[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006112068A1 - リチウムイオンキャパシタ - Google Patents

リチウムイオンキャパシタ Download PDF

Info

Publication number
WO2006112068A1
WO2006112068A1 PCT/JP2005/019239 JP2005019239W WO2006112068A1 WO 2006112068 A1 WO2006112068 A1 WO 2006112068A1 JP 2005019239 W JP2005019239 W JP 2005019239W WO 2006112068 A1 WO2006112068 A1 WO 2006112068A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
negative electrode
positive electrode
lithium
lithium ion
Prior art date
Application number
PCT/JP2005/019239
Other languages
English (en)
French (fr)
Inventor
Shinichi Tasaki
Nobuo Ando
Mitsuru Nagai
Atsuro Shirakami
Kohei Matsui
Yukinori Hato
Original Assignee
Fuji Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo Kabushiki Kaisha filed Critical Fuji Jukogyo Kabushiki Kaisha
Priority to CN2005800045092A priority Critical patent/CN101138058B/zh
Priority to JP2006521033A priority patent/JP4833065B2/ja
Priority to US10/584,858 priority patent/US7733629B2/en
Priority to EP05795840A priority patent/EP1865521A4/en
Publication of WO2006112068A1 publication Critical patent/WO2006112068A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/72Current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a high-capacity lithium ion capacitor having high energy density and high output density.
  • This battery is a so-called rocking chair type battery in which lithium ions are supplied to the negative electrode by charging after the battery is assembled, and lithium ions are returned from the negative electrode to the positive electrode by discharging.
  • This is called a lithium ion secondary battery and is distinguished from a lithium battery using lithium metal because only lithium ions are involved in charging / discharging without using lithium metal for the negative electrode.
  • This battery is characterized by high voltage, high capacity, and high safety.
  • a power storage device As a power storage device corresponding to applications that require such high energy density and high output characteristics, a power storage device called a hybrid capacitor that combines the storage principles of a lithium ion secondary battery and an electric double layer capacitor in recent years. Is attracting attention. As one of them, a lithium ion is occluded and supported (hereinafter sometimes referred to as doping) on a carbon material that can occlude and desorb lithium ions by a chemical method or an electrochemical method in advance to lower the negative electrode potential. Thus, an organic electrolyte capacitor using a carbon material that can significantly increase the energy density as a negative electrode has been proposed (see, for example, Patent Document 1).
  • the positive electrode current collector and the negative electrode current collector each have a hole penetrating through the front and back surfaces, and the negative electrode active material can reversibly carry lithium ions.
  • the negative electrode active material can reversibly carry lithium ions.
  • an organic electrolyte battery in which lithium ions are supported on a negative electrode by electrochemical contact with lithium metal disposed opposite to the positive electrode (see, for example, Patent Document 2).
  • lithium ions can move between the front and back surfaces of the electrode without being blocked by the electrode current collector. Even in a power storage device having a cell structure with a large number of stacked layers, lithium ions can be electrochemically supported not only on the negative electrode arranged in the vicinity of the lithium metal but also on the negative electrode arranged away from the lithium metal through the through hole. Is possible.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-107048
  • Patent Document 2 International Publication Number WO98Z033227
  • a negative electrode in which lithium ions are previously occluded in a carbon material that can occlude and desorb lithium ions has a lower potential than activated carbon used in an electric double layer capacitor.
  • the withstand voltage of the cell combined with activated carbon is improved, and the capacity of the negative electrode is much larger than that of activated carbon. Therefore, the organic electrolyte capacitor (lithium ion capacitor) provided with the negative electrode has a high energy density.
  • the cell is configured as an electrode laminate in which positive electrodes and negative electrodes are alternately laminated via separators, and a lithium metal force lithium ion disposed outside the electrode laminate is an electrode in the negative electrode.
  • Doping is performed sequentially through the through holes of the current collector. Therefore, as the number of stacked electrodes constituting the cell increases, the time required for doping lithium ions in advance to the negative electrode becomes longer. For example, when the number of stacked layers is about 10 to 20, place one or two lithium metals on the outermost part of the electrode stack.
  • a predetermined amount of lithium ions can be doped without requiring a long period of time.
  • the number of stacked electrodes is larger than this, it is industrially inconvenient because it takes a long time (for example, 30 days or more) to dope lithium ions even under optimum conditions.
  • the conventional lithium ion capacitor has a cell structure in which lithium ions are doped from the lithium metal disposed on the upper or lower part or the upper and lower parts of the electrode stack to the negative electrode. Is substantially difficult to increase. Therefore, if the number of stacked electrodes is increased as it is, a long time is required for lithium ion doping as described above, and if the doping time is to be shortened, the number of stacked electrodes must be reduced. Katsutsu. As a result, it has been difficult to realize a power storage device that can be used for applications requiring high energy density, large capacity, and high output characteristics, such as power supplies for electric vehicles and electrical equipment for automobiles.
  • an object of the present invention is to provide a lithium ion capacitor that is easy to manufacture, has a high capacity, and has a high withstand voltage.
  • the present inventors have made extensive studies on doping of lithium ions into the negative electrode, and configured the electrode unit in advance by alternately laminating the positive electrode and the negative electrode via a separator,
  • the cell is composed of two or more electrode units, it has been found that by arranging lithium metal between the electrode units, the cell can be easily made and the negative electrode can be uniformly doped with lithium ions in the shortest possible time.
  • the invention was completed. That is, the present invention is as follows.
  • a positive electrode, a negative electrode, and an aprotic organic solvent liquid of lithium salt as an electrolytic solution are provided.
  • the active material is a material capable of reversibly supporting lithium ions and z or ar
  • the negative electrode active material is a material capable of reversibly supporting lithium ions, after the positive electrode and the negative electrode are short-circuited.
  • a positive electrode current collector and a negative electrode current collector each having a hole penetrating the front and back surfaces and alternately stacked via separators.
  • the electrode unit is composed of a negative electrode
  • the cell is composed of two or more electrode units
  • a lithium ion supply source is arranged between the electrode units. Electrochemical contact between the lithium ion supply source and the negative electrode and Z or the positive electrode
  • a lithium ion capacitor characterized in that lithium ions are supported on the negative electrode and the Z or positive electrode in advance.
  • the positive electrode active material is a heat-treated product of (a) activated carbon, (b) conductive polymer, and (c) aromatic condensation polymer, and the atomic ratio of hydrogen atom Z carbon atom is 0.50-0.
  • PAS polyacene organic semiconductor
  • the negative electrode active material is a heat-treated product of (a) graphite, (b) non-graphitizable carbon, and (c) aromatic condensation polymer, and the atomic ratio of hydrogen atom Z carbon atom is 0.50.
  • PAS polyacene organic semiconductor
  • the negative electrode active material has a capacitance per unit weight that is at least three times that of the positive electrode active material, and the weight of the positive electrode active material is greater than the weight of the negative electrode active material.
  • the positive electrode potential and the negative electrode potential after the positive electrode and the negative electrode are short-circuited are 2. OV or less, and the positive electrode current collector and the negative electrode current collector are front and back surfaces, respectively.
  • a lithium ion source is arranged between electrode units that have holes that pass through the electrode and are alternately stacked with positive and negative electrodes through separators. Electrochemical contact between the lithium ion source and the negative electrode and Z or the positive electrode Since lithium ions are supported on the negative electrode and the Z or positive electrode in advance, the potential of the negative electrode is lowered by charging this cell, and the capacitance increases, which makes it easier to increase the number of electrodes constituting the cell.
  • the lithium ion supply source is also arranged between the electrode units, the number of stacked electrodes to be doped with one lithium ion supply source is reduced, and the negative electrode and the Z or positive electrode Since lithium ions can be uniformly doped in a short time, high-quality lithium ion capacitors can be manufactured efficiently.
  • the cell can be assembled by assembling two or more electrode units configured by alternately laminating positive and negative electrodes via separators, the workability of the cell can be improved.
  • FIG. 1 is a front view of a preferred electrode unit constituting a lithium ion capacitor according to the present invention.
  • FIG. 2 is a schematic diagram of a lithium ion capacitor which is a preferred embodiment according to the present invention.
  • FIG. 3 is a perspective view of a negative electrode with a portion cut away.
  • FIG. 4 is a schematic diagram of a lithium ion capacitor according to another preferred embodiment of the present invention.
  • FIG. 5 is a perspective view of a lithium ion capacitor according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional explanatory view of a lithium ion capacitor according to another embodiment of the present invention. Explanation of symbols
  • Negative electrode current collector 3 Separator 4: Lithium metal
  • Electrode unit 11 Hole
  • the lithium ion capacitor of the present invention (hereinafter sometimes referred to as LIC) includes a positive electrode, a negative electrode, and an aprotic organic electrolytic solution of lithium salt as an electrolytic solution, and the positive electrode active material is lithium ion and It is a substance that can reversibly support Z or ion, and the negative electrode active material is a substance that can reversibly support lithium ions, and the potential of the positive electrode after short-circuiting the positive electrode and the negative electrode is 2.
  • OV LiZLi +, the same shall apply hereinafter
  • a normal carbon material has a potential of about 3 V
  • the potential of the positive electrode and the negative electrode after short-circuiting the positive electrode and the negative electrode is low.
  • the deviation is about 3 V.
  • the potentials of the positive electrode and the negative electrode after short-circuiting the positive electrode and the negative electrode are 2.OV or less. That is, in the present invention, lithium ion and And an active material capable of reversibly supporting z or arion, and an active material capable of reversibly supporting lithium ion on the negative electrode. After the positive electrode and the negative electrode are short-circuited, the potential of the positive electrode and the negative electrode is 2 Lithium ions are preloaded on the negative electrode and the Z or positive electrode so that it is below OV.
  • the potential of the positive electrode after the positive electrode and the negative electrode are short-circuited is 2 V or less.
  • the potential of the positive electrode determined by the two methods of (A) or (B) is not more than 2V. That is, (A) after doping with lithium ions, the positive electrode terminal and the negative electrode terminal of the capacitor cell are directly coupled with a conductive wire and left for 12 hours or more, then the short circuit is released, and within 0.5 to 1.5 hours Measured positive electrode potential, (B) Discharge at constant current to OV over 12 hours with charge / discharge tester, then leave the positive terminal and negative electrode terminal connected with lead wire for 12 hours or more, then release the short circuit , Positive electrode potential measured within 0.5 to 1.5 hours.
  • the positive electrode potential after the positive electrode and the negative electrode are short-circuited is not more than 2. OV, not only immediately after the lithium ions are doped,
  • the positive electrode potential after short-circuit in any state, such as when short-circuited after repeated discharge or charge / discharge, is 2.OV or less.
  • the positive electrode potential after short-circuiting the positive electrode and the negative electrode is 2. OV or less will be described in detail below.
  • activated carbon and carbon materials usually have a potential of around 3V (LiZ Li +), and when a cell is constructed using activated carbon for both the positive and negative electrodes, both potentials are about 3V, so they are short-circuited. However, the positive electrode potential is still about 3V.
  • the potential of the negative electrode changes to around OV when charged, so the charge voltage can be increased, resulting in a capacitor with high voltage and high energy density.
  • the upper limit of the charging voltage is determined to be a voltage at which the electrolyte does not decompose due to an increase in the positive electrode potential. Therefore, when the positive electrode potential is set to the upper limit, it is possible to increase the charging voltage as the negative electrode potential decreases. It becomes.
  • the upper limit potential of the positive electrode is, for example, 4.OV. In this case, the positive electrode potential at the time of discharge is up to 3.
  • OV OV
  • the potential change of the positive electrode is about 1.
  • OV and the capacity of the positive electrode cannot be fully utilized.
  • the charge / discharge efficiency of the negative electrode is compared to the charge / discharge efficiency of the positive electrode. If the cell is short-circuited after repeated charging and discharging, the positive electrode potential becomes higher than 3V and the capacity used further decreases.
  • the positive electrode can discharge from 4. OV to 2. OV, but if it can only be used from 4. OV to 3. OV, it means that it does not use half the power as the capacity used, but it becomes a high voltage. It does not become high capacity.
  • the amount of lithium ions supported on the negative electrode can be adjusted in consideration of the characteristics of the negative electrode material and the positive electrode material so that the positive electrode potential after short-circuit becomes 2.OV or less. is necessary.
  • the positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2. OV or less
  • the positive electrode potential after leaving the positive electrode and the negative electrode short-circuited for a long time Means 2. OV or less, defined by the following measurement method.
  • the positive electrode potential and the charge / discharge measured within 0.5 to 1.5 hours after releasing the short circuit after leaving the positive electrode terminal and negative electrode terminal of the cell directly connected with the conductor for 12 hours or longer.
  • the positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.OV or less, as described above, forces other than the positive electrode and the negative electrode of the LIC are applied to the positive electrode and the Z or negative electrode.
  • the supply of lithium ions may be one or both of the negative electrode and the positive electrode.
  • activated carbon is used for the positive electrode, if the amount of lithium ion supported increases and the positive electrode potential decreases, the lithium ion is consumed irreversibly. As a result, problems such as a reduction in cell capacity may occur, and the amount of lithium ions supplied to the negative electrode and the positive electrode needs to be appropriately controlled to prevent problems.
  • the positive electrode potential after the positive electrode and the negative electrode are short-circuited is higher than 2.
  • OV the energy density of the cell is small because the amount of lithium ions supplied to the positive electrode and Z or the negative electrode is small. .
  • the positive electrode potential after the positive electrode and the negative electrode are short-circuited decreases and the energy density increases.
  • 2.0 V or less is preferred.
  • 1. OV (LiZLi +) or less is preferred.
  • the positive electrode potential is below 1.OV, depending on the positive electrode active material, problems such as gas generation and irreversible consumption of lithium ions occur, making it difficult to measure the positive electrode potential.
  • the positive electrode potential becomes too low the negative electrode weight is excessive, and the energy density decreases.
  • it is not less than 0.4V, preferably not less than 0.3V.
  • the capacitance and the capacitance are defined as follows.
  • Cell capacitance is the slope of the discharge curve of the cell
  • the unit is F (farad)
  • the capacitance per unit weight of the cell is the positive electrode active material in which the cell capacitance is filled in the cell It is the value divided by the total weight of the weight and the negative electrode active material.
  • the unit is FZg
  • the positive electrode capacitance is the slope of the discharge curve of the positive electrode
  • the unit is F
  • the capacitance per unit weight of the positive electrode Is the value obtained by dividing the positive electrode capacitance by the weight of the positive electrode active material filled in the cell
  • the unit is FZg
  • the negative capacitance is the negative electrode capacitance filled in the cell.
  • the value is divided by the weight of the negative electrode active material, and the unit is FZg.
  • the cell capacity is the difference between the discharge start voltage and the discharge end voltage of the cell, that is, the product of the voltage change amount and the cell capacitance, and the unit is C (coulomb). Since it is the amount of charge when a current of 1 A flows per second, in the present invention, it is converted into mAh and displayed.
  • the positive electrode capacity is the product of the difference between the positive electrode potential at the start of discharge and the positive electrode potential at the end of discharge (amount of change in positive electrode potential) and the capacitance of the positive electrode.
  • the unit is C or mAh.
  • the unit is C or mAh.
  • Fig. 1 is a front view of an electrode unit constituting the LIC (hereinafter also referred to as a cell) of the present invention
  • Fig. 2 is a schematic diagram of a cell constituted by using three electrode units.
  • the cell comprises an electrode unit 10 by alternately laminating positive electrodes 1 and negative electrodes 2 via separators 3, and then laminating and assembling three electrode units 10.
  • Lithium metal (lithium electrode) 4 is arranged as a lithium ion supply source between the electrode units. Then, as shown in FIG.
  • the cell configured in this way is surrounded by an outer container 6, and an electrolyte (electrolyte) capable of transporting lithium ions is injected and sealed therein, and in this state, the cell is sealed.
  • an electrolyte electrolyte capable of transporting lithium ions
  • the lithium metal 4 can be preliminarily doped into the negative electrode 2 as lithium ions.
  • the number of electrode units 10 constituting the cell is two or more, it is not specified regardless of the number of electrodes stacked in the electrode unit to be used or the size (capacity) of the cell.
  • 3 or more are preferred, usually 2 to 4 Degree.
  • the electrode units 10 are stacked in the horizontal direction and accommodated in the outer container 6.
  • the electrode units 10 may be accommodated in the outer container 6 in the vertical direction.
  • the “positive electrode” means that a current flows out during discharging and a current flows during charging.
  • the inflow side electrode, “negative electrode”, means the electrode on the side where current flows in during discharging and out of current during charging.
  • the electrode unit 10 does not directly contact the positive electrode 1 formed on the positive electrode current collector la and the negative electrode 2 formed on the negative electrode current collector 2a.
  • the separators 3 are alternately stacked.
  • the positive electrode 1 and the negative electrode 2 constituting the electrode unit 10 are not limited, but each layer preferably has three or more layers, usually about 10 to 20 layers.
  • FIG. 3 shows the negative electrode 2 laminated in the middle part of the electrode unit 10 with a part cut away.
  • the negative electrode 2 laminated on the middle part of the electrode unit 10 is preferably formed of a negative electrode active material layer on both surfaces of the negative electrode current collector 2a as shown in the figure.
  • the negative electrode 2 can be formed only on one surface of the negative electrode current collector 2a.
  • the positive electrode 1 can be formed by rubbing in the same manner as the negative electrode 2 except that the positive electrode 1 is formed of a positive electrode active material layer.
  • the negative electrode current collector 2a is a porous material provided with holes 11 penetrating the front and back surfaces, and is provided with an extraction portion 9 at a part of its side end.
  • Such a structure is the same for the positive electrode current collector la.
  • the porous material in which the negative electrode current collector 2a and the positive electrode current collector la are provided with holes 11 lithium ions can freely move between the respective electrodes through the through holes.
  • the shape of the hole in the current collector is not specified.
  • the lithium metal 4 disposed between the electrode units is preferably formed by pressing and bonding lithium metal on both sides of the lithium electrode current collector 4a.
  • This lithium electrode current collector 4a is preferably connected to the negative electrode connection terminal at a part of its side end portion, which facilitates crimping of lithium metal and preferably has a porous structure so that lithium ions can pass through.
  • a take-out section is provided.
  • the outermost part is preferably the separator 3. That is, it is preferable that the upper and lower portions of the electrode unit 10 in FIG. 1 are the separators 3. Further, the inner side of the separator is preferably the negative electrode 2.
  • the outermost part of the electrode unit 10 into the separator 3 it is possible to prevent the lithium metal 4 from coming into direct contact with the electrode and prevent damage to the electrode surface due to rapid doping after the injection of the electrolyte. Can be covered with a separator 3 to protect it, and impurities can be prevented from adhering to the electrode surface. Is obtained. Further, by using the negative electrode 2 on the inside of the separator 3 and the negative electrode 2 on the outside of the electrode unit, there is an advantage that there is no problem even if the negative electrode 2 and the lithium metal 4 are short-circuited.
  • the number of stacked positive electrodes 1 and negative electrodes 2 constituting the electrode unit 10 is not limited. However, if the number of stacked layers is excessively large, the number of negative electrodes to which lithium ions are pre-doped after cell assembly increases, and accordingly doping is performed. Since time becomes long, it is not preferable. When the lithium metal 4 is disposed only between the electrode units 10 as in this example, the doping time becomes long particularly in the electrode unit installed at the end of the cell.
  • the electrode unit 10 is preferably fastened with a tape 5 on the outside as shown in FIG.
  • the electrode unit can be taped from above the separator.
  • the tape 5 to be used the material is not limited as long as it is durable to the electrolytic solution and does not adversely affect the electrode and others.
  • a porous tape capable of transporting lithium ions is preferred.
  • Separator 3 The same material can be used optimally.
  • the thickness and width of the tape 5 are not specified, but the thickness is about 50 to: LOO ⁇ m, and the width is about 5 to: LOmm.
  • the electrode unit can be stably held, and Since workability is also good, it is preferable. An appropriate method can be used for fastening the tape.
  • the position and number of the electrode unit 10 to be fastened with the tape 5 are not limited as long as the size and the tape to be used are selected, but for example, when the width of the electrode unit is about 30 to 80 mm As in this example, the electrode unit can be stably held at two locations.
  • FIG. 4 shows another preferred embodiment of the present invention.
  • lithium metal 4 is arranged between the electrode units 10 constituting the cell as shown in the drawing, and lithium metal 4 is also arranged outside the electrode unit located at the end of the cell.
  • the cell of this example is composed of 3 electrode units! /, So lithium metal 4 has 2 locations between the electrode units and 2 locations outside the electrode units installed at the top and bottom of the cell ( 4 places in all).
  • the configuration of the electrode unit 10 and the lithium metal disposed between the electrode units are substantially the same as those in FIG. 2, and the lithium metal disposed outside the force electrode unit is shown in FIG. Lithium formed on one side of the lithium current collector 4a Metal is used.
  • the negative electrode 2 can be doped in a short time without unevenness of lithium ions. Further, such an arrangement of the lithium metal 4 facilitates an increase in the number of electrode units constituting the cell, and even if the number of electrode units is increased, the doping of lithium ions is not affected. This increases the degree of freedom in cell design and facilitates the manufacture of a large-capacity lithium ion capacitor.
  • FIG. 6 shows a cross-sectional view of a lithium ion capacitor according to another preferred embodiment of the present invention.
  • a flat wound electrode unit 10 is used, and a lithium metal 4 is placed between two flat wound electrode units 10 and outside the electrode unit 10 to form a cell. It is composed.
  • the outer packaging is not shown.
  • This wound electrode unit 10 includes, for example, a positive electrode 1 having an electrode layer on both sides of a positive electrode current collector and a negative electrode 2 having an electrode layer on both sides of the negative electrode current collector in an elliptical shape through a separator 3. It can be obtained by turning and crushing this wound body from both sides. Therefore, the powerful wound electrode unit is easier to manufacture than the stacked electrode units, so that the productivity of the cell can be improved.
  • the outermost portion is preferably the separator 3 for the same reason as described above, and the inner side of the separator 3 is preferably a negative electrode.
  • the current collector of the electrodes (positive electrode 1, negative electrode 2) and lithium electrode current collector 4a a porous body having through holes is used in the same manner as the stacked electrode units.
  • the positive electrode current collector and the negative electrode current collector of the present invention various materials generally proposed for applications such as an organic electrolyte battery can be used.
  • the positive electrode current collector is made of aluminum, stainless steel, or the like.
  • stainless steel, copper, nickel and the like can be preferably used, and various shapes such as foil and net can be used.
  • those having holes penetrating the front and back surfaces are preferred, for example, expanded metal, punching metal, metal net, foam, or through by etching.
  • the porous foil etc. which provided the hole can be mentioned.
  • the through-hole of the electrode current collector can be appropriately set to be round, square, or the like.
  • the through-hole of the electrode current collector is less likely to fall off.
  • the productivity of the electrode is improved and the reliability of the capacitor is reduced due to the drop of the electrode.
  • the thickness of the electrode including the current collector can be reduced to achieve a high energy density and a high output density.
  • the shape and number of through-holes of the electrode current collector are such that lithium ions in the electrolyte described later can move between the front and back of the electrode without being blocked by the electrode current collector. It can be set as appropriate so that it is easily blocked by the material.
  • the porosity of this electrode current collector is defined as that obtained by converting the ratio of ⁇ 1 (current collector weight / current collector true specific gravity) Z (current collector apparent volume) ⁇ to a percentage. To do.
  • the porosity of the electrode current collector used in the present invention is usually 10 to 79%, preferably 20 to 60%. It is desirable that the porosity of the electrode current collector is appropriately selected within the above range in consideration of the cell structure and productivity.
  • the negative electrode active material is not particularly limited as long as it can reversibly carry lithium ions.
  • PAS is more preferable in that a high capacity can be obtained.
  • Capacitance of 650FZg or more can be obtained by discharging after charging (charging) 400mAhZg lithium ion on PAS, and capacitance of 750FZg or more can be obtained by charging lithium ion of 500mAhZg or more. This shows that PAS has a very large capacitance.
  • the potential decreases as the amount of lithium ions to be supported increases. (Charge voltage) increases and the rate of voltage rise during discharge (the slope of the discharge curve) decreases, so the amount of lithium ions depends on the required operating voltage of the power storage device, and the lithium ion storage capacity of the active material It is desirable to set appropriately within the range.
  • PAS has an amorphous structure, there is no structural change such as swelling and shrinkage due to the insertion and desorption of lithium ions, so that the cycle characteristics are excellent. Since it has a molecular structure (higher order structure) that is isotropic with respect to insertion and desorption, it is suitable as a negative electrode material because it has excellent characteristics in rapid charge and rapid discharge.
  • the aromatic condensation polymer which is a precursor of PAS is a condensate of an aromatic hydrocarbon compound and aldehydes.
  • aromatic hydrocarbon compound so-called phenols such as phenol, cresol, xylenol and the like can be preferably used. Specifically, the following formula
  • phenols particularly phenol, are preferred for practical use.
  • a part of the aromatic hydrocarbon compound having a phenolic hydroxyl group may be an aromatic hydrocarbon compound having no phenolic hydroxyl group, such as xylene or toluene. It is also possible to use a modified aromatic condensation polymer substituted with a phosphorus or the like, for example, a condensate of phenol, xylene and formaldehyde. Furthermore, a modified aromatic polymer substituted with melamine or urea can be used, and furan rosin is also suitable.
  • PAS can also be produced, for example, by the above-mentioned aromatic condensation polymer force as follows. That is, by gradually heating the aromatic condensation polymer to an appropriate temperature of 400 to 800 ° C in a non-oxidizing atmosphere (including vacuum), the atomic ratio of hydrogen atoms to carbon atoms (hereinafter referred to as HZC and It is possible to obtain an insoluble and infusible substrate of 0.5 to 0.05, preferably 0.35 to 0.10.
  • the method for producing an insoluble and infusible substrate is not limited to this.
  • the method described in Japanese Patent Publication No. 3-24024, etc. has the above-mentioned HZC, and is 600 m 2 Zg or less. It is also possible to obtain an insoluble and infusible substrate having a specific surface area according to the above BET method.
  • the insoluble and infusible substrate used in the present invention has an X-ray diffraction (according to CuKo, the position of the main 'peak is 20 ° or less represented by 20 and in addition to the main' peak. There is another broad peak between 41 ° and 46 °, that is, the insoluble infusible substrate has a polyacene skeleton structure with an appropriately developed aromatic polycyclic structure and an amorphous structure. And can be stably doped with lithium ions, and thus is suitable as an active material for a lithium power storage device.
  • the negative electrode active material preferably has a pore diameter of 3 nm or more and a pore volume of 0.10 ml / g or more, but the upper limit of the pore diameter is not limited, but usually 3 to 50 nm. Range. Further, the pore volume range is not particularly limited, but is usually from 0.1 to 0.5 mlZg, preferably from 0.15 to 0.5 mlZg.
  • the negative electrode is formed on the negative electrode current collector from the above-mentioned carbon material or negative electrode active material powder such as PAS, but the method is not specified and a known method can be used. Specifically, the negative electrode active material powder, the binder and, if necessary, the conductive powder are dispersed in an aqueous or organic solvent to form a slurry, and the slurry is applied to the current collector, or the slurry is added in advance. It can be formed by forming it into a sheet and sticking it to the electrical body.
  • the negative electrode active material powder, the binder and, if necessary, the conductive powder are dispersed in an aqueous or organic solvent to form a slurry, and the slurry is applied to the current collector, or the slurry is added in advance. It can be formed by forming it into a sheet and sticking it to the electrical body.
  • binder used here for example, rubber-based noinder such as SBR, polytetrafluoroethylene, polyfluorinated resin such as polyvinylidene fluoride, and thermoplastic resin such as polypropylene and polyethylene can be used. it can.
  • fluorine-based binders are particularly preferable. It is particularly preferable to use fluorine-based binders having an atomic ratio of fluorine atoms to Z carbon atoms (hereinafter referred to as FZC) of 0.75 or more and less than 1.5. A fluorine-based binder of less than 1.3 is more preferable.
  • the amount of the binder used varies depending on the type of the negative electrode active material, the electrode shape, and the like.
  • Examples of the conductive material used as necessary include acetylene black, graphite, and metal powder. It is appropriate to add the conductive material in a proportion of 2 to 40% by weight based on the negative electrode active material, the force S that varies depending on the electrical conductivity, electrode shape, etc. of the negative electrode active material.
  • the thickness of the negative electrode active material is positive so that the energy density of the cell can be secured. It is designed with a balance of thickness with the polar active material, but considering the power density and energy density of the cell, industrial productivity, etc., usually on one side of the current collector, 15 ⁇ : LOO / zm, preferably 20 to 80 ⁇ m.
  • the positive electrode contains a positive electrode active material capable of reversibly grasping lithium ions and Z or cation such as tetrafluoroborate.
  • the positive electrode active material is not particularly limited as long as it can reversibly carry lithium ions and / or ions, and examples thereof include activated carbon, conductive polymer, and aromatic condensed polymer.
  • a polyacenic organic semiconductor (PAS) having a polyacene-based skeleton structure which is a heat-treated product and has an atomic ratio of hydrogen atom Z carbon atom of 0.05-0.50 can be exemplified.
  • the method of forming the positive electrode on the positive electrode current collector using the positive electrode active material is substantially the same as that of the negative electrode described above, and thus detailed description thereof is omitted.
  • the capacitance per unit weight of the negative electrode active material has three times or more than the capacitance per unit weight of the positive electrode active material, and the positive electrode active material weight is negative electrode active material. Larger than the material weight! Capacitance more than 3 times the electrostatic capacity per unit weight of positive electrode by appropriately controlling the amount of lithium ion filling (pre-doping amount) into the negative electrode in consideration of the electrostatic capacity of the positive electrode used.
  • the weight of the positive electrode active material can be heavier than the weight of the negative electrode active material. As a result, a capacitor having a higher voltage and a higher capacity than the conventional electric double layer capacitor can be obtained.
  • the weight of the negative electrode active material can be reduced without changing the potential change amount of the negative electrode. Therefore, the filling amount of the positive electrode active material is increased, and the capacitance and capacity of the cell can be increased.
  • the weight of the positive electrode active material is preferably larger than the weight of the negative electrode active material, but more preferably 1.1 times to 10 times. 1. If it is less than 1 time, the capacity difference becomes small, and if it exceeds 10 times, the capacity may decrease, and the thickness difference between the positive electrode and the negative electrode becomes too large, which is not preferable in terms of cell configuration.
  • an electrolyte capable of transporting lithium ions is used.
  • Such an electrolyte is preferably a liquid that can be impregnated in a separator.
  • the electrolyte solvent is a non-prototype that can form an aprotic organic solvent electrolyte solution.
  • Organic organic solvents are preferred. Examples of the aprotic organic solvent include ethylene carbonate, propylene carbonate, dimethylolate carbonate, jetinolecarbonate, ⁇ -butyrolatatane, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane and the like.
  • a mixed solution in which two or more of these aprotic organic solvents are mixed can also be used.
  • any electrolyte can be used as long as it can transfer lithium ions, does not cause electrolysis even at a high voltage, and can stably exist.
  • electrolytes include LiCIO and LiAsF.
  • a lithium salt of 4 6 or 2 5 2 2 can be preferably used.
  • the electrolyte and the solvent are mixed in a sufficiently dehydrated state to obtain an electrolyte solution.
  • the electrolyte concentration in the electrolyte solution is at least 0.1 mol in order to reduce the internal resistance of the electrolyte solution.
  • Z1 or more is preferable 0.5 to 1.5 mol Z1 is even more preferable.
  • the separator it is possible to use a porous body or the like that is not electrically conductive and has a continuous ventilation hole that is durable to an electrolytic solution or an electrode active material.
  • the material of the separator include cellulose (paper), polyethylene, and polypropylene, and known materials can be used. Among these, cellulose (paper) is superior in terms of durability and economy.
  • the thickness of a separator is not limited, Usually, about 20-50 m is preferable.
  • the electrode units when a cell is configured by laminating two or more electrode units in the horizontal direction or the vertical direction, the electrode units positioned between the stacked electrode units or further at both ends of the cell.
  • lithium metal is disposed on one or both outer sides as a lithium ion supply source for supporting lithium ions in advance on the negative electrode and / or the positive electrode.
  • the lithium metal a substance that contains at least lithium element and can supply lithium ions, such as lithium metal or lithium aluminum alloy, is used.
  • the amount of the lithium ion supply source disposed inside the capacitor should be large enough to obtain a predetermined negative electrode capacity. If it is placed more than that, lithium gold After loading a predetermined amount from the genus, the lithium metal may be left inside the capacitor. However, in consideration of safety, it is preferable to dispose only the necessary amount and to carry the entire amount on the negative electrode and / or the positive electrode.
  • the lithium metal is preferably formed on a lithium electrode current collector made of a conductive porous body.
  • the conductive porous body serving as the lithium electrode current collector it is preferable to use a metal porous body that does not react with a lithium ion supply source such as a stainless mesh.
  • a lithium ion supply source such as a stainless mesh.
  • at least a portion of the lithium metal preferably 80% by weight or more, is a pore of the lithium electrode current collector. It is preferably embedded in the part.
  • the lithium metal can be formed on one or both surfaces of the porous lithium electrode current collector.
  • the lithium metal disposed between the electrode units it is preferable to press and form both sides of the lithium electrode current collector so that the lithium ion is uniformly supported on the negative electrode.
  • the metal is formed only on one side of the lithium current collector, lithium ions can be transported to the opposite side through the porous part and supported on the negative electrode, which is convenient and preferable in terms of process.
  • the lithium metal disposed outside the electrode unit located at the end of the cell is formed only on one surface of the lithium electrode current collector facing the negative electrode of the electrode unit.
  • the thickness of the lithium metal to be bonded to the lithium electrode current collector is not limited because it is appropriately determined in consideration of the amount of lithium ions supported in advance on the negative electrode, but is usually about 50 to 300 ⁇ m on one side of the lithium electrode current collector. m.
  • the material of the LIC outer container of the present invention is not particularly limited, and various materials generally used for batteries or capacitors can be used, for example, metal materials such as iron and aluminum, plastic materials, or The composite material etc. which laminated
  • the shape of the outer container is not particularly limited, and can be appropriately selected depending on the application, such as a cylindrical shape or a rectangular shape. From the viewpoint of LIC miniaturization and light weight, a film-type outer container using a laminate film of polymer material such as aluminum and nylon or polypropylene is preferred. That's right.
  • the through hole of the LIC electrode current collector may or may not be blocked with a conductive material, but in this example, it will be described in detail.
  • the through hole of the electrode current collector can be closed by a known method such as a spray method using, for example, a carbon-based conductive material.
  • a positive electrode and a negative electrode are formed on the electrode current collector in which the through hole is closed with a conductive material.
  • the positive electrode is formed by mixing the positive electrode active material with a binder resin to form a slurry, which is coated on the positive electrode current collector and dried.
  • the negative electrode is formed by mixing a negative electrode active material with a binder resin to form a slurry, coating the negative electrode current collector, and drying.
  • the lithium electrode is formed by pressure bonding lithium metal onto a lithium electrode current collector made of a conductive porous body.
  • the thickness of the lithium electrode current collector is about 10 to 200 / ⁇ ⁇ , and the thickness of the lithium metal is generally about 50 to 300 / z m, although it depends on the amount of the negative electrode active material used.
  • an electrode unit is assembled by laminating the electrode current collector on which the electrode is formed, sandwiching the separator so that the positive electrode and the negative electrode are not in direct contact with each other. Then tape the outside. At this time, the positive electrode and negative electrode take-out portions are aligned at predetermined positions.
  • the positive electrode collector take-out portion and the positive electrode terminal, the negative electrode current collector, and the lithium electrode current collector take-out portion and the negative electrode terminal of the assembled electrode unit are welded by ultrasonic welding or the like.
  • Two or more of the above electrode units are placed inside the outer container between the electrode units, and two or more of them are stacked. At that time, preferably, lithium metal is also placed on the lower and upper portions of the stacked electrode units, and the electrolyte solution is injected.
  • the outer container is closed by heat fusion or the like leaving the entrance.
  • the external terminals shall be at least partially exposed to the outside of the outer container so that they can be connected to external circuits.
  • the electrolyte inlet is closed by heat sealing or the like, and the outer container is completely sealed.
  • the lithium ion capacitor of the invention is obtained.
  • the contact pressure from the outer container is weaker than batteries using a metal case such as a cylindrical or prismatic battery, so by applying external pressure to make the positive and negative electrodes flat. Cell distortion is eliminated and cell performance improves, which is preferable.
  • the LIC of a preferred embodiment of the present invention uses an active material capable of reversibly supporting lithium ions and Z or ions as a positive electrode, and a non-tonic lithium salt as an electrolyte.
  • the negative electrode has a capacitance that is at least three times the capacitance per unit weight of the positive electrode active material, and the positive electrode active material weight is larger than the negative electrode active material weight.
  • the cell is provided with lithium metal for supporting lithium in advance, and the negative electrode before charging can be doped with lithium ions in advance. Further, a cell having two or more electrode units and a lithium metal placed between the electrode units can easily assemble a large-capacity cell.
  • the weight of the negative electrode active material can be reduced without changing the potential change amount of the negative electrode. Therefore, the filling amount of the positive electrode active material increases, and the capacitance and capacity of the cell increase.
  • the potential change amount of the negative electrode is decreased, and as a result, the potential change amount of the positive electrode is increased and the capacitance and capacity of the cell are increased.
  • the positive electrode potential drops only to about 3V at the time of discharge, but in the lithium ion capacitor of the present invention, the negative electrode potential is low, so the positive electrode potential can be lowered to 3V or less.
  • the capacity is higher than that of the conventional electric double layer capacitor.
  • the working voltage of a normal capacitor is about 2.3 to 2.7V, but it can be set higher than 3V, improving the energy density.
  • PAS negative electrode 1 100 parts by weight of the above PAS powder and a solution prepared by dissolving 10 parts by weight of polyvinylidene fluoride powder in 80 parts by weight of N-methylpyrrolidone were sufficiently mixed to obtain a slurry.
  • the slurry was applied on one side of an 18 m thick copper foil to a solid content of about 7 mgZcm 2 , dried and pressed to obtain a PAS negative electrode 1.
  • a slurry was obtained by thoroughly mixing 100 parts by weight of commercially available activated carbon powder having a specific surface area of 1950 m 2 / g and 10 parts by weight of polyvinylidene fluoride powder in 100 parts by weight of N-methylpyrrolidone.
  • the slurry was applied to one side of a 20 ⁇ m-thick aluminum foil coated with a carbon-based conductive paint to a solid content of about 7 mgZcm 2 , dried and pressed to obtain positive electrode 1.
  • the positive electrode 1 was cut into a size of 1.5 ⁇ 2.0 cm 2 and used as a positive electrode for evaluation.
  • a simulation cell was assembled through a 1.5 x 2.0 cm 2 size, 200 m thick metal lithium as a 50 m thick polyethylene non-woven fabric separator.
  • Metallic lithium was used as the reference electrode.
  • LiPF was dissolved in propylene carbonate at a concentration of 1 mol / 1.
  • the battery was charged to 3.6 V at a charging current of 1 mA and then charged at a constant voltage. After a total charging time of 1 hour, the battery was discharged to 2.5 V at 1 mA. 3. Positive electrode from discharge time between 5V ⁇ 2.5V 1 The electrostatic capacity per unit weight was found to be 92 FZg.
  • Lithium ions of 280 mAhZg, 350 mAh / g, 400 mAh / g, 500 mAhZg were charged with respect to the weight of the negative electrode active material at a charging current of 1 mA, and then discharged to 1.5 V at 1 mA.
  • the capacitance per unit weight of negative electrode 1 was determined from the discharge time during which the potential of the negative electrode changed 0.2 V from the negative electrode potential 1 minute after the start of discharge. The results are shown in Table 1.
  • the amount of charge here is the value obtained by dividing the integrated value of the charge current flowing to the negative electrode by the weight of the negative electrode active material, and the unit is mAhZg.
  • Copper expanded metal with a thickness of 32 ⁇ m (porosity 50%) (manufactured by Nippon Metal Industry Co., Ltd.)
  • the slurry of the negative electrode 1 above was formed on both sides with a die coater and after pressing, the thickness of the negative electrode as a whole (negative electrodes on both sides)
  • a negative electrode 2 having a total thickness of 148 ⁇ m was obtained.
  • the positive electrode 1 slurry is formed on both sides of the positive electrode current collector by a roll coater, and the thickness of the entire positive electrode after pressing (the thickness of the positive electrode layer on both sides, the thickness of the conductive layer on both sides, and the thickness of the positive electrode current collector). Total) A positive electrode 2 with a force of 12 m was obtained. [0095] (Production of electrode unit)
  • lithium metal foils As a lithium electrode, two lithium metal foils (82 m, 6.0 X 7.5 cm 2 , equivalent to lOOmAhZg) are bonded to one side of a 20 m thick copper foil, and one sheet is bonded to both sides. It was.
  • a lithium electrode with lithium metal bonded on both sides is arranged so as to face both electrode units, and a lithium electrode with lithium metal bonded on one side is arranged on the upper and lower sides.
  • a three-pole laminated unit was obtained.
  • the surface to which the lithium metal was crimped was placed so as to face the laminated unit.
  • the positive electrode current collector terminal welded part (20 sheets) and the negative electrode current collector terminal welded part (22 sheets) were respectively 50 mm wide, 50 mm long and 0.2 mm thick aluminum positive terminal and copper negative electrode The terminal was inserted into the center of the 20 and 22 terminal welds and ultrasonically welded to obtain an electrode unit.
  • the terminal welded part (two sheets) of the lithium electrode current collector was resistance welded to the negative electrode terminal welded part.
  • the electrode unit was placed inside the exterior film that was deeply drawn by 13 mm, covered with the exterior laminate film, and fused on the three sides, and then used as the electrolyte, ethylene carbonate, jetyl carbonate, and propylene carbonate.
  • a solution of LiPF in a concentration of 1 mol Z1 was vacuum impregnated in a mixed solvent with a weight ratio of 3: 4: 1, and the remaining side was melted.
  • a four-cell film capacitor was assembled.
  • the lithium metal placed in the cell is equivalent to 400 mAhZg per weight of the negative electrode active material.
  • the battery was charged at a constant current of 4000 mA until the cell voltage reached 3.6 V, and then a constant current and constant voltage charge was applied for 1 hour by applying a constant voltage of 3.6 V.
  • the battery was discharged at a constant current of 400 mA until the cell voltage reached 1.9V.
  • This 3.6V-1.9V cycle was repeated, and the cell capacity and energy density were evaluated in the third discharge.
  • the results are shown in Table 2. However, the data is the average of 3 cells.
  • the positive electrode and the negative electrode were short-circuited, and the potential of the positive electrode was measured. As a result, it was 0.95 V and 2.0 V or less.
  • Capacitors with high energy density were obtained by preloading lithium ions on the negative electrode and Z or the positive electrode so that the positive electrode potential when the positive electrode and the negative electrode were short-circuited was 2.0 V or less.
  • An electrode unit was obtained in the same manner as in Example 1 except that lamination was performed so that the opposing surfaces of the positive electrode and the negative electrode were 40 layers.
  • 20 positive electrodes and 21 negative electrodes were used in the electrode unit.
  • the weight of the positive electrode active material is 1.4 times the weight of the negative electrode active material.
  • a lithium metal foil (164 / ⁇ ⁇ , 6.0 X 7.5cm 2 , equivalent to 200mAhZg) pressed onto a copper foil with a thickness of 20 ⁇ m was used so as to face the negative electrode.
  • One electrode was placed on each of the upper and lower parts of the electrode unit to obtain a three-pole laminated unit.
  • the positive electrode current collector terminal welded part (20 sheets) and the negative electrode current collector terminal welded part (21 sheets) were respectively 50 mm wide, 50 mm long and 0.2 mm thick aluminum positive electrode terminal and copper negative electrode terminal. was inserted into the center of 20 and 21 terminal welds and ultrasonically welded.
  • the terminal welded part (two sheets) of the lithium electrode current collector was resistance welded to the negative electrode terminal welded part. After terminal welding, the film was the same as in Example 1. 5 type capacitors were assembled (the lithium metal in the cell was !, equivalent to 400mAhZg).
  • the positive electrode and the negative electrode were short-circuited, and the potential of the positive electrode was measured. As a result, it was 0.95 V and 2.0 V or less.
  • Capacitors with high energy density were obtained by preloading lithium ions on the negative electrode and Z or the positive electrode so that the positive electrode potential when the positive electrode and the negative electrode were short-circuited was 2.0 V or less.
  • Lithium metal foil (82 m, 6.0 X 7.5 cm 2 , equivalent to lOOmAhZg) is crimped on both sides of a 20 / zm thick copper foil in the electrode unit of 20 positive electrodes and 21 negative electrodes!
  • a triode electrode laminate unit was obtained in the same manner as in Comparative Example 1 except that the lithium electrode was placed and laminated and then taped.
  • the weight of the positive electrode active material is 1.4 times the weight of the negative electrode active material.
  • a lithium electrode made by pressing a lithium metal foil (82 m, 6.0 X 7.5 cm 2 , equivalent to lOOmAhZg) on one side of a copper foil with a thickness of 20 m was placed on the upper and lower parts, and further taped.
  • the surface to which the lithium metal was crimped was arranged so as to face the electrode unit.
  • the positive electrode current collector terminal welded part (20 sheets) and the negative electrode current collector terminal welded part (21 sheets) were respectively 50 mm wide, 50 mm long, 0.2 mm thick aluminum positive electrode terminal and copper negative electrode
  • the terminals were inserted into the center of the 20 and 21 terminal welds and ultrasonic welded.
  • the terminal welding part (two sheets) of the lithium electrode current collector was resistance welded to the negative electrode terminal welding part.
  • four cell-type capacitors were assembled in the same way as in Example 1 (the lithium metal in the cell is equivalent to 400 mAhZg).
  • Capacitors with high energy density were obtained by preloading lithium ions on the negative electrode and Z or the positive electrode so that the positive electrode potential when the positive electrode and the negative electrode were short-circuited was 2. OV or less.
  • Comparative Example 2 has a high cell capacity and high energy density and a short time for carrying lithium ions on the negative electrode. However, it is a manufacturing process to arrange a lithium electrode in the middle of stacking 20 positive electrodes and 21 negative electrodes. Is complicated, and even if a unit in which a large number of electrodes are laminated is fixed with a tape, the electrodes are liable to be displaced, and defects such as a short circuit between the positive electrode and the negative electrode are likely to occur. Also, terminal welding was difficult as in Comparative Example 1. Therefore, when the number of stacked layers increases, the stability of the electrode unit is higher and the defect rate can be reduced by using two units with half the number of stacked layers. When there are two electrode units, it is easy to place lithium electrodes in three locations, and terminal welding with a short lithium ion loading time is also simple and desirable.
  • the electrodes were laminated so that the opposing surfaces of the positive electrode and the negative electrode were 20 layers, and 2 units of electrode cuts were obtained.
  • Each electrode unit used 10 positive electrodes and 11 negative electrodes.
  • the weight of the positive electrode active material is 1.4 times the weight of the negative electrode active material.
  • lithium metal foils (82 m, 6.0 X 7.5 cm 2 , equivalent to lOOmAhZg) bonded to one side of a 80 ⁇ m thick stainless steel mesh as lithium electrodes, lithium metal foil (164 1 ⁇ m, 6.0 X 7.5 cm 2 , equivalent to 200 mAhZg) was obtained on one side.
  • a lithium electrode with 164 ⁇ m of lithium metal bonded between the two electrode units was placed so as to face the electrode unit, and 82 m of lithium metal was pressed on one side of the upper and lower parts.
  • a triode laminated unit was obtained by arranging the lithium electrode. The surface on which the lithium metal was pressed was arranged so as to face the laminated unit. After fabrication of the triode unit, four film capacitors were assembled in the same way as in Example 1 (the lithium metal in the cell was equivalent to 400 mAhZg).
  • Example 2 As in Example 1, the battery was charged at a constant current of 4000 mA until the cell voltage reached 3.6 V. 3. After that, constant current and constant voltage charging with a constant voltage of 6V was performed for 1 hour. Next, the battery was discharged at a constant current of 400 mA until the cell voltage reached 1.9V. This 3.6V-1.9V cycle was repeated, and the cell capacity and energy density were evaluated in the third discharge. The results are shown in Table 5. However, the data is the average of 3 cells.
  • the positive electrode and the negative electrode were short-circuited and the positive electrode potential was measured. As a result, it was 0.95 V and 2.0 V or less.
  • Capacitors with high energy density were obtained by preloading lithium ions on the negative electrode and Z or the positive electrode so that the positive electrode potential when the positive electrode and the negative electrode were short-circuited was 2.0 V or less.
  • Example 1 since the copper foil was used as the current collector of the lithium electrode, the lithium electrode disposed between the electrode units was strong enough to be bonded to both sides of the current collector. This is to supply lithium ions equally to both electrode units.
  • the lithium electrode current collector is made of a stainless steel net having holes penetrating the front and back surfaces. Therefore, a lithium electrode with lithium metal pressed on one side is arranged between the electrode units. Even so, lithium ions can be supplied to both electrode units without being blocked by the current collector of the lithium electrode. It is preferable to press the lithium metal on one side of the current collector of the lithium electrode because the process is simplified rather than the press on both sides. In addition, when crimping lithium metal on one side, it is necessary to use a lithium metal foil that is twice as thick as the lithium metal that is crimped on both sides. High and low cost.
  • the positive electrode and the negative electrode were short-circuited and the positive electrode potential was measured. As a result, it was 1. IV and 2.0 V or less.
  • a capacitor having a high energy density was obtained by preloading lithium ions on the negative electrode and Z or the positive electrode so that the positive electrode potential when the positive electrode and the negative electrode were short-circuited was 2.0 V or less, Example The values were lower than those of 1 and 2 and Comparative Examples 1 and 2.
  • the negative electrode carries a predetermined amount (400 mAhZg) or more of lithium ions for obtaining a capacitance of 66 OFZg, and conversely, the negative electrode of one electrode unit is necessary to obtain a capacitance of 660 FZg. It is thought that the fixed amount (400mAhZg) of lithium ions was not supported.
  • Example 2 In order to measure the capacity using one cell, as in Example 1, the cell voltage was charged at a constant current of 4000 mA until the cell voltage reached 3.6 V, and gas was generated. The remaining three cells were charged with a constant current of 4000 mA until the cell voltage reached 2.8 V, and then charged with a constant current at a constant voltage of 2.8 V for 1 hour. Next, the battery was discharged at a constant current of 400 mA until the cell voltage reached 1.4V. This 2.8V-1.4V cycle was repeated, and the cell capacity and energy density were evaluated in the third discharge. The results are shown in Table 7. However, the data is the average of 3 cells.
  • the positive electrode and the negative electrode were short-circuited, and the potential of the positive electrode was measured. If the negative electrode and Z or the positive electrode do not carry a certain amount of lithium ions in advance so that the positive electrode potential when the positive electrode and the negative electrode are short-circuited is 2.0 V or less, a capacitor having high energy density cannot be obtained. .
  • the lithium ion capacitor of the present invention is extremely effective as a driving or auxiliary storage power source for electric vehicles, hybrid electric vehicles and the like. Further, it can be suitably used as a drive storage power source for electric bicycles, electric wheelchairs, etc., a power storage device for various types of energy such as solar energy and wind power generation, or a storage power source for household electric appliances. It should be noted that the entire contents of the description, claims, drawings and abstract of Japanese Patent Application No. 2005-104691 filed on March 31, 2005 are incorporated herein by reference. It is included as an indication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 エネルギー密度、出力密度が高い高容量のリチウムイオンキャパシタを提供する。  正極1、負極2および電解液としてリチウム塩の非プロトン性有機溶媒液を備え、正極活物質がリチウムイオンおよび/またはアニオンを可逆的に担持可能な物質であり、かつ負極活物質がリチウムイオンおよびアニオンを可逆的に担持可能な物質であり、正極と負極を短絡させた後の正極および負極電位が2.0V以下となるリチウムイオンキャパシタであって、セパレータ3を介して交互に積層した正極1と負極2で電極ユニット10を構成し、セルは2個以上の電極ユニットで構成され、電極ユニット間にリチウム金属4が配置されており、リチウム金属と負極および/または正極との電気化学的接触により予め負極および/または正極にリチウムイオンを担持する。

Description

明 細 書
リチウムイオンキャパシタ
技術分野
[0001] 本発明は、エネルギー密度、出力密度が高い高容量のリチウムイオンキャパシタに 関する。
背景技術
[0002] 近年、グラフアイト等の炭素材料を負極に用い、正極に LiCoO等のリチウム含有金
2
属酸ィ匕物を用いた電池が提案されている。この電池は、電池組立後、充電することに より正極のリチウム含有金属酸ィ匕物力 負極にリチウムイオンを供給し、更に放電で は負極からリチウムイオンを正極に戻すという、いわゆるロッキングチェア型電池であ り、負極にリチウム金属を使用せずリチウムイオンのみが充放電に関与することから、 リチウムイオン二次電池と呼ばれ、リチウム金属を用いるリチウム電池とは区別されて いる。この電池は、高電圧及び高容量、高安全性を有することを特長としている。
[0003] また、環境問題がクローズアップされる中、太陽光発電や風力発電によるクリーンェ ネルギ一の貯蔵システムや、ガソリン車に代わる電気自動車用またはハイブリッド電 気自動車用の電源の開発が盛んに行われている。さらに、最近ではパワーウィンドウ や IT関連機器など車載装置や設備が高性能'高機能化してきたこともあり、エネルギ 一密度、出力密度の点から新 ヽ電源が求められるようになってきて!/、る。
[0004] こうした高工ネルギー密度、高出力特性を必要とする用途に対応する蓄電装置とし て、近年、リチウムイオン二次電池と電気二重層キャパシタの蓄電原理を組み合わせ た、ハイブリッドキャパシタと呼ばれる蓄電装置が注目されている。その一つとして、リ チウムイオンを吸蔵、脱離し得る炭素材料に、予め化学的方法または電気化学的方 法でリチウムイオンを吸蔵、担持 (以下、ドーピングということもある)させて、負極電位 を下げることによりエネルギー密度を大幅に大きくできる炭素材料を負極に用いる有 機電解質キャパシタが提案されて ヽる (例えば、特許文献 1参照)。
[0005] この種の有機電解質キャパシタでは、高性能が期待されるものの、負極に予めリチ ゥムイオンをドーピングさせる場合に、極めて長時間を要することや負極全体にリチウ ムイオンを均一に担持させることに問題を有し、特に電極を捲回した円筒型装置や 複数枚の電極を積層した角型電池のような大型の高容量セルでは、実用化は困難と されていた。
[0006] このような問題の解決方法として、正極集電体および負極集電体がそれぞれ表裏 面に貫通する孔を備え、負極活物質がリチウムイオンを可逆的に担持可能であり、負 極あるいは正極と対向して配置されたリチウム金属との電気化学的接触により負極に リチウムイオンが担持される有機電解質電池が提案されている (例えば、特許文献 2 参照)。
[0007] 該有機電解質電池においては、電極集電体に表裏面を貫通する孔を設けること〖こ より、リチウムイオンが電極集電体に遮断されることなく電極の表裏間を移動できるた め、積層枚数の多いセル構成の蓄電装置においても、該貫通孔を通じて、リチウム 金属近傍に配置された負極だけでなくリチウム金属から離れて配置された負極にもリ チウムイオンを電気化学的に担持させることが可能となる。
[0008] 特許文献 1 :特開平 8— 107048号公報
特許文献 2:国際公開番号 WO98Z033227号公報
発明の開示
発明が解決しょうとする課題
[0009] 上述のように、リチウムイオンを吸蔵、脱離しうる炭素材料等に予めリチウムイオンを 吸蔵させた負極は、負極が電気二重層キャパシタに用いられる活性炭よりも電位が 卑になるので、正極活性炭と組み合わせたセルの耐電圧は向上し、また負極の容量 は活性炭に比較し非常に大きいため、該負極を備えた有機電解質キャパシタ (リチウ ムイオンキャパシタ)はエネルギー密度が高くなる。
[0010] 上記リチウムイオンキャパシタにおいて、セルは正極と負極とをセパレータを介して 交互に積層した電極積層体として構成され、負極にはこの電極積層体の外部に配置 したリチウム金属力 リチウムイオンが電極集電板の貫通孔を通して順次ドーピングさ れる。そのため、セルを構成する電極の積層枚数が多くなるほど、リチウムイオンを負 極に予めドーピングするのに要する時間が長くなる。積層枚数が例えば 10〜20枚 程度のときは、電極積層体の最外部に 1枚または 2枚のリチウム金属を配置すること により、すなわち例えば水平方向に積層された電極積層体の上部もしくは下部また は上下部にリチウム金属を配置することにより、それほど長期間を要しないで所定量 のリチウムイオンをドーピングできる。しかし、電極の積層枚数がこれより多くなると、 最適な条件下であってもリチウムイオンのドーピングに、長時間(例えば 30日以上) が必要となるため、工業的に不都合が生じる。
[0011] つまり、従来のリチウムイオンキャパシタでは、電極積層体の上部もしくは下部また は上下部に配置したリチウム金属から負極にリチウムイオンをドーピングするセル構 造となっているため、リチウム金属の配置枚数を増すことが実質的に困難である。こ のためこのままで電極の積層枚数を増加すると、前記したようにリチウムイオンのドー ビングに長時間が必要となり、またドーピング時間の短縮を図ろうとすると、電極の積 層枚数を減らさなければならなカゝつた。その結果、例えば電気自動車用や自動車の 電装設備用などの電源のように、エネルギー密度が大きく大容量、高出力特性が求 められる用途に対応できる蓄電装置の実現が困難であった。
[0012] なお、正極および負極を積層してセルを構成する際に、積層する電極の途中にリ チウム金属を配置することが提案されているが、セルの組み立て作業が煩雑となるた めに生産性が低下し、満足できるものでな力つた。
[0013] 本発明は、セパレータを介して正極、負極を交互に積層して予め電極ユニットを構 成し、セルを 2個以上の電極ユニットで構成し、その電極ユニット間にリチウム金属を 配置することによって、製造が容易で高容量かつ高耐電圧のリチウムイオンキャパシ タを提供することを目的とする。
課題を解決するための手段
[0014] 上記課題を解決するため、本発明者らは、負極へのリチウムイオンのドーピングに ついて鋭意研究を進め、正極、負極をセパレータを介して交互に積層して予め電極 ユニットを構成し、セルを 2個以上の電極ユニットで構成する際に、電極ユニット間に リチウム金属を配置することにより、セルイ匕が容易になると共に負極にリチウムイオン をできるだけ短時間でむらなくドーピングできることを見出し、本発明を完成させるに 至った。すなわち、本発明は、次の通りである。
[0015] (1)正極、負極および電解液としてリチウム塩の非プロトン性有機溶媒液を備え、正 極活物質がリチウムイオンおよび zまたはァ-オンを可逆的に担持可能な物質であ り、かつ負極活物質がリチウムイオンを可逆的に担持可能な物質であり、正極と負極 を短絡させた後の正極および負極電位が 2. OV以下となるリチウムイオンキャパシタ であって、正極集電体および負極集電体が、それぞれ表裏面を貫通する孔を備え、 セパレータを介して交互に積層した正極と負極で電極ユニットを構成し、セルは 2個 以上の電極ユニットで構成され、電極ユニット間にリチウムイオン供給源が配置され ており、リチウムイオン供給源と負極および Zまたは正極との電気化学的接触により 予め負極および Zまたは正極にリチウムイオンが担持されることを特徴とするリチウム イオンキャパシタ。
(2)さらに、セルの端部に位置する電極ユニットの一方または両方の外側にもリチウ ムイオン供給源が備えられることを特徴する上記(1)のリチウムイオンキャパシタ。
(3)リチウムイオン供給源が集電体に形成されており、該集電体が表裏面を貫通する 孔を備えて 、ることを特徴とする上記(1)または(2)のリチウムイオンキャパシタ。
(4)リチウムイオン供給源は、集電体の片面または両面にリチウムイオン金属を圧着 して形成されて ヽることを特徴とする上記(1)、 (2)または(3)のリチウムイオンキャパ シタ。
(5)電極ユニットの最外部はセパレータであり、その内側は負極であることを特徴とす る上記(1)〜(4)の!、ずれかのリチウムイオンキャパシタ。
(6)正極活物質が、(a)活性炭、(b)導電性高分子、(c)芳香族系縮合ポリマーの熱 処理物であって水素原子 Z炭素原子の原子比が 0. 50-0. 05であるポリアセン系 骨格構造を有するポリアセン系有機半導体 (PAS)の 、ずれかである上記(1)〜(5) の!、ずれかのリチウムイオンキャパシタ。
(7)負極活物質が、(a)黒鉛、(b)難黒鉛化炭素、(c)芳香族系縮合ポリマーの熱処 理物であって、水素原子 Z炭素原子の原子比が 0. 50〜0. 05であるポリアセン系 骨格構造を有するポリアセン系有機半導体 (PAS)の 、ずれかである上記(1)〜(6) の!、ずれかのリチウムイオンキャパシタ。
(8)電極ユニットの外側がテープで止められて 、ることを特徴とする上記(1)〜(7)の V、ずれかのリチウムイオンキャパシタ。 (9)負極活物質は、正極活物質に比べて、単位重量あたりの静電容量が 3倍以上を 有し、かつ正極活物質の重量が負極活物質の重量より大きいことを特徴とする上記( 1)〜(8)の!、ずれかのリチウムイオンキャパシタ。
発明の効果
[0016] 本発明のリチウムイオンキャパシタにおいては、正極と負極を短絡させた後の正極 電位および負極電位が 2. OV以下となっており、正極集電体および負極集電体が、 それぞれ表裏面を貫通する孔を備え、正極、負極をセパレータを介して交互に積層 してなる電極ユニットの間にリチウムイオン供給源が配置され、リチウムイオン供給源 と負極および Zまたは正極との電気化学的接触により予め負極および Zまたは正極 にリチウムイオンが担持されているので、本セルの充電により負極の電位は低くなり、 かつ静電容量が増大することによって、更にセルを構成する電極枚数の増加が容易 になることによって、エネルギー密度、出力密度が高い大容量の大型蓄電装置を得 ることができる。これにより、電気自動車用や自動車の電装設備用などの電源のよう に高容量、高出力特性が求められる用途に対応できる蓄電装置が実現可能となる。
[0017] さらに、負極および Zまたは正極に担持させるリチウムイオン供給源を電極ユニット の間に配置することにより、セル設計上の自由度及び量産性の向上を可能とするとと もに、優れた充放電特性が得られる。
[0018] また、電極ユニット間にもリチウムイオン供給源を配置するセル構造になっているの で、 1層のリチウムイオン供給源でドーピングする電極の積層枚数を少なくし、負極お よび Zまたは正極にリチウムイオンを短時間でむらなくドーピングできるため、高品質 のリチウムイオンキャパシタを効率よく製造できる。
[0019] さらに、セルは、セパレータを介して正極、負極を交互に積層して構成した 2個以上 の電極ユニットを組み立てることによりできるので、セルイ匕の作業性が改善できる。 図面の簡単な説明
[0020] [図 1]本発明に係るリチウムイオンキャパシタを構成する好ましい電極ユニットの正面 図である。
[図 2]本発明に係る好ま 、実施形態であるリチウムイオンキャパシタの模式図である [図 3]—部を切り欠 ヽた負極の斜視図である。
[図 4]本発明に係る他の好まし 、実施形態であるリチウムイオンキャパシタの模式図 である。
[図 5]本発明の実施形態であるリチウムイオンキャパシタの斜視図である。
[図 6]本発明の他の実施形態に係るリチウムイオンキャパシタの断面説明図である。 符号の説明
[0021] 1 :正極 la :正極集電体 2 :負極
2a :負極集電体 3 :セパレータ 4 :リチウム金属
4a :リチウム極集電体 5 :テープ 6 :外装容器
7 :正極端子 8 :負極端子 9 :取出し部
10 :電極ユニット 11 :孔
発明を実施するための最良の形態
[0022] 本発明のリチウムイオンキャパシタ(以下、 LICと 、うこともある)は、正極、負極、お よび電解液としてリチウム塩の非プロトン性有機電解液を備え、正極活物質がリチウ ムイオンおよび Zまたはァ-オンを可逆的に担持可能な物質であり、かつ負極活物 質がリチウムイオンを可逆的に担持可能な物質であり、正極と負極を短絡させた後の 正極の電位が 2. OV(LiZLi+、以下同じ)以下を有している。
[0023] 従来の電気二重層キャパシタでは、通常、正極と負極に同じ活物質 (主に活性炭) をほぼ同量用いている。この活物質はセルの組立時には約 3Vの電位を有しており、 キャパシタを充電することにより、正極表面にはァ-オンが電気二重層を形成して正 極電位は上昇し、一方負極表面にはカチオンが電気二重層を形成して電位が降下 する。逆に、放電時には正極力もァ-オン力 負極からはカチオンがそれぞれ電解 液中に放出されて電位はそれぞれ下降、上昇し、 3V近傍に戻ってくる。このように通 常の炭素材料は約 3Vの電位を有しているため、正極、負極ともに炭素材料を用いた 有機電解質キャパシタは、正極と負極を短絡させた後の正極および負極の電位は ヽ ずれも約 3 Vとなる。
[0024] これに対し、本発明の LICでは上記したように正極と負極を短絡した後の正極およ び負極の電位は 2. OV以下である。すなわち、本発明では正極にリチウムイオンおよ び zまたはァ-オンを可逆的に担持可能な活物質を用い、また負極にリチウムィォ ンを可逆的に担持可能な活物質を用い、正極と負極を短絡させた後に正極と負極の 電位が 2. OV以下になるように、負極および Zまたは正極に予めリチウムイオンを担 持させている。
[0025] なお、本発明で、正極と負極を短絡させた後の正極の電位が 2V以下とは、以下の
(A)又は(B)の 2つの!/、ずれかの方法で求められる正極の電位が 2V以下の場合を いう。即ち、(A)リチウムイオンによるドープビングの後、キャパシタセルの正極端子と 負極端子を導線で直接結合させた状態で 12時間以上放置した後に短絡を解除し、 0. 5〜1. 5時間内に測定した正極電位、(B)充放電試験機にて 12時間以上かけて OVまで定電流放電させた後に正極端子と負極端子を導線で結合させた状態で 12 時間以上放置した後に短絡を解除し、 0. 5〜1. 5時間内に測定した正極電位。
[0026] また、本発明において、正極と負極とを短絡させた後の正極電位が 2. OV以下とい うのは、リチウムイオンがドーピングされたすぐ後だけに限られるものではなぐ充電状 態、放電状態あるいは充放電を繰り返した後に短絡した場合など、いずれかの状態 で短絡後の正極電位が 2. OV以下となることである。
[0027] 本発明において、正極と負極とを短絡させた後の正極電位が 2. OV以下になるとい うことに関し、以下に詳細に説明する。上述のように活性炭や炭素材は通常 3V(LiZ Li+)前後の電位を有しており、正極、負極ともに活性炭を用いてセルを組んだ場合、 いずれの電位も約 3Vとなるため、短絡しても正極電位はかわらず約 3Vである。また 、正極に活性炭、負極にリチウムイオン二次電池にて使用されている黒鉛や難黒鉛 化炭素のような炭素材を用いた、いわゆるハイブリットキャパシタの場合も同様であり 、いずれの電位も約 3Vとなるため、短絡しても正極電位はかわらず約 3Vである。正 極と負極の重量バランスにもよるが充電すると負極電位が OV近傍まで推移するので 、充電電圧を高くすることが可能となるため高電圧、高エネルギー密度を有したキヤ パシタとなる。一般的に充電電圧の上限は正極電位の上昇による電解液の分解が 起こらない電圧に決められるので、正極電位を上限にした場合、負極電位が低下す る分、充電電圧を高めることが可能となるのである。し力しながら、短絡時に正極電位 が約 3Vとなる上述のハイブリットキャパシタでは、正極の上限電位が例えば 4. OVと した場合、放電時の正極電位は 3. OVまでであり、正極の電位変化は 1. OV程度と 正極の容量を充分利用できていない。更に、負極にリチウムイオンを挿入 (充電)、脱 離 (放電)した場合、初期の充放電効率が低い場合が多ぐ放電時に脱離できないリ チウムイオンが存在していることが知られている。これは、負極表面にて電解液の分 解に消費される場合や、炭素材の構造欠陥部にトラップされる等の説明がなされて いるが、この場合正極の充放電効率に比べ負極の充放電効率が低くなり、充放電を 繰り返した後にセルを短絡させると正極電位は 3Vよりも高くなり、さらに利用容量は 低下する。すなわち、正極は 4. OVから 2. OVまで放電可能であるところ、 4. OVから 3. OVまでしか使えない場合、利用容量として半分し力使っていないこととなり、高電 圧にはなるが高容量にはならないのである。
[0028] ノ、イブリットキャパシタを高電圧、高エネルギー密度だけでなぐ高容量そして更に エネルギー密度を高めるためには、正極の利用容量を向上させることが必要である。 短絡後の正極電位が 3. OVよりも低下すればそれだけ利用容量が増え、高容量にな るということである。 2. OV以下になるためには、セルの充放電により充電される量だ けでなぐ別途リチウム金属などのリチウムイオン供給源力 負極にリチウムイオンを 充電することが好ましい。正極と負極以外からリチウムイオンが供給されるので、短絡 させた時には、正極、負極、リチウム金属の平衡電位になるため、正極電位、負極電 位ともに 3. OV以下になる。リチウム金属の量が多くなる程に平衡電位は低くなる。負 極材、正極材が変われば平衡電位も変わるので、短絡後の正極電位が 2. OV以下 になるように、負極材、正極材の特性を鑑みて負極に担持させるリチウムイオン量の 調整が必要である。
[0029] 本発明のリチウムイオンキャパシタにおいて、正極と負極を短絡させた後の正極電 位が 2. OV以下になるとは、正極と負極を短絡させた状態で長時間放置した後の正 極電位が 2. OV以下であることを意味し、次の測定方法によって定義される。すなわ ち、セルの正極端子と負極端子を導線で直接結合させた状態で 12時間以上放置し た後に短絡を解除し、 0. 5〜1. 5時間内に測定した正極電位、もしくは充放電試験 機にて 12時間以上かけて OVまで定電流放電させた後に正極端子と負極端子を導 線で結合させた状態で 12時間以上放置した後に短絡を解除し、 0. 5〜1. 5時間内 に測定した正極電位のいずれカゝが 2. OV以下の場合、正極と負極を短絡させた後の 正極電位が 2. OV以下であると判断する。
[0030] 本発明の LICにおいて、正極と負極を短絡させた後の正極電位が 2. OV以下にな るということは、上記したように該 LICの正極および負極以外力も正極および Z又は 負極にリチウムイオンが供給されて 、ると 、うことである。リチウムイオンの供給は負極 と正極の片方あるいは両方 、ずれでもよ 、が、例えば正極に活性炭を用いた場合、 リチウムイオンの担持量が多くなり正極電位が低くなると、リチウムイオンを不可逆的 に消費してしまい、セルの容量が低下するなどの不具合が生じる場合があるので、負 極と正極への供給するリチウムイオンの量は不具合が生じないよう適宜制御が必要 である。
[0031] また、正極と負極を短絡させた後の正極電位が 2. OVよりも高い場合は、正極およ び Z又は負極に供給されたリチウムイオンの量が少ないためセルのエネルギー密度 は小さい。リチウムイオンの供給量が多くなるほどに正極と負極を短絡させた後の正 極電位は低くなりエネルギー密度は向上する。高いエネルギー密度を得るには 2. 0 V以下が好ましぐ更に高いエネルギー密度を得るには 1. OV(LiZLi+)以下が好ま しい。また、正極電位が 1. OVを下回ると正極活物質にもよるが、ガス発生や、リチウ ムイオンを不可逆に消費してしまう等の不具合が生じるため、正極電位の測定が困 難となる。また、正極電位が低くなりすぎる場合、負極重量が過剰ということであり、逆 にエネルギー密度は低下する。一般的には 0. IV以上であり、好ましくは 0. 3V以上 である。
[0032] なお、本発明にお 、て静電容量、容量は次のように定義する。セルの静電容量とは 、セルの放電カーブの傾きを示し単位は F (ファラッド)、セルの単位重量当たりの静 電容量とはセルの静電容量をセル内に充填している正極活物質重量と負極活物質 重量の合計重量にて割った値であり、単位は FZg、正極の静電容量とは正極の放 電カーブの傾きを示し単位は F、正極の単位重量当たりの静電容量とは正極の静電 容量をセル内に充填している正極活物質重量にて割った値であり、単位は FZg、負 極の静電容量とは負極の静電容量をセル内に充填して 、る負極活物質重量にて割 つた値であり、単位は FZgである。 [0033] 更に、セル容量とは、セルの放電開始電圧と放電終了電圧の差、すなわち電圧変 化量とセルの静電容量の積であり単位は C (クーロン)であるが、 1Cは 1秒間に 1Aの 電流が流れたときの電荷量であるので、本発明にお 、ては換算して mAh表示するこ ととした。正極容量とは放電開始時の正極電位と放電終了時の正極電位の差 (正極 電位変化量)と正極の静電容量の積であり単位は Cまたは mAh、同時に負極容量と は放電開始時の負極電位と放電終了時の負極電位の差 (負極電位変化量)と負極 の静電容量の積であり単位は Cまたは mAhである。これらセル容量と正極容量、負 極容量とは一致する。
[0034] 次に、本発明のリチウムイオンキャパシタの構成を図面に従って説明する。以下に 示す図面は本発明の好ましい実施の態様を例示したものであり、本発明はこれに限 定されない。図 1は本発明の LIC (以下、セルということもある)を構成する電極ュ-ッ トの正面図であり、図 2はこの電極ユニットを 3個用いて構成されるセルの模式図であ る。本発明においてセルは、図 2に示すように正極 1、負極 2をセパレータ 3を介して 交互に積層して電極ユニット 10を構成し、次いで 3個の電極ユニット 10を積層して組 立て、該電極ユニット間にリチウムイオン供給源としてリチウム金属(リチウム極) 4を配 置して構成される。そして、このように構成されたセルは図 5に示すように外側を外装 容器 6で包囲し、その内部にリチウムイオンを移送可能な電解液 (電解質)を注入して 封止し、この状態で所定時間(例えば 10日間)放置しておくことにより、リチウム金属 4 を負極 2に予めリチウムイオンとしてドーピングすることができる。
[0035] セルを構成する電極ユニット 10の個数は 2個以上であれば、使用する電極ユニット の電極の積層枚数やセルの大きさ(容量)などに関らず特定されないが、電極ュニッ トの電極積層枚数をできるだけ少なくし、その分を電極ユニットの個数を増してリチウ ムイオンのドーピング時間を短縮したり、大容量セルを得るためには、 3個以上が好ま しぐ通常は 2〜4個程度である。このように電極ユニットの電極積層枚数を少なくして 電極ユニット数を増すことにより、大容量のセルをリチウムイオンの短いドーピング時 間で得ることができる。本例では電極ユニット 10を水平方向に積層して外装容器 6に 収容して!/ヽるが、電極ユニット 10は縦方向で外装容器 6に収容してもよ 、。
[0036] なお、本発明において、「正極」とは放電の際に電流が流出し、充電の際に電流が 流入する側の極、「負極」とは放電の際に電流が流入し、充電の際に電流が流出す る側の極を意味する。
[0037] 図 1に示すように上記電極ユニット 10は、正極集電体 la上に形成された正極 1と、 負極集電体 2a上に形成された負極 2とを、互 、に直接接しな 、ようにセパレータ 3を 介して交互に積層して構成されている。この場合、電極ユニット 10を構成する正極 1 および負極 2は限定されないが、各層とも 3層以上が好ましぐ通常は 10〜20層程 度である。
[0038] 図 3は、電極ユニット 10の中間部に積層される負極 2を一部を切り欠いて示したも のである。電極ユニット 10の中間部に積層される負極 2は、図示のように負極集電体 2aの両面上に負極活物質層によって形成されるのが好ましい。しかし、負極集電体 2aの片面上だけに負極 2を形成することもできる。図示はしないが、正極 1は正極活 物質層で形成する点を除 ヽて負極 2と同じよう〖こして形成できる。
[0039] 負極集電体 2aは図 3に示すように表裏面を貫通する孔 11が設けられた多孔材で、 その側端部の一部に取出し部 9を備えている。このような構造は正極集電体 laも同じ である。負極集電体 2aと正極集電体 laに孔 11が設けられて 、る多孔材を用いること によって、貫通孔を通してリチウムイオンは自由に各極間を移動できる。集電体に設 ける孔の形状は特定されな 、。
[0040] 一方、電極ユニット間に配置されるリチウム金属 4は、リチウム極集電体 4aの好まし くは両面にリチウム金属を圧着して貼り付けし形成されて 、る。このリチウム極集電体 4aは、リチウム金属を圧着しやすくし、さらにリチウムイオンが通りぬけできるように多 孔構造であることが好ましぐその側端部の一部に負極接続端子に接続するための 取出し部を備えている。
[0041] 本発明の電極ユニット 10において、その最外部はセパレータ 3であるのが好ましい 。すなわち図 1において電極ユニット 10の上下部はセパレータ 3であるのが好ましぐ 更に該セパレータの内側は負極 2であるのが好ましい。電極ユニット 10の最外部をセ パレータ 3にすることによって、電極にリチウム金属 4が直接に接触するのを回避して 電解液の注液後の急激なドーピングによる電極表面へのダメージを防げる、電極を セパレータ 3で覆って保護できる、電極表面への不純物の付着を防げる、などの利点 が得られる。また、該セパレータ 3の内側を負極 2にし、電極ユニットの外側を負極 2 にすることによって、負極 2とリチウム金属 4と短絡しても問題が無い等の利点が得ら れる。
[0042] 電極ユニット 10を構成する正極 1、負極 2の積層枚数は限定されないが、積層枚数 が過度に多くなると、セル組立後にリチウムイオンを予めドーピングする負極数が増 加し、それに伴ってドーピング時間が長くなるので好ましくない。本例のようにリチウム 金属 4を電極ユニット 10の間にのみ配置している場合には、特にセルの端部に設置 される電極ユニットにおいてドーピング時間が長くなる。
[0043] 本発明において電極ユニット 10は、図 1に示すようにその外側をテープ 5で留める ことが好ましい。電極ユニット 10の最外部にセパレータ 3が積層されているときは、こ のセパレータの上から電極ユニットをテープで留めることができる。使用するテープ 5 としては、電解液に対し耐久性があり、電極その他に対して悪影響を与えないもので あれば材質は限定されないが、リチウムイオンが移送できる多孔性のものが好ましぐ セパレータ 3と同質材料のものが最適に使用できる。
[0044] テープ 5の厚さや幅は特定されるものではないが、厚さが 50〜: LOO μ m程度、幅が 5〜: LOmm程度のもの力 電極ユニットを安定し留めることができ、かつ作業性もよい ので好ましい。テープの留め方には適宜の方法を用いることができる。また、電極ュ ニット 10のテープ 5で留める位置や数は、電極ユニットの大きさや使用するテープな どによって適宜選定すればよく限定されないが、例えば電極ユニットの幅が 30〜80 mm程度のときは、本例のように 2箇所で電極ユニットを安定して留められる。
[0045] 図 4は本発明の他の好ましい実施態様を示したものである。本例は、図示のように セルを構成する電極ユニット 10の間にリチウム金属 4を配置するほかに、セルの端部 に位置する電極ユニットの外側にもリチウム金属 4を配置する例である。すなわち、本 例のセルは 3個の電極ユニットで構成して!/、るので、リチウム金属 4は電極ユニット間 の 2箇所とセルの上部と下部に設置する各電極ユニットの外側の 2箇所 (全部で 4箇 所)に配置される。電極ユニット 10の構成および電極ユニットの間に配置されるリチウ ム金属は、前記の図 2のものと実質的に同一である力 電極ユニットの外側に配置す るリチウム金属には、図 4に示すようにリチウム極集電体 4aの片面に形成されたリチウ ム金属が使用されている。
[0046] このようにリチウム金属 4を密に配置することにより、負極 2にリチウムイオンをむらな ぐ短時間でドーピングできる。更に、リチウム金属 4のこのような配置は、セルを構成 する電極ユニットの個数の増加を容易にし、電極ユニットが増加してもリチウムイオン のドーピングは影響を受けない。これにより、セルの設計の自由度が増大すると共に 、大容量のリチウムイオンキャパシタの製造が容易となる。
[0047] 図 6は、本発明の他の好ましい実施形態に係るリチウムイオンキャパシタの断面図 を示す。本例は扁平した捲回状の電極ユニット 10を使用する例で、 2個の扁平した 捲回状の電極ユニット 10の間と、該電極ユニット 10の外側にリチウム金属 4を配置し てセルを構成している。図 6には外装容器の図示を省略している。この捲回状の電極 ユニット 10は、例えば正極集電体の両面に電極層を有する正極 1と負極集電体の両 面に電極層を有する負極 2とをセパレータ 3を介して楕円状に捲回し、この捲回体を 両側から押しつぶすことによって得ることができる。したがって、力かる捲回した電極 ユニットは、積層した電極ユニットに比べて製造が容易であるので、セルの生産性を 向上できる。なお、このような捲回した電極ユニット 10においても最外部は前記と同 様な理由でセパレータ 3であるのが好ましぐ更に該セパレータ 3の内側は負極であ るのが好ましい。また、上記電極 (正極 1、負極 2)の集電体およびリチウム極集電体 4 aとしては、積層した電極ユニットと同じように貫通孔を有する多孔体が使用される。
[0048] 以下に、本発明のリチウムイオンキャパシタを構成する主要素について順次説明す る。本発明の正極集電体および負極集電体としては、一般に有機電解質電池などの 用途で提案されている種々の材質を用いることができ、正極集電体にはアルミニウム 、ステンレス等、負極集電体にはステンレス、銅、ニッケル等をそれぞれ好適に用いる ことができ、箔状、ネット状等各種形状のものを用いることができる。特に負極および Z又は正極に予めリチウムイオンを担持させるためには、表裏面を貫通する孔を備え たものが好ましぐ例えばエキスパンドメタル、パンチングメタル、金属網、発泡体、あ るいはエッチングにより貫通孔を付与した多孔質箔等を挙げることができる。電極集 電体の貫通孔は丸状、角状、その他適宜設定できる。
[0049] 更に好ましくは、電極を形成する前に、当該電極集電体の貫通孔を、脱落しにくい 導電性材料を用いて少なくとも一部を閉塞し、その上に正極および負極を塗工し形 成することにより、電極の生産性を向上させるとともに、電極の脱落によるキャパシタ の信頼性低下の問題を解決し、更には、集電体を含む電極の厚さを薄くして、高工 ネルギー密度、高出力密度を実現できる。
[0050] 電極集電体の貫通孔の形態、数等は、後述する電解液中のリチウムイオンが電極 集電体に遮断されることなく電極の表裏間を移動できるように、また、導電性材料によ つて閉塞し易いように、適宜設定することができる。
[0051] この電極集電体の気孔率は、 {1一 (集電体重量/集電体真比重) Z (集電体見かけ 体積) }の比を百分率に換算して得られるものと定義する。本発明に用いる電極集電 体の気孔率は、通常、 10〜79%、好ましくは 20〜60%である。電極集電体の気孔 率ゃ孔径は、セルの構造や生産性を考慮し、上述の範囲で適宜選定することが望ま しい。
[0052] 上記負極活物質としては、リチウムイオンを可逆的に担持できるものであれば特に 限定されず、例えば黒鉛、難黒鉛化炭素、芳香族系縮合ポリマーの熱処理物であつ て水素原子 Z炭素原子の原子比が 0. 50〜0. 05であるポリアセン系骨格構造を有 するポリアセン系有機半導体 (PAS)等を挙げることができる。中でも PASは高容量 が得られる点でより好ましい。 PASに 400mAhZgのリチウムイオンを担持(充電)さ せた後に放電させると 650FZg以上の静電容量が得られ、また、 500mAhZg以上 のリチウムイオンを充電させると 750FZg以上の静電容量が得られる。このことから、 PASが非常に大きな静電容量を持つことがわかる。
[0053] 本発明の好ましい形態において、 PASのようなアモルファス構造を有する活物質を 負極に用いた場合、担持させるリチウムイオン量を増加させるほど電位が低下するの で、得られる蓄電装置の耐電圧(充電電圧)が高くなり、また、放電における電圧の上 昇速度 (放電カーブの傾き)が低くなるため、求められる蓄電装置の使用電圧に応じ て、リチウムイオン量は活物質のリチウムイオン吸蔵能力の範囲内にて適宜設定する ことが望ましい。
[0054] また、 PASはアモルファス構造を有することから、リチウムイオンの挿入 '脱離に対し て膨潤 ·収縮と ヽつた構造変化がな 、ためサイクル特性に優れ、またリチウムイオン の挿入 ·脱離に対して等方的な分子構造 (高次構造)であるため、急速充電、急速放 電にも優れた特性を有することから負極材として好適である。
[0055] PASの前駆体である芳香族系縮合ポリマーとは、芳香族炭化水素化合物とアルデ ヒド類との縮合物である。芳香族炭化水素化合物としては、例えばフエノール、クレゾ ール、キシレノール等の如き、いわゆるフエノール類を好適に用いることができる。具 体的には、下記式
[0056] [化 1]
Figure imgf000017_0001
(ここで、 X及び yはそれぞれ独立に、 0、 1または 2である)
で表されるメチレン'ビスフエノール類であることができ、あるいはヒドロキシ 'ビフエ- ル類、ヒドロキシナフタレン類であることもできる。これらの中でも、実用的にはフエノ ール類、特にフエノールが好適である。
[0057] また、上記芳香族系縮合ポリマーとしては、上記のフエノール性水酸基を有する芳 香族炭化水素化合物の一部をフ ノール性水酸基を有さない芳香族炭化水素化合 物、例えばキシレン、トルエン、ァ-リン等で置換した変性芳香族系縮合ポリマー、例 えばフエノールとキシレンとホルムアルデヒドとの縮合物を用いることもできる。更に、 メラミン、尿素で置換した変性芳香族系ポリマーを用いることもでき、フラン榭脂も好 適である。
[0058] 本発明において PASは例えば上記芳香族系縮合ポリマー力 次のようにして製造 することもできる。すなわち、上記芳香族系縮合ポリマーを、非酸化性雰囲気 (真空も 含む)中で 400〜800°Cの適当な温度まで徐々に加熱することにより、水素原子 Z 炭素原子の原子比(以下 HZCと記す)が 0. 5〜0. 05、好ましくは 0. 35〜0. 10の 不溶不融性基体を得ることができる。
[0059] しかし、不溶不融性基体の製造方法はこれに限定されることなぐ例えば、特公平 3 — 24024号公報等に記載されている方法で、上記 HZCを有し、かつ 600m2Zg以 上の BET法による比表面積を有する不溶不融性基体を得ることもできる。
[0060] 本発明に用いる不溶不融性基体は、 X線回折 (CuK o によれば、メイン'ピークの 位置は 2 0で表して 24° 以下に存在し、また該メイン'ピークの他に 41〜46° の間 にブロードな他のピークが存在している。すなわち、上記不溶不融性基体は、芳香族 系多環構造が適度に発達したポリアセン系骨格構造を有し、かつアモルファス構造 を有し、リチウムイオンを安定にドーピングすることができることから、リチウム蓄電装 置用の活物質として好適である。
[0061] 本発明において負極活物質は、細孔直径 3nm以上で細孔容積を 0. 10ml/g以 上有するものが好ましぐその細孔直径の上限は限定されないが、通常は 3〜50nm の範囲である。また、細孔容積の範囲についても特に限定されないが、通常 0. 10〜 0. 5mlZg、好ましくは 0. 15〜0. 5mlZgである。
[0062] 本発明において負極は、上記の炭素材料や PAS等の負極活物質粉末から負極集 電体上に形成されるが、その方法は特定されず既知の方法が使用できる。具体的に は、負極活物質粉末、バインダーおよび必要に応じて導電性粉末を水系または有機 溶媒中に分散させてスラリーとし、該スラリーを前記集電体に塗布するか、または上 記スラリーを予めシート状に成形し、これ^^電体に貼り付けることによって形成でき る。ここで使用されるバインダーとしては、例えば SBR等のゴム系ノインダーゃポリ四 フッ化工チレン、ポリフッ化ビ-リデン等の合フッ素系榭脂、ポリプロピレン、ポリェチ レン等の熱可塑性榭脂を用いることができる。中でもフッ素系バインダーが好ましぐ 特にフッ素原子 Z炭素原子の原子比(以下、 FZCとする)が 0. 75以上、 1. 5未満 であるフッ素系バインダーを用いることが好ましぐ 0. 75以上、 1. 3未満のフッ素系 バインダーが更に好ましい。バインダーの使用量は、負極活物質の種類や電極形状 等により異なる力 負極活物質に対して 1〜20重量%、好ましくは 2〜: LO重量%であ る。
[0063] また、必要に応じて使用される導電性材料としては、アセチレンブラック、グラフアイ ト、金属粉末等が挙げられる。導電性材料の使用量は負極活物質の電気伝導度、電 極形状等により異なる力 S、負極活物質に対して 2〜40重量%の割合で加えるのが適 当である。なお、負極活物質の厚さは、セルのエネルギー密度を確保できるように正 極活物質との厚さのバランスで設計されるが、セルの出力密度とエネルギー密度、ェ 業的生産性等を考慮すると、集電体の片面で通常、 15〜: LOO/z m、好ましくは 20〜 80 μ mである。
[0064] 本発明の LICにおいて、正極は、リチウムイオンおよび Z又は、テトラフルォロボレ ートのようなァ-オンを可逆的に把持できる正極活物質を含有する。
[0065] 上記正極活物質としては、リチウムイオンおよび/又はァ-オンを可逆的に担持でき るものであれば特には限定されず、例えば活性炭、導電性高分子、芳香族系縮合ポ リマーの熱処理物であって水素原子 Z炭素原子の原子比が 0. 05-0. 50であるポ リアセン系骨格構造を有するポリアセン系有機半導体 (PAS)等を挙げることができる
[0066] なお、上記正極活物質を用いて正極集電体に正極を形成する方法は、前記した負 極の場合と実質的に同じであるので、詳細な説明は省略する。
[0067] また、本発明の LICでは、負極活物質の単位重量当たりの静電容量が正極活物質 の単位重量当たりの静電容量の 3倍以上を有し、かつ正極活物質重量が負極活物 質重量よりも大き!、のが好ま ヽ。使用する正極の静電容量を考慮して負極へのリチ ゥムイオンの充填量 (プレドープ量)を適切に制御することにより、正極単位重量当た り静電容量の 3倍以上の静電容量を確保し、かつ正極活物質重量が負極活物質重 量よりも重くすることができる。これにより、従来の電気二重層キャパシタよりも高電圧 かつ高容量のキャパシタが得られる。さらに、正極の単位重量当たりの静電容量より も大きい単位重量当たりの静電容量を持つ負極を用いる場合には、負極の電位変 化量を変えずに負極活物質重量を減らすことが可能となるため、正極活物質の充填 量が多くなりセルの静電容量および容量を大きくできる。正極活物質重量は負極活 物質重量に対して大きいことが好ましいが、 1. 1倍〜 10倍であることが更に好ましい 。 1. 1倍未満であれば容量差が小さくなり、 10倍を超えると逆に容量が小さくなる場 合もあり、また正極と負極の厚み差が大きくなり過ぎるのでセル構成上好ましくない。
[0068] 本発明の LICに用いる電解質としては、リチウムイオンを移送可能な電解質を用い る。このような電解質は、通常液状であってセパレータに含浸できるものが好ましい。 この電解質の溶媒としては、非プロトン性有機溶媒電解質溶液を形成できる非プロト ン性有機溶媒が好ましい。この非プロトン性有機溶媒としては、例えばエチレンカー ボネート、プロピレンカーボネート、ジメチノレカーボネート、ジェチノレカーボネート、 γ 一ブチロラタトン、ァセトニトリル、ジメトキシェタン、テトラヒドロフラン、ジォキソラン、 塩化メチレン、スルホラン等が挙げられる。更に、これら非プロトン性有機溶媒の二種 以上を混合した混合液を用いることもできる。
[0069] また、溶媒に溶解させる電解質としては、リチウムイオンを移送可能で高電圧でも電 気分解を起こさず、リチウムイオンが安定に存在できるものであれば使用できる。この ような電解質としては、例えば LiCIO、 LiAsF
6、 LiBF
4、 LiPF Li (C F SO ) N等
4 6、 2 5 2 2 のリチウム塩を好適に用いることができる。
[0070] 上記の電解質及び溶媒は、充分に脱水された状態で混合して電解液とするが、電 解液中の電解質の濃度は、電解液による内部抵抗を小さくするため少なくとも 0. 1モ ル Z1以上とすることが好ましぐ 0. 5〜1. 5モル Z1の範囲内とすることが更に好まし い。
また、セパレータとしては、電解液あるいは電極活物質等に対して耐久性のある連 通気孔を有する電気伝導性のな 、多孔体等を用いることができる。このセパレータの 材質としては、セルロース (紙)、ポリエチレン、ポリプロピレン、などが挙げられ、既知 のものが使用できる。これらの中でセルロース (紙)が耐久性と経済性の点で優れて いる。セパレータの厚さは限定されないが、通常は 20〜50 m程度が好ましい。
[0071] 本発明の LICにおいて、 2個以上の電極ユニットを横方向または縦方向に積層して セルを構成するとき、積層する各電極ユニット間、あるいは更にセルの両端部に位置 する電極ユニットの一方または両方の外側には、負極および/又は正極に予めリチウ ムイオンを担持させるためのリチウムイオン供給源として、前記したようにリチウム金属 が配置される。このリチウム金属としては、リチウム金属あるいはリチウム アルミ-ゥ ム合金のように、少なくともリチウム元素を含有し、リチウムイオンを供給することので きる物質を用いる。
[0072] この場合、キャパシタ内部に配置させるリチウムイオン供給源の量 (リチウム金属等 のリチウムイオンを供給することのできる物質の重量)は、所定の負極の容量が得ら れるだけの量があれば充分である力 それ以上の量を配置させた場合はリチウム金 属から所定量だけ担持させた後、リチウム金属をキャパシタ内部に残しておいてもよ い。ただし、安全性を考慮すれば必要量のみ配置し、全量を負極および/又は正極 に担持させた方が好ましい。
[0073] 本発明において、リチウム金属は、導電性多孔体からなるリチウム極集電体上に形 成させることが好ましい。ここで、リチウム極集電体となる導電性多孔体としては、ステ ンレスメッシュ等のリチウムイオン供給源と反応しな 、金属多孔体を用いることが好ま しい。例えばリチウムイオン供給源としてリチウム金属を用い、リチウム極集電体として ステンレスメッシュ等の導電性多孔体を用いる場合、リチウム金属の少なくとも一部、 好ましくは 80重量%以上がリチウム極集電体の気孔部に埋め込まれていることが好 ましい。これにより、リチウムイオンが負極に担持された後も、リチウム金属の消失によ つて電極間に生じる隙間が少なくなり、 LICの信頼性をより確実に保持できる。
[0074] リチウム金属をリチウム極集電体に形成する場合、リチウム金属は多孔体のリチウム 極集電体の片面または両面に形成できる。つまり、電極ユニット間に配置するリチウ ム金属の場合には、リチウム極集電体の両面に圧着して形成するのが、リチウムィォ ンを負極にむらなく効率的に担持させるうえで好ましいが、リチウム金属をリチウム極 集電体の片面のみに形成しても、リチウムイオンを多孔部を通じて反対側にも移送さ せ、負極に担持させることができるので、工程的には簡便で好ましい。しかし、セルの 端部に位置する電極ユニットの外側に配置するリチウム金属では、電極ユニットの負 極に対向する、リチウム極集電体の片面にだけ形成するのが好ましい。リチウム極集 電体に圧着するリチウム金属の厚さは、負極に予め担持するリチウムイオン量を考慮 して適宜決められるため限定されないが、通常リチウム極集電体の片面で約 50〜30 0 μ m程度である。
[0075] 本発明の LICの外装容器の材質は特に限定されず、一般に電池またはキャパシタ に用いられている種々の材質を用いることができ、例えば、鉄、アルミニウム等の金属 材料、プラスチック材料、あるいはそれらを積層した複合材料等を使用できる。また、 外装容器の形状も特に限定されず、円筒型や角型など、用途に応じて適宜選択する ことができる。 LICの小型化、軽量ィ匕の観点からは、アルミニウムとナイロン、ポリプロ ピレンなどの高分子材料とのラミネートフィルムを用いたフィルム型の外装容器が好ま しい。
[0076] 以下、本発明の LICの製造方法の一例を示す。 LICの電極集電体の貫通孔は、導 電性材料で塞がれても塞がれなくても良 ヽが、本例では塞ぐ場合にっ ヽて説明する 。電極集電体の貫通孔は、例えばカーボン系の導電性材料を用いてスプレー法など の公知の手法によって塞ぐことができる。
[0077] 次に、貫通孔を導電性材料で塞がれた電極集電体上に、正極、負極を形成する。
正極は正極活物質をバインダー榭脂と混合してスラリーとし、正極集電体上にコーテ イングして乾燥させることにより形成する。負極も同様に、負極活物質をバインダー榭 脂と混合してスラリーとし、負極集電体上にコーティングして乾燥させることにより形成 する。
[0078] リチウム極は、リチウム金属を導電性多孔体からなるリチウム極集電体上に圧着す ることにより形成する。リチウム極集電体の厚さは 10〜200 /ζ πι程度、リチウム金属の 厚さは使用する負極活物質量にもよるが、一般的には 50〜300 /z m程度である。 電極は乾燥させた後、セルの外装容器のサイズにあわせた幅にカットする。この際 、端子溶接部として取出し部を有する形状にカットするのが好ましい。
ついで、電極を形成した電極集電体を、正極と負極とが互いに直接接触しないよう にセパレータを挟み込みながら積層して電極ユニットを組み立てる。そして、その外 側をテープで留める。このとき正極、負極の取出し部を所定の位置に揃えるようにす る。
[0079] 組み立てた電極ユニットの正極集電体の取出し部と正極端子、負極集電体および リチウム極集電体の取出し部と負極端子とをそれぞれ超音波溶接等により溶接する。 上記の電極ユニットを外装容器の内部へ電極ユニット間にリチウム金属を配置して 2個以上積層し、その際好ましくは積層される電極ユニットの下部と上部にもリチウム 金属を配置し、電解液注入口を残して熱融着等により外装容器を閉じる。外部端子 は、外部回路と接続できるよう、少なくとも一部を外装容器の外部に露出させた状態 とする。外装容器の電解液注入ロカゝら電解液を注入し、外装容器内部に電解液で 充填した後、電解液注入口を熱融着等により閉じ、外装容器を完全に封止すること により、本発明のリチウムイオンキャパシタが得られる。 [0080] 電解液を注入すると、すべての負極とリチウム金属が電気化学的に接触し、リチウ ム金属力 電解液中に溶出したリチウムイオンは時間の経過とともに負極に移動し、 所定量のリチウムイオンが負極に担持される。負極へのリチウムイオンの担持に当た つては、負極へのリチウムイオンの浸入により生じるひずみで負極の変形が発生し、 負極の平坦性が損なわれないように、外部力も力を加えて拘束しておくような工夫を することが好ましい。特に、フィルム型電池では、外装容器からの接圧が円筒型や角 型電池のような金属ケースを用いた電池より弱いので、外部からの圧力を加えて正極 、負極の平坦性をとることによりセル自身の歪みもなくなり、セル性能が向上し、好ま しい。
[0081] 本発明の好ましい実施形態の LICは、正極にはリチウムイオンおよび Z又はァ-ォ ンを可逆的に担持可能な活物質を用いており、そして電解質にはリチウム塩の非プ 口トン性有機溶媒溶液を用い、負極としては正極活物質の単位重量当たりの静電容 量の 3倍以上の静電容量を有し、かつ正極活物質重量が負極活物質重量よりも大き ぐ負極にリチウムを予め担持させるリチウム金属がセルに設けられ、充電前の負極 に予めリチウムイオンをドーピングできる。さらに、セルを 2個以上の電極ユニットで構 成し、該電極ユニットの間にリチウム金属を配置することにより、大容量のセルを簡便 に組み立てることができる。
[0082] また、正極の単位重量当たりの静電容量に対して大きな単位重量当たりの静電容 量を持つ負極を用いたことにより、負極の電位変化量を変えずに負極活物質重量を 減らすことが可能となるため、正極活物質の充填量が多くなりセルの静電容量および 容量が大きくなる。また、負極の静電容量が大きいために負極の電位変化量が小さく なり、結果的に正極の電位変化量が大きくなりセルの静電容量および容量が大きく なる。
[0083] さらに、従来の電気二重層キャパシタでは放電時に正極電位は約 3Vまでしか電位 が下がらないが、本発明のリチウムイオンキャパシタでは負極電位が低いことにより正 極電位が 3V以下まで低下できるので、従来の電気二重層キャパシタの構成より高容 量になる。
[0084] さらにまた、負極容量として必要な容量を得るために所定量のリチウムイオンを予め 負極に担持させることにより、通常のキャパシタの使用電圧が 2. 3〜2. 7V程度であ るのに対し、 3V以上に高く設定でき、エネルギー密度が向上する。
以下具体的な実施例により詳細を説明する。
実施例
[0085] (実施例 1)
(負極 1の製造法)
厚さ 0. 5mmのフエノール榭脂成形板をシリコニット電気炉中に入れ、窒素雰囲気 下で 500°Cまで 50°CZ時間の速度で、更に 10°CZ時間の速度で 660°Cまで昇温し 、熱処理し、 PASを合成した。カゝくして得られた PAS板をディスクミルで粉砕すること により、 PAS粉体を得た。この PAS粉体の H/C比は 0. 21であった。
[0086] 次に、上記 PAS粉体 100重量部と、ポリフッ化ビ-リデン粉末 10重量部を N—メチ ルピロリドン 80重量部に溶解した溶液とを充分に混合することによりスラリーを得た。 該スラリーを厚さ 18 mの銅箔片面に固形分にして約 7mgZcm2程度になるよう塗 ェし、乾燥、プレス後 PAS負極 1を得た。
[0087] (正極 1の製造法)
市販の比表面積が 1950m2/g活性炭粉末 100重量部とポリフッ化ビ-リデン粉末 10重量部を N—メチルピロリドン 100重量部に溶解した溶液とを充分に混合すること によりスラリーを得た。該スラリーをカーボン系導電塗料をコーティングした厚さ 20 μ mのアルミニウム箔片面に固形分にして約 7mgZcm2程度になるよう塗工し、乾燥、 プレス後正極 1を得た。
[0088] (正極 1の単位重量当たりの静電容量測定)
上記正極 1を 1. 5 X 2. 0cm2サイズに切り出し、評価用正極とした。正極と対極とし て 1. 5 X 2. 0cm2サイズ、厚み 200 mの金属リチウムを厚さ 50 mのポリエチレン 製不織布をセパレータとして介し模擬セルを組んだ。参照極として金属リチウムを用 いた。電解液としては、プロピレンカーボネートに、 1モル /1の濃度に LiPFを溶解し
6 た溶液を用いた。
[0089] 充電電流 1mAにて 3. 6Vまで充電しその後定電圧充電を行い、総充電時間 1時 間の後、 1mAにて 2. 5Vまで放電を行った。 3. 5V〜2. 5V間の放電時間より正極 1 の単位重量当たりの静電容量を求めたところ 92FZgであった。
[0090] (負極 1の単位重量当たりの静電容量測定)
上記負極 1を 1. 5 X 2. 0cm2サイズに 4枚切り出し、評価用負極とした。負極と対極 として 1. 5 X 2. 0cm2サイズ、厚み 200 mの金属リチウムを厚さ 50 mのポリェチ レン製不織布をセパレータとして介し模擬セルを組んだ。参照極として金属リチウム を用いた。電解液としては、プロピレンカーボネートに、 1モル Z1の濃度に LiPFを溶
6 解した溶液を用いた。
[0091] 充電電流 1mAにて負極活物質重量に対して 280mAhZg、 350mAh/g, 400m Ah/g, 500mAhZg分のリチウムイオンを充電し、その後 1mAにて 1. 5Vまで放電 を行った。放電開始後 1分後の負極の電位から 0. 2V電位変化する間の放電時間よ り負極 1の単位重量当たりの静電容量を求めた。結果を表 1に示す。
[0092] [表 1]
Figure imgf000025_0001
ここでの充電量は負極に流れた充電電流の積算値を負極活物質重量にて割った 値であり、単位は mAhZg。
[0093] (負極 2の製造法)
厚さ 32 μ m (気孔率 50%)の銅製エキスパンドメタル(日本金属工業株式会社製) 両面に上記負極 1のスラリーをダイコーターにて成形し、プレス後負極全体の厚さ(両 面の負極電極層厚さと負極集電体厚さの合計)が 148 μ mの負極 2を得た。
[0094] (正極 2の製造法)
厚さ 35 μ m (気孔率 50%)のアルミニウム製エキスパンドメタル (日本金属工業株式 会社製)両面に非水系のカーボン系導電塗料 (日本アチソン株式会社製: EB-815 )をスプレー方式にてコーティングし、乾燥することにより導電層が形成された正極用 集電体を得た。全体の厚み (集電体厚みと導電層厚みの合計)は 52 μ mであり貫通 孔はほぼ導電塗料により閉塞された。上記正極 1のスラリーをロールコーターにて該 正極集電体の両面に成形し、プレス後正極全体の厚さ(両面の正極電極層厚さと両 面の導電層厚さと正極集電体厚さの合計)力 12 mの正極 2を得た。 [0095] (電極ユニットの作製)
厚さ 148 μ mの負極 2と、厚さ 312 μ mの正極 2を図 3に示すような形状でそれぞれ 、 6. 0 X 7. 5cm2 (端子溶接部を除く)にカットし、セパレータとして厚さ 35 mのセ ルロース Zレーヨン混合不織布を用いて、正極集電体、負極集電体の端子溶接部が それぞれ反対側になるよう配置し、正極、負極の対向面が 20層になるよう積層した。 最上部と最下部はセパレータを配置させて 4辺をテープ留めし、電極ユニットを 2ュ- ット得た。尚、各電極ユニットにはそれぞれ正極は 10枚、負極は 11枚用いた。正極 活物質重量は負極活物質重量の 1. 4倍である。
[0096] (セル 1の作製)
リチウム極として、リチウム金属箔(82 m、 6. 0 X 7. 5cm2 , lOOmAhZg相当)を 厚さ 20 mの銅箔の片面に圧着したものを 2枚、両面に圧着したものを 1枚得た。
[0097] 2つの電極ユニットの間に両面にリチウム金属を圧着したリチウム極を両電極ュニッ トに対向するように配置し、さらに上部と下部にリチウム金属を片面に圧着したリチウ ム極を配置することにより三極積層ユニットを得た。尚、リチウム金属を圧着した面を 積層ユニットと対向するように配置した。続、て正極集電体の端子溶接部(20枚)、 負極集電体の端子溶接部(22枚)をそれぞれ巾 50mm、長さ 50mm、厚さ 0. 2mm のアルミニウム製正極端子及び銅製負極端子を 20枚および 22枚の端子溶接部の 中心に挿入し超音波溶接して電極ユニットを得た。この際、端子溶接部の中心への 正極端子および負極端子の挿入も電極ユニットに分かれているので容易であった。 尚、リチウム極集電体の端子溶接部(2枚)は負極端子溶接部に抵抗溶接した。
[0098] 図 5に示したように、電極ユニットを 13mm深絞りした外装フィルムの内部へ設置し 、外装ラミネートフィルムで覆い三辺を融着後、電解液としてエチレンカーボネート、 ジェチルカーボネートおよびプロピレンカーボネートを重量比で 3 :4 : 1とした混合溶 媒に、 1モル Z1の濃度に LiPFを溶解した溶液を真空含浸させた後、残り一辺を融
6
着させ、フィルム型キャパシタを 4セル組み立てた。尚、セル内に配置されたリチウム 金属は負極活物質重量当たり 400mAhZg相当である。
[0099] (セルの初期評価)
セル組み立て後 20日間放置後に 1セル分解したところ、リチウム金属はいずれも完 全に無くなつていたことから、負極活物質の単位重量当たりに 660FZgの静電容量 を得るためのリチウムイオンが予備充電されたと判断した。負極の静電容量は正極の 静電容量の 7. 2倍となる。
[0100] (セルの特性評価)
4000mAの定電流でセル電圧が 3. 6Vになるまで充電し、その後 3. 6Vの定電圧 を印加する定電流一定電圧充電を 1時間行った。次いで、 400mAの定電流でセル 電圧が 1. 9Vになるまで放電した。この 3. 6V- 1. 9Vのサイクルを繰り返し、 3回目 の放電においてセル容量及びエネルギー密度を評価した。結果を表 2に示す。ただ し、データは 3セルの平均である。
[0101] [表 2]
Figure imgf000027_0001
[0102] 上記測定終了後に正極と負極を短絡させ正極の電位を測定したところ、 0. 95Vで あり、 2. 0V以下であった。正極と負極を短絡させた時の正極電位が 2. 0V以下にな るよう負極および Zまたは正極に予めリチウムイオンを担持させることにより、高いェ ネルギー密度を有したキャパシタが得られた。
[0103] (比較例 1)
正極と負極の対向面が 40層になるように積層する以外は実施例 1と同様にして電 極ユニットを得た。尚、電極ユニットには正極は 20枚、負極は 21枚用いた。正極活 物質重量は負極活物質重量の 1. 4倍である。
[0104] リチウム極として、リチウム金属箔(164 /ζ πι、 6. 0 X 7. 5cm2, 200mAhZg相当) を厚さ 20 μ mの銅箔に圧着したものを用い、負極と対向するように電極ユニットの上 部および下部に各 1枚配置し三極積層ユニットを得た。次に正極集電体の端子溶接 部(20枚)、負極集電体の端子溶接部(21枚)をそれぞれ巾 50mm、長さ 50mm、厚 さ 0. 2mmのアルミニウム製正極端子及び銅製負極端子を 20枚および 21枚の端子 溶接部の中心に挿入し超音波溶接した。尚、リチウム極集電体の端子溶接部(2枚) は負極端子溶接部に抵抗溶接した。端子溶接以降は実施例 1と同様にしてフィルム 型キャパシタを 5セル組み立てた(セル内のリチウム金属は!、ずれも 400mAhZg相 当)。
[0105] セル組み立て後 20日間放置後に 1セル分解したところ、初期の 1Z3程度のリチウ ム金属が残っていた。さらに 20日間放置後に 1セル分解したところ、リチウム金属は 完全になくなつていたことから、負極活物質の単位重量当たりに 660FZgの静電容 量を得るためのリチウムイオンが予備充電されたと判断した。負極の静電容量は正極 の静電容量の 7. 2倍となる。
[0106] 実施例 1と同様に 4000mAの定電流でセル電圧が 3. 6Vになるまで充電し、その 後 3. 6Vの定電圧を印加する定電流一定電圧充電を 1時間行った。次いで、 400m Aの定電流でセル電圧が 1. 9Vになるまで放電した。この 3. 6V- 1. 9Vのサイクル を繰り返し、 3回目の放電においてセル容量及びエネルギー密度を評価した。結果 を表 3に示す。ただし、データは 3セルの平均である。
[0107] [表 3]
Figure imgf000028_0001
[0108] 上記測定終了後に正極と負極を短絡させ正極の電位を測定したところ、 0. 95Vで あり、 2. 0V以下であった。正極と負極を短絡させた時の正極電位が 2. 0V以下にな るよう負極および Zまたは正極に予めリチウムイオンを担持させることにより、高いェ ネルギー密度を有したキャパシタが得られた。
[0109] 正極 20枚、負極 21枚を 1ユニットとしてその上部、下部にリチウム極を配置した構 成ではセル容量、エネルギー密度は高 、ものの負極にリチウムイオンを担持させるの に長い時間を要した。また、端子溶接においては、 20枚の端子溶接部の真中に端 子を挿入することは実施例 1のように電極ユニットに分かれていれば容易であつたが 、比較例 1のように集電体にエキスパンドメタルを使用した電極を連続的に積層した 場合は集電体同士が絡まることが多く困難であった。したがって、積層枚数が多くな る場合には、実施例 1のように電極ユニットを 2分して 3箇所 (電極ユニットの間、およ び上部と下部)にリチウム極を配置させる方がリチウムイオンの担持時間が短ぐ端子 溶接も簡便で望ましい。
[0110] (比較例 2)
正極 20枚と負極 21枚の電極ユニットにお!/、て真中にリチウム金属箔(82 m、 6. 0 X 7. 5cm2, lOOmAhZg相当)を厚さ 20 /z mの銅箔の両面に圧着したリチウム極 を配置して積層した後テープ留めをした以外は比較例 1と同様にして三極電極積層 ユニットを得た。正極活物質重量は負極活物質重量の 1. 4倍である。続いて上部と 下部にリチウム金属箔(82 m、 6. 0 X 7. 5cm2, lOOmAhZg相当)を厚さ 20 m の銅箔の片面に圧着したリチウム極を配置し、さらにテープ留めをした。尚、リチウム 金属を圧着した面を電極ユニットと対向するように配置した。次に正極集電体の端子 溶接部(20枚)、負極集電体の端子溶接部(21枚)をそれぞれ巾 50mm、長さ 50m m、厚さ 0. 2mmのアルミニウム製正極端子及び銅製負極端子を 20枚および 21枚 の端子溶接部の中心に挿入し超音波溶接した。尚、リチウム極集電体の端子溶接部 (2枚)は負極端子溶接部に抵抗溶接した。端子溶接以降は実施例 1と同様にしてフ イルム型キャパシタを 4セル組み立てた(セル内のリチウム金属は 400mAhZg相当)
[0111] セル組み立て後 20日間放置後に 1セル分解したところ、リチウム金属は無くなって いたことから、負極活物質の単位重量当たりに 660FZgの静電容量を得るためのリ チウムイオンが予備充電されたと判断した。
[0112] 実施例 1と同様に 4000mAの定電流でセル電圧が 3. 6Vになるまで充電し、その 後 3. 6Vの定電圧を印加する定電流一定電圧充電を 1時間行った。次いで、 400m Aの定電流でセル電圧が 1. 9Vになるまで放電した。この 3. 6V- 1. 9Vのサイクル を繰り返し、 3回目の放電においてセル容量及びエネルギー密度を評価した。結果 を表 4に示す。ただし、データは 3セルの平均である。
[0113] [表 4]
Figure imgf000029_0001
[0114] 上記測定終了後に正極と負極を短絡させ正極の電位を測定したところ、 0. 95Vで あり、 2. OV以下であった。正極と負極を短絡させた時の正極電位が 2. OV以下にな るよう負極および Zまたは正極に予めリチウムイオンを担持させることにより、高いェ ネルギー密度を有したキャパシタが得られた。
[0115] 比較例 2はセル容量、エネルギー密度も高く負極にリチウムイオンを担持させる時 間も短いが、正極 20枚、負極 21枚を積層する途中にリチウム極を配置することは製 造工程としては煩雑であり、また多数の電極を積層したユニットをテープで固定しても 電極がずれやすく正極と負極が短絡する等の不良が発生しやすい。また、端子溶接 においては、比較例 1と同様に困難であった。したがって、積層枚数が多くなる場合 、積層枚数が半分のユニットを 2ユニット用いる方が電極ユニットの安定性が高く不良 率も低下できる。電極ユニットが 2個になると、リチウム極を 3箇所に配置させるのが簡 便であり、さらにリチウムイオンの担持時間が短ぐ端子溶接も簡便で望ましい。
[0116] (実施例 2)
実施例 1と同様に正極、負極の対向面が 20層になるよう電極を積層し、電極ュ-ッ トを 2ユニット得た。尚、各電極ユニットにはそれぞれ正極は 10枚、負極は 11枚用い た。正極活物質重量は負極活物質重量の 1. 4倍である。
[0117] リチウム極として、リチウム金属箔(82 m、 6. 0 X 7. 5cm2 , lOOmAhZg相当)を 厚さ 80 μ mのステンレス網の片面に圧着したものを 2枚、リチウム金属箔(164 μ m、 6. 0 X 7. 5cm2, 200mAhZg相当)を片面に圧着したものを 1枚得た。
[0118] 2つの電極ユニットの間に 164 μ mのリチウム金属を圧着したリチウム極を電極ュ- ットに対向するように配置し、さらに上部と下部に 82 mのリチウム金属を片面に圧 着したリチウム極を配置することにより三極積層ユニットを得た。尚、リチウム金属を圧 着した面を積層ユニットと対向するように配置した。三極積層ユニット作製以降は実 施例 1と同様にしてフィルム型キャパシタを 4セル組み立てた(セル内のリチウム金属 は 、ずれも 400mAhZg相当 )。
[0119] セル組み立て後 20日間放置後に 1セル分解したところ、リチウム金属は無くなって いたことから、負極活物質の単位重量当たりに 660FZgの静電容量を得るためのリ チウムイオンが予備充電されたと判断した。
[0120] 実施例 1と同様に 4000mAの定電流でセル電圧が 3. 6Vになるまで充電し、その 後 3. 6Vの定電圧を印加する定電流一定電圧充電を 1時間行った。次いで、 400m Aの定電流でセル電圧が 1. 9Vになるまで放電した。この 3. 6V- 1. 9Vのサイクル を繰り返し、 3回目の放電においてセル容量及びエネルギー密度を評価した。結果 を表 5に示す。ただし、データは 3セルの平均である。
[表 5]
Figure imgf000031_0001
[0122] 上記測定終了後に正極と負極を短絡させ正極の電位を測定したところ、 0. 95Vで あり、 2. 0V以下であった。正極と負極を短絡させた時の正極電位が 2. 0V以下にな るよう負極および Zまたは正極に予めリチウムイオンを担持させることにより、高いェ ネルギー密度を有したキャパシタが得られた。
[0123] 実施例 1ではリチウム極の集電体として銅箔を用いていたため、電極ユニット間に 配置するリチウム極は集電体の両面に圧着しなければならな力つた。これは、両方の 電極ユニットにリチウムイオンを均等に供給するためである。一方、実施例 2ではリチ ゥム極の集電体に表裏面を貫通する孔を有したステンレス網を用いて 、ることから、リ チウム金属を片面に圧着したリチウム極を電極ユニット間に配置しても、リチウム極の 集電体に遮断されることなく両方の電極ユニットにリチウムイオンを供給することがで きる。リチウム極の集電体の片面にリチウム金属を圧着する方が、両面に圧着するよ りも工程が簡略化され好ましい。さらに、リチウム金属を片面に圧着する場合は、両面 に圧着するリチウム金属の 2倍の厚みのリチウム金属箔を用いることになる力 リチウ ム金属箔の生産上、厚 ヽ箔の方が生産性が高くコストも低 、ことからより好ま 、。
[0124] (実施例 3)
リチウム極の集電体に 20 mの銅箔を用いる以外は実施例 2と同様にフィルム型キ ャパシタを 5セル組み立てた(セル内のリチウム金属は!、ずれも 400mAhZg相当)。
[0125] セル組み立て後 20日間放置後に 1セル分解したところ、電極ユニット間に配置した リチウム極のリチウム金属が一部残っていた力 上部、下部に配置したリチウム極のリ チウム金属は無くなつていた。さらに 20日間放置後に 1セル分解したところ、リチウム 金属は完全になくなつていたことから、負極活物質の単位重量当たりに 650FZgの 静電容量を得るためのリチウムイオンが予備充電されたと判断した。負極の静電容量 は正極の静電容量の 7. 2倍となる。
[0126] 実施例 1と同様に 4000mAの定電流でセル電圧が 3. 6Vになるまで充電し、その 後 3. 6Vの定電圧を印加する定電流一定電圧充電を 1時間行った。次いで、 400m Aの定電流でセル電圧が 1. 9Vになるまで放電した。この 3. 6V- 1. 9Vのサイクル を繰り返し、 3回目の放電においてセル容量及びエネルギー密度を評価した。結果 を表 6に示す。ただし、データは 3セルの平均である。
[0127] [表 6]
Figure imgf000032_0001
[0128] 上記測定終了後に正極と負極を短絡させ正極の電位を測定したところ、 1. IVであ り、 2. 0V以下であった。正極と負極を短絡させた時の正極電位が 2. 0V以下になる よう負極および Zまたは正極に予めリチウムイオンを担持させることにより、高いエネ ルギー密度を有したキャパシタが得られたものの、実施例 1、 2および比較例 1、 2より も低い値となった。
[0129] リチウム極の集電体に銅箔を用い、片面にリチウム金属を圧着した場合でも、電極 ユニットを 2ユニット作製し、ユニット間にリチウム極を配置することは工程上簡便であ つたが、所定の容量 (実施例 2と同程度)を得ることができな力つた。測定終了後アル ゴンボックス内にてセルを分解し、 2つのユニットを個別に容量測定したところ、中心 に配置して 、たリチウム極のリチウム金属を圧着して 、た面に対向して 、た電極ュ- ットの容量は高力つたのに対し、もう片方の電極積層ユニットの容量は低いことがわか つた。これは、中心のリチウム極の集電体が表裏貫通する孔を有しない銅箔を用いて V、たため、リチウム金属を圧着して!/、た面に対向して!/、た電極ユニットの負極には 66 OFZgの静電容量を得るための所定量 (400mAhZg)以上のリチウムイオンが担持 され、逆に片方の電極ユニットの負極には 660FZgの静電容量を得るのに必要な所 定量 (400mAhZg)のリチウムイオンは担持されな力つたと考えられる。
[0130] (比較例 3)
セル内にリチウム極を配置させない以外は実施例 1と同様にフィルム型キャパシタ を 4セル組み立てた (負極に予めリチウムイオンは担持されな!、)。
[0131] 1セル使用して容量測定をするために実施例 1と同様に 4000mAの定電流でセル 電圧が 3. 6Vになるまで充電したところ、ガス発生し測定できな力つた。残り 3セルに 対し、 4000mAの定電流でセル電圧が 2. 8Vになるまで充電し、その後 2. 8Vの定 電圧を印加する定電流一定電圧充電を 1時間行った。次いで、 400mAの定電流で セル電圧が 1. 4Vになるまで放電した。この 2. 8V- 1. 4Vのサイクルを繰り返し、 3 回目の放電においてセル容量及びエネルギー密度を評価した。結果を表 7に示す。 ただし、データは 3セルの平均である。
[0132] [表 7]
Figure imgf000033_0001
[0133] 上記測定終了後に正極と負極を短絡させ正極の電位を測定したところ、 3. 5Vであ つた。正極と負極を短絡させた時の正極電位が 2. 0V以下になるように、負極および Zまたは正極に予めある程度のリチウムイオンを担持させなければ、高 、エネルギー 密度を有するキャパシタは得られな 、。
産業上の利用可能性
[0134] 本発明のリチウムイオンキャパシタは、電気自動車、ハイブリッド電気自動車などの 駆動用または補助用蓄電源として極めて有効である。また、電動自転車、電動車椅 子などの駆動用蓄電源、ソーラーエネルギーや風力発電などの各種エネルギーの 蓄電装置、あるいは家庭用電気器具の蓄電源などとして好適に用いることができる。 なお、 2005年 3月 31曰に出願された日本特許出願 2005— 104691号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲
[1] 正極、負極および電解液としてリチウム塩の非プロトン性有機溶媒液を備え、正極 活物質がリチウムイオンおよび Zまたはァ-オンを可逆的に担持可能な物質であり、 かつ負極活物質がリチウムイオンを可逆的に担持可能な物質であり、正極と負極を 短絡させた後の正極の電位が 2. OV以下となるリチウムイオンキャパシタであって、 正極集電体および負極集電体が、それぞれ表裏面を貫通する孔を備え、セパレータ を介して交互に積層した正極と負極で電極ユニットを構成し、セルは 2個以上の電極 ユニットで構成され、電極ユニット間にリチウムイオン供給源が配置されており、リチウ ムイオン供給源と負極および Zまたは正極との電気化学的接触により予め負極およ び Zまたは正極にリチウムイオンが担持されることを特徴とするリチウムイオンキャパ シタ。
[2] さらに、セルの端部に位置する電極ユニットの一方または両方の外側にもリチウムィ オン供給源が備えられることを特徴する請求項 1に記載のリチウムイオンキャパシタ。
[3] リチウムイオン供給源の集電体が表裏面を貫通する孔を備えて!/ヽることを特徴とす る請求項 1または 2に記載のリチウムイオンキャパシタ。
[4] リチウムイオン供給源は、集電体の片面または両面にリチウムイオン供給源を圧着 して形成されていることを特徴とする請求項 1、 2または 3に記載のリチウムイオンキヤ パシタ。
[5] 電極ユニットの最外部はセパレータであり、その内側は負極であることを特徴とする 請求項 1〜4のいずれかに記載のリチウムイオンキャパシタ。
[6] 正極活物質が、(a)活性炭、(b)導電性高分子、(c)芳香族系縮合ポリマーの熱処 理物であって水素原子 Z炭素原子の原子比が 0. 50-0. 05であるポリアセン系骨 格構造を有するポリアセン系有機半導体 (PAS)の 、ずれかである請求項 1〜5の ヽ ずれかに記載のリチウムイオンキャパシタ。
[7] 負極活物質が、(a)黒鉛、(b)難黒鉛化炭素、(c)芳香族系縮合ポリマーの熱処理 物であって、水素原子 Z炭素原子の原子比が 0. 50-0. 05であるポリアセン系骨 格構造を有するポリアセン系有機半導体 (PAS)の 、ずれかである請求項 1〜6の ヽ ずれかに記載のリチウムイオンキャパシタ。
[8] 電極ユニットの外側がテープで留められていることを特徴とする請求項 1〜7いずれ かに記載のリチウムイオンキャパシタ。
[9] 負極活物質は、正極活物質に比べて、単位重量あたりの静電容量が 3倍以上を有 し、かつ正極活物質の重量が負極活物質の重量より大き 1ヽことを特徴とする請求項 1
〜8の 、ずれかに記載のリチウムイオンキャパシタ。
PCT/JP2005/019239 2005-03-31 2005-10-19 リチウムイオンキャパシタ WO2006112068A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800045092A CN101138058B (zh) 2005-03-31 2005-10-19 锂离子电容器
JP2006521033A JP4833065B2 (ja) 2005-03-31 2005-10-19 リチウムイオンキャパシタ
US10/584,858 US7733629B2 (en) 2005-03-31 2005-10-19 Lithium ion capacitor
EP05795840A EP1865521A4 (en) 2005-03-31 2005-10-19 LITHIUM ION CAPACITOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005104691 2005-03-31
JP2005-104691 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006112068A1 true WO2006112068A1 (ja) 2006-10-26

Family

ID=37114812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019239 WO2006112068A1 (ja) 2005-03-31 2005-10-19 リチウムイオンキャパシタ

Country Status (5)

Country Link
US (1) US7733629B2 (ja)
EP (1) EP1865521A4 (ja)
JP (1) JP4833065B2 (ja)
CN (1) CN101138058B (ja)
WO (1) WO2006112068A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078777A1 (ja) * 2006-12-27 2008-07-03 Jm Energy Corporation 塗布電極及び有機電解質キャパシタ
JP2010141217A (ja) * 2008-12-15 2010-06-24 Shin Kobe Electric Mach Co Ltd 積層体、リチウムイオンキャパシタおよびリチウムイオンキャパシタの製造方法
JP2010186782A (ja) * 2009-02-10 2010-08-26 Shin Kobe Electric Mach Co Ltd リチウムイオンキャパシタの製造方法
JP2010287641A (ja) * 2009-06-10 2010-12-24 Nec Tokin Corp 蓄電デバイス
US20110104536A1 (en) * 2007-12-10 2011-05-05 Tim Schaefer Electrode for energy storage means
JP2011100925A (ja) * 2009-11-09 2011-05-19 Asahi Kasei Corp 非水系リチウム型蓄電素子
KR101168740B1 (ko) * 2008-04-18 2012-07-26 주식회사 엘지화학 출력 특성이 향상된 전극조립체 및 이를 포함하는 이차전지
JP2013089625A (ja) * 2011-10-13 2013-05-13 Asahi Kasei Corp 非水系リチウム型蓄電素子の製造方法
JP2013175793A (ja) * 2013-06-11 2013-09-05 Shin Kobe Electric Mach Co Ltd リチウムイオンキャパシタ
JP2014131080A (ja) * 2014-03-24 2014-07-10 Asahi Kasei Corp 非水系リチウム型蓄電素子
JP2015115097A (ja) * 2013-12-09 2015-06-22 株式会社豊田自動織機 電極組立体の製造方法、蓄電装置及び電極組立体の製造装置
WO2018155468A1 (ja) * 2017-02-27 2018-08-30 太陽誘電株式会社 電気化学デバイス
JP2018142605A (ja) * 2017-02-27 2018-09-13 太陽誘電株式会社 電気化学デバイス
JP2018142606A (ja) * 2017-02-27 2018-09-13 太陽誘電株式会社 電気化学デバイス
JP2018142607A (ja) * 2017-02-27 2018-09-13 太陽誘電株式会社 電気化学デバイス
JP2018181982A (ja) * 2017-04-07 2018-11-15 太陽誘電株式会社 電気化学デバイス

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101423725B1 (ko) 2006-10-17 2014-08-06 맥스웰 테크놀러지스 인코포레이티드 에너지 저장 장치용 전극
JP2008294314A (ja) * 2007-05-28 2008-12-04 Sanyo Electric Co Ltd キャパシタ
WO2010024327A1 (ja) * 2008-08-28 2010-03-04 日本ゼオン株式会社 リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
KR101141352B1 (ko) * 2010-01-12 2012-05-03 삼성전기주식회사 전기 이중층 커패시터 및 그 제조방법
CN102770927B (zh) * 2010-02-26 2016-05-04 Jm能源株式会社 蓄电用设备的制造方法以及蓄电用设备
KR101128654B1 (ko) * 2010-08-19 2012-03-26 삼성전기주식회사 전극의 리튬 이온 프리 도핑 방법 및 이를 이용한 전기 화학 커패시터의 제조 방법
KR101138502B1 (ko) * 2010-08-27 2012-04-25 삼성전기주식회사 리튬 이온 커패시터의 제조 방법
WO2012053256A1 (ja) * 2010-10-19 2012-04-26 Jmエナジー株式会社 リチウムイオンキャパシタ
US20120236466A1 (en) * 2011-03-17 2012-09-20 Shin-Kobe Electric Machinery Co., Ltd. Lithium Ion Capacitor and Layered Member for Lithium Ion Capacitor
CN102354607B (zh) * 2011-11-01 2013-01-16 万裕三信电子(东莞)有限公司 锂离子电容器
CN103151562A (zh) * 2011-12-06 2013-06-12 北汽福田汽车股份有限公司 一种制备锂离子电池的方法
KR102014840B1 (ko) * 2012-04-05 2019-08-27 에이일이삼 시스템즈, 엘엘씨 젤리 롤들 사이에 추가의 재료를 갖는 다중의 젤리 롤들을 포함하는 리튬 이온 각형 전지
CN102842703A (zh) * 2012-09-21 2012-12-26 上海奥威科技开发有限公司 一种化学电源
JP6255350B2 (ja) * 2012-12-13 2017-12-27 Jmエナジー株式会社 蓄電デバイスの製造方法および蓄電デバイス
KR102479453B1 (ko) * 2014-04-08 2022-12-19 테슬라, 인크. 에너지 저장 장치, 그 애노드 및 에너지 저장 장치의 제조 방법
US10164304B1 (en) 2014-10-31 2018-12-25 The United States Of America, As Represented By The Secretary Of The Navy Thermally dissipative electrochemical cell
CN104681311B (zh) * 2014-12-12 2017-12-19 宁波中车新能源科技有限公司 一种锂离子电容器的新型预嵌锂方法
CN104701031B (zh) * 2014-12-12 2018-01-09 宁波中车新能源科技有限公司 一种锂离子电容器的制作方法及锂离子电容器
US20160254528A1 (en) * 2015-02-26 2016-09-01 Board Of Regents, The University Of Texas System Two-dimensional nanosheets and methods of making and use thereof
CN106206075A (zh) * 2016-06-22 2016-12-07 凌容新能源科技(上海)有限公司 电极制备方法及超级锂电容制备方法
JP2018142604A (ja) * 2017-02-27 2018-09-13 太陽誘電株式会社 電気化学デバイス
KR102261707B1 (ko) * 2017-03-28 2021-06-08 주식회사 엘지에너지솔루션 양방향 셀을 단방향 셀로 변경하는 구조를 갖는 파우치형 이차전지
KR20190069892A (ko) * 2017-12-12 2019-06-20 한국제이씨씨(주) 전기 이중층 커패시터
CN108155408B (zh) * 2017-12-26 2021-01-19 深圳先进技术研究院 双离子电池及其制备方法
CN109119593B (zh) * 2018-09-04 2021-01-22 中国科学院宁波材料技术与工程研究所 一种预锂化用锂铜复合电极、一种预锂化方法以及一种锂离子电池
CN112542581A (zh) * 2019-09-20 2021-03-23 华中科技大学 一种电化学过程制备预锂化剂的方法
CN114597383B (zh) * 2020-12-04 2023-08-08 比亚迪股份有限公司 一种可控设计长寿命的锂离子电池及动力车辆
CN113258076B (zh) * 2021-04-27 2022-06-24 恒大新能源技术(深圳)有限公司 金属锂负极及其制备方法、锂离子电池
EP4407731A1 (en) * 2022-06-30 2024-07-31 Contemporary Amperex Technology Co., Limited Battery cell, battery, and electric device
CN117766299B (zh) * 2023-12-31 2024-10-29 肇庆绿宝石电子科技股份有限公司 一种叠层固态铝电解电容器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297578A (ja) * 1998-04-10 1999-10-29 Mitsubishi Chemical Corp 電気二重層キャパシター
WO2003003395A1 (fr) * 2001-06-29 2003-01-09 Kanebo, Limited Condensateur a electrolyte organique

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107048A (ja) 1994-08-12 1996-04-23 Asahi Glass Co Ltd 電気二重層キャパシタ
US5900182A (en) * 1994-10-17 1999-05-04 Matsushita Electric Industrial Co., Ltd. Ion-conductive polymer electrolyte, method for producing the same and capacitors using the same electrolyte
KR100381526B1 (ko) 1997-01-27 2003-04-23 가네보 가부시키가이샤 유기 전해질 전지
JPH11135369A (ja) * 1997-10-28 1999-05-21 Nec Corp 電気二重層コンデンサ
JPH11260673A (ja) 1998-03-16 1999-09-24 Kansai Coke & Chem Co Ltd 電気二重層コンデンサ用電極積層体
DE19916043A1 (de) * 1999-04-09 2000-10-19 Basf Ag Verbundkörper geeignet zur Verwendung als Lithiumionenbatterie
CN1260751C (zh) * 2001-06-01 2006-06-21 松下电器产业株式会社 高分子电解质复合体和用它的电解电容器及制造方法
JP2003217986A (ja) * 2002-01-23 2003-07-31 Meidensha Corp 積層型電気二重層キャパシタ
US7385801B2 (en) * 2003-03-31 2008-06-10 Fuji Jukogyo Kabushiki Kaisha Organic electrolyte capacitor
JP4833064B2 (ja) * 2005-03-31 2011-12-07 富士重工業株式会社 リチウムイオンキャパシタ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297578A (ja) * 1998-04-10 1999-10-29 Mitsubishi Chemical Corp 電気二重層キャパシター
WO2003003395A1 (fr) * 2001-06-29 2003-01-09 Kanebo, Limited Condensateur a electrolyte organique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1865521A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125767B2 (en) 2006-12-27 2012-02-28 Jm Energy Corporation Coated electrode and organic electrolyte capacitor
EP2099043A1 (en) * 2006-12-27 2009-09-09 JM Energy Corporation Coated electrode and organic electrolyte capacitor
JPWO2008078777A1 (ja) * 2006-12-27 2010-04-30 Jmエナジー株式会社 塗布電極及び有機電解質キャパシタ
JP5363818B2 (ja) * 2006-12-27 2013-12-11 Jmエナジー株式会社 塗布電極及び有機電解質キャパシタ
EP2099043A4 (en) * 2006-12-27 2017-05-10 JM Energy Corporation Coated electrode and organic electrolyte capacitor
WO2008078777A1 (ja) * 2006-12-27 2008-07-03 Jm Energy Corporation 塗布電極及び有機電解質キャパシタ
KR101413774B1 (ko) * 2006-12-27 2014-06-30 제이에무에나지 가부시키가이샤 도포 전극 및 유기 전해질 캐패시터
US20110104536A1 (en) * 2007-12-10 2011-05-05 Tim Schaefer Electrode for energy storage means
KR101168740B1 (ko) * 2008-04-18 2012-07-26 주식회사 엘지화학 출력 특성이 향상된 전극조립체 및 이를 포함하는 이차전지
JP2010141217A (ja) * 2008-12-15 2010-06-24 Shin Kobe Electric Mach Co Ltd 積層体、リチウムイオンキャパシタおよびリチウムイオンキャパシタの製造方法
JP2010186782A (ja) * 2009-02-10 2010-08-26 Shin Kobe Electric Mach Co Ltd リチウムイオンキャパシタの製造方法
JP2010287641A (ja) * 2009-06-10 2010-12-24 Nec Tokin Corp 蓄電デバイス
JP2011100925A (ja) * 2009-11-09 2011-05-19 Asahi Kasei Corp 非水系リチウム型蓄電素子
JP2013089625A (ja) * 2011-10-13 2013-05-13 Asahi Kasei Corp 非水系リチウム型蓄電素子の製造方法
JP2013175793A (ja) * 2013-06-11 2013-09-05 Shin Kobe Electric Mach Co Ltd リチウムイオンキャパシタ
JP2015115097A (ja) * 2013-12-09 2015-06-22 株式会社豊田自動織機 電極組立体の製造方法、蓄電装置及び電極組立体の製造装置
JP2014131080A (ja) * 2014-03-24 2014-07-10 Asahi Kasei Corp 非水系リチウム型蓄電素子
WO2018155468A1 (ja) * 2017-02-27 2018-08-30 太陽誘電株式会社 電気化学デバイス
JP2018142605A (ja) * 2017-02-27 2018-09-13 太陽誘電株式会社 電気化学デバイス
JP2018142606A (ja) * 2017-02-27 2018-09-13 太陽誘電株式会社 電気化学デバイス
JP2018142607A (ja) * 2017-02-27 2018-09-13 太陽誘電株式会社 電気化学デバイス
US11195668B2 (en) 2017-02-27 2021-12-07 Taiyo Yuden Co., Ltd. Electrochemical device
JP2018181982A (ja) * 2017-04-07 2018-11-15 太陽誘電株式会社 電気化学デバイス

Also Published As

Publication number Publication date
JP4833065B2 (ja) 2011-12-07
CN101138058B (zh) 2011-03-30
CN101138058A (zh) 2008-03-05
US20090154064A1 (en) 2009-06-18
EP1865521A4 (en) 2011-02-23
JPWO2006112068A1 (ja) 2008-11-27
EP1865521A1 (en) 2007-12-12
US7733629B2 (en) 2010-06-08

Similar Documents

Publication Publication Date Title
JP4833065B2 (ja) リチウムイオンキャパシタ
JP4833064B2 (ja) リチウムイオンキャパシタ
JP5236765B2 (ja) 有機電解質キャパシタ
JP5081214B2 (ja) 有機電解質キャパシタ
JP4732072B2 (ja) 捲回型リチウムイオンキャパシタ
JP4705566B2 (ja) 電極材及びその製造方法
US7817403B2 (en) Lithium ion capacitor
JP4842633B2 (ja) 電池又はキャパシタ用リチウム金属箔の製造方法
KR101573106B1 (ko) 권회형 축전지
JP2006286919A (ja) リチウムイオンキャパシタ
JP4386334B2 (ja) フィルム型蓄電装置
JPWO2004059672A1 (ja) 蓄電装置および蓄電装置の製造方法
WO2006112070A1 (ja) リチウムイオンキャパシタ
JP5308646B2 (ja) リチウムイオンキャパシタ
JP4813168B2 (ja) リチウムイオンキャパシタ
JP2005109199A (ja) フィルム型蓄電装置
JP2007067097A (ja) 捲回型リチウムイオンキャパシタ
KR20070021126A (ko) 리튬 이온 커패시터

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005795840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10584858

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2006521033

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020067015782

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580004509.2

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020067015782

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005795840

Country of ref document: EP