"Plasmabrenner"
Die vorliegende Erfindung bezieht sich auf einen Plasmabrenner gemäß dem Oberbegriff von Patentanspruch 1, der sowohl zum Trockenschneiden als auch Unterwassersclineiden verschiedener metallischer Werkstücke dient.
Beim Plasmaschneiden wird zunächst ein Lichtbogen (Pilotlichtbogen) zwischen einer Kathode (Elektrode) und Anode (Düse) gezündet und danach direkt auf ein Werkstück übertragen, um damit einen Schnitt herzustellen.
Dieser Lichtbogen erzeugt ein Plasma, das ein thermisch hochaufgeheiztes, elektrisch leitfähiges Gas ist, welches aus positiven und negativen Ionen, Elektronen sowie angeregten und neutralen Atomen und Molekülen besteht.
Als Plasmagas werden Gase wie Argon, Wasserstoff, Stickstoff, Sauerstoff oder Luft eingesetzt. Diese Gase werden durch die Energie des Lichtbogens ionisiert und dissoziiert. Der daraus entstehende Plasmastrahl wird zum Schneiden des Werkstücks eingesetzt
Ein moderner Plasmabrenner entsteht aus Grandbauteilen wie Brennerkörper, Elektrode (Kathode), Düse, eine oder mehrere Schutzkappen, welche die Düse umgeben, sowie die
Verbindungen, die zur Versorgung des Brenners mit Strom, Gasen und/oder Flüssigkeiten dienen.
Die Düse kann aus einem oder mehreren Teilen bestehen. Bei direkt wassergekühlten Brennern wird die Düse von einer Düsenkappe gehalten. Zwischen der Düse und Düsenkappe strömt Kühlwasser. Das Sekundärgas strömt zwischen der Düse und Schutzkappe.
Bei gasgekühlten Brennern und indirekt wassergekühlten Brennern kann die Düsenkappe entfallen. Dann strömt das Sekundärgas zwischen der Düse und Schutzkappe.
Die Elektrode und die Düse sind zueinander in einem bestimmten räumlichen Verhältnis angeordnet und begrenzen einen Raum - die Plasmakammer, in der dieser Plasmastrahl erzeugt wird. Der Plasmastrahl kann in seinen Parametern wie z.B. Durchmesser, Temperatur, Energiedichte und Durchflußrate des Plasmagases durch die Gestaltung der Düse und Elektrode stark beeinflußt werden.
Für die unterschiedlichen Plasmagase werden die Elektroden und Düsen aus unterschiedlichen Materialen und in verschiedenen Formen hergestellt.
Düsen werden in der Regel aus Kupfer hergestellt und direkt oder indirekt wassergekühlt. Je nach Schneidaufgabe und elektrischer Leistung des Plasmabrenners werden Düsen eingesetzt, die unterschiedliche Innenkonturen und Öffnungen mit unterschiedlichen Durchmessern aufweisen und damit die optimalen Schneidergebnisse liefern.
Um eine Düse während des Schneidprozesses vor der Wärme und herausspritzendem geschmolzenem Metall des Werkstücks zu schützen, werden Düsen durch Schutzkappen umschlossen. Durch den Zwischenraum zwischen Düse und Schutzkappe strömt ein
Sekundärgas. Dieses dient zur Schaffung einer definierten Atmosphäre, zur Einschnürung des Plasmastrahls und den Schutz vor Spritzen beim Einstechen.
In der Patentanmeldung DE 38 32 630 Al wird der Plasmastrahl beim Unterwasserschneiden durch einen Gaswirbel geschützt, der mit hoher Geschwindigkeit um den Plasmastrahl rotiert. Auf der Düsenkappe werden fünf bis zwanzig Gasleitführungen in Form eines Stabs symmetrisch angeordnet. Die durch die kegelförmige tangentiale Anordnung der Gasleitführungen und die Brennerkappe gebildeten Gasleitkanäle fließende Sekundärgas umströmt tangential den Plasmastrahl und bildet einen hyperbolischen Wirbel, was den Zutritt des Wassers zum Plasmastrahl verhindert. Dieser Brenner kann aber auch zum Trockenschneiden verwendet werden, wobei das wirbelnde Sekundärgas die Brennerspitze vor dem geschmolzenen Metall des Werkstücks insbesondere beim Einstechen wesentlich schützt.
Um die Oxidation der Schnittflächen durch eine Reaktion mit dem in der Umgebungsluft befindlichen Sauerstoff zu verhindern, spielt die Auswahl des Sekundärgases eine wichtige Rolle. In der früheren Patentanmeldung DE 101 44 516 Al der vorliegenden Anmelderin wird Stickstoff als Sekundärgas eingesetzt. Der Plasmastrahl wird mit dem Sekundärgas, das zwischen der Düsenkappe und Schutzkappe durch den daraus entstandenen Durchgang geleitet wird und aus der ringförmigen Öffnung in die Richtung des Werkstücks austritt, umströmt. Dadurch wird eine im wesentlichen nicht oxidierende Atmosphäre am Werkstück gewährleistet. Dieser Effekt kann durch das Zumischen von geringen Anteilen Wasserstoff (z. B. 1 bis 20 %) noch verstärkt werden.
Im Plasmabrenner nach dem Patent EP 0 573 653 Bl wird das durch einen ringförmigen Sekundärgaskanal hindurchtretende Sekundärgas durch einen Isolator zwischen der Düsenkappe und Schutzkappe ausgerichtet. Der Isolator hat kleine Bohrungen, die so geformt sind, daß das Sekundärgas entlang der Axialrichtung des Brennerkörpers austritt und mit ausreichender Menge und Geschwindigkeit den Plasmabogen umgibt. In einem anderen
Isolator wird der Sekundärstrom als kreisender Strom erzeugt, in dem der im Isolator gebildete Richtkanal spiralförmig bezüglich des Zentralbereiches des Brenners ausgebildet ist.
Im Patent EP 0 801 882 Bl lenkt eine Schutzkappe entlang einer kegelförmigen Oberfläche einer Düsenkappe eine Sekundärgasströmung auf den Lichtbogen. Während des Schneidens wird die Geschwindigkeit dieser Strömung so reduziert, daß der Lichtbogen nicht destabilisiert wird. Diese Schutzkappe enthält einige Entlüftungsöffnungen, die das überflüssige Gas weglenken. Die Schutzkappe und Sekundärgasströmung schützen die Düse vor geschmolzenem Metall, das von einem Werkstück auf die Düse spritzen und eine Beschädigung oder eine Parallellichtbogenbildung bewirken kann.
In den oben genannten Beispielen ergibt sich der Nachteil, daß der Plasmastrahl durch das direkte Anströmen mit dem Sekundärgas, insbesondere bei einem Sekundärgasvolumenstrom, der größer als der Plasmagasvolumenstrom ist, instabil wird. Die Instabilität macht sich vor allem beim Überfahren von technologisch bedingten Schnittfugen und bei Richtungs- und Geschwindigkeitsänderungen, wie z.B. an Ecken und am Schneidbeginn bemerkbar. Beim Überfahren einer Schnittfuge stabilisiert sich der Schneidlichtbogen nur langsam. Es kommt zum Schwingen des Schneidlichtbogens. Dieses Schwingen bildet sich auf der entstehenden Schnittkante ab und führt so zu einer Qualitätsverschlechterung.
In US 6 207 923 Bl strömt ein Sekundärgas in einem Zwischenraum zwischen einer Düse mit einem verlängerten Düsenmund und einer Schutzkappe. Die Austrittsöffnung der Schutzkappe ist so geformt, daß der Düsenmund sich teilweise zwischen dem Eingang und dem Ausgang der Austrittsöffnung befindet. Eine solche Anordnung erzeugt eine im wesentlichen säulenförmige Strömung des Sekundärgases um den Plasmastrahl, ohne den Plasmastrahl wesentlich zu stören, und soll die Düse vor hochspritzendem Metall des Werkstücks schützen.
Nachteil dieses Verfahrens ist, daß der Düsenmund nur unzureichend vor hochspritzendem Metall insbesondere beim Einstechen des Plasmastrahls in das Werkstück geschützt ist. Weiterhin kann das Sekundärgas nicht gezielt in den Plasmastrahl gelenkt werden, um eine gute Schnittqualität zu erreichen.
Bei bestimmten Gaskombinationen ist die aktive Teilnahme des Sekundärgases am Plasmaprozess gewünscht. Dies gilt z.B. für das Schneiden von Edelstahlen mit einem ArH2- Gemisch als Plasmagas und Stickstoff als Sekundärgas. Hier wirkt das Sekundärgas Stickstoff nicht nur als Schutzgas, um die Schnittflächen von dem oxidierenden Sauerstoff in der Umgebungsluft zu schützen, sondern nimmt auch aktiv am Plasmaprozeß teil. Es verringert die Oberflächenspannung der Schmelze, diese wird dünnflüssiger und besser aus der Schnittfuge ausgetrieben. Es entsteht ein bartfreier Schnitt. Mit der in US 6 207 923 Bl beschriebenen Anordnung ist dies nicht möglich. Auch bei der Verwendung von Sauerstoff als Plasmagas für das Schneiden von Baustählen können durch unterschiedliche Zusammensetzung des Sekundärgases, beispielsweise unterschiedliche Stickstoff- und Sauerstoffanteile , unterschiedliche Effekte hinsichtlich der Schnittqualität erzielt werden.
Der Erfindung liegt somit die Aufgabe zugrunde, die beschriebenen Nachteile des Standes der Technik zu beseitigen. Dabei sollen die Funktionen des Sekundärgases, wie Schutz vor hochspritzendem Metall, Schaffung einer definierten Atmosphäre um den Plasmastrahl und die aktive Teilnahme des Sekundärgases am Plasmaprozeß gewährleistet sein, ohne den Plasmastrahl in seiner Stabilität zu beeinflussen.
Erfindungsgemäß wird diese Aufgabe bei dem gattungsgemäßen Plasmabrenner durch die Merkmale gemäß dem Kennzeichen von Patentanspruch 1 gelöst.
Die Unteransprüche betreffen vorteilhafte Weiterentwicklungen der Erfindung.
Durch die Erfindung wird ein homogener Sekundärgasstrom erzeugt. Dieser homogene Sekundärgasstrom führt zu einer Stabilisierung des Plasmastrahls. Dadurch wird das Schwingen des Schneidlichtbogens in schwer zu beherrschenden technologisch bedingten Schneidsituationen, wie z.B. Überfahren der Schnittfuge und der Ecke sowie Schneidbeginn verhindert. Dadurch entstehen eine wesentliche Verbesserung der Qualität des Schnittes sowie eine höhere Schneidgeschwindigkeit.
Untersuchungen haben nämlich ergeben, daß die beschriebenen Nachteile durch eine neue Form der Sekundärgaszuführung beseitigt werden können. Hierdurch werden die Vorteile des Sekundärgases, wie Einschürung des Plasmastrahls, Schutz der Düse vor hochspritzendem Metall beim Einstechen, Schafrang einer definierten Atmosphäre um den Plasmastrahl und die aktive Teilnahme des Sekundärgases am Plasmaprozeß weiter genutzt und gleichzeitig die Stabilität des Plasmastrahls gesichert.
In einer besonderen Ausführungsform wird das Sekundärgas über ein Sekundärgasführungsteil in den Sekundärgaskanal geführt derart, daß die Sekundärgasströmung zunächst auf eine nahezu zylindrische erste Mantelfläche der Düse beziehungsweise Düsenkappe, die parallel zur Längsachse des Plasmabrenners gerichtet ist, trifft. Danach wird das Sekundärgas über den Sekundärgaskanalteil, der durch nahezu kegelförmige Mantel- bzw. Innenflächen der Düse beziehungsweise der Düsenkappe und Düsenschutzkappe begrenzt ist, zum vorderen Ende des Plasmabrenners geführt und dann in einem Winkel von nahezu 90° zur Längsachse des Plasmabrenners einem Plasmastrahl zugeführt. Es wird angenommen, daß die besonders gute Homogenität des Sekundärgases, d.h. die besonders gute Verteilung um einen Plasmastrahl, dadurch erreicht wird, daß die Sekundärgasströmung das Sekundärgasströmung zunächst einmal in einer sich im wesentlichen im rechten Winkel zur Längsachse des Plasmabrenners erstreckenden Ebene auf die Mantelfläche der Düse beziehungsweise der Düsenkappe trifft und daß vom vorderen Ende des Plasmabrenners weiter zurückgesetzt ist und somit das Sekundärgas zusätzlich mehr Zeit hat, um sich zu verteilen.
Vorteilhaft ist es auch, das Sekundärgas durch eine geeignete Ausfuhrung des Sekundärgasführungsteils, z.B. durch Versatz der Durchlässe rotieren zu lassen. Dann erfolgt die Zufuhr des Sekundärgases zum Plasmastrahl nicht radial, sondern tangential. Der Plasmastrahl wird bei dieser Anordnung durch die große Homogenität der Sekundärgasströmung nicht instabil, sondern behält auch in Übergangsphasen seine Stabilität.
Verstärkt wird dieser Effekt noch, wenn nach Passieren des Sekundärgasfuhrungsteils das Sekundärgas zunächst nicht nur auf die nahezu zylindrische erste Mantelfläche der Düse beziehungsweise der Düsenkappe trifft, sondern gleichzeitig in eine Entspannungsraumerweiterung strömt, die eine größere Entspannung des Sekundärgases zuläßt, bevor das Sekundärgas dann über die kegelförmigen Mantel- bzw. Innenflächen dem Plasmastrahl radial oder tangential zugeführt wird. In diesem Falle verfügt dieser Bereich der Düsenkappe mit Entspannungsraumerweiterung über einen geringeren Durchmesser als der Beginn des nachfolgenden kegelförmigen Abschnitts.
Wird ein gasgekühlter oder indirekt wassergekühlter Plasmabrenner verwendet, entfällt oftmals die Düsenkappe. Dann übernimmt die Düse die raumbegrenzende Aufgabe der Düsenkappe. Die Düse ist in diesem Fall geometrisch so wie die Düsenkappe ausgebildet. Damit werden die Vorteile der Erfindung auch in dieser Plasmabrennervariante garantiert.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den Ansprüchen und aus der nachstehenden Beschreibung, in der Ausführungsbeispiele anhand der schematischen Zeichnungen im einzelnen erläutert sind. Dabei zeigt:
Figur 1 eine Teilschnittdarstellung des vorderen Bereiches eines
Plasmabrenners gemäß einer besonderen Ausführungsform der Erfindung;
Figur 1.1 bis 1.12 Details von Fig.1 mit Varianten der Gestaltung des Sekundärgaskanals;
Fig. 2.1 eine Ausfuhrungsform eines Sekundärgasführungsteils in Draufsicht von oben teilweise im Schnitt; und
Fig. 2.2 eine weitere Ausführungsform eines Sekundärgasführungsteils in
Draufsicht von oben teilweise im Schnitt.
Figur 1 zeigt einen Plasmabrenner 1 gemäß einer besonderen Ausfuhrungsform der Erfindung. Der Plasmabrenner 1 hat einen Brennerkörper 2 mit einer Elektrode 3 und einer Düse 4, der eine Längsachse L des Plasmabrenners 1 definiert. Die Elektrode 3 und die Düse
4 sind im Brennerkörper 2 koaxial angeordnet, befinden sich in einem bestimmten räumlichen Verhältnis und bilden eine Plasmakammer 6, durch die ein Plasmagas PG strömt, das über einen Plasmagaskanal 6a zugeführt wird. Eine Düsenkappe 5 ist koaxial zur Längsachse L des Plasmabrenners 1 angeordnet und hält die Düse 4. Zwischen der Düse 4 und der Düsenkappe
5 befindet sich ein Raum 11, durch den Kühlwasser strömt. Das Kühlwasser wird über einen Wasservorlauf WV zugeführt und strömt über einen Wasserrücklauf WR ab.
Ein ringförmiges Sekundärgasführungsteil 8 mit einer Vielzahl von Durchlässen in Form von Bohrungen, von denen nur einer mit dem Bezugszeichen 8a gekennzeichnet ist, ist so in einem zwischen der Düsenkappe 5 und einer Düsenschutzkappe 7 gebildeten Sekundärgaskanal 9 zwischen einem Sekundärgaseinlaß 8b und dem vorderen Ende des Sekundärgaskanals 9 angeordnet, daß das durch den Durchlaß 8a strömende Sekundärgas SG auf eine nahezu zylindrische erste Mantelfläche der Düsenkappe 5, die einen ersten zylindrischen Abschnitt 5a der Düsenkappe 5 ergibt, trifft. Das Sekundärgas SG wird danach durch den Sekundärgaskanal 9, der durch eine nahezu kegelförmige zweite Mantelfläche der Düsenkappe 5 in einem unteren Abschnitt 5b und eine entsprechende kegelförmige Innenfläche 7b der Düsenschutzkappe 7 begrenzt ist, zum vorderen Ende des Plasmabrenners 1 geführt, dann in einem Winkel von nahezu 90° zur Längsachse L des Plasmabrenners 1
einem Plasmastrahl (nicht gezeigt) zugeführt und tritt durch eine Austrittsöfmung 7a der Düsenschutzkappe 7 aus. Das rotierende Sekundärgas SG umströmt den Plasmastrahl nach seinem Austritt aus einer Düsenöffhung 4a und schafft zusätzlich eine definierte Atmosphäre um den Plasmastrahl.
Die Durchlässe 8 a des Sekundärgasfϊihrungsteils 8 sind so angeordnet, daß eine rotierende Strömung des Sekundärgases SG entsteht. Beispielsweise können die Durchlässe im Sekundärgasruhrungsteil 8a, äquidistant über den Kreisumfang des Sekundärgasführungsteils 8 und sich radial erstreckend (Figur 2.1) oder mit einem Versatz zur Radiale (Figur 2.2), d.h. auf einen jeweils gegenüber dem tatsächlichen Kreismittelpunkt versetzten Punkt ausgelichtet, angeordnet sein.
Die Neigung der nahezu zylindrischen ersten Mantelfläche der Düsenkappe 5 kann bis ±15° (Figuren 1.1, 1.2, und 1.3) gegenüber der Längsachse L des Plasmabrenners 1 betragen. Bei einer Neigung von W3= -15° (Figur 1.3) wird der Effekt der Homogenität ähnlich wie bei Raumvergrößerung durch zylindrische Flächen erreicht und eine besonders gute Homogenität erreicht.
Die Übergänge zwischen den ersten und zweiten Mantelflächen der Düsenkappe 5 und entsprechenden ersten und zweiten Innenflächen der Düsenschutzkappe 7 können scharfkantig (Figuren 1.1 - 1.3), mit Fasen (Figuren 1.4 - 1.6) oder Radien (Figuren 1.7 - 1.9) versehen sein. Dabei besteht auch die Möglichkeit der Kombinationen von Radien und Fasen bei den Übergängen.
Figuren 1.10 -1.12 zeigen Ausführungsformen mit einer Entspannungsraumerweiterung 10, in welche das Sekundärgas SG aus den Durchlässen 8a des Sekundärgasführungsteils 8 strömt, um die Stabilität des Plasmastrahls weiter zu verbessern. Diese Entspannungsraumerweiterung 10 kann beispielsweise eine runde (Figur 1.10), eine rechteckige (Figur 1.11) oder eine mehrfasige (Figur 1.12) Form haben.
Die in der vorangehenden Beschreibung, in den Zeichnungen sowie in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebigen Kombinationen für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein.