
高分子電解質膜への転写層として、 P T F Eシート (日東電工製、 二トフ口 ン) 上に電子ビーム真空蒸着法により金薄膜を 50 nmの厚さに形成した。 これ に反応性スパッタ法により、 多孔質白金酸化物層を 2 μ mの厚さに形成した。 反 応性スパッタは、 ^JE5Pa、 酸素流量比 (Q02/ (Q^+Q02) ) 70 %、 基板 温度 25°C、 RF投入パワーは、 5. 4 WZ cm2の条件にて行った。
(工程 2)
引き続き、 この多孔質白金酸化物層を、 紫外線を照射しながら 50°Cで 1, 1, 1, 3, 3, 3—へキサメチルジシラザンの蒸気 (分圧 105 h P a) と 10分 間接触させ、 白金酸化物表面上にメチルシロキサン重合体を成膜した。 その後、 大気中 180°Cで 3時間の加熱処理を行い、 未重合 S i—OH基の縮重合を促進 した。 - その後の工程 ( (工程 3) カゝら (工程 6) まで) は、 実施例 1と同様に行い、 単セルを形成した。 ? 1:担持量は0. 8 SiigZcm2であった。 また触媒層の 水に対する平衡接触角は 138° であり、 触媒層表面は疎水性であった。 また S i/P t比は、 0.18であっ 。
'以上の工程によって作製した単セルに関して、 図 3に示した構成の評価装置を 用いて特性評価を行つた。 ァノード電極側に水素ガスを、 力ソード電極側に空気 を流し、 電池温度 80 °Cにて放電試験を行つたところ、 図 9に示すような電流一 特性が得られた。
まず反応律速領域である 0. 9 Vでの電流密度を比較すると、 実施例 2が 14. 9 mAZ c m2であったのに対し、 比較例 1では 7. 6 mA/ c m2であった。 さらに、 これを P t担持量で除した触媒比活性を比較すると、 実施例 2が 17. 5 AZgであったのに対し、 比較例 1では 8. 9AZgであった。
すなわち実施例 2の触媒層は比較例 1の触媒層に対し、 活性化分極による電池 特性の劣ィ匕が大幅に抑えられていた。 この結果は実施例 2のメチルシロキサン重 合体が触媒表面における酸ィ匕還元反応を阻害せず、 むしろ触媒の活性を向上させ ていることを示す。 · - また拡散分極律速領域である 5 0 0 m A/ c m2 での ®£を比較すると、 実施 例 2の単セルが 0 . 5 3 Vの電圧が取れるのに対し、 比較例 1では 0 . 4 V以下 の電圧であった。 すなわち、 実施例 2の触媒層は比較例 1の触媒層に対し、 拡散 分極による電池特性の劣ィ匕が大幅に抑えられていた。 このことは、 実施例 2の疎 水性触媒層が比較例 1の触媒層に対し、 生成水散逸性に優れていることを示す。 次に実施例 2の単セルを 5 0 0 m A/ c m2 の電流密度で、 連続発電を行つた 場合の電圧の時間変ィ匕を、 比較例 1の単セル 結果とともに図 1 0に示す。
実施例 2の球水性触媒層を用レ、た単セルが、 5 0分を経過してもなお が 0 .
4 8 Vあつたのに対し、 比較例 1の単セルでは約 2 7分後に電圧が 0になり発電 が停止してしまった。 このことは、 本発明の球水性触媒層が比較例 1.の触媒層に 対し生成水散逸性に優れていたため、 燃料電池性能の安定性を大幅に向上させた ことを示す。
次に、.ァノード電極側に水素ガスを 2 0 s c c mで流し、 力ン一ド電極側は N 2 .ガスを 4 0 s c c mで流し、 電池温度 8 0 °Cにてサイクリックボノレタンムグラ ム測定を行い、 有効表面積を測定した。 '
実施例 1の触媒層の電極単位面積当たりの有効表面積は 2 3 6 c m2であり、 比較例.1の触媒層の有効表面積は 2 0 8 c m2であった。 実施例 2の疎水化触媒 は、 疎水化処理を行っていない触媒を用いた場合に比べて、 有効表面積が 1 3 % 以上増加しており、 触媒利用率が大幅に向上していた。
実施例 3
(工程 1 )
ガス拡散層を兼ねた触媒層の基板として、 カーボンクロス (E— T E K製 L T - 1 4 0 0 W) の炭素微粒子からなる面に、 反応性スパッタ法により、 多孔質 白金酸化物層を 2 mの厚さに形成した。 反応性スパッタは、 ^i£ 5 P a、 酸素 流量比 (Q。2Z (Q + Qj ) 7 0 %、 基板温度 2 5 °C、 R F投入パワーは、 5 . 4 W/ c m2 の条件にて行つた。 - (工程 2)
引き続き、 この多孔質白金酸化物層とガス拡散層の複合体を、 25°Cで TMC T Sの蒸気 (分圧 0. 05 P a) と 5分間接触させ、 白金酸ィ匕物表面上にメチル シ口キサン重合体を生成した。 実施例 1とは異なり、 実施例 3ではこの後の加熱 処理は実施しなかった。
(工程 3) ,
続いて得られた触媒層を 2 %H2 /He雰囲気 0. IMP aにて 30分間の還 元処理を行い、 多孔質白金触媒層一ガス拡散層複合体を得た。 卩 1:担持量は0. 85 m g / c m2であった。 この時の触媒層 φ水に対する平後 ϊ接触角は 131 ° であり、 触媒層表面は疎水性であった。
その後、 得られた触媒層を 5wt%の Na f i on'溶液 (和光純薬工業製) を. 触媒面積 1 cm2当だり 8μ 1滴下し、 真空中にて溶媒を揮発させることで、 触 媒表面にプロトンパスを形成した。
(工程 4)
上記の' (工程 3) によって作製した疎水性触媒層と、 実施例 1の (工程 4) で 得られた白金担持カーボン触媒層で、 固体高分子電解質膜 (Dup on t製 Na f i on 112) を挟み、 4MPa、 150。C、 20 m i nのプレス条件でホッ トプレスを行った。 白金担持カーボン触媒層側の PTFEシートを剥離すること により、 一対の触媒層を高分子電解質膜に転写して、 ガス拡散層が一体ィ匕した M EAを得た。
その後の工程 ( (工程 5) 、 (工程 6) ) は、 実施例 1と同様に行レ、、 単セル を形成した。
以上の工程によって作製した単セルに関して、 実施例 1と同様にして放電試験 を行った結果を図 11に示した。
また実施例 3に対する比較例を下記に記述した。 各比較例の電流一 特性は 図 11に示した。 また比較がしやすいように、 表 1に、 実施例 3と比較例の、 0. 9 Vでの電流密度、 触媒比活性、 限界電流値、 有効表面積、 S i'/P 't原子数比 を ci載した。
比較例 2
(工程 2 ) を省略した以外はすべて実施例 3と同様にして作成した触媒層を用 V、て単セルを形成した。 なお、 この触媒層の P t担持量は実施例 3と同じく 0.
84mg/cm2であった。 また比較例 2の触媒層の水に対する平衡接触角は 6. 3° であり、 触媒層表面は親水性であった。
^較例 3
(工程 2) において、 多孔質白金酸化物層を、 TMCTSの蒸気と接触させる 代わりに、 PTFE (テトラフルォロエチレン) デイスパージヨン溶液 (P o l y f r o n、 6 Ow t %、 ダイキン工業製、 平均粒径 · 300 μ m) を純水で 2 0%に希釈したものに浸漬後、'引上げて室温で風乾した以外は、 すべて実施例 3 と同様にして作成した触媒層を用いて単セルを形成した。
P t担持量は 0.' 84 m g / c m2であり、 触媒層の水に対する平衡接触角は 146° で、 触媒層表面は疎水性であった。
比較例 4 .
(工程 2) において、 多孔質白金酸ィ匕物層を、 25°Cで TMCTSの蒸気 (分 圧 0. 05Pa) と 1分間接触させた以外は、 すべて実施例 3と同様にし T作成 した触媒層を用いて単セルを形成した。
P t担持量は 0. , 84 m g Z c m2であり、 触媒層の水に対する平衡接触角は
20° で、 触媒層表面は親水性であった。
比較例 5
' (工程 2) において、 多孔質白金酸化物層を、 25°Cで TMCTSの蒸気 (分 j£0. 05P a) と 60分間接触させた以外は、 すべて実施例 3と同様にして作 成した触媒層を用いて単セルを形成した。 P t担持量は 0. 84mg/cm2であり、 触媒層の水に対する平衡接触角は 1 38° で、 触媒層表面は疎水性であった。
比較例 6
(工程 2) を、 (工程 3) の水素還元処理後に行い、 (工程 2) において 2 5 °Cで TMC T Sの蒸気 (分圧 0. 05 P a) と 3分間接触させた以外は、 すべ て実施例 3と同様にして触媒層を作成した。
この触媒層を、 実施例 3の (工程 4) と同様にして、 固体高分子電解質膜 (N a f i o n 1 1 2) にホットプレスしたところ、 触媒層が N a f i o n 1 1 2 (こ 転写できない箇所が多数発生し、 ME Aを形成することができなかった。
比較例 7
(工程 1) で白金酸ィ匕物層の厚さを約 1. 8 ^πιとし、 実施例 +3の (工程 2) を (順序を入れ替えて) 、 (工程 5) のホットプレス後に行い、 (工程 2) にお. Vヽて 4 °Cで TMC T Sの蒸気 (分圧 0. 02 P a) と 3分間接触させた以外は、 すべて実施例 3と同様にして作成した触媒層を用レヽて単セルを形成した。
P t担持量は 0. 71mg/cm2であり、 触媒層の水に対する平衡接触角は
1 38° .で、 触媒層表面は疎水性であった。
比較例 8
(工程 1) で 金酸化物層の厚さを約 3 μπιとし、 (工程2) を (順序を入れ 替えて) 、 (工程 5) のホットプレス後に行い、 (工程 2) において 25 °Cで Τ MCTSの蒸気 (分圧 0. 05 P a) と 6分間接触させた以外は、 すべて実施例 3と周様にして作成した触媒層を用いて単セルを形成した。
P t担持量は 1. 1 m g / c m2であり、 触媒層の水に対する平衡接触角は 1 38° で、 触媒層表面は疎水性であった。
実施例 3、 比較例 2〜' 5及び 7〜 8の結果を、 図 1 1及ぴ表 1に示す。 比較例 7及び 8の有効表面積は、 P t担持量が実施例 3と大きく異なるため比 較が困難と判断し、 測定していない。 また比較例 2及ぴ 3は、 メチルシロキサン を加えていないため、 S i原子は観測されなかった。
表 1
Figure imgf000025_0001
実施例 3及び表 1から判るように、 実施例 3は最も大きい比活性を有し、 1 0 0 - 5 0 0 m AZ c m2の広 、電流密度範囲に渡って、 他のすべての比較例より 高い電圧値が得られた。 また限界電流密度も比較例 2に比べて大きく向上してい た。
また実施例 3の比活性及び有効表面積は、 実施例 1及び 2と同様、 疎水化処理 をしていない比較例 2に比べて大きく向上しており、 触媒利用率が向上している ことが半 Uる。'
比較例 3では、 P艮界電流密度は高 、ものの、 比活性及び 6 0 0 m A/ c m2ま での電圧は、 実施例 3に比べて大きく低下していた。 これは、 P T F E微粒子の 粒子径が数百/ mと大きかったため、 疎水剤が分散せず触媒層を効果的に疎水化 できていなかったことが原因と考えられる。 .
また、 比較例 3の比活性及ぴ 4 5 0 mA/ c m2までの電圧は、 疎水化処理を していない比較例 2より低下していた。
すなわち比較例 3では、 P T F E微粒子により棘媒層に疎水性は付与できてレヽ たものの、 触媒層中に P. T F E微粒子が過剰な部分と過小な部分ができてし.まレ、、 その部分のガス拡散が阻害された結果、 触媒利用率が低下したものと考えられる。 比較例 4は、 比較例 2の疎水化処理を行つていなかった場合より、 少し電流一 電圧特性が向上していたが、 実施例 3よりは劣る結果となった。 ,
また比活性も比較例 2より向上していたが、 P艮界電流及び有効表面積は比較例 2と同等に留まり、 実施例 3には及ばなかった。
これは TMC T S蒸気との接触時間が短すぎたために、 十分な疎水性を触媒層 に付与できていなかったことが原因と考えられる。
比較例 5では、 比活性、 限界電流、 有効表面積が実施例 3に比べて大きく低下 していた。 これは、 TMC T S蒸気との接触時間が長すぎたために、 過剰なメチ ルシロキサン重合体が触媒層中に生成してしまったことが原因と考えられる。 すなわち過剰なメチルシロキサンにより、 (1)メチルシロキサンで覆われてし まった触媒表面が多くなりすぎて、 電解質である N a f i o nと触媒との接触面 が低下したこと、 及び (2)触媒層中の空孔がメチルシロキサンで塞がれ、 酸素 ガスの拡散性が低下してしまったこと、 が原因で燃料電池の性能が低下したと考 えられる。
実施例 1〜 3及ぴ比較例 4及び 5の結果より、 本発明の構成で高性能な疎水性 触媒層を得るためには、 S i / P t比がおおよそ 0 . 1 5以上0 . 2 5以下の範 囲にあることが好ましいことが判る。 また TMC T S蒸気と白金酸ィ匕物との接触 時間を適切に制御することが重要であることを示す。
比較例 6では、 上述したように、 触媒層の N a f i o n 1 1 2への転写不良箇 所が発生し、 ME Aを作成することができなかった。
これは、 TMC T Sの触媒接触による加水分解及ぴ重合反応において、 白金酸 化物触媒より白金触媒を用いた方が反応速度が速く、 反応が進行しすぎた為であ る。 '
すなわち活性の高い白金触媒と TMC T Sを接触させたため、 過剰なメチルシ ロキサン重合体が触媒層中に生成してしまった結果、 N a f i o n 1 1 2と触媒 層との接着性が低下してしまったのである。 . 比較例 7及ぴ 8では、 比活性及び限界電流が実施例 3と比べて大きく低下して しまっていた。 特に比較例 8では P t担持量が実施例' 3より多いにも.関わらず、 0 . 9 Vにおける電流密度、 比活性、 限界電流ともに、 実施例 3より低かった。 これは、 活性の高い白金触媒と TMC T Sを接触させたために、 比較例 5の場 合と同様、 過剰なメチルシロキサン重合体が触媒層中に生成してしまったためで める。
さらに比較例 7および 8では、 工程上、 触媒還元後にナフィオンを添加してか ら TMC T Sを接触させている。 この場合、 TMC T Sの加氷^^は、 ナフィォ ンで覆われていない P t表面近傍で進行するので、 この近傍に集中してメチルシ ロキサンが生成する。 このため、 いわゆる三相界面 (白金、' ナフイオン及び反応 ガスが同時に接する界面) をメチルシロキサンが覆ってしまい、 三相界面積が大 きく減少してしまったと考えられる。 このため燃料電池の性能が低下したのであ る。
比較例 6、 7及ぴ 8の結果は、 本発明の構成で高性能な疎水性触媒層を得るた' めには、 TMC T S蒸気と白金酸ィ匕物を接触させた後に、 白金酸化物を還元処理 することが必要であることを示す。
以上の実施例に示すように、 固体高分子型燃料電池の触媒層として、 本発明に 係わる疎水性触媒層を用いることにより、 触媒層中の生成水散逸性及び触媒利用 率が大幅に向上し、 優れた電池特性を有する燃料電池が得られた。 さらに本実施 例にかかわる触媒層の製清方法は、 簡易かつ安価で再現性のよいプロセスである ため、 安定な特性を持った固体高分子型燃料電池を低コストで実現できた。
産業上の利用可能性
本発明の疎水性触媒層は、 触媒層中の生成水散逸性及び触媒利用率を向上でき : るので、 固体高分子型燃料電池の触媒層として利用することができる。
また、 前記触媒層を有する固体高分子型燃料電池は、 携帯電話やノート型パソ コン、 デジタルカメラなど小型の電気機器用の燃料電池として利用することがで さる。 この出願は 2 0 0 5年 4月 2 8日に出願された日本国特許出願番号
第 2 0 0 5—1 3 2 9 5 7からの優先権を主張するものであり、 その内容を引用 Lてこの出願の一部とするものである。

Claims

請 求 の 範 囲
1 . 触媒と疎水剤とプロトン伝導性電解質とからなる、 固体高分子型燃料電 池用疎水性触媒層におレヽて、
5 前記触媒は、 白金酸化物を還元してなる樹枝状形状触媒であり、
前記疎水剤は、 S i原子、 〇原子および珠水性置換基を有する化合物からなり、 前記疎水剤中の S iと前記触媒中の P tの原子数比 S i / P tが 0 . 1 5以上 0 . 2 5以下であることを特徴どする固体高分子型燃料電池用疎水性触媒層。
2. 前記疎水剤は、 疎水性置換基を有するシ口キサン重合体からなることを0 特徴とする請求項 1に記載の固体高分子型燃料電池用疎水性触媒層。
3 . 前記疎水剤は、 アルキルシロキサンからなることを特徴とする請求項 1 に記載の固体高分子型燃科電池用疎水性触媒層。
4. 白金酸化物の触媒作用で、 加水分解反応を起こし重合可能基を生成する、 疎水性置換基を含む S i化合物を、 前記白金酸化物に接触させる工程と、 前記 S5 i化合物を前記白金酸化物の近傍で重合反応させる'ことで、 前記疎水剤を前記白 ' 金酸ィ匕物の表面に生じさせる工程と、 その後に前記白金酸化物を還元する工程と を有することを特徴とする固体高分子型燃料電池用疎水性触媒層の製造方法。
5 . 前記疎水性置換基を含む S i化合物が、 0 3—へキサァノレキノレジシラザン、 モノアノレキノレシラン、 ジアルキルシランおょぴ トリアルキルシランカ らなる群より選ばれた少なくとも一種類以上の化合物また は混合物であることを特徴とする請求項4に記載の固体高分子型燃料電池用疎水 性触媒層の製造方法。
6 . 請求項 1乃至 3のレヽずれかに記載の疎水性触媒層と固体高分子電解質膜5 とを少なくとも有する固体高分子型燃料電池。
7 . 請求項 4又ほ 5に記載の製造方法によって疎水性触媒層を形成する工程 を含むことを特徴とする固体高分子型燃料電池の製造方法。
2
00 •
PCT/JP2006/309356 2005-04-28 2006-04-28 固体高分子型燃料電池用の疎水性触媒層及びその製造方法、固体高分子型燃料電池及びその製造方法 WO2006118346A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06732508.4A EP1879249B1 (en) 2005-04-28 2006-04-28 Hydrophobic catalyst layer for solid polymer fuel cell, method for producing same, solid polymer fuel cell and method for manufacturing same
CA2605342A CA2605342C (en) 2005-04-28 2006-04-28 Hydrophobic catalyst layer for polymer electrolyte fuel cell and method of producing the same, and polymer electrolyte fuel cell and method of producing the same
BRPI0608135-5A BRPI0608135A2 (pt) 2005-04-28 2006-04-28 camada catalisadora hidrofóbica para uma célula de combustìvel de eletrólito polimérica, método de produção de uma camada catalisadora hidrofóbica para uma célula de combustìvel de eletrólito polimérica, célula de combustìvel de eletrólito polimérica, e, método de procução da mesma
US13/799,970 US8722220B2 (en) 2005-04-28 2013-03-13 Hydrophobic catalyst layer for polymer electrolyte fuel cell and method of producing the same, and polymer electrolyte fuel cell and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-132957 2005-04-28
JP2005132957 2005-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/550,123 Continuation US20070134544A1 (en) 2005-04-28 2006-10-17 Hydrophobic catalyst layer for polymer electrolyte fuel cell and method of producing the same, and polymer electrolyte fuel cell and method of producing the same

Publications (1)

Publication Number Publication Date
WO2006118346A1 true WO2006118346A1 (ja) 2006-11-09

Family

ID=37308122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309356 WO2006118346A1 (ja) 2005-04-28 2006-04-28 固体高分子型燃料電池用の疎水性触媒層及びその製造方法、固体高分子型燃料電池及びその製造方法

Country Status (8)

Country Link
US (2) US20070134544A1 (ja)
EP (1) EP1879249B1 (ja)
KR (1) KR100967511B1 (ja)
CN (1) CN100580983C (ja)
BR (1) BRPI0608135A2 (ja)
CA (1) CA2605342C (ja)
RU (1) RU2360330C1 (ja)
WO (1) WO2006118346A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332041A (ja) * 2005-04-28 2006-12-07 Canon Inc 固体高分子型燃料電池の疎水性触媒層及びその製造方法、固体高分子型燃料電池及びその製造方法
WO2008153168A1 (en) 2007-06-12 2008-12-18 Canon Kabushiki Kaisha Method of producing fuel cell catalyst layer
WO2011108252A1 (ja) * 2010-03-05 2011-09-09 パナソニック株式会社 燃料電池用カソード電極の製造方法及び燃料電池用カソード電極

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908778B2 (ja) * 2004-06-30 2012-04-04 キヤノン株式会社 固体高分子型燃料電池の触媒層の製造方法および固体高分子型燃料電池の製造方法
JP2007123043A (ja) * 2005-10-27 2007-05-17 Canon Inc 固体高分子型燃料電池の触媒層、その製造方法および固体高分子型燃料電池
JP2008135369A (ja) * 2006-10-27 2008-06-12 Canon Inc 固体高分子型燃料電池用撥水性触媒層及びその製造方法
JP5105888B2 (ja) * 2007-02-01 2012-12-26 キヤノン株式会社 ガス拡散電極、燃料電池及びガス拡散電極の製造方法
KR101228226B1 (ko) * 2007-06-12 2013-01-31 캐논 가부시끼가이샤 막 전극 조립체 및 연료 전지
JP2009026526A (ja) * 2007-07-18 2009-02-05 Toyota Motor Corp 燃料電池
JP2009140864A (ja) * 2007-12-10 2009-06-25 Canon Inc 燃料電池用触媒層、膜電極接合体、燃料電池および燃料電池用触媒層の製造方法
JP5388691B2 (ja) * 2008-05-23 2014-01-15 キヤノン株式会社 触媒層および膜電極接合体の製造方法
US20090311568A1 (en) * 2008-06-17 2009-12-17 Canon Kabushiki Kaisha Catalyst layer, membrane electrode assembly, fuel cell, and method for manufacturing catalyst layer
CN103762372B (zh) * 2014-01-26 2016-04-13 齐志刚 催化剂层水淹的解决方法和超薄催化剂层及其制备方法
CN104733778B (zh) * 2015-03-24 2017-11-24 中南大学 一种多臂星形网络状固体聚合物电解质
RU2586218C1 (ru) * 2015-03-26 2016-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет имени Д. И Менделеева" (РХТУ им. Д. И. Менделеева). Способ получения фосфораниминов взаимодействием хлорфосфоранов с гексаалкилдисилазанами
JP7461946B2 (ja) * 2018-11-26 2024-04-04 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 高分子電解質燃料電池用の表面積が拡張された触媒層およびそのような触媒層の生成方法
RU2749729C1 (ru) * 2020-05-09 2021-06-16 Дмитрий Александрович Шелахаев Способ получения многослойных металлических наноструктурированных каталитических покрытий

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09510571A (ja) * 1994-02-04 1997-10-21 ザ ダウ ケミカル カンパニー 触媒金属粒子により被覆された炭素繊維ペーパーを含む電気化学電池
JP2001076734A (ja) * 1999-09-08 2001-03-23 Mitsubishi Electric Corp 固体高分子型燃料電池
JP2002008667A (ja) * 2000-06-23 2002-01-11 Asahi Glass Co Ltd 固体高分子型燃料電池用電極及びその製造方法
JP2004103384A (ja) * 2002-09-10 2004-04-02 Mitsubishi Electric Corp 電気化学素子
JP2004172098A (ja) * 2002-11-05 2004-06-17 Matsushita Electric Ind Co Ltd 燃料電池
JP2006049278A (ja) * 2004-06-30 2006-02-16 Canon Inc 固体高分子型燃料電池の触媒層およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3440107A (en) * 1966-12-20 1969-04-22 American Cyanamid Co Method for preparing fuel cell electrodes
JP3245929B2 (ja) 1992-03-09 2002-01-15 株式会社日立製作所 燃料電池及びその応用装置
US6046348A (en) * 1996-07-17 2000-04-04 Fuji Xerox Co., Ltd. Silane compound, method for making the same, and electrophotographic photoreceptor
US5879827A (en) 1997-10-10 1999-03-09 Minnesota Mining And Manufacturing Company Catalyst for membrane electrode assembly and method of making
CN1159788C (zh) * 1998-06-16 2004-07-28 松下电器产业株式会社 高分子电解质燃料电池
US6713207B2 (en) * 2000-05-18 2004-03-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Membrane electrode assembly, and solid polymer fuel cell using the assembly
JP3798276B2 (ja) * 2001-08-16 2006-07-19 三菱電機株式会社 電気化学素子及び電気化学素子装置
US6811905B1 (en) * 2002-05-21 2004-11-02 Giner Electro Chemical Systems, Llc Direct organic fuel cell having a vapor transport member
US7569302B2 (en) * 2002-11-05 2009-08-04 Panasonic Corporation Fuel cell for generating electric power
JP2004171847A (ja) 2002-11-19 2004-06-17 Hitachi Ltd 燃料電池
US7871955B2 (en) * 2004-04-09 2011-01-18 Basf Fuel Cell Gmbh Platinum catalysts from in situ formed platinum dioxide
JP2007123043A (ja) 2005-10-27 2007-05-17 Canon Inc 固体高分子型燃料電池の触媒層、その製造方法および固体高分子型燃料電池
JP5388691B2 (ja) * 2008-05-23 2014-01-15 キヤノン株式会社 触媒層および膜電極接合体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09510571A (ja) * 1994-02-04 1997-10-21 ザ ダウ ケミカル カンパニー 触媒金属粒子により被覆された炭素繊維ペーパーを含む電気化学電池
JP2001076734A (ja) * 1999-09-08 2001-03-23 Mitsubishi Electric Corp 固体高分子型燃料電池
JP2002008667A (ja) * 2000-06-23 2002-01-11 Asahi Glass Co Ltd 固体高分子型燃料電池用電極及びその製造方法
JP2004103384A (ja) * 2002-09-10 2004-04-02 Mitsubishi Electric Corp 電気化学素子
JP2004172098A (ja) * 2002-11-05 2004-06-17 Matsushita Electric Ind Co Ltd 燃料電池
JP2006049278A (ja) * 2004-06-30 2006-02-16 Canon Inc 固体高分子型燃料電池の触媒層およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1879249A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332041A (ja) * 2005-04-28 2006-12-07 Canon Inc 固体高分子型燃料電池の疎水性触媒層及びその製造方法、固体高分子型燃料電池及びその製造方法
WO2008153168A1 (en) 2007-06-12 2008-12-18 Canon Kabushiki Kaisha Method of producing fuel cell catalyst layer
EP2158628A1 (en) * 2007-06-12 2010-03-03 Canon Kabushiki Kaisha Method of producing fuel cell catalyst layer
EP2158628A4 (en) * 2007-06-12 2012-03-28 Canon Kk METHOD FOR PRODUCING A FUEL CELL CATALYSER LAYER
US8399152B2 (en) 2007-06-12 2013-03-19 Canon Kabushiki Kaisha Method of producing fuel cell catalyst layer
WO2011108252A1 (ja) * 2010-03-05 2011-09-09 パナソニック株式会社 燃料電池用カソード電極の製造方法及び燃料電池用カソード電極

Also Published As

Publication number Publication date
EP1879249A1 (en) 2008-01-16
US8722220B2 (en) 2014-05-13
RU2360330C1 (ru) 2009-06-27
BRPI0608135A2 (pt) 2010-11-09
US20070134544A1 (en) 2007-06-14
KR100967511B1 (ko) 2010-07-07
EP1879249A4 (en) 2012-03-28
CN101167210A (zh) 2008-04-23
CN100580983C (zh) 2010-01-13
CA2605342C (en) 2011-06-28
US20130196846A1 (en) 2013-08-01
CA2605342A1 (en) 2006-11-09
KR20080007630A (ko) 2008-01-22
EP1879249B1 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
WO2006118346A1 (ja) 固体高分子型燃料電池用の疎水性触媒層及びその製造方法、固体高分子型燃料電池及びその製造方法
JP5013740B2 (ja) 固体高分子型燃料電池の疎水性触媒層及びその製造方法、固体高分子型燃料電池及びその製造方法
WO2011114783A1 (ja) 燃料電池用カソード触媒層の製造方法、カソード触媒層および固体高分子形燃料電池用膜電極接合体
JP5371270B2 (ja) 燃料電池用触媒層の製造方法
WO2008050895A1 (en) Water repellent catalyst layer for polymer electrolyte fuel cell and manufacturing method for the same
KR100684854B1 (ko) 연료 전지용 촉매, 이의 제조방법 및 이를 포함하는 연료전지용 막-전극 어셈블리
US7700219B2 (en) Structure having three-dimensional network skeleton, method for producing the structure, and fuel cell including the structure
JP2008239369A (ja) カーボンナノウォール(cnw)の精製方法、精製されたカーボンナノウォール、燃料電池用触媒層の製造方法、燃料電池用触媒層、及び固体高分子型燃料電池
JP5740889B2 (ja) 固体高分子形燃料電池用の炭素被覆触媒物質、その製造方法、電極触媒層、及び膜電極接合体
KR101142235B1 (ko) Dmfc용 고분자 나노복합막, 이를 이용한 막-전극 어셈블리 및 메탄올 연료전지
JPWO2005027250A1 (ja) プロトン伝導性膜、その製造方法およびこれを用いた燃料電池
JP4958395B2 (ja) プロトン伝導性膜、これを用いた燃料電池およびその製造方法
KR100612233B1 (ko) 연료전지용 막/전극 접합체, 이의 제조방법 및 이를포함하는 연료전지
JP2010129397A (ja) 燃料電池用電極
KR102706240B1 (ko) 연료전지용 알루미늄 분리판 및 그 제조방법
JP2008234941A (ja) 多孔質触媒層の製造方法、膜電極接合体の製造方法および固体高分子型燃料電池の製造方法
JP2007141626A (ja) 固体高分子型燃料電池の触媒電極および燃料電池
JP2005317467A (ja) 燃料電池用電極、およびこれを用いた燃料電池用mea
JP2007141623A (ja) 固体高分子型燃料電池用電極触媒およびそれを用いた燃料電池
JP2007123196A (ja) 固体高分子型燃料電池の電極触媒層、その製造方法および燃料電池
JP2006185855A (ja) 電極触媒インクの製造方法および前記電極触媒インクから得られる電極触媒層
JP5386775B2 (ja) 電解質膜の製造方法
JP2005122925A (ja) 触媒担体、電極触媒、それらの製造方法、それらを用いた電極及び燃料電池
Wang et al. A monolithic integrated micro direct methanol fuel cell based on sulfo functionalized porous silicon
JP2009076246A (ja) 燃料電池用膜電極接合体、その製造方法、および燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680014148.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2605342

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006732508

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077027445

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007144079

Country of ref document: RU

Ref document number: 5459/CHENP/2007

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2006732508

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0608135

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071023