-
Die vorliegende Erfindung betrifft eine Düse für einen flüssigkeitsgekühlten Plasmabrenner sowie einen Plasmabrennerkopf mit derselben.
-
Als Plasma wird ein thermisch hoch aufgeheiztes elektrisch leitfähiges Gas bezeichnet, das aus positiven und negativen Ionen, Elektronen sowie angeregten und neutralen Atomen und Molekülen besteht.
-
Als Plasmagas werden unterschiedliche Gase, zum Beispiel das einatomige Argon und/oder die zweiatomigen Gase Wasserstoff, Stickstoff, Sauerstoff oder Luft eingesetzt. Diese Gase ionisieren und dissoziieren durch die Energie eines Lichtbogens. Der durch eine Düse eingeschnürte Lichtbogen wird dann als Plasmastrahl bezeichnet.
-
Der Plasmastrahl kann in seinen Parametern durch die Gestaltung der Düse und Elektrode stark beeinflusst werden. Diese Parameter des Plasmastrahls sind zum Beispiel der Strahldurchmesser, die Temperatur, Energiedichte und die Strömungsgeschwindigkeit des Gases.
-
Beim Plasmaschneiden beispielsweise wird das Plasma durch eine Düse, die gas- oder wassergekühlt sein kann, eingeschnürt. Dadurch können Energiedichten bis 2 × 106 W/cm2 erreicht werden. Im Plasmastrahl entstehen Temperaturen bis 30.000°C, die in Verbindung mit der hohen Strömungsgeschwindigkeit des Gases sehr hohe Schneidgeschwindigkeiten an Werkstoffen realisieren.
-
Plasmabrenner können direkt oder indirekt betrieben werden. Bei der direkten Betriebsweise fließt der Strom von der Stromquelle über die Elektrode des Plasmabrenners, den mittels Lichtbogen erzeugten und durch die Düse eingeschnürten Plasmastrahl direkt über das Werkstück zur Stromquelle zurück. Mit der direkten Betriebsweise können elektrisch leitfähige Materialien geschnitten werden.
-
Bei der indirekten Betriebsweise fließt der Strom von der Stromquelle über die Elektrode des Plasmabrenners, den mittels Lichtbogen erzeugten und durch die Düse eingeschnürten Plasmastrahl und die Düse zurück zur Stromquelle. Dabei wird die Düse noch stärker belastet als bei direktem Plasmaschneiden, da sie nicht nur den Plasmastrahl einschnürt, sondern auch den Ansatzpunkt des Lichtbogens realisiert. Mit der indirekten Betriebsweise können sowohl elektrisch leitende als auch nicht leitende Materialien geschnitten werden.
-
Wegen der hohen thermischen Belastung der Düse wird diese in der Regel aus einem metallischen Werkstoff, vorzugsweise wegen seiner hohen elektrischen Leitfähigkeit und Wärmeleitfähigkeit aus Kupfer, hergestellt. Gleiches gilt für den Elektrodenhalter, der aber auch aus Silber hergestellt sein kann. Die Düse wird dann in einem Plasmabrenner, dessen Hauptbestandteile ein Plasmabrennerkopf, eine Düsenkappe, ein Plasmagasführungsteil, eine Düse, eine Düsenhalterung, eine Elektrodenaufnahme, ein Elektrodenhalter mit Elektrodeneinsatz und bei modernen Plasmabrennern eine Düsenschutzkappenhalterung und eine Düsenschutzkappe sind, eingesetzt. Der Elektrodenhalter fixiert einen spitzen Elektrodeneinsatz aus Wolfram, der für den Einsatz nicht oxidierender Gase als Plasmagas, zum Beispiel ein Argon-Wasserstoff-Gemisch geeignet ist. Eine sogenannte Flachelektrode, deren Elektrodeneinsatz beispielsweise aus Hafnium besteht, ist auch für den Einsatz oxidierender Gase als Plasmagas, zum Beispiel Luft oder Sauerstoff, geeignet. Um eine hohe Lebensdauer für die Düse zu erreichen, wird diese hier mit einer Flüssigkeit, zum Beispiel Wasser, gekühlt. Das Kühlmittel wird über einen Wässervorlauf zur Düse hin- und einen Wasserrücklauf von der Düse weggeführt und durchströmt dabei einen Kühlmittelraum, der durch die Düse und die Düsenkappe begrenzt wird.
-
In
DD 36014 B1 ist eine Düse beschrieben. Diese besteht aus einem gut leitenden Werkstoff, zum Beispiel Kupfer, und hat eine dem jeweiligen Plasmabrennertyp zugeordnete geometrische Form, zum Beispiel einen konisch ausgebildeten Entladungsraum mit einem zylindrischen Düsenausgang. Die äußere Form der Düse ist als Konus ausgebildet, wobei eine annähernd gleiche Wanddicke erzielt wird, die so bemessen ist, dass eine gute Stabilität der Düse und eine gute Wärmeleitung zum Kühlmittel gewährleistet ist. Die Düse sitzt in einem Düsenhalter. Der Düsenhalter besteht aus korrosionsfestem Material, zum Beispiel Messing, und hat innen eine Zentrieraufnahme für die Düse sowie eine Nut für einen Dichtungsgummi, der den Entladungsraum gegen das Kühlmittel abdichtet. Weiterhin befinden sich im Düsenhalter um 180° versetzte Bohrungen für den Kühlmittelzu- und -rücklauf. Auf dem äußeren Durchmesser des Düsenhalters befinden sich eine Nut für einen Rundgummi zur Abdichtung des Kühlmittelraums gegenüber der Atmosphäre sowie ein Gewinde und eine Zentrieraufnahme für eine Düsenkappe. Die Düsenkappe, ebenfalls aus korrosionsfestem Material, zum Beispiel Messing, ist spitzwinklig ausgebildet und hat eine zur Ableitung von Strahlungswärme an das Kühlmittel zweckmäßig bemessene Wandstärke. Der kleinste innere Durchmesser ist mit einem Rundring versehen. Als Kühlmittel wird am einfachsten Wasser verwendet. Diese Anordnung soll eine einfache Herstellung der Düsen bei sparsamem Materialeinsatz und ein schnelles Auswechseln dieser sowie durch die spitzwinklige Bauform ein Schwenken des Plasmabrenners gegenüber dem Werkstück und damit Schrägschnitte ermöglichen.
-
In
DE 1 565 638 A wird ein Plasmabrenner, vorzugsweise zum Plasmaschmelzschneiden von Werkstoffen und zur Schweißkantenvorbereitung, beschrieben. Die schlanke Form des Brennerkopfes wird durch die Verwendung einer besonders spitzwinkligen Schneiddüse erreicht, deren innerer und äußerer Winkel untereinander gleich und auch gleich dem inneren und äußeren Winkel der Düsenkappe sind. Zwischen der Düsenkappe und der Schneiddüse wird ein Kühlmittelraum gebildet, in dem die Düsenkappe mit einem Bund versehen ist, welcher mit der Schneiddüse metallisch dichtet, so dass dadurch ein gleichmäßiger Ringspalt als Kühlmittelraum entsteht. Die Zu- und Abführung des Kühlmittels, im allgemeinen Wasser, erfolgt durch zwei um 180° gegeneinander versetzt angeordnete Schlitze im Düsenhalter.
-
In
DE 25 25 939 A1 wird ein Plasmalichtbogenbrenner, insbesondere zum Schneiden oder Schweißen, beschrieben, bei dem der Elektrodenhalter und der Düsenkörper eine austauschbare Baueinheit bilden. Die äußere Kühlmittelzuführung wird im wesentlichen durch eine den Düsenkörper umfassende Überwurfkappe gebildet. Das Kühlmittel strömt über Kanäle in einen Ringraum, welcher durch den Düsenkörper und die Überwurfkappe gebildet wird.
-
DE 692 33 071 T2 betrifft eine Lichtbogen-Plasmaschneidvorrichtung. Es wird darin eine Ausführungsform einer Düse für einen Plasmalichtbogen-Schneidbrenner beschrieben, die aus einem leitenden Material gebildet ist und eine Austrittsöffnung für einen Plasmagasstrahl und einen hohlen Körperabschnitt, der so ausgebildet ist, dass er eine im allgemeinen konische dünnwandige Konfiguration hat, die in Richtung auf die Austrittsöffnung geneigt ist und einen vergrößerten Kopfabschnitt aufweist, der einstückig mit dem Körperabschnitt ausgebildet ist, wobei der Kopfabschnitt massiv mit Ausnahme eines zentralen Kanals ist, der mit der Austrittsöffnung fluchtet und eine im allgemeinen konische Außenfläche aufweist, die auch in Richtung auf die Austrittsöffnung geneigt ist und einen Durchmesser angrenzend an den des benachbarten Körperabschnitts besitzt, der den Durchmesser des Körperabschnitts übersteigt, um eine zurückgeschnittene Aussparung zu bilden. Die Lichtbogen-Plasmaschneidvorrichtung besitzt eine Sekundärgaskappe. Weiterhin ist zwischen der Düse und der Sekundärgaskappe eine wassergekühlte Kappe angeordnet, um eine wassergekühlte Kammer für die äußere Fläche der Düse für ein hochwirksames Kühlen zu bilden. Die Düse ist durch einen großen Kopf, der eine Austrittsöffnung für den Plasmastrahl umgibt, und einen scharten Hinterschnitt oder eine Aussparung zu einem konischen Körper gekennzeichnet. Diese Düsenkonstruktion begünstigt das Kühlen der Düse.
-
Bei den vorangehend beschriebenen Plasmabrennern wird das Kühlmittel über einen Wasservorlaufkanal zur Düse hin- und über einen Wasserrücklaufkanal von der Düse weggeführt. Diese Kanäle sind meist um 180° zueinander versetzt und das Kühlmittel soll auf dem Weg vom Vor- zum Rücklauf die Düse möglichst gleichmäßig umspülen. Dennoch werden immerwieder Überhitzungen in der Nähe des Düsenkanals festgestellt.
-
Eine andere Kühlmittelführung für einen Brenner, vorzugsweise Plasmabrenner, insbesondere für Plasmaschweiß-, Plasmaschneid-, Plasmaschmelz- und Plasmaspritzzwecke, die hohen thermischen Beanspruchungen der Düse und der Katode standhält, ist in
DD 83890 B1 beschrieben. Hier ist für die Kühlung der Düse ein in das Düsenhalteteil leicht einsetzbarer und herausnehmbarer Kühlmedienleitring angeordnet, der zur Begrenzung der Kühlmedienführung auf eine dünne Schicht von maximal 3 mm Dicke entlang der äußeren Düsenwand eine umlaufende Formnut aufweist, in die mehr als eine, vorzugsweise zwei bis vier, und sternförmig zu dieser radial und symmetrisch zur Düsenachse und sternförmig zu dieser mit einem Winkel zwischen 0 und 90° angebrachte Kühlleitungen so einmünden, dass sie von je zwei Kühlmedienabflüssen und jeder Kühlmedienabfluss von zwei Kühlmedienzuflüssen benachbart ist.
-
Diese Anordnung hat wiederum den Nachteil, dass ein höherer Aufwand für die Kühlung durch die Verwendung eines zusätzlichen Bauteils, den Kühlmedienleitring, notwendig ist. Außerdem vergrößert sich dadurch die gesamte Anordnung.
-
Die
DE 27 06 559 A1 offenbart ein System zur Kühlung von flüssigkeitsgekühlten Plasmabrennern. Dies weist eine spiralförmige Nut auf, die als Vorlaufnut für Kühlwasser verwendet wird. Die Nut ist an der Außenfläche einer sich konisch verjüngenden Düse vorgesehen. Das Kühlwasser tritt über eine Austrittsöffnung in eine Kühlkammer aus. Zudem erstreckt sich die Nut ausschließlich über einen einzigen Teilbereich der Düse.
-
Der Erfindung liegt somit die Aufgabe zugrunde, auf einfache Weise eine Überhitzung in der Nähe des Düsenkanals bzw. der Düsenbohrung zu vermeiden.
-
Erfindungsgemäß wird diese Aufgabe gelöst durch einen Plasmabrennerkopf, umfassend:
- – eine Düse nach einem der Ansprüche 1 bis 9,
- – eine Düsenhalterung zur Halterung der Düse, und
- – eine Düsenkappe, wobei die Düsenkappe und die Düse einen Kühlflüssigkeitsraum bilden, der über zwei jeweils um 60° bis 180° versetzte Bohrungen mit einer Kühlflüssigkeitszulaufleitung bzw. Kühlflüssigkeitsrücklaufleitung verbindbar ist, wobei die Düsenhalterung so gestaltet ist, dass die Kühlflüssigkeit nahezu senkrecht zur Langsachse des Plasmabrennerkopfes auf die Düse treffend in den Kühlflüssigkeitsraum und/oder nahezu senkrecht zur Längsachse aus dem Kühlflüssigkeitsraum in die Düsenhalterung gelangt.
-
Weiterhin liefert die vorliegende Erfindung eine Düse für einen flüssigkeitsgekühlten Plasmabrenner, umfassend eine Düsenbohrung für den Austritt eines Plasmagasstrahls an einer Düsenspitze, einen ersten Abschnitt, dessen Außenfläche im wesentlichen zylindrisch ist, und einen sich daran zur Düsenspitze anschließenden zweiten Abschnitt, dessen Außenfläche sich zur Düsenspitze hin im wesentlichen kegelförmig verjüngt, wobei mindestens zwei Flüssigkeitszulaufnuten und mindestens zwei Flüssigkeitsrücklaufnuten vorgesehen sind, die sich über den zweiten Abschnitt in der Außenfläche der Düse zur Düsenspitze hin erstrecken, wobei mindestens eine der Flüssigkeitszulaufnuten und/oder mindestens eine der Flüssigkeitsrücklaufnuten sich auch über einen Teil des ersten Abschnitts erstreckt/erstrecken und sich im ersten Abschnitt mindestens eine weitere Nut, die mindestens einer der Flüssigkeitszulaufnuten oder mindestens einer der Flüssigkeitsrücklaufnuten in Verbindung steht, befindet.
-
Mit im wesentlichen soll zylindrisch gemeint sein, dass die Außenfläche zumindest bei Wegdenken der Nuten, wie Flüssigkeitszulauf- und rücklaufnuten, im Großen und Ganzen zylindrisch ist. In analoger Weise soll „im wesentlichen kegelig verjüngt” bedeuten, dass die Außenfläche zumindest bei Wegdenken der Nuten, wie Flüssigkeitszulauf- und rücklaufnuten, im Großen und Ganzen kegelig verjüngt sind.
-
Gemäß einer besonderen Ausführungsform des Plasmabrennerkopfes weist die Düsenkappe auf ihrer Innenfläche mindestens drei Ausnehmungen, deren zur Düse gewandten Öffnungen sich jeweils über ein Bogenmaß (b2) erstrecken, auf, wobei das Bogenmaß (b4; c4; d4; e4) der in Umfangsrichtung an die Flüssigkeitszulaufnuten und/oder Flüssigkeitsrücklaufnuten angrenzenden, gegenüber den Flüssigkeitszulaufnuten und/oder Flüssigkeitsrücklaufnuten nach außen hervorstehenden Bereiche der Düse jeweils mindestens genauso groß wie das Bogenmaß (b2) ist. Auf diese Weise wird ein Nebenschluss von Kühlmittelzulauf zum Kühlmittelrücklauf besonders elegant vermieden.
-
Weiterhin kann bei dem Plasmabrennerkopf vorgesehen sein, dass sich die beiden Bohrungen jeweils im wesentlichen parallel zur Längsachse des Plasmabrennerkopfes erstrecken. Dadurch wird erreicht, dass Kühlflüssigkeitsleitungen platzsparend. an den Plasmabrennerkopf angeschlossen werden können.
-
Insbesondere können die Bohrungen um 180° versetzt angeordnet sein.
-
Vorteilhafterweise ist des Bogenmaß des Abschnitts zwischen den Ausnehmungen der Düsenkappe maximal halb so groß wie das minimale Bogenmaß der Flüssigkeitsrücklaufnuten oder das minimale Bogenmaß der Flüssigkeitszulaufnuten der Düse.
-
Vorteilhafterweise sind der Mittelpunkt mindestens einer der Flüssigkeitszulaufnuten und der Mittelpunkt mindestens einer der Flüssigkeitsrücklaufnuten um 180° versetzt zueinander über den Umfang der Düse angeordnet.
-
Vorteilhafterweise erstrecken sich mindestens eine der Flüssigkeitszulaufnuten und/oder mindestens eine der Flüssigkeitsrücklaufnut(en) in Umfangsrichtung über einen Bereich von 10° bis 270°.
-
Es kann vorgesehen sein, dass sich die weitere Nut oder eine der weiteren Nuten in Umfangsrichtung des ersten Abschnitts der Düse über den gesamten Umfang erstreckt.
-
Alternativ kann dabei vorgesehen sein, dass sich die weitere Nut oder mindestens eine der weiteren Nuten in Umfangsrichtung des ersten Abschnitts der Düse über einen Winkel ζ1 oder ζ2 im Bereich von 60° bis 300° erstreckt.
-
Insbesondere kann dabei vorgesehen sein, dass sich die weitere Nut oder mindestens eine der weiteren Nuten in Umfangsrichtung des ersten Abschnitts der Düse über einen Winkel ζ1 oder ζ2 im Bereich von 90° bis 270° erstreckt.
-
Bei einer weiteren Ausführungsform der Düse sind genau zwei Flüssigkeitszulaufnuten und genau zwei Flüssigkeitsrücklaufnuten vorgesehen.
-
Außerdem kann vorgesehen sein, dass die beiden Flüssigkeitszulaufnuten und/oder die beiden Flüssigkeitsrücklaufnuten im ersten Abschnitt der Düse miteinander in Verbindung stehen.
-
Zweckmäßigerweise geht mindestens eine der weiteren Nuten über mindestens eine der Flüssigkeitszulaufnuten oder über mindestens eine der Flüssigkeitsrücklaufnuten hinaus.
-
Der Erfindung liegt die überraschende Erkenntnis zugrunde, dass durch Zuführen und/oder Abführen der Kühlflüssigkeit im rechten Winkel zur Längsachse des Plasmabrennerkopfes statt – wie im Stand der Technik – parallel zur Langsachse des Plasmabrennerkopfes, eine bessere Kühlung der Düse durch den deutlich längeren Kontakt der Kühlflüssigkeit mit der Düse und durch das Führen der Kühlflüssigkeit durch Nuten in der Düse im zylindrischen Bereich zum Düsenhalter hin erzielt wird.
-
Wenn mehr als eine Flüssigkeitszulaufnut vorgesehen sind, so lässt sich damit im Bereich der Düsenspitze eine besonders gute Verwirbelung der Kühlflüssigkeit durch das Aufeinandertreffen der Kühlflüssigkeitsströme erzielen, die üblicherweise auch mit einer besseren Kühlung der Düse einhergeht.
-
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den beigefügten Ansprüchen und der nachstehenden Beschreibung, in der mehrere Ausführungsbeispiele anhand der schematischen Zeichnungen im einzelnen erläutert sind. Dabei zeigt:
-
1 eine Längsschnittansicht durch einen Plasmabrennerkopf mit Plasma- und Sekundärgaszuführung mit einer Düse, die nicht zur Erfindung gehört und lediglich zur Erläuterung dient;
-
2 Einzeldarstellungen (links oben: Draufsicht von vorne; rechts oben: Längsschnittansicht; rechts unten: Seitenansicht) der Düse von 1;
-
3 Einzeldarstellungen (links oben: Draufsicht von vorne; rechts oben: Längsschnittansicht; rechts unten: Seitenansicht) einer Düse, die ebenfalls nicht zur Erfindung gehört und lediglich zur Erläuterung dient;
-
4 Einzeldarstellungen (links oben: Draufsicht von vorne; rechts oben: Längsschnittansicht; rechts unten: Seitenansicht) einer Düse gemäß einer besonderen Ausführungsform der Erfindung;
-
5 eine Längsschnittansicht durch einen Plasmabrennerkopf mit Plasma- und Sekundärgaszuführung mit einer Düse gemäß einer weiteren besonderen Ausführungsform der vorliegenden Erfindung;
-
5a eine Schnittdarstellung entlang der Linie A-A von 5;
-
5b eine Schnittdarstellung entlang der Linie B-B von 5;
-
6 Einzeldarstellungen (links oben: Draufsicht von vorne; rechts oben: Längsschnittansicht; rechts unten: Seitenansicht) einer Düse gemäß einer weiteren besonderen Ausführungsform der Erfindung; und
-
7 Einzeldarstellungen der in 1 eingesetzten Düsenkappe 2, links: Längsschnittansicht, rechts: Ansicht von links des Längsschnitts.
-
Im Vorangehenden und auch im Nachfolgenden soll mit einer Nut z. B. auch eine Abflachung gemeint sein.
-
In der nachfolgenden Beschreibung werden Ausführungsformen von Düsen beschrieben, die mindestens eine Flüssigkeitszulaufnut, hier als Kühlflüssigkeitszulaufnut bezeichnet, und mindestens eine Flüssigkeitsrücklaufnut, hier als Kühlflüssigkeitsrücklaufnut bezeichnet, insbesondere jeweils genau eine und jeweils genau zwei aufweisen. Die Erfindung ist darauf jedoch nicht beschränkt. Es kann eine größere Anzahl von Flüssigkeitszulauf- und -rücklaufnuten vorhanden sein und/oder die Anzahl von Flüssigkeitszulauf- und -rücklaufnuten kann unterschiedlich sein.
-
Der in den 1 gezeigte Plasmabrennerkopf 1 nimmt mit einer Elektrodenaufnahme 6 eine Elektrode 7 im vorliegenden Fall über ein Gewinde (nicht dargestellt) auf. Die Elektrode 7 ist als Flachelektrode ausgebildet. Für den Plasmabrenner kann zum Beispiel Luft oder Sauerstoff als Plasmagas (PG) verwendet werden. Eine Düse 4 wird von einer im Wesentlichen zylindrischen Düsenhalterung 5 aufgenommen. Eine Düsenkappe 2, die über ein Gewinde (nicht dargestellt) am Plasmabrennerkopf 1 befestigt ist, fixiert die Düse 4 und bildet mit dieser einen Kühlflüssigkeitsraum. Der Kühlflüssigkeitsraum wird durch eine mit einem Rundring 4.16 realisierte Dichtung, der sich in einer Nut 4.15 der Düse 4 befindet, zwischen der Düse 4 und der Düsenkappe 2 abgedichtet und durch eine mit einem Rundring 4.18 realisierte Dichtung, der sich in einer Nut 4.17 befindet, zwischen der Düse 4 und der Düsenhalterung 5 abgedichtet.
-
Ein Kühlflüssigkeit, z. B. Wasser oder mit Gefrierschutzmittel versetztes Wasser durchströmt den Kühlflüssigkeitsraum von einer Bohrung des Kühlflüssigkeitsvorlaufs WV zu einer Bohrung des Kühlflüssigkeitsrücklaufs WR, wobei die Bohrungen um 90° zueinander versetzt angeordnet sind (s. 1b).
-
Bei Plasmabrennern im Stand der Technik kommt es immer wieder zur Überhitzung der Düse 4 im Bereich der Düsenbohrung 4.10. Es kann aber auch zu Überhitzungen zwischen einem zylindrischen Abschnitt 4.1 (s. 2) der Düse 4 und der Düsenhalterung 5 kommen. Dies trifft insbesondere auf Plasmabrenner, die mit hohem Pilotstrom oder indirekt betrieben werden, zu. Dies zeigt sich durch Verfärbung des Kupfers nach kurzer Betriebszeit. Hier treten schon bei Strömen von 40 A Verfärbungen nach kurzer Zeit (z. B. 5 Minuten) auf. Ebenso wird die Dichtstelle zwischen Düse 4 und Düsenkappe 2 überlastet, was zur Beschädigung des Rundrings 4.16 und damit zur Undichtigkeit und Kühlflüssigkeitsaustritt führt. Untersuchungen haben ergeben, dass dieser Effekt besonders auf der dem Kühlflüssigkeitsrücklauf zugewandten Seite der Düse 4 auftritt. Es wird angenommen, das der thermisch am höchsten beanspruchte Bereich, die Düsenbohrung 4.10 der Düse 4 unzureichend gekühlt wird, weil die Kühlflüssigkeit den der Düsenbohrung am nächsten liegenden Teil 10.20 des Kühlflüssigkeitsraumes unzureichend durchströmt und/oder diesen insbesondere auf der dem Kühlflüssigkeitsrücklauf zugewandten Seite gar nicht erreicht.
-
Im vorliegenden Plasmabrennerkopf nach 1 wird die Kühlflüssigkeit nahezu senkrecht zur Längsachse des Plasmabrennerkopfes 1 von der Düsenhalterung 5 auf die Düse 4 treffend in den Kühlflüssigkeitsraum geleitet. Dazu wird in einem Umlenkraum 10.10 des Kühlflüssigkeitsraums die Kühlflüssigkeit von der zur Längsachse parallelen Richtung in der Bohrung des Kühlflüssigkeitsvorlaufs WV des Plasmabrenners in Richtung erster Abschnitt 4.1 (s. 2) nahezu senkrecht zur Längsachse der Plasmabrennerkopfes 1 umgelenkt. Dann strömt die Kühlflüssigkeit durch eine Nut 4.6 (s. 1b und 2), die sich in Umfangsrichtung des ersten Abschnitts 4.1 auf einem Teilumfang, d. h. über ca. 110° erstreckt, in den durch den von einer Kühlflüssigkeitszulaufnut 4.20 (s. 1a, 1b und 2) der Düse 4 und der Düsenkappe 2 gebildeten Teil 10.11 in den die Düsenbohrung 4.10 umgebenden Teil 10.20 des Kühlflüssigkeitsraums und umströmt die Düse 4 dort. Dann strömt die Kühlflüssigkeit durch einen von einer Kühlflüssigkeitsrücklaufnut 4.22 der Düse 4 und der Düsenkappe 2 gebildeten Raum 10.15 zurück zum Kühlflüssigkeitsrücklauf WR, wobei der Übergang hier im Wesentlichen parallel zur Längsachse des Plasmabrennerkopfes erfolgt (nicht dargestellt).
-
Weiterhin ist der Plasmabrennerkopf 1 mit einer Düsenschutzkappenhalterung 8 und einer Düsenschutzkappe 9 ausgestattet. Durch diesen Bereich strömt einen Sekundärgas SG, das den Plasmastrahl umgibt. Das Sekundärgas SG durchströmt dabei eine Sekundärgasführung 9.1 und kann durch diese in Rotation versetzt werden.
-
1a zeigt eine Schnittdarstellung entlang der Linie A-A des Plasmabrenners aus 1. Diese zeigt, wie der durch die Kühlflüssigkeitszulaufnut 4.20 der Düse 4 und der Düsenkappe 2 gebildete Teil 10.11 durch Abschnitte 4.41 und 4.42 von nach außen hervorstehenden Bereichen 4.31 und 4.32 der Düse 4 in Kombination mit den Innenfläche 2.5 der Düsenkappe 2 einen Nebenschluss zwischen dem Kühlflüssigkeitsvorlauf und Kühlflüssigkeitsrücklauf verhindern. So wird eine wirksame Kühlung der Düse 4 im Bereich der Düsenspitze erreicht und eine thermische Überlastung verhindert. Es wird sichergestellt, dass möglichst viel Kühlflüssigkeit den Teil 10.20 des Kühlmittelraums erreicht. Es kam bei Versuchen zu keiner Verfärbung der Düse im Bereich der Düsenbohrung 4.10 mehr. Auch traten Undichtigkeiten zwischen der Düse 4 und der Düsenkappe 2 nicht mehr auf und der Rundring 4.16 wurde nicht überhitzt.
-
1b beinhaltet eine Schnittdarstellung entlang der Linie B-B des Plasmabrennerkopfes von 1, die die Ebene des Umlenkraums 10.10 und die Verbindung des Kühlflüssigkeitsvorlaufs über die ca. 110° umlaufende Nut 4.6 in der Düse 4 und die um 90° versetzt angeordneten Bohrungen für den Kühlflüssigkeitsvorlauf WV und Kühlflüssigkeitsrücklauf WR zeigt.
-
2 zeigt die Düse 4 des Plasmabrennerkopfes von 1. Sie verfügt über eine Düsenbohrung 4.10 für den Austritt eines Plasmagasstrahls an einer Düsenspitze 4.11, einen ersten Abschnitt 4.1, dessen Außenfläche 4.4 im wesentlichen zylindrisch ist, und einen sich daran zur Düsenspitze 4.11 anschließenden zweiten Abschnitt 4.2, dessen Außenfläche 4.5 sich zur Düsenspitze 4.11 hin im wesentlichen kegelförmig verjüngt. Die Kühlflüssigkeitszulaufnut 4.20 erstreckt sich über einen Teil des ersten Abschnitts 4.1 und über den zweiten Abschnitt 4.2 in der Außenfläche 4.5 der Düse 4 zur Düsenspitze 4.11 hin und endet vor der zylindrischen Außenfläche 4.3. Die Kühlflüssigkeitsrücklaufnut 4.22 erstreckt sich über den zweiten Abschnitt 4.2 der Düse 4. Der Mittelpunkt der Kühlflüssigkeitszulaufnut 4.20 und der Mittelpunkt der Kühlflüssigkeitsrücklaufnut 4.22 sind um 180° versetzt zueinander über den Umfang der Düse 4 angeordnet. Zwischen der Kühlflüssigkeitsvorlaufnut 4.20 und der Kühlflüssigkeitsrücklaufnut 4.22 befinden sich die nach außen hervorstehenden Bereiche 4.31 und 4.32 mit den dazu gehörigen Abschnitten 4.41 und 4.42.
-
3 zeigt eine Düse gemäß einer weiteren speziellen Ausführungsform der Erfindung, die auch in den Plasmabrennerkopf nach 1 eingesetzt werden kann. Die Kühlflüssigkeitszulaufnut 4.20 ist mit einer Nut 4.6 verbunden, die sich hier in Umfangsrichtung über den gesamten Umfang erstreckt. Dies hat den Vorteil, dass die Bohrung für den Kühlflüssigkeitsvorlauf WV und den Kühlflüssigkeitsrücklauf WR im Plasmabrennerkopf beliebig versetzt angeordnet sein können. Außerdem ist dies für die Kühlung des Übergangs zwischen der Düsenhalterung 5 und der Düse 4 vorteilhaft. Gleiches kann natürlich auch prinzipiell für eine Kühlflüssigkeitsrücklaufnut 4.22 genutzt werden.
-
4 zeigt eine Düse gemäß einer weiteren speziellen Ausführungsform der Erfindung, die auch in den Plasmabrennerkopf nach 1 eingesetzt werden kann. Die Kühlflüssigkeitszulaufnuten 4.20 und 4.21 erstrecken sich über einen Teil des ersten Abschnitts 4.1 und über den zweiten Abschnitt 4.2 in der Außenfläche 4.5 der Düse 4 zur Düsenspitze 4.11 hin und enden vor der zylindrischen Außenfläche 4.3. Die Kühlflüssigkeitsrücklaufnuten 4.22 und 4.23 erstrecken sich über den zweiten Abschnitt 4.2 der Düse 4. Zwischen den Kühlflüssigkeitszulaufnuten 4.20 und 4.21 und den Kühlflüssigkeitsrücklaufnuten 4.22 und 4.23 befinden sich die nach außen hervorstehenden Bereiche 4.31, 4.32, 4.33 und 4.34 mit den dazu gehörigen Abschnitten 4.41, 4.42, 4.34 und 4.44. Die Kühlflüssigkeitszulaufnuten 4.20 und 4.21 sind durch eine in Umfangsrichtung des ersten Abschnitts 4.1 der Düse 4 auf einem Teilumfang zwischen den Nuten 4.20 und 4.21, d. h. über ca. 160° erstreckende Nut 4.6 der Düse 4 miteinander verbunden.
-
5 stellt einen Plasmabrennerkopf gemäß einer weiteren speziellen Ausführungsform der Erfindung dar. Auch hier wird die Kühlflüssigkeit nahezu senkrecht zur Längsachse des Plasmabrennerkopfes 1 von einer Düsenhalterung 5 auf die Düse 4 treffend in einen Kühlflüssigkeitsraum geleitet. Dazu wird im Umlenkraum 10.10 des Kühlflüssigkeitsraums die Kühlflüssigkeit von der zur Längsachse parallelen Richtung in der Bohrung des Kühlflüssigkeitsvorlaufs WV des Plasmabrenners in Richtung erster Düsenabschnitt 4.1 nahezu senkrecht zur Längsachse der Plasmabrennerkopfes 1 umgelenkt. Danach strömt die Kühlflüssigkeit durch die von den Kühlflüssigkeitszulaufnuten 4.20 und 4.21 der Düse 4 und der Düsenkappe 2 gebildeten Teile 10.11 und 10.12 (s. 5a) in den die Düsenbohrung 4.10 umgebenden Bereich 10.20 des Kühlflüssigkeitsraums und umströmt die Düse 4 dort. Danach strömt die Kühlflüssigkeit durch die von den Kühlflüssigkeitsrücklaufnuten 4.22 und 4.23 der Düse 4 und der Düsenkappe 2 gebildeten Teile 10.15 und 10.16 zurück zum Kühlflüssigkeitsrücklauf WR, wobei der Übergang hier nahezu senkrecht zur Längsachse des Plasmabrennerkopfes, durch den Umlenkraum 10.9 erfolgt.
-
5a ist eine Schnittdarstellung entlang der Linie A-A des Plasmabrennerkopfes von 5, die zeigt, wie die durch die Kühlflüssigkeitszulaufnuten 4.20 und 4.21 der Düse 4 und der Düsenkappe 2 gebildeten Teile 10.11 und 10.12 durch die Abschnitte 4.41 und 4.42 der hervorstehenden Bereiche 4.31 und 4.32 der Düse 4 in Kombination mit der Innenfläche der Düsenkappe 2 einen Nebenschluss zwischen den Kühlflüssigkeitszuläufen und Kühlflüssigkeitsrückläufen verhindern. Gleichzeitig wird ein Nebenschluss zwischen den Teilen 10.11 und 10.12 durch den Abschnitt 4.43 des hervorstehenden Bereichs 4.33 und zwischen den Teilen 10.15 und 10.16 durch den Abschnitt 4.44 des hervorstehenden Bereiches 4.43 verhindert.
-
5b ist eine Schnittdarstellung entlang der Linie B-B des Plasmabrennerkopfes von 7, die die Ebene der Umlenkräume 10.9 und 10.10 zeigt.
-
6 zeigt die Düse 4 des Plasmabrennerkopfes von 5. Sie verfügt über eine Düsenbohrung 4.10 für den Austritt eines Plasmagasstrahls an einer Düsenspitze 4.11, einen ersten Abschnitt 4.1, dessen Außenfläche 4.4 im wesentlichen zylindrisch ist, und einen sich daran zur Düsenspitze 4.11 anschließenden zweiten Abschnitt 4.2, dessen Außenfläche 4.5 sich zur Düsenspitze 4.11 hin im wesentlichen kegelförmig verjüngt. Die Kühlflüssigkeitszulaufnuten 4.20 und 4.21 und die Kühlflüssigkeitsrücklaufnuten 4.22 und 4.23 erstrecken sich über einen Teil des ersten Abschnitts 4.1 und über den zweiten Abschnitt 4.2 in der Außenfläche 4.5 der Düse 4 zur Düsenspitze 4.11 hin und enden vor der zylindrischen Außenfläche 4.3. Der Mittelpunkt der Kühlflüssigkeitszulaufnut 4.20 und der Mittelpunkt der Kühlflüssigkeitsrücklaufnut 4.22 sowie der Mittelpunkt der der Kühlflüssigkeitszulaufnut 4.21 und der Mittelpunkt der Kühlflüssigkeitsrücklaufnut 4.23 sind um 180° versetzt zueinander über den Umfang der Düse 4 angeordnet und gleich groß. Zwischen der Kühlflüssigkeitsvorlaufnut 4.20 und der Kühlflüssigkeitsrücklaufnut 4.22 befindet sich ein nach außen hervorstehender Bereich 4.31 mit dazu gehörigem Abschnitt 4.41 und zwischen der Kühlflüssigkeitszulaufnut 4.21 und der Kühlflüssigkeitsrücklaufnut 4.23 befindet sich ein nach außen hervorstehender Bereich 4.32 mit dazu gehörigem Abschnitt 4.42. Zwischen den Kühlflüssigkeitszulaufnuten 4.20 und 4.21 befindet sich ein nach außen hervorstehender Bereich 4.33 mit dazu gehörigem Abschnitt 4.43. Zwischen den Kühlflüssigkeitsrücklaufnuten 4.22 und 4.23 befindet sich ein nach außen hervorstehender Bereich 4.34 mit dazu gehörigem Abschnitt 4.44.
-
Auch wenn dies womöglich vorangehend anders beschrieben oder gezeigt sein sollte, können die (winkelmäßigen) Breiten der Flüssigkeitszulaufnuten unterschiedlich sein. Dasselbe gilt auch für die (winkelmäßigen) Breiten der Flüssigkeitsrücklaufnuten.
-
7 zeigt Einzeldarstellungen einer in dem Plasmabrennerkopf 1 von 1 eingesetzten Düsenkappe 2. Die Düsenkappe 2 weist eine sich im Wesentlichen kegelförmig verjüngende Innenfläche 2.2 auf, die in diesem Fall in einer radialen Ebene vierzehn Ausnehmungen 2.6 aufweist. Die Ausnehmungen 2.6 sind äquidistant über den Innenumfang angeordnet und im Radialschnitt halbkreisförmig.
-
Die in der vorliegenden Beschreibung, in den Zeichnungen sowie in den Ansprüchen offenbarten Merkmale der Erfindung werden in sowohl einzeln als auch in beliebigen Kombinationen für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein.
-
Bezugszeichenliste
-
- 1
- Plasmabrennerkopf
- 2
- Düsenkappe
- 2.1
- Abschnitt 1 der Düsenkappe
- 2.2
- Innenfläche des Abschnitts 2.1
- 2.4
- Abschnitt 2 der Düsenkappe 2
- 2.5
- Innenfläche des Abschnitts 2 zwischen den Ausnehmungen 2.6
- 2.6
- Ausnehmungen der Düsenkappe
- 2.7
- Innenfläche des Abschnitts 2 der Düsenkappe 2
- 3
- Plasmagasführung
- 4
- Düse
- 4.1
- erster Abschnitt der Düse 4
- 4.2
- zweiter Abschnitt der Düse 4
- 4.3
- zylindrische Außenfläche der Düse 4
- 4.4
- zylindrische Außenfläche der Düse 4
- 4.5
- kegelige Außenfläche der Düse 4
- 4.6
- Verbindungsnut der Düse 4
- 4.7
- Verbindungsnut der Düse 4
- 4.10
- Düsenbohrung
- 4.11
- Düsenspitze
- 4.15
- Nut
- 4.16
- Rundring
- 4.17
- Nut
- 4.18
- Rundring
- 4.20
- Kühlflüssigkeitszulaufnut der Düse 4
- 4.21
- Kühlflüssigkeitszulaufnut der Düse 4
- 4.22
- Kühlflüssigkeitsrücklaufnut der Düse 4
- 4.23
- Kühlflüssigkeitsrücklaufnut der Düse 4
- 4.31
- nach außen hervorstehender Bereich der Düse 4
- 4.32
- nach außen hervorstehender Bereich der Düse 4
- 4.33
- nach außen hervorstehender Bereich der Düse 4
- 4.34
- nach außen hervorstehender Bereich der Düse 4
- 4.41
- Abschnitt des Bereichs 4.31
- 4.42
- Abschnitt des Bereichs 4.32
- 4.43
- Abschnitt des Bereichs 4.33
- 4.44
- Abschnitt des Bereichs 4.34
- 5
- Düsenhalterung
- 5.1
- Nut in Düsenhalterung
- 6
- Elektrodenaufnahme
- 7
- Elektrode
- 8
- Düsenschutzkappenhalterung
- 9
- Düsenschutzkappe
- 9.1
- Sekundärgasführung
- 10.9
- Umlenkraum des Kühlflüssigkeitsraums am WR
- 10.10
- Umlenkraum des Kühlflüssigkeitsraums am WV
- 10.11
- Teil des Kühlflüssigkeitsraums (gebildet durch Kühlflüssigkeitszulaufnut 4.20, Düse 4 und Düsenkappe 2)
- 10.12
- Teil des Kühlflüssigkeitsraums (gebildet durch Kühlflüssigkeitszulaufnut 4.21, Düse 4 und Düsenkappe 2)
- 10.15
- Teil des Kühlflüssigkeitsraums (gebildet durch Kühlflüssigkeitsrücklaufnut 4.22, Düse 4 und Düsenkappe 2)
- 10.16
- Teil des Kühlflüssigkeitsraums (gebildet durch Kühlflüssigkeitsrücklaufnut 4.22, Düse 4 und Düsenkappe 2)
- 10.20
- Teil des Kühlflüssigkeitsraums
- M
- Mittelachse der Düse 4 bzw. des Plasmabrennerkopfes 1
- PG
- Plasmagas
- SG
- Sekundärgas
- WR
- Kühlflüssigkeitsrücklauf
- WV
- Kühlflüssigkeitsvorlauf
- r1
- Radius der Düse 4
- r11
- Radius der Düse 4
- r12
- Radius der Düse 4
- r21
- Radius der Düse 4
- r22
- Radius der Düse 4
- α2
- Mittelpunktswinkel der Ausnehmungen 2.6 der Düsenkappe 2
- β2
- Winkel der Ausnehmungen 2.6 der Düsenkappe 2
- δ2
- Winkel des konischen Teils der Ausnehmungen 2.6
- γ2
- Winkel der Innenflächen des Abschnitts zwischen den Ausnehmungen 2.6 der Düsenkappe 2
- α40
- Winkel der Kühlflüssigkeitszulaufnut 4.20 der Düse 4
- α41
- Winkel der Kühlflüssigkeitszulaufnut 4.21 der Düse 4
- α42
- Winkel der Kühlflüssigkeitsrücklaufnut 4.22 der Düse 4
- α43
- Winkel der Kühlflüssigkeitsrücklaufnut 4.23 der Düse 4
- β4
- Winkel der Bereiches 4.44
- γ4
- Winkel der Bereichs 4.43
- δ4
- Winkel der Bereichs 4.41
- ∊4
- Winkel der Bereichs 4.42
- ζ1
- Winkel der Länge der Nut 4.6
- ζ2
- Winkel der Länge der Nut 4.7
- a2
- Bogenmaß zwischen den Symmetrieachsen der Ausnehmungen 2.6 der Düsenkappe 2
- b2
- Bogenmaß der Ausnehmungen 2.6 der Düsenkappe 2
- c2
- Bogenmaß der Innenflächen des Abschnitts 2 zwischen den Ausnehmungen 2.6 der Düsenkappe 2
- a40
- Bogenmaß der Kühlflüssigkeitszulaufnut 4.20 der Düse 4
- a41
- Bogenmaß der Kühlflüssigkeitszulaufnut 4.21 der Düse 4
- a42
- Bogenmaß der Kühlflüssigkeitsrücklaufnut 4.22 der Düse 4
- a43
- Bogenmaß der Kühlflüssigkeitsrücklaufnut 4.23 der Düse 4
- b4
- Bogenmaß des Bereiches 4.44
- c4
- Bogenmaß des Bereichs 4.43
- d4
- Bogenmaß des Bereichs 4.41
- e4
- Bogenmaß des Bereichs 4.42
- n
- Anzahl der Ausnehmungen 2.6
- t1
- Tiefe des zylindrischen Teils der Ausnehmungen 2.6
- t2
- Tiefe des konischen Teils der Ausnehmungen 2.6
- R
- Radius des halbkreisförmigen Teils der Ausnehmungen 2.6