[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006030840A1 - ムチン型ペプチドの合成法とmuc1関連糖ペプチド - Google Patents

ムチン型ペプチドの合成法とmuc1関連糖ペプチド Download PDF

Info

Publication number
WO2006030840A1
WO2006030840A1 PCT/JP2005/016975 JP2005016975W WO2006030840A1 WO 2006030840 A1 WO2006030840 A1 WO 2006030840A1 JP 2005016975 W JP2005016975 W JP 2005016975W WO 2006030840 A1 WO2006030840 A1 WO 2006030840A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sugar
compound
fmoc
residue
Prior art date
Application number
PCT/JP2005/016975
Other languages
English (en)
French (fr)
Inventor
Shinichiro Nishimura
Hiroshi Hinou
Masataka Fumoto
Original Assignee
National Institute Of Advanced Industrial Scienceand Technology
Shionogi & Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Scienceand Technology, Shionogi & Co., Ltd. filed Critical National Institute Of Advanced Industrial Scienceand Technology
Priority to EP05783456A priority Critical patent/EP1801118A4/en
Priority to JP2006535178A priority patent/JPWO2006030840A1/ja
Priority to US11/663,081 priority patent/US20090263858A1/en
Publication of WO2006030840A1 publication Critical patent/WO2006030840A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4727Mucins, e.g. human intestinal mucin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products

Definitions

  • the present invention relates to a novel compound useful as a primer for producing a glycopeptide, and a method for producing a glycopeptide using the primer.
  • the present invention also relates to glycopeptides obtained by the production method.
  • a sugar chain is a major component of a living body along with nucleic acids and proteins, and is a well-known power source for living bodies.
  • in vivo information transmission, protein quality control, and structural stabilization It has become clear that it has various higher-order functions such as labels for protein transport.
  • sugar chains compared to nucleic acids and proteins, sugar chains have not been established as a general preparation method, and the functions of sugar chains often function as complex carbohydrates bound to lipids and proteins. For this reason, there are a lot of unexplained studies on functions including structural information.
  • the ability to look at many things that seem to perform their functions together with sugar chains is very difficult to study in detail.
  • the main reason for this is that the preparation of the sugar amino acid as a raw material is complicated and it is difficult to prepare sugar amino acids having various sugar chain structures, and sugar amino acids having a large sugar chain structure have large steric hindrance.
  • the yield and reaction rate are slow, and it is also important to extend the sugar chain by chemical synthesis after glycopeptide construction. Position ⁇
  • the power of 3D control is difficult. In other words, with the current technology, the reaction yield is low and the time required for preparation is long. Furthermore, since it is difficult to prepare the synthetic raw material itself for glycopeptide synthesis, it is custom-made to rapidly prepare the necessary sugar chain structure. Manufacturing and
  • glycopeptide library containing a complex sugar chain structure required for comprehensive functional analysis of glycopeptides and glycoproteins.
  • glycopeptides are synthesized by Fmoc amino acid (amino acid with amino group protected with 9 fluorenylmethyloxycarboxyl group, hereinafter 9 fluorenylmethyloxycarboxyl group is abbreviated as Fmoc).
  • Fmoc glycosylamino acid the basic peptide part is synthesized on a solid phase carrier by an automatic peptide synthesizer, the peptide part is released from the solid phase carrier, and once purified, it is purified organically or enzymatically.
  • a method of extending sugar chains one by one using a simple synthesis method is used. For this reason, a complicated operation and a long time are required for sugar chain elongation.
  • C. — H. Wong et al. Used a glycopeptide linked to amino-silica as a primer, extended the sugar chain using glycosyltransferase, and then hydrolyzed oc-chymotrypsin.
  • the peptide chain of the resulting glycopeptide is as short as Asn (asparagine) Gly (glycine) Phe (furalanine).
  • the yield of the sugar chain elongation reaction by glycosyltransferase is 55 to 65%, which is very sufficient. Not a thing.
  • the glycopeptide chain obtained by this method consists of 8 amino acid residues, and has a sufficient length as a peptide chain.
  • the rate is less than 10%, which is not enough.
  • impurities such as unreacted substances accumulate through peptide synthesis and sugar chain synthesis, making it difficult to isolate and purify the target product when the peptide chain and sugar chain structure are complex. become.
  • automatic peptide synthesis is usually carried out in an organic solvent, and glycosylation by glycosyltransferase is usually carried out in an aqueous solution, and the properties of the carrier required for each reaction are different. Even automatic synthesis is difficult.
  • the peptide chain of the glycopeptide obtained by this method is Asn (asparagine) -Gly (glycine), which is too short to be called a glycopeptide.
  • the C-terminal glycine residue is a glycinamide residue, and in some cases, it is necessary to convert the glycinamide residue to a glycine residue.
  • a glycosyltransferase sugar receptor is bound to a solid phase carrier, this is used as an affinity adsorbent, and a tissue extract containing a glycosyltransferase that can bind to this sugar receptor is contacted.
  • the glycosyltransferase is bound to the affinity adsorbent.
  • the affinity adsorbent to which the glycosyltransferase is bound is brought into contact with a solution containing a sugar nucleotide that can be used as a sugar donor by the glycosyltransferase, thereby releasing the glycosyltransferase and the sugar adsorbent.
  • a tissue extract containing a glycosyltransferase capable of binding to a sugar receptor in which one sugar residue is extended is brought into contact, and the same process is repeated to synthesize a desired sugar chain on a solid support. It is.
  • there is no specific data showing the usefulness of this method or its application to the synthesis of non-natural glycopeptides and a method for releasing the resulting sugar chain on the solid phase carrier is also disclosed. It has not been.
  • a useful polymerizable aromatic amino acid derivative is disclosed (see Patent Document 2).
  • this method involves complicated operations such as column purification and polymerization after peptide synthesis, since the peptide having a sugar residue is radically polymerized, and thus is weak in radicals and difficult to prepare glycopeptides containing sulfur atoms. The problem is that it takes time to switch to a sugar chain elongation reaction by an enzyme. The title is left.
  • Mucin is the main glycoprotein of mucus that covers the lumen of the gastrointestinal tract such as the trachea, gastrointestinal tract, and gonads.
  • MUC1 is a membrane-bound glycoprotein of epithelial cells and the first mucin that has been studied in detail.
  • MUC1 is a huge cell surface molecule with a characteristic structure called tandem repeat (HGVTSAPDTRPAPGSTA PPA), which is a repeating amino acid sequence containing serine and threonine that can be attached to an O-linked sugar chain. Since the addition of sugar chains does not occur in all serines and threonines, the degree of elongation of sugar chains also varies, so there may be many glycoproteins with different functions even if they have the same amino acid sequence.
  • Non-patent Document 9 Nakamori, S .; Ota, DM; Karen, R .; Shirotani, K .; Irimura , T. Gastroenterology, 1994, 106, 353—361.
  • 0 For example, in colorectal cancer, increased expression of MUC 1 has been observed in primary tumors and metastatic lesions in the advanced stage.
  • Non-patent Document 10 Llod, KO; Burchell, J .; Kudryasnov, V .; m, BWT; Taylor—Papadimitriou, JJ Biol. Chem., 1996, 271, 33325—33334 .; , 2000, 10, 439—449 .; H Hundreds!
  • the exposed peptide moiety becomes an epitope, which is an epithelium from lung cancer, breast cancer, colon cancer, or knee cancer. It is found in cell membranes of cell lines. Specifically, cytotoxic T lymphocytes isolated from breast cancer patients receive the MUC1 protein glycosylation and recognize peptides.
  • Tn which is a cancer-related sugar chain antigen
  • a mother nucleus structure such as ⁇ ⁇ , and sialyl ⁇ ⁇ , sialyl ⁇ ⁇ with sialic acid bound to them, sialyl Lewis ⁇ antigen, and sialyl Lewis X antigen are cancer cell membrane mucin and cancer patient serum Seen by the mucin in the inside.
  • Non-Patent Document 12 Koganty, RR; Reddish, MR; Longenecker, BM DrugDiscov Today, 1996, 1, 190—198 .;
  • Biomira-Merck is developing a synthetic MUC 1 peptide vaccine that incorporates a 25-amino acid sequence of MUC1 cancer mucin in a liposomal formulation: “L BLP25”. Phasell targets lung cancer and prostate cancer. A clinical trial is ongoing.
  • Bio mira Merck has developed KLH (Keyhole limp et hemocyanin) that stimulates antibody production and T-cell responses to STn (disaccharide) specifically expressed in mucin on cancer cells.
  • KLH Keyhole limp et hemocyanin
  • STn disaccharide
  • Patent Document 1 Japanese Patent Publication No. 5-500905
  • Patent Document 2 JP 2001-220399 A
  • Non-patent literature l Carbohydr. Res., 124, 23 (1983)
  • Non-Patent Document 2 Carbohydr. Res., 228, 255 (1992)
  • Non-Patent Document 3 React. Polym., 22, 171 (1994)
  • Non-Patent Document 4 Carbohydr. Res., 265, 161 (1994)
  • Non-Patent Document 5 J. Am. Chem. Soc., 116, 1136 (1994)
  • Non-Patent Document 6 J. Am. Chem. Soc., 116, 11315 (1994)
  • Non-Patent Document 7 J. Am. Chem. Soc., 119, 8766 (1997)
  • Non-Patent Document 8 J. Chem. Soc. Chem. Commun., 1849 (1994)
  • Non-Patent Document 9 Gastroenterology, 106, 353-361 (1994)
  • Non-Patent Document 10 Biol. Chem., 271, 33325-33334 (1996)
  • Non-Patent Document ll Glycobiology, 10, 439-449 (2000)
  • Non-Patent Document 12 DrugDiscov. Today, 1, 190-198 (1996)
  • An object of the present invention is to provide a novel compound useful as a primer for producing a glycopeptide, and a method for producing a glycopeptide using the primer.
  • the purpose is to produce mucin-type glycopeptides that have been difficult to produce, which are useful in a wide range of fields such as food.
  • the present invention also provides a mucin-type glycopeptide that is useful in a wide range of fields such as biochemical research materials, pharmaceuticals, and foods by the method for producing a glycopeptide using the above-described primer and has been difficult to produce so far.
  • the present invention has been completed.
  • the MUC1 and MUC1 peptide library of the present invention is effective for elucidating the function of MUC1, and the possibility of new drug discovery based on the knowledge obtained therefrom is considered.
  • Studies using glycopeptides include, for example, immobilization of glycopeptide libraries 'chipies', antibody reaction screening, search for specific antibodies, structure-activity relationship investigations in antigen-antibody reactions, specificity's of highly selective monoclonal antibodies Development of antibody drugs and vaccine therapy using glycopeptides is also possible.
  • the present invention provides the following.
  • polyacrylamide polymerization degree 1 to: oligo or polypeptide of LO, oxygen atom or NH;
  • A represents an amino acid residue cleavable by a protease
  • A is a sugar amino acid residue substantially free of a site cleavable by a protease, or
  • glycopeptide residue containing any sugar amino acid without a site cleavable by a protease Or a glycopeptide residue containing any sugar amino acid without a site cleavable by a protease).
  • the above A is a protea derived from Bacillus Licheniformis.
  • the compound according to (1) which is a glutamic acid residue or a cysteine residue that can be cleaved by an enzyme.
  • the compound according to item (1) having an amino acid sequence selected from the group consisting of the amino acid sequences shown in 0.
  • a group consisting of the compound described in item (1) and an optionally protected aminooxy group, N alkylaminooxy group, hydrazide group, azide group, thiosemicarbazide group, 1,2-dithiol group and cysteine residue A compound obtained by reacting with a carrier containing a functional group selected from
  • Protected ! which may be a silica support having a aminooxy group or a hydrazide group, a resin support, a magnetic bead or a metal support; and
  • R 3 represents a hydroxyl group or an amino group, Lys represents lysine, and Cys represents cystine
  • n is an integer from 1 to 15 and x: y is 1: 0 to 1: 1000
  • a N C (— X) — (CH) A -A -A (II)
  • X represents a hydrogen atom, c-c alkyl, c-c aryl or chromophore
  • n an integer of 0 to 20;
  • polyacrylamide polymerization degree 1 to: oligo or polypeptide of LO, oxygen atom or NH;
  • A is a protease derived from Bacillus Licheniformis.
  • A is a sugar amino acid residue substantially free of a site cleavable by a protease, or
  • glycopeptide residue containing any sugar amino acid without a site cleavable by a protease Or a glycopeptide residue containing any sugar amino acid without a site cleavable by a protease
  • A is the following formula: [0026] [Chemical 10]
  • s is an integer of 1 to 15, and: is a group of 1: 0 to 1: 1000)].
  • the compound according to item (6) having an amino acid sequence selected from the group consisting of the amino acid sequences shown in 0.
  • step (B) By allowing a glycosyltransferase to act on the compound obtained in step (A) in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is elongated. Obtaining a new compound; (c) Remove unreacted sugar nucleotides and by-product nucleotides as necessary
  • (D) A method for producing a glycopeptide, comprising a step of allowing a protease to act on a compound in which a sugar residue is transferred and a sugar chain is extended.
  • a sugar residue is transferred from the sugar nucleotide to the compound by allowing a glycosyltransferase to act on the compound according to any one of items (4) to (7) in the presence of the sugar nucleotide. Obtaining a compound in which the sugar chain is elongated;
  • (C) A method for producing a glycopeptide, comprising a step of allowing a protease to act on a compound having a sugar residue transferred and a sugar chain extended.
  • a sugar residue is transferred from the sugar nucleotide to the compound by allowing a glycosyltransferase to act on the compound according to any one of items (4) to (7) in the presence of the sugar nucleotide. Obtaining a compound in which the sugar chain is elongated;
  • Step (B) Step (A) is repeated once or twice or more to extend the sugar chain
  • a process for producing a glycopeptide comprising
  • step (B) The compound obtained in step (A) reacts specifically with the ketone residue or aldehyde residue. Including an optionally protected aminooxy group, an N-alkylaminooxy group, a hydrazide group, an azide group, a thiosemicarbazide group, a 1,2-dithiol group, and a functional group selected from the group consisting of cysteine residues. Reacting with a carrier;
  • step (C) By allowing a glycosyltransferase to act on the compound obtained in step (B) in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is elongated. Obtaining a new compound;
  • (E) A method for producing a glycopeptide, comprising a step of allowing a protease to act on a compound having a sugar residue transferred and a sugar chain extended.
  • step (B) The compound obtained in step (A) may be protected with an aminooxy group, N-alkylaminooxy group, hydrazide group, azide which may specifically react with a ketone residue or an aldehyde residue.
  • a carrier comprising a functional group selected from the group consisting of a group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue force;
  • step (C) By allowing a glycosyltransferase to act on the compound obtained in step (B) in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is elongated. Obtaining a new compound;
  • Step (D) Step (C) is repeated once or twice or more to extend the sugar chain
  • a process for producing a glycopeptide comprising
  • step (B) The compound obtained in step (A) may be protected with an aminooxy group, N-alkylaminooxy group, hydrazide group, azide which may specifically react with a ketone residue or an aldehyde residue. Reacting with a carrier containing a functional group selected from the group consisting of a group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue force, and simultaneously removing unreacted substances in step (A);
  • step (D) A method for producing a glycopeptide, comprising a step of allowing a protease to act on the compound obtained by extending the sugar chain obtained in step (C).
  • step (B) The compound obtained in step (A) may be protected with an aminooxy group, N-alkylaminooxy group, hydrazide group, azide which may specifically react with a ketone residue or an aldehyde residue. Reacting with a carrier comprising a functional group selected from the group consisting of a group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue force, and simultaneously removing unreacted substances in step (A);
  • step (C) The sugar residue is transferred from the sugar nucleotide to the compound by allowing a sugar transferase to act on the compound bound to the carrier obtained in step (B) in the presence of the sugar nucleotide. Obtaining a chain-extended compound;
  • Step (D) Step (C) is repeated once or twice or more to extend the sugar chain
  • a process for producing a glycopeptide comprising
  • X represents a hydrogen atom, c to c alkyl, a or chromophore
  • n an integer of 0 to 20;
  • A represents a linker having a length of 1 to 20 methylene chains.
  • a sugar residue is transferred from the sugar nucleotide to the compound by allowing a glycosyltransferase to act on the compound according to any one of items (1) to (3) in the presence of the sugar nucleotide. Obtaining a compound in which the sugar chain is elongated;
  • Step (B) Step (A) is repeated one or more times as necessary to extend the sugar chain as necessary;
  • a compound in which a sugar residue is transferred and a sugar chain is extended, and a protected compound capable of reacting specifically with a ketone residue or an aldehyde residue may be an aminooxy group, an N-alkylaminooxy group.
  • a carrier comprising a functional group selected from the group consisting of a hydrazide group, an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cystine residue; and
  • a process for producing a glycopeptide comprising
  • a sugar residue is transferred from the sugar nucleotide to the compound by allowing a glycosyltransferase to act on the compound according to any one of items (1) to (3) in the presence of the sugar nucleotide. Obtaining a compound in which the sugar chain is elongated;
  • Step (B) Step (A) is repeated one or more times as necessary to extend the sugar chain as necessary;
  • (C) a compound in which a sugar residue is transferred and a sugar chain is extended, and a ketone residue or an aldehyde residue Protected and capable of reacting specifically with amino groups, N-alkylaminooxy groups, hydrazide groups, azide groups, thiosemicarbazide groups, 1,2-dithiol groups and cysteine residues Reacting with a support containing a functional group selected from:
  • (E) A method for producing a glycopeptide, comprising a step of allowing a protease to act on a compound having a sugar residue transferred and a sugar chain extended.
  • Y 1 -Ala-H is— G ly— VaH "h r-Ser-Ala-Pro-Asp— Thr-Arg-Y 2
  • Xi X 5 are each independently a hydrogen atom or the following formula:
  • R 1 and R 2 each independently represents a hydrogen atom, a monosaccharide or a sugar chain; Ac represents acetyl.
  • Y 1 represents a hydrogen atom, acetyl, acyl, alkyl or aryl.
  • Y 2 represents a hydroxyl peptide, NH, alkyl or aryl.
  • step (B) The compound obtained in step (A) may be protected with an aminooxy group, N-alkylaminooxy group, hydrazide group, azide which may specifically react with a ketone residue or an aldehyde residue.
  • Group, thiosemicarbazide group, 1,2-dithiol group and cysteine residue force Reacting with a soluble carrier containing a functional group selected from the group and removing unreacted substances in step (A) by reprecipitation, gel filtration, or ultrafiltration;
  • step (C) By allowing a glycosyltransferase to act on the compound solublely bound to the carrier obtained in step (B) in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, Obtaining a compound having an extended sugar chain;
  • Step (D) Step (C) is repeated once or twice or more to extend the sugar chain
  • (G) A method for producing a glycopeptide, comprising a step of removing a reagent and an enzyme used in a sugar chain elongation reaction as necessary.
  • step (B) The compound obtained in step (A) may be protected with an aminooxy group, N-alkylaminooxy group, hydrazide group, azide which may specifically react with a ketone residue or an aldehyde residue.
  • step (A) by reacting with a soluble carrier containing a functional group selected from the group consisting of a group consisting of a group, thiosemicarbazide group, 1,2-dithiol group and cysteine residue force, by reprecipitation, gel filtration, or ultrafiltration Removing unreacted material in the step;
  • step (C) By allowing a glycosyltransferase to act on the compound solublely bound to the carrier obtained in step (B) in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, Obtaining a compound having an extended sugar chain;
  • Step (D) Step (C) is repeated once or twice or more to extend the sugar chain
  • step (H) The step of allowing protease to act on the compound in which the sugar chain immobilized in step (F) is elongated
  • a process for producing a glycopeptide comprising
  • X represents a hydrogen atom, c-c alkyl, c-c aryl or chromophore
  • n an integer of 0 to 20;
  • Said glycopeptide has the following formula:
  • Y 1 represents a hydrogen atom, acetyl, acyl, alkyl or aryl.
  • Y 2 represents a hydroxyl group, NH, alkyl or aryl. However, all of Xi X 3 is water
  • Y 1 represents a hydrogen atom, acetyl, acyl, alkyl or aryl.
  • Y 2 represents a hydroxyl group, NH, alkyl or aryl. However, all of Xi X 3 is water
  • Y 1 represents a hydrogen atom, acetyl, acyl, alkyl or aryl.
  • Y 2 represents a hydroxyl group, NH, alkyl or aryl. However, all of Xi X 3 is water
  • Y 1 represents a hydrogen atom, acetyl, acyl, alkyl or aryl.
  • Y 2 represents a hydroxyl group, NH, alkyl or aryl. However, all of Xi X 3 is water
  • a glycopeptide having a complex sugar chain is synthesized by using a sugar amino acid containing about 1 to 3 sugars, which is relatively easy to prepare in glycopeptide synthesis, and performing sugar chain elongation after peptide synthesis.
  • the sugar chain elongation reaction is carried out by carrying a sugar peptide on a water-soluble polymer, the acceleration effect of the reaction and the simplification of the molecular operation can be achieved, and the sugar chain elongation reaction can be automated.
  • the present invention makes it possible to synthesize mucin-type glycopeptides that are useful in a wide range of fields such as biochemical research materials, pharmaceuticals, and foods, and that have been difficult to produce.
  • the obtained glycopeptide library can be used as a standard sample for structural analysis and biochemical tests.
  • this glycopeptide library is placed on a chip to recognize glycopeptides. It is possible to perform comprehensive analysis such as detection of proteins, pathological diagnosis, search for cell adhesion sequences, sequence analysis related to cell proliferation and apoptosis.
  • FIGS. 1A-D show reaction examples of glycopeptide sugar chain elongation reaction and sugar chain cleaving in the present invention.
  • FIGS. 1A to 1D show reaction examples of glycopeptide sugar chain elongation reaction and sugar chain cleaving in the present invention.
  • FIGS. 1A to 1D show reaction examples of glycopeptide sugar chain elongation reaction and sugar chain cleaving in the present invention.
  • FIGS. 1A to 1D show reaction examples of glycopeptide sugar chain elongation reaction and sugar chain cleaving in the present invention.
  • FIG. 2 shows a conceptual diagram of combinatorial synthesis of compounds (97) to (162) using a dispensing apparatus.
  • SEQ ID Nos: 1 to 20 Partial amino acid sequence of 11 residues of mucin-type glycoprotein MUC1
  • SEQ ID NOs: 21-40 18 amino acid partial amino acid sequences of mucin-type glycoprotein MUC 1
  • SEQ ID NOs: 41-60 20 amino acid partial amino acid sequences of mucin-type glycoprotein MUC 1 SEQ ID NOs: 61-66: included in the compound Examples of amino acid sequences contained in a carrier BEST MODE FOR CARRYING OUT THE INVENTION
  • sucgar amino acid means a sugar residue and an amino acid residue bonded together, and is used interchangeably with “sugar amino acid residue”.
  • a sugar amino acid containing substantially no site cleavable by a protease is used.
  • the term “noic acid residue” refers to a sugar amino acid residue, preferably 20% or more, that is not cleaved by 50% or more by the protease even if the compound represented by the above item (4) is treated with protease. 1 refers to a sucrose amino acid residue.
  • glycopeptide residue means a peptide residue containing at least one sugar amino acid, and is used interchangeably with “glycopeptide”.
  • the sugar residue constituting the sugar amino acid contained in the above-mentioned glycopeptide residue is not particularly limited, but monosaccharide to monosaccharide or monosaccharide to trisaccharide derivatives are preferred. Inductive materials are more preferably used.
  • sucrose chain refers to a compound formed by one or more unit sugars (monosaccharide and Z or a derivative thereof). When two or more unit sugars are connected, each unit sugar is linked by dehydration condensation using a glycosidic bond.
  • sugar chains examples include polysaccharides contained in the living body (glucose, galactose, mannose, fucose, xylose, N-acetylethyldarcosamine, N-acetylethylgalatosamine, sialic acid and In addition to their conjugates and derivatives), there are a wide range of sugar chains that are degraded or derived from complex biomolecules such as degraded polysaccharides, glycoproteins, proteoglycans, glycosaminodaricans, glycolipids, etc. It is not limited to them. Therefore, in the present specification, the sugar chain can be used interchangeably with “polysaccharide”, “sugar”, and “carbohydrate”. Further, unless otherwise specified, in this specification, “sugar chain” may include both sugar chains and sugar chain-containing substances.
  • monosaccharide refers to a polyhydroxy aldehyde or polyhydroxy ketone that is not hydrolyzed into a simpler molecule and contains at least one hydroxyl group and at least one aldehyde group or ketone group, and its Refers to a derivative.
  • monosaccharides are represented by the general formula C H 2 O but are not limited to them: fucose (deoxyhexose), N n 2n n
  • n 2, 3, 4, 5, 6, 7, 8, 9 and 10 are respectively diose, triose, tetrose, pentose, hexose, heptose, otatose, nonose. And decourse. It is generally equivalent to an aldehyde or ketone of a chain polyhydric alcohol. The former is called aldose and the latter is called ketose.
  • derivative of monosaccharide refers to a substance resulting from the substitution of one or more hydroxyl groups on an unsubstituted monosaccharide with another substituent.
  • Examples of such monosaccharide derivatives include sugars having a carboxyl group (for example, aldonic acids in which the C-1 position is oxidized to form carboxylic acids (for example, D darconic acid in which D-glucose is oxidized), and terminal sugars.
  • carboxyl group for example, aldonic acids in which the C-1 position is oxidized to form carboxylic acids (for example, D darconic acid in which D-glucose is oxidized
  • terminal sugars for example, aldonic acids in which the C-1 position is oxidized
  • Uronic acid in which C atom is converted to carboxylic acid (D glucose-oxidized D-glucuronic acid), sugar having amino group or amino group derivative (for example, acetylated amino group) (for example, N-acetyl-D —Darcosamine, N-acetyl, D-galatatosamine, etc., sugars with both amino and carboxyl groups (eg, N-acetylneuraminic acid (sialic acid), N-acetylmethylmuramic acid, etc.), deoxygenated sugars (eg, 2 —Deoxy D ribose), sulfated sugars containing sulfate groups, phosphorylated sugars containing phosphate groups, etc., but are not limited thereto.
  • the induction member may include.
  • glycosides also of Asetaru structure by reacting with alcohol are within the scope of monosaccharide
  • the "amino acid residue" constituting the glycopeptide residue of the present invention is not particularly limited as long as it has an amino group and a carboxy group in the molecule. Gly (glycine), Ala (alanine), Val ( Norin), Leu (leucine), lie (isoleucine), Tyr (tyrosine), Trp (tryptophan), G1 u (glutamic acid), Asp (aspartic acid), Lys (lysine), Arg (arginine), His (histidine) ), Cys (cystine), Met (methionine), Ser (serine), Thr (threonine), Asn (asparagine), Gin (glutamine) or Pro (proline) residues such as a-amino acid residues or j8-Ala residues Examples include
  • the amino acid residue may be either D-form or L-form, but L-form is preferred.
  • the glycopeptide residue the above-ment
  • the sugar amino acid of the present invention as defined above is not particularly limited as long as the amino acid residues and sugar residues listed above can theoretically be combined, but it is preferable to combine them.
  • n an integer of 1 to 10
  • Gal represents galactose
  • Glc represents glucose
  • Man represents mannose
  • Xyl represents xylose
  • GlcNAc represents N-acetylyl D-darcosamine
  • GalNAc Represents N-acetyl D galactosamine.
  • N-terminus refers to an optionally substituted amino group located at the end of the peptide main chain.
  • C-terminal refers to a substitution located at the end of the peptide backbone! And, it means a carboxyl group.
  • the “side chain” means a functional group extending from the peptide main chain in a direction orthogonal to the direction in which the peptide main chain extends or a portion containing the functional group.
  • the “primer” means a substance having an action that triggers the initiation of a reaction in an enzymatic reaction.
  • the term “transferase” is a general term for enzymes that catalyze a group transfer reaction.
  • “transferase” may be used interchangeably with “transferase”.
  • the group transfer reaction is represented by the following formula (1):
  • the group Y is transferred from one compound (donor) to another compound (acceptor).
  • glycosyltransferase means a sugar (corresponding to the group Y in the above formula (1); unit sugar or sugar chain) corresponding to the compound X—Y in the above formula (1). ) To another place (corresponding to the compound Z—H of the above formula (1)).
  • glycosyltransferase include galactose transferase, glucose transferase, sialic acid transferase, mannose transferase, fucose transferase, xylose transferase, N-acetylyl glucosamine transferase, and N-acetyl galatatosamine. Examples include, but are not limited to, transferases.
  • sugar chain elongation reaction refers to a reaction in which the chain length of a sugar chain is elongated in the presence of a glycosyltransferase as defined above.
  • biomolecule refers to a molecule related to a living body.
  • biomolecules are sometimes referred to herein as biological samples.
  • living body refers to a biological organism, including but not limited to animals, plants, fungi, viruses, and the like. Therefore, a biomolecule includes a molecule extracted from a living body, but is not limited thereto, and any molecule that can affect a living body falls within the definition of a biomolecule.
  • biomolecules include proteins, polypeptides, oligopeptides, peptides, glycopeptides, polynucleotides, oligonucleotides, nucleotides, sugar nucleotides, nucleic acids (eg, DNA such as cDNA, genomic DNA, mRNA Such as RNA), polysaccharides, oligosaccharides, lipids, small molecules (eg, hormones, ligands, signaling substances, small organic molecules, etc.), complex molecules thereof, and the like.
  • the biomolecule may preferably be a sugar chain or a complex molecule containing a sugar chain (eg, glycoprotein, glycolipid, etc.).
  • a material to which a biological sugar chain is bound or attached Any animal, plant, bacteria, or virus may be used as long as it is a material. More preferably, an animal-derived biological sample is used. Preferable examples include whole blood, plasma, serum, sweat, saliva, urine, knee fluid, amniotic fluid, and cerebrospinal fluid, and more preferable examples include plasma, serum, and urine.
  • Biological samples include biological samples that have not been previously separated from individuals. For example, it includes mucosal tissue that can be contacted with a test solution from the outside, or glandular tissue, preferably ductal epithelium attached to the mammary gland, prostate, and spleen.
  • the terms "protein”, “polypeptide”, “oligopeptide” and “peptide” are used interchangeably herein and can be any length of amino acid.
  • the polymer. This polymer may be linear or branched or cyclic.
  • the amino acid may be a modified amino acid, whether natural or unnatural.
  • the term can also include those assembled into a complex of multiple polypeptide chains.
  • the term also encompasses amino acid polymers that have been modified naturally or artificially. Such modifications include, for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification (eg, conjugation with a labeling component).
  • This definition also includes, for example, polypeptides containing one or more analogs of amino acids (eg, including unnatural amino acids, etc.), peptide-like compounds (eg, peptoids), and known in the art Other modifications are included.
  • sugar nucleotide means a nucleotide to which a sugar residue as defined above is bound, and the sugar nucleotide used in the present invention can be used by the above enzyme. If it is, it will not specifically limit.
  • uridine 5 monodiphosphate galactose, uridine 5, monodiphosphate-N acetyl dalcosamine, uridine 5, mono diphosphate N acetyl galactosamine, uridine-5, monodiphosphate glucuronic acid, uridine 5, 1
  • examples include diphosphate xylose, guanosine 5, monodiphosphate fucose, guanosine 5, monodiphosphate mannose, cytidine-5, monomonophosphate 1-N-acetylethylneuraminic acid, and sodium salts thereof.
  • substitution refers to replacement of one or more hydrogen atoms in an organic compound or substituent with another atom or atomic group.
  • One hydrogen atom can be removed and substituted with a monovalent substituent, and two hydrogen atoms can be removed and substituted with a divalent substituent.
  • alkyl refers to a monovalent group generated by loss of one hydrogen atom in an aliphatic hydrocarbon (alkane) force such as methane, ethane, or propane.
  • n 2n + l is represented by one (where n is a positive integer).
  • Alkyl can be linear or branched.
  • substituted alkyl refers to an alkyl in which one or more hydrogen atoms are each independently substituted with a substituent as defined below.
  • C1-C2 alkyl C1-C3 alkyl, C1-C4 alkyl, C1-C5 alkyl, C1-C6 alkyl, C1-C7 alkyl, C1-C8 alkyl, C1-C9 alkyl, C1-C 10 It can be alkyl, C1-C11 alkyl, C1-C12 alkyl, C1-C15 alkyl, Cl-C20 alkyl, C1-C25 alkyl or C1-C30 alkyl.
  • C 1 -C 10 alkyl means a linear or branched alkyl having 1 to 10 carbon atoms, such as methyl (CH—), ethyl (CH 1), n-propyl. (CH CH CH one)
  • aryl refers to a monovalent aromatic of 6 to 30 carbon atoms derived by removing one hydrogen atom from one carbon atom of the parent aromatic ring system. This refers to the hydrocarbon radical. Representative aryl groups include, but are not limited to, benzene, naphthalene, anthracene, biphenyl and the like.
  • chromophore refers to an government having an absorption band in the ultraviolet or visible light region.
  • a functional group or a functional group that emits radiation in the visible light region when excited by electromagnetic waves in the ultraviolet or visible light region For example, nitro group, benzyl group, thiol-zole group, paranitrophenol
  • keto acid is a generic term for compounds having a carboxyl group and a carbocycle group of a ketone.
  • aldehyde acid is a general term for compounds having a carboxyl group and a carboxylic group of an aldehyde.
  • N represents an integer of 0 to 20;
  • A represents a linker having a length of 1 to 20 methylene chains).
  • the “protection reaction” refers to a reaction in which a protective group such as Boc (t-butoxycarbonyl group) is added to a functional group desired to be protected.
  • a protective group such as Boc (t-butoxycarbonyl group)
  • Boc t-butoxycarbonyl group
  • deprotection reaction refers to a reaction for removing a protecting group such as Boc.
  • deprotection reactions include reactions with trifluoroacetic acid (TFA) and reduction reactions with PdZC.
  • examples of the “protecting group” include, for example, a fluorenylmethoxycarbol (F moc) group, a acetyl group, a benzyl group, a benzoyl group, a t-butoxycarbol group, t-Butyldimethyl group, silyl group, trimethylsilylethyl group, N-phthalimidyl group, trimethylsilylethyloxycarboxyl group, 2-trow 4,5 dimethoxybenzyl group, 2-nitro-4,5-dimethoxy
  • Representative examples of the protecting group include a benzyloxycarbonyl group and a strong rubamate group.
  • the protecting group can be used, for example, to protect a reactive functional group such as an amino group or a carboxyl group.
  • a reactive functional group such as an amino group or a carboxyl group.
  • Various protecting groups can be used depending on the reaction conditions and purpose.
  • Aminooxy group and N-alkylaminooxy As the protecting group for the group, a trimethylsilylethyloxycarbonyl group, 2--tro-4,5-dimethoxybenzyloxycarboxyl group or a derivative thereof is preferable.
  • the target product is a contaminant (unreacted weight loss, by-product, solvent, etc.) from the reaction solution, and a method commonly used in the art (for example, extraction, distillation, After removal by washing, concentration, precipitation, filtration, drying, etc., followed by treatment by a combination of post-treatment methods commonly used in the art (eg adsorption, elution, distillation, precipitation, precipitation, chromatography, etc.) obtain.
  • a method commonly used in the art for example, extraction, distillation, After removal by washing, concentration, precipitation, filtration, drying, etc., followed by treatment by a combination of post-treatment methods commonly used in the art (eg adsorption, elution, distillation, precipitation, precipitation, chromatography, etc.) obtain.
  • the present invention provides the following formula:
  • X represents a hydrogen atom, C-C alkyl, C-C aryl or chromophore
  • A represents a sugar amino acid substantially free of a site cleavable by a protease.
  • glycopeptide residue containing any sugar amino acid without a site cleavable by a protease By using this as a primer, purification of a glycopeptide, which conventionally required multi-step purification, can be simplified, and the glycopeptide can be produced quickly and with high yield. Since the compound of the above formula (I) of the present invention always has an aldehyde group or a ketone group at the terminal, it may be protected with an aminooxy group, an N alkylaminooxy group, a hydrazide group, an azide group, a thiosemicarbazide group.
  • the compound of the above formula (I) is supported on the carrier and used as a polymer primer.
  • a carrier containing a functional group selected from the group consisting of 1,2-dithiol group and cysteine residue By reacting with a carrier containing a functional group selected from the group consisting of 1,2-dithiol group and cysteine residue, the compound of the above formula (I) is supported on the carrier and used as a polymer primer. Can be used.
  • the bond obtained by this reaction is a strong bond that does not decompose under the subsequent hydrolysis with a protease (pH condition, etc.), so that there is an advantage that the purification of hydrolysis is very simple.
  • the combination of the protease used in the hydrolysis in the present invention and the amino acid residue (A) that can be cleaved by this protease causes hydrolysis by the protease.
  • Proteases that recognize tides can also be used. Such combinations include, for example, a combination of a protease (glutamidase) derived from Bacillus Licheniformis and a glutamic acid residue or cysteine residue that can be cleaved by this protease; Combination of peptidase and Asn (recognition site (A))
  • Factor Xa Factor Xa
  • lie Glu—Gly—Arg—
  • the recognition site (A) is arginine (Arg), and -Ile- Glu-Gl
  • y— is the terminus of A; this cleaves the C-terminus of arginine (Arg). ); And enterokinase and Asp— Asp— Asp— Asp— Lys— (recognition site, according to the definition of this specification, the recognition site (A) is lysine (Lys) and —Asp — Asp— A
  • sp—Asp— is the end of A; it cleaves the C-terminus of lysine (Lys). ) 0 like this
  • a protease derived from Bacillus Licheniformis (glutamidase (eg, Bacillus Lichenif ormis) glutamate residue specific protease (BLase: manufactured by Shionogi Pharmaceutical Co., Ltd.) A combination of)))
  • BLase can be produced by the method described in JP-A-4-166085 (Patent No. 3046344).
  • BLase is produced by Bacillus spp., Particularly Bacillus liquor-formis ATCC 14580 strain. This strain is also available in the American Type Culture Collection (ATCC). If necessary, the genomic DNA of Bacillus liquor-formis ATCC 14580 strain should be prepared from the cultured cells of the strain according to a known method (M. Stahl et al., Journal of Bacteriology, 154, 406-412 (1983)). I can help.
  • HGVTSAPDTRP (SEQ ID NO: 1)
  • GVTSAPDTRPA SEQ ID NO: 2
  • VTSAPDTRPAP (SEQ ID NO: 3),
  • TSAPDTRPAPG (SEQ ID NO: 4),
  • APDTRPAPGST (SEQ ID NO: 6),
  • TRPAPGSTAPP SEQ ID NO: 9
  • PAPGSTAPPAH (SEQ ID NO: 11),
  • PAHGVTSAPDT (SEQ ID NO: 19),
  • HGVTSAPDTRPAPGSTAP (SEQ ID NO: 21), GVTSAPDTRPAPGSTAPP (SEQ ID NO: 22), VTSAPDTRPAPGSTAPPA (SEQ ID NO: 23), TSAPDTRPAPGSTAPPAH (SEQ ID NO: 24), SAPDTRPAPGSTAPPAHG (SEQ ID NO: 25), APDTRPAPGSTAPPAHGV (SEQ ID NO: 26), PDTRPAPGSTAPAHG DT (SEQ ID NO: 28), TRPAPGSTAPPAHGVTSA (SEQ ID NO: 29), RPAPGSTAPPAHGVTSAP (SEQ ID NO: 30), PAPGSTAPPAHGVTSAPD (SEQ ID NO: 31), eight? 03? ? 8110 ⁇ 3-8?
  • APDTRPAPGSTAPPAHGVTS (SEQ ID NO: 46),
  • TRPAPGSTAPPAHGVTSAPD (SEQ ID NO: 49),
  • RPAPGSTAPPAHGVTS APDT (SEQ ID NO: 50)
  • PAPGSTAPPAHGVTSAPDTR SEQ ID NO: 51
  • APGSTAPPAHGVTSAPDTRP (SEQ ID NO: 52),
  • AHGVTSAPDTRPAPGSTAPP (SEQ ID NO: 60),
  • the polymer carrier that can be used in the present invention can bind the group represented by the formula (I) and is represented by the formula (I) by the action of glycosyltransferase as described below after the coupling.
  • a vinyl monomer polymer having an aminooxy group or a hydrazide group may be protected.
  • a copolymer such as the above-mentioned butyl monomers include acrylamides, methacrylate amides, acrylic acids, methacrylic acids, styrenes, fatty acid butyl esters, etc.
  • Polyethers to be obtained; silica carriers, rosin carriers, magnetic beads or metal carriers having an optionally protected aminooxy group or hydrazide group for example:
  • the above-mentioned protected bule monomer polymer or copolymer having an aminooxy group or hydrazide group may be a polymer or copolymer of an unsubstituted vinyl monomer.
  • acrylamides examples include N-alkyl acrylamides such as acrylamide, N-ethyl acrylamide, N-isopropyl acrylamide, etc., which may have a protected aminooxy group or hydrazide group. Is done.
  • methacrylamides examples include methacrylamide, N-methylmethacrylamide, Nethylmethacrylamide, Nisopropylmethacrylamide, and the like, which may be protected and may have an aminooxy group or a hydrazide group.
  • N-alkyl methacrylamide and the like are exemplified.
  • acrylic acid examples include acrylic acid such as acrylic acid, methyl acrylate, ethyl acrylate, hydroxyethyl acrylate, and dimethylaminoethyl acrylate, which may have an aminooxy group or hydrazide group which may be protected.
  • acrylic acid such as acrylic acid, methyl acrylate, ethyl acrylate, hydroxyethyl acrylate, and dimethylaminoethyl acrylate, which may have an aminooxy group or hydrazide group which may be protected.
  • acid esters examples include acid esters.
  • methacrylic acids are protected and may have an aminooxy group or a hydrazide group.
  • examples include methacrylic acid esters.
  • styrenes examples include styrene, p-hydroxystyrene, p-hydroxymethylstyrene and the like which may be protected but may have an aminooxy group or a hydrazide group. Indicated.
  • fatty acid vinyl ester examples include vinyl acetate and vinyl butyrate which may be protected and may have an aminooxy group or a hydrazide group.
  • the polymer or copolymer of the fatty acid bule ester in the present invention includes a polymer obtained by fully or partially hydrolyzing the ester bond with an alkali or the like after the polymerization reaction.
  • the above polyethers may be protected and may have a polyethyleneoxy group or a hydrazide group, or may be protected and may have an aminooxy group or a hydrazide group.
  • Examples thereof include polyethylene glycol substituted with alkyl and aryl groups.
  • the polymer carrier here may be either water-insoluble or water-soluble, but water-soluble is preferred.
  • the general molecular weight is about 10,000 to about 5000000, preferably 20000 to 2000000, more preferably ⁇ 50,000 to 1000000.
  • the form includes a bead shape, a fiber shape, a film shape, and a film shape, but is not particularly limited.
  • n is an integer of 1 to 15, preferably 1 to 10, and more preferably 1 to 5.
  • the ratio of x: y is 1: 0 to 1: 1000, preferably 1: 0 to 1: 100.
  • the molecular weight of the polymer carrier is about 10,000 to about 5000000, preferably ⁇ is 20000 to 2000000, more preferably ⁇ is 50000 to 1000000.
  • the invention provides a compound of the following formula:
  • a N C (— X) — (CH) A -A -A (II)
  • X is a hydrogen atom, c to alkyl
  • 6 c represents aryl or chromophore
  • n an integer of 0 to 20;
  • polyacrylamide polymerization degree 1 to: L0 oligo or polypeptide, oxygen atom or NH;
  • A is a protease derived from Bacillus Licheniformis.
  • A is a sugar amino acid residue substantially free of a site cleavable by a protease, or
  • glycopeptide residue containing any sugar amino acid without a site cleavable by a protease Or a glycopeptide residue containing any sugar amino acid without a site cleavable by a protease
  • A is the following formula:
  • the present invention provides a composition for a primer for producing a glycoamino acid or glycopeptide comprising the compound described in the above formula (I) or (IV).
  • the glycopeptide containing an amino acid residue that has a ketone residue or an aldehyde residue at the end and is cleavable by protease is released to the solid phase carrier force, and at the same time, the protecting group of the amino acid side chain is removed.
  • the protecting group may be deprotected by a separate deprotection reaction);
  • reaction mixture or the mixture obtained by the ether precipitation method is purified by HPLC, and a glycopeptide (sugar chain protector) containing an amino acid residue that has a ketone residue or an aldehyde residue at the end and can be cleaved by a protease is obtained.
  • a glycopeptide sucgar chain protector
  • step 4 is omitted.
  • the glycopeptide containing an amino acid residue that has a ketone residue or an aldehyde residue at the end and is cleavable by protease is released to the solid phase carrier force, and at the same time, the protecting group of the amino acid side chain is removed.
  • Protect if the amino acid side chain protecting group is not removed by acid treatment, the protecting group may be separately deprotected by a deprotection reaction);
  • a polymer carrier is introduced into the reaction solution containing the glycopeptide of 3) to selectively react with the glycopeptide. React;
  • glycopeptide bound to the carrier is purified by gel filtration or dialysis, ultrafiltration, etc .;
  • the glycopeptide containing an amino acid residue that has a ketone residue or an aldehyde residue at the end and is cleavable by protease is released to the solid phase carrier force, and at the same time, the protecting group of the amino acid side chain is removed.
  • Protect if the amino acid side chain protecting group is not removed by acid treatment, the protecting group may be separately deprotected by a deprotection reaction);
  • a polymer carrier is introduced into the reaction solution containing the glycopeptide of 3) and selectively reacted with the glycopeptide;
  • keto acid or aldehyde acid used in step 1) above is The following formula:
  • 6 c represents aryl or chromophore
  • n an integer of 0 to 20;
  • (A represents a linker having a length of 1 to 20 methylene chains).
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • step (B) By reacting the compound obtained in step (A) with a glycosyltransferase in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is elongated. Obtaining the compound;
  • the glycosyltransferase used in the present invention may be any glycosyltransferase that can use sugar nucleotides as a sugar donor.
  • Preferred examples include ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ , 4 galactose transferase, 3-galactose transferase, 131, 4 Galactose transferase, / 31,3-galactose transferase, ⁇ ⁇ , 6 galactose transferase, ⁇ 2, 6 sialyltransferase, ⁇ 1, 4 galactose transferase, ceramide galatose transferase, -1, 2, fucose transferase Enzymes, 1,3-fucosyltransferases, ⁇ , 4 fucose transferases, ⁇ 1, 6 fucose transferases, ⁇ 1, 3— ⁇ acetylylgalatatosamine transferase, ⁇ 1, 6 ——- acet
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • a sugar residue is transferred from the sugar nucleotide to the compound by allowing a glycosyltransferase to act on the compound according to any one of items (4) to (7) in the presence of the sugar nucleotide. Obtaining a compound in which the sugar chain is elongated;
  • (C) a step of allowing a protease to act on a compound in which sugar residues are transferred and sugar chains are elongated. Furthermore, the process of isolating glycopeptide may be included. In this production method, by-products other than the glycopeptide containing the target glycopeptide and the carrier can be easily separated.
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • a sugar residue is transferred from the sugar nucleotide to the compound by allowing a glycosyltransferase to act on the compound according to any one of items (4) to (7) in the presence of the sugar nucleotide. Obtaining a compound in which the sugar chain is elongated;
  • Step ( ⁇ ) is repeated one or more times to extend the sugar chain;
  • (D) including a step of allowing a protease to act on a compound in which a plurality of sugar residues are transferred and sugar chains are elongated.
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • Step (A) The compound obtained in (A) may react with a ketone residue or an aldehyde residue, and may be an aminooxy group, N-alkylaminooxy group, hydrazide group, azide which may be protected. Reacting a carrier comprising a functional group selected from the group consisting of a group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue force;
  • step (C) By allowing a glycosyltransferase to act on the compound obtained in step (B) in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is elongated. Obtaining a new compound;
  • (E) a step of allowing a protease to act on a compound in which sugar residues are transferred and sugar chains are elongated.
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • step (B) The compound obtained in step (A) may be protected with an aminooxy group, N-alkylaminooxy group, hydrazide group, azide which may specifically react with a ketone residue or an aldehyde residue. Reacting a carrier comprising a functional group selected from the group consisting of a group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue force; (C) By allowing a glycosyltransferase to act on the compound obtained in step (B) in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, and the sugar chain is elongated. Obtaining a new compound;
  • Step (D) Step (C) is repeated once or twice or more to extend the sugar chain
  • (F) a step of allowing a protease to act on a compound in which a plurality of sugar residues are transferred and sugar chains are elongated.
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • (A) A step of obtaining a compound according to any one of items (1) to (3) by carrying out peptide solid-phase synthesis using an amino acid, a sugar amino acid, and keto acid or aldehyde acid that can be cleaved by a protease as raw materials. ;
  • step (B) The compound obtained in step (A) may be protected with an aminooxy group, N-alkylaminooxy group, hydrazide group, azide which may specifically react with a ketone residue or an aldehyde residue. Reacting with a carrier containing a functional group selected from the group consisting of a group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue force, and simultaneously removing unreacted substances in step (A);
  • step (D) A step of allowing protease to act on the compound obtained by extending the sugar chain obtained in step (C) is included.
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • step (A) Peptide solid phase synthesis is performed using amino acids, sugar amino acids, and keto acids or aldehyde acids that can be cleaved by proteases, and the compound according to any one of items (1) to (3) is obtained.
  • the compound obtained in step (A) may be protected with an aminooxy group, N-alkylaminooxy group, hydrazide group, azide which may specifically react with a ketone residue or an aldehyde residue.
  • a carrier comprising a functional group selected from the group consisting of a group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue force, and simultaneously removing unreacted substances in step (A);
  • step (C) The sugar residue is transferred from the sugar nucleotide to the compound by allowing a sugar transferase to act on the compound bound to the carrier obtained in step (B) in the presence of the sugar nucleotide. Obtaining a chain-extended compound;
  • Step (D) Step (C) is repeated once or twice or more to extend the sugar chain
  • (F) a step of allowing a protease to act on a compound in which a plurality of sugar residues are transferred and sugar chains are elongated.
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • a sugar residue is transferred from the sugar nucleotide to the compound by allowing a glycosyltransferase to act on the compound according to any one of items (1) to (3) in the presence of the sugar nucleotide. Obtaining a compound in which the sugar chain is elongated;
  • Step (B) Step (A) is repeated one or more times as necessary to extend the sugar chain as necessary;
  • a compound in which a sugar residue is transferred and a sugar chain is extended, and a protected compound capable of reacting specifically with a ketone residue or an aldehyde residue may be an aminooxy group, an N-alkylaminooxy group.
  • a carrier comprising a functional group selected from the group consisting of a hydrazide group, an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue; and
  • the method for producing a glycopeptide of the present invention comprises the following steps: (A) A sugar residue is transferred from the sugar nucleotide to the compound by allowing a glycosyltransferase to act on the compound according to any one of items (1) to (3) in the presence of the sugar nucleotide. Obtaining a compound in which the sugar chain is elongated;
  • Step (B) Step (A) is repeated one or more times as necessary to extend the sugar chain as necessary;
  • a compound in which a sugar residue is transferred and a sugar chain is extended, and a protected compound capable of reacting specifically with a ketone residue or an aldehyde residue may be an aminooxy group, an N-alkylaminooxy group.
  • Reacting with a carrier comprising a functional group selected from the group consisting of: a hydrazide group, an azide group, a thiosemicarbazide group, a 1,2-dithiol group and a cysteine residue;
  • (E) a step of causing a protease to act on a compound in which a sugar residue is transferred and a sugar chain is elongated.
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • step (B) The compound obtained in step (A) may be protected with an aminooxy group, N-alkylaminooxy group, hydrazide group, azide which may specifically react with a ketone residue or an aldehyde residue.
  • step (A) by reacting with a soluble carrier containing a functional group selected from the group consisting of a group consisting of a group, thiosemicarbazide group, 1,2-dithiol group and cysteine residue force, by reprecipitation, gel filtration, or ultrafiltration Removing unreacted material in the step;
  • step (C) By allowing a glycosyltransferase to act on the compound solublely bound to the carrier obtained in step (B) in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, Obtaining a compound having an extended sugar chain;
  • Step (D) Step (C) is repeated once or twice or more to extend the sugar chain
  • the method for producing a glycopeptide of the present invention comprises the following steps:
  • step (B) The compound obtained in step (A) may be protected with an aminooxy group, N-alkylaminooxy group, hydrazide group, azide which may specifically react with a ketone residue or an aldehyde residue.
  • step (A) by reacting with a soluble carrier containing a functional group selected from the group consisting of a group consisting of a group, thiosemicarbazide group, 1,2-dithiol group and cysteine residue force, by reprecipitation, gel filtration, or ultrafiltration Removing unreacted material in the step;
  • step (C) By allowing a glycosyltransferase to act on the compound solublely bound to the carrier obtained in step (B) in the presence of a sugar nucleotide, the sugar residue is transferred from the sugar nucleotide to the compound, Obtaining a compound having an extended sugar chain;
  • Step (D) Step (C) is repeated once or twice or more to extend the sugar chain
  • step (H) a step of allowing a protease to act on the compound in which the sugar chain immobilized in step (F) is elongated.
  • the series of reactions using the above-mentioned glycosyltransferase is performed by using a dispensing device (dispensing device) or the like that can control the temperature of the reaction part as necessary.
  • R 1 and R 2 above represent a sugar chain
  • R 1 and R 2 are each independently the following: [0141] [Chemical Formula 23]
  • the present invention relates to a medicament (for example, a pharmaceutical such as a vaccine, a health food, a residue) containing a glycopeptide (eg, mucin-type glycopeptide) obtained by the production method of the present invention.
  • a medicament for example, a pharmaceutical such as a vaccine, a health food, a residue
  • a glycopeptide eg, mucin-type glycopeptide
  • the protein or lipid relates to a pharmaceutical having reduced antigenicity.
  • the medicament may further comprise a pharmaceutically acceptable carrier and the like. Examples of the pharmaceutically acceptable carrier contained in the medicament of the present invention include any substance known in the art.
  • Such suitable formulation materials or pharmaceutically acceptable carriers include antioxidants, preservatives, colorants, flavors, and diluents, emulsifiers, suspending agents, solvents, fillers, fillers. These include, but are not limited to, dosages, buffers, delivery vehicles, diluents, excipients and / or pharmaceutical adjuvants.
  • the medicament of the present invention comprises a composition comprising isolated pluripotent stem cells, or a variant or derivative thereof, together with one or more physiologically acceptable carriers, excipients or diluents. It is administered in the form of a product.
  • a suitable vehicle can be water for injection, physiological solution, or artificial cerebrospinal fluid, which can be supplemented with other materials common to compositions for parenteral delivery. .
  • Acceptable carriers, excipients or stabilizers used herein are non-toxic to the recipient and are preferably inert at the dosages and concentrations used.
  • phosphates, citrates, or other organic acids e.g, ascorbic acid, a tocopherol; low molecular weight polypeptides; proteins (eg, serum albumin, gelatin or immunoglobulin); hydrophilic Polymers (eg, polybulurpyrrolidone); amino acids (eg, glycine, glutamine, asparagine, arginine or lysine); monosaccharides, disaccharides and other carbohydrates (including glucose, mannose, or dextrin); chelating agents (eg, EDTA); sugar alcohols (eg mannitol or sorbitol); Salt-forming counterions (eg sodium); and Z or non-ionic surfactants (eg Tween, pluronic or polyethylene glycol (PEG)).
  • PEG polyethylene glycol
  • Exemplary suitable carriers include neutral buffered saline or saline mixed with serum albumin.
  • the product is formulated as a lyophilizer using a suitable excipient (eg, sucrose).
  • suitable excipient eg, sucrose
  • Other standard carriers, diluents and excipients may be included as desired.
  • Other exemplary compositions include Tris buffer at pH 7.0—8.5 or acetate buffer at pH 4.0—5.5, which are sardine, sorbitol or suitable substitutes thereof. Can be included.
  • the medicament of the present invention may be administered orally or parenterally. Alternatively, the medicament of the present invention can be administered intravenously or subcutaneously.
  • the medicament used in the present invention may be in the form of a pharmaceutically acceptable aqueous solution free of pyrogens.
  • a pharmaceutically acceptable composition can be easily prepared by those skilled in the art by considering pH, isotonicity, stability, and the like.
  • the administration method includes oral administration, parenteral administration (e.g., intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, mucosal administration, rectal administration, intravaginal administration, local administration to the affected area, Skin administration, etc.).
  • parenteral administration e.g., intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, mucosal administration, rectal administration, intravaginal administration, local administration to the affected area, Skin administration, etc.
  • Formulations for such administration can be provided in any dosage form. Examples of such a preparation form include liquids, injections, and sustained release agents.
  • the medicament of the present invention may be a physiologically acceptable carrier, excipient, or stabilizer as necessary (Japanese Pharmacopoeia 14th edition or the latest edition, Remington's Pharmaceutical sciences, 18th Edition, AR Gennaro, ed., MacK Publishing Company, 1990, etc.) and a glycopeptide having a desired degree of purity (for example, mucin-type glycopeptide) obtained by the production method of the present invention, Can be prepared and stored in the form of a lyophilized cake or an aqueous solution.
  • the amount of the composition containing a glycopeptide (for example, mucin-type glycopeptide) used in the treatment method of the present invention depends on the purpose of use, target disease (type, severity, etc.), patient age. It can be easily determined by those skilled in the art in view of body weight, sex, medical history, cell morphology or type, and the like.
  • the frequency with which the treatment method of the present invention is applied to a subject (or patient) also depends on the purpose of use, target disease (type, severity, etc.), patient age, weight, gender, medical history, treatment course, etc. Can be easily determined by those skilled in the art. Examples of the frequency include administration once a few months every day (for example, once a week and once a month). It is preferable to administer once a week-once a month while monitoring the course.
  • HOBT N hydroxybenzotriazolone
  • HBTU 1-(bis (dimethylamino) methylene) monobenzotriazolium 3-oxide hexafluorophosphate
  • DIEA diisopropylethylamine
  • Boc group tert butoxycarbol group
  • Fmoc group 9 Fluorenylmethoxycarbole group
  • Pbf group 2, 2, 4, 6,-5—sulfol group
  • Fmoc—Ala—OH N—a—Fmoc—L alanine
  • Fmoc -Gly-OH N— — Fmoc— L glycine
  • Fmoc -Gin (OtBu) OH N— ⁇ — Fmoc—: L-gnoretamic acid j8—t-Butinoreestenole,
  • Fmoc-Ser-OH N— a—Fmoc— L-serine
  • Fmoc -Thr (Ac3GalNAc)-OH ⁇ — ⁇ — Fmoc— O— (2 acetamido-3, 4, 6 tory O acetinole 2 deoxy ⁇ — D—galactoviranosinole) L—threonine,
  • Fmoc-Ser (Ac3GalNAc)-OH ⁇ — ⁇ — Fmoc— O— (2 acetamido-3, 4, 6 tri-O acetyl 2-deoxy ⁇ -D-galactoviranosyl) 1 L-serine,
  • Fmoc -Thr (Ac7core2)-OH ⁇ — ⁇ — Fmoc— O— ⁇ O— (2, 3, 3, 4, 4, 6, 1 tetra-O acetinol 1 ⁇ -D-galatatopyranosyl)-(1 , ⁇ 3) -0- [2 "—acetamide 1 3”, 4 ”, 6, 1 tri 1 ⁇ acetyl 2, 1 deoxy 13—D—Darkovyran (1” ⁇ 6)] — 2 Acetamido 2 Deoxy a— D Galactopyranosyl ⁇ — L
  • Fmoc-Ser (Ac7core2)-OH ⁇ — ⁇ — Fmoc— O— ⁇ O— (2, 3, 3, 4, 6, 6, tetra-tetra-O acetyleno ⁇ -D-galatatopyranosyl)-(1 , ⁇ 3) -0- [2 "—acetamide 1 3”, 4 ”, 6, 1 tri 1 ⁇ acetyl 2, 1 deoxy 13—D—Darkovyran (1” ⁇ 6)] — 2-acetamido-2-deoxy a— D galactopyranosyl ⁇ — L-serine,
  • Fmoc— Thr (Ac5core6) — ⁇ ⁇ — ⁇ — Fmoc— O— [O— (2, 1 acetoamide 3 ", 4", 6, 1 tori 1 O acetyl 1 "2" —deoxy 13—D —Darkopyranosyl)-(1 " ⁇ 6) —2 Acetamido 4, 6 Di-O Acetyl 2 Deoxy— at -D- Galactoviranosino]] — L—
  • Fmoc— Ser (Ac5core6) — OH ⁇ — ⁇ — Fmoc— O— [O— (2, 1, 1 to 3 ”, 4”, 6, 1 to 1 O 1 acetyl 2 ”—deoxy 13—D —Darkopyranosyl)-(1 " ⁇ 6) —2 Acetamido-4, 6 Di-O-acetyl-2-deoxy- at-D- Galactoviranosino L-Serine.
  • Fmoc-Arg (Pbf) — OH, Fmoc-Thr (Ac7core2) — OH, Fmoc— Asp (OtBu) — OH, Fmoc— Pro— OH, Fmoc -Ala -OH, Fmoc— Ser— OH, Fmoc -Thr- OH , Fmoc—Val—OH, Fmoc—Gly—OH, Fmoc—His (Trt) —OH, Fmoc—Ala—OH, Fmoc—Gin (OtBu) —OH, Fmoc—Phe—OH, 5-ketohexanoic acid.
  • Fmoc-Arg (Pbf) — OH, Fmoc-Thr (Ac7core2) — OH, Fmoc— Asp (OtBu) — OH, Fmoc— Pro— OH, Fmoc—Ala— OH, Fmoc — Ser (Ac3GalNAc) —OH, Fmoc— Thr (Ac3Gal NAc) -OH, Fmoc— Val— OH, Fmoc— Gly— OH, Fmoc— His (Trt) — OH, Fmoc— Ala— OH, Fmoc —Gin (OtBu) — OH, Fmoc— Phe— OH, 5—Ketohexanoic acid.
  • Fmoc-Arg (Pbf) — OH, Fmoc-Thr (Ac7core2) — OH, Fmoc— Asp (OtBu) — OH, Fmoc— Pro— OH, Fmoc—Ala— OH, Fmoc — Ser (Ac3GalNAc) —OH, Fmoc— Thr (Ac3Gal NAc) -OH, Fmoc— Val— OH, Fmoc— Gly— OH, Fmoc— His (Trt) — OH, Fmoc— Ala— OH, Fmoc —Gin (OtBu) — OH, Fmoc— Phe— OH, 5—Ketohexanoic acid.
  • Fmoc-Arg (Pbf) — OH, Fmoc-Ser (Ac7core2) — OH, Fmoc— Asp (OtBu) — OH, Fmoc— Pro— OH, Fmoc—Ala— OH, Fmoc -Thr (Ac3GalNAc) —OH, Fmoc— Val—OH, F moc—Gly—OH, Fmoc—His (Trt) —OH, Fmoc—Ala—OH, Fmoc—Gin (Ot Bu) —OH, Fmoc—Phe—OH, 5-ketohexanoic acid.
  • Fmoc-Arg (Pbf) — OH, Fmoc -Thr (Ac5core6) — OH, Fmoc— Asp (OtBu) — OH, Fmoc -Pro -OH, Fmoc— Ala— OH, Fmoc-Ser (Ac7core2) — OH, Fmoc— Thr (Ac3GalNA c) —OH, Fmoc—Val—OH, Fmoc—Gly—OH, Fmoc—His (Trt) —OH, Fm oc—Ala—OH, Fmoc-Gin (OtBu) —OH, Fmoc—Phe—OH 5-ketohexanoic acid.
  • Fmoc-Arg Pbf
  • Fmoc-Thr Ac5core6
  • Fmoc— Asp OtBu
  • Fmoc— Pro OH
  • Fmoc— Ser Ac7core2
  • Fmoc— Thr Ac5core6
  • OH Fmoc-Val-OH
  • Fmoc -His (Trt) —OH
  • reaction solution was reversed-phase HPLC (Iner tsil (registered trademark) ODS— 3 4.6 X 250 mm column, moving bed A: 0.1% TFA aqueous solution B: 0.1% TFA-containing acetonitrile
  • HPLC HPLC
  • Reaction solution 360 1 of 5 mM glycopeptide derivative (2), 5 mM (converted to oxiamine residue) water-soluble polymer (17), 12.5 mM sodium acetate buffer (pH 5.5) at room temperature for 8 hours did.
  • the reaction solution was purified by gel filtration [Biogel P-4: eluent 25 mM ammonium acetate buffer solution (pH 6.5)] to obtain 4.2 mg of the lyophilized compound (18) [Compound (2) Capture Capture rate 95% or more (GPC-HPLC)].
  • a reaction solution containing the compound (23) was obtained by allowing to undergo C for 4 hours [transfer rate: 95% or higher (HPLC)].
  • transfer rate 95% or higher (HPLC)
  • To identify the transfer compound and transfer rate separate the transglycosylation solution 201 and add 1 milliliter of 1.74 mgZml solution of Milli-Q water 41 and BLase (manufactured by Shionogi & Co., Ltd.) Reverse reaction HPLC (Iner tsil® ODS— 3 4.6 x 250 mm column, moving bed A: 2% to 20% of B: acetonitrile against 25 mM ammonium acetate buffer (PH 6.5) The yield was 90% or more (HPLC)].
  • reaction solution 324 1 of 5 mM glycopeptide derivative (6), 5 mM (converted to oxiamine residue) water-soluble polymer (17) was adjusted to pH 5.3 with 1N sodium hydroxide aqueous solution and stirred at room temperature for 5 hours. did.
  • the reaction solution was purified by gel filtration [Biogel P-4: eluent 25 mM ammonium acetate buffer solution (pH 6.5)] to obtain 3.7 mg of the freeze-dried compound (26).
  • the capture rate of (6) is 95% or more (GPC-HPLC)].
  • the reaction solution was purified by gel filtration [Biogel P-4: eluent 25 mM ammonium acetate buffer (pH 6.5)] to obtain lyophilized compound (32) 5.6 mg.
  • Reaction solution 360 1 of 3 mM glycopeptide derivative (10), 6.7 mM (converted to oxiamine residue) water-soluble polymer (17) was adjusted to pH 5.3 with 1N sodium hydroxide aqueous solution, and at room temperature for 6 hours. Stir for a while. The reaction solution was purified by gel filtration [Biogel P-4: eluent 25 mM ammonium acetate buffer (PH 6.5)] to obtain a freeze-dried product 7.42 mg of compound (42). Capture rate of (10) 95% or more (GPC-HPLC)]. [0245] [Chemical 61]
  • Fmoc-Arg (Pbf) — OH, Fmoc-Thr (Ac5core6) — OH, Fmoc— Asp (OtBu) — OH, Fmoc— Pro— OH, Fmoc— Ala— OH, Fmoc-Ser (Ac7core2) — OH, Fmoc ⁇ Thr (OtBu) —OH, Fmoc-Val-OH, Fmoc—Gly—OH, Fmoc-His (Trt) —OH, Fmoc—Al a—OH Fmoc-Gin (OtBu) —OH, Fmoc—Phe—OH, 5-ketohexanoic acid.
  • reaction solution (equivalent to 6.25 / z mol) was centrifuged and concentrated with 20 ml of ultrafiltration filter 30K Apollp (registered trademark) (manufactured by Orbital Biosciences, LIC), and 25 mM HEPES buffer ( It was washed by adding pH 7.0) and concentrating again, and finally concentrated to about 4001. There, 625 1 water was added to obtain a 10 mM (glycopeptide theoretical content) polymer (64).
  • Amino PEGA resin manufactured by novabiochem 50 ⁇ ⁇ (corresponding to 3 ⁇ 1 amino group) was used as a carrier and coupled with Boc-amino-acetic acid by the HBTUZHOBt method.
  • the obtained coagulum was stirred in a 50% TFA aqueous solution at room temperature for 1 hour to remove the Boc protecting group, washed with water, and further washed with 50 mM acetic acid Z sodium acetate buffer (PH5.5). 85 mg of the dried compound (70) was obtained.
  • a 1N aqueous solution of sodium hydroxide was added to this solution to adjust the pH to 12 to 12.5, and the mixture was stirred at room temperature for 3 hours to carry out a DeAc protection reaction.
  • the reaction mixture was neutralized by adding 1N aqueous acetic acid, and the solvent was distilled off. The residue was dissolved in 1 ml of 50 mM acetic acid Z sodium acetate buffer (PH5.5). To this solution was added 1 ml of a 10 mM (converted to oximine residue) water-soluble polymer (17) aqueous solution, and the mixture was stirred at room temperature for 24 hours to react the compound (80) with the compound (17).
  • reaction solution was centrifuged and concentrated with 20 ml of ultrafiltration filter 10K Apollp (registered trademark) (manufactured by Orbital Biosciences, LIC), and 25 mM HEPES buffer (pH 7.0) was collected there and concentrated again. After washing, water was added to a final volume of 1. Oml to obtain a 10 mM (glycopeptide theoretical content) polymer (81).
  • the polymer (81) was identified by obtaining the product (102) in (3.21) below.
  • a 1N aqueous solution of sodium hydroxide was added to this solution to adjust the pH to 12 to 12.5, and the mixture was stirred at room temperature for 3 hours to carry out a DeAc protection reaction.
  • the reaction mixture was neutralized by adding 1N aqueous acetic acid, and the solvent was distilled off. The residue was dissolved in 1 ml of 50 mM acetic acid Z sodium acetate buffer (PH5.5). To this solution was added 1 ml of a 10 mM (converted to oximine residue) water-soluble polymer (17) aqueous solution, and the mixture was stirred at room temperature for 24 hours to react the compound (83) with the compound (17).
  • reaction solution was centrifuged and concentrated with 20 ml of ultrafiltration filter 10K Apollp (registered trademark) (manufactured by Orbital Biosciences, LIC), and 25 mM HEPES buffer (pH 7.0) was collected there and concentrated again. After washing, water was added to a final volume of 1. Oml to obtain a 10 mM (glycopeptide theoretical content) polymer (84).
  • the polymer (84) was identified by obtaining the product (113) in the following (3.22).
  • a 1N sodium hydroxide aqueous solution was added to this solution to adjust the pH to 12 to 12.5, and the mixture was stirred at room temperature for 3 hours to carry out a DeAc protection reaction. After the reaction, the reaction mixture was neutralized with 1N aqueous acetic acid, and the solvent was distilled off. The residue was dissolved in 1 ml of 50 mM acetic acid / sodium acetate buffer (pH 5.5). To this solution, lml of 10mM (converted to oximine residue) water-soluble polymer (17) aqueous solution was added and stirred at room temperature for 24 hours to react compound (86) with compound (17).
  • reaction solution is centrifuged and concentrated with an ultrafiltration filter 10K Apollp (registered trademark) 20 ml (manufactured by rbital Biosciences, LIC), and 25 mM HEPES buffer (pH 7.0) is added thereto and concentrated again.
  • 10 mM (theoretical content of glycopeptide) polymer (87) was obtained by adding water to a final volume of 1.0 ml.
  • the polymer (87) was identified by obtaining the product (124) in the following (3.23).
  • a 1N aqueous sodium hydroxide solution was added to this solution to adjust the pH to 12 to 12.5, and the mixture was stirred at room temperature for 2 hours to carry out a deacylation reaction.
  • the reaction mixture was neutralized with 1N aqueous acetic acid, and the solvent was distilled off.
  • the residue was dissolved in 1 ml of 50 mM acetic acid / sodium acetate buffer (pH 5.5).
  • reaction solution is centrifuged and concentrated with an ultrafiltration filter 10K Apollp (registered trademark) 20 ml (manufactured by rbital Biosciences, LIC), and 25 mM HEPES buffer (pH 7.0) is added thereto and concentrated again.
  • 10 mM (theoretical content of glycopeptide) polymer (90) was obtained by adding water to a final volume of 1.0 ml.
  • the polymer (90) was identified by obtaining the product (135) in the following (3.24).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 本発明の課題は、生化学研究材料、医薬、食品など幅広い分野で有用であり、これまでその製造が困難であったムチン型糖ペプチド類を製造する際のプライマーとして有用な新規化合物、およびそのプライマーを使用して糖ペプチドを製造する方法を提供することにある。  末端にアルデヒド基またはケトン基を有し、プロテアーゼにより切断可能なアミノ酸残基を含む新規な糖ペプチド誘導体(式(I)で表される化合物)およびこれをプライマーとして使用する糖ペプチドの簡易な製造方法を提供することにより、上記課題が解決される。

Description

明 細 書
ムチン型ペプチドの合成法と MUC1関連糖ペプチド
技術分野
[0001] 本発明は、糖ペプチドを製造する際のプライマーとして有用な新規ィ匕合物、および そのプライマーを使用して糖ペプチドを製造する方法に関する。本発明はまた、その 製造方法によって得られる糖ペプチド類に関する。
背景技術
[0002] 糖鎖は核酸やタンパク質と並んで生体を構成する主要成分であり、生体のェネル ギ一源としてよく知られている力 近年、生体内の情報伝達、タンパク質の品質管理 、構造安定化、タンパク質輸送のための標識など、様々な高次機能を担っていること が明らかとなってきた。し力しながら、糖鎖は核酸やタンパク質に比べ、一般的な調 製法が確立されておらず、さらに糖鎖の機能は脂質やタンパク質などと結合した複合 糖質として機能していることが多いため、その構造情報を含めた機能の研究は未解 明部分が極めて多い。また、タンパク質の研究分野でも糖鎖と共にその機能を果たし ていると思われるものが多数見つ力つている力 その詳細な機構の研究は現状では きわめて困難である。
[0003] これらの研究を推し進め、さらに医薬などへと活用するためには糖鎖単独ではなく 複合糖質の状態で均一な試料を調製する必要がある。特に糖ペプチドに関しては糖 鎖とペプチド双方が極めて多様性に富んでいるため、必要となった構造をそのつど 天然物から調達することは事実上不可能であり、その迅速な製造法の開発が期待さ れて 、る。共通の手順で多様な構造を作成すると 、う作業は近年発達したコンビナト リアルケミストリーに代表されるように、化学合成法が得意とする技術である。このよう な背景に基づき、これまで様々な糖ペプチド製造法が検討されてきたが、いまだに実 用的な製造法は報告されていない。その主な理由、原料となる糖アミノ酸の調製が煩 雑であり多彩な糖鎖構造を有する糖アミノ酸を揃えることが困難であること、大きい糖 鎖構造を有する糖アミノ酸は立体障害が大き 、ためその収率および反応速度が遅 、 こと、さらに糖ペプチド構築後に化学合成法で糖鎖を伸張することは反応性および位 置 ·立体制御の点力 難しいこと、が挙げられる。すなわち、現在の技術では反応収 率が低い上に調製に要する時間が長ぐさらに、糖ペプチド合成はその合成原料の 調製自体が難 、ため、必要な糖鎖構造を迅速に調製するオーダーメードな製造や
、糖ペプチドおよび糖タンパク質の網羅的機能解析に必要とされて ヽる複雑な糖鎖 構造を含む糖ペプチドライブラリーの構築は極めて困難である。
[0004] 一般に糖ペプチドの合成は、 Fmoc アミノ酸(アミノ基を 9 フルォレニルメチルォ キシカルボ-ル基で保護したアミノ酸、以下 9 フルォレニルメチルォキシカルボ- ル基を Fmocと略する)とともに Fmocグリコシルアミノ酸を用い、ペプチド自動合成装 置で基本となるペプチド部分を固相担体上に合成し、固相担体よりペプチド部分を 遊離させ、一旦精製した後、有機化学的なまたは酵素的な合成手法によりひとつず つ糖鎖を伸長させていくという方法が用いられる。このため、糖鎖の伸長には煩雑な 操作と長い時間が必要である。そこで、ペプチド部分のみならず、オリゴ糖鎖部分も 自動合成になれば糖ペプチド合成の迅速ィ匕およびライブラリー作成にぉ ヽて非常に 有用である。核酸やタンパク質については自動合成技術が確立されており、このこと によりこれらの分野の研究が著しく進歩したことは誰もが認めるところであり、糖鎖に つ!、てもその自動合成技術の確立は切望されて 、る。
[0005] これまでに糖ペプチドのライブラリー合成を志向した研究に関しいくつかの報告が あり、いずれもペプチド部分の合成は R. B. Merrifieldの方法に基づいた固相化学 合成法で行われている。一方、オリゴ糖鎖側の合成手法は大きく分けて 2つある。ひ とつは化学合成法によるものであるが、当残基と糖残基を立体選択的に結合させる 方法が十分確立されておらず、さらに保護基を結合させたりあるいは脱離させたりと 工程が煩雑であるという問題がある。もうひとつは酵素合成によるものであり、保護基 を必要とせず、また糖残基と糖残基を立体選択的に結合させることができるのでィ匕学 合成に比べ、非常に有利であり、近年いくつかの高分子担体と組み合わせる自動合 成可能な方法が提案されるようになって来た。これには、最近各種糖転移酵素の遺 伝子が単離され、遺伝子組換え技術による糖転移酵素の大量生産が可能になって きたという背景がある。
[0006] そのような例としては、 U. Zehaviらは、アミノエチル基またはァミノへキシル基を結 合させたポリアクリルアミドゲルを固相担体とした糖転移酵素による固相合成を報告し ている(非特許文献 1〜4参照)。この方法は適当な単糖を 4 カルボキシ 2 -ト 口ベンジルグリコシドとした後、上記担体のァミノ基と直接またはスぺーサーを介して 結合させたものをプライマーとして、糖転移酵素により糖鎖伸長反応を行い、その後 、光分解により伸長させた糖鎖を遊離させるというものである。しかしながら、糖転移 収率は 50%程度であり十分なものとはいえない。また、この方法で得られるのはオリ ゴ糖であって糖ペプチドではな 、。
[0007] その他の例として、 C. — H. Wongらは、アミノィ匕シリカに糖ペプチドを結合させた ものをプライマーとし、糖転移酵素を用いて糖鎖を伸長させた後、 ocーキモトリブシン の加水分解作用を利用し、伸長させた糖鎖を糖ペプチドの形で切り出す方法を報告 している。(非特許文献 5参照)。得られる糖ペプチドのペプチド鎖は Asn (ァスパラギ ン) Gly (グリシン) Phe (フ -ルァラニン)と短ぐさらに、糖転移酵素による糖鎖 伸長反応の収率は 55〜65%であり、とても十分なものとはいえない。
[0008] また、 C. —H. Wongらは、固相担体であるアミノ化シリカに結合させる基を改良し 、糖転移酵素により糖鎖を伸長した後、ヒドラジン分解により糖鎖を遊離させる方法を 報告しており、酵素による糖転移反応をほぼ定量的に行うことができたとも報告して いる (非特許文献 6参照)。しかしながら、この方法で得られる糖鎖化合物は糖べプチ ドではない。
[0009] さらに、 C. — H. Wongらは、アミノ化シリカを固相担体とした非特許文献 7のプライ マーに Fmocアミノ酸および Fmoc—Thr ( j8 GlcNAc)—OHを用いてペプチド鎖を 伸長させ、次いでペプチド鎖上の保護基を脱離させ、その後上述の N— GlcNAc残 基に糖転移酵素を用いて糖鎖を伸長させ、テトラキストリフエニルホスフィンパラジゥ ムで処理することにより固相担体上で合成した糖ペプチドを遊離させる方法を報告し ている(非特許文献 7参照)。この方法で得られる糖ペプチド鎖はアミノ酸残基 8つか らなっており、ペプチド鎖としては十分な長さを有している力 得られた糖ペプチドは 最初に固相担体に導入したアミノ酸に対する収率が 10%以下であり、十分なものと はいえない。また、ペプチド合成と糖鎖合成を通じて未反応物などの不純物が蓄積 するため、ペプチド鎖と糖鎖構造がそれぞれ複雑になると目的物の単離精製が困難 になる。さらに、ペプチドの自動合成は通常有機溶媒中で、糖転移酵素による糖鎖 合成は通常水溶液中で行われ、それぞれの反応で求められる担体の性質は異なる ため、ひとつの担体上でペプチドも糖鎖も自動合成することは困難である。
[0010] また、 M. Meldalらは、ジァミノ化ポリエチレングリコールのモノおよびジァクリロイル 化体の重合体に、糖ペプチド誘導体を結合させたものをプライマーとし、糖転移酵素 を用いて糖鎖を伸長させた後、トリフルォロ酢酸により糖鎖を遊離させる方法を報告 している(非特許文献 8参照)。しかし、この方法で得られる糖ペプチドのペプチド鎖 は Asn (ァスパラギン)—Gly (グリシン)であり、糖ペプチドと呼ぶにはあまりに短い。 また、 C末端のグリシン残基はグリシンアミド残基となっており、場合によってはグリシ ンアミド残基をグリシン残基に変換する必要がある。
[0011] S. Rothらは、特許文献 1に以下のような方法を開示している。まず、糖転移酵素の 糖受容体を固相担体に結合させ、これをァフィ二ティ吸着体とし、この糖受容体と結 合することのできる糖転移酵素を含む組織抽出液を接触させることにより、糖転移酵 素をァフィ二ティ吸着体に結合させる。次いで、この糖転移酵素が結合したァフィ二 ティ吸着体をこの糖転移酵素が糖供与体として利用できる糖ヌクレオチドを含む溶液 と接触させることにより、糖転移酵素をァフィ-ティ吸着体力 遊離させるとともに糖受 容体に糖残基をひとつ伸長させる。さらにこの糖残基がひとつ伸長した糖受容体と結 合することのできる糖転移酵素を含む組織抽出液を接触させ、同様のことを繰り返し 所望の糖鎖を固相担体上に合成するというものである。し力しながら、この方法の有 用性あるいは非天然型の糖ペプチド合成への適用を示す具体的なデータは示され ておらず、得られた糖鎖を固相担体力 遊離させる方法も開示されていない。
[0012] 西村らは、糖ペプチドあるいはネオ糖ペプチド (非天然型の糖ペプチド)の合成に 利用できるプロテアーゼ切断型プライマーおよびそのプライマーを利用した糖ぺプチ ドの製造方法、ならびにそのプライマーの合成に有用な重合性芳香族アミノ酸誘導 体を開示している(特許文献 2参照)。しかし、この方法は糖残基を有するペプチドを ラジカル重合して 、るためラジカルに弱 、硫黄原子を含む糖ペプチドの調製が難し ぐペプチド合成後にカラム精製、重合操作など煩雑な操作が含まれており、固相べ プチドィ匕学合成力 酵素による糖鎖伸長反応への切り替えに時間が力かるという問 題を残している。
[0013] このように、装置化および精製が簡易で糖ペプチドを迅速かつ収率よく製造するた めのプライマーはいまだに存在せず、化学法によるペプチド自動合成と酵素法によ る糖鎖自動合成を効率的に結びつけることのできる新しい技術は、ポストゲノム、ボス トプロテオミクスを担うグライコミクス、グライコプロテオミタスの時代において非常に重 要であり、その開発は渴望されている。実際にここに例示した装置化を志向した糖べ プチド合成法では糖ペプチドライブラリーと呼べる多品種合成や複雑な天然型糖鎖 または複数の糖鎖を含む糖ペプチド合成例はない。
[0014] ムチンは、気管、胃腸などの消化管、生殖腺などの内腔を覆う粘液の主要な糖タン ノ ク質である。 MUC1は、上皮細胞の膜結合糖タンパク質であり、詳細に検討された 最初のムチンである。 MUC1は O—結合型糖鎖の付カ卩しうるセリンおよびスレオニン を含むアミノ酸配列の繰り返しであるタンデムリピート(HGVTSAPDTRPAPGSTA PPA)という特徴的な構造をもつ巨大な細胞表面分子である。糖鎖の付加はすべて のセリンおよびスレオニンに起こるのではなぐ糖鎖の伸張度も多様であることから、 同じアミノ酸配列を有していたとしても機能の異なる数多くの糖タンパク質が存在しう る。
[0015] MUC1は、癌化の進行と共にその発現レベルが変化することが報告されて 、る(非 特許文献 9 :Nakamori, S. ;Ota, D. M. ; Karen, R. ; Shirotani, K. ;Irimura , T. Gastroenterology, 1994, 106, 353— 361. ) 0例えば結腸直腸癌では進 行段階の原発腫瘍や転移病巣で MUC 1の発現上昇が認められて 、る。さらに MU C1のグリコシレーシヨンの度合い (糖鎖の導入個所)および糖鎖構造が、正常上皮由 来のものと癌細胞由来のものとで異なるという報告例(非特許文献 10 :Llod, K. O. ; Burchell, J. ; Kudryasnov, V. ; m, B. W. T. ; Taylor— Papadimitriou, J. J. Biol. Chem. , 1996, 271, 33325— 33334. ;特許文献 11 :Hanisch, F. - G. ; Muller, S. Glycobiology, 2000, 10, 439—449.; Hま数多!/、。 ί列え ίま、、正常 細胞ではグリコシルイ匕されて ヽるペプチドであっても、癌細胞ではグリコシル化されず に細胞表面に露出する場合がある。そのような場合は露出したペプチド部分がェピト ープとなる。これらの露出したェピトープが、肺癌、乳癌、結腸癌、膝癌由来の上皮 細胞株の細胞膜に見いだされている。具体的には、乳癌の患者から単離された細胞 傷害性 Tリンパ球は MUC1タンパク質のグリコシルイ匕を受けて 、な 、ペプチドを認識 する。一方、癌関連糖鎖抗原である Tn、 Τのような母核構造及びそれらにシアル酸 が結合したシァリル Τη、シァリル Τ、さらにシァリルルイス Α抗原、シァリルルイス X抗 原が癌細胞膜のムチンや癌患者血清中のムチンに見 、だされて 、る。
近年、このような癌化に伴う MUC1の特異的な変化をターゲットとした創薬'診断薬 への応用が注目されている(非特許文献 12:Koganty, R. R. ; Reddish, M. R. ; Longenecker, B. M. DrugDiscov. Today, 1996, 1, 190—198.;)。例えば、 Biomira- Merck 社は、リポソ一マル製剤において、 MUC1癌ムチンの 25ァミノ 酸のシーケンスを取り入れた合成 MUC 1ペプチドワクチン:「L BLP25」を開発中 であり、肺癌、前立腺癌をターゲットに Phasell臨床試験を実施中である。さらに Bio mira— Merck社は、癌細胞上のムチンに特異的に発現した STn (二糖体)をターゲ ットとした合成 STnに抗体の産生や T 細胞反応を刺激する KLH (Keyhole limp et hemocyanin)をキャリアタンパクとして結合させた合成ワクチン:「Theratope」 を乳癌、直腸癌を対象に Phaselll臨床開発中である。
特許文献 1:特表平 5 - 500905号公報
特許文献 2:特開 2001— 220399
非特許文献 l:Carbohydr. Res. , 124, 23(1983)
非特許文献 2:Carbohydr. Res. , 228, 255(1992)
非特許文献 3:React. Polym. , 22, 171(1994)
非特許文献 4:Carbohydr. Res. , 265, 161(1994)
非特許文献 5 :J. Am. Chem. Soc. , 116、 1136(1994)
非特許文献 6 :J. Am. Chem. Soc. , 116、 11315(1994)
非特許文献 7 :J. Am. Chem. Soc. , 119、 8766(1997)
非特許文献 8 :J. Chem. Soc. Chem. Commun. , 1849(1994)
非特許文献 9 Gastroenterology, 106, 353-361(1994)
非特許文献 10: Biol. Chem. , 271, 33325-33334(1996)
非特許文献 ll:Glycobiology, 10, 439-449(2000) 非特許文献 12 : DrugDiscov. Today, 1, 190—198 (1996)
発明の開示
発明が解決しょうとする課題
[0017] 本発明の課題は、糖ペプチドを製造する際のプライマーとして有用な新規ィ匕合物、 およびそのプライマーを使用して糖ペプチドを製造する方法を提供し、生化学研究 材料、医薬、食品など幅広い分野で有用な、これまでその製造が困難であったムチ ン型糖ペプチド類を製造することにある。
課題を解決するための手段
[0018] 本発明者らは鋭意検討した結果、末端にアルデヒド基またはケトン基を有し、プロテ ァーゼにより切断可能なアミノ酸残基を含む新規な糖ペプチド誘導体は、そのアル デヒド基またはケトン基を介して所定の担体に強固に結合させることができ、しかもこ の結合はプロテアーゼによる加水分解条件下において分解しないため、糖ペプチド の製造に適したプライマーとして機能すること、ならびにこのプライマーを使用するこ とにより、従来は多段階の精製を要していた糖ペプチドの精製を簡易にし、糖べプチ ドを迅速かつ収率よく製造できることを見出し、上記課題を解決した。
[0019] 本発明はまた、上記プライマーを用いた糖ペプチドの製造方法により、生化学研究 材料、医薬、食品など幅広い分野で有用であり、これまでその製造が困難であったム チン型糖ペプチド類が合成できることを見出し、本発明を完成した。
[0020] 本発明の MUC1および MUC1ペプチドライブラリ一は、 MUC1の機能解明に有 効であり、またそこから得られる知見を基にした新たな創薬の可能性が考えられる。 糖ペプチドを用いた研究として、例えば、糖ペプチドライブラリーの固定化'チップィ匕 、抗体反応スクリーニング、特異抗体の探索、抗原 抗体反応における構造活性相 関調査、特異性'選択性の高いモノクローナル抗体の作成、さらに抗体医薬、糖ぺプ チドを用いたワクチン療法等への展開が考えられる。
[0021] このように、本発明では以下を提供する。
(1)以下の式:
X— C ( = 0)—(CH ) — A— A— A (I)
2 n 1 2 3
(式中、 Xは、水素原子、 c〜c アルキル、 c〜c ァリールまたは発色団を表し; nは 0〜20の整数を表し;
Aは、—(CH ) — C ( = 0)—、—(CH CH O) —、重合度 1〜10のオリゴ
1 2 0〜20 2 2 1〜10
もしくはポリアクリルアミド、重合度 1〜: LOのオリゴもしくはポリペプチド、酸素原子また は NHを表し;
Aは、プロテアーゼにより切断可能なアミノ酸残基を表し;
2
Aは、実質的にプロテアーゼにより切断可能な部位を含まない糖アミノ酸残基、ま
3
たはプロテアーゼにより切断可能な部位を含まず任意の糖アミノ酸を含む糖ペプチド 残基を表す)で表される、化合物。
(2)上記 Aは、バシラス リケ-ホルミス(Bacillus Licheniformis)由来のプロテア
2
ーゼで切断可能なグルタミン酸残基またはシスティン残基である、 (1)に記載の化合 物。
(3)上記 Αの少なくとも一部力 ムチン型糖タンパク質 MUC1由来の配列番号 1〜6
3
0に示されるアミノ酸配列からなる群から選択されるアミノ酸配列を有する、項目(1) に記載の化合物。
(4)項目(1)に記載の化合物と、保護されていてもよいアミノォキシ基、 N アルキル アミノォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基 およびシスティン残基からなる群から選択される官能基を含む担体と、が反応して得 られる、化合物。
(5)上記担体は、以下:
a)保護されて!、てもよ 、アミノォキシ基またはヒドラジド基を有するビュル系単量体 の重合体もしくは共重合体、または保護されて 、てもよ 、アミノォキシ基またはヒドラ ジド基を有するポリエーテル類;
b)保護されて!、てもよ 、アミノォキシ基またはヒドラジド基を有するシリカ担体、榭脂 担体、磁性ビーズまたは金属担体;ならびに
c)以下の式:
[ (NH OCH C ( = 0) ) -Lys] Lys— NHCH CH C ( = 0)— R3
2 2 2 2 2 2
[ (NH OCH C ( = 0) ) -Lys] Lys— NHCH (CH SH) C ( = 0)— R3
2 2 2 2 2
[ (NH OCH C ( = 0) ) -Lys] — Lys— Cys— NHCH CH C ( = 0)— R3 (配列 番号 61)、
{[(NH OCH C(: :0)) -Lys] - Lys - NHCH [C ( = O) - R ] CH S} 、
2 2 2 2 2
{[(NH OCH C(: :0)) -Lys] - Lys - NHCH [C ( = O) NHCH CH C( = 0
2 2
)-R3]CH -S} 、
2 2
{[(NH OCH C(: :0)) -Lys] -Lys} -Lys -NHCH CH C( = 0)-R (
2 2
配列番号 62)、
{[(NH OCH C(: :0)) -Lys] -Lys} -Lys- NHCH (CH SH)C( = 0)
2 2
R3 (配列番号 63)、
{[(NH OCH C(: :0)) -Lys] -Lys} —Lys— Cys— NHCH CH C( = 0)
2 2
—R3 (配列番号 64)、
[[[(NH OCH C( = 0)) ■Lys] -Lys] - Lys - NHCH [C( = 0) -R ]CH
2 2
-S] (配列番号 65)、
[[[(NH OCH C( = 0)) -Lys] -Lys] - Lys - NHCH [C( = 0) NHCH C
2 2 2 2 2 2
H C( = 0) R3]CH— S] (配列番号 66)、
2 2 2
[0022] [化 8]
[ (NH2 OCH2 C (=0) ) 2 Ly s] NHCHC (=0) — R 3
I
[ (NH2 OCH 2 C (=0) ) 2 -Ly s] -NH (CH2 ) 4
または
{ [ (NH 2 OCH 2 C ( = 0) ) 2 - L y s ] 2 -L y s } -NHCHC ( = 0) -R3
I
{ [ (NH2 OCH2 C (-O) ) a -L y s] 2 ~ L y s } 匪 (CH2 ) 4
[0023] (式中、 R3はヒドロキシル基またはアミノ基を表し、 Lysはリジンを表し、 Cysはシスティ ンを表す)、
[0024] [化 9]
Figure imgf000011_0001
(式中、 nは 1〜15の整数であり、 x:yは 1 : 0〜1: 1000である)
で表される化合物、力 なる群力 選択される、項目(4)に記載の化合物。
(6)以下の式:
A N = C (— X)— (CH ) A -A -A (II)
4 2 n 1 2 3
[式中、 Xは水素原子、 c〜c アルキル、 c〜c ァリールまたは発色団を表し;
1 30 6 30
nは 0〜20の整数を表し;
Aは、—(CH ) — C ( = 0)—、—(CH CH O) —、重合度 1〜10のオリゴ
1 2 0〜20 2 2 1〜10
もしくはポリアクリルアミド、重合度 1〜: LOのオリゴもしくはポリペプチド、酸素原子また は NHを表し;
Aは、バシラス リケ-ホルミス(Bacillus Licheniformis)由来のプロテアーゼで
2
切断可能なグルタミン酸残基またはシスティン残基であり;
Aは、実質的にプロテアーゼにより切断可能な部位を含まない糖アミノ酸残基、ま
3
たはプロテアーゼにより切断可能な部位を含まず任意の糖アミノ酸を含む糖ペプチド 残基を表し;
Aは、以下の式: [0026] [化 10]
Figure imgf000012_0001
[0027] (式中、 sは 1〜15の整数であり、 : は1 : 0〜1 : 1000でぁる)で表される基でぁる] で表される化合物。
(7)上記 Aの少なくとも一部力 ムチン型糖タンパク質 MUC1由来の配列番号 1〜6
3
0に示されるアミノ酸配列からなる群から選択されるアミノ酸配列を有する、項目(6) に記載の化合物。
(8)以下の工程:
(A)項目(1)〜(3)のいずれか 1項に記載の化合物と、ケトン残基またはアルデヒド 残基と特異的に反応しうる、保護されていてもよいアミノォキシ基、 N—アルキルアミノ ォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およ びシスティン残基からなる群から選択される官能基を含む担体と、を反応させる工程
(B)工程 (A)で得たィ匕合物に、糖ヌクレオチドの存在下で糖転移酵素を作用させる ことにより、上記糖ヌクレオチドより糖残基を上記化合物に転移させ、糖鎖を伸長させ た化合物を得る工程; (c)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 す
る工程;および
(D)糖残基が転移して糖鎖が伸長したィ匕合物にプロテアーゼを作用させる工程、 を包含する、糖ペプチドを製造する方法。
(9)以下の工程:
(A)項目(4)〜(7)のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖を伸長させたィ匕合物を得る工程;
(B)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および
(C)糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる工程 を包含する、糖ペプチドを製造する方法。
(10)以下の工程:
(A)項目(4)〜(7)のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖を伸長させたィ匕合物を得る工程;
(B)工程 (A)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;
(C)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および
(D)複数の糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる 工程、
を包含する、糖ペプチドを製造する方法。
(11)以下の工程:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の化 合物を得る工程;
(B)工程 (A)で得た化合物と、ケトン残基またはアルデヒド残基と特異的に反応しう る、保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒドラジド基、 アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残基力もなる 群から選択される官能基を含む担体とを反応させる工程;
(C)工程 (B)で得たィ匕合物に、糖ヌクレオチドの存在下で糖転移酵素を作用させる ことにより、上記糖ヌクレオチドより糖残基を上記化合物に転移させ、糖鎖を伸長させ た化合物を得る工程;
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および
(E)糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる工程、 を包含する、糖ペプチドを製造する方法。
(12)以下の工程:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の化 合物を得る工程;
(B)工程 (A)で得た化合物と、ケトン残基またはアルデヒド残基と特異的に反応しう る保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒドラジド基、ァ ジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残基力もなる 群から選択される官能基を含む担体とを反応させる工程;
(C)工程 (B)で得たィ匕合物に、糖ヌクレオチドの存在下で糖転移酵素を作用させる ことにより、上記糖ヌクレオチドより糖残基を上記化合物に転移させ、糖鎖を伸長させ た化合物を得る工程;
(D)工程 (C)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;
(E)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および
(F)複数の糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる 工程、
を包含する、糖ペプチドを製造する方法。
(13) 以下の工程: (A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の化 合物を得る工程;
(B)工程 (A)で得た化合物と、ケトン残基またはアルデヒド残基と特異的に反応しう る保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒドラジド基、ァ ジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残基力もなる 群から選択される官能基を含む担体と反応させ、これと同時に工程 (A)における未 反応物を除去する工程;
(C)工程 (B)で得た担体に結合したィ匕合物に、糖ヌクレオチドの存在下で糖転移 酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に転移させ 、糖鎖を伸長させたィ匕合物を得る工程;および
(D)工程 (C)で得た糖鎖が伸長したィ匕合物にプロテアーゼを作用させる工程、 を包含する、糖ペプチドを製造する方法。
(14) 以下の工程:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の化 合物を得る工程;
(B)工程 (A)で得た化合物と、ケトン残基またはアルデヒド残基と特異的に反応しう る保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒドラジド基、ァ ジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残基力もなる 群から選択される官能基を含む担体とを反応させ、これと同時に工程 (A)における未 反応物を除去する工程;
(C)工程 (B)で得た担体に結合したィ匕合物に、糖ヌクレオチドの存在下で糖転移 酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に転移させ 、糖鎖が伸長されたィ匕合物を得る工程;
(D)工程 (C)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;
(E)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および (F)複数の糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる 工程、
を包含する、糖ペプチドを製造する方法。
(15)上記工程 (A)のケト酸またはアルデヒド酸力 以下の式:
X-C ( = 0) - (CH ) -A -COOH (III)
2 n 1
(式中、 Xは水素原子、 c〜c アルキル、 ァ または発色団を表し;
1 30 c リール
6〜c 30
nは 0〜20の整数を表し;
Aは、メチレン鎖 1〜20個分の長さを有するリンカ一を表す)で表される化合物で ある、項目(11)または(12)に記載の方法。
(16)以下の工程:
(A)項目(1)〜(3)のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖を伸長させたィ匕合物を得る工程;
(B)必要に応じて工程 (A)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;
(C)糖残基が転移して糖鎖が伸長した化合物と、ケトン残基またはアルデヒド残基 と特異的に反応しうる保護されて 、てもよ 、ァミノォキシ基、 N—アルキルアミノォキシ 基
、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティ ン残基からなる群から選択される官能基を含む担体と、を反応させる工程;および
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;
を包含する、糖ペプチドを製造する方法。
(17)以下の工程:
(A)項目(1)〜(3)のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖を伸長させたィ匕合物を得る工程;
(B)必要に応じて工程 (A)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;
(C)糖残基が転移して糖鎖が伸長した化合物と、ケトン残基またはアルデヒド残基 と特異的に反応しうる保護されて 、てもよ 、ァミノォキシ基、 N—アルキルアミノォキシ 基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシステ イン残基からなる群から選択される官能基を含む担体と、を反応させる工程;
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および
(E)糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる工程、 を包含する、糖ペプチドを製造する方法。
(18)以下の式:
[0028] [化 11]
X1 X2 X3
Y1-Ala-H is— G ly— VaH"h r-Ser-Ala-Pro-Asp— Thr-Arg-Y2
(配列番号 20)
[0029] [化 12]
1 2 ψ ψ
(配列番号 40)
[0030] または
[0031] [化 13]
X1 X2 X3 X4 X5
Y1-His-Gly-Val-Thr-Ser-Ala-Pra-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pra-Pro-Ala— Y2
(配列番号 41)
[0032] (式中、 Xi X5は、それぞれ独立して、水素原子または以下の式:
[0033] [化 14-1]
Figure imgf000017_0001
[0034] で表される化合物 [式中、 R1および R2は、それぞれ独立して、水素原子、単糖または 糖鎖を表す; Acはァセチル]を表し;
Y1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し;
Y2は、水酸基、 NH、アルキルまたはァリールを表す)で表される糖ペプチド。
2
ここで、式: [0035] [化 14-2」
¾ X5
および Thr
[0036] で表される基は、
[0037] [化 14-3]
Figure imgf000018_0001
O OH
[0038] で表される基を意味し、式:
[0039] [化 14-4]
X2 X4
I I
Ser および Ser
[0040] で表される基は、
[0041] [化 14-5]
Figure imgf000018_0002
[0042] で表される基を意味する。
(19)以下の工程:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載のィ匕 合物を得る工程;
(B)工程 (A)で得た化合物と、ケトン残基またはアルデヒド残基と特異的に反応しう る保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒドラジド基、ァ ジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残基力もなる 群から選択される官能基を含む可溶性担体とを反応させ、再沈澱、ゲルろ過、または 限外ろ過などにより工程 (A)における未反応物を除去する工程;
(C)工程 (B)で得た担体に可溶性結合したィ匕合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖が伸長されたィ匕合物を得る工程;
(D)工程 (C)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;
(E)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;
(F)糖残基が転移して糖鎖が伸長したィ匕合物を、ケト酸またはアルデヒド酸を表面 に結合した非可溶性担体と反応させ、その表面に固定する工程;および
(G)必要に応じ糖鎖の伸長反応に使用した試薬および酵素を除去する工程、 を包含する、糖ペプチドを製造する方法。
(20)以下の工程:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の化 合物を得る工程;
(B)工程 (A)で得た化合物と、ケトン残基またはアルデヒド残基と特異的に反応しう る保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒドラジド基、ァ ジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残基力もなる 群から選択される官能基を含む可溶性担体とを反応させ、再沈澱、ゲルろ過、または 限外ろ過などにより工程 (A)における未反応物を除去する工程;
(C)工程 (B)で得た担体に可溶性結合したィ匕合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖が伸長されたィ匕合物を得る工程;
(D)工程 (C)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;
(E)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;
(F)糖残基が転移して糖鎖が伸長したィ匕合物を、ケト酸またはアルデヒド酸を表面 に結合した非可溶性担体と反応させ、その表面に固定する工程;
(G)必要に応じ糖鎖の伸長反応に使用した試薬および酵素を除去する工程;およ び
(H)工程 (F)で固定ィ匕した糖鎖が伸長したィ匕合物にプロテアーゼを作用させるェ 程、
を包含する、糖ペプチドを製造する方法。
(21)上記の工程 (A)および (F)のケト酸またはアルデヒド酸力 それぞれ以下の式:
X-C ( = 0) - (CH ) -A -COOH (III)
2 n 1
(式中、 Xは水素原子、 c〜c アルキル、 c〜c ァリールまたは発色団を表し;
1 30 6 30
nは 0〜20の整数を表し;
Aは、メチレン鎖 1〜20個分の長さを有するリンカ一を表す)で表される化合物で ある、項目(19)または(20)に記載の方法。
(21)
前記糖ペプチドが、以下の式:
[0043] [化 14-6]
X1 X2 X3
Y1-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp— Thr-Arg-Y2
(配列番号 20)
(式中、 〜 3は、それぞれ独立して、水素原子または以下の式:
[0044] [化 14-7]
Figure imgf000021_0001
S.69T0/S00Zdf/X3d 03 01?80ε0/900Ζ OAV
Figure imgf000022_0001
[式中、 Acはァセチルを表す]で表される基を表し;
Y1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し;
Y2は、水酸基、 NH、アルキルまたはァリールを表す。ただし、 Xi X3のすべてが水
2
素原子である場合を除く)で表される糖ペプチドである、項目(8)〜(17)、(19)、ま たは(20)の 、ずれか 1項に記載の方法。 前記糖ペプチドが、以下の式:
[0045] [化 14-8]
X' X2 X3
Y1— His— Gly— Va卜 Th「Se「Ala— Pro— Asp— Th「Arg— Pro— Ala— Pro— Gly— Se「Th「Ala— Pro— Pra— Ala—Y2
(配列番号 41)
(式中、 〜 3は、それぞれ独立して、水素原子または以下の式:
[0046] [化 14-9]
Figure imgf000024_0001
Figure imgf000025_0001
[式中、 Acはァセチルを表す]で表される基を表し;
Y1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し;
Y2は、水酸基、 NH、アルキルまたはァリールを表す。ただし、 Xi X3のすべてが水
2
素原子である場合を除く)で表される糖ペプチドである、項目(8)〜(17)、(19)、ま たは(20)の 、ずれか 1項に記載の方法。
(23)
式:
[0047] [化 14- 10]
Figure imgf000025_0002
(配列番号 20)
(式中、 〜 3は、それぞれ独立して、水素原子または以下の式:
[0048] [化 14-11]
Figure imgf000026_0001
S.69T0/S00Zdf/X3d 93 01?80ε0/900Ζ OAV
Figure imgf000027_0001
[式中、 Acはァセチルを表す]で表される基を表し;
Y1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し;
Y2は、水酸基、 NH、アルキルまたはァリールを表す。ただし、 Xi X3のすべてが水
2
素原子である場合を除く)で表される、項目 18に記載の糖ペプチド。
(24)
式: [0049] [化 14- 12]
X1 X2 X3
Y1-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala- Pro-Pro-Ala
(配列番号 41)
(式中、 〜 3は、それぞれ独立して、水素原子または以下の式:
[0050] [化 14- 13]
Figure imgf000029_0001
Figure imgf000030_0001
[式中、 Acはァセチルを表す]で表される基を表し;
Y1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し;
Y2は、水酸基、 NH、アルキルまたはァリールを表す。ただし、 Xi X3のすべてが水
2
素原子である場合を除く)で表される、項目 18に記載の糖ペプチド。
発明の効果
[0051] 本発明では糖ペプチド合成において比較的調製が簡単な 1から 3糖程度を含む糖 アミノ酸を使用し、ペプチド合成後に糖鎖伸長を行うことにより、複雑な糖鎖を有する 糖ペプチド合成を可能とすると共に、糖鎖伸長反応の中間体となる各糖鎖構造のラ イブラリー調製までを可能とする。また、糖鎖伸長反応は水溶性高分子上に糖ぺプ チドを担持して行うため、反応の加速効果および分子操作の簡素化が可能となり、糖 鎖伸長反応の自動化が可能となる。これにより、従来の技術では極めて困難であつ た簡単な糖鎖構造力 複雑な糖鎖構造までを網羅的に有する糖ペプチドのライブラ リー調製が可能となる。例えば、本発明により、生化学研究材料、医薬、食品など幅 広 、分野で有用であり、これまでその製造が困難であったムチン型糖ペプチド類を 合成することができる。
[0052] 得られた糖ペプチドライブラリ一は構造解析、生化学試験の標準サンプルとして使 用可能である。また、この糖ペプチドライブラリーをチップ上に配置し、糖ペプチド認 識タンパク質の検出、病理診断、細胞接着配列の検索、細胞増殖'アポトーシスなど に関連する配列解析などを網羅的に行うことが可能になる。
図面の簡単な説明
[0053] [図 1A]図 1A—Dは、本発明における糖ペプチド糖鎖伸長反応および糖鎖切り出し の反応例を示す。
[図 1B]図 1A—Dは、本発明における糖ペプチド糖鎖伸長反応および糖鎖切り出し の反応例を示す。
[図 1C]図 1A—Dは、本発明における糖ペプチド糖鎖伸長反応および糖鎖切り出し の反応例を示す。
[図 1D]図 1A—Dは、本発明における糖ペプチド糖鎖伸長反応および糖鎖切り出し の反応例を示す。
[図 2]図 2は、分注装置を用いた化合物(97)〜(162)のコンビナトリアル合成の概念 図を示す。
配列表の説明
[0054] 配列番号 1〜20:ムチン型糖タンパク質 MUC1の 11残基の部分アミノ酸配列
配列番号 21〜40:ムチン型糖タンパク質 MUC 1の 18残基の部分アミノ酸配列 配列番号 41〜60:ムチン型糖タンパク質 MUC 1の 20残基の部分アミノ酸配列 配列番号 61〜66:化合物に含まれる担体に含まれるアミノ酸配列の例 発明を実施するための最良の形態
[0055] 以下、本発明を説明する。本明細書の全体にわたり、単数形の表現は、特に言及 しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書 において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味 で用いられることが理解されるべきである。
(用語)
以下に本明細書において特に使用される用語の定義を列挙する。
[0056] 本明細書にぉ 、て「糖アミノ酸」とは、糖残基とアミノ酸残基とが結合したものを意味 し、「糖アミノ酸残基」と互換可能に用いられる。
[0057] 本明細書にぉ 、て「実質的にプロテアーゼにより切断可能な部位を含まな 、糖アミ ノ酸残基」とは、上記項目(4)で表されるような化合物をプロテアーゼで処理しても糖 アミノ酸部分がプロテアーゼにより 50%以上切断されない糖アミノ酸残基、好ましくは 20%以上切断されな 1ゝ糖アミノ酸残基を指す。
[0058] 本明細書において「糖ペプチド残基」とは、少なくとも 1個の糖アミノ酸を含むぺプチ ド残基を意味し、「糖ペプチド」と互換可能に用いられる。
[0059] 上記糖ペプチド残基に含まれる糖アミノ酸を構成する糖残基としては、特に制限は ないが、単糖から 3糖または単糖から 3糖の誘導体が好ましぐ単糖または単糖の誘 導体がさらに好ましく用 、られる。
[0060] 本明細書において「糖鎖」とは、単位糖 (単糖および Zまたはその誘導体)が 1っ以 上連なってできたィ匕合物をいう。単位糖が 2つ以上連なる場合は、各々の単位糖同 士の間は、グリコシド結合による脱水縮合によって結合する。このような糖鎖としては 、例えば、生体中に含有される多糖類 (グルコース、ガラクトース、マンノース、フコー ス、キシロース、 N—ァセチルダルコサミン、 N—ァセチルガラタトサミン、シアル酸な らびにそれらの複合体および誘導体)の他、分解された多糖、糖タンパク質、プロテ ォグリカン、グリコサミノダリカン、糖脂質などの複合生体分子から分解または誘導さ れた糖鎖など広範囲なものが挙げられるがそれらに限定されない。したがって、本明 細書では、糖鎖は、「多糖 (ポリサッカリド)」、「糖質」、「炭水化物」と互換可能に使用 され得る。また、特に言及しない場合、本明細書において「糖鎖」は、糖鎖および糖 鎖含有物質の両方を包含することがある。
[0061] 本明細書において「単糖」とは、これより簡単な分子に加水分解されず、少なくとも 1 つの水酸基および少なくとも 1つのアルデヒド基またはケトン基を含む、ポリヒドロキシ アルデヒドまたはポリヒドロキシケトンならびにその誘導体をいう。通常単糖は、一般式 C H Oで表されるがそれらに限定されず、フコース(デォキシへキソース)、 N n 2n n
—ァセチルダルコサミンなども含まれる。ここで、上の式において、 n= 2、 3、 4、 5、 6 、 7、 8、 9および 10であるものを、それぞれジオース、トリオース、テトロース、ペントー ス、へキソース、ヘプトース、オタトース、ノノースおよびデコースという。一般に鎖式多 価アルコールのアルデヒドまたはケトンに相当するもので、前者をアルドース、後者を ケトースという。 [0062] 本明細書において特に言及するときは、「単糖の誘導体」は、置換されていない単 糖上の一つ以上の水酸基が別の置換基に置換され、結果生じる物質をいう。そのよ うな単糖の誘導体としては、カルボキシル基を有する糖 (例えば、 C—1位が酸化され てカルボン酸となったアルドン酸(例えば、 D—グルコースが酸化された D ダルコン 酸)、末端の C原子がカルボン酸となったゥロン酸(D グルコースが酸化された D— グルクロン酸)、アミノ基またはァミノ基の誘導体 (例えば、ァセチルイ匕されたァミノ基) を有する糖 (例えば、 N ァセチル— D—ダルコサミン、 N ァセチル— D ガラタト サミンなど)、アミノ基およびカルボキシル基を両方とも有する糖 (例えば、 N ァセチ ルノイラミン酸 (シアル酸)、 N ァセチルムラミン酸など)、デォキシィ匕された糖 (例え ば、 2—デォキシ D リボース)、硫酸基を含む硫酸化糖、リン酸基を含むリン酸化 糖などがあるがそれらに限定されない。本明細書では、単糖という場合は、上記誘導 体も包含する。あるいは、へミアセタール構造を形成した糖において、アルコールと 反応してァセタール構造のグリコシドもまた、単糖の範囲内にある。
[0063] 本発明の糖ペプチド残基を構成する「アミノ酸残基」は分子内にアミノ基とカルボキ シル基を有するものであれば特に制限はなぐ Gly (グリシン)、 Ala (ァラニン)、 Val ( ノ リン)、 Leu (ロイシン)、 lie (イソロイシン)、 Tyr (チロシン)、 Trp (トリプトファン)、 G1 u (グルタミン酸)、 Asp (ァスパラギン酸)、 Lys (リジン)、 Arg (アルギニン)、 His (ヒス チジン)、 Cys (システィン)、 Met (メチォニン)、 Ser (セリン)、 Thr (トレオニン)、 Asn (ァスパラギン)、 Gin (グルタミン)または Pro (プロリン)残基などの a—アミノ酸残基 あるいは j8—Ala残基のような |8—アミノ酸残基などが例示される。また、アミノ酸残 基は D体、 L体いずれでもよいが、 L体の方が好ましい。糖ペプチド残基としては、上 述したアミノ酸残基または 2〜30個からなる糖ペプチド残基が好ま U、。 4〜20個か らなる糖ペプチド残基がさらに好まし 、。
[0064] 上で定義した本発明の糖アミノ酸は、上に列挙したアミノ酸残基と糖残基とが理論 上結合することができればその組み合わせに特に制限はな 、が、好まし 、組み合わ せとして、 Asn— (CH ) - l a GlcNAcゝ Asn— (CH ) ~ 1 β GlcNAcゝ Gin— (C
2 n 2 n
H ) - l a GlcNAc, Gin— (CH ) ~ 1 β GlcNAc, Ser- 1 a GlcNAc, Ser- 1
2 n 2 n
j8 GlcNAc, Thr- 1 a GlcNAc, Thr— 1 β GlcNAc, Asn— 1 a GlcNAc, Asn— 1 β GlcNAcゝ Ser— 1 a GalNAcゝ Ser— 1 β GalNAcゝ Thr— 1 a GalNAcゝ Thr —1β GalNAcゝ Asn— 1 a GalNAcゝ Asn— 1 β GalNAcゝ Ser— 1 a Glc、 Ser— 1 β Glc、 Thr- 1 a Glc、 Thr— 1 β Glc、 Asn— 1 a Glc、 Asn— 1 β Glc、 Ser— 1 a Gal、 Ser— 1 j8 Gal、 Thr— 1 a Gal、 Thr— 1 β Gal、 Asn— 1 a Gal、 Asn— 1 j8 Ga 1、 Ser— 1 Man, Ser— 1 β Man, Thr— 1 a Man, Thr— 1 β Man, Asn— 1 α M anゝ Asn- 1 j8 Man, Ser— 1 a GalNAc3— 1 β Gal、 Ser— 1 β GalNAc3— 1 β G al、 Thr- 1 a GalNAc3-l β Gal, Thr— 1 β GalNAc3-l β Gal, Ser— 1 a Gal NAc (3— 1 j8 Gal) 6-1 β GlcNAcゝ Ser— 1 j8 GalNAc (3— 1 j8 Gal) 6— 1 β Glc NAcゝ Thr- 1 a GalNAc (3— 1 j8 Gal) 6— 1 j8 GlcNAcゝ Thr— 1 β GalNAc (3— 1 β Gal) 6-1 β GlcNAc, Ser— 1 a GalNAc3— 1 β GlcNAc, Ser— 1 β GalNA c3-lj8 GlcNAc, Thr- 1 a GalNAc3 ~1β GlcNAc, Thr- 1 j8 GalNAc 3- 1 j8 GlcNAc, Ser- 1 a GalNAc (3— 1 j8 GlcNAc) 6-1 β GlcNAc, Ser- 1 β Ga IN Ac (3— 1 j8 GlcNAc) 6~1β GlcNAcゝ Thr— 1 a GalNAc (3~1β GlcNAc) 6-1 β GlcNAcゝ Thr-ljS GalNAc (3~1β GlcNAc) 6~1β GlcNAcゝ Ser— 1 a GalNAc3-l a GalNAc, Ser— 1 β GalNAc3— 1 a GalNAcゝ Thr— 1 a Gal NAc3— 1 a GalNAcゝ Thr— 1 GalNAc3— 1 a GalNAcゝ Ser— 1 a GalNAc6 -1β GlcNAc, Ser-ljS GalNAc6 ~1β GlcNAcゝ Thr— 1 a GalNAc6 ~1β GlcNAcゝ Thr- 1 GalNAc6— 1 GlcNAcゝ Ser— 1 a GalNAc6— 1 a GalNA cゝ Ser— 1 β GalNAc6-l a GalNAcゝ Thr— 1 a GalNAc6— 1 a GalNAcゝ Thr -1β GalNAc6-l a GalNAc, Ser— 1 a GalNAc3-l a Gal, Ser— 1 GalN Ac3-1 a Gal、 Thr— 1 a GalNAc3-l a Gal、 Thr— 1 β GalNAc3-l a Gal、 Asn— 1 a GlcNAc4— 1 β GlcNAc、 Asn— 1 β GlcNAc4— 1 β GlcNAc、 Asn— 1 a GlcNAc4— 1 GlcNAc4— 1 Manゝ Asn— 1 GlcNAc4— 1 GlcNAc4 — 1 j8 Man, Asn— 1 a GlcNAc4-l β GlcNAc4-l β Man6— 1 a Man, Asn — 1 j8 GlcNAc4— 1 β GlcNAc4— 1 β Man6— 1 a Manゝ Asn— 1 a GlcNAc4— 1 GlcNAc4— 1 Man3-1 a Manゝ Asn— 1 GlcNAc4— 1 GlcNAc4— 1 j8Man3-l aMan, Asn— 1 a GlcNAc4— 1 j8 GlcNAc4— 1 j8 Man(3— 1 α M an) 6-1 a Manゝ Asn—1β GlcNAc4 -1 β GlcNAc4 -1 β Man (3-1 a Man) 6-1 a Man, Ser— 1 a Xyl、 Ser— 1 j8 Xyl、 Thr— 1 a Xyl、 Thr— 1 β Xyl、 Ser— 1 a Xyl4-1 β Gal, Ser— 1 β Xyl4— 1 β Gal, Thr— 1 a Xyl4— 1 β Gal, Thr— 1 β Xyl4-1 β Gal、 Ser— 1 aXyl4— 1 β Gal3— 1 β Gal, Ser— 1 β Xyl4— 1 β Ga 13— 1 j8 Gal, Thr— 1 «Xyl4-l β Gal3— 1 β Gal, Thr— 1 β Xyl4— 1 β Gal3— 1 β Gal、 Ser— 1 aXyl4— 1 β Gal3— 1 β Gal3— 1 β GlcA、 Ser— 1 β Xyl4— 1 β Gal3— 1 j8 Gal3— 1 j8 GlcAゝ Thr— 1 a Xyl4 1 j8 Gal3— 1 j8 Gal3 ~1β Glc A、 Thr- 1 β Xyl4-1 β Gal3— 1 β Gal3— 1 β GlcAゝ Ser— 1 aXyl4— 1 β Gal3— 1 β Gal3-1 β GlcA4— 1 a GlcNAcゝ Ser— 1 β Xyl4— 1 β Gal3— 1 β Gal3— 1 β GlcA4 -la GlcNAcゝ Thr— 1 a Xyl4 ~1β Gal3 ~1β Gal3 ~1β GlcA4 1 a GlcNAcゝ Thr— 1 j8 Xyl4— 1 β Gal3— 1 β Gal3— 1 β GlcA4— 1 a GlcNAc, Ser- la Xyl4— 1 β Gal3 ~1β Gal3 ~1β GlcA3 -la GalNAcゝ Ser— 1 j8 Xyl 4-1 β Gal3-1 β Gal3— 1 β GlcA3— 1 a GalNAcゝ Thr— 1 aXyl4— 1 β Gal3 -1β Gal3-1 β GlcA3-l a GalNAcゝ Thr— 1 β Xyl4— 1 β Gal3— 1 β Gal3— 1 β Glc A3 -la GalNAcゝ Ser- la Xyl4 1 j8 Gal3— 1 j8 Gal3 ~1β GlcA4 1 β GalNAcゝ Ser— 1 j8 Xyl4— 1 β Gal3— 1 β Gal3— 1 β GlcA4— 1 β GalNAc 、 Thr- 1 «Xyl4-l β Gal3— 1 β Gal3— 1 β GlcA4— 1 β GalNAc, Thr— ΙβΧ yl4-lj8 Gal3-1 β Gal3— 1 β GlcA4— 1 β GalNAcが挙げられる。ここで、 nは 1 〜10の整数を表し、 Galはガラクトースを表し、 Glcはグルコースを表し、 Manはマン ノースを表し、 Xylはキシロースを表し、 GlcNAcは N ァセチル一 D—ダルコサミン を表し、 GalNAcは N -ァセチル D ガラクトサミンを表す。
[0065] 本明細書にぉ 、て「N末端」とは、ペプチド主鎖の末端に位置する置換されて!、て もよいアミノ基を意味する。
[0066] 本明細書にぉ 、て「C末端」とは、ペプチド主鎖の末端に位置する置換されて!、て もよ 、カルボキシル基を意味する。
[0067] 本明細書において「側鎖」とは、ペプチド主鎖の延びる方向と直交する方向にぺプ チド主鎖から延びた官能基またはその官能基を含む部分を意味する。
[0068] 本明細書において「プライマー」とは、酵素反応において反応開始のきっかけをつ くる作用を有する物質を意味する。 [0069] 本明細書にぉ 、て「転移酵素」とは、基転移反応を触媒する酵素の総称を 、う。本 明細書において、「転移酵素」は「トランスフェラーゼ」と互換可能に使用され得る。基 転移反応は、以下の式(1) :
X-Y+Z-H X-H + Z-Y (1)
に示すように、一つの化合物 (供与体)から基 Yが他の化合物 (受容体)に転移する 形で行われる。
[0070] 本明細書において「糖転移酵素」とは、糖 (上記式(1)の基 Yに相当;単位糖または 糖鎖)をある場所 (上記式(1)の化合物 X— Yに相当)から別の場所 (上記式( 1)の化 合物 Z— Hに相当)へと転移させるよう触媒する作用を有する酵素をいう。糖転移酵 素としては、例えば、ガラクトース転移酵素、グルコース転移酵素、シアル酸転移酵 素、マンノース転移酵素、フコース転移酵素、キシロース転移酵素、 N—ァセチルダ ルコサミン転移酵素、および N—ァセチルガラタトサミン転移酵素などが挙げられるが それらに限定されない。
[0071] 本発明にお ヽて「糖鎖伸長反応」とは、上で定義した糖転移酵素の存在下で糖鎖 の鎖長が伸長する反応をいう。
[0072] 本明細書において使用される用語「生体分子」とは、生体に関連する分子をいう。
そのような生体分子を含む試料を、本明細書にぉ 、て特に生体試料と 、うことがある 。本明細書において「生体」とは、生物学的な有機体をいい、動物、植物、菌類、ウイ ルスなどを含むがそれらに限定されない。従って、生体分子は、生体から抽出される 分子を包含するが、それに限定されず、生体に影響を与え得る分子であれば生体分 子の定義に入る。そのような生体分子には、タンパク質、ポリペプチド、オリゴぺプチ ド、ペプチド、糖ペプチド、ポリヌクレオチド、オリゴヌクレオチド、ヌクレオチド、糖ヌク レオチド、核酸(例えば、 cDNA、ゲノム DNAのような DNA、 mRNAのような RNAを 含む)、ポリサッカリド、オリゴサッカリド、脂質、低分子 (例えば、ホルモン、リガンド、 情報伝達物質、有機低分子など)、これらの複合分子などが包含されるがそれらに限 定されない。本明細書では、生体分子は、好ましくは、糖鎖または糖鎖を含む複合分 子 (例えば、糖タンパク質、糖脂質など)であり得る。
[0073] そのような生体分子の供給源としては、生物由来の糖鎖が結合または付属する材 料であれば特にその由来に限定はなぐ動物、植物、細菌、ウィルスを問わない。より 好ましくは動物由来生体試料が挙げられる。好ましくは、例えば、全血、血漿、血清、 汗、唾液、尿、膝液、羊水、髄液等が挙げられ、より好ましくは血漿、血清、尿が挙げ られる。生体試料には個体から予め分離されていない生体試料も含まれる。例えば 外部から試液が接触可能な粘膜組織、あるいは腺組織、好ましくは乳腺、前立腺、 脾臓に付属する管組織の上皮が含まれる。
[0074] 本明細書において使用される用語「タンパク質」、「ポリペプチド」、「オリゴぺプチ ド」および「ペプチド」は、本明細書において同じ意味で使用され、任意の長さのアミ ノ酸のポリマーをいう。このポリマーは、直鎖であっても分岐していてもよぐ環状であ つてもよい。アミノ酸は、天然のものであっても非天然のものであってもよぐ改変され たアミノ酸であってもよい。この用語はまた、複数のポリペプチド鎖の複合体へとァセ ンブルされたものを包含し得る。この用語はまた、天然または人工的に改変されたァ ミノ酸ポリマーも包含する。そのような改変としては、例えば、ジスルフイド結合形成、 グリコシル化、脂質化、ァセチル化、リン酸ィ匕または任意の他の操作もしくは改変(例 えば、標識成分との結合体化)。この定義にはまた、例えば、アミノ酸の 1または 2以 上のアナログを含むポリペプチド (例えば、非天然のアミノ酸などを含む)、ペプチド 様ィ匕合物 (例えば、ぺプトイド)および当該分野において公知の他の改変が包含され る。
[0075] 本明細書にぉ 、て、「糖ヌクレオチド」とは、上で定義した糖残基が結合したヌクレ ォチドを意味し、本発明で用いる糖ヌクレオチドは、上記酵素が利用できるものであ れば特に限定されない。例えば、ゥリジン 5,一二リン酸ガラクトース、ゥリジン 5, 一二リン酸—N ァセチルダルコサミン、ゥリジンー5,一二リン酸 N ァセチルガラ クトサミン、ゥリジンー5,一二リン酸グルクロン酸、ゥリジンー5,一二リン酸キシロース、 グアノシン 5,一二リン酸フコース、グアノシン 5,一二リン酸マンノース、シチジン — 5,一モノリン酸一 N ァセチルノイラミン酸およびこれらのナトリウム塩などが挙げ られる。
[0076] (有機化学)
有機化学については、例えば、 Organic Chemistry, R. T. Morrison, R. N. Boyd 5th ed. (1987年)などに記載されており、これらは本明細書において関連 する部分が参考として援用される。
[0077] 本明細書においては、特に言及がない限り、「置換」は、ある有機化合物または置 換基中の 1または 2以上の水素原子を他の原子または原子団で置き換えることをいう
。水素原子を 1つ除去して 1価の置換基に置換することも可能であり、そして水素原 子を 2つ除去して 2価の置換基に置換することも可能である。
[0078] 本明細書にぉ 、て「アルキル」とは、メタン、ェタン、プロパンのような脂肪族炭化水 素(アルカン)力も水素原子が一つ失われて生ずる 1価の基をいい、一般に C H
n 2n+ l 一で表される(ここで、 nは正の整数である)。アルキルは、直鎖または分枝鎖であり得 る。本明細書において「置換されたアルキル」とは、 1つ以上の水素原子が各々独立 して以下に規定する置換基によって置換されたアルキルをいう。これらの具体例は、 C1〜C2アルキル、 C1〜C3アルキル、 C1〜C4アルキル、 C1〜C5アルキル、 C1 〜C6アルキル、 C1〜C7アルキル、 C1〜C8アルキル、 C1〜C9アルキル、 C1〜C 10アルキル、 C1〜C11アルキル、 C1〜C12アルキル、 C1〜C15アルキル、 Cl〜 C20アルキル、 C1〜C25アルキルまたは C1〜C30アルキルであり得る。ここで、例 えば C 1〜C 10アルキルとは、炭素原子を 1〜 10個有する直鎖または分枝状のアル キルを意味し、メチル(CH—)、ェチル(C H一)、 n—プロピル(CH CH CH一)
3 2 5 3 2 2
、イソプロピル((CH ) CH―)、 n—ブチル(CH CH CH CH ―)、 n—ペンチル(
3 2 3 2 2 2
CH CH CH CH CH 一)、 n—へキシル(CH CH CH CH CH CH 一)、 n—へ
3 2 2 2 2 3 2 2 2 2 2 プチル(CH CH CH CH CH CH CH― )、 n—ォクチル(CH CH CH CH CH
3 2 2 2 2 2 2 3 2 2 2
CH CH CH ―)、 n—ノニル(CH CH CH CH CH CH CH CH CH ―)、 n—
2 2 2 2 3 2 2 2 2 2 2 2 2 デシル(CH CH CH CH CH CH CH CH CH CH —)、 一 C (CH ) CH CH
3 2 2 2 2 2 2 2 2 2 3 2 2 2
CH (CH ) 、 一 CH CH (CH )などが例示される。
3 2 2 3 2
[0079] 本明細書において「ァリール」とは、親である芳香環系の 1つの炭素原子から 1つの 水素原子を除去することによって誘導される、 6〜30個の炭素原子の一価芳香族炭 化水素ラジカルをいう。代表的なァリール基としては、ベンゼン、ナフタレン、アントラ セン、ビフヱ-ルなどが挙げられる力 これらに限定されない。
[0080] 本明細書にぉ 、て「発色団」とは、紫外光または可視光領域に吸収帯を有する官 能基、または紫外光または可視光領域の電磁波で励起され可視光領域の放射光を 発する官能基をいう。例えば、ニトロ基、ベンジル基、チオフヱ-ル基、パラニトロフエ
-ル基、 2, 4 ジ-トロフエ-ル基、ダンシル基、 2 ァミノべンジル基、フルォロセィ ンイソチォシァネート (FITC)基、 4ーメトキシー β ナフチルアミド基などをが挙げら れるが、これに限定されない。
[0081] 本明細書にぉ 、て「ケト酸」とは、カルボキシル基とケトンのカルボ-ル基とをもつ化 合物の総称をいう。
[0082] 本明細書にぉ 、て「アルデヒド酸」とは、カルボキシル基とアルデヒドのカルボ-ル 基とをもつ化合物の総称を!、う。
[0083] このようなケト酸またはアルデヒド酸は、例えば、 X— C ( = 0) - (CH ) — A—CO
2 n 1
OH (III) (式中、 Xは水素原子、 C ァリールまたは発色団を
1〜C アルキル、 C
30 6〜C
30
表し; nは 0〜20の整数を表し; Aは、メチレン鎖 1〜20個分の長さを有するリンカ一 を表す)で表される化合物である。
[0084] 本明細書にぉ 、て「保護反応」とは、 Boc (t—ブトキシカルボ-ル基)のような保護 基を、保護が所望される官能基に付加する反応をいう。保護基により官能基を保護 することによって、より反応性の高い官能基の反応を抑制し、より反応性の低い官能 基のみを反応させることができる。
[0085] 本明細書にぉ ヽて「脱保護反応」とは、 Bocのような保護基を脱離させる反応を ヽぅ 。脱保護反応としては、トリフルォロ酢酸 (TFA)による反応および PdZCを用いる還 元反応のような反応が挙げられる。
[0086] 本明細書にぉ 、て「保護基」としては、例えば、フルォレニルメトキシカルボ-ル(F moc)基、ァセチル基、ベンジル基、ベンゾィル基、 t—ブトキシカルボ-ル基、 tーブ チルジメチル基、シリル基、トリメチルシリルェチル基、 N—フタルイミジル基、トリメチ ルシリルェチルォキシカルボ-ル基、 2 -トロー 4, 5 ジメトキシベンジル基、 2— ニトロ—4, 5—ジメトキシベンジルォキシカルボ-ル基、力ルバメート基などが代表的 な保護基として挙げられる。保護基は、例えば、アミノ基、カルボキシル基などの反応 性の官能基を保護するために用いることができる。反応の条件や目的に応じ、種々 の保護基を使 ヽ分けることができる。アミノォキシ基および N—アルキルアミノォキシ 基の保護基として、トリメチルシリルェチルォキシカルボ-ル基、 2— -トロ— 4, 5 - ジメトキシベンジルォキシカルボ-ル基またはそれらの誘導体が好ましい。
[0087] 本発明の各方法において、目的とする生成物は、反応液から夾雑物 (未反応減量 、副生成物、溶媒など)を、当該分野で慣用される方法 (例えば、抽出、蒸留、洗浄、 濃縮、沈澱、濾過、乾燥など)によって除去した後に、当該分野で慣用される後処理 方法 (例えば、吸着、溶離、蒸留、沈澱、析出、クロマトグラフィーなど)を組み合わせ て処理して単離し得る。
[0088] (本明細書にぉ 、て用いられる一般技術)
本明細書において使用される技術は、そうではないと具体的に指示しない限り、当 該分野の技術範囲内にある、有機化学、生化学、遺伝子工学、分子生物学、微生物 学、遺伝学および関連する分野における周知慣用技術を使用する。そのような技術 は、例えば、以下に列挙した文献および本明細書において他の場所おいて引用した 文献にお!ヽても十分に説明されて!ヽる。
[0089] 本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手 法は、当該分野において周知であり慣用されるものであり、例えば、 Maniatis, T. e t al. (,1989) . Molecular Cloning: A Laboratory Manual, Cold Spring Harborおよびその 3rd Ed. (2001); Ausubel, F. M. , et al. eds, Current Protocols in Molecular Biology, John Wiley & Sons Inc. , NY, 1015 8 (2000) ;Innis, M. A. (1990) . PCR Protocols : A Guide to Methods a nd Applications, Academic Press ;Innis, M. A. et al. (1995) . PCR Str ategies, Academic Press ; Sninsky, J. J. et al. (1999) . PCR Application s : Protocols for Functional Genomics, Academic Press ; Gait, M. J. ( 1985) . Oligonucleotide Synthesis : A Practical Approach, IRL Press ; G ait, M. J. (1990) . Oligonucleotide Synthesis : A Practical Approach, IR L Press ; Eckstein, F. (1991) . Oligonucleotides and Analogues : A Prac tical Approac , IRL Press ; Adams, R. L. et al. (1992) . The Biochemis try of the Nucleic Acids, Chapman & Hall; Shabarova, Z. et al. (19 94) . Advanced Organic Chemistry of Nucleic Acids, Weinheim ; Blac kburn, G. M. et al. (1996) . Nucleic Acids in Chemistry and Biology , Oxford University Press; Hermanson, G. T. (1996) . Bioconjugate Te chniques, Academic Press ; Method in Enzymology 230、 242、 247、 Ac ademic Press, 1994 ;別冊実験医学「遺伝子導入 &発現解析実験法」羊土社、 1 997 ;畑中、西村ら、糖質の科学と工学、講談社サイェンティフイク、 1997 ;糖鎖分子 の設計と生理機能 日本化学会編、学会出版センター、 2001などに記載されており 、これらは本明細書において関連する部分 (全部であり得る)が参考として援用される
[0090] (好ま 、実施形態の説明)
以下に本発明の好ましい実施形態を説明する。以下に提供される実施形態は本発 明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に限 定されるべきでないことが理解される。従って、当業者は本明細書の記載を参酌して 、本発明の範囲内で改変を行うことができるのは明らかである。
[0091] 1つの局面において、本発明は、以下の式:
X— C ( = 0)—(CH ) — A— A— A (I)
2 n 1 2 3
(式中、 Xは、水素原子、 C〜C アルキル、 C〜C ァリールまたは発色団を表し; n
1 30 6 30
は 0〜20の整数を表し; Aは、―(CH ) — C ( = 0)―、 - (CH CH O) ―、
1 2 0〜20 2 2 1〜10 重合度 1〜: L0のオリゴもしくはポリアクリルアミド、重合度 1〜: L0のオリゴもしくはポリべ プチド、酸素原子または NHを表し; Aは、プロテアーゼにより切断可能なアミノ酸残
2
基を表し; Aは、実質的にプロテアーゼにより切断可能な部位を含まない糖アミノ酸
3
残基、またはプロテアーゼにより切断可能な部位を含まず任意の糖アミノ酸を含む糖 ペプチド残基を表す)で表される、化合物を提供する。これをプライマーとして使用す ることにより、従来は多段階の精製を要していた糖ペプチドの精製が簡易となり、糖 ペプチドを迅速かつ収率よく製造できる。本発明の上記式 (I)の化合物は、末端にァ ルデヒド基またはケトン基を必ず有するため、保護されていてもよいアミノォキシ基、 N アルキルアミノォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジ チオール基およびシスティン残基からなる群から選択される官能基を含む担体と反 応させることにより、上記式 (I)の化合物を担体上に担持し、高分子プライマーとして 使用することができる。この反応によって得られる結合は、後のプロテアーゼによる加 水分解条件下 (pH条件など)で分解しな 、強固な結合であるため、加水分解の精製 が非常に簡易で済むという利点がある。
本発明における加水分解で用いられるプロテアーゼと、このプロテアーゼにより切 断可能なアミノ酸残基 (A )との組み合わせは、プロテアーゼによる加水分解が起こり
2
得る pH領域で、上記式 (I)の化合物の少なくとも上記末端アルデヒドまたはケトン基 と上記担体との反応によって生じる結合が分解しないような組み合わせであれば何 でも良い。 Aのポリペプチドの一部または全部および Aのアミノ酸残基力もなるぺプ
1 2
チドを認識するプロテアーゼも使用し得る。このような組み合わせとしては、例えば、 バシラス リケ-ホルミス(Bacillus Licheniformis)由来のプロテアーゼ(グルタミ- ダーゼ)と、このプロテアーゼで切断可能なグルタミン酸残基またはシスティン残基と の組み合わせ;ァスパラギニルエンドべプチターゼと Asn (認識部位 (A ) )との組み
2
合わせ (ァスパラギン (Asn)の C末端を切断する。 );アルギニルエンドべプチターゼ と Arg (認識部位 (A;) )との組み合わせ (アルギニン (Arg)の C末端を切断する。 );
2
ァクロモパクタープロテアーゼ Iとリジン (Lys) (認識部位 (A ) )との組み合わせ (リジ
2
ン (Lys)の C末端を切断する。 );トリプシンと、アルギニン (Arg)またはリジン (Lys) ( 認識部位 (A ) )との組み合わせ (Argを認識した場合アルギニン (Arg)の C末端を
2
切断し、リジン (Lys)を認識した場合リジン (Lys)の C末端を切断する。 );キモトリブ シンと、 Phe、 Tyrまたは Trp (認識部位 (A;) )との組み合わせ (Pheを認識した場合
2
フエ-ルァラニン(Phe)の C末端を切断し、 Tyrを認識した場合チロシン (Tyr)の C末 端を切断し、 Trpを認識した場合トリブトファン (Trp)の C末端を切断する。 ); V8プロ テアーゼと Glu (認識部位 (A ) )との組み合わせ (グルタミン酸 (Glu)の C末端を切断
2
する。 );第 Xa因子 (ファクター Xa)と、—lie— Glu— Gly— Arg— (認識部位、本明 細書の定義に従えば、認識部位 (A )は、アルギニン (Arg)であり、 -Ile-Glu-Gl
2
y—は Aの末端である;これは、アルギニン (Arg)の C末端を切断する。)との組み合 わせ;ならびにェンテロキナーゼとー Asp— Asp— Asp— Asp— Lys—(認識部位、 本明細書の定義に従えば、認識部位 (A )は、リジン (Lys)であり、—Asp— Asp— A
2
sp— Asp—は Aの末端である;これは、リジン (Lys)の C末端を切断する。 ) 0このよう な組み合わせとして、バシラス リケ-ホルミス(Bacillus Licheniformis)由来のプ 口テアーゼ(グルタミ-ダーゼ(例えば、バシラス リケ-ホルミス(Bacillus Lichenif ormis)由来のグルタミン酸残基特異的なプロテアーゼ (BLase:塩野義製薬社製) ) )と、このプロテアーゼで切断可能なグルタミン酸残基またはシスティン残基との組み 合わせが好ましい。 BLaseは、特開平 4— 166085 (特許第 3046344号)に記載さ れる方法によって、生産することができる。 BLaseは、バシラス属菌、特にバシラスリ ケ-ホルミス ATCC 14580株により生産される。本菌株はアメリカンタイプカルチヤ 一コレクション (ATCC)力も入手できる。必要に応じて、バシラスリケ-ホルミス AT CC 14580株のゲノム DNAは,該菌株の培養細胞から既知の方法(M. Stahlら, J ournal of Bacteriology, 154, 406— 412 (1983) )に従って調製すること力でき る。
本発明の好ましい実施形態において、上記式 (I)の化合物に含まれる Aの少なくと
3 も一部は、以下の配列番号 1〜60:
HGVTSAPDTRP (配列番号 1)、
GVTSAPDTRPA (配列番号 2)、
VTSAPDTRPAP (配列番号 3)、
TSAPDTRPAPG (配列番号 4)、
SAPDTRPAPGS (配列番号 5)、
APDTRPAPGST (配列番号 6)、
PDTRPAPGSTA (配列番号 7)、
DTRPAPGSTAP (配列番号 8)、
TRPAPGSTAPP (配列番号 9)、
RPAPGSTAPPA (配列番号 10)、
PAPGSTAPPAH (配列番号 11)、
APGSTAPPAHG (配列番号 12)、
PGSTAPPAHGV (配列番号 13)、
GSTAPPAHGVT (配列番号 14)、
STAPPAHGVTS (配列番号 15)、 TAPPAHGVTSA (配列番号 16)、
APPAHGVTSAP (配列番号 17)、
PPAHGVTSAPD (配列番号 18)、
PAHGVTSAPDT (配列番号 19)、
AHGVTSAPDTR (配列番号 20)、
HGVTSAPDTRPAPGSTAP (配列番号 21)、 GVTSAPDTRPAPGSTAPP (配列番号 22)、 VTSAPDTRPAPGSTAPPA (配列番号 23)、 TSAPDTRPAPGSTAPPAH (配列番号 24)、 SAPDTRPAPGSTAPPAHG (配列番号 25)、 APDTRPAPGSTAPPAHGV (配列番号 26)、 PDTRPAPGSTAPPAHGVT (配列番号 27)、 DTRPAPGSTAPPAHGVTS (配列番号 28)、 TRPAPGSTAPPAHGVTSA (配列番号 29)、 RPAPGSTAPPAHGVTSAP (配列番号 30)、 PAPGSTAPPAHGVTSAPD (配列番号 31)、 八?03丁八??八110¥丁3八?0丁(配列番号32)、 ?03丁八??八110¥丁3八?0丁1^(配列番号33)、 GSTAPPAHGVTSAPDTRP (配列番号 34)、 STAPPAHGVTSAPDTRPA (配列番号 35)、 TAPPAHGVTSAPDTRPAP (配列番号 36)、 APPAHGVTSAPDTRPAPG (配列番号 37)、 PPAHGVTSAPDTRPAPGS (配列番号 38)、 ?八110¥丁3八?0丁1^?八?03丁(配列番号39)、 AHGVTSAPDTRPAPGSTA (配列番号 40)、 HGVTSAPDTRPAPGSTAPPA (配列番号 41)、 GVTSAPDTRPAPGSTAPPAH (配列番号 42)、 VTSAPDTRPAPGSTAPPAHG (配列番号 43)、 TSAPDTRPAPGSTAPPAHGV (配列番号 44)、
SAPDTRPAPGSTAPPAHGVT (配列番号 45)、
APDTRPAPGSTAPPAHGVTS (配列番号 46)、
PDTRPAPGSTAPPAHGVTSA (配列番号 47)、
DTRPAPGSTAPPAHGVTSAP (配列番号 48)、
TRPAPGSTAPPAHGVTSAPD (配列番号 49)、
RPAPGSTAPPAHGVTS APDT (配列番号 50)、
PAPGSTAPPAHGVTSAPDTR (配列番号 51)、
APGSTAPPAHGVTSAPDTRP (配列番号 52)、
PGSTAPPAHGVTSAPDTRPA (配列番号 53)、
GSTAPPAHGVTSAPDTRPAP (配列番号 54)、
STAPPAHGVTSAPDTRPAPG (配列番号 55)、
TAPPAHGVTSAPDTRPAPGS (配列番号 56)、
APPAHGVTSAPDTRPAPGST (配列番号 57)、
PPAHGVTSAPDTRPAPGSTA (配列番号 58)、
?八110¥丁3八?0丁1^?八?03丁八?(配列番号59)、および
AHGVTSAPDTRPAPGSTAPP (配列番号 60)、
に示されるアミノ酸配列からなる群力 選択される、ムチン型糖タンパク質 MUC1由 来のアミノ酸配列を有する。さらに、配列番号 41〜60のいずれかのアミノ酸配列が 2 回または 3回繰り返した配列を含むムチン型タンパク質由来のアミノ酸配列であって ちょい。
本発明で用いることのできる高分子担体は、式 (I)で表される基を結合させることが でき、かつ結合後以下で述べるような糖転移酵素の作用により式 (I)で表される基の 糖残基にさらなる糖残基を転移させることのできるものであれば特に制限はなぐ例 えば、保護されて ヽてもよ ヽァミノォキシ基またはヒドラジド基を有するビニル系単量 体の重合体または共重合体 (上記ビュル系単量体としては、アクリルアミド類、メタタリ ルアミド類、アクリル酸類、メタクリル酸類、スチレン類、脂肪酸ビュルエステル類など が挙げられる)あるいは保護されて 、てもよ 、アミノォキシ基またはヒドラジド基を有し 得るポリエーテル類;保護されていてもよいアミノォキシ基またはヒドラジド基を有する シリカ担体、榭脂担体、磁性ビーズまたは金属担体 (例えば、以下の式:
[0095] [化 15]
Figure imgf000046_0001
で表されるシリカ担体、榭脂担体および磁性ビーズ、金属担体 [式中、〇は、シリカ、 榭脂、磁性ビーズ、金属担体を表す]が挙げられる);ならびにペプチド合成で使用 する Maps (Multiple Antigen peptide systems)法と類似した担体;例えば、 以下の式:
[(NH OCH C( = 0)) -Lys] Lys— NHCH CH C ( = 0) R3
2 2 2 2 2 2
[(NH OCH C( = 0)) -Lys] Lys— NHCH (CH SH) C ( = 0) R3
2 2 2 2 2
[(NH OCH C( = 0)) -Lys] — Lys— Cys— NHCH CH C( = 0) R3 (配列
2 2 2 " "
番号 61)、
{[(NH OCH C( = 0)) -Lys] - Lys - NHCH [C ( = O) - R3] CH S} 、
2 2 2 2 2 2
{[(NH OCH C( = 0)) -Lys] - Lys - NHCH [C( = 0) NHCH CH C( = 0
2 2 2 2 2 2
)-R3]CH -S} 、
2 2
{[(NH OCH C( = 0)) -Lys] -Lys} Lys— NHCH CH C( = 0)— R3(
2 2 2 2 2 2 2 配列番号 62)、
{[(NH OCH C( = 0)) -Lys] -Lys} -Lys- NHCH (CH SH)C( = 0)—
2 2 2 2 2 2
R3 (配列番号 63)、
{[(NH OCH C( = 0)) -Lys] -Lys} Lys— Cys— NHCH CH C( = 0)
2 2 2 2 2 2 2
—R3 (配列番号 64)、
[[[(NH OCH C( = 0)) -Lys] -Lys] Lys— NHCH[C ( = 0)— R3]CH
2 2
S] (配列番号 65)、
2
[[[(NH OCH C( = 0)) -Lys] -Lys] - Lys - NHCH [C( = 0) NHCH C
2 2 2 2 2 2
H C( = 0) R3]CH— S] (配列番号 66)、
2 2 2
[0096] [化 16] [ (NH2 OCH2 C (=0) ) 2 -Ly s] -NHCHC (=0) -R3
[ (匪 2 OCH2 C (=0) ) 2 -Ly s] 匪 (CH2 ) 4
または
{ [ (NH2 OCH2 C ( = 0) ) 2 -Ly s] 2 -Ly s} -NHCHC ( = 0) -R3
I
{ [ (NH2 OCH2 C ( = 0) ) 2 -L y s] 2 -Ly s } NH (CH2 ) 4
[0097] (式中、 R3はヒドロキシル基またはアミノ基を表し、 Lysはリジンを表し、 Cysはシスティ ンを表す)
で表される化合物などが挙げられる。
[0098] 上記の保護されて 、てもよ 、アミノォキシ基またはヒドラジド基を有するビュル系単 量体の重合体または共重合体は、無置換のビニル系単量体の重合体または共重合 体の少なくとも一部を保護されて 、てもよ 、アミノォキシ基またはヒドラジド基で置換 する方法、あるいは保護されて 、てもよ 、アミノォキシ基またはヒドラジド基を有するビ 二ル系単量体を重合または共重合する方法によって、調製される。
[0099] 上記のアクリルアミド類としては、保護されて ヽてもよ ヽァミノォキシ基またはヒドラジ ド基を有し得る、アクリルアミド、 N ェチルアクリルアミドゃ N—イソプロピルァク リルアミドなどの N アルキルアクリルアミドなどが例示される。
[0100] 上記のメタクリルアミド類としては、保護されて 、てもよ 、アミノォキシ基またはヒドラ ジド基を有し得る、メタクリルアミド、 N—メチルメタクリルアミドゃ N ェチルメタクリル アミド、 N イソプロピルメタクリルアミドなどの N -アルキルメタクリルアミドなどが例示 される。
[0101] 上記のアクリル酸類としては、保護されていてもよいアミノォキシ基またはヒドラジド 基を有し得る、アクリル酸やアクリル酸メチル、アクリル酸ェチル、アクリル酸ヒドロキシ ェチル、アクリル酸ジメチルアミノエチルなどのアクリル酸エステルなどが例示される。
[0102] 上記のメタクリル酸類としては、保護されて 、てもよ 、アミノォキシ基またはヒドラジド 基を有し得る、メタクリル酸ゃメタクリル酸メチル、メタクリル酸ェチル、メタクリル酸ヒド 口キシェチル、メタクリル酸ジメチルアミノエチルなどのメタクリル酸エステルなどが例 示される。
[0103] 上記のスチレン類としては、保護されて 、てもよ 、アミノォキシ基またはヒドラジド基 を有し得る、スチレン、 p ヒドロキシスチレン、 p ヒドロキシメチルスチレンなどが例 示される。
[0104] 上記の脂肪酸ビニルエステルとしては、保護されて ヽてもよ ヽァミノォキシ基または ヒドラジド基を有し得る、酢酸ビニル、酪酸ビニルなどが例示される。また、本発明中 の脂肪酸ビュルエステルの重合体あるいは共重合体には、重合反応後アルカリなど によりエステル結合を全部あるいは一部加水分解したものも含まれる。
[0105] 上記のポリエーテル類としては、保護されて ヽてもよ ヽァミノォキシ基またはヒドラジ ド基を有し得るポリエチレングリコール、あるいは保護されて 、てもよ 、アミノォキシ基 またはヒドラジド基を有し得るアルキル、ァリール基で置換されたポリエチレングリコー ル等が例示される。
[0106] ここでいう高分子担体は水不溶性、水溶性いずれであってもよいが、水溶性の方が 好ましい。一般的な分子量は約 10000〜約 5000000であり、好ましくは 20000〜2 000000、より好まし <は 50000〜 1000000である。その形態は、水不溶性担体の 場合、ビーズ状、繊維状、膜状、フィルム状などが挙げられるが、特に制限されない。
[0107] さらに好ましい担体としては、以下の式:
[0108] [化 17]
Figure imgf000048_0001
[0109] で表される高分子担体が挙げられる。ここで、 nは 1〜15の整数であり、好ましくは 1 〜10であり、より好ましくは 1〜5である。 x:yの比率は 1 : 0〜1 : 1000であり、好ましく は 1 : 0〜1 : 100である。高分子担体の分子量は、約 10000〜約 5000000であり、 好まし <は 20000〜2000000、より好まし <は 50000〜 1000000である。
[0110] 別の好ましい実施形態において、本発明は、以下の式:
A N = C (— X)— (CH ) A -A -A (II)
4 2 n 1 2 3
[式中、 Xは水素原子、 c〜 ルキル、
1 c ア
30 c〜
6 c ァリールまたは発色団を表し; 30
nは 0〜20の整数を表し;
Aは、—(CH ) — C ( = 0)—、—(CH CH O) —、重合度 1〜10のオリゴ
1 2 0〜20 2 2 1〜10
もしくはポリアクリルアミド、重合度 1〜: L0のオリゴもしくはポリペプチド、酸素原子また は NHを表し;
Aは、バシラス リケ-ホルミス(Bacillus Licheniformis)由来のプロテアーゼで
2
切断可能なグルタミン酸残基またはシスティン残基であり;
Aは、実質的にプロテアーゼにより切断可能な部位を含まない糖アミノ酸残基、ま
3
たはプロテアーゼにより切断可能な部位を含まず任意の糖アミノ酸を含む糖ペプチド 残基を表し;
Aは、以下の式:
4
[0111] [化 18]
Figure imgf000050_0001
[0112] (式中、 sは 1〜15の整数であり、 : は1 : 0〜1 : 1000でぁる)で表される基でぁる] で表される化合物を提供する。
[0113] 別の局面において、本発明は、上記式 (I)または (Π)に記載の化合物を含む、糖ァ ミノ酸または糖ペプチドを製造するためのプライマー用組成物を提供する。
[0114] 糖ペプチドを製造するためのプライマーとして有用な本発明の化合物の合成およ び精製は、以下の手順:
1)保護アミノ酸 (プロテアーゼにより切断可能なアミノ酸残基を含む)、予め合成し た保護基を有する糖アミノ酸、およびケト酸またはアルデヒド酸を原料にペプチド固 相合成を行 ヽ、末端にケトン残基またはアルデヒド残基を有しプロテアーゼにより切 断可能なアミノ酸残基を含む糖ペプチド (糖鎖 ·アミノ酸保護体)を合成する (必要に 応じて、アミノ酸カップリング反応の各工程の後にキヤッビング反応、すなわちアミノ酸 カップリング未反応物を不活化する反応を行う);
2)酸処理によって、末端にケトン残基またはアルデヒド残基を有しプロテアーゼに より切断可能なアミノ酸残基を含む糖ペプチドを固相担体力 遊離させると同時にァ ミノ酸側鎖の保護基を脱保護する (酸処理によってアミノ酸側鎖の保護基が脱離しな い場合は、別途脱保護反応により該保護基を脱保護すればよい);
3)反応液、もしくはエーテル沈殿法によって得た混合物を HPLCによって精製し、 末端にケトン残基またはアルデヒド残基を有しプロテアーゼにより切断可能なアミノ酸 残基を含む糖ペプチド (糖鎖保護体)を単離する;
4)糖鎖の保護基の脱保護をする;
5) HPLCで精製し、末端にケトン残基またはアルデヒド残基を有しプロテアーゼに より切断可能なアミノ酸残基を含む糖ペプチドを単離する
との手順で行われる。この方法は、糖アミノ酸を含まないペプチドの合成においても、 適用可能であり、その場合、 4)の工程は省かれる。
[0115] このようにして得られた末端にケトン残基またはアルデヒド残基を有しプロテアーゼ により切断可能なアミノ酸残基を含む糖ペプチドから高分子プライマーの合成および 精製は、以下:
6)上記で得られた糖ペプチドと高分子担体とを反応させる;
7)ゲル濾過カラムクロマトグラフィーによって精製し、高分子プライマーを得る、 との手順で行われる。
[0116] 本発明の化合物の別の一般的な合成および精製は、以下:
1)保護アミノ酸 (プロテアーゼにより切断可能なアミノ酸残基を含む)、予め合成し た保護基を有する糖アミノ酸、およびケト酸またはアルデヒド酸を原料にペプチド固 相合成を行 ヽ、末端にケトン残基またはアルデヒド残基を有しプロテアーゼにより切 断可能なアミノ酸残基を含む糖ペプチド (糖鎖 ·アミノ酸保護体)を合成する (必要に 応じて、アミノ酸カップリング反応の各工程の後にキヤッビング反応、すなわちアミノ酸 カップリング未反応物を不活化する反応を行う);
2)酸処理によって、末端にケトン残基またはアルデヒド残基を有しプロテアーゼに より切断可能なアミノ酸残基を含む糖ペプチドを固相担体力 遊離させると同時にァ ミノ酸側鎖の保護基を脱保護する (酸処理によってアミノ酸側鎖の保護基が脱離しな い場合は、別途脱保護反応により該保護基を脱保護すればよい);
3)糖鎖の保護基の脱保護をする;
4) 3)の糖ペプチドを含む反応液に高分子担体を導入して選択的に糖ペプチドと 反応させる;
5)担体に結合した糖ペプチドをゲル濾過もしくは透析、限外濾過等によって精製 する;
6)担体に結合した糖ペプチドをプロテアーゼにより加水分解し、糖ペプチドを遊離 させ、担体を除き、 目的の糖ペプチドを単離する、
との手順で行われる。
[0117] この手順によれば、各工程を単離せず、ワンポットで高分子プライマーまで導くこど ができる。このようにして得られた末端にケトン残基またはアルデヒド残基を有しプロ テアーゼにより切断可能なアミノ酸残基を含む糖ペプチドから高分子プライマーの合 成および精製は、以下:
1)保護アミノ酸 (プロテアーゼにより切断可能なアミノ酸残基を含む)、予め合成し た保護基を有する糖アミノ酸、およびケト酸またはアルデヒド酸を原料にペプチド固 相合成を行 ヽ、末端にケトン残基またはアルデヒド残基を有しプロテアーゼにより切 断可能なアミノ酸残基を含む糖ペプチド (糖鎖 ·アミノ酸保護体)を合成する (必要に 応じて、アミノ酸カップリング反応の各工程の後にキヤッビング反応、すなわちアミノ酸 カップリング未反応物を不活化する反応を行う);
2)酸処理によって、末端にケトン残基またはアルデヒド残基を有しプロテアーゼに より切断可能なアミノ酸残基を含む糖ペプチドを固相担体力 遊離させると同時にァ ミノ酸側鎖の保護基を脱保護する (酸処理によってアミノ酸側鎖の保護基が脱離しな い場合は、別途脱保護反応により該保護基を脱保護すればよい);
3)糖鎖の保護基の脱保護をする;
4) 3)の糖ペプチドを含む反応液に高分子担体を導入して選択的に糖ペプチドと 反応させる;
5)担体に結合した糖ペプチドをゲル濾過もしくは透析、限外濾過等によって精製し 、プライマーを得る、
との手順で行われる。
[0118] 好ましい実施形態において、上記手順 1)で使用されるケト酸またはアルデヒド酸は 以下の式:
X— C( = 0)—(CH ) — A — COOH (III)
2 n 1
(式中、 Xは水素原子、 c〜 アルキル、
1 c 30 c〜
6 c ァリールまたは発色団を表し; 30
nは 0〜20の整数を表し;
Aは、メチレン鎖 1〜20個分の長さを有するリンカ一を表す)で表される化合物で ある。
[0119] 1つの好ましい実施形態において、本発明の糖ペプチドを製造する方法は、以下 の工程:
(A)上記項目(1)〜(3)のいずれか 1項に記載の化合物と、ケトン残基またはアル デヒド残基と特異的に反応しうる、保護されていてもよいアミノォキシ基、 N アルキ ルァミノォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール 基およびシスティン残基からなる群から選択される官能基を含む担体と、を反応させ る工程;
(B)工程 (A)で得たィ匕合物に、糖ヌクレオチドの存在下で糖転移酵素を作用させる ことにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、糖鎖を伸長させたィ匕 合物を得る工程;
(C)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および
(D)糖残基が転移して糖鎖が伸長したィ匕合物にプロテアーゼを作用させる工程、 を包む (例えば、図 1参照)。
[0120] 本発明で用いる糖転移酵素は、糖ヌクレオチド類を糖供与体として利用できるもの であればよいが、好ましい例として、 β ΐ, 4 ガラクトース転移酵素、 3—ガラ クトース転移酵素、 131, 4 ガラクトース転移酵素、 /31, 3—ガラクトース転移酵素、 β ΐ, 6 ガラクトース転移酵素、 α2, 6 シアル酸転移酵素、 《1, 4 ガラクトース 転移酵素、セラミドガラタトース転移酵素、 ひ1, 2 フコース転移酵素、 ひ1, 3 フコ ース転移酵素、 αΐ, 4 フコース転移酵素、 《1, 6 フコース転移酵素、 《1, 3— Ν ァセチルガラタトサミン転移酵素、 《1, 6— Ν—ァセチルガラタトサミン転移酵素 、 β 1, 4 Ν ァセチルガラタトサミン転移酵素、ポリペプチド Ν ァセチルガラクト サミン転移酵素、 /3 1, 4 Nァセチルダルコサミン転移酵素、 13 1, 2—Nァセチルダ ルコサミン転移酵素、 β ΐ, 3— Νァセチルダルコサミン転移酵素、 β ΐ, 6— Νァセチ ルダルコサミン転移酵素、 α ΐ, 4— Νァセチルダルコサミン転移酵素、 13 1, 4 マン ノース転移酵素、 α 1, 2 マンノース転移酵素、 《1, 3 マンノース転移酵素、 《1 , 4 マンノース転移酵素、 α ΐ, 6 マンノース転移酵素、 α ΐ, 2 グルコース転移 酵素、 α ΐ, 3 グルコース転移酵素、 α 2, 3 シアル酸転移酵素、 α 2, 8 シアル 酸転移酵素、 α ΐ, 6—ダルコサミン転移酵素、 《1, 6 キシロース転移酵素、 βキ シロース転移酵素(プロテオダリカンコア構造合成酵素)、 13 1, 3—グルクロン酸転移 酵素、ヒアルロン酸合成酵素、他の糖ヌクレオチドを糖ドナーとして用いる糖転移酵 素およびドルコールリン酸型糖ドナーを用いる糖転移酵素が挙げられる。
[0121] 別の好ましい実施形態において、本発明の糖ペプチドを製造する方法は、以下の 工程:
(Α)項目(4)〜(7)のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖を伸長させたィ匕合物を得る工程;
(Β)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および
(C)糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる工程、 を包む。さらに、糖ペプチドを単離する工程を含んでいてもよい。本製造法において は、 目的の糖ペプチドと担体を含む糖ペプチド以外の副生成物を容易に分離し得る
[0122] さらに別の好ましい実施形態において、本発明の糖ペプチドを製造する方法は、以 下の工程:
(Α)項目(4)〜(7)のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖を伸長させたィ匕合物を得る工程;
(Β)工程 (Α)を 1回または 2回以上繰り返して糖鎖を伸長させる工程; (C)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および
(D)複数の糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる 工程、を包む。
[0123] なおさらに別の好ましい実施形態において、本発明の糖ペプチドを製造する方法 は、以下の工程:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の化 合物を得る工程;
(B)工程 (A)で得た化合物と、ケトン残基またはアルデヒド残基と特異的に反応しう る、保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒドラジド基、 アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残基力もなる 群から選択される官能基を含む担体とを反応させる工程;
(C)工程 (B)で得たィ匕合物に、糖ヌクレオチドの存在下で糖転移酵素を作用させる ことにより、上記糖ヌクレオチドより糖残基を上記化合物に転移させ、糖鎖を伸長させ た化合物を得る工程;
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および
(E)糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる工程、 を包む。
[0124] 他の好ましい実施形態において、本発明の糖ペプチドを製造する方法は、以下の 工程:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の化 合物を得る工程;
(B)工程 (A)で得た化合物と、ケトン残基またはアルデヒド残基と特異的に反応しう る保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒドラジド基、ァ ジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残基力もなる 群から選択される官能基を含む担体とを反応させる工程; (C)工程 (B)で得たィ匕合物に、糖ヌクレオチドの存在下で糖転移酵素を作用させる ことにより、上記糖ヌクレオチドより糖残基を上記化合物に転移させ、糖鎖を伸長させ た化合物を得る工程;
(D)工程 (C)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;
(E)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および
(F)複数の糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる 工程、を包む。
[0125] さらに他の好ましい実施形態において、本発明の糖ペプチドを製造する方法は、以 下の工程:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の 化合物を得る工程;
(B)工程 (A)で得た化合物と、ケトン残基またはアルデヒド残基と特異的に反応しう る保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒドラジド基、ァ ジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残基力もなる 群から選択される官能基を含む担体と反応させ、これと同時に工程 (A)における未 反応物を除去する工程;
(C)工程 (B)で得た担体に結合したィ匕合物に、糖ヌクレオチドの存在下で糖転移 酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に転移させ 、糖鎖を伸長させたィ匕合物を得る工程;および
(D)工程 (C)で得た糖鎖が伸長したィ匕合物にプロテアーゼを作用させる工程、 を包む。
[0126] なおさらに他の好ましい実施形態において、本発明の糖ペプチドを製造する方法 は、以下の工程:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の化 合物を得る工程; (B)工程 (A)で得た化合物と、ケトン残基またはアルデヒド残基と特異的に反応しう る保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒドラジド基、ァ ジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残基力もなる 群から選択される官能基を含む担体とを反応させ、これと同時に工程 (A)における未 反応物を除去する工程;
(C)工程 (B)で得た担体に結合したィ匕合物に、糖ヌクレオチドの存在下で糖転移 酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に転移させ 、糖鎖が伸長されたィ匕合物を得る工程;
(D)工程 (C)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;
(E)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および
(F)複数の糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる 工程、を包む。
[0127] 別の好ましい実施形態において、本発明の糖ペプチドを製造する方法は、以下の 工程:
(A)項目(1)〜(3)のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖を伸長させたィ匕合物を得る工程;
(B)必要に応じて工程 (A)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;
(C)糖残基が転移して糖鎖が伸長した化合物と、ケトン残基またはアルデヒド残基 と特異的に反応しうる保護されて 、てもよ 、ァミノォキシ基、 N—アルキルアミノォキシ 基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシステ イン残基からなる群から選択される官能基を含む担体と、を反応させる工程;および
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程、
を含む。
[0128] さらに別の好ましい実施形態において、本発明の糖ペプチドを製造する方法は、以 下の工程: (A)項目(1)〜(3)のいずれか 1項に記載の化合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖を伸長させたィ匕合物を得る工程;
(B)必要に応じて工程 (A)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;
(C)糖残基が転移して糖鎖が伸長した化合物と、ケトン残基またはアルデヒド残基 と特異的に反応しうる保護されて 、てもよ 、ァミノォキシ基、 N—アルキルアミノォキシ 基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシステ イン残基からなる群から選択される官能基を含む担体と、を反応させる工程;
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;および
(E)糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる工程、 を含む。
なおさらに別の好ましい実施形態において、本発明の糖ペプチドを製造する方法 は、以下の工程:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の化 合物を得る工程;
(B)工程 (A)で得た化合物と、ケトン残基またはアルデヒド残基と特異的に反応しう る保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒドラジド基、ァ ジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残基力もなる 群から選択される官能基を含む可溶性担体とを反応させ、再沈澱、ゲルろ過、または 限外ろ過などにより工程 (A)における未反応物を除去する工程;
(C)工程 (B)で得た担体に可溶性結合したィ匕合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖が伸長されたィ匕合物を得る工程;
(D)工程 (C)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;
(E)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程; (F)糖残基が転移して糖鎖が伸長したィ匕合物を、ケト酸またはアルデヒド酸を表面 に結合した非可溶性担体と反応させ、その表面に固定する工程;および
(G)必要に応じ糖鎖の伸長反応に使用した試薬および酵素を除去する工程、 を含む。
[0130] さらにまた別の好ましい実施形態において、本発明の糖ペプチドを製造する方法 は、以下の工程:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデ ヒド酸を原料にペプチド固相合成を行い、項目(1)〜(3)のいずれか 1項に記載の化 合物を得る工程;
(B)工程 (A)で得た化合物と、ケトン残基またはアルデヒド残基と特異的に反応しう る保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒドラジド基、ァ ジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残基力もなる 群から選択される官能基を含む可溶性担体とを反応させ、再沈澱、ゲルろ過、または 限外ろ過などにより工程 (A)における未反応物を除去する工程;
(C)工程 (B)で得た担体に可溶性結合したィ匕合物に、糖ヌクレオチドの存在下で 糖転移酵素を作用させることにより、上記糖ヌクレオチドより糖残基を上記化合物に 転移させ、糖鎖が伸長されたィ匕合物を得る工程;
(D)工程 (C)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;
(E)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去 する工程;
(F)糖残基が転移して糖鎖が伸長したィ匕合物を、ケト酸またはアルデヒド酸を表面 に結合した非可溶性担体と反応させ、その表面に固定する工程;
(G)必要に応じ糖鎖の伸長反応に使用した試薬および酵素を除去する工程;およ び
(H)工程 (F)で固定ィ匕した糖鎖が伸長したィ匕合物にプロテアーゼを作用させるェ 程、を含む。
[0131] 本発明の糖ペプチドの製造方法において、前述の糖転移酵素を用いた一連の反 応は、必要に応じて、反応部の温度制御が可能な分注装置 (分注器)等を用いて自 ^柰^ 挲 f « 、 HN、¾邈氺 «3A
:っ挲 ¾ /— fi « $ ^ / /^¾~ 、士 U峯氺 DT
•つ挲¾ \Λ(^Ι \ OV · 簾 ¾
¾ ¾南、士 u峯氺 ^ ^ ^^ ^τ^ ^^ ψ^]^^^ [6ειο]
Figure imgf000060_0001
\_zz \ [8ε TO]
Figure imgf000060_0002
[6ΐ^] [εειο] 止!^ ^ήα)ΜΛ^
面べ^マ
Figure imgf000060_0003
βειο]
S.69T0/S00Zdf/X3d 69 01?80ε0/900Ζ OAV られる。
[0140] 上記 R1および R2が糖鎖を表す場合、 R1および R2はそれぞれ独立して、以下: [0141] [化 23]
Figure imgf000062_0001
S.69T0/S00Zdf/X3d 1-9 0^80C0/900Z OAV
Figure imgf000063_0001
Figure imgf000064_0001
S.69T0/S00Zdf/X3d S9 0^80C0/900Z OAV
Figure imgf000065_0001
Figure imgf000065_0002
[0142] 力 なる群力 選択される。
[0143] (医薬およびそれを用いる治療、予防など)
別の局面において、本発明は、本発明の製造方法によって得られた糖ペプチド (例 えば、ムチン型糖ペプチド)を含む医薬 (例えば、ワクチン等の医薬品、健康食品、残 さタンパク質又は脂質は抗原性を低減した医薬品)に関する。この医薬は、薬学的に 受容可能なキャリアなどをさらに含み得る。本発明の医薬に含まれる薬学的に受容 可能なキャリアとしては、当該分野において公知の任意の物質が挙げられる。
[0144] そのような適切な処方材料または薬学的に受容可能なキャリアとしては、抗酸化剤 、保存剤、着色料、風味料、および希釈剤、乳化剤、懸濁化剤、溶媒、フィラー、増 量剤、緩衝剤、送達ビヒクル、希釈剤、賦形剤および/または薬学的アジュバント挙 げられるがそれらに限定されない。代表的には、本発明の医薬は、単離された多能 性幹細胞、またはその改変体もしくは誘導体を、 1つ以上の生理的に受容可能なキ ャリア、賦形剤または希釈剤とともに含む組成物の形態で投与される。例えば、適切 なビヒクルは、注射用水、生理的溶液、または人工脳脊髄液であり得、これらには、 非経口送達のための組成物に一般的な他の物質を補充することが可能である。
[0145] 本明細書で使用される受容可能なキャリア、賦形剤または安定化剤は、レシピエン トに対して非毒性であり、そして好ましくは、使用される投薬量および濃度において不 活性であり、そして以下が挙げられる:リン酸塩、クェン酸塩、または他の有機酸;ァス コルビン酸、 a トコフエロール;低分子量ポリペプチド;タンパク質(例えば、血清ァ ルブミン、ゼラチンまたは免疫グロブリン);親水性ポリマー(例えば、ポリビュルピロリ ドン);アミノ酸 (例えば、グリシン、グルタミン、ァスパラギン、アルギニンまたはリジン) ;モノサッカリド、ジサッカリドおよび他の炭水化物(グルコース、マンノース、またはデ キストリンを含む);キレート剤(例えば、 EDTA);糖アルコール (例えば、マン-トー ルまたはソルビトール);塩形成対イオン (例えば、ナトリウム);ならびに Zあるいは非 イオン性表面活性化剤(例えば、 Tween、プル口ニック (pluronic)またはポリエチレ ングリコール(PEG) )。
[0146] 例示の適切なキャリアとしては、中性緩衝化生理食塩水、または血清アルブミンと 混合された生理食塩水が挙げられる。好ましくは、その生成物は、適切な賦形剤 (例 えば、スクロース)を用いて凍結乾燥剤として処方される。他の標準的なキャリア、希 釈剤および賦形剤は所望に応じて含まれ得る。他の例示的な組成物は、 pH7. 0— 8. 5の Tris緩衝剤または pH4. 0— 5. 5の酢酸緩衝剤を含み、これらは、さら〖こ、ソ ルビトールまたはその適切な代替物を含み得る。 [0147] 本発明の医薬は、経口的または非経口的に投与され得る。あるいは、本発明の医 薬は、静脈内または皮下で投与され得る。全身投与されるとき、本発明において使用 される医薬は、発熱物質を含まない、薬学的に受容可能な水溶液の形態であり得る 。そのような薬学的に受容可能な組成物の調製は、 pH、等張性、安定性などを考慮 することにより、当業者は、容易に行うことができる。本明細書において、投与方法は 、経口投与、非経口投与 (例えば、静脈内投与、筋肉内投与、皮下投与、皮内投与 、粘膜投与、直腸内投与、膣内投与、患部への局所投与、皮膚投与など)であり得る 。そのような投与のための処方物は、任意の製剤形態で提供され得る。そのような製 剤形態としては、例えば、液剤、注射剤、徐放剤が挙げられる。
[0148] 本発明の医薬は、必要に応じて生理学的に受容可能なキャリア、賦型剤または安 定化剤 (日本薬局方第 14版またはその最新版、 Remington' s Pharmaceutical sciences, 18th Edition, A. R. Gennaro, ed. , MacK Publishing Compan y, 1990などを参照)と、本発明の製造方法によって得られた、所望の程度の純度を 有する糖ペプチド (例えば、ムチン型糖ペプチド)を含む組成物とを混合することによ つて、凍結乾燥されたケーキまたは水溶液の形態で調製され保存され得る。
[0149] 本発明の処置方法にぉ 、て使用される糖ペプチド (例えば、ムチン型糖ペプチド) を含む組成物の量は、使用目的、対象疾患 (種類、重篤度など)、患者の年齢、体重 、性別、既往歴、細胞の形態または種類などを考慮して、当業者が容易に決定する ことができる。本発明の処置方法を被検体 (または患者)に対して施す頻度もまた、使 用目的、対象疾患 (種類、重篤度など)、患者の年齢、体重、性別、既往歴、および 治療経過などを考慮して、当業者が容易に決定することができる。頻度としては、例 えば、毎日 数ケ月に 1回(例えば、 1週間に 1回 1ヶ月に 1回)の投与が挙げられ る。 1週間— 1ヶ月に 1回の投与を、経過を見ながら施すことが好ましい。
[0150] 以上のように本発明の好ましい実施形態を用いて本発明を例示してきた力 本発 明はこの実施形態に限定して理解されるべきものではない。本発明は、特許請求な お範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、 本発明の具体的な好ましい実施形態の記載力 本発明の記載および技術常識に基 づいて等価な範囲を実施できることが理解される。本明細書において引用した特許、 特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと 同様にその内容が本明細書に対する参考として援用されるべきである。
実施例
[0151] 本明細書で用いられる略語は、以下のような意味を有する。
以下の実施例より本研究をさらに詳細に説明するが、本研究はこれらに限定されるも のではない。
本実施例で用いられる略語は、以下の様な意味を有する。
[0152] DMF = N, N ジメチルホルムアミド、
DCM = ジクロロメタン、
HOBT = N ヒドロキシベンゾトリァゾーノレ、
HBTU= 1 - (ビス(ジメチルァミノ)メチレン)一ベンゾトリアゾリゥム 3 ォキシド へキサフルォロリン酸塩、
DIEA = ジイソプロピルェチルァミン、
Boc基 = tert ブトキシカルボ-ル基、
Fmoc基 = 9 フルォレニルメトキシカルボ-ル基、
Pbf基 = 2, 2, 4, 6, - 5—スルホ-ル基、 Fmoc— Ala— OH = N— a— Fmoc— L ァラニン、
Fmoc -Gly-OH = N— — Fmoc— L グリシン、
Fmoc -Pro -OH = N— a— Fmoc— L プロリン、
Fmoc— Arg (Pbf)— OH = Ν- α -Fmoc-Ν γ (2, 2, 4, 6, 7 ペンタ ースノレホニノレ) L ァノレギニン、
Fmoc -Asp (OtBu)— OH = Ν— a—Fmoc— L ァスノ ラギン酸 β—t— ブチルエステル、
Fmoc -Gin (OtBu) OH = N— α— Fmoc—: Lーグノレタミン酸 j8—t—ブチ ノレエステノレ、
Fmoc— Phe— OH = N- - Fmoc— L フエニノレアラニン、
Fmoc -Val-OH = N— a Fmoc— L—バリン、
Fmoc— His (Trt)— OH = N— a— Fmoc— N— im トリチル一 L ヒスチジ ン、
Fmoc -Thr-OH = N— α— Fmoc— L トレ才ニン、
Fmoc - Ser-OH = N— a—Fmoc— L セリン、
Fmoc -Thr (Ac3GalNAc) - OH = Ν— α— Fmoc— O— (2 ァセトアミドー 3, 4, 6 トリー O ァセチノレー 2 デォキシー α— D—ガラクトビラノシノレ) L—トレ ォニン、
Fmoc - Ser (Ac3GalNAc) - OH = Ν— α— Fmoc— O— (2 ァセトアミドー 3, 4, 6 トリ一 O ァセチル一 2 デォキシ α—D—ガラクトビラノシル)一 L セ リン、
Fmoc -Thr (Ac7core2) - OH = Ν— α— Fmoc— O— {O— (2,, 3, ,4, ,6 ,一テトラ一 O ァセチノレ一 β—D—ガラタトピラノシル) - (1,→3) -0- [2"—ァセ トアミド一 3", 4", 6,,一トリ一 Ο ァセチル一 2,,一デォキシ一 13—D—ダルコビラノシ ルー(1"→6) ]— 2 ァセトアミドー 2 デォキシ a— D ガラクトピラノシル }— L スレ才ニン、
Fmoc - Ser (Ac7core2) - OH = Ν— α— Fmoc— O— {O— (2,, 3, ,4, ,6 ,一テトラ一 O ァセチノレ一 β—D—ガラタトピラノシル) - (1,→3) -0- [2"—ァセ トアミド一 3", 4", 6,,一トリ一 Ο ァセチル一 2,,一デォキシ一 13—D—ダルコビラノシ ルー(1"→6) ]— 2 ァセトアミドー 2 デォキシ a— D ガラクトピラノシル }— L ーセリン、
Fmoc— Thr (Ac5core6)— ΟΗ = Ν— α— Fmoc— O— [O— (2,, ァセトアミ ド一 3", 4", 6,,一トリ一 O ァセチル一 2"—デォキシ一 13—D—ダルコピラノシル) - (1"→6)—2 ァセトアミドー 4, 6 ジ— O ァセチルー 2 デォキシ— at -D- ガラクトビラノシノレ]—L—スレ才ニン、
Fmoc— Ser (Ac5core6)— OH = Ν— α— Fmoc— O— [O— (2,, ァセトアミ ド一 3", 4", 6,,一トリ一 O ァセチル一 2"—デォキシ一 13—D—ダルコピラノシル) - (1"→6)—2 ァセトアミドー 4, 6 ジ— O ァセチルー 2 デォキシ— at -D- ガラクトビラノシノレ L セリン。
(実施例 1 : N末端にケトン誘導体を有する MUC1関連糖ペプチド誘導体(1)〜(1 )の合成)
(1. 1 化合物(1)の合成) 24]
Figure imgf000071_0001
[0155] Tentagel (登録商標)(Hipep Laboratories, 0. 25mmol/g) 0. 12g (0. 03m mol)を担体として以下に示す N—保護アミノ酸とケト酸を FmocZHBTUZHOBt 法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Arg (Pbf)— OH、 Fmoc -Thr (Ac7core2)— OH、 Fmoc— Asp (OtBu)— OH、 Fmoc— Pro— OH 、 Fmoc -Ala -OH, Fmoc— Ser— OH、 Fmoc -Thr- OH, Fmoc—Val—OH 、 Fmoc— Gly—OH、 Fmoc -His (Trt)—OH、 Fmoc -Ala -OH, Fmoc -Gin (OtBu) -OH, Fmoc— Phe— OH、 5—ケトへキサン酸。ペプチド伸長反応後、 90 %TFA水溶液中、室温で 2時間反応させることによってペプチド残基上の保護基を 脱離させるとともに、固相担体上から化合物(1)を遊離させた。榭脂を濾別し、 TFA を揮発留去した後、 10%ァセトニトリル水溶液に溶解し逆相 HPLC (Inertsil (登録 商標) ODS— 3 20 250111111カラム、移動層八:0. 1%丁?八水溶液に対する8 : 0 . 1%TFA含有ァセトニトリルの 5%力も 60%のグラジェント)により精製して化合物( 1)を 8. 5mg得た(収率 28%)。 MALDI-TOF/MS: [M (average) +H] + = 23 60. 5、(理論値: [M (average) +H] + = 2362. 4)。
[0156] (1. 2 化合物(2)の合成)
[0157] [化 25]
Figure imgf000073_0001
Figure imgf000073_0002
[0158] 化合物(1)をメタノール 7mlに溶解し、 0. 1N水酸化ナトリウム水溶液にて pHを 12 . 0に調整した。随時 0. 1N水酸ィ匕ナトリウム水溶液で pHを調節しながら、反応終了 まで 2時間撹拌した。反応終了後、 H+型陽イオン交換榭脂 DoWex50WX8 (ダウケ ミカル社製)を加えて中和した後、榭脂を濾別し、濾液の溶媒を留去して残渣を逆相 HPLC (Inertsil (登録商標) ODS— 3 20 X 250mmカラム、移動層 A: 0. 1%TF A水溶液に対する B : 0. 1%TFA含有ァセトニトリルの 0%から 60%のグラジェント) により精製して化合物(2)を 2. 2mg得た(収率 81%)。 MALDI-TOF/MS: [M ( average) +H] + = 2066. 2、(理論値: [M (average) +H] + = 2068. 1)。
[0159] (1. 3 化合物(3)の合成)
[0160] [化 26]
Figure imgf000075_0001
S.69T0/S00Zdf/X3d VI 0^80C0/900Z OAV [0161] Tentagel (登録商標)(Hipep Laboratories, 0. 25mmol/g) 0. 12g (0. 03m mol)を担体として以下に示す N—保護アミノ酸とケト酸を FmocZHBTUZHOBt 法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Arg (Pbf)— OH、 Fmoc -Thr (Ac7core2)— OH、 Fmoc— Asp (OtBu)— OH、 Fmoc— Pro— OH 、 Fmoc—Ala— OH、 Fmoc - Ser (Ac3GalNAc)—OH、 Fmoc—Thr (Ac3Gal NAc) -OH, Fmoc— Val— OH、 Fmoc— Gly— OH、 Fmoc— His (Trt)— OH、 Fmoc— Ala— OH、 Fmoc -Gin (OtBu)— OH、 Fmoc— Phe— OH、 5—ケトへキ サン酸。ペプチド伸長反応後、 90%TFA水溶液中、室温で 2時間反応させること〖こ よってペプチド残基上の保護基を脱離させるとともに、固相担体上から化合物(3)を 遊離させた。榭脂を濾別し、 TFAを揮発留去した後、 10%ァセトニトリル水溶液に溶 解し固体を逆相 HPLC (Inertsil (登録商標) ODS— 3 20 X 250mmカラム、移動 層 A: 0. 1%TFA水溶液に対する B: 0. 1%TFA含有ァセトニトリルの 10%力 70 %のグラジェント)により精製して化合物(3)を 16mg得た (収率 18%)。 MALDI-T OF/MS: [M (average) +H] + = 3018. 340、(理論値: [M (average) +H] + = 3021. 0)。
[0162] (1. 4 化合物 (4)の合成)
[0163] [化 27]
Figure imgf000077_0001
01?80ε0/900Ζ OAV [0164] 化合物(3)をメタノール 5mlに溶解し、 0. 1N水酸化ナトリウム水溶液にて pHを 12 . 0に調整した。随時 0. 1N水酸ィ匕ナトリウム水溶液で pHを調節しながら、反応終了 まで 2時間撹拌した。反応終了後、 H+型陽イオン交換榭脂 DoWex50WX8 (ダウケ ミカル社製)を加えて中和した後、榭脂を濾別し、濾液の溶媒を留去して残渣を逆相 HPLC (Inertsil (登録商標) ODS— 3 20 X 250mmカラム、移動層 A: 0. 1%TF A水溶液に対する B : 0. 1%TFA含有ァセトニトリルの 0%から 60%のグラジェント) により精製して化合物(4)を 6. 8mg得た(収率 62%)。 MALDI-TOF/MS: [M ( average) +H] + = 2472. 952、(理論値: [M (average) +H] + = 2474. 5)。
[0165] (1. 5 化合物(5)の合成)
[0166] [化 28]
Figure imgf000079_0001
S.69T0/S00Zdf/X3d 8Z 01?80ε0/900Ζ OAV [0167] Tentagel (登録商標)(Hipep Laboratories, 0. 25mmol/g) 0. 12g (0. 03m mol)を担体として以下に示す N—保護アミノ酸とケト酸を FmocZHBTUZHOBt 法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Arg (Pbf)— OH、 Fmoc -Thr (Ac7core2)— OH、 Fmoc— Asp (OtBu)— OH、 Fmoc— Pro— OH 、 Fmoc—Ala— OH、 Fmoc - Ser (Ac3GalNAc)—OH、 Fmoc—Thr (Ac3Gal NAc) -OH, Fmoc— Val— OH、 Fmoc— Gly— OH、 Fmoc— His (Trt)— OH、 Fmoc— Ala— OH、 Fmoc -Gin (OtBu)— OH、 Fmoc— Phe— OH、 5—ケトへキ サン酸。ペプチド伸長反応後、 90%TFA水溶液中、室温で 2時間反応させること〖こ よってペプチド残基上の保護基を脱離させるとともに、固相担体上から化合物(5)を 遊離させた。榭脂を濾別し、 TFAを揮発留去した後、 10%ァセトニトリル水溶液に溶 解し固体を逆相 HPLC (Inertsil (登録商標) ODS— 3 20 X 250mmカラム、移動 層 A: 0. 1%TFA水溶液に対する B: 0. 1%TFA含有ァセトニトリルの 10%力 70 %のグラジェント)により精製して化合物(5)を 9. 8mg得た (収率 7%)。 MALDI-T OF/MS: [M (average) +H] + = 3018. 4、(理論値: [M (average) +H] + = 30 21. 0)。
[0168] (1. 6 化合物(6)の合成)
[0169] [化 29]
Figure imgf000081_0001
S.69T0/S00Zdf/X3d 08 01?80ε0/900Ζ OAV [0170] 化合物(5)をメタノール 5mlに溶解し、 0.1N水酸化ナトリウム水溶液にて pHを 12 .0に調整した。随時 0.1N水酸ィ匕ナトリウム水溶液で pHを調節しながら、反応終了 まで 2時間撹拌した。反応終了後、 H+型陽イオン交換榭脂 DoWex50WX8(ダウケ ミカル社製)を加えて中和した後、榭脂を濾別し、濾液の溶媒を留去して残渣を逆相 HPLC(Inertsil (登録商標) ODS— 3 20X 250mmカラム、移動層 A:0.1%TF A水溶液に対する B:0.1%TFA含有ァセトニトリルの 0%から 60%のグラジェント) により精製して化合物(6)を 4.4mg得た(収率 56%)。 MALDI-TOF/MS:M(a verage)+H] + = 2472.952、(理論値: [M (average) +H] + = 2474.5)。
(1.7 化合物(7)の合成)
[0171] [化 30]
Figure imgf000083_0001
[0172] Tentagel (登録商標)(Hipep Laboratories, 0. 25mmol/g) 0. 12g (0. 03m mol)を担体として以下に示す N—保護アミノ酸とケト酸を FmocZHBTUZHOBt 法で順次縮合し、目的の糖ペプチド誘導体を合成した。 Fmoc-Arg (Pbf)— OH、 Fmoc - Ser (Ac7core2)— OH、 Fmoc— Asp (OtBu)— OH、 Fmoc— Pro— OH 、 Fmoc—Ala— OH、 Fmoc -Thr (Ac3GalNAc)—OH、 Fmoc—Val— OH、 F moc— Gly— OH、 Fmoc -His (Trt)— OH、 Fmoc— Ala— OH、 Fmoc— Gin (Ot Bu) -OH, Fmoc— Phe— OH、 5—ケトへキサン酸。ペプチド伸長反応後、 90%T FA水溶液中、室温で 2時間反応させることによってペプチド残基上の保護基を脱離 させるとともに、固相担体上から化合物(7)を遊離させた。榭脂を濾別し、 TFAを揮 発留去した後、 10%ァセトニトリル水溶液に溶解し固体を逆相 HPLC (Inertsil (登 録商標) ODS— 3 20 X 250mmカラム、移動層 A : 0. 1%TF A水溶液に対する B : 0. 1%TFA含有ァセトニトリルの 10%から 70%のグラジェント)により精製して化合 物(7)を 11. 3mg得た(収率 12%)。 MALDI-TOF/MS: [M (average) +H] + = 3018. 602、(理論値: [M (average) +H] + = 3021. 0)。
[0173] (1. 8 化合物(8)の合成)
[0174] [化 31]
Figure imgf000085_0001
化合物(7)をメタノール 5mlに溶解し、 0. 1N水酸ィ匕ナトリウム水溶液にて pHを 12 . 0に調整した。随時 0. 1N水酸ィ匕ナトリウム水溶液で pHを調節しながら、反応終了 まで 2時間撹拌した。反応終了後、 H+型陽イオン交換榭脂 DoWex50WX8 (ダウケ ミカル社製)を加えて中和した後、榭脂を濾別し、濾液の溶媒を留去して残渣を逆相 HPLC (Inertsil (登録商標) ODS— 3 20 X 250mmカラム、移動層 A: 0. 1%TF A水溶液に対する B : 0. 1%TFA含有ァセトニトリルの 0%から 60%のグラジェント) により精製して化合物(8)を 5. 6mg得た(収率 62%)。 MALDI-TOF/MS: [M ( average) +H] + = 2473. 328、(理論値: [M (average) +H] + = 2474. 5)。
[0176] (1. 9 化合物(9)の合成)
[0177] [化 32]
Figure imgf000087_0001
01?80ε0/900Ζ OAV [0178] Tentagel (登録商標)(Hipep Laboratories, 0. 25mmol/g) 0. 12g (0. 03m mol)を担体として以下に示す N—保護アミノ酸とケト酸を FmocZHBTUZHOBt 法で順次縮合し、目的の糖ペプチド誘導体を合成した。 Fmoc-Arg (Pbf)— OH、 Fmoc -Thr (Ac5core6)— OH、 Fmoc— Asp (OtBu)— OH、 Fmoc -Pro -OH 、 Fmoc— Ala— OH、 Fmoc - Ser (Ac7core2)— OH、 Fmoc— Thr (Ac3GalNA c)— OH、 Fmoc— Val— OH、 Fmoc— Gly— OH、 Fmoc— His (Trt)— OH、 Fm oc— Ala— OH、 Fmoc -Gin (OtBu)— OH、 Fmoc— Phe— OH、 5—ケトへキサ ン酸。ペプチド伸長反応後、 90%TFA水溶液中、室温で 2時間反応させることによ つてペプチド残基上の保護基を脱離させるとともに、固相担体上から化合物(9)を遊 離させた。榭脂を濾別し、 TFAを揮発留去した後、 10%ァセトニトリル水溶液に溶解 し固体を逆相 HPLC (Inertsil (登録商標) ODS— 3 20 X 250mmカラム、移動層 A: 0. 1%TFA水溶液に対する B: 0. 1%TFA含有ァセトニトリルの 10%力 70% のグラジェント)により精製して化合物(9)を 17mg得た (収率 17%)。 MALDI-TO F/MS: [M (average) +H] + = 3306. 3、(理論値: [M (average) +H] + = 330 8. 3) o
[0179] (1. 10 化合物(10)の合成)
[0180] [化 33]
Figure imgf000089_0001
S.69T0/S00Zdf/X3d 88 01?80ε0/900Ζ OAV [0181] 化合物(9)をメタノール 5mlに溶解し、 0. 1N水酸化ナトリウム水溶液にて pHを 12 . 0に調整した。随時 0. 1N水酸ィ匕ナトリウム水溶液で pHを調節しながら、反応終了 まで 2時間撹拌した。反応終了後、 H+型陽イオン交換榭脂 DoWex50WX8 (ダウケ ミカル社製)を加えて中和した後、榭脂を濾別し、濾液の溶媒を留去して残渣を逆相 HPLC (Inertsil (登録商標) ODS— 3 20 X 250mmカラム、移動層 A: 0. 1%TF A水溶液に対する B : 0. 1%TFA含有ァセトニトリルの 0%から 60%のグラジェント) により精製して化合物(10)を 5. 6mg得た(収率 40%)。 MALDI-TOF/MS: [M (average) +H] + = 2675. 5、(理論値: [M (average) +H] + = 2677. 7)。
[0182] (1. 11 化合物(11)の合成)
[0183] [化 34]
Figure imgf000091_0001
[0184] Tentagel (登録商標)(Hipep Laboratories, 0. 25mmol/g) 0. 12g (0. 03m mol)を担体として以下に示す N—保護アミノ酸とケト酸を FmocZHBTUZHOBt 法で順次縮合し、目的の糖ペプチド誘導体を合成した。 Fmoc-Arg (Pbf)— OH、 Fmoc -Thr (Ac5core6)— OH、 Fmoc— Asp (OtBu)— OH、 Fmoc— Pro— OH 、 Fmoc— Ala— OH、 Fmoc― Ser (Ac7core2)— OH、 Fmoc— Thr (Ac5core6) — OH、 Fmoc-Val-OH, Fmoc— Gly—OH、 Fmoc -His (Trt)—OH、 Fmoc —Ala— OHゝ Fmoc -Gin (OtBu)— OH、 Fmoc— Phe— OH、 5—ケトへキサン酸 。ペプチド伸長反応後、 90%TFA水溶液中、室温で 2時間反応させることによって ペプチド残基上の保護基を脱離させるとともに、固相担体上から化合物(11)を遊離 させた。榭脂を濾別し、 TFAを揮発留去した後、 10%ァセトニトリル水溶液に溶解し 固体を逆相 HPLC (Inertsil (登録商標) ODS— 3 20 X 250mmカラム、移動層 A : 0. 1%TFA水溶液に対する B : 0. 1%TF A含有ァセトニトリルの 10%力 70%の グラジェント)により精製して化合物(11)を 24mg得た (収率 22%)。 MALDI— TO F/MS: [M (average) +H] + = 3593. 4、(理論値: [M (average) +H] + = 359 4. 5) o
[0185] (1. 12 化合物(12)の合成)
[0186] [化 35]
Figure imgf000093_0001
S.69T0/S00Zdf/X3d 36 01?80ε0/900Ζ OAV [0187] 化合物(3)をメタノール 5mlに溶解し、 0. 1N水酸化ナトリウム水溶液にて pHを 12 . 0に調整した。随時 0. 1N水酸ィ匕ナトリウム水溶液で pHを調節しながら、反応終了 まで 2時間撹拌した。反応終了後、 H+型陽イオン交換榭脂 DoWex50WX8 (ダウケ ミカル社製)を加えて中和した後、榭脂を濾別し、濾液の溶媒を留去して残渣を逆相 HPLC (Inertsil (登録商標) ODS— 3 20 X 250mmカラム、移動層 A: 0. 1%TF A水溶液に対する B : 0. 1%TFA含有ァセトニトリルの 0%から 60%のグラジェント) により精製して化合物(12)を 6. 2mg得た(収率 31%)。 MALDI-TOF/MS: [M (average) +H] + = 2879. 597、(理論値: [M (average) +H] + = 2880. 9)。
[0188] (実施例 2 : N末端にケトン誘導体を有する MUC1関連糖ペプチド誘導体に対する 糖転移反応およびプロテアーゼによる選択的切断反応)
(2. 1 化合物(13)、 (14)の合成)
[0189] [化 36]
Figure imgf000095_0001
01?80ε0/900Ζ OAV [0190] 25mM HEPES緩衝液(pH7. 6)、0. 20U/ml ヒト由来 j8 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 10mM 塩ィ匕マンガン、 5mM ゥリジン— 5,—二リン酸ガ ラタトースニナトリウム(UDP— Gal) , ImM 糖ペプチド誘導体(2)を含む 50 1の 反応液を 25°Cで 45分間攪拌した。反応液の一部を逆相 HPLC (Inertsil (登録商標 ) ODS- 3 4. 6 X 250mmカラム、移動層 A : 0. 1%TFA水溶液に対する B : 0. 1 %TF A含有ァセトニトリルの 5%力も 40%のグラジェント)により精製して化合物(13) を得た [転移率 95%以上(HPLC) ]。転移化合物の同定は MALDI—TOFZMS によって化合物(13)に由来する [M (average) +H] + = 2228. 6、(理論値: [M (a verage) +H] + = 2230. 3)を確認することで行った。
[0191] [化 37]
Figure imgf000097_0001
[0192] 上述の反応液 10 1にバシラス リケ-ホルミス(Bacillus Licheniformis)由来の グルタミン酸残基特異的なプロテアーゼ (BLase:塩野義製薬社製)の 1. 74mgZm 1溶液 2 1を加え、 25°Cで 45分間攪拌した。転移化合物の同定は反応液を MALDI -TOF/MSによって分析し、化合物(14)に由来する [M (average) +H] + = 184 0. 7 (m .: [M (average) + H] + = 1841. 9)を確認することで行った。
[0193] (2. 2 化合物(15)、(16)の合成) [化 38]
Figure imgf000098_0001
25mM HEPES緩衝液(pH7. 0)、0. l%Triton X— 100, 74mU/ml ラット 組換え α 2, 3—(Ν)—シアル酸転移酵素(Calbiochem社製)、 17. 5mU/ml ラ ット組換え « 2, 3- (O)—シアル酸転移酵素(Calbiochem社製)、 5mM シチジン 5 '—リン酸シアル酸ナトリウム(CMP—NANA)、 ImM 糖ペプチド誘導体(13) を含む 1の反応液を 25°Cで 4時間攪拌した。反応液の一部を逆相 HPLC (Iner tsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動層 A : 0. 1%TF A水溶液に 対する B : 0. 1%TFA含有ァセトニトリルの 5%力も 40%のグラジェント)により精製し て化合物(15)を得た [転移率 95%以上 (HPLC) ]。転移ィ匕合物の同定は MALDI -TOF/MSによって化合物( 15)に由来する [M (average) +H] + = 2811. 8 (理 論値: [M (average) +H] + = 2812. 8)を確認することで行った。
[0196] [化 39]
Figure imgf000099_0001
[0197] 上述の反応液 5 μ 1にミリ Q水 4 μ 1、 BLase (塩野義製薬社製)の 1. 74mgZml溶 液: lをカ卩え、 25°Cで 14時間攪拌した。反応液を逆相 HPLC(Inertsil (登録商標)
ODS-3 4.6 X 250mmカラム、移動層 A :0. 1%TFA水溶液に対する B:0.1 %TF A含有ァセトニトリルの 5%力も 40%のグラジェント)により精製して化合物(16) を得た [収率 90%以上(HPLC) ]。転移化合物の同定は MALDI— TOFZMSによ つて化合物(16)に由来する [M (average) +H] + = 2423.8 (理論値: [M (averag e)+H] + = 2424.4)を確認することで行った。
[0198] (実施例 3:糖ペプチド合成用高分子プライマーの合成と糖鎖伸長反応)
(3.1 化合物(18)、 (A)の合成)
[0199] [化 40]
Figure imgf000100_0001
Figure imgf000101_0001
S.69T0/S00Zdf/X3d 001· 01?80ε0/900Ζ OAV ェ
Figure imgf000102_0001
2. 5mM 糖ペプチド誘導体 (2)、 5mM (ォキシァミン残基換算)水溶性高分子(1 7)、 12. 5mM 酢酸ナトリウム緩衝液 (pH5. 5)の反応液 360 1を室温で 8時間攪 拌した。反応液をゲルろ過 [Biogel P— 4 :溶出液 25mM 酢酸アンモニゥム緩衝 液 (pH6. 5) ]で精製し、化合物(18)の凍結乾燥体 4. 2mgを得た [ィ匕合物(2)の捕 捉率 95%以上(GPC— HPLC)]。
[0201] 得られた糖ペプチド誘導体化合物(18)の 5mM水溶液 5 μ 1を分取し、これにミリ Q 水 19 1、 BLase (塩野義製薬社製)の 1.74mgZml溶液 1 μ 1を加え、反応液を逆 相 HPLC(Inertsil (登録商標) ODS— 3 4.6 X 250mmカラム、移動層 A: 25m M酢酸アンモ-ゥム緩衝液(pH6.5)に対する B:ァセトニトリルの 2%から 20%のグ ラジェント)により精製して化合物(177)を得た [収率 90%以上 (HPLC)]。化合物( A)の MALDI—TOFZMS: [M(average) +H] + = 1678.0(理論値: [M(avera ge)+H] + = 1679.7)。
[0202] (3.2 化合物(19)、(14)、(B)、 (16)の合成)
[0203] [化 41]
Figure imgf000104_0001
Figure imgf000105_0001
18 19
Figure imgf000106_0001
α2,3-(Ν)-シアル酸転移酵素
および
(χ2,3-(0)-シアル酸転移酵素
Figure imgf000106_0002
奮 〔M〔〕0
Figure imgf000107_0001
SZ.69T0/S00idf/X3d 901· 0t"80£0/900Z OAV
Figure imgf000108_0001
50mM HEPES緩衝液(pH7. 0)、 lOmM 塩化マンガン、化合物(18)と化合 物(19)の混合物 ImM (18 + 19 :推定)を含む 200 1の混合液を、 50mM HEPE S緩衝液 (pH7. 0)、 0. 20U/ml ヒト由来 1, 4—ガラクトース転移酵素 (東洋紡 社製) 5mM ゥリジン一 5,一二リン酸ガラクトースニナトリウム(UDP— Gal)を含む 3 00 μ 1の混合液へ添カ卩し (総量 500 μ 1) 25°Cで 2時間攪拌した。この反応液のうち 4 ΟΟ Ιを、 50mM HEPES緩衝液(pH7. 0)、 0. l%Triton X— 100水溶液、 5m M シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、 74mU/ml ラット 組換え α 2, 3—(Ν)—シアル酸転移酵素(Calbiochem社製)、 17. 5mU/ml ラ ット組換え α 2, 3— (Ο)—シアル酸転移酵素(Calbiochem社製)を含む 200 μ 1混 合液へ添加して (総量 600 μ 1) 25°Cで 6時間以上攪拌することによって化合物(B)を 含む反応液を得た。転移化合物および転移率の同定は糖転移反応液 20 1を分取 し、これにミリ Q水 4 μ 1、 BLase (塩野義製薬社製)の 1. 74mgZml溶液 1 μ 1を加え 、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移 動層 A: 25mM酢酸アンモ-ゥム緩衝液(pH6. 5)に対する B :ァセトニトリルの 2% 力も 20%のグラジェント))により精製して化合物(16)を得ることにより行った。化合 物(25)の MALDI— TOFZMS: [M (average) +H] + = 2423. 9 (理論値: [M (a verage) +H] + = 2424. 4)。
[0207] (3. 3 化合物(20)、(21)の合成)
[0208] [化 43]
Figure imgf000110_0001
[0209] 2. 5mM 糖ペプチド誘導体 (4)、 5mM (ォキシァミン残基換算)水溶性高分子(1 7)の反応液 800 1を IN 水酸ィ匕ナトリウム水溶液で pH5. 1とし、室温で 18時間攪 拌した。反応液をゲルろ過 [Biogel P— 4 :溶出液 25mM 酢酸アンモ-ゥム緩衝 液 (pH6. 5) ]で精製し、化合物(20)の凍結乾燥体 4. 2mgを得た [ィ匕合物 (4)の捕 捉率 95%以上(GPC— HPLC) ]。
[0210] [化 44]
Figure imgf000111_0001
[0211] 糖ペプチド誘導体化合物(20)の 5mM水溶液 5 μ 1を分取し、これにミリ Q水 19 1 、 BLase (塩野義製薬社製)の 1. 74mgZml溶液 1 μ 1を加え、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動層 A: 25mM酢酸ァ ンモ -ゥム緩衝液(pH6. 5)に対する B :ァセトニトリルの 2%力も 20%のグラジェント ) )により精製して化合物(21)を得た。 [収率 90%以上 (HPLC) ]。化合物(21)の M ALDI-TOF/MS: [M (average) +H] + = 2085. 6 (理論値: [M (average) + H] + = 2086. 1)。
[0212] (3. 4 化合物(22)〜(25)の合成)
[0213] [化 45]
Figure imgf000112_0001
Figure imgf000113_0001
Figure imgf000114_0001
S.69T0/S00Zdf/X3d ε 01?80ε0/900Ζ OAV [0214] [化 46]
Figure imgf000115_0001
[0215] [化 47]
Figure imgf000116_0001
[0216] 反応部の温度制御が可能な分注装置を用いて以下の糖転移酵素を用いた一連の 反応を自動化して行った。
[0217] 50mM HEPES緩衝液(pH7. 0)、 0. 20UZml ヒト由来 j8 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 10mM 塩ィ匕マンガン、 5mM ゥリジン— 5,—二リン酸ガ ラタトースニナトリウム(UDP— Gal) , ImM 糖ペプチド誘導体(18)を含む 500 1 の反応液を 25°Cで 2時間反応させ化合物(22)を含む反応液を得た [転移率 95% 以上 (HPLC) ]。転移化合物および転移率の同定は糖転移反応液 20 μ 1を分取し、 これにミリ Q水 4 μ 1、 BLase (塩野義製薬社製)の 1. 74mg/ml溶液 1 μ 1を加え、反 応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動層 A: 25mM酢酸アンモ-ゥム緩衝液(pH6. 5)に対する B :ァセトニトリルの 2%から 2 0%のグラジェント)により精製して化合物(24)を得ることにより行った [収率 90%以 上(HPLC) ]。化合物(24)の MALDI—TOFZMS: [M (average) +H] + = 224 8. 1 (理論値: [M (average) +H] + = 2248. 2)。一方、ガラクトース転移反応後の 反応液を 400 1分取し、 500mM HEPES緩衝液(pH7. 0) 20 μ 1, l%Triton X— 100水溶液 60 1, 3. 7U/ml ラット組換え α 2, 3— (Ν)—シアル酸転移酵素 (Calbiochem社製) 12 1、 0. 88U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製) 12 1、 50mM シチジン— 5,—リン酸シアル酸ナトリウ ム(CMP— NANA) 60 μ 1,ミリ Q水 36 μ 1の混合液(総量 200 μ 1)を加え、 25。Cで 4 時間させて化合物(23)を含む反応液を得た [転移率 95%以上 (HPLC) ]。転移ィ匕 合物および転移率の同定は糖転移反応液 20 1を分取し、これにミリ Q水 4 1、 BLa se (塩野義製薬社製)の 1. 74mgZml溶液 1 μ 1を加え、反応液を逆相 HPLC (Iner tsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動層 A: 25mM酢酸アンモ- ゥム緩衝液(PH6. 5)に対する B:ァセトニトリルの 2%から 20%のグラジェント)により 精製して化合物(25)を得ることにより行った [収率 90%以上 (HPLC) ]。化合物(25 )の MALDI—TOFZMS : [M (average) +H] " = 2829. 8 (理論値: [M (averag e) +H] + = 2830. 8)。
[0218] (3. 5 化合物(26)、 (27)の合成)
[0219] [化 48]
Figure imgf000118_0001
2. 5mM 糖ペプチド誘導体 (6)、 5mM (ォキシァミン残基換算)水溶性高分子(1 7)の反応液 324 1を 1N 水酸ィ匕ナトリウム水溶液で pH5. 3とし、室温で 5時間攪 拌した。反応液をゲルろ過 [Biogel P— 4 :溶出液 25mM 酢酸アンモ-ゥム緩衝 液 (pH6. 5) ]で精製し、化合物(26)の凍結乾燥体 3. 7mgを得た [ィ匕合物(6)の捕 捉率 95%以上(GPC— HPLC) ]。 [0221] [化 49]
Figure imgf000119_0001
[0222] 糖ペプチド誘導体化合物(26)の 5mM水溶液 5 μ 1を分取し、これにミリ Q水 19 1 、 BLase (塩野義製薬社製)の 1. 74mgZml溶液 1 μ 1を加え、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動層 A: 25mM酢酸ァ ンモ -ゥム緩衝液(pH6. 5)に対する B :ァセトニトリルの 2%力も 20%のグラジェント ) )により精製して化合物(27)を得た。 [収率 90%以上 (HPLC) ]。化合物(27)の M ALDI-TOF/MS: [M (average) +H] + = 2084. 4 (理論値: [M (average) + H] + = 2086. 1)。 [0223] (3. 6 化合物(28)〜(31)の合成) [0224] [化 50]
Figure imgf000120_0001
Figure imgf000121_0001
Figure imgf000122_0001
S.69T0/S00Zdf/X3d 1-31. 01?80ε0/900Ζ OAV
Figure imgf000123_0001
Figure imgf000123_0002
[0226] [化 52]
Figure imgf000124_0001
[0227] 反応部の温度制御が可能な分注装置を用いて以下の糖転移酵素を用いた一連の 反応を自動化して行った。
[0228] 50mM HEPES緩衝液(pH7. 0)、 0. 20UZml ヒト由来 j8 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 10mM 塩ィ匕マンガン、 5mM ゥリジン— 5,—二リン酸ガ ラタトースニナトリウム(UDP— Gal) , ImM 糖ペプチド誘導体(26)を含む 500 1 の反応液を 25°Cで 2時間反応させ、化合物(28)を含む反応液を得た [転移率 95% 以上 (HPLC) ]。転移化合物(28)および転移率の同定は糖転移反応液 20 μ 1を分 取し、これにミリ Q水 4 μ 1、 BLase (塩野義製薬社製)の 1. 74mgZml溶液 1 μ 1を加 え、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、 移動層 A: 25mM酢酸アンモ-ゥム緩衝液(pH6. 5)に対する B :ァセトニトリルの 2 %から 20%のグラジェント)により精製して化合物(30)を得ることにより行った [収率 90%以上(HPLC) ]。化合物(30)の MALDI—TOFZMS : [M (average) +H] + = 2247. 9 (M : [M (average) +H] + = 2248. 2)。また、ガラクトース転移反 応後の反応液を 400 1分取し、 500mM HEPES緩衝液(pH7. 0) 20 μ l%Tr iton X— 100水溶液 60 1, 3. 7U/ml ラット組換え α 2, 3— (Ν)—シアル酸転 移酵素(Calbiochem社製) 12 1、 0. 88U/ml ラット組換え α 2, 3— (Ο)—シァ ル酸転移酵素(Calbiochem社製) 12 1、 50mM シチジン― 5 '—リン酸シアル酸 ナトリウム(CMP— NANA) 60 1,ミリ Q水 36 1の混合液(総量 200 1)を加え、 2 5°Cで 4時間反応させ、化合物(29)を含む反応液を得た [転移率 95%以上 (HPLC ) ]。転移化合物(29)および転移率の同定は糖転移反応液 20 μ 1を分取し、これにミ リ Q水 4 μ 1、 BLase (塩野義製薬社製)の 1. 74mgZml溶液 1 μ 1を加え、反応液を 逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動層 A: 25 mM酢酸アンモ-ゥム緩衝液(pH6. 5)に対する B :ァセトニトリルの 2%から 20%の グラジェント)により精製して化合物(31)を得ることにより行った [収率 90%以上 (HP LC) ]。化合物(31)の MALDI—TOFZMS : [M (average) +H] + = 2827. 2 (理 論値: [M (average) +H] + = 2830. 8)。
[0229] (3. 7 化合物(32)、(33)の合成)
[0230] [化 53]
Figure imgf000126_0001
3. 3mM 糖ペプチド誘導体 (8)、 6. 7mM (ォキシァミン残基換算)水溶性高分子 (17)の反応液 324 1を 1N 水酸ィ匕ナトリウム水溶液で pH5. 0とし、室温で 6時間 攪拌した。反応液をゲルろ過 [Biogel P— 4 :溶出液 25mM 酢酸アンモ-ゥム緩 衝液 (pH6. 5) ]で精製し、化合物(32)の凍結乾燥体 5. 6mgを得た [ィ匕合物(8)の
Figure imgf000127_0001
Figure imgf000127_0002
Figure imgf000127_0003
糖ペプチド誘導体化合物(32)の 5mM水溶液 5 μ 1を分取し、これにミリ Q水 19 1 、 BLase (塩野義製薬社製)の 1. 74mgZml溶液 1 μ 1を加え、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動層 A: 25mM酢酸ァ ンモ -ゥム緩衝液(pH6. 5)に対する B :ァセトニトリルの 2%力も 20%のグラジェント ) )により精製して化合物(33)を得た。 [収率 90%以上 (HPLC) ]。化合物(33)の M ALDI-TOF/MS: [M (average) +H] + = 2085. 3 (理論値: [M (average) + H] + = 2086. 1)。
[0234] (3. 8 化合物(34)〜(41)の合成)
[0235] [化 55]
β1,4-ガラク ト一ス転移酵素
Figure imgf000130_0001
Figure imgf000131_0001
α2,3-(0)-シアル酸転移酵素
Figure imgf000132_0001
6910細 dfAI M
01?80£0/900Ζ ΟΛ\
Figure imgf000133_0001
[0237] [化 57]
Figure imgf000134_0001
Figure imgf000135_0001
[0239] [化 59]
Figure imgf000136_0001
[0240] 反応部の温度制御が可能な分注装置を用いて以下の糖転移酵素を用いた一連の 反応を自動化して行った。
[0241] 50mM HEPES緩衝液(pH7. 0)、 0. 20UZml ヒト由来 j8 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 10mM 塩ィ匕マンガン、 5mM ゥリジン— 5,—二リン酸ガ ラタトースニナトリウム(UDP— Gal) , ImM 糖ペプチド誘導体(32)を含む 700 1 の反応液を 25°Cで 2時間反応させた。転移化合物(34)および転移率の同定は糖転 移反応液 20 μ 1を分取し、これにミリ Q水 4 μ 1、 BLase (塩野義製薬社製)の 1. 74m gZml溶液 1 μ 1を加え、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動層 A: 25mM酢酸アンモ-ゥム緩衝液(pH6. 5)に対する B :ァセトニトリルの 2%から 15%のグラジェント)により精製して化合物(38)を得ること により行った [収率 90%以上 (HPLC)、転移率 95%以上 (HPLC) ]。化合物(38) の MALDI—TOFZMS : [M (average) +H] + = 2246. 8 (理論値: [M (average ) +H] + = 2248. 2)。また、ガラクトース転移反応後の反応液を 300 1分取し、 500 mM HEPES緩衝液(ρΗ7. 0) 15 1、 l %Triton X— 100水溶液 45 1, 0. 88 U/ml ラット組換え α 2, 3— (Ο)—シアル酸転移酵素(Calbiochem社製) 9 1、 50mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA) 45 1,ミリ Q水 36 μ 1の混合液 (総量 150 μ 1)に加え、 25°Cで 4時間反応させた。転移化合物(35) および転移率の同定は糖転移反応液 20 1を分取し、これにミリ Q水 4 1、 BLase ( 塩野義製薬社製)の 1. 74mgZml溶液 1 μ 1を加え、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、移動層 A : 25mM酢酸アンモ-ゥム 緩衝液 (PH6. 5)に対する B :ァセトニトリルの 2%から 15%のグラジェント)により精 製して化合物(39)を得ることにより行った [収率 90%以上 (HPLC)、転移率 85%以 上 (HPLC) ]。また、未反応化合物(34)に由来する化合物(38)が 10%程度得られ た。化合物(39)の MALDI—TOFZMS : [M (average) +H] + = 2537. 4 (理論 値: [M (average) +H] + = 2539. 5)。続いて、 α 2, 3—(Ο)—シアル酸転移酵素 反応後の反応液を 200 1分取し、 500mM HEPES緩衝液 (pH7. 0) 10 1、 1 % Triton X— 100水溶液 10 1, 3. 7U/ml ラット組換え α 2, 3— (Ν)—シアル酸 転移酵素(Calbiochem社製) 6 1、 50mM シチジン一 5, 一リン酸シアル酸ナトリウ ム(CMP— NANA) 30 μ 1,ミリ Q水 44 μ 1の混合液(総量 100 μ 1)を加え、 25°Cで 6 時間反応させた。転移化合物(37)および転移率の同定は糖転移反応液 20 μ 1を分 取し、これにミリ Q水 4 μ 1、 BLase (塩野義製薬社製)の 1. 74mgZml溶液 1 μ 1を加 え、反応液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、 移動層 A : 25mM酢酸アンモ-ゥム緩衝液(pH6. 5)に対する B :ァセトニトリルの 2 %から 15%のグラジェント)により精製して化合物 (41)を得ることにより行った [収率 90%以上(HPLC)、転移率 95%以上(HPLC) ]。化合物(41)の MALDI—TOF /MS [M (average) +H] + = 2828. 9 (理論値: [M (average) +H] + = 2830. 8
) o
一方、ガラクトース転移反応後の反応液を別途 300 1分取し、 500mM HEPES 緩衝液(pH7. 0) 15 /z l、 l %Triton X— 100水溶液 45 1, 3. 7U/ml ラット糸且 換え α 2, 3—(Ν)—シアル酸転移酵素(Calbiochem社製) 9 1、 50mM シチジ ン— 5,—リン酸シアル酸ナトリウム(CMP— NANA) 45 μ 1,ミリ Q水 36 μ 1の混合液 (総量 150 μ 1)に加え、 25°Cで 4時間反応させた。転移化合物(36)および転移率の 同定は糖転移反応液 20 μ 1を分取し、これにミリ Q水 4 μ 1、 BLase (塩野義製薬社製 )の 1. 74mgZml溶液 1 μ 1を加え、反応液を逆相 HPLC (Inertsil (登録商標) OD S - 3 4. 6 X 250mmカラム、移動層A: 25mM酢酸ァンモ-ゥム緩衝液(pH6. 5) に対する B:ァセトニトリルの 2%から 15%のグラジェント)により精製して化合物(40) を得ることにより行った [収率 90%以上 (HPLC)、転移率 85%以上 (HPLC) ]。また 、化合物 (41)が 10%程度得られた事から、シアル酸転移反応の際、モノシァリルイ匕 体 (36)と同時にジシァリルィ匕体 (41)が 10%程度生成することが確認された。化合 物(40)の MALDI—TOFZMS: [M (average) +H] + = 2538. 2 (理論値: [M (a verage) +H] + = 2539. 5)。続いて、 《2, 3— (N)—シアル酸転移酵素反応後の 反応液を 200 μ 1分取し、 500mM HEPES緩衝液(pH7. 0) 10 μ 1、 l%Triton X— 100水溶液 10 μ 1, 0. 88U/ml ラット組換え α 2, 3— (Ο)—シアル酸転移酵 素(Calbiochem社製) 6 1、 50mM シチジン— 5,—リン酸シアル酸ナトリウム(C MP -NANA) 30 μ 1,ミリ Q水 44 μ 1の混合液(総量 100 μ 1)を加え、 25°Cで 6時間 攪拌した。転移化合物(37)および転移率の同定は概記の方法に従って BLase処理 体 (41)の確認により行った。 [収率 90%以上 (HPLC)、転移率 95%以上 (HPLC) ]。化合物(41)の MALDI— TOFZMS : [M (average) +H] + = 2828. 9 (理論値 : [M (average) +H] + = 2830. 8)
(3. 9 化合物 (42)、 (43)の合成)
[化 60]
Figure imgf000139_0001
3. 3mM 糖ペプチド誘導体(10)、 6. 7mM (ォキシァミン残基換算)水溶性高分 子(17)の反応液 360 1を 1N 水酸ィ匕ナトリウム水溶液で pH5. 3とし、室温で 6時 間攪拌した。反応液をゲルろ過 [Biogel P— 4 :溶出液 25mM 酢酸アンモ-ゥム 緩衝液 (PH6. 5) ]で精製し、化合物 (42)の凍結乾燥体 7. Omgを得た [ィ匕合物(10 )の捕捉率 95%以上(GPC—HPLC) ]。 [0245] [化 61]
Figure imgf000140_0001
[0246] 実施例(3. 7)と同様に化合物 (42)に対する BLase反応を行 、、化合物 (43)を得 た [反応率 90%以上(GPC - HPLC) ]。転移化合物の同定は MALDI— TOFZM Sによって化合物(43)に由来する [M (average) +H] + = 2287. 8 (理論値: [M (a verage) +H] + = 2289. 3)を確認することで行った。
[0247] (3. 10 化合物(44)〜(51)の合成)
[0248] [化 62]
β1,4-ガラク ト一ス転移酵素
Figure imgf000142_0001
Figure imgf000143_0001
2005/016975
Figure imgf000144_0001
[0249] [化 63]
Figure imgf000145_0001
[0250] [化 64]
Figure imgf000146_0001
[0251] [化 65]
Figure imgf000147_0001
[0252] [化 66]
Figure imgf000148_0001
[0253] 実施例(3. 8)の操作に従い、化合物 (44)、(45)、(46)、および (47)を(3. 10 化合物 (44)〜(51)の合成)に示した連続反応により調製した。生成物および糖転 移反応率の確認は BLaseによるペプチド鎖の特的切断反応により得られたィ匕合物( 48)、(49)、(50)、および(51)をそれぞれ以下のとおり逆相 HPLCおよび MALDI TOFZMS分析することによって行った。
[0254] 化合物(48):収率 90%以上、転移率 95%以上、 MALDI -TOF/MS: [M (ave rage) +H] + = 2612. 2 (理論値: [M (average) +H] + = 2613. 6。
[0255] 化合物 (49):収率 90%以上、転移率 90%以上 [未反応化合物 (44)に由来する 化合物(48)が 5%程度確認された]、 MALDI -TOF/MS: [M (average) +H] + = 2903. 3 (M m : [M (average) +H] + = 2904. 8)。
[0256] 化合物(50):収率 90%以上、転移率 95%以上、 MALDI -TOF/MS: [M (ave rage) +H] + = 3194. 4 (¾|^fg : [M (average) +H] + = 3196. 1)。
[0257] 化合物(51):収率 90%以上、転移率 95%以上、 MALDI-TOF/MS: [M (ave rage) +H] + = 3493. 0 (¾|^fg : [M (average) +H] + = 3487. 3)。
[0258] (3. 11 化合物(52)、 (53)の合成)
[0259] [化 67]
Figure imgf000149_0001
[0260] 2. 5mM 糖ペプチド誘導体(12)、 5. OmM (ォキシァミン残基換算)水溶性高分 子(17)の反応液 400 1を IN 水酸ィ匕ナトリウム水溶液で pH5. 3とし、室温で 6時 間攪拌した。反応液をゲルろ過 [Biogel P— 4 :溶出液 25mM 酢酸アンモ-ゥム 緩衝液 (PH6. 5) ]で精製し、化合物(52)の凍結乾燥体 6. 3mgを得た [ィ匕合物(12 )の捕捉率 95%以上(GPC—HPLC) ]。
[0261] [化 68]
Figure imgf000150_0001
[0262] 実施例(3. 7)と同様に化合物(52)に対する BLase反応を行い、化合物(53)を得 た [反応率 90%以上(GPC - HPLC) ]。転移化合物の同定は MALDI— TOFZM Sによって化合物(53)に由来する [M (average) +H] + = 2490. 1 (理論値: [M (a verage) +H] + = 2492. 5)を確認することで行った。
[0263] (3. 12 化合物(54)〜(61)の合成)
[0264] [化 69]
β1,4-ガラク ト一ス転移酵素
Figure imgf000152_0001
Figure imgf000153_0001
Figure imgf000154_0001
[0265] [化 70]
Figure imgf000155_0001
Figure imgf000156_0001
Figure imgf000157_0001
[0268] [化 73]
Figure imgf000158_0001
[0269] 実施例(3. 8)の操作に従い、化合物(54)、 (55)、 (66)、および(57)を(3. 10 化合物 (44)〜(51)の合成)に示した連続反応により調製した。生成物および糖転 移反応率の確認は BLaseによるペプチド鎖の特的切断反応により得られたィ匕合物( 58)、(59)、(60)、および(61)をそれぞれ以下のとおり逆相 HPLCおよび MALDI TOFZMS分析することによって行った。
[0270] 化合物(58):収率 90%以上、転移率 95%以上、 MALDI -TOF/MS: [M (ave rage) +H] + = 2976. 9 (理論値: [M (average) +H] + = 2978. 9。
[0271] 化合物(59):収率 90%以上、転移率 95%以上、 MALDI-TOF/MS : [
M (average) +H] + = 3268. 4 (理論値: [M (average) +H] + = 3270. 2)。
[0272] 化合物(60):収率 90%以上、転移率 95%以上、 MALDI-TOF/MS: [M (ave rage) +H] + = 3857. 1 (理論値: [M (average) +H] + = 3852. 7)。
[0273] 化合物(61):収率 90%以上、転移率 95%以上、 MALDI-TOF/MS: [M (ave rage) +H] + = 4147. 8 (理論値: [M (average) +H] + = 4143. 9)。 (3. 13 ワンポット反応を用いたィ匕合物(62)〜(69)の合成) 化 74]
Figure imgf000159_0001
Figure imgf000160_0001
Figure imgf000161_0001
S.69lO/SOOZdf/X3d 091 01?80ε0/900ί ΟΛ\
Figure imgf000162_0001
[0275] Tentagel (登録商標)(Hipep Laboratories, 0. 25mmol/g) 0. 12g(0.03m mol)を担体として以下に示す N—保護アミノ酸とケト酸を FmocZHBTUZHOBt 法で順次縮合し、目的の糖ペプチド誘導体を合成した。 Fmoc-Arg (Pbf)— OH、 Fmoc -Thr (Ac5core6)— OH、 Fmoc— Asp (OtBu)— OH、 Fmoc— Pro— OH 、 Fmoc— Ala— OH、 Fmoc - Ser (Ac7core2)— OH、 Fmoc -Thr (OtBu)— O H、 Fmoc-Val-OH, Fmoc— Gly—OH、 Fmoc -His (Trt)—OH、 Fmoc—Al a— OHゝ Fmoc -Gin (OtBu)— OH、 Fmoc— Phe— OH、 5—ケトへキサン酸。ぺ プチド伸長反応後、得られた榭脂のうち 61. 3mg (0. Olmmol相当)を 90%TFA水 溶液中、室温で 2時間反応させることによってペプチド残基上の保護基を脱離させる ととも〖こ、固相担体上から化合物 (62)を遊離させた。榭脂を濾別し、 TFAを揮発留 去した後、ジェチルエーテルをカ卩えて生成物を沈殿させた。得られたスラリーを遠心 分離後、上澄みを除き、再度ジェチルエーテルを添加して沈殿を洗浄した。再び遠 心分離を行って上澄みを除き、得られた沈殿をメタノール 2. 5mlに溶解した。この溶 液へ 1N水酸ィ匕ナトリウム水溶液 40 1を添加し、 1. 5時間室温で攪拌して脱 Ac保 護反応を行った。反応後、 H+型陽イオン交換榭脂 Dowex50WX8 (ダウケミカル社 製)を加えて中和した後、榭脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸 /酢酸ナトリウム緩衝液 (PH5. 5) 2mlへ溶解させた。この液に 10mM (ォキシァミン 残基換算)水溶性高分子(17)水溶液を添加し、室温で 10時間攪拌させて化合物( 63)と化合物(17)を反応させた。反応終了後、 2. 5mlの反応液 (6. 25 /z mol相当) を限外濾過フィルター 30K Apollp (登録商標) 20ml(Orbital Biosciences, LIC 製)によって遠心濃縮し、そこへ 25mM HEPES緩衝液 (pH7. 0)をカ卩えて再度濃 縮することによって洗浄し、最終的に約 400 1へ濃縮した。そこへ 625 1の水をカロ えることによって 10mM (糖ペプチド理論含量)高分子(64)とした。
[化 74- 1] 64
Figure imgf000164_0001
Figure imgf000165_0001
Figure imgf000166_0001
S.69T0/S00Zdf/X3d 991- 01?80ε0/900Ζ OAV
Figure imgf000167_0001
S.69T0/S00Zdf/X3d 991· 01?80ε0/900Ζ OAV
Figure imgf000168_0001
[0276] 上記の lOmM (糖ペプチド理論含量)高分子(64) 3 μ 1を分取し、これに酢酸アン モ -ゥム緩衝液 11 1、 BLase (塩野義製薬社製)の 1. 74mg/ml溶液 1 μ 1を加え 、 25°Cで 10分間攪拌した。反応液を MALDI— TOFZMSによって分析し [M (ave rage) +H] + =、(理論値: [M (average) +H] + = 2085. 1)を確認することによつ て化合物(67)の生成を確認した。
[0277] 50mM HEPES緩衝液(pH7. 0)、 0. 20UZml ヒト由来 j8 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 lOmM 塩ィ匕マンガン、 5mM ゥリジン— 5,—二リン酸ガ ラタトースニナトリウム(UDP— Gal) , ImM 糖ペプチド誘導体(64)を含む 100 1 の反応液を 25°Cで 2時間反応させた。反応液の一部を MALDI— TOFZMSによつ て分析し、 [M (average) +H] + = 2408. 6 (理論値: [M (average) +H] + = 2409 . 4)を確認することによって化合物(68)の生成を確認した。一方、ガラクトース転移 反応後の反応液を 60 μ 1分取し、 500mM HEPES緩衝液 (pH7. 0) 2 1、 l%Tri ton ー100水溶液2 1, 3. 7U/ml ラット組換え α 2, 3— (Ν)—シアル酸転移 酵素(Calbiochem社製) 1. 2 1、 0. 88U/ml ラット組換え α 2, 3— (Ο)—シァ ル酸転移酵素(Calbiochem社製) 1. 2 1、 50mM シチジン— 5,—リン酸シアル 酸ナトリウム(CMP— NANA) 6 1,ミリ Q水 7. 6 1の混合液(総量 20 1)をカ卩え、 2 5°Cで反応させた。以上のガラクトース転移反応力もの反応を 2バッチ行い、シアル酸 転移反応後混合した。この反応液を限外濾過フィルター ULTRAFRE- MC 30, 0 00NMWL Filter Unit (Millipore社製、 UFC3LTKOO)へ移し、遠心濃縮した 。その後 25mM酢酸アンモ-ゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮す ること〖こよって高分子 (66)を洗浄した。この操作を 3回繰り返して化合物(66)水溶液 を得た。その後、化合物(66)を含むフィルター保持液に BLase (塩野義製薬社製) の 1. 74mg/ml溶液 2 1をカ卩え、再び限外濾過フィルター ULTRAFRE- MC 30 , OOONMWL Filter Unit (Millipore社製、 UFC3LTKOO)で遠心濾過した。 得られた濾液を逆相 HPLC (Inertsil (登録商標) ODS— 3 4. 6 X 250mmカラム、 移動層 A: 25mM酢酸アンモ-ゥム緩衝液(pH6. 5)に対する B :ァセトニトリルの 2 %から 40%のグラジェント)により精製して化合物(69)を得た [転移率 95%以上 (H PLC) ]。化合物(69)の MALDI—TOFZMS : [M (average) +H] + = 3289. 0 ( 理論値: [M (average) +H] + = 3283. 1)。
[0278] (3. 14 榭脂担体を用いたィ匕合物(70)〜(78)、(21)、(24)、(25)の合成)
[0279] [化 75]
Figure imgf000170_0001
Figure imgf000171_0001
Figure imgf000171_0002
S.69T0/S00Zdf/X3d Oil 01?80ε0/900Ζ OAV
pi ガラクト一ス転移酵素
α2,3-(Ν)-シアル酸転移酵素 および
α2,3-(0)-シアル酸転移酵素
Figure imgf000174_0001
Figure imgf000175_0001
Figure imgf000176_0001
S/.69l0/S00Zdf/13d LV 0t80£0/900J OSS.
Figure imgf000177_0001
Figure imgf000177_0002
S.69T0/S00Zdf/X3d 9 I- 01?80ε0/900Ζ OAV
Figure imgf000178_0001
Figure imgf000178_0002
S.69T0/S00Zdf/X3d III 01?80ε0/900Ζ OAV
Figure imgf000179_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000180_0001
Amino PEGA resin (novabiochem社製) 50π^ (3 πιο1アミノ基相当)を担体 として HBTUZHOBt法で Boc— amino- acetic acidとカップリングした。得られた 榭脂を 50%TFA水溶液中、室温で 1時間攪拌して Boc保護基を脱離させ、榭脂を 水洗、さらに 50mM酢酸 Z酢酸ナトリウム緩衝液 (PH5. 5)で洗浄して未乾燥化合 物(70) 85mgを得た。この未乾燥榭脂 (70) 62mg (2. 2 μ \)を 50mM酢酸 Ζ酢酸 ナトリウム緩衝液 (ρΗ5. 5) 40 1ヘスラリー化させ、さらに 5mM化合物(4)水溶液 4 0 1 (合成法上記参照)を添加した。室温で 19時間攪拌した後、榭脂を濾別し、得ら れた榭脂を 25mM HEPES緩衝液 (pH7. 0)で洗浄して未乾燥ィ匕合物(71) 77m gを得た。この化合物の同定は、榭脂(71)の一部を 25mM HEPES緩衝液 (pH7 . 0)にスラリー化させ、そこへ BLase (塩野義製薬社製)の 1. 74mgZml溶液 2 1を 加えて 1時間攪拌し、反応液の上澄み液を MALDI— TOFZMSによって分析して 化合物(21)に由来する [M (average) +H] + = 2085. 7、(理論値: [M (average) +H] + = 2086. 1)を確認することによって行った。
[0281] この得られた未乾燥化合物(71)に対して 500mM HEPES緩衝液(pH7. 0) 50 μ 1、 4U/ml ヒト由来 |8 1, 4—ガラクトース転移酵素 (東洋紡社製) 25 μ 1、 1%牛 血清アルブミン(BSA、シグマ社製)水溶液 50 μ 1、 lOOmM 塩化マンガン 50 1、 5 OmM ゥリジン一 5, 一二リン酸ガラクトースニナトリウム(UDP— Gal) 50 1、ミリ Q水 275 μ 1の混合液 (総量 500 μ 1)を添カ卩して 25°Cで 2時間攪拌した。その後反応液に 500mM HEPES緩衝液(pH7. 0) 10 ^ 1, 3. 7U/ml ラット組換え α 2, 3— (N) —シアル酸転移酵素(Calbiochem社製) 12 /z l、 0. 88U/ml ラット組換え α 2, 3 — (Ο)—シアル酸転移酵素(Calbiochem社製) 12 1、 50mM シチジン— 5,—リ ン酸シアル酸ナトリウム(CMP— NANA) 60 μ 1,ミリ Q水 6 μ 1の混合液(総量 100 μ 1 )を添加して 18時間攪拌した。その後 0. 88U/ml ラット組換え α 2, 3— (Ο)—シ アル酸転移酵素(Calbiochem社製) 12 1をさらに添加し、 3時間攪拌後、反応液ス ラリー 150 μ 1をフィルターで濾別し、得られた榭脂を 25mM HEPES緩衝液 (pH7 . 0)、 50%ァセトニトリル水溶液、さらに 25mM HEPES緩衝液(pH7. 0)で洗浄し た。この樹脂の一部を 25mM HEPES緩衝液 (pH7. 0) 50 1にスラリー化させ、そ こへ BLase (塩野義製薬社製)の 1. 74mgZml溶液 3 μ 1を加えて攪拌した。反応液 の上澄み液を MALDI—TOFZMSによって分析し、化合物(24)に由来する [M (a verage) +H] + = 2247. 6、(理論値: [M (average) +H] + = 2248. 2)、ィ匕合物( 77)もしくは化合物(78)に由来する [M (average) +H] + = 2538. 8 (理論値: [M ( average) +H] + = 2539. 5)、化合物(25)に由来する [M (average) +H] + = 28 30. 1、(理論値: [M (average) +H] + = 2830. 8)を確認した。
[0282] (3. 15 ワンポット反応を用いた化合物(79)〜(81)の合成)
Figure imgf000182_0001
Figure imgf000183_0001
S.69T0/S00Zdf/X3d 381- 01?80ε0/900Ζ OAV
Figure imgf000184_0001
S.69T0/S00Zdf/X3d 881- 01?80ε0/900Ζ OAV
Figure imgf000185_0001
[0284] Tentagel (登録商標) S RAMレジン(Hipep Laboratories, 0. 25mmol/g) 0. 12g (0. 03mmol)を担体として以下に示す N -保護アミノ酸とケト酸を FmocZHB TUZHOBt法で順次縮合し、目的の糖ペプチド誘導体を合成した。 Fmoc-Arg ( Pbf) -OH, Fmoc -Thr (Ac3GalNAc)— OH、 Fmoc— Asp (OtBu)— OH、 F moc— Pro— OH、 Fmoc— Ala— OH、 Fmoc― Ser (Ac7core2)— OH、 Fmoc— Thr (OtBu)— OH、 Fmoc— Val— OH、 Fmoc— Gly— OH、 Fmoc -His (Trt) - OH、 Fmoc -Ala -OH, Fmoc— Glu (OtBu)—OH、 Fmoc— Phe— OH、 5—ケ トへキサン酸。ペプチド伸長反応後、得られた榭脂のうち 0. Olmmol相当を 90%T FA水溶液中、室温で 2. 5時間反応させることによってペプチド残基上の保護基を脱 離させるとともに、固相担体上から化合物(79)を遊離させた。榭脂を濾別し、 TFAを 揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させた。得られたスラリー を遠心分離後、上澄みを除き、再度ジェチルエーテルを添加して沈殿を洗浄した。 再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール 3. Omlに溶解した。 この溶液へ 1N水酸ィ匕ナトリウム水溶液を添カ卩して pHを 12〜12. 5へ調節し、 3時間 室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸水溶液を加えて中和した 後、溶媒を留去して残渣を 50mM酢酸 Z酢酸ナトリウム緩衝液 (PH5. 5) lmlへ溶 解させた。この液に 10mM (ォキシァミン残基換算)水溶性高分子(17)水溶液 lml を添加し、室温で 24時間攪拌させて化合物 (80)と化合物(17)を反応させた。反応 終了後、反応液を限外濾過フィルター 10K Apollp (登録商標) 20ml(Orbital Bio sciences, LIC製)によって遠心濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0) をカロえて再度濃縮することによって洗浄し、最終的に容量が 1. Omlになるように水を 加えることによって 10mM (糖ペプチド理論含量)高分子(81)とした。高分子(81)の 同定は、以下の(3. 21)において生成物(102)が得られることによって行った。
[0285] (3. 16 ワンポット反応を用いた化合物(82)〜(84)の合成)
[0286] [化 77]
Figure imgf000187_0001
S.69T0/S00Zdf/X3d 981 0^80C0/900Z OAV
Figure imgf000188_0001
Figure imgf000189_0001
S.69T0/S00Zdf/X3d 881· 01?80ε0/900Ζ OAV
Figure imgf000190_0001
[0287] Tentagel (登録商標) S RAMレジン(Hipep Laboratories, 0. 25mmol/g) 0. 12g (0. 03mmol)を担体として以下に示す N -保護アミノ酸とケト酸を FmocZHB TUZHOBt法で順次縮合し、目的の糖ペプチド誘導体を合成した。 Fmoc-Arg ( Pbf)— OH、 Fmoc-Thr (OtBu)— OH、 Fmoc— Asp (OtBu)— OH、 Fmoc— P ro— OH、 Fmoc— Ala OH、 Fmoc― Ser (Ac7core2)— OH、 Fmoc— Thr(Ac 3GalNAc)—OH、 Fmoc—Val—OH、 Fmoc— Gly—OH、 Fmoc -His (Trt) OH、 Fmoc -Ala -OH, Fmoc— Glu (OtBu)—OH、 Fmoc— Phe— OH、 5—ケ トへキサン酸。ペプチド伸長反応後、得られた榭脂のうち 0. Olmmol相当を 90%T FA水溶液中、室温で 2. 5時間反応させることによってペプチド残基上の保護基を脱 離させるとともに、固相担体上から化合物(82)を遊離させた。榭脂を濾別し、 TFAを 揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させた。得られたスラリー を遠心分離後、上澄みを除き、再度ジェチルエーテルを添加して沈殿を洗浄した。 再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール 3. Omlに溶解した。 この溶液へ 1N水酸ィ匕ナトリウム水溶液を添カ卩して pHを 12〜12. 5へ調節し、 3時間 室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸水溶液を加えて中和した 後、溶媒を留去して残渣を 50mM酢酸 Z酢酸ナトリウム緩衝液 (PH5. 5) lmlへ溶 解させた。この液に 10mM (ォキシァミン残基換算)水溶性高分子(17)水溶液 lml を添加し、室温で 24時間攪拌させて化合物 (83)と化合物(17)を反応させた。反応 終了後、反応液を限外濾過フィルター 10K Apollp (登録商標) 20ml(Orbital Bio sciences, LIC製)によって遠心濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0) をカロえて再度濃縮することによって洗浄し、最終的に容量が 1. Omlになるように水を 加えることによって 10mM (糖ペプチド理論含量)高分子(84)とした。高分子(84)の 同定は、以下の(3. 22)において生成物(113)が得られることによって行った。
[0288] (3. 17 ワンポット反応を用いた化合物(85)〜(87)の合成)
[0289] [化 78]
Figure imgf000192_0001
Figure imgf000193_0001
S.69T0/S00Zdf/X3d 361- 01?80ε0/900Ζ OAV
Figure imgf000194_0001
S.69T0/S00Zdf/X3d 861- 01?80ε0/900Ζ OAV
Figure imgf000195_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV [0290] TentageK登録商標) S RAMレジン(Hipep Laboratories, 0. 25mmol/g) 0. 12g (0. 03mmol)を担体として以下に示す N—保護アミノ酸とケト酸を FmocZHB TU/HOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc_Arg ( Pbf) -OH, Fmoc -Thr (Ac7core2)—〇H、 Fmoc— Asp (OtBu)— OH、 Fmo c- Pro -OH, Fmoc_Ala_〇H、 Fmoc- Ser (tBu) _〇H、 Fmoc -Thr (Ac 3 GalNAc) _OH、 Fmoc_Val_〇H、 Fmoc_Gly_〇H、 Fmoc -His (Trt)—O H、 Fmoc-Ala-OH, Fmoc -Glu (OtBu) _〇H、 Fmoc_Phe_〇H、 5—ケト へキサン酸。ペプチド伸長反応後、得られた樹脂のうち 0. Olmmol相当を 90%TF A水溶液中、室温で 2. 5時間反応させることによってペプチド残基上の保護基を脱 離させるとともに、固相担体上力 化合物(85)を遊離させた。樹脂を濾別し、 TFAを 揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させた。得られたスラリー を遠心分離後、上澄みを除き、再度ジェチルエーテルを添加して沈殿を洗浄した。 再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール 3. Omlに溶解した。 この溶液へ 1N水酸化ナトリウム水溶液を添カ卩して pHを 12〜 12. 5へ調節し、 3時間 室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸水溶液を加えて中和した 後、溶媒を留去して残渣を 50mM酢酸/酢酸ナトリウム緩衝液 (pH5. 5) 1mlへ溶 解させた。この液に 10mM (ォキシァミン残基換算)水溶性高分子(17)水溶液 lml を添加し、室温で 24時間攪拌させて化合物(86)と化合物(17)を反応させた。反応 終了後、反応液を限外濾過フィルター 10K Apollp (登録商標) 20ml(〇rbital Bio sciences, LIC製)によって遠心濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0) を加えて再度濃縮することによって洗浄し、最終的に容量が 1. 0mlになるように水を 加えることによって 10mM (糖ペプチド理論含量)高分子(87)とした。高分子(87)の 同定は、以下の(3. 23)において生成物(124)が得られることによって行った。
[0291] (3. 18 ワンポット反応を用いた化合物(88)〜(90)の合成)
[0292] [化 79]
Figure imgf000197_0001
Figure imgf000198_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000199_0001
861-
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000200_0001
661-
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV [0293] TentageK登録商標) S RAMレジン(Hipep Laboratories, 0. 25mmol/g) 0. 12g (0. 03mmol)を担体として以下に示す N—保護アミノ酸とケト酸を FmocZHB TU/HOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc_Arg ( Pbf) -OH, Fmoc -Thr (Ac7core2)—〇H、 Fmoc— Asp (OtBu)— OH、 Fmo c- Pro -OH, Fmoc—Ala _〇H、 Fmoc - Ser (Ac3GalNAc) _〇H、 Fmoc— Thr (tBu) - OH, Fmoc_Val_〇H、 Fmoc_Gly_〇H、 Fmoc-His (Trt) -O H、 Fmoc-Ala-OH, Fmoc -Glu (OtBu) _〇H、 Fmoc_Phe_〇H、 5—ケト へキサン酸。ペプチド伸長反応後、得られた樹脂のうち 0. Olmmol相当を 90%TF A水溶液中、室温で 2. 5時間反応させることによってペプチド残基上の保護基を脱 離させるとともに、固相担体上力 化合物(88)を遊離させた。樹脂を濾別し、 TFAを 揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させた。得られたスラリー を遠心分離後、上澄みを除き、再度ジェチルエーテルを添加して沈殿を洗浄した。 再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール 3. 0mlに溶解した。 この溶液へ 1N水酸化ナトリウム水溶液を添カ卩して pHを 12〜 12. 5へ調節し、 2時間 室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸水溶液を加えて中和した 後、溶媒を留去して残渣を 50mM酢酸/酢酸ナトリウム緩衝液 (pH5. 5) 1mlへ溶 解させた。この液に 10mM (ォキシァミン残基換算)水溶性高分子(17)水溶液 lml を添加し、室温で 24時間攪拌させて化合物(89)と化合物(17)を反応させた。反応 終了後、反応液を限外濾過フィルター 10K Apollp (登録商標) 20ml(〇rbital Bio sciences, LIC製)によって遠心濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0) を加えて再度濃縮することによって洗浄し、最終的に容量が 1. 0mlになるように水を 加えることによって 10mM (糖ペプチド理論含量)高分子(90)とした。高分子(90)の 同定は、以下の(3. 24)において生成物(135)が得られることによって行った。
[0294] (3. 19 ワンポット反応を用いた化合物(9:!)〜(93)の合成)
[0295] [化 80]
Figure imgf000202_0001
Figure imgf000203_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000204_0001
SOS
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000205_0001
TentageK登録商標) S RAMレジン(Hipep Laboratories, 0. 25mmol/g)0. 12g(0.03mmol)を担体として以下に示す N—保護アミノ酸とケト酸を FmocZHB TU/HOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc_Arg ( Pbf) _〇H、 Fmoc-Thr (tBu) _OH、 Fmoc-Asp (OtBu) _〇H、 Fmoc-Pro _〇H、 Fmoc-Ala-OH, Fmoc- Ser (Ac3GalNAc) _〇H、 Fmoc-Thr (Ac 7core2) _〇H、 Fmoc_Val_OH、 Fmoc_Gly_OH、 Fmoc -His (Trt) _〇 H、 Fmoc-Ala-OH, Fmoc -Glu (OtBu) _〇H、 Fmoc_Phe_〇H、 5—ケト へキサン酸。ペプチド伸長反応後、得られた樹脂のうち 0. Olmmol相当を 90%TF A水溶液中、室温で 2. 5時間反応させることによってペプチド残基上の保護基を脱 離させるとともに、固相担体上力 化合物(91)を遊離させた。樹脂を濾別し、 TFAを 揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させた。得られたスラリー を遠心分離後、上澄みを除き、再度ジェチルエーテルを添加して沈殿を洗浄した。 再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール 3. 0mlに溶解した。 この溶液へ 1N水酸化ナトリウム水溶液を添カ卩して pHを 12〜 12. 5へ調節し、 3時間 室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸水溶液を加えて中和した 後、溶媒を留去して残渣を 50mM酢酸/酢酸ナトリウム緩衝液 (pH5. 5) 1mlへ溶 解させた。この液に 10mM (ォキシァミン残基換算)水溶性高分子(17)水溶液 lml を添加し、室温で 24時間攪拌させて化合物(92)と化合物(17)を反応させた。反応 終了後、反応液を限外濾過フィルター 10K Apollp (登録商標) 20ml(〇rbital Bio sciences, LIC製)によって遠心濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0) を加えて再度濃縮することによって洗浄し、最終的に容量が 1. 0mlになるように水を 加えることによって 10mM (糖ペプチド理論含量)高分子(93)とした。高分子(93)の 同定は、以下の(3. 25)において生成物(146)が得られることによって行った。
[0297] (3. 20 ワンポット反応を用いた化合物(94)〜(96)の合成)
[0298] [化 81]
Figure imgf000207_0001
Figure imgf000208_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000209_0001
80S
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000210_0001
60S
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV [0299] TentageK登録商標) S RAMレジン(Hipep Laboratories, 0. 25mmol/g) 0. 12g (0. 03mmol)を担体として以下に示す N—保護アミノ酸とケト酸を FmocZHB TU/HOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc_Arg ( Pbf) -OH, Fmoc -Thr (Ac3GalNAc)— OH、 Fmoc -Asp (OtBu)—〇H、 F moc_Pro_〇H、 Fmoc -Ala -OH, Fmoc-Ser (tBu) _OH、 Fmoc -Thr (A c7core2) _OH、 Fmoc_Val_OH、 Fmoc_Gly_〇H、 Fmoc -His (Trt) _〇 H、 Fmoc-Ala-OH, Fmoc -Glu (OtBu) _〇H、 Fmoc_Phe_〇H、 5—ケト へキサン酸。ペプチド伸長反応後、得られた樹脂のうち 0. Olmmol相当を 90%TF A水溶液中、室温で 2. 5時間反応させることによってペプチド残基上の保護基を脱 離させるとともに、固相担体上力 化合物(94)を遊離させた。樹脂を濾別し、 TFAを 揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させた。得られたスラリー を遠心分離後、上澄みを除き、再度ジェチルエーテルを添加して沈殿を洗浄した。 再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール 3. 0mlに溶解した。 この溶液へ 1N水酸化ナトリウム水溶液を添カ卩して pHを 12〜 12. 5へ調節し、 3時間 室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸水溶液を加えて中和した 後、溶媒を留去して残渣を 50mM酢酸/酢酸ナトリウム緩衝液 (pH5. 5) 1mlへ溶 解させた。この液に 10mM (ォキシァミン残基換算)水溶性高分子(17)水溶液 lml を添加し、室温で 24時間攪拌させて化合物(95)と化合物(17)を反応させた。反応 終了後、反応液を限外濾過フィルター 10K Apollp (登録商標) 20ml(〇rbital Bio sciences, LIC製)によって遠心濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0) を加えて再度濃縮することによって洗浄し、最終的に容量が 1. 0mlになるように水を 加えることによって 10mM (糖ペプチド理論含量)高分子(96)とした。高分子(96)の 同定は、以下の(3. 26)において生成物(157)が得られることによって行った。
[0300] (3. 21 (97)〜(: 107)の合成)
[0301] [化 82] pi,4-GalT / UDP-Gal
► 97 03
o2,3-(0)-SiaT / CMP-NANA
► 98 04
pi,4-GalT, a2,3-(0)-SiaT I UDP-Gal, CMP-NANA Lase
p1,4-GalT, a2,3-(N)-SiaT I UDP-Gal, CMP-NANA Lase
06
p1,4-GalT, a2,3-(N)-SiaT, a2,3-(0)-SiaT / UDP-Gal, CMP-NANA Lase
07
BLase
*■ 102
Figure imgf000213_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000214_0001
SZ,69T0/S00Zdf/X3d 0t80f 0/900Ζ OAV
Figure imgf000215_0001
S.69T0/S00Zdf/X3d 01?80ε0/900ί OAV
Figure imgf000216_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000217_0001
91-2
SZ,69T0/S00Zdf/X3d 0t80f 0/900Z OAV
Figure imgf000218_0001
LIZ
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000219_0001
8
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000220_0001
6
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000221_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000222_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000223_0001
下記の A)〜E)の反応液を 25°Cで 24時間反応させた。
A) 50mM HEPES緩衝 ί夜(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトー ス転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1 %BSA、 2mM ゥリジン 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal) ,糖ペプチド誘導体(81) (固相 合成からの理論含量で 4mM)を含む 250 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0)、 0. 0175UZml ラット組換えひ 2, 3— ( 〇)—シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA 、 2mM シチジン _ 5'—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘 導体(81) (固相合成からの理論含量で 4mM)を含む 250 μ ΐの反応液; C) 50mM HEPES緩種夜(pH7. 0)、 0. lU/ml ヒト由来 j3 1 , 4_ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(81) (固相合成からの 理論含量で 4mM)を含む 250 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lUZml ヒト由来 j3 1, 4 ガラクトー ス転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸 転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジ ン 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン 5 '—リ ン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(81) (固相合成からの 理論含量で 4mM)を含む 250 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1, 4 ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 4mM ゥリ ジン 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン 5 '— リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(81) (固相合成から の理論含量で 4mM)を含む 250 μ 1の反応液。
反応終了後、各々の反応液を限外濾過フィルター ULTRAFRE-MC 10, 00 0NMWL Filter Unit (Millipore社製)へ移し、遠心濃縮した。その後 25mM酢 酸アンモニゥム緩衝液 (PH6. 5)を加え再度遠心分離機で濃縮することによって高 分子を洗浄した。この操作を 3回繰り返して化合物(97)〜(: 101)の水溶液を各々得 た。その後、化合物(97)〜(: 101)を含むフィルター保持液 150 μ 1、さらに(81)水溶 液 100 μ 1を 25mM酢酸アンモニゥム緩衝液(pH6. 5)で 150 μ 1に希釈した溶液に 、 BLase (塩野義製薬社製)の 1. 74mgZml溶液: 1 μ 1をカ卩え、 2時間室温で反応さ せた後、限外濾過フィルター ULTRAFRE-MC 10, 000NMWL Filter Unit ( Millipore社製)で遠心濾過することによって目的糖ペプチドを高分子と分離し、得ら れた水溶液 (濾液)を凍結乾燥して化合物(102)〜(: 107)を得た。化合物(102)の MALDI-TOF/MS : [M + H] + = 1882. 3 (理論値: [M + H] + = 1881. 9)、化 合物(103)の MALDI—TOFZMS : [M + H] + = 2044. 7 (理論値: [M + H] + = 2043. 9)、化合物(104)の MALDI—TOF/MS : [M + H] + = 2173. 7 (理論値 : [M + H] + = 2173. 0)、化合物(105)の MALDI—TOF/MS : [M + H] + = 23 35. 6 (理論値: [M + H] + = 2335. 0)、化合物(106)の MALDI_T〇FZMS: [ M + H] + = 2335. 5 (理論値: [M + H] + = 2335. 0)、化合物(107)の MALDI— TOF/MS : [M + H] + = 2626. 3 (理論値: [Μ + Η] + = 2626· 1)。
[0304] (3. 22 (108)〜(: 118)の合成)
[0305] [化 83]
p1,4-GalT/ UDP-Gal
► 108
a2,3-(0)-SiaT / CMP-NANA
► 109
pi,4-GalT, a2,3-(0)-SiaT/ UDP-Gal, CMP-NANA 'Lase
p1,4-GalT, a2,3-(N)-SiaT I UDP-Gal, CMP-NANA Lsse
p1,4-GalT, a2,3-(N)-SiaT, a2,3-(0)-SiaT / UDP-Gal, CMP-NANA 'Lase
BLase
113
Figure imgf000227_0001
9ZZ
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000228_0001
LZZ
S.69T0/S00Zdf/X3d 01"80ε0/900Ζ OAV
Figure imgf000229_0001
QZZ
S.69lO/SOOZdf/X3<I 0^80£0/900ί OAV 229
Figure imgf000230_0001
Figure imgf000231_0001
Figure imgf000232_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000233_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000234_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000235_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000236_0001
9£Z
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000237_0001
下記の A)〜E)の反応液を 25°C24時間反応させた。
A) 50mM HEPES緩衝夜(pH7. 0)、 0. lU/ml ヒト由来 /3 1 , 4_ガラクトー ス転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2mM ゥリジン— 5 ' _二リン酸ガラクトースニナトリウム (UDP_Gal),糖ペプチド誘導体(84) (固相 合成からの理論含量で 4mM)を含む 250 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0)、 0. 0175U/ml ラット組換え α 2, 3— ( 〇)ーシアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0· 1%BSA 、 2mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘 導体(84) (固相合成からの理論含量で 4mM)を含む 250 μ 1の反応液;
C) 50mM HEPES緩衝g (pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 lOmM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(84) (固相合成からの 理論含量で 4mM)を含む 250 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lUZml ヒト由来 j3 1, 4 ガラクトー ス転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル酸 転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジ ン 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン 5 '—リ ン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(84) (固相合成からの 理論含量で 4mM)を含む 250 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 4mM ゥリ ジン 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン 5 '— リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(84) (固相合成から の理論含量で 4mM)を含む 250 μ 1の反応液。
反応終了後、各々の反応液を限外濾過フィルター ULTRAFRE-MC 10, 00 0NMWL Filter Unit (Millipore社製)へ移し、遠心濃縮した。その後 25mM酢 酸アンモニゥム緩衝液 (PH6. 5)を加え再度遠心分離機で濃縮することによって高 分子を洗浄した。この操作を 3回繰り返して化合物(108)〜(: 112)の水溶液を各々 得た。その後、化合物(108)〜(112)を含むフィルター保持液 150 μ 1、さらに(84) 水溶液 100 μ 1を 25mM酢酸アンモニゥム緩衝液(pH6. 5)で 150 μ 1に希釈した溶 液に、 BLase (塩野義製薬社製)の 1. 74mg/ml溶液 1 μ 1をカ卩え、 2時間室温で反 応させた後、限外濾過フィルター ULTRAFRE-MC 10, 000NMWL Filter U nit (Millipore社製)で遠心濾過することによって目的糖ペプチドを高分子と分離し、 得られた水溶液 (濾液)を凍結乾燥して化合物( 113)〜(: 118)を得た。化合物(113 )の MALDI— TOF/MS : [Μ + Η] + = 1882· 3 (理論値: [Μ + Η] + = 1881 · 9) 、化合物(114)の MALDI_T〇FZMS: [M + H] + = 2044. 7(理論値: [M + H] + = 2043. 9)、ィ匕合物(115)の MALDI— TOF/MS: [M + H] + = 2173. 6 (理 論値: [M + H] + = 2173. 0)、化合物(116)の MALDI—TOF/MS: [M + H] + = 2335. 5(理論値: [M + H] + = 2335. 0)、化合物(117)の MALDI_T〇FZM S: [M + H] + = 2335. 5(理論値: [M + H] + = 2335. 0)、化合物(118)の MALD I-TOF/MS: [M + H] + = 2626. 3 (理論値: [M + H] + = 2626. 1)。
[0308] (3.23 (119)〜(: 129)の合成)
[0309] [化 84]
pi,4-GalT/UDP-Gal BLase
► 119 25
a2,3-(0)-SiaT/ CMP-NANA
►·
p1,4-GalT, a2,3-(0)-SiaT/UDP-Gal, CMP-NANA iLai
► 27
p1,4-GalT, a2,3-(N)-SiaT/UDP-Gal, CMP-NANA iLase
>■
β1,4- GalT, a2,3-(N)-SiaT, a2,3-(0)-SiaT/UDP-Gal, CMP-NANA !Lase
123
BLase
124
Figure imgf000241_0001
0172
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000242_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000243_0001
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000244_0001
εセ s
S.69T0/S00Zdf/X3d 01?8θεθ/900Ζ OAV
Figure imgf000245_0001
S-69lO/SOOZdf/X3d 0t^80£0/900Z O/W
Figure imgf000246_0001
9172
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000247_0001
Figure imgf000247_0002
9172
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000248_0001
7Z
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000249_0001
8ャ 2
0^80£0/900Z 0/W
S.69l0/≤00Zdf/I3d
Figure imgf000250_0001
6172
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000251_0001
z 下記の A)〜E)の反応液を 25°C24時間反応させた。
A) 50mM HEPES緩衝 ί夜(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトー ス転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1 %BSA、 2mM ゥリジン 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal) ,糖ペプチド誘導体(87) (固相 合成からの理論含量で 4mM)を含む 250 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0)、 0. 0175U/ml ラット組換え α 2, 3— ( 〇)ーシアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0· 1%BSA 、 2mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘 導体(87) (固相合成からの理論含量で 4mM)を含む 250 μ 1の反応液; C) 50mM HEPES緩種夜(pH7. 0)、 0. lU/ml ヒト由来 j3 1 , 4_ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(87) (固相合成からの 理論含量で 4mM)を含む 250 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lUZml ヒト由来 j3 1, 4 ガラクトー ス転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸 転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジ ン 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン 5 '—リ ン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(87) (固相合成からの 理論含量で 4mM)を含む 250 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1, 4 ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 4mM ゥリ ジン 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン 5 '— リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(87) (固相合成から の理論含量で 4mM)を含む 250 μ 1の反応液。
反応終了後、各々の反応液を限外濾過フィルター ULTRAFRE-MC 10, 00 0NMWL Filter Unit (Millipore社製)へ移し、遠心濃縮した。その後 25mM酢 酸アンモニゥム緩衝液 (PH6. 5)を加え再度遠心分離機で濃縮することによって高 分子を洗浄した。この操作を 3回繰り返して化合物(119)〜(: 123)の水溶液を各々 得た。その後、化合物(119)〜(123)を含むフィルター保持液 150 μ 1、さらに(87) 水溶液 100 μ 1を 25mM酢酸アンモニゥム緩衝液(pH6. 5)で 150 μ 1に希釈した溶 液に、 BLase (塩野義製薬社製)の 1. 74mg/ml溶液 1 μ 1をカ卩え、 2時間室温で反 応させた後、限外濾過フィルター ULTRAFRE-MC 10, 000NMWL Filter U nit (Millipore社製)で遠心濾過することによって目的糖ペプチドを高分子と分離し、 得られた水溶液 (濾液)を凍結乾燥して化合物(124)〜(: 129)を得た。化合物(124 )の MALDI—TOF/MS: [M + H] + = 1882. 2 (理論値: [M + H] + = 1881. 9) 、化合物(125)の MALDI—TOF/MS: [M + H] + = 2044. 5(理論値: [M + H] + = 2043. 9)、ィ匕合物(126)の MALDI—TOF/MS: [M + H] + = 2173. 4(理 論値: [M + H] + = 2173. 0)、化合物(127)の MALDI—TOF/MS: [M + H] + = 2335. 4(理論値: [M + H] + = 2335. 0)、化合物(128)の MALDI_T〇FZM S: [M + H] + = 2335. 3(理論値: [M + H] + = 2335. 0)、化合物(129)の MALD I-TOF/MS: [M + H] + = 2626. 1 (理論値: [Μ + Η] + = 2626· 0)。
[0312] (3. 24 (130)〜(: 140)の合成)
[0313] [化 85]
jg dan/ヒ ¾ se-
2
5
3
j sse
Figure imgf000254_0001
Figure imgf000255_0001
1792
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000256_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000257_0001
992
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000258_0001
L9Z
SZ.69l0/S00idT/X3d 01?80£0/900∑; O
Figure imgf000259_0001
892
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000260_0001
692
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000261_0001
Figure imgf000261_0002
Figure imgf000261_0003
092
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000262_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000263_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000264_0001
S9S
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000265_0001
下記の A)〜E)の反応液を 25°C24時間反応させた。
A) 50mM HEPES緩衝夜(pH7. 0)、 0. lU/ml ヒト由来 /3 1 , 4_ガラクトー ス転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1 %BSA、 2mM ゥリジン 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal) ,糖ペプチド誘導体(90) (固相 合成からの理論含量で 4mM)を含む 250 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0)、 0. 0175U/ml ラット組換え α 2, 3— ( 〇)ーシアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0· 1%BSA 、 2mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘 導体(90) (固相合成からの理論含量で 4mM)を含む 250 μ 1の反応液;
C) 50mM HEPES緩衝g (pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(90) (固相合成からの 理論含量で 4mM)を含む 250 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lUZml ヒト由来 j3 1, 4 ガラクトー ス転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル酸 転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジ ン 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン 5 '—リ ン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(90) (固相合成からの 理論含量で 4mM)を含む 250 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 4mM ゥリ ジン 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン 5 '— リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(90) (固相合成から の理論含量で 4mM)を含む 250 μ 1の反応液。
反応終了後、各々の反応液を限外濾過フィルター ULTRAFRE-MC 10, 00 0NMWL Filter Unit (Millipore社製)へ移し、遠心濃縮した。その後 25mM酢 酸アンモニゥム緩衝液 (PH6. 5)を加え再度遠心分離機で濃縮することによって高 分子を洗浄した。この操作を 3回繰り返して化合物(130)〜(: 134)の水溶液を各々 得た。その後、化合物(130)〜(: 134)を含むフィルター保持液 150 μ 1、さらに(90) 水溶液 100 μ 1を 25mM酢酸アンモニゥム緩衝液(pH6. 5)で 150 μ 1に希釈した溶 液に、 BLase (塩野義製薬社製)の 1. 74mg/ml溶液 1 μ 1をカ卩え、 2時間室温で反 応させた後、限外濾過フィルター ULTRAFRE-MC 10, 000NMWL Filter U nit (Millipore社製)で遠心濾過することによって目的糖ペプチドを高分子と分離し、 得られた水溶液 (濾液)を凍結乾燥して化合物(135)〜(140)を得た。化合物(135 )の MALDI—TOF/MS: [M + H] + = 1882. 3 (理論値: [M + H] + = 1881. 9) 、化合物(136)の MALDI—TOF/MS: [M + H] + = 2044. 6(理論値: [M + H] + = 2043. 9)、ィ匕合物(137)の MALDI—TOF/MS: [M + H] + = 2173. 6 (理 論値: [M + H] + = 2173. 0)、化合物(138)の MALDI—TOF/MS: [M + H] + = 2335. 6(理論値: [M + H] + = 2335. 0)、化合物(139)の MALDI_T〇FZM S: [M + H] + = 2335. 4(理論値: [M + H] + = 2335. 0)、化合物(140)の MALD I-TOF/MS: [M + H] + = 2626. 3 (理論値: [M + H] + = 2626. 1)。
[0316] (3.25 (141)〜(: 151)の合成)
[0317] [化 86]
p1,4-GalT/UDP-Gal Lase
93 141
a2,3-(0)-SiaT/ CMP-NANA Lase
93 ^ 142
p1,4-GalT, a2,3-(0)-SiaT/UDP-Gal, CMP-NANA Lase
93
pi,4-GalT,a2,3-(N)-SiaT/UDP-Gal, Lase
93 44 50
pi,4-GalT, a2,3-(N)-SiaT, a2,3-(0)-SiaT/UDP-Gal, CMP-NANA Lase
93
BLase
93 146
Figure imgf000269_0001
892
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000270_0001
692
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000271_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000272_0001
01^80C0/900Z OAV
SZ.69lO/SOOZdf/X3d
Figure imgf000273_0001
ZLZ
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000274_0001
ZLZ
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000275_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV IJ75
Figure imgf000276_0001
Figure imgf000276_0002
Figure imgf000277_0001
9LZ
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000278_0001
LIZ
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000279_0001
下記の A)〜E)の反応液を 25°C24時間反応させた。
A) 50mM HEPES緩衝 ί夜(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトー ス転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1 %BSA、 2mM ゥリジン 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal) ,糖ペプチド誘導体(93) (固相 合成からの理論含量で 4mM)を含む 250 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0)、 0. 0175U/ml ラット組換え α 2, 3— ( 〇)—シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA 、 2mM シチジン _ 5'—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘 導体(93) (固相合成からの理論含量で 4mM)を含む 250 μ 1の反応液;
C) 50mM HEPES緩種夜(pH7. 0)、 0. lU/ml ヒト由来 j3 1 , 4_ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(93) (固相合成からの 理論含量で 4mM)を含む 250 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0· lU/ml ヒト由来 1, 4 ガラクトー ス転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸 転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジ ン 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン 5 '—リ ン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(93) (固相合成からの 理論含量で 4mM)を含む 250 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1, 4 ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 4mM ゥリ ジン一 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _ リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(93) (固相合成から の理論含量で 4mM)を含む 250 μ 1の反応液。
反応終了後、各々の反応液を限外濾過フィルター ULTRAFRE-MC 10, 00 0NMWL Filter Unit (Millipore社製)へ移し、遠心濃縮した。その後 25mM酢 酸アンモニゥム緩衝液 (PH6. 5)を加え再度遠心分離機で濃縮することによって高 分子を洗浄した。この操作を 3回繰り返して化合物(141)〜(145)の水溶液を各々 得た。その後、化合物(141)〜(145)を含むフィルター保持液 150 μ 1、さらに(93) 水溶液 100 μ 1を 25mM酢酸アンモニゥム緩衝液(pH6. 5)で 150 μ 1に希釈した溶 液に、 BLase (塩野義製薬社製)の 1. 74mg/ml溶液 1 μ 1をカ卩え、 2時間室温で反 応させた後、限外濾過フィルター ULTRAFRE-MC 10, 000NMWL Filter U nit (Millipore社製)で遠心濾過することによって目的糖ペプチドを高分子と分離し、 得られた水溶液 (濾液)を凍結乾燥して化合物(146)〜(151)を得た。化合物(146 )の MALDI—TOF/MS : [M + H] + = 1882. 3 (理論値: [M + H] + = 1881. 9) 、化合物(147)の MALDI—TOF/MS : [M + H] + = 2044. 6 (理論値: [M + H] + = 2043. 9)、ィ匕合物(148)の MALDI—TOF/MS : [M + H] + = 2173. 6 (理 論値: [Μ + Η] + = 2173· 0)、化合物(149)の MALDI—TOF/MS: [M + H] + = 2335. 4 (理論値: [Μ + Η] + = 2335· 0)、化合物(150)の MALDI—TOF/M S : [Μ + Η] + = 2335. 6 (理論値: [Μ + Η] + = 2335. 0)、化合物(151)の MALD I-TOF/MS : [Μ + Η] + = 2626. 3 (理論値: [Μ + Η] + = 2626. 1)。
[0320] (3. 26 (152)〜(: 162)の合成)
[0321] [化 87]
p1,4-GalT / UDP-Gal
► 152
a2,3-(0)-SiaT / CMP-NANA
► 153
151,4-GalT, a2,3-(0)-SiaT / UDP-Gal, CMP-NANA Lase
pi,4-GalT, a2,3-(N)-SiaT/ UDP-Gal, CMP-NANA Lase
p1,4-GalT, OL2,3傅 SiaT, a2,3-(0)-SiaT / UDP-Gal, CMP-NANA Lase
BLase
* 157
Figure imgf000283_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000284_0001
S8S
S.6910/S00idf/X3d 01-80C0/900Z: ΟΛ\
Figure imgf000285_0001
1782
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000286_0001
982
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000287_0001
982
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000288_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000289_0001
882
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000290_0001
682
01?80ε0/900Ζ OAV
Figure imgf000291_0001
062
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000292_0001
Figure imgf000292_0002
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000293_0001
下記の A)〜E)の反応液を 25°C24時間反応させた。
A) 50mM HEPES緩衝夜(pH7.0)、 0. lU/ml ヒト由来 /31, 4_ガラクトー ス転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0.1%BSA、 2mM ゥリジン— 5'_二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(96) (固相 合成からの理論含量で 4mM)を含む 250 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7.0)、 0.0175U/ml ラット組換え α 2, 3— ( 〇)—シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA 、 2mM シチジン _ 5'—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘 導体(96) (固相合成からの理論含量で 4mM)を含む 250 μ 1の反応液;
C) 50mM HEPES緩種夜(pH7. 0)、 0. lU/ml ヒト由来 j3 1 , 4_ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(96) (固相合成からの 理論含量で 4mM)を含む 250 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0· lU/ml ヒト由来 1, 4 ガラクトー ス転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸 転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジ ン 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン 5 '—リ ン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(96) (固相合成からの 理論含量で 4mM)を含む 250 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1, 4 ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 4mM ゥリ ジン一 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _ リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(96) (固相合成から の理論含量で 4mM)を含む 250 μ 1の反応液。
反応終了後、各々の反応液を限外濾過フィルター ULTRAFRE-MC 10, 00 0NMWL Filter Unit (Millipore社製)へ移し、遠心濃縮した。その後 25mM酢 酸アンモニゥム緩衝液 (PH6. 5)を加え再度遠心分離機で濃縮することによって高 分子を洗浄した。この操作を 3回繰り返して化合物(152)〜(: 156)の水溶液を各々 得た。その後、化合物(152)〜(: 156)を含むフィルター保持液 150 μ 1、さらに(96) 水溶液 100 μ 1を 25mM酢酸アンモニゥム緩衝液(pH6. 5)で 150 μ 1に希釈した溶 液に、 BLase (塩野義製薬社製)の 1. 74mg/ml溶液 1 μ 1をカ卩え、 2時間室温で反 応させた後、限外濾過フィルター ULTRAFRE-MC 10, 000NMWL Filter U nit (Millipore社製)で遠心濾過することによって目的糖ペプチドを高分子と分離し、 得られた水溶液 (濾液)を凍結乾燥して化合物(157)〜(: 162)を得た。化合物(157 )の MALDI—TOF/MS : [M + H] + = 1882. 3 (理論値: [M + H] + = 1881. 9) 、化合物(158)の MALDI—TOF/MS : [M + H] + = 2044. 6 (理論値: [M + H] + = 2043. 9)、ィ匕合物(159)の MALDI—TOF/MS : [M + H] + = 2173. 6 (理 論値: [Μ + Η] + = 2173· 0)、化合物(160)の MALDI— TOF/MS : [M + H] + = 2335. 5 (理論値: [M + H] + = 2335. 0)、化合物(161)の MALDI— TOF/M S : [M + H] + = 2335. 5 (理論値: [M + H] + = 2335. 0)、化合物(162)の MALD I— TOF/MS : [M + H] + = 2626. 2 (理論値: [M + H] + = 2626. 1)。
[0324] (3. 27. 1 ワンポット反応を用いた化合物(163)〜(165)の合成)
[0325] [化 88]
Figure imgf000296_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV HOBN
Figure imgf000297_0001
Figure imgf000298_0001
L6Z
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000299_0001
Tentagel (登録商標) S RAMレジン(Hipep Laboratories, 0. 25mmol/g)0. 12g(0.03mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/HB TUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Arg( Pbf) -OH, Fmoc -Thr (Ac3GalNAc)— OH、 Fmoc— Asp (〇tBu)—〇H、 F moc— Pro—〇H、 Fmoc— Ala— OH、 Fmoc— Ser (Ac7core2)—〇H、 Fmoc— Thr (Ac5core6) _〇H、 Fmoc_Val_OH、 Fmoc_Gly_OH、 Fmoc-His (Tr t) _〇H、 Fmoc -Ala -OH, Fmoc-Glu (OtBu) _OH、 Fmoc_Phe_OH、 5 —ケトへキサン酸。ペプチド伸長反応後、樹脂を 90%TFA水溶液中、室温で 2時間 反応させることによってペプチド残基上の保護基を脱離させるとともに、固相担体上 力 化合物(163)を遊離させた。樹脂を濾別し、 TFAを揮発留去した後、ジェチル エーテルをカ卩えて生成物を沈殿させた。得られたスラリーを遠心分離後、上澄みを除 き、再度ジェチルエーテルを添加して沈殿を洗浄した。再び遠心分離を行って上澄 みを除き、得られた沈殿をメタノール 6. Omlに溶解した。この溶液へ 1N水酸化ナトリ ゥム水溶液を添加して pHを 12〜12. 5へ調節し、 3時間室温で攪拌して脱 Ac保護 反応を行った。反応後、 H+型陽イオン交換樹脂 DoWeX50WX8 (ダウケミカル社製) を加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸/酢 酸ナトリウム緩衝液(ρΗ5· 5) 3. 0mlへ溶解させた。この液に 10mM (ォキシァミン残 基換算)水溶性高分子(17)水溶液 30mlを添加し、室温で 14時間攪拌させて化合 物(164)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィルター 1 OK Apollp (登録商標) 20ml(Orbital Biosciences, LIC製)によって遠心濃縮し 、そこへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによって洗浄 し、最終的に容量が 1. 5mlになるように水を加えることによって 20mM (固相合成か らの糖ペプチド理論含量)高分子(165)とした。高分子(165)の同定は、以下の(3. 28)において生成物(171)が得られることによって行った。
[0327] (3. 27. 2 (166)〜(: 176)の合成)
[0328] [化 89] pi,4-GalT/UDP-Gal BLase
165 166 72
a2,3-(0)-SiaT/ CMP-NANA
p1,4-GalT, a2,3-(0)-SiaT/UDP-Gal, CMP-NANA Lase
^ 74
p1,4-GalT,a2,3-(N)-SiaT/UDP-Gal, CMP-NANA La!
pi,4-GalT, a2,3舞 SiaT, a2,3-(0)-SiaT / UDP-Gal, Lase
*■
BLase
165 171
Figure imgf000302_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000303_0001
SOS
S.69TO/SOOZdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000304_0001
εοε
S.69TO/SOOZdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000305_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000306_0001
SOS
S£69I0/£00Zdf/XDd 0^80^0/9003 OAV
Figure imgf000307_0001
90S
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000308_0001
S.69TO/SOOZdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000309_0001
80S
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000310_0001
60S
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000311_0001
CHS
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000312_0001
下記の A)〜E)の反応液を 25°Cで 24時間反応させた。
A) 50mM HEPES緩衝夜(pH7. 0)、 0. lU/ml ヒト由来 /3 1 , 4_ガラクトー ス転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1 %BSA, 5mM ゥリジン— 5 ' _二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(165) (固相 合成からの理論含量で 8mM)を含む 150 μ ΐの反応液; B) 50mM HEPES緩衝 液(ρΗ7· 0)、 0. 0175U/ml ラット組換え α 2, 3—(Ο)—シアル酸転移酵素(Ca lbiochem社製)、 10mM 塩ィ匕マンガン、 0. 1 %BSA、 5mM シチジン一 5, 一リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(165) (固相合成からの 理論含量で 8mM)を含む 150 μ 1の反応液;
C) 50mM HEPES緩衝g (pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 5mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 5mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(165) (固相合成からの 理論含量で 8mM)を含む 150 μ ΐの反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lUZml ヒト由来 j3 1, 4 ガラクトー ス転移酵素(東洋紡社製)、 0. 074U/ml ラット組換えひ 2, 3_ (N)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 5mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 5mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(165) (固相合成からの 理論含量で 8mM)を含む 150 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1, 4 ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 0. 074U/ml ラット組換え α 2, 3—(Ν)—シアル酸 転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 5mM ゥリジ ン 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 5mM シチジン 5 '—リ ン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(165) (固相合成から の理論含量で 8mM)を含む 150 μ 1の反応液。
反応終了後、各々の反応液を限外濾過フィルター ULTRAFRE-MC 10, 00 0NMWL Filter Unit (Millipore社製)へ移し、遠心濃縮した。その後 25mM酢 酸アンモニゥム緩衝液 (PH6. 5)を加え再度遠心分離機で濃縮することによって高 分子を洗浄した。この操作を 3回繰り返して化合物(166)〜(: 170)の水溶液を各々 得た。その後、化合物(166)〜(170)を含むフィルター保持液 150 μ 1、さらに(165 )水溶液 60 μ 1を 25mM酢酸アンモニゥム緩衝液(pH6. 5)で 150 μ 1に希釈した溶 液に、 BLase (塩野義製薬社製)の 1. 74mg/ml溶液 0. 75 μ 1をカロえ、 2時間 25°C で反応させた後、限外濾過フィルター ULTRAFRE-MC 10, 000NMWL Filter
Unit (Millipore社製)で遠心濾過することによって目的糖ペプチドを高分子と分 離し、得られた水溶液 (濾液)を凍結乾燥して化合物(171)〜(: 176)を得た。化合物 (171)の MALDI—TOFZMS : [M + H] + = 2288. 0 (理論値: [M + H] + = 228 8. 0)、化合物(172)の MALDI—TOF/MS : [M + H] + = 2612. 5 (理論値: [M + H] + = 2612. 1)、化合物(173)の MALDI—TOF/MS : [Μ + Η] + = 2579· 6 (理論値: [M + H] + = 2579. 1)、化合物(174)の MALDI—TOF/MS : [M + H] + = 2903. 2 (理論値: [M + H] + = 2903. 2)、化合物(175)の MALDI—TOF /MS : [M + H] + = 3194, 2 (理論値: [M + H] + = 3194. 3)、化合物(176)の M ALDI-TOF/MS : [M + H] + = 3485. 2 (理論ィ直: [M + H] + = 3485. 4)。
[0331] (3. 28 分注装置を用いた(97)〜(: 162)のコンビナトリアル合成)
上記の(97)〜(: 162)の化合物は分注装置を用いた自動合成を行うことができた。
[0332] 下記の P1〜P6、 E1〜E3、 B1溶液を用意し、庫内温度が 25°Cに設定された Hita chi Programmable Autos ampler L— 7250へ図 2のよつにセットした。
[0333] PI : 6. 67mM 化合物(87) (固相合成からの理論濃度)、 16. 7mM MnC12、 0 • 1%BSA、を含む 50mM HEPES緩衝液(ρΗ7· 0)、
P2 : 6. 67mM 化合物(96) (固相合成からの理論濃度)、 16. 7mM MnCl、 0
2
• 1%BSA、を含む 50mM HEPES緩衝液(ρΗ7· 0)、
P3 : 6. 67mM 化合物(84) (固相合成からの理論濃度)、 16. 7mM MnCl、 0
2
• 1%BSA、を含む 50mM HEPES緩衝液(ρΗ7· 0)、
P4 : 6. 67mM 化合物(90) (固相合成からの理論濃度)、 16. 7mM MnCl、 0
2
• 1%BSA、を含む 50mM HEPES緩衝液(ρΗ7· 0)、
P5 : 6. 67mM 化合物(93) (固相合成からの理論濃度)、 16. 7mM MnCl、 0
2
. 1%BSA、を含む 50mM HEPES緩衝液(pH7. 0)、
P6 : 6. 67mM 化合物(81) (固相合成からの理論濃度)、 16. 7mM MnCl、 0
2
. 1%BSA、を含む 50mM HEPES緩衝液(pH7. 0)、
El : 20mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 1U/ ml ヒト由来 /3 1 , 4_ガラクトース転移酵素 (東洋紡社製)、 0. 1 %BSA、を含む 50 mM HEPES緩衝液(pH7. 0)、
E2 : 20mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、 0. 175 U/ml ラット組換えひ 2, 3 _ (〇)—シアル酸転移酵素(Calbiochem社製)、 0. 1 % BSA、を含む 50mM HEPES緩衝液(pH7. 0)、
E3 : 20mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、 0. 185 U/ml ラット組換え α 2, 3—(Ν)—シアル酸転移酵素(Calbiochem社製)、 0. 1 % BSA、を含む 50mM HEPES緩衝液(pH7.0)、
B1:0.1% BSA、を含む 50mM HEPES緩衝液(pH7.0)。
Hitachi D— 7000 HPLCシステムによるプログラムに従って、 P1〜P6、 E1〜E3 、 Blから R1〜R30へ下記の(a)〜(e)の反応組成になるよう分注、反応仕込みを行 つた。
(a)Rl〜R6:50mM HEPES緩衝液(pH7.0)、0. lU/ml ヒト由来 /31, 4— ガラクトース転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン— 5,—二リン酸ガラクトースニナトリウム(UDP— Gal),糖ペプチド誘導体 (R 1: (87)、 R2: (96)、 R3: (84)、 R4: (90)、 R5: (93)、 R6: (81) ) (固相合成からの 理論含量で 4mM)を含む 250 μΐの反応液; (b)R7〜R12: 50mM HEPES緩衝 液(ρΗ7· 0)、0.0175U/ml ラット組換え α 2, 3—(Ο)—シアル酸転移酵素(Ca lbiochem社製)、 10mM 塩ィ匕マンガン、 0.1%BSA、 2mM シチジン一 5,一リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(R7: (87)、 R8: (96)、 R9: (84)、 R10: (90)、 Rl 1: (93)、 R12: (81) ) (固相合成からの理論含量で 4m M)を含む 250 μΐの反応液; (c)R13〜R18:50mM HEPES緩衝液(ρΗ7· 0) 、 0. lU/ml ヒト由来 1, 4—ガラクトース転移酵素(東洋紡社製)、 0.0175U/ ml ラット組換え α 2, 3—(Ο)—シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. l%BSA、 2mM ゥリジン _5, _二リン酸ガラクトースニナトリウム (UDP— Gal)、 2mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA) 、糖ペプチド誘導体(R13: (87)、 R14: (96)、 R15: (84)、 R16: (90)、 R17: (93 )、R18: (81)) (固相合成からの理論含量で 4mM)を含む 250 μΐの反応液; (d)R 19〜R24:50mM HEPES緩衝液(pH7.0)、0. lU/ml ヒト由来 /31, 4—ガラ クトース転移酵素(東洋紡社製)、 0.0185U/ml ラット組換えひ 2, 3_ (N)—シァ ル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _5'_二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5 '—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(R19: (87)、 R2 0: (96)、 R21: (84)、 R22: (90)、 R23: (93)、 R24: (81) ) (固相合成からの理論 含量で 4mM)を含む 250μ1の反応液; (e)R25〜R30 50mM HEPES緩衝液 (pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4_ガラクトース転移酵素(東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3 _ (〇)—シアル酸転移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3 _ (N)—シアル酸転移酵素(Calbiochem社 製)、 10mM 塩ィ匕マンガン、 0. 1 %BSA、 2mM ゥリジン _ 5 ' _二リン酸ガラクトー スニナトリウム(UDP_Gal)、 4mM シチジン _ 5 '—リン酸シアル酸ナトリウム(CM P— NANA)、糖ペプチド誘導体(R25 : (87)、 R26 : (96)、 R27 : (84)、 R28 : (90 )、 R29 : (93)、 R30 : (81) ) (固相合成からの理論含量で 4mM)を含む 250 μ 1の反 応液。
[0335] 分注後、 25°Cでそのまま 24時間反応させた。反応終了後、各々の反応液を限外 濾過フィルター ULTRAFRE— MC 10, 000NMWL Filter Unit (Millipore社 製)へ移し、遠心濃縮した。その後 25mM酢酸アンモニゥム緩衝液 (pH6. 5)を加え 再度遠心分離機で濃縮することによって高分子を洗浄した。この操作を 3回繰り返し て化合物(97)〜(: 101)、 (108)〜(112)、(119)〜(: 123)、 (130)〜(134)、 (14 1)〜 (145)、 (152)〜(156)の水溶液を各々得た。その後、化合物 (97) - (101) 、(108)〜(: 112)、(119)〜(123)、(130)〜(: 134)、(141)〜(145)、(152)〜( 156)を含むフィルター保持液 150 μ ΐ、さらに(81)、(84)、 (87)、(90)、(93)、 (9 6)の水溶液 100 μ 1を 25mM酢酸アンモニゥム緩衝液(pH6. 5)で 150 μ 1に希釈し た各々の溶液に、 BLase (塩野義製薬社製)の 0. 174mg/ml溶液 1 μ 1を加え、 2 時間室温で反応させた後、限外濾過フィルター ULTRAFRE— MC 10, 000NM WL Filter Unit (Millipore社製)で遠心濾過することによって目的糖ペプチドを 高分子と分離し、得られた水溶液 (濾液)を凍結乾燥して化合物(102)〜(: 107)、 (1 13)〜(118)、 (124)〜(129)、(135)〜(140)、 (146)〜(151)、(157)〜(162 )を得た。
[0336] (3. 29 ワンポット反応を用いた化合物(177)〜(: 179)の合成)
[0337] [化 90]
Figure imgf000317_0001
Figure imgf000318_0001
Figure imgf000318_0002
Figure imgf000319_0001
8ΐ·ε
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000320_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc― Pro― ΟΗΛ Fmoc_ Pro _〇H、 Fmoc-Ala— ΟΗΛ Fmoc-Tnr ( Ac6corel ) _〇H、 Fmoc-Ser (tBu) _ OH、 Fmoc_Gly_〇H、 Fmoc-Pro- O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc— Arg (Pbf)—〇H、 Fmoc— Thr (Ac6corel ) _〇H、 Fmoc -Asp (OtBu) _〇H、 Fmoc - Pro - OH, Fmoc-Al a— OH、 Fmoc— Ser (tBu)—〇H、 Fmoc— Thr (Ac7core2)— OH、 Fmoc— Va 1— OH、 Fmoc— Gly— OH、 Fmoc -His (Trt)—〇H、 Fmoc— Glu (OtBu)— O H、 Fmoc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂の うち 5 μ mol相当を 90%TFA水溶液中、室温で 2時間反応させることによってぺプチ ド残基上の保護基を脱離させるとともに、固相担体上から化合物(177)を遊離させた 。樹脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿 させた。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添 加して沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノ ール 1. 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12 〜12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N 酢酸を加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸 Z酢酸ナトリウム緩衝液(pH5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァ ミン残基換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させ て化合物(178)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィル ター 10K Apollo (登録商標) 20ml(〇rbital Biosciences, LIC製)によって遠心 濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによつ て洗浄し、最終的に容量が 0. 5mlになるように水を加えることによって 10mM (糖ぺ プチド理論含量)高分子(179)とした。高分子(179)の同定は、以下の(3. 53)にお レ、て生成物(254)が得られることによって行った。
[0338] (3. 30 ワンポット反応を用いた化合物(180)〜(: 182)の合成)
[0339] [化 91]
2ε.
Figure imgf000322_0001
Figure imgf000323_0001
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV 323
Figure imgf000324_0001
Figure imgf000325_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc— Pro— OH、 Fmoc— Pro _〇H、 Fmoc-Ala— ΟΗΛ Fmoc-Tnr ( Ac6corel) _〇H、 Fmoc-Ser (tBu) _OH、 Fmoc_Gly_〇H、 Fmoc-Pro-O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc-Arg (Pbf)—〇H、 Fmoc-Thr (tBu) -OH, Fmoc - Asp (OtBu)— OH、 Fmoc— Pro—〇H、 Fmoc— Ala— O H、 Fmoc- Ser (tBu)—〇H、 Fmoc-Thr (Ac7core2)—〇H、 Fmoc— Val—〇
H、 Fmoc— Gly—〇H、 Fmoc -His (Trt)—〇H、 Fmoc— Glu (OtBu)—〇H、 F moc— Phe— OH、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂のうち 5 nmol相当を 90%TFA水溶液中、室温で 2時間反応させることによってペプチド残 基上の保護基を脱離させるとともに、固相担体上から化合物(180)を遊離させた。榭 脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させ た。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添加し て沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール
I . 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12〜 12
. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸を 加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸/酢酸 ナトリウム緩衝液(ρΗ5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァミン残基 換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させて化合物 (181)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィルター 10K Apollo (登録商標)20ml(〇rbital Biosciences, LIC製)によって遠心濃縮し、そ こへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによって洗浄し、 最終的に容量が 0. 5mlになるように水をカ卩えることによって 10mM (糖ペプチド理論 含量)高分子(182)とした。高分子(182)の同定は、以下の(3. 54)において生成 物(265)が得られることによって行った。
[0340] (3. 31 ワンポット反応を用いた化合物(183)〜(: 185)の合成)
[0341] [化 92]
i O ioooiAV
Figure imgf000327_0001
Figure imgf000328_0001
Figure imgf000329_0001
82
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000330_0001
6SS
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV TentageK登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 7 lmg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/HB TU/HOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala_ 〇H、 Fmoc -Pro - OH, Fmoc— Pro _〇H、 Fmoc_Ala_〇H、 Fmoc-Thr (tB u) _ OH、 Fmoc-Ser (tBu) _〇H、 Fmoc_Gly_〇H、 Fmoc_Pro _ OH、 Fmoc- Ala—〇H、 Fmoc-Pro— OH、 Fmoc— Arg (Pbf)— OH、 Fmo c - Thr (Ac 6 core 1) _〇H、 Fmoc -Asp (OtBu) _ OH、 Fmoc - Pro - OH, Fmoc _Ala_〇H、 F moc - Ser (tBu)— OH、 Fmoc— Thr (Ac7core2)— OH、 Fmoc— Val— OH、 F moc— Gly— OH、 Fmoc -His (Trt)— OH、 Fmoc— Glu (OtBu)—OH、 Fmoc Phe— OH、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂のうち 5nmo 1相当を 90%TFA水溶液中、室温で 2時間反応させることによってペプチド残基上の 保護基を脱離させるとともに、固相担体上から化合物(183)を遊離させた。樹脂を濾 別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させた。得 られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添加して沈殿 を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール 1. 5ml に溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添カ卩して pHを 12〜 12. 5へ調 節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸を加えて 中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸/酢酸ナトリ ゥム緩衝液(PH5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァミン残基換算 )水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させて化合物(18 4)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィルター 10K A polio (登録商標)20ml(〇rbital Biosciences, LIC製)によって遠心濃縮し、そこ へ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによって洗浄し、最 終的に容量が 0. 5mlになるように水をカ卩えることによって 10mM (糖ペプチド理論含 量)高分子(185)とした。高分子(185)の同定は、以下の(3. 55)におレ、て生成物( 276)が得られることによって行った。
[0342] (3. 32 ワンポット反応を用いた化合物(186)〜(: 188)の合成)
[0343] [化 93]
Figure imgf000332_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000333_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000334_0001
εεε
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000335_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000336_0001
9εε
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc— Pro— OH、 Fmoc— Pro _〇H、 Fmoc_Aia_〇H、 Fmoc-Thr ( Ac5core3) _〇H、 Fmoc-Ser (tBu) _ OH、 Fmoc_Gly_〇H、 Fmoc-Pro- O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc -Arg (Pbf)—〇H、 Fmoc -Thr (Ac5core3) _〇H、 Fmoc -Asp (OtBu) _〇H、 Fmoc - Pro - OH, Fmoc-Al a— OH、 Fmoc— Ser (tBu)—〇H、 Fmoc -Thr (Ac7core2)— OH、 Fmoc— Va 1— OH、 Fmoc— Gly— OH、 Fmoc -His (Trt)—〇H、 Fmoc— Glu (OtBu)— O H、 Fmoc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂の うち 5nmol相当を 90%TFA水溶液中、室温で 2時間反応させることによってぺプチ ド残基上の保護基を脱離させるとともに、固相担体上から化合物(186)を遊離させた 。樹脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿 させた。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添 加して沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノ ール 1. 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12 〜12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N 酢酸を加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸 Z酢酸ナトリウム緩衝液(pH5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァ ミン残基換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させ て化合物(187)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィル ター 10K Apollo (登録商標) 20ml(〇rbital Biosciences, LIC製)によって遠心 濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによつ て洗浄し、最終的に容量が 0. 5mlになるように水を加えることによって 10mM (糖ぺ プチド理論含量)高分子(188)とした。高分子(188)の同定は、高分子(188)の一 部を BLaseで処理し、生成物(430)が得られることによって行った。
化合物(430)の MALDI—TOFZMS : [M (average) + H] + = 3269. 9 (理論値: [M (average) + H] + = 3268. 3)。 [0344] (3. 33 ワンポット反応を用いた化合物(189)〜(: 191)の合成) [0345] [化 94]
Figure imgf000339_0001
339
Figure imgf000340_0001
Figure imgf000341_0001
01S
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000342_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000343_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc— Pro— OH、 Fmoc— Pro _〇H、 Fmoc_Aia_〇H、 Fmoc-Thr ( Ac5core3) _〇H、 Fmoc-Ser (tBu) _ OH、 Fmoc_Gly_〇H、 Fmoc-Pro- O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc -Arg (Pbf)—〇H、 Fmoc -Thr (tBu) - OH, Fmoc - Asp (OtBu)— OH、 Fmoc— Pro—〇H、 Fmoc— Ala— O H、 Fmoc- Ser (tBu)—〇H、 Fmoc -Thr (Ac7core2)—〇H、 Fmoc— Val—〇
H、 Fmoc— Gly—〇H、 Fmoc -His (Trt)—〇H、 Fmoc— Glu (OtBu)—〇H、 F moc— Phe— OH、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂のうち 5 nmol相当を 90%TFA水溶液中、室温で 2時間反応させることによってペプチド残 基上の保護基を脱離させるとともに、固相担体上から化合物(189)を遊離させた。榭 脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させ た。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添加し て沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール
I . 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12〜 12
. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸を 加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸/酢酸 ナトリウム緩衝液(ρΗ5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァミン残基 換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させて化合物 (190)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィルター 10K Apollo (登録商標)20ml(〇rbital Biosciences, LIC製)によって遠心濃縮し、そ こへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによって洗浄し、 最終的に容量が 0. 5mlになるように水をカ卩えることによって 10mM (糖ペプチド理論 含量)高分子(191)とした。高分子(191)の同定は、高分子(191)の一部を BLase で処理し、生成物(431)力得られることによつて行つた。
化合物(431)の MALDI—TOFZMS : [M (average) + H] + = 2863. 6 (理論値: [M (average) + H] + = 2861. 9)。 [0346] (3. 34 ワンポット反応を用いた化合物(192)〜(: 194)の合成)
[0347] [化 95]
Figure imgf000346_0001
Figure imgf000347_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000348_0001
S.69T0/S00Zdf/X3d
Figure imgf000349_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc -Pro - OH, Fmoc_ Pro _〇H、 Fmoc-Ala - OH, Fmoc-Thr (t Bu) _〇H、 Fmoc-Ser (tBu) _〇H、 Fmoc_Gly_ OH、 Fmoc_Pro _〇H、 Fmo c-Ala—〇H、 Fmoc_Pro—〇H、 Fmoc— Arg (Pbf)—〇H、 Fmoc -Thr (Ac5co re3) _ OH、 Fmoc -Asp (OtBu) _〇H、 Fmoc -Pro - OH, Fmoc -Ala - OH 、 Fmoc— Ser (tBu)—〇H、 Fmoc -Thr (Ac7core2)—〇H、 Fmoc— Val—〇H 、 Fmoc— Gly—〇H、 Fmoc - His (Trt)一〇H、 Fmoc— Glu (OtBu)—〇H、 Fm oc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂のうち 5n mol相当を 90%TFA水溶液中、室温で 2時間反応させることによってペプチド残基 上の保護基を脱離させるとともに、固相担体上から化合物(192)を遊離させた。樹脂 を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させた 。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添加して 沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール 1 . 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12〜 12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸を 加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸/酢酸 ナトリウム緩衝液(ρΗ5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァミン残基 換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させて化合物 (193)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィルター 10K Apollo (登録商標)20ml(〇rbital Biosciences, LIC製)によって遠心濃縮し、そ こへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによって洗浄し、 最終的に容量が 0. 5mlになるように水をカ卩えることによって 10mM (糖ペプチド理論 含量)高分子(194)とした。高分子(194)の同定は、以下の(3. 56)において生成 物(287)が得られることによって行った。
[0348] (3. 35 ワンポット反応を用いた化合物(195)〜(: 197)の合成)
[0349] [化 96]
Figure imgf000351_0001
S.69T0/S00Zdf/X3d
Figure imgf000352_0001
S.69T0/S00Zdf/X3d
Figure imgf000353_0001
Z9£
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000354_0001
S.69T0/S00Zdf/X3d Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc― Pro― ΟΗΛ Fmoc_ Pro _〇H、 Fmoc-Ala— ΟΗΛ Fmoc-Tnr ( Ac6corel ) _〇H、 Fmoc-Ser (tBu) _ OH、 Fmoc_Gly_〇H、 Fmoc-Pro- O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc— Arg (Pbf)—〇H、 Fmoc— Thr (Ac7core2) _〇H、 Fmoc -Asp (OtBu) _〇H、 Fmoc - Pro - OH, Fmoc-Al a— OH、 Fmoc— Ser (tBu)—〇H、 Fmoc― Thr ( Ac6 core 1 )— OH、 Fmoc— Va 1— OH、 Fmoc— Gly— OH、 Fmoc -His (Trt)—〇H、 Fmoc— Glu (OtBu)— O H、 Fmoc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂の うち 5nmol相当を 90%TFA水溶液中、室温で 2時間反応させることによってぺプチ ド残基上の保護基を脱離させるとともに、固相担体上から化合物(195)を遊離させた 。樹脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿 させた。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添 加して沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノ ール 1. 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12 〜12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N 酢酸を加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸 Z酢酸ナトリウム緩衝液(pH5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァ ミン残基換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させ て化合物(196)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィル ター 10K Apollo (登録商標) 20ml(〇rbital Biosciences, LIC製)によって遠心 濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによつ て洗浄し、最終的に容量が 0. 5mlになるように水を加えることによって 10mM (糖ぺ プチド理論含量)高分子(197)とした。高分子(197)の同定は、以下の(3. 57)にお いて生成物(298)が得られることによって行った。
[0350] (3. 36 ワンポット反応を用いた化合物(198)〜(200)の合成)
[0351] [化 97] VJ1%06
Figure imgf000356_0001
Figure imgf000356_0002
Figure imgf000357_0001
99ε
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000358_0001
/9
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV BLase
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000360_0001
69
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc— Pro— OH、 Fmoc— Pro _〇H、 Fmoc_Aia_〇H、 Fmoc-Thr ( Ac6corel ) _〇H、 Fmoc-Ser (tBu) _ OH、 Fmoc_Gly_〇H、 Fmoc-Pro- O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc -Arg (Pbf)—〇H、 Fmoc -Thr (Ac7core2) _〇H、 Fmoc -Asp (OtBu) _〇H、 Fmoc - Pro - OH, Fmoc-Al a— OH、 Fmoc- Ser (tBu)一〇H、 Fmoc -Thr (tBu)一〇H、 Fmoc—Val— OH 、 Fmoc— Gly—〇H、 Fmoc - His (Trt)一〇H、 Fmoc— Glu (OtBu)—〇H、 Fm oc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂のうち 5n mol相当を 90%TFA水溶液中、室温で 2時間反応させることによってペプチド残基 上の保護基を脱離させるとともに、固相担体上から化合物(198)を遊離させた。樹脂 を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させた 。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添加して 沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール 1 . 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12〜 12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸を 加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸/酢酸 ナトリウム緩衝液(ρΗ5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァミン残基 換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させて化合物 (199)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィルター 10K
Apollo (登録商標)20ml(〇rbital Biosciences, LIC製)によって遠心濃縮し、そ こへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによって洗浄し、 最終的に容量が 0. 5mlになるように水をカ卩えることによって 10mM (糖ペプチド理論 含量)高分子(200)とした。高分子(200)の同定は、高分子(200)の一部を BLase で処理し、生成物(432)が得られることによって行った。
化合物(432)の MALDI—TOFZMS : [M (average) + H] + = 2822. 4 (理論値: [M (average) + H] + = 2820. 9)。 [0352] (3. 37 ワンポット反応を用いた化合物(20:!)〜(203)の合成)
[0353] [化 98]
Figure imgf000363_0001
S9S
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000364_0001
S9S
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000365_0001
Figure imgf000366_0001
99ε
S.69T0/S00Zdf/X3d
Figure imgf000367_0001
99
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc -Pro - OH, Fmoc_ Pro _〇H、 Fmoc-Ala - OH, Fmoc-Thr (t Bu) _〇H、 Fmoc-Ser (tBu) _〇H、 Fmoc_Gly_ OH、 Fmoc_Pro _〇H、 Fmo c-Ala—〇H、 Fmoc_Pro—〇H、 Fmoc— Arg (Pbf)—〇H、 Fmoc -Thr (Ac7co re2) _ OH、 Fmoc -Asp (OtBu) _〇H、 Fmoc -Pro - OH, Fmoc -Ala - OH 、 Fmoc— Ser (tBu)—〇H、 Fmoc― Thr ( Ac6 core 1 )—〇H、 Fmoc— Val—〇H 、 Fmoc— Gly—〇H、 Fmoc - His (Trt)一〇H、 Fmoc— Glu (OtBu)—〇H、 Fm oc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂のうち 5n mol相当を 90%TFA水溶液中、室温で 2時間反応させることによってペプチド残基 上の保護基を脱離させるとともに、固相担体上から化合物(201 )を遊離させた。樹脂 を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させた 。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添加して 沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール 1 . 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12〜 12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸を 加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸/酢酸 ナトリウム緩衝液(ρΗ5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァミン残基 換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させて化合物 (202)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィルター 10K
Apollo (登録商標)20ml(〇rbital Biosciences, LIC製)によって遠心濃縮し、そ こへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによって洗浄し、 最終的に容量が 0. 5mlになるように水をカ卩えることによって 10mM (糖ペプチド理論 含量)高分子(203)とした。高分子(203)の同定は、高分子(203)の一部を BLase で処理し、生成物(433)が得られることによって行った。
化合物(433)の MALDI—TOFZMS : [M (average) + H] + = 2822. 3 (理論値: [M (average) + H] + = 2820. 9)。 [0354] (3. 38 ワンポット反応を用いた化合物(204)〜(206)の合成)
[0355] [化 99]
Figure imgf000370_0001
69
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000371_0001
01?80ε0/900Ζ OAV
Figure imgf000372_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000373_0001
Figure imgf000374_0001
Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc— Pro— OH、 Fmoc— Pro _〇H、 Fmoc—Ala _〇H、 Fmoc-Thr ( Ac5core3) _〇H、 Fmoc-Ser (tBu) _ OH、 Fmoc_Gly_〇H、 Fmoc-Pro- O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc— Arg (Pbf)—〇H、 Fmoc— Thr (Ac7core2) _〇H、 Fmoc -Asp (OtBu) _〇H、 Fmoc - Pro - OH, Fmoc-Al a— OH、 Fmoc- Ser (tBu)—〇H、 Fmoc - Thr (Ac 5 core 3)— OH、 Fmoc-Va l_ OH、 Fmoc-Gly- OH, Fmoc -His (Trt) _〇H、 Fmoc -Glu (OtBu)—O H、 Fmoc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂の うち 5nmol相当を 90%TFA水溶液中、室温で 2時間反応させることによってぺプチ ド残基上の保護基を脱離させるとともに、固相担体上から化合物(204)を遊離させた 。樹脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿 させた。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添 加して沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノ ール 1. 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12 〜12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N 酢酸を加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸 /酢酸ナトリウム緩衝液(ρΗ5· 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァ ミン残基換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させ て化合物(205)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィル ター 10K Apollo (登録商標) 20ml(〇rbital Biosciences, LIC製)によって遠心 濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによつ て洗浄し、最終的に容量が 0. 5mlになるように水を加えることによって 10mM (糖ぺ プチド理論含量)高分子(206)とした。高分子(206)の同定は、高分子(206)の一 部を BLaseで処理し、生成物(434)が得られることによって行った。
ィ匕合物(434)の MALDI—TOFZMS : [M (average) + H] + = 3269. 8 (理論値: [M (average) + H] + = 3268. 3)。
[0356] (3. 39 ワンポット反応を用いた化合物(207)〜(209)の合成)
[0357] [化 100]
Figure imgf000376_0001
9/ε
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000377_0001
9/ε
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000378_0001
LLZ
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000379_0001
0^80e0/900∑: OAV
Figure imgf000380_0001
Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala —〇H、 Fmoc— Pro—〇H、 Fmoc— Pro—〇H、 Fmoc_Ala—〇H、 Fmoc-Thr ( Ac5core3) _〇H、 Fmoc-Ser (tBu) _ OH、 Fmoc_Gly_〇H、 Fmoc-Pro- O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc— Arg (Pbf)—〇H、 Fmoc— Thr (Ac7core2) _〇H、 Fmoc -Asp (OtBu) _〇H、 Fmoc - Pro - OH, Fmoc-Al a_ OH、 Fmoc- Ser (tBu) _〇H、 Fmoc -Thr (tBu) _〇H、 Fmoc _Val_ OH 、 Fmoc_Gly_〇H、 Fmoc - His (Trt) _〇H、 Fmoc -Glu (OtBu) _〇H、 Fm oc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂のうち 5n mol相当を 90%TFA水溶液中、室温で 2時間反応させることによってペプチド残基 上の保護基を脱離させるとともに、固相担体上から化合物(207)を遊離させた。樹脂 を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させた 。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添加して 沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール 1 . 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12〜 12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸を 加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸/酢酸 ナトリウム緩衝液(ρΗ5· 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァミン残基 換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させて化合物 (208)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィルター 10K Apollo (登録商標)20ml(〇rbital Biosciences, LIC製)によって遠心濃縮し、そ こへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによって洗浄し、 最終的に容量が 0. 5mlになるように水をカ卩えることによって 10mM (糖ペプチド理論 含量)高分子(209)とした。高分子(209)の同定は、高分子(209)の一部を BLase で処理し、生成物(435)が得られることによって行った。
ィ匕合物(435)の MALDI—TOFZMS : [M (average) + H] + = 2863. 6 (理論値:
[M (average) + H] + = 2861. 9)。
[0358] (3. 40 ワンポット反応を用いた化合物(210)〜(212)の合成)
[0359] [化 101]
8ε.
Figure imgf000382_0001
Figure imgf000383_0001
S.69T0/S00Zdf/X3d
Figure imgf000384_0001
S.69T0/S00Zdf/X3d
Figure imgf000385_0001
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc -Pro - OH, Fmoc_ Pro _〇H、 Fmoc-Ala - OH, Fmoc-Thr (t Bu) _〇H、 Fmoc-Ser (tBu) _〇H、 Fmoc_Gly_ OH、 Fmoc_Pro _〇H、 Fmo c-Ala—〇H、 Fmoc_Pro—〇H、 Fmoc— Arg (Pbf)—〇H、 Fmoc -Thr (Ac7co re2) _ OH、 Fmoc -Asp (OtBu) _〇H、 Fmoc -Pro - OH, Fmoc -Ala - OH 、 Fmoc— Ser (tBu)—〇H、 Fmoc— Thr (Ac 5 core 3)—〇H、 Fmoc— Val—〇H 、 Fmoc— Gly—〇H、 Fmoc - His (Trt)一〇H、 Fmoc— Glu (OtBu)—〇H、 Fm oc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂のうち 5n mol相当を 90%TFA水溶液中、室温で 2時間反応させることによってペプチド残基 上の保護基を脱離させるとともに、固相担体上から化合物(210)を遊離させた。樹脂 を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させた 。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添加して 沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール 1 . 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12〜 12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸を 加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸/酢酸 ナトリウム緩衝液(ρΗ5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァミン残基 換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させて化合物 (211)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィルター 10K Apollo (登録商標)20ml(〇rbital Biosciences, LIC製)によって遠心濃縮し、そ こへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによって洗浄し、 最終的に容量が 0. 5mlになるように水をカ卩えることによって 10mM (糖ペプチド理論 含量)高分子(212)とした。高分子(212)の同定は、以下の(3. 58)において生成 物(309)が得られることによって行った。
[0360] (3. 41 ワンポット反応を用いた化合物(213)〜(215)の合成)
[0361] [化 102]
Figure imgf000387_0001
98
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000388_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000389_0001
88
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000390_0001
68
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc― Pro― ΟΗΛ Fmoc_ Pro _〇H、 Fmoc-Ala— ΟΗΛ Fmoc-Tnr ( Ac7core2) _〇H、 Fmoc-Ser (tBu) _ OH、 Fmoc_Gly_〇H、 Fmoc-Pro- O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc— Arg (Pbf)—〇H、 Fmoc— Thr (Ac6corel ) _〇H、 Fmoc -Asp (OtBu) _〇H、 Fmoc - Pro - OH, Fmoc-Al a— OH、 Fmoc— Ser (tBu)—〇H、 Fmoc― Thr ( Ac6 core 1 )— OH、 Fmoc— Va 1— OH、 Fmoc— Gly— OH、 Fmoc -His (Trt)—〇H、 Fmoc— Glu (OtBu)— O H、 Fmoc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂の うち 5nmol相当を 90%TFA水溶液中、室温で 2時間反応させることによってぺプチ ド残基上の保護基を脱離させるとともに、固相担体上から化合物(213)を遊離させた 。樹脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿 させた。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添 加して沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノ ール 1. 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12 〜12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N 酢酸を加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸 Z酢酸ナトリウム緩衝液(pH5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァ ミン残基換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させ て化合物(214)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィル ター 10K Apollo (登録商標) 20ml(〇rbital Biosciences, LIC製)によって遠心 濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによつ て洗浄し、最終的に容量が 0. 5mlになるように水を加えることによって 10mM (糖ぺ プチド理論含量)高分子(215)とした。高分子(215)の同定は、以下の(3. 59)にお レ、て生成物(320)が得られることによって行った。
[0362] (3. 42 ワンポット反応を用いた化合物(216)〜(218)の合成)
[0363] [化 103]
Figure imgf000392_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000393_0001
S6S
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000394_0001
S6S
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000395_0001
S.69T0/S00Zdf/X3d Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc— Pro— OH、 Fmoc— Pro _〇H、 Fmoc-Ala— ΟΗΛ Fmoc-Tnr ( Ac7core2) _〇H、 Fmoc-Ser (tBu) _OH、 Fmoc_Gly_〇H、 Fmoc-Pro-O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc-Arg (Pbf)—〇H、 Fmoc-Thr (Ac6corel) _〇H、 Fmoc-Asp (OtBu) _〇H、 Fmoc -Pro -OH, Fmoc-Al a— OH、 Fmoc- Ser (tBu)一〇H、 Fmoc-Thr (tBu)一〇H、 Fmoc—Val— OH 、 Fmoc— Gly—〇H、 Fmoc - His (Trt)一〇H、 Fmoc— Glu (OtBu)—〇H、 Fm oc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂のうち 5n mol相当を 90%TFA水溶液中、室温で 2時間反応させることによってペプチド残基 上の保護基を脱離させるとともに、固相担体上から化合物(216)を遊離させた。樹脂 を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させた 。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添加して 沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール 1 . 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12〜 12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸を 加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸/酢酸 ナトリウム緩衝液(ρΗ5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァミン残基 換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させて化合物 (217)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィルター 10K Apollo (登録商標)20ml(〇rbital Biosciences, LIC製)によって遠心濃縮し、そ こへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによって洗浄し、 最終的に容量が 0. 5mlになるように水をカ卩えることによって 10mM (糖ペプチド理論 含量)高分子(218)とした。高分子(218)の同定は、以下の(3. 60)において生成 物(331)が得られることによって行った。
[0364] (3. 43 ワンポット反応を用いた化合物(219)〜(221)の合成)
[0365] [化 104]
Figure imgf000397_0001
90%TFA
Figure imgf000397_0002
Figure imgf000398_0001
01?80ε0/900Ζ OAV
Figure imgf000399_0001
86
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000400_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc— Pro— OH、 Fmoc— Pro _〇H、 Fmoc-Ala— ΟΗΛ Fmoc-Tnr ( Ac7core2) _〇H、 Fmoc-Ser (tBu) _OH、 Fmoc_Gly_〇H、 Fmoc-Pro-O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc-Arg (Pbf)—〇H、 Fmoc-Thr (tBu) -OH, Fmoc - Asp (OtBu)— OH、 Fmoc— Pro—〇H、 Fmoc— Ala— O H、 Fmoc— Ser (tBu)—〇H、 Fmoc― Thr ( Ac6 core 1 )—〇H、 Fmoc— Val—〇
H、 Fmoc— Gly—〇H、 Fmoc -His (Trt)—〇H、 Fmoc— Glu (OtBu)—〇H、 F moc— Phe— OH、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂のうち 5 nmol相当を 90%TFA水溶液中、室温で 2時間反応させることによってペプチド残 基上の保護基を脱離させるとともに、固相担体上から化合物(219)を遊離させた。榭 脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させ た。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添加し て沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール
I . 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12〜 12
. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸を 加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸/酢酸 ナトリウム緩衝液(ρΗ5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァミン残基 換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させて化合物 (220)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィルター 10K Apollo (登録商標)20ml(〇rbital Biosciences, LIC製)によって遠心濃縮し、そ こへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによって洗浄し、 最終的に容量が 0. 5mlになるように水をカ卩えることによって 10mM (糖ペプチド理論 含量)高分子(221)とした。高分子(221)の同定は、以下の(3. 61)において生成 物(342)が得られることによって行った。
[0366] (3. 44 ワンポット反応を用いた化合物(222)〜(224)の合成)
[0367] [化 105]
Figure imgf000402_0001
90%TFA
Figure imgf000402_0002
さ寸
Figure imgf000403_0001
Figure imgf000403_0002
Figure imgf000404_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000405_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc― Pro― ΟΗΛ Fmoc_ Pro _〇H、 Fmoc-Ala— ΟΗΛ Fmoc-Tnr ( Ac7core2) _〇H、 Fmoc-Ser (tBu) _ OH、 Fmoc_Gly_〇H、 Fmoc-Pro- O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc— Arg (Pbf)—〇H、 Fmoc— Thr (Ac5core3) _〇H、 Fmoc -Asp (OtBu) _〇H、 Fmoc - Pro - OH, Fmoc-Al a— OH、 Fmoc— Ser (tBu)—〇H、 Fmoc― Thr (Ac 5 core 3)— OH、 Fmoc— Va 1— OH、 Fmoc— Gly— OH、 Fmoc -His (Trt)—〇H、 Fmoc— Glu (OtBu)— O H、 Fmoc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂の うち 5nmol相当を 90%TFA水溶液中、室温で 2時間反応させることによってぺプチ ド残基上の保護基を脱離させるとともに、固相担体上から化合物(222)を遊離させた 。樹脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿 させた。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添 加して沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノ ール 1. 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12 〜12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N 酢酸を加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸 Z酢酸ナトリウム緩衝液(pH5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァ ミン残基換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させ て化合物(223)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィル ター 10K Apollo (登録商標) 20ml(〇rbital Biosciences, LIC製)によって遠心 濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによつ て洗浄し、最終的に容量が 0. 5mlになるように水を加えることによって 10mM (糖ぺ プチド理論含量)高分子(224)とした。高分子(224)の同定は、以下の(3. 62)にお レ、て生成物(353)が得られることによって行った。
[0368] (3. 45 ワンポット反応を用いた化合物(225)〜(227)の合成)
[0369] [化 106] Ġ 406
Figure imgf000407_0001
Figure imgf000408_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000409_0001
8017
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000410_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc— Pro— OH、 Fmoc— Pro _〇H、 Fmoc-Ala— ΟΗΛ Fmoc-Tnr ( Ac7core2) _〇H、 Fmoc-Ser (tBu) _OH、 Fmoc_Gly_〇H、 Fmoc-Pro-O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc-Arg (Pbf)—〇H、 Fmoc-Thr (Ac5core3) _〇H、 Fmoc-Asp (OtBu) _〇H、 Fmoc -Pro -OH, Fmoc-Al a— OH、 Fmoc- Ser (tBu)一〇H、 Fmoc-Thr (tBu)一〇H、 Fmoc—Val— OH 、 Fmoc— Gly—〇H、 Fmoc - His (Trt)一〇H、 Fmoc— Glu (OtBu)—〇H、 Fm oc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂のうち 5n mol相当を 90%TFA水溶液中、室温で 2時間反応させることによってペプチド残基 上の保護基を脱離させるとともに、固相担体上から化合物(225)を遊離させた。樹脂 を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させた 。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添加して 沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール 1 . 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12〜 12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸を 加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸/酢酸 ナトリウム緩衝液(ρΗ5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァミン残基 換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させて化合物 (226)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィルター 10K Apollo (登録商標)20ml(〇rbital Biosciences, LIC製)によって遠心濃縮し、そ こへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによって洗浄し、 最終的に容量が 0. 5mlになるように水をカ卩えることによって 10mM (糖ペプチド理論 含量)高分子(227)とした。高分子(227)の同定は、以下の(3. 63)において生成 物(364)が得られることによって行った。
[0370] (3. 46 ワンポット反応を用いた化合物(228)〜(230)の合成)
[0371] [化 107]
Figure imgf000412_0001
90%TFA
Figure imgf000412_0002
Figure imgf000413_0001
21-17
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000414_0001
Figure imgf000415_0001
S.69T0/S00Zdf/X3d Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc— Pro— OH、 Fmoc— Pro _〇H、 Fmoc-Ala— ΟΗΛ Fmoc-Tnr ( Ac7core2) _〇H、 Fmoc-Ser (tBu) _OH、 Fmoc_Gly_〇H、 Fmoc-Pro-O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc-Arg (Pbf)—〇H、 Fmoc-Thr (tBu) -OH, Fmoc - Asp (OtBu)— OH、 Fmoc— Pro—〇H、 Fmoc— Ala— O H、 Fmoc— Ser (tBu)—〇H、 Fmoc-Thr (Ac 5 core 3)—〇H、 Fmoc— Val—〇
H、 Fmoc— Gly—〇H、 Fmoc -His (Trt)—〇H、 Fmoc— Glu (OtBu)—〇H、 F moc— Phe— OH、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂のうち 5 nmol相当を 90%TFA水溶液中、室温で 2時間反応させることによってペプチド残 基上の保護基を脱離させるとともに、固相担体上から化合物(228)を遊離させた。榭 脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿させ た。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添加し て沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノール
I . 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12〜 12
. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N酢酸を 加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸/酢酸 ナトリウム緩衝液(ρΗ5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァミン残基 換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させて化合物 (229)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィルター 10K Apollo (登録商標)20ml(〇rbital Biosciences, LIC製)によって遠心濃縮し、そ こへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによって洗浄し、 最終的に容量が 0. 5mlになるように水をカ卩えることによって 10mM (糖ペプチド理論 含量)高分子(230)とした。高分子(230)の同定は、以下の(3. 64)において生成 物(375)が得られることによって行った。
[0372] (3. 47 ワンポット反応を用いた化合物(23:!)〜(233)の合成)
[0373] [化 108]
Figure imgf000417_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000418_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000419_0001
8
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000420_0001
Figure imgf000421_0001
Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTU/HOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc— Pro— OH、 Fmoc— Pro _〇H、 Fmoc—Ala _〇H、 Fmoc-Thr ( Ac7core2) _〇H、 Fmoc-Ser (tBu) _ OH、 Fmoc_Gly_〇H、 Fmoc-Pro- O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc— Arg (Pbf)—〇H、 Fmoc— Thr (Ac6corel ) _〇H、 Fmoc -Asp (OtBu) _〇H、 Fmoc - Pro - OH, Fmoc-Al a— OH、 Fmoc- Ser (tBu)—〇H、 Fmoc - Thr (Ac 5 core 3)— OH、 Fmoc-Va l_ OH、 Fmoc-Gly- OH, Fmoc -His (Trt) _〇H、 Fmoc -Glu (OtBu)—O H、 Fmoc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂の うち 5nmol相当を 90%TFA水溶液中、室温で 2時間反応させることによってぺプチ ド残基上の保護基を脱離させるとともに、固相担体上から化合物(231)を遊離させた 。樹脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿 させた。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添 加して沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノ ール 1. 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12 〜12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N 酢酸を加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸 /酢酸ナトリウム緩衝液(ρΗ5· 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァ ミン残基換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させ て化合物(232)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィル ター 10K Apollo (登録商標) 20ml(〇rbital Biosciences, LIC製)によって遠心 濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによつ て洗浄し、最終的に容量が 0. 5mlになるように水を加えることによって 10mM (糖ぺ プチド理論含量)高分子(233)とした。高分子(233)の同定は、高分子(233)の一 部を BLaseで処理し、生成物(436)が得られることによって行った。
ィ匕合物(436)の MALDI—TOFZMS: [M (average) + H] + = 3228. 1 (理論値: [M (average) + H] + = 3227. 3)。
[0374] (3. 48 ワンポット反応を用いた化合物(234)〜(236)の合成)
[0375] [化 109]
Figure imgf000423_0001
Figure imgf000423_0002
Figure imgf000424_0001
SZ.69l0/S00idf/X3<I 0^80£0/900Z O
Figure imgf000425_0001
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000426_0001
9217
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc― Pro― ΟΗΛ Fmoc_ Pro _〇H、 Fmoc-Ala— ΟΗΛ Fmoc-Tnr ( Ac7core2) _〇H、 Fmoc-Ser (tBu) _ OH、 Fmoc_Gly_〇H、 Fmoc-Pro- O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc— Arg (Pbf)—〇H、 Fmoc— Thr (Ac5core3) _〇H、 Fmoc -Asp (OtBu) _〇H、 Fmoc - Pro - OH, Fmoc-Al a— OH、 Fmoc— Ser (tBu)—〇H、 Fmoc― Thr ( Ac6 core 1 )— OH、 Fmoc— Va 1— OH、 Fmoc— Gly— OH、 Fmoc -His (Trt)—〇H、 Fmoc— Glu (OtBu)— O H、 Fmoc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂の うち 5nmol相当を 90%TFA水溶液中、室温で 2時間反応させることによってぺプチ ド残基上の保護基を脱離させるとともに、固相担体上から化合物(234)を遊離させた 。樹脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿 させた。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添 加して沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノ ール 1. 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12 〜12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N 酢酸を加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸 Z酢酸ナトリウム緩衝液(pH5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァ ミン残基換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させ て化合物(235)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィル ター 10K Apollo (登録商標) 20ml(〇rbital Biosciences, LIC製)によって遠心 濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによつ て洗浄し、最終的に容量が 0. 5mlになるように水を加えることによって 10mM (糖ぺ プチド理論含量)高分子(236)とした。高分子(236)の同定は、以下の(3. 65)にお レ、て生成物(386)が得られることによって行った。
[0376] (3. 49 ワンポット反応を用いた化合物(237)〜(239)の合成)
[0377] [化 110]
Figure imgf000428_0001
Figure imgf000429_0001
01?80ε0/900Ζ OAV 429
Figure imgf000430_0001
Figure imgf000431_0001
Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H Fmoc― Pro― OH. Fmoc— Pro— OH. Fmoc-Ala— OH. Fmoc-Thr Ac6corel) _〇H、 Fmoc-Ser (tBu) _OH、 Fmoc_Gly_〇H、 Fmoc-Pro-O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc— Arg (Pbf)—〇H、 Fmoc— Thr (Ac7core2) _〇H、 Fmoc -Asp (OtBu) _〇H、 Fmoc -Pro -OH, Fmoc-Al a— OH、 Fmoc- Ser (tBu)—〇H、 Fmoc - Thr (Ac 5 core 3)— OH、 Fmoc-Va l_OH、 Fmoc-Gly-OH, Fmoc -His (Trt) _〇H、 Fmoc -Glu (OtBu)—O H、 Fmoc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂の うち 5nmol相当を 90%TFA水溶液中、室温で 2時間反応させることによってぺプチ ド残基上の保護基を脱離させるとともに、固相担体上から化合物(237)を遊離させた 。樹脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿 させた。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添 加して沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノ ール 1. 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12 〜12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N 酢酸を加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸 /酢酸ナトリウム緩衝液(ρΗ5· 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァ ミン残基換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させ て化合物(238)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィル ター 10K Apollo (登録商標) 20ml(〇rbital Biosciences, LIC製)によって遠心 濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによつ て洗浄し、最終的に容量が 0. 5mlになるように水を加えることによって 10mM (糖ぺ プチド理論含量)高分子(239)とした。高分子(239)の同定は、以下の(3. 66)にお レ、て生成物(397)が得られることによって行った。
[0378] (3. 50 ワンポット反応を用いた化合物(240)〜(242)の合成)
[0379] [化 111]
Figure imgf000433_0001
HOBN
Figure imgf000434_0001
Figure imgf000434_0002
Figure imgf000435_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000436_0001
Figure imgf000437_0001
Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTU/HOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc— Pro— OH、 Fmoc— Pro _〇H、 Fmoc—Ala _〇H、 Fmoc-Thr ( Ac5core3) _〇H、 Fmoc-Ser (tBu) _ OH、 Fmoc_Gly_〇H、 Fmoc-Pro- O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc— Arg (Pbf)—〇H、 Fmoc— Thr (Ac7core2) _〇H、 Fmoc -Asp (OtBu) _〇H、 Fmoc - Pro - OH, Fmoc-Al a— OH、 Fmoc- Ser (tBu)—〇H、 Fmoc - Thr ( Ac6 core 1 )— OH、 Fmoc-Va l_ OH、 Fmoc-Gly- OH, Fmoc -His (Trt) _〇H、 Fmoc -Glu (OtBu)—O H、 Fmoc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂の うち 5nmol相当を 90%TFA水溶液中、室温で 2時間反応させることによってぺプチ ド残基上の保護基を脱離させるとともに、固相担体上から化合物(240)を遊離させた 。樹脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿 させた。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添 加して沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノ ール 1. 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12 〜12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N 酢酸を加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸 /酢酸ナトリウム緩衝液(ρΗ5· 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァ ミン残基換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させ て化合物(241)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィル ター 10K Apollo (登録商標) 20ml(〇rbital Biosciences, LIC製)によって遠心 濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによつ て洗浄し、最終的に容量が 0. 5mlになるように水を加えることによって 10mM (糖ぺ プチド理論含量)高分子(242)とした。高分子(242)の同定は、高分子(242)の一 部を BLaseで処理し、生成物(437)が得られることによって行った。
ィ匕合物(437)の MALDI—TOFZMS : [M (average) + H] + = 3228. 0 (理論値: [M (average) + H] + = 3227. 3)。
[0380] (3. 51 ワンポット反応を用いた化合物(243)〜(245)の合成)
[0381] [化 112]
Figure imgf000439_0001
Figure imgf000440_0001
Figure imgf000440_0002
Figure imgf000441_0001
01?80ε0/900Ζ OAV
Figure imgf000442_0001
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc― Pro― ΟΗΛ Fmoc_ Pro _〇H、 Fmoc-Ala— ΟΗΛ Fmoc-Tnr ( Ac5core3) _〇H、 Fmoc-Ser (tBu) _ OH、 Fmoc_Gly_〇H、 Fmoc-Pro- O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc— Arg (Pbf)—〇H、 Fmoc— Thr (Ac6corel ) _〇H、 Fmoc -Asp (OtBu) _〇H、 Fmoc - Pro - OH, Fmoc-Al a— OH、 Fmoc— Ser (tBu)—〇H、 Fmoc— Thr (Ac7core2)— OH、 Fmoc— Va 1— OH、 Fmoc— Gly— OH、 Fmoc -His (Trt)—〇H、 Fmoc— Glu (OtBu)— O H、 Fmoc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂の うち 5nmol相当を 90%TFA水溶液中、室温で 2時間反応させることによってぺプチ ド残基上の保護基を脱離させるとともに、固相担体上から化合物(243)を遊離させた 。樹脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿 させた。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添 加して沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノ ール 1. 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12 〜12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N 酢酸を加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸 Z酢酸ナトリウム緩衝液(pH5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァ ミン残基換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させ て化合物(244)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィル ター 10K Apollo (登録商標) 20ml(〇rbital Biosciences, LIC製)によって遠心 濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによつ て洗浄し、最終的に容量が 0. 5mlになるように水を加えることによって 10mM (糖ぺ プチド理論含量)高分子(245)とした。高分子(245)の同定は、以下の(3. 67)にお いて生成物(408)が得られることによって行った。
[0382] (3. 52 ワンポット反応を用いた化合物(246)〜(248)の合成)
[0383] [化 113] 443
Figure imgf000444_0001
Figure imgf000445_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000446_0001
91717
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000447_0001
S.69T0/S00Zdf/X3d Tentagel (登録商標) S RAMレジン(Hipep Laboratories, (0. 28mmol/g) 71mg (0. 02mmol)を担体として以下に示す N—保護アミノ酸とケト酸を Fmoc/H BTUZHOBt法で順次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala _〇H、 Fmoc― Pro― ΟΗΛ Fmoc_ Pro _〇H、 Fmoc_Aia_〇H、 Fmoc-Thr ( Ac6corel ) _〇H、 Fmoc-Ser (tBu) _ OH、 Fmoc_Gly_〇H、 Fmoc-Pro- O H、 Fmoc-Ala— OH、 Fmoc— Pro—〇H、 Fmoc— Arg (Pbf)—〇H、 Fmoc -Thr (Ac5core3) _〇H、 Fmoc -Asp (OtBu) _〇H、 Fmoc - Pro - OH, Fmoc-Al a— OH、 Fmoc— Ser (tBu)—〇H、 Fmoc -Thr (Ac7core2)— OH、 Fmoc— Va 1— OH、 Fmoc— Gly— OH、 Fmoc -His (Trt)—〇H、 Fmoc— Glu (OtBu)— O H、 Fmoc— Phe—〇H、 5—ケトへキサン酸。ペプチド伸長反応後、得られた樹脂の うち 5nmol相当を 90%TFA水溶液中、室温で 2時間反応させることによってぺプチ ド残基上の保護基を脱離させるとともに、固相担体上から化合物(246)を遊離させた 。樹脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて生成物を沈殿 させた。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチルエーテルを添 加して沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られた沈殿をメタノ ール 1. 5mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添加して pHを 12 〜12. 5へ調節し、 1. 5時間室温で攪拌して脱 Ac保護反応を行った。反応後、 1N 酢酸を加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣を 50mM酢酸 Z酢酸ナトリウム緩衝液(pH5. 5) 0. 5mlへ溶解させた。この液に 10mM (ォキシァ ミン残基換算)水溶性高分子(17)水溶液 0. 5mlを添加し、室温で 18時間攪拌させ て化合物(247)と化合物(17)を反応させた。反応終了後、反応液を限外濾過フィル ター 10K Apollo (登録商標) 20ml(〇rbital Biosciences, LIC製)によって遠心 濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮することによつ て洗浄し、最終的に容量が 0. 5mlになるように水を加えることによって 10mM (糖ぺ プチド理論含量)高分子(248)とした。高分子(248)の同定は、以下の(3. 68)にお いて生成物(419)が得られることによって行った。
以下の(3. 53)から(3. 68)は、限外濾過型 AcroPrep (登録商標) Multi—well Fi Iter Plates (PALL社製) 96ゥエルプレートを用いて並列で実施した。 (3. 53 化合物(249)〜(259)の合成)
dan/ォ 3se-- 114▲▲ 6 sト] ▲▲ 9Z。¾S
jgo VNVNdsdanビ ^ 3see--- ▲▲z sト sト lg9s9 <NVNd ldan/l!(N) 1_eォeeB-----
▲▲ s 6ト 皋
Figure imgf000450_0001
61717
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000451_0001
0917
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000452_0001
1-917
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000453_0001
01?80ε0/900Ζ OAV
Figure imgf000454_0001
S.69T0/S00Zdf/X3d
Figure imgf000455_0001
17
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000456_0001
9917
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000457_0001
9917
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV 
Figure imgf000458_0001
Figure imgf000459_0001
01?80ε0/900Ζ OAV
Figure imgf000460_0001
6917
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV 下記の A)〜E)の反応液を 25°Cで 24時間反応させた。
A) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4_ガラクトース 転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1。/0BSA、 2mM ゥリジン— 5 ' —二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(179) (固相合 成からの理論含量で 4mM)を含む 100 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0) , 0. 0175U/ml ラット組換えひ 2, 3— (〇) —シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2 mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導 体(179) (固相合成からの理論含量で 4mM)を含む 100 μ ΐの反応液;
C) 50mM HEPES緩衝液(ρΗ7· 0)、 0· lU/ml ヒト由来 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(179) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(179) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリ ジン _ 5,一二リン酸ガラクトースニナトリウム(UDP_Gal)、 4mM シチジン _ 5, - リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(179) (固相合成か らの理論含量で 4mM)を含む 100 μ 1の反応液。 [0386] 反応終了後、各々の反応液を限外濾過フィルターで遠心濃縮した。その後 25mM 酢酸アンモニゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって 高分子を洗浄した。この操作を 3回繰り返して化合物(249)〜(253)の水溶液を各 々得た。その後、化合物(249)〜(253)を含むフィルター保持液、さらに(179)水溶 液を 25mM酢酸アンモニゥム緩衝液 (PH6. 5)に希釈した溶液に、 BLase (塩野義 製薬社製)の 0. 174mg/ml溶液 Ι μ ΐをカ卩え、 2時間室温で反応させた後、限外濾 過フィルターで遠心濾過することによって目的糖ペプチドを高分子と分離し、得られ た水溶液 (濾液)を凍結乾燥して化合物(254)〜(259)を得た。
化合物(254)の MALDI— TOF/MS : [M (average) +H] + = 3187. 9 (理論値: [M (average) +H] + = 3186. 2)、化合物(255)の MALDI— TOF/MS: [M (a verage) +H] + = 3349. 5 (理論値: [M (average) +H] + = 3348· 4)、化合物(2 56)の MALDI— TOF/MS : [M (average) +H] + =4062. 6 (理論値: [M (aver age) +H] + = 4060. 0)、化合物(257)の MALDI— TOF/MS : [M (average) + H] + =4220. 4 (理論値: [M (average) +H] + = 4222. 1)、化合物(258)の M ALDI -TOF/MS: [M (average) +H] + = 3638. 7 (理論値: [M (average) + H] + = 3639. 6)、化合物(259)の MALDI— TOF/MS : [M (average) +H] + = 4513. 8 (理論値: [M (average) +H] + = 4513. 4)。
[0387] (3. 54 化合物(260)〜(270)の合成)
[0388] [化 115]
i,4-GalT/ UDP-Gal BLase
182 ► 260 ► 266
a2,3-(0)-SiaT/ CMP-NANA
pi,4-GalT, a2,3-(0)-SiaT/ UDP-Gal, CMP-NANA BLase
182 ► 262 ► 268
β1 ,4-GalT, a2,3-(N)-SiaT I UDP-Gal, CMP-NANA BLase
182 ► 263 ► 269
pi,4-GalT, o2,3-(N)-SiaT, o2,3-(0)-SiaT I UDP-Gal, CMP-NANA BLase
182 ► 264 ► 270
BLase
182 ► 265
463
Figure imgf000464_0001
Figure imgf000465_0001
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000466_0001
9917
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000467_0001
9917
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000468_0001
Figure imgf000469_0001
8917
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000470_0001
6917
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000471_0001
0/17
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000472_0001
Y 7
SA6910/S00∑;df/X3d
0t80£0/900Z OAV
Figure imgf000473_0001
01?80ε0/900Ζ OAV 473
Figure imgf000474_0001
下記の A)〜E)の反応液を 25°Cで 24時間反応させた。
A) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4_ガラクトース 転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1。/0BSA、 2mM ゥリジン— 5 ' —二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(182) (固相合 成からの理論含量で 4mM)を含む 100 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0) , 0. 0175U/ml ラット組換えひ 2, 3— (〇) —シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2 mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導 体(182) (固相合成からの理論含量で 4mM)を含む 100 μ ΐの反応液;
C) 50mM HEPES緩衝液(ρΗ7· 0)、 0· lU/ml ヒト由来 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(182) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(182) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリ ジン _ 5,一二リン酸ガラクトースニナトリウム(UDP_Gal)、 4mM シチジン _ 5, - リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(182) (固相合成か らの理論含量で 4mM)を含む 100 μ 1の反応液。 [0389] 反応終了後、各々の反応液を限外濾過フィルターで遠心濃縮した。その後 25mM 酢酸アンモニゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって 高分子を洗浄した。この操作を 3回繰り返して化合物(260)〜(270)の水溶液を各 々得た。その後、化合物(260)〜(270)を含むフィルター保持液、さらに(182)水溶 液を 25mM酢酸アンモニゥム緩衝液 (PH6. 5)に希釈した溶液に、 BLase (塩野義 製薬社製)の 0. 174mg/ml溶液 Ι μ ΐをカ卩え、 2時間室温で反応させた後、限外濾 過フィルターで遠心濾過することによって目的糖ペプチドを高分子と分離し、得られ た水溶液 (濾液)を凍結乾燥して化合物(265)〜(270)を得た。
化合物(265)の MALDI— TOF/MS : [M (average) +H] + = 2822. 9 (理論値: [M (average) +H] + = 2820. 9)、化合物(266)の MALDI— TOF/MS: [M (a verage) +H] + = 2983. 7 (理論値: [M (average) +Η] + = 2983· 0)、化合物(2 67)の MALDI— TOF/MS : [M (average) +H] + = 3405. 1 (理論値: [M (aver age) +H] + = 3403. 4)、化合物(268)の MALDI— TOF/MS : [M (average) + H] + = 3567. 1 (理論値: [M (average) +H] + = 3565. 5)、化合物(269)の M ALDI -TOF/MS: [M (average) +H] + = 3275. 2 (理論値: [M (average) + H] + = 3274. 3)、化合物(270)の MALDI— TOF/MS : [M (average) +H] + = 3858. 4 (理論値: [M (average) +H] + = 3856. 8)。
[0390] (3. 55 化合物(271)〜(281)の合成)
[0391] [化 116]
pi,4-GalT/ UDP-Gal BLase
► 271 ► 277
a2,3-(0)-SiaT/ CMP-NANA BLase
Figure imgf000477_0001
β1 ,4-GalT, a2,3-(N)-SiaT / UDP-Gal, CMP-NANA BLase
185 ► 274 ► 280
pi,4GalT, a2,3-(N)-SiaT, a2,3-(0)-SiaT/ UDP-Gal, CMP-NANA BLase
185 ► 275 ► 281
BLase
185 276
Ĵ77
Figure imgf000478_0001
Figure imgf000479_0001
8/17
SZ,69lO/£OO df/X3d 01?80Γ0/900Ζ: OAV
Figure imgf000480_0001
6/17
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000481_0001
S.69T0/S00Zdf/X3d
Figure imgf000482_0001
1-817
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000483_0001
2817
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000484_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000485_0001
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000486_0001
Figure imgf000486_0002
o
Figure imgf000487_0001
9817
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000488_0001
/817
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV 下記の A)〜E)の反応液を 25°Cで 24時間反応させた。
A) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4_ガラクトース 転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1。/0BSA、 2mM ゥリジン— 5 ' —二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(185) (固相合 成からの理論含量で 4mM)を含む 100 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0) , 0. 0175U/ml ラット組換えひ 2, 3— (〇) —シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2 mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導 体(185) (固相合成からの理論含量で 4mM)を含む 100 μ ΐの反応液;
C) 50mM HEPES緩衝液(ρΗ7· 0)、 0· lU/ml ヒト由来 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(185) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(185) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリ ジン _ 5,一二リン酸ガラクトースニナトリウム(UDP_Gal)、 4mM シチジン _ 5, - リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(185) (固相合成か らの理論含量で 4mM)を含む 100 μ 1の反応液。 [0392] 反応終了後、各々の反応液を限外濾過フィルターで遠心濃縮した。その後 25mM 酢酸アンモニゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって 高分子を洗浄した。この操作を 3回繰り返して化合物(27:!)〜(275)の水溶液を各 々得た。その後、化合物(271)〜(275)を含むフィルター保持液、さらに(185)水溶 液を 25mM酢酸アンモニゥム緩衝液 (PH6. 5)に希釈した溶液に、 BLase (塩野義 製薬社製)の 0. 174mg/ml溶液 Ι μ ΐをカ卩え、 2時間室温で反応させた後、限外濾 過フィルターで遠心濾過することによって目的糖ペプチドを高分子と分離し、得られ た水溶液 (濾液)を凍結乾燥して化合物(276)〜(281)を得た。
化合物(276)の MALDI— TOF/MS: [M (average) +H] + = 2823. 1 (理論値: [M (average) +H] + = 2820. 9)、化合物(277)の MALDI— TOF/MS: [M (a verage) +H] + = 2983. 7 (理論値: [M (average) +Η] + = 2983· 0)、化合物(2 78)の MALDI— TOF/MS : [M (average) +H] + = 3404. 2 (理論値: [M (aver age) +H] + = 3403. 4)、化合物(279)の MALDI— TOF/MS : [M (average) + H] + = 3567. 6 (理論値: [M (average) +H] + = 3565. 5)、化合物(280)の M ALDI -TOF/MS: [M (average) +H] + = 3276. 0 (理論値: [M (average) + H] + = 3274. 3)、化合物(281)の MALDI— TOF/MS : [M (average) +H] + = 3659. 3 (理論値: [M (average) +H] + = 3656. 8)。
[0393] (3. 56 化合物(282)〜(292)の合成)
[0394] [化 117]
|51,4-GalT/ UDP-Gal BLase
► 282 ► 288
a2,3-(0)-SiaT/ CMP-NANA BLase
Figure imgf000491_0001
β1 ,4-GalT, a2,3-(N)-SiaT I UDP-Gal, CMP-NANA BLase
194 ► 285 ► 291
β1 ,4-GalT, a2,3-(N)-SiaT, o2,3-(0)-SiaT I UDP-Gal, CMP-NANA BLase
194 ► 286 ► 292
BLase
194 287
Figure imgf000492_0001
1-617
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000493_0001
2617
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000494_0001
Figure imgf000495_0001
01?80ε0/900Ζ OAV
Figure imgf000496_0001
01?80ε0/900Ζ OAV
Figure imgf000497_0001
9617
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000498_0001
/617
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000499_0001
8617
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000500_0001
66
^卿蒙 df : M 01,80 O/900rOA
Figure imgf000501_0001
009
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000502_0001
下記の A)〜E)の反応液を 25°Cで 24時間反応させた。
A) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4_ガラクトース 転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1。/0BSA、 2mM ゥリジン— 5 ' —二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(194) (固相合 成からの理論含量で 4mM)を含む 100 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0) , 0. 0175U/ml ラット組換えひ 2, 3— (〇) —シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2 mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導 体(194) (固相合成からの理論含量で 4mM)を含む 100 μ ΐの反応液;
C) 50mM HEPES緩衝液(ρΗ7· 0)、 0· lU/ml ヒト由来 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(194) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(194) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリ ジン _ 5,一二リン酸ガラクトースニナトリウム(UDP_Gal)、 4mM シチジン _ 5, - リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(194) (固相合成か らの理論含量で 4mM)を含む 100 μ 1の反応液。 [0395] 反応終了後、各々の反応液を限外濾過フィルターで遠心濃縮した。その後 25mM 酢酸アンモニゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって 高分子を洗浄した。この操作を 3回繰り返して化合物(282)〜(286)の水溶液を各 々得た。その後、化合物(282)〜(286)を含むフィルター保持液、さらに(194)水溶 液を 25mM酢酸アンモニゥム緩衝液 (PH6. 5)に希釈した溶液に、 BLase (塩野義 製薬社製)の 0. 174mg/ml溶液 Ι μ ΐをカ卩え、 2時間室温で反応させた後、限外濾 過フィルターで遠心濾過することによって目的糖ペプチドを高分子と分離し、得られ た水溶液 (濾液)を凍結乾燥して化合物(287)〜(292)を得た。
化合物(287)の MALDI— TOF/MS: [M (average) + H] + = 2864. 1 (理論値: [M (average) +H] + = 2861. 9)、化合物(288)の MALDI— TOF/MS: [M (a verage) +H] + = 3187. 8 (理論値: [M (average) +H] + = 3186· 2)、化合物(2 89)の MALDI— TOF/MS : [M (average) +H] + = 3154. 9 (理論値: [M (aver age) +H] + = 3153. 2)、化合物(290)の MALDI— TOF/MS : [M (average) + H] + = 3479. 2 (理論値: [M (average) +H] + = 3477. 5)、化合物(291)の M ALDI -TOF/MS: [M (average) +H] + = 3769. 4 (理論値: [M (average) + H] + = 3768. 7)、化合物(292)の MALDI— TOF/MS : [M (average) +H] + = 4062. 4 (理論値: [M (average) +H] + = 4060. 0)。
[0396] (3. 57 化合物(293)〜(303)の合成)
[0397] [化 118]
pi,4-GalT/ UDP-Gal BLase
197 ► 293 ► 299
a2,3-(0)-SiaT/ CMP-NANA BLase
197 ► 294 ► 300
pi,4GalT, o2,3-(0)-SiaT I UDP-Gal, CMP-NANA BLase
pi,4-GalT, o2,3-(N)-SiaT I UDP-Gal, CMP-NANA BLase
197 ► 296 ► 302
p1,4-GalT, a2,3-(N)-SiaT, a2,3-(0)-SiaT/ UDP-Gal, CMP-NANA BLase
197 ► 297 ► 303
BLase
197 298
Figure imgf000506_0001
909
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000507_0001
909
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000508_0001
/09
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000509_0001
809
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000510_0001
609
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000511_0001
CHS
SZ.69l0/S00idf/X3d 0 80£0/900i OAV
Figure imgf000512_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000513_0001
Z19
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000514_0001
ι.9
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000515_0001
1
SZ,69l0/S00rdf/X3d
0^80{:0/9 03 OAV
Figure imgf000516_0001
A) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4_ガラクトース 転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1。/0BSA、 2mM ゥリジン— 5 ' —二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(197) (固相合 成からの理論含量で 4mM)を含む 100 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0) , 0. 0175U/ml ラット組換えひ 2, 3— (〇) —シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2 mM シチジン _ 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導 体(197) (固相合成からの理論含量で 4mM)を含む 100 μ ΐの反応液;
C) 50mM HEPES緩衝液(ρΗ7· 0)、 0· lU/ml ヒト由来 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(197) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(197) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリ ジン _ 5,一二リン酸ガラクトースニナトリウム(UDP_Gal)、 4mM シチジン _ 5, - リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(197) (固相合成か らの理論含量で 4mM)を含む 100 μ 1の反応液。
反応終了後、各々の反応液を限外濾過フィルターで遠心濃縮した。その後 25mM 酢酸アンモニゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって 高分子を洗浄した。この操作を 3回繰り返して化合物(293)〜(297)の水溶液を各 々得た。その後、化合物(293)〜(297)を含むフィルター保持液、さらに(197)水溶 液を 25mM酢酸アンモニゥム緩衝液 (PH6. 5)に希釈した溶液に、 BLase (塩野義 製薬社製)の 0. 174mg/ml溶液 Ι μ ΐをカ卩え、 2時間室温で反応させた後、限外濾 過フィルターで遠心濾過することによって目的糖ペプチドを高分子と分離し、得られ た水溶液 (濾液)を凍結乾燥して化合物(298)〜(303)を得た。
化合物(298)の MALDI— TOF/MS: [M (average) + H] + = 3188. 1 (理論値: [M (average) +H] + = 3186. 2)、化合物(299)の MALDI— TOF/MS: [M (a verage) +H] + = 3349. 5 (理論値: [M (average) +H] + = 3348· 4)、化合物(3 00)の MALDI— TOF/MS : [M (average) +H] + =4061. 0 (理論値: [M (aver age) +H] + = 4060. 0)、化合物(301)の MALDI— TOF/MS : [M (average) + H] + =4223. 9 (理論値: [M (average) +H] + = 4220. 2)、ィ匕合物(302)の M ALDI -TOF/MS: [M (average) +H] + = 3641. 5 (理論値: [M (average) + H] + = 3639. 6)、化合物(303)の MALDI— TOF/MS : [M (average) +H] + = 4514. 8 (理論値: [M (average) +H] + = 4513. 4)。
[0399] (3. 58 化合物(304)〜(314)の合成)
[0400] [化 119]
p1,4-GalT/ UDP-Gal BLase
► 304
a2,3-(0)-SiaT/ CMP-NANA
Figure imgf000519_0001
Figure imgf000519_0002
β1 ,4-GalT, a2,3-(N)-SiaT, a2,3-(0)-SiaT I UDP-Gal, CMP-NANA BLase
212 ► 308 ► 314
BLase
212 ► 309
Figure imgf000520_0001
61-9
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000521_0001
Figure imgf000522_0001
Figure imgf000523_0001
ZZ9
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000524_0001
£Z9
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000525_0001
1729
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000526_0001
929
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000527_0001
929
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000528_0001
LZ9
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV 528
Figure imgf000529_0001
Figure imgf000530_0001
629
S/,69T0/S00Zdf/X3d 0t80f 0/900Z OAV 下記の A)〜E)の反応液を 25°Cで 24時間反応させた。
A) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4_ガラクトース 転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1。/0BSA、 2mM ゥリジン— 5 ' —二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(212) (固相合 成からの理論含量で 4mM)を含む 100 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0) , 0. 0175U/ml ラット組換えひ 2, 3— (〇) —シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2 mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導 体(212) (固相合成からの理論含量で 4mM)を含む 100 μ ΐの反応液;
C) 50mM HEPES緩衝液(ρΗ7· 0)、0· lU/ml ヒト由来 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(212) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(212) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリ ジン _ 5,一二リン酸ガラクトースニナトリウム(UDP_Gal)、 4mM シチジン _ 5, - リン酸シァル酸ナトリゥム(CMP_NANA)、糖ぺプチド誘導体(212) (固相合成か らの理論含量で 4mM)を含む 100 μ 1の反応液。 [0401] 反応終了後、各々の反応液を限外濾過フィルターで遠心濃縮した。その後 25mM 酢酸アンモニゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって 高分子を洗浄した。この操作を 3回繰り返して化合物(304)〜(308)の水溶液を各 々得た。その後、化合物(304)〜(308)を含むフィルター保持液、さらに(212)水溶 液を 25mM酢酸アンモニゥム緩衝液 (PH6. 5)に希釈した溶液に、 BLase (塩野義 製薬社製)の 0. 174mg/ml溶液 Ι μ ΐをカ卩え、 2時間室温で反応させた後、限外濾 過フィルターで遠心濾過することによって目的糖ペプチドを高分子と分離し、得られ た水溶液 (濾液)を凍結乾燥して化合物(309)〜(314)を得た。
化合物(309)の MALDI— TOF/MS : [M (average) +H] + = 2864. 3 (理論値: [M (average) +H] + = 2861. 9)、化合物(310)の MALDI— TOF/MS: [M (a verage) +H] + = 3186. 4 (理論値: [M (average) +Η] + = 3186· 2)、化合物(3 11)の MALDI— TOF/MS : [M (average) + H] + = 3154. 4 (理論値: [M (aver age) +H] + = 3153. 2)、化合物(312)の MALDI— TOF/MS : [M (average) + H] + = 3478. 4 (理論値: [M (average) +H] + = 3477. 5)、化合物(313)の M ALDI -TOF/MS: [M (average) +H] + = 3769. 1 (理論値: [M (average) + H] + = 3768. 7)、化合物(314)の MALDI— TOF/MS : [M (average) +H] + = 4060. 4 (理論値: [M (average) +H] + = 4060. 0)。
[0402] (3. 59 化合物(315)〜(325)の合成)
[0403] [化 120]
β()()--,,,,G ¾s 0os UG Cι4alT3NiaT23iaT/DPalMPNANA-------
β{) ,,,,Ga 0s UGa Cΐ4lT23NiaT一DPlMPNANA BLase-----
r 3
β() ,,,,G H0s UG Cΐ4alT23iaT一DPalMPNANAL Base-----
{), a0s C23iaT/MPNANA BLase---
,4alGlT/UDPGa BLase-- t
z
SL69T0/S00∑df/I3d 0^80e0/900∑: OAV
Figure imgf000534_0001
S.69T0/S00Zdf/X3d
Figure imgf000535_0001
1 9
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000536_0001
9 9
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000537_0001
S.69T0/S00Zdf/X3d
Figure imgf000538_0001
/ 9
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000539_0001
8SS
S.69T0/S00idf/X3d 0f80£0/900Z OAV
Figure imgf000540_0001
6SS
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000541_0001
S.69T0/S00Zdf/X3d
Figure imgf000542_0001
H79
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000543_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000544_0001
S.69lO/SOOZdf/X3d 0f80£0/900Z OAV 下記の A)〜E)の反応液を 25°Cで 24時間反応させた。
A) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4_ガラクトース 転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1。/0BSA、 2mM ゥリジン— 5 ' —二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(215) (固相合 成からの理論含量で 4mM)を含む 100 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0) , 0. 0175U/ml ラット組換えひ 2, 3— (〇) —シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2 mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導 体(215) (固相合成からの理論含量で 4mM)を含む 100 μ ΐの反応液;
C) 50mM HEPES緩衝液(ρΗ7· 0)、 0· lU/ml ヒト由来 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(215) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(215) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリ ジン _ 5,一二リン酸ガラクトースニナトリウム(UDP_Gal)、 4mM シチジン _ 5, - リン酸シァル酸ナトリゥム(CMP_NANA)、糖ぺプチド誘導体(215) (固相合成か らの理論含量で 4mM)を含む 100 μ 1の反応液。 [0404] 反応終了後、各々の反応液を限外濾過フィルターで遠心濃縮した。その後 25mM 酢酸アンモニゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって 高分子を洗浄した。この操作を 3回繰り返して化合物(315)〜(319)の水溶液を各 々得た。その後、化合物(315)〜(319)を含むフィルター保持液、さらに(215)水溶 液を 25mM酢酸アンモニゥム緩衝液 (PH6. 5)に希釈した溶液に、 BLase (塩野義 製薬社製)の 0. 174mg/ml溶液 Ι μ ΐをカ卩え、 2時間室温で反応させた後、限外濾 過フィルターで遠心濾過することによって目的糖ペプチドを高分子と分離し、得られ た水溶液 (濾液)を凍結乾燥して化合物(320)〜(325)を得た。
化合物(320)の MALDI— TOF/MS : [M (average) +H] + = 3187. 7 (理論値: [M (average) +H] + = 3186. 2)、化合物(321)の MALDI— TOF/MS: [M (a verage) +H] + = 3348. 4 (理論値: [M (average) +Η] + = 3348· 4)、化合物(3 22)の MALDI— TOF/MS : [M (average) +H] + =4059. 7 (理論値: [M (aver age) +H] + = 4060. 0)、化合物(323)の MALDI— TOF/MS : [M (average) + H] + =4223. 3 (理論値: [M (average) +H] + = 4222. 1)、化合物(324)の M ALDI -TOF/MS: [M (average) +H] + = 3642. 0 (理論値: [M (average) + H] + = 3639. 6)、化合物(325)の MALDI— TOF/MS : [M (average) +H] + = 4511. 7 (理論値: [M (average) +H] + = 4513. 4)。
[0405] (3. 60 化合物(326)〜(336)の合成)
[0406] [化 121]
|¾1,4-GalT/ UDP-Gal BLase
► 326 ► 332
a2,3-(0)-SiaT/ CMP-NANA BLase
Figure imgf000547_0001
β1 ,4GalT, a2,3-(N)-SiaT / UDP-Gal, CMP-NANA BLase
218 ► 329 ► 335
β1 ,4-GalT, a2,3-(N)-SiaT, 2,3-(0)-SiaT I UDP-Gal, CMP-NANA BLase
218 ► 330 ► 336
BLase
218 331
Figure imgf000548_0001
S.69T0/S00Zdf/X3d
Figure imgf000549_0001
SZ.69l0/S00idf/X3d 0 80£0/900i OAV
6 ς
Figure imgf000550_0001
Figure imgf000551_0001
099
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000552_0001
≤Z.6910/S00idf/I3d 0 80£0/900∑; O/W
Figure imgf000553_0001
299
S.69T0/S00Zdf/13d 0f80f0/900∑: OAV
Figure imgf000554_0001
99
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000555_0001
1799
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV 555
Figure imgf000556_0001
Figure imgf000557_0001
999
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV 557
Figure imgf000558_0001
下記の A)〜E)の反応液を 25°Cで 24時間反応させた。
A) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4_ガラクトース 転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1。/0BSA、 2mM ゥリジン— 5 ' —二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(218) (固相合 成からの理論含量で 4mM)を含む 100 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0) , 0. 0175U/ml ラット組換えひ 2, 3— (〇) —シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2 mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導 体(218) (固相合成からの理論含量で 4mM)を含む 100 μ ΐの反応液;
C) 50mM HEPES緩衝液(ρΗ7· 0)、 0· lU/ml ヒト由来 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(218) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(218) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリ ジン _ 5,一二リン酸ガラクトースニナトリウム(UDP_Gal)、 4mM シチジン _ 5, - リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(218) (固相合成か らの理論含量で 4mM)を含む 100 μ 1の反応液。 [0407] 反応終了後、各々の反応液を限外濾過フィルターで遠心濃縮した。その後 25mM 酢酸アンモニゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって 高分子を洗浄した。この操作を 3回繰り返して化合物(326)〜(330)の水溶液を各 々得た。その後、化合物(326)〜(330)を含むフィルター保持液、さらに(218)水溶 液を 25mM酢酸アンモニゥム緩衝液 (PH6. 5)に希釈した溶液に、 BLase (塩野義 製薬社製)の 0. 174mg/ml溶液 Ι μ ΐをカ卩え、 2時間室温で反応させた後、限外濾 過フィルターで遠心濾過することによって目的糖ペプチドを高分子と分離し、得られ た水溶液 (濾液)を凍結乾燥して化合物(331)〜(336)を得た。
化合物(331)の MALDI— TOF/MS : [M (average) +H] + = 2821. 7 (理論値: [M (average) +H] + = 2820. 9)、化合物(332)の MALDI— TOF/MS: [M (a verage) +H] + = 2983. 3 (理論値: [M (average) +H] + = 2983· 0)、化合物(3 33)の MALDI— TOF/MS : [M (average) +H] + = 3404. 6 (理論値: [M (aver age) +H] + = 3403. 4)、化合物(334)の MALDI— TOF/MS : [M (average) + H] + = 3566. 4 (理論値: [M (average) +H] + = 3565. 5)、化合物(335)の M ALDI -TOF/MS: [M (average) +H] + = 3276. 4 (理論値: [M (average) + H] + = 3274. 3)、化合物(336)の MALDI— TOF/MS : [M (average) +H] + = 3858. 4 (理論値: [M (average) +H] + = 3856. 8)。
[0408] (3. 61 化合物(337)〜(347)の合成)
[0409] [化 122]
δ 1g §
S δ _ao 9s09 VNVNdwdan /l!( 1 9see---.
▲▲ ε 6εε δ sォ 5
o
ig VNVNo dan /l!s(N llo¾i7 sseee--- ▲▲ ^
▲▲ is Izz-
Figure imgf000561_0001
Figure imgf000562_0001
S.69T0/S00Zdf/X3d
Figure imgf000563_0001
299
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000564_0001
99
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000565_0001
S.69T0/S00Zdf/X3d
Figure imgf000566_0001
999
SZ.69lO/SOOZdf/X3d 01^80£0/900∑: O/W
Figure imgf000567_0001
999
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000568_0001
/99
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000569_0001
899
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000570_0001
699
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000571_0001
0/9
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000572_0001
SZ,69T0/S00Zdf/X3d 01^80ε0/900Ζ OW 下記の A)〜E)の反応液を 25°Cで 24時間反応させた。
A) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4_ガラクトース 転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1。/0BSA、 2mM ゥリジン— 5 ' —二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(221) (固相合 成からの理論含量で 4mM)を含む 100 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0) , 0. 0175U/ml ラット組換えひ 2, 3— (〇) —シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2 mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導 体(221) (固相合成からの理論含量で 4mM)を含む 100 μ ΐの反応液;
C) 50mM HEPES緩衝液(ρΗ7· 0)、 0· lU/ml ヒト由来 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(221) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(221) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリ ジン _ 5,一二リン酸ガラクトースニナトリウム(UDP_Gal)、 4mM シチジン _ 5, - リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(221) (固相合成か らの理論含量で 4mM)を含む 100 μ 1の反応液。 [0410] 反応終了後、各々の反応液を限外濾過フィルターで遠心濃縮した。その後 25mM 酢酸アンモニゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって 高分子を洗浄した。この操作を 3回繰り返して化合物(337)〜(341)の水溶液を各 々得た。その後、化合物(337)〜(341)を含むフィルター保持液、さらに(221)水溶 液を 25mM酢酸アンモニゥム緩衝液 (PH6. 5)に希釈した溶液に、 BLase (塩野義 製薬社製)の 0. 174mg/ml溶液 Ι μ ΐをカ卩え、 2時間室温で反応させた後、限外濾 過フィルターで遠心濾過することによって目的糖ペプチドを高分子と分離し、得られ た水溶液 (濾液)を凍結乾燥して化合物(342)〜(347)を得た。
化合物(342)の MALDI— TOF/MS : [M (average) +H] + = 2822. 2 (理論値: [M (average) +H] + = 2820. 9)、化合物(343)の MALDI— TOF/MS: [M (a verage) +H] + = 2984. 6 (理論値: [M (average) +H] + = 2983· 0)、化合物(3 44)の MALDI— TOF/MS : [M (average) +H] + = 3405. 3 (理論値: [M (aver age) +H] + = 3403. 4)、化合物(345)の MALDI— TOF/MS : [M (average) + H] + = 3567. 4 (理論値: [M (average) +H] + = 3565. 5)、化合物(346)の M ALDI -TOF/MS: [M (average) +H] + = 3276. 1 (理論値: [M (average) + H] + = 3274. 3)、化合物(347)の MALDI— TOF/MS : [M (average) +H] + = 3857. 0 (理論値: [M (average) +H] + = 3856. 8)。
[0411] (3. 62 化合物(348)〜(358)の合成)
[0412] [化 123]
pi,4-GalT/ UDP-Gal BLase
a2,3-(0)-SiaT/ CMP-NANA BLase
► 349 ► 355
Figure imgf000575_0001
pi,4-GalT, a2,3-(N)-SiaT/ UDP-Gal, CMP-NANA
β1 ,4-GalT, a2,3-(N)-SiaT, a2,3-(0)-SiaT I UDP-Gal, CMP-NANA BLase
224 ► 352 ► 358
BLase
224 353
Figure imgf000576_0001
Figure imgf000577_0001
S.69lO/SOOZdf/X3d
Figure imgf000578_0001
Figure imgf000579_0001

Figure imgf000580_0001
Figure imgf000581_0001
089
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000582_0001
S
^L69lO/iOOZd£/13d 01^80£0/900∑; OAV
Figure imgf000583_0001
289
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000584_0001
S8S
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000585_0001
Figure imgf000586_0001
下記の A)〜E)の反応液を 25°Cで 24時間反応させた。
A) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4_ガラクトース 転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1。/0BSA、 2mM ゥリジン— 5 ' —二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(224) (固相合 成からの理論含量で 4mM)を含む 100 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0) , 0. 0175U/ml ラット組換えひ 2, 3— (〇) —シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2 mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導 体(224) (固相合成からの理論含量で 4mM)を含む 100 μ ΐの反応液;
C) 50mM HEPES緩衝液(ρΗ7· 0)、 0· lU/ml ヒト由来 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(224) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(224) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリ ジン _ 5,一二リン酸ガラクトースニナトリウム(UDP_Gal)、 4mM シチジン _ 5, - リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(224) (固相合成か らの理論含量で 4mM)を含む 100 μ 1の反応液。 [0413] 反応終了後、各々の反応液を限外濾過フィルターで遠心濃縮した。その後 25mM 酢酸アンモニゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって 高分子を洗浄した。この操作を 3回繰り返して化合物(348)〜(352)の水溶液を各 々得た。その後、化合物(348)〜(352)を含むフィルター保持液、さらに(224)水溶 液を 25mM酢酸アンモニゥム緩衝液 (PH6. 5)に希釈した溶液に、 BLase (塩野義 製薬社製)の 0. 174mg/ml溶液 Ι μ ΐをカ卩え、 2時間室温で反応させた後、限外濾 過フィルターで遠心濾過することによって目的糖ペプチドを高分子と分離し、得られ た水溶液 (濾液)を凍結乾燥して化合物(353)〜(358)を得た。
ィ匕合物(353)の MALDI— TOF/MS : [M (average) +H] + = 3269. 5 (理論値: [M (average) +H] + = 3268. 3)、化合物(354)の MALDI— TOF/MS: [M (a verage) +H] + = 3757. 0 (理論値: [M (average) +Η] + = 3754· 8)、化合物(3 55)の MALDI— TOF/MS : [M (average) +H] + = 3561. 7 (理論値: [M (aver age) +H] + = 3559. 6)、化合物(356)の MALDI— TOF/MS : [M (average) + H] + =4047. 7 (W i .: [M (average) + H] + = 4046. 0)、ィ匕合物(357)の M ALDI -TOF/MS: [M (average) +H] + = 4625. 4 (理論値: [M (average) + H] + =4628. 5)、化合物(358)の MALDI— TOF/MS : [M (average) +H] + = 4917. 9 (理論値: [M (average) +H] + = 4919. 9)。
[0414] (3. 63 化合物(359)〜(369)の合成)
[0415] [化 124]
p1,4-GalT/ UDP-Gal BLase
227 ► 359 ► 365
a2,3-(0)-SiaT/ CMP-NANA BLase
p1,4-GalT, a2,3-(0)-SiaT/UDP-Gal, CMP-NANA
pi,4-GalT, a2,3-(N)-SiaT I UDP-Gal, CMP-NANA BLase
227 ► 362 ► 368
p1,4-GalT, a2,3-(N)-SiaT, a2,3-(0)-SiaT I UDP-Gal, CMP-NANA BLase
227 ► 363 ► 369
BLase
227 ► 364
Figure imgf000590_0001
Figure imgf000591_0001
069
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000592_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000593_0001
269
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV 593
Figure imgf000594_0001
Figure imgf000595_0001
セ 6S
S.69T0/S00Zdf/X3d 01?8θεθ/900Ζ OAV
Figure imgf000596_0001
969
SZ.69l0/S00idT/X3d 01?80£0/900∑; O
Figure imgf000597_0001
969
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000598_0001
/69
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000599_0001
01?80ε0/900Ζ OAV
Figure imgf000600_0001
下記の A)〜E)の反応液を 25°Cで 24時間反応させた。
A) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4_ガラクトース 転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1。/0BSA、 2mM ゥリジン— 5 ' —二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(227) (固相合 成からの理論含量で 4mM)を含む 100 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0) , 0. 0175U/ml ラット組換えひ 2, 3— (〇) —シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2 mM シチジン _ 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導 体(227) (固相合成からの理論含量で 4mM)を含む 100 μ ΐの反応液;
C) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(227) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(227) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
E) 50mM HEPES緩衝液(ρΗ7· 0)、 0. lU/ml ヒト由来 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリ ジン _ 5,一二リン酸ガラクトースニナトリウム(UDP_Gal)、 4mM シチジン _ 5, - リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(227) (固相合成か らの理論含量で 4mM)を含む 100 μ 1の反応液。
反応終了後、各々の反応液を限外濾過フィルターで遠心濃縮した。その後 25mM 酢酸アンモニゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって 高分子を洗浄した。この操作を 3回繰り返して化合物(359)〜(363)の水溶液を各 々得た。その後、化合物(359)〜(363)を含むフィルター保持液、さらに(227)水溶 液を 25mM酢酸アンモニゥム緩衝液 (PH6. 5)に希釈した溶液に、 BLase (塩野義 製薬社製)の 0. 174mg/ml溶液 Ι μ ΐをカ卩え、 2時間室温で反応させた後、限外濾 過フィルターで遠心濾過することによって目的糖ペプチドを高分子と分離し、得られ た水溶液 (濾液)を凍結乾燥して化合物(364)〜(369)を得た。
ィ匕合物(364)の MALDI—TOFZMS : [M (average) +H] + = 2863. 7 (理論値: [M (average) +H] + = 2861. 9)、化合物(365)の MALDI—TOF/MS: [M (a verage) +H] + = 3186. 4 (理論値: [M (average) +H] + = 3186. 2)、ィ匕合物(3 66)の MALDI—TOFZMS : [M (average) + H] + = 3154. 3 (理論値: [M (aver age) +H] + = 3153. 2)、化合物(367)の MALDI—TOFZMS : [M (average) + H] + = 3478. 3 (理論値: [M (average) +H] + = 3477. 5)、化合物(368)の M ALDI-TOF/MS: [M (average) +H] + = 3769. 9 (理論値: [M (average) + H] + = 3768. 7)、化合物(369)の MALDI—TOF/MS : [M (average) +H] + = 4060. 9 (理論値: [M (average) +H] + = 4060. 0)。
[0417] (3· 64 化合物(370)〜(380)の合成)
[0418] [化 125]
pi,4-GalT/ UDP-Gal BLase
► 370 ► 376
a2,3-(0)-SiaT/ CMP-NANA BLase
Figure imgf000603_0001
pi,4-GalT, o2,3-(N)-SiaT/ UDP-Gal, CMP-NANA
pi,4-GalT, a2,3-(N)-SiaT, o2,3-(0)-SiaT/ UDP-Gal, CMP-NANA BLase
230 ► 374 ► 380
BLase
Figure imgf000604_0001
Figure imgf000605_0001
)9
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000606_0001
Figure imgf000607_0001
909
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV 607
Figure imgf000608_0001
Figure imgf000609_0001
809
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000610_0001
S.69T0/S00Zdf/X3d 01^80£0/900∑: OAV
Figure imgf000611_0001
01-9
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV 611
Figure imgf000612_0001
Figure imgf000613_0001
21-9
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000614_0001
下記の A)〜E)の反応液を 25°Cで 24時間反応させた。
A) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4_ガラクトース 転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1。/0BSA、 2mM ゥリジン— 5 ' —二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(230) (固相合 成からの理論含量で 4mM)を含む 100 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0) , 0. 0175U/ml ラット組換えひ 2, 3— (〇) —シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2 mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導 体(230) (固相合成からの理論含量で 4mM)を含む 100 μ ΐの反応液;
C) 50mM HEPES緩衝液(ρΗ7· 0)、 0· lU/ml ヒト由来 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(230) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(230) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリ ジン _ 5,一二リン酸ガラクトースニナトリウム(UDP_Gal)、 4mM シチジン _ 5, - リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(230) (固相合成か らの理論含量で 4mM)を含む 100 μ 1の反応液。 [0419] 反応終了後、各々の反応液を限外濾過フィルターで遠心濃縮した。その後 25mM 酢酸アンモニゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって 高分子を洗浄した。この操作を 3回繰り返して化合物(370)〜(374)の水溶液を各 々得た。その後、化合物(370)〜(374)を含むフィルター保持液、さらに(230)水溶 液を 25mM酢酸アンモニゥム緩衝液 (PH6. 5)に希釈した溶液に、 BLase (塩野義 製薬社製)の 0. 174mg/ml溶液 Ι μ ΐをカ卩え、 2時間室温で反応させた後、限外濾 過フィルターで遠心濾過することによって目的糖ペプチドを高分子と分離し、得られ た水溶液 (濾液)を凍結乾燥して化合物(375)〜(380)を得た。
ィ匕合物(375)の MALDI— TOF/MS : [M (average) +H] + = 2863. 6 (理論値: [M (average) +H] + = 2861. 9)、化合物(376)の MALDI— TOF/MS: [M (a verage) +H] + = 3186. 5 (理論値: [M (average) +H] + = 3186· 2)、化合物(3 77)の MALDI— TOF/MS : [M (average) +H] + = 3155. 3 (理論値: [M (aver age) +H] + = 3153. 2)、化合物(378)の MALDI— TOF/MS : [M (average) + H] + = 3478. 3 (理論値: [M (average) +H] + = 3477. 5)、化合物(379)の M ALDI -TOF/MS: [M (average) +H] + = 3769. 5 (理論値: [M (average) + H] + = 3768. 7)、化合物(380)の MALDI— TOF/MS : [M (average) +H] + = 4062. 8 (理論値: [M (average) +H] + = 4060. 0)。
[0420] (3. 65 化合物(38:!)〜(391)の合成)
[0421] [化 126]
p1,4-GalT/ UDP-Gal BLase
► 381 ► 387
a2,3-(0)-SiaT/ CMP-NANA BLase
Figure imgf000617_0001
pi,4-GalT, a2,3-(N)-SiaT I UDP-Gal, CMP-NANA BLase
236 ► 384 ► 390
pi,4-GalT, o2,3-(N)-SiaT, o2,3-(0)-SiaT I UDP-Gal, CMP-NANA BLase
236 ► 385 ► 391
BLase
236 386
Figure imgf000618_0001
S.69T0/S00Zdf/X3d
Figure imgf000619_0001
81-9
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000620_0001
61.9
S/.69l0/S00Zdf/I3d ^80£0/900Ι O
Figure imgf000621_0001
029
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV 621
Figure imgf000622_0001
Figure imgf000623_0001
ZZ9
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000624_0001
£29
S.69T0/S00Zdf/X3d 01^80£0/900∑: OAV
Figure imgf000625_0001
1729
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV 625
Figure imgf000626_0001
Figure imgf000627_0001
929
S.69T0/S00Zdf/X3d 01^80£0/900∑: OW
Figure imgf000628_0001
下記の A)〜E)の反応液を 25°Cで 24時間反応させた。
A) 50mM HEPES緩衝液(ρΗ7· 0)、0. lU/ml ヒト由来 1, 4—ガラクトース 転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0.1%BSA、 2mM ゥリジン 5' —二リン酸ガラクトースニナトリウム(UDP— Gal),糖ペプチド誘導体(236) (固相合 成からの理論含量で 4mM)を含む 100 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0) , 0. 0175U/ml ラット組換えひ 2, 3— (〇) —シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2 mM シチジン _ 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導 体(236) (固相合成からの理論含量で 4mM)を含む 100 μ ΐの反応液;
C) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(236) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(236) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリ ジン _ 5,一二リン酸ガラクトースニナトリウム(UDP_Gal)、 4mM シチジン _ 5, - リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(236) (固相合成か らの理論含量で 4mM)を含む 100 μ 1の反応液。
反応終了後、各々の反応液を限外濾過フィルターで遠心濃縮した。その後 25mM 酢酸アンモニゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって 高分子を洗浄した。この操作を 3回繰り返して化合物(38:!)〜(385)の水溶液を各 々得た。その後、化合物(381)〜(385)を含むフィルター保持液、さらに(236)水溶 液を 25mM酢酸アンモニゥム緩衝液 (PH6. 5)に希釈した溶液に、 BLase (塩野義 製薬社製)の 0. 174mg/ml溶液 Ι μ ΐをカ卩え、 2時間室温で反応させた後、限外濾 過フィルターで遠心濾過することによって目的糖ペプチドを高分子と分離し、得られ た水溶液 (濾液)を凍結乾燥して化合物(386)〜(391)を得た。
ィ匕合物(386)の MALDI—TOFZMS : [M (average) +H] + = 3229. 0 (理論値: [M (average) +H] + = 3227. 3)、化合物(387)の MALDI—TOF/MS: [M (a verage) +H] + = 3551. 4 (理論値: [M (average) +H] + = 3551. 6)、ィ匕合物(3 88)の MALDI— TOF/MS : [M (average) +H] + = 3811. 9 (理論値: [M (aver age) +H] + = 3809. 8)、化合物(389)の MALDI— TOF/MS : [M (average) + H] + =4136. l (理論値:[M (average) +H] + = 4134· 1)、化合物(390)の M ALDI -TOF/MS: [M (average) +H] + = 4133. 4 (理論値: [M (average) + H] + =4134. 1)、化合物(391)の MALDI— TOF/MS : [M (average) +H] + = 4713. 0 (理論値: [M (average) +H] + = 4716. 6)。
[0423] (3· 66 化合物(392)〜(402)の合成)
[0424] [化 127]
p1,4-GalT/ UDP-Gal BLase
► 392 ► 398
a2,3-(0)-SiaT/ CMP-NANA BLase
p1,4-GalT, a2,3-(N)-SiaT/ UDP-Gal, CMP-NANA BLase
239 ► 395 ► 401
pi,4-GalT, ct2,3-(N)-SiaT, a2,3-(0)-SiaT/ UDP-Gal, CMP-NANA BLase
239 ► 396 ► 402
BLase
239 397
Figure imgf000632_0001
Figure imgf000633_0001
SS9
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
εε9
Figure imgf000634_0001
Figure imgf000635_0001
1 9
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000636_0001
Figure imgf000637_0001
9 9
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000638_0001
L£9
£/.69lO/eOOldf/13d 01"80ε0/900Ι OAV
Figure imgf000639_0001
8 9
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000640_0001
SZ.69lO/SOOJdf/X3d 0^80£0/900ί OAV
Figure imgf000641_0001
Figure imgf000642_0001
下記の A)〜E)の反応液を 25°Cで 24時間反応させた。 A) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4_ガラクトース 転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1。/0BSA、 2mM ゥリジン— 5 ' —二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(239) (固相合 成からの理論含量で 4mM)を含む 100 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0) , 0. 0175U/ml ラット組換えひ 2, 3— (〇) —シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2 mM シチジン _ 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導 体(239) (固相合成からの理論含量で 4mM)を含む 100 μ ΐの反応液;
C) 50mM HEPES緩衝液(ρΗ7· 0)、 0· lU/ml ヒト由来 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(239) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(239) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリ ジン _ 5,一二リン酸ガラクトースニナトリウム(UDP_Gal)、 4mM シチジン _ 5, - リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(239) (固相合成か らの理論含量で 4mM)を含む 100 μ 1の反応液。
反応終了後、各々の反応液を限外濾過フィルターで遠心濃縮した。その後 25mM 酢酸アンモニゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって 高分子を洗浄した。この操作を 3回繰り返して化合物(392)〜(396)の水溶液を各 々得た。その後、化合物(392)〜(396)を含むフィルター保持液、さらに(239)水溶 液を 25mM酢酸アンモニゥム緩衝液 (PH6. 5)に希釈した溶液に、 BLase (塩野義 製薬社製)の 0. 174mg/ml溶液 Ι μ ΐをカ卩え、 2時間室温で反応させた後、限外濾 過フィルターで遠心濾過することによって目的糖ペプチドを高分子と分離し、得られ た水溶液 (濾液)を凍結乾燥して化合物(397)〜(402)を得た。
化合物(397)の MALDI— TOF/MS : [M (average) +H] + = 3228. 9 (理論値: [M (average) +H] + = 3227. 3)、化合物(398)の MALDI— TOF/MS: [M (a verage) +H] + = 3552. 9 (理論値: [M (average) +H] + = 3551 · 6)、化合物(3 99)の MALDI— TOF/MS : [M (average) +H] + = 3811. 0 (理論値: [M (aver age) +H] + = 3809. 8)、化合物(400)の MALDI— TOF/MS : [M (average) + H] + =4135. 2 (理論値: [M (average) +H] + = 4134. 1)、化合物(401)の M ALDI -TOF/MS: [M (average) +H] + = 4135. 5 (理論値: [M (average) + H] + =4134. 1)、化合物(402)の MALDI— TOF/MS : [M (average) +H] + = 4715. 8 (理論値: [M (average) +H] + = 4716. 6)。
[0426] (3· 67 化合物(403)〜(413)の合成)
[0427] [化 128]
pi,4-GalT/ UDP-Gal BLase
245 ► 403 ► 409
a2,3-(0)-SiaT / CMP-NANA BLase
245 ► 404 ► 410
p1,4-GalT, a2,3-(0)-SiaT/ UDP-Gal, CMP-NANA BLase
(51,4-GalT, a2,3-(N)-SiaT / UDP-Gal, CMP-NANA BLase
245 ► 406 ► 412
pi,4-GalT, a2,3-(N)-SiaT, o2,3-(0)-SiaT I UDP-Gal, CMP-NANA BLase
245 ► 407 ► 413
BLase
245 408
Figure imgf000646_0001
S.69T0/S00Zdf/X3d
Figure imgf000647_0001
9179
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000648_0001
Figure imgf000649_0001
8179
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV 649
Figure imgf000650_0001
Figure imgf000651_0001
099
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000652_0001
1-99
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000653_0001
299
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000654_0001
Figure imgf000655_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000656_0001
999
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV 下記の A)〜E)の反応液を 25°Cで 24時間反応させた。
A) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4_ガラクトース 転移酵素(東洋紡社製)、 10mM 塩化マンガン、 0. 1。/0BSA、 2mM ゥリジン— 5 ' —二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(245) (固相合 成からの理論含量で 4mM)を含む 100 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0) , 0. 0175U/ml ラット組換えひ 2, 3— (〇) —シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2 mM シチジン— 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導 体(245) (固相合成からの理論含量で 4mM)を含む 100 μ ΐの反応液;
C) 50mM HEPES緩衝液(ρΗ7· 0)、 0· lU/ml ヒト由来 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(245) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン _ 5, _二リン酸ガラクトースニナトリウム(UDP_Gal)、 2mM シチジン一 5, _リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(245) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリ ジン _ 5,一二リン酸ガラクトースニナトリウム(UDP_Gal)、 4mM シチジン _ 5, - リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(245) (固相合成か らの理論含量で 4mM)を含む 100 μ 1の反応液。 [0428] 反応終了後、各々の反応液を限外濾過フィルターで遠心濃縮した。その後 25mM 酢酸アンモニゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって 高分子を洗浄した。この操作を 3回繰り返して化合物 (403)〜(407)の水溶液を各 々得た。その後、化合物 (403)〜(407)を含むフィルター保持液、さらに(245)水溶 液を 25mM酢酸アンモニゥム緩衝液 (PH6. 5)に希釈した溶液に、 BLase (塩野義 製薬社製)の 0. 174mg/ml溶液 Ι μ ΐをカ卩え、 2時間室温で反応させた後、限外濾 過フィルターで遠心濾過することによって目的糖ペプチドを高分子と分離し、得られ た水溶液 (濾液)を凍結乾燥して化合物 (408)〜(413)を得た。
化合物(408)の MALDI— TOF/MS : [M (average) +H] + = 3228. 5 (理論値: [M (average) +H] + = 3227. 3)、化合物(409)の MALDI— TOF/MS: [M (a verage) +H] + = 3552. 6 (理論値: [M (average) +H] + = 3551 · 6)、化合物(4 10)の MALDI— TOF/MS : [M (average) +H] + = 3810. 9 (理論値: [M (aver age) +H] + = 3809. 8)、化合物(411)の MALDI— TOF/MS : [M (average) + H] + =4135. 3 (理論値: [M (average) +H] + = 4134. 1)、化合物(412)の M ALDI -TOF/MS: [M (average) +H] + = 4135. 7 (理論値: [M (average) + H] + =4134. 1)、化合物(413)の MALDI— TOF/MS : [M (average) +H] + = 4716. 9 (理論値: [M (average) +H] + = 4716. 6)。
[0429] (3. 68 化合物(414)〜(424)の合成)
[0430] [化 129]
pi,4-GalT/ UDP-Gal BLase
► 414 ► 420
a2,3-(0)-SiaT/ CMP-NANA BLase
Figure imgf000659_0001
pi,4-GalT, o2,3-(N)-SiaT/ UDP-Gal, CMP-NANA BLase
248 ► 417 ► 423
pi,4-GalT, a2,3-(N)-SiaT, o2,3-(0)-SiaT/ UDP-Gal, CMP-NANA BLase
248 ► 418 ► 424
BLase
248 419
Figure imgf000660_0001
699
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000661_0001
099
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000662_0001
Figure imgf000663_0001
3d
S9
Figure imgf000664_0001
Figure imgf000665_0001
1799
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000666_0001
999
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000667_0001
999
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000668_0001
/99
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000669_0001
899
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000670_0001
下記の A)〜E)の反応液を 25°Cで 24時間反応させた。
A) 50mM HEPES緩衝液(ρΗ7· 0)、0. lU/ml ヒト由来 1, 4—ガラクトー 転移酵素(東洋紡社製)、 lOmM 塩化マンガン、 0. 1 %BSA、 2mM ゥリジン- —二リン酸ガラクトースニナトリウム(UDP_Gal),糖ペプチド誘導体(248) (固相合 成からの理論含量で 4mM)を含む 100 μ 1の反応液;
B) 50mM HEPES緩衝液(pH7. 0) , 0. 0175U/ml ラット組換えひ 2, 3— (〇) —シアル酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA, 2 mM シチジン _ 5,—リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導 体(248) (固相合成からの理論含量で 4mM)を含む 100 μ ΐの反応液;
C) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換え α 2, 3— (Ο)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(248) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
D) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 1 , 4—ガラクトース 転移酵素(東洋紡社製)、 0. 0185U/ml ラット組換え α 2, 3—(Ν)—シアル酸転 移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリジン — 5 '—二リン酸ガラクトースニナトリウム(UDP— Gal)、 2mM シチジン一 5'—リン 酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(248) (固相合成からの 理論含量で 4mM)を含む 100 μ 1の反応液;
E) 50mM HEPES緩衝液(pH7. 0)、 0. lU/ml ヒト由来 j3 1, 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3_ (O)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3_ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1%BSA、 2mM ゥリ ジン _ 5,一二リン酸ガラクトースニナトリウム(UDP_Gal)、 4mM シチジン _ 5, - リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体(248) (固相合成か らの理論含量で 4mM)を含む 100 μ 1の反応液。
反応終了後、各々の反応液を限外濾過フィルターで遠心濃縮した。その後 25mM 酢酸アンモニゥム緩衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって 高分子を洗浄した。この操作を 3回繰り返して化合物 (414)〜(418)の水溶液を各 々得た。その後、化合物 (414)〜(418)を含むフィルター保持液、さらに(248)水溶 液を 25mM酢酸アンモニゥム緩衝液 (PH6. 5)に希釈した溶液に、 BLase (塩野義 製薬社製)の 0. 174mg/ml溶液 Ι μ ΐをカ卩え、 2時間室温で反応させた後、限外濾 過フィルターで遠心濾過することによって目的糖ペプチドを高分子と分離し、得られ た水溶液 (濾液)を凍結乾燥して化合物 (419)〜(424)を得た。
ィ匕合物(419)の MALDI—TOFZMS : [M (average) +H] + = 3227. 8 (理論値: [M (average) +H] + = 3227. 3)、化合物(420)の MALDI—TOF/MS: [M (a verage) +H] + = 3552. 3 (理論値: [M (average) +H] + = 3551 · 6)、化合物(4 21)の MALDI— TOF/MS : [M (average) +H] + = 3810. 1 (理論値: [M (aver age) +H] + = 3809. 8)、化合物(422)の MALDI— TOF/MS : [M (average) + H] + =4131. 5 (理論値: [M (average) +H] + = 4134. 1)、化合物(423)の M ALDI -TOF/MS: [M (average) +H] + = 4133. 5 (理論値: [M (average) + H] + =4134. 1)、化合物(424)の MALDI— TOF/MS : [M (average) +H] + = 4716. 7 (理論値: [M (average) +H] + = 4716. 6)。
[0432] (3. 69 ワンポット反応を用いた化合物(425;)〜(427)の合成)
[0433] [化 130]
Figure imgf000673_0001
ZL9
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000674_0001
ε/9
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV
Figure imgf000675_0001
17/9
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000676_0001
9/9
S.69T0/S00Zdf/X3d 0^80C0/900Z OAV Rink Amide PEGA resin (Novabiochem社製、 pre— swollen in Metha nol、 wet : 0. 05mmol/ g、 dry : 0. 24mmol/ g) 610. lmg (wet、 30. 5imol)を 担体として以下に示す N—保護アミノ酸とケト酸を FmocZHBTUZHOBt法で順 次縮合し、 目的の糖ペプチド誘導体を合成した。 Fmoc-Ala—〇H、 Fmoc -Pro - 〇H、 Fmoc -Pro - OH, Fmoc-Ala - OH, Fmoc-Thr (tBu) _ OH、 Fmoc-Se r (tBu) _〇H、 Fmoc_Gly_〇H、 Fmoc_Pro _〇H、 Fmoc-Ala - OH, Fmoc-P ro— OH、 Fmoc— Arg (Pbf)—〇H、 Fmoc -Thr (Ac7core2)— OH、 Fmoc— A sp (OtBu)—〇H、 Fmoc— Pro— OH、 Fmoc— Ala—〇H、 Fmoc— Ser (tBu) - 〇H、 Fmoc -Thr (tBu)—OH、 Fmoc—Val— OH、 Fmoc— Gly—〇H、 Fmoc— His (Trt) - OH、 Fmoc- Glu (OtBu) -〇H、 Fmoc - Phe - OH, 5—ケトへキサ ン酸。ペプチド伸長反応後、 90%TFA水溶液中、室温で 1. 5時間反応させることに よってペプチド残基上の保護基を脱離させるとともに、固相担体上から化合物(425) を遊離させた。樹脂を濾別し、 TFAを揮発留去した後、ジェチルエーテルを加えて 生成物を沈殿させた。得られたスラリーを遠心分離後、上澄みを除き、再度ジェチル エーテルを添加して沈殿を洗浄した。再び遠心分離を行って上澄みを除き、得られ た沈殿をメタノール 9. 0mlに溶解した。この溶液へ 1N水酸化ナトリウム水溶液を添 カロして pHを 12〜12. 5へ調節し、 1. 0時間室温で攪拌して脱 Ac保護反応を行った 。反応後、 1N酢酸を加えて中和した後、樹脂を濾別し、濾液の溶媒を留去して残渣 を 50mM酢酸/酢酸ナトリウム緩衝液(pH5. 5) 3. 0mlへ溶解させた。この液に 10 mM (ォキシァミン残基換算)水溶性高分子(17)水溶液 3. 0mlを添加し、室温で 18 時間攪拌させて化合物 (426)と化合物(17)を反応させた。反応終了後、反応液を 限外濾過フィルター 10K Apollo (登録商標) 20ml(Orbital Biosciences, LIC製 )によって遠心濃縮し、そこへ 25mM HEPES緩衝液(pH7. 0)を加えて再度濃縮 することによって洗浄し、最終的に容量が 1. 5mlになるように水をカ卩えることによって 20mM (糖ペプチド理論含量)高分子 (427)とした。
[0434] (3. 70 化合物(428)〜(429)の合成)
[0435] [化 131]
?()(),,,,GalT 023NsiaTa23osiaT----
Figure imgf000678_0001
Figure imgf000679_0001
8 9
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000680_0001
6Z9
S^69lO/£OOZdf/X3d 0f80C0/900i OAV 50mM HEPES緩衝液(pH7. 0)、 0. 05U/ml ヒト由来 j3 1 , 4—ガラクトース 転移酵素 (東洋紡社製)、 0. 0175U/ml ラット組換えひ 2, 3 _ (O)—シアル酸転 移酵素(Calbiochem社製)、 0. 0185U/ml ラット組換えひ 2, 3 _ (N)—シアル 酸転移酵素(Calbiochem社製)、 10mM 塩化マンガン、 0. 1 %BSA、 10mM ゥ リジン _ 5 ' _二リン酸ガラクトースニナトリウム(UDP_Gal)、 10mM シチジン一 5 ' —リン酸シアル酸ナトリウム(CMP— NANA)、糖ペプチド誘導体 (427) (固相合成 力もの理論含量で 4mM)を含む 7mlの反応液を 25°Cで 24時間反応させた。
[0436] 反応終了後、各々の反応液を限外濾過フィルター 10K Apollo (登録商標) 20ml( Orbital Biosciences, LIC製)で遠心濃縮した。その後 25mM酢酸アンモニゥム緩 衝液 (pH6. 5)を加え再度遠心分離機で濃縮することによって高分子を洗浄した。こ の操作を 3回繰り返して化合物 (428)の水溶液を得た。その後、化合物(428)を含 むフィルター保持液 4. 2mlに、 BLase (塩野義製薬社製)の 1. 74mg/ml溶液 5 μ 1 を加え、 2時間室温で反応させた後、限外濾過フィルター 30Κ Apollo (登録商標) 20ml(Orbital Biosciences, LIC製)で遠心濾過することによって目的糖ペプチド を高分子と分離し、得られた水溶液 (濾液)を凍結乾燥して化合物 (429)を 11. 4mg 得た。
化合物(429)の MALDI— TOF/MS : [M (average) + H] + = 3200. 0 (理論値: [M (average) + H] + = 3200. 2)。
産業上の利用可能性
[0437] 本発明によれば、従来の技術では極めて困難であった簡単な糖鎖構造から複雑な 糖鎖構造までを網羅的に有する糖ペプチドのライブラリー調製が可能となる。例えば 、本発明により、生化学研究材料、医薬、食品など幅広い分野で有用であり、これま でその製造が困難であったムチン型糖ペプチド類を合成することができる。
[0438] 得られた糖ペプチドライブラリ一は構造解析、生化学試験の標準サンプルとして使 用可能である。また、この糖ペプチドライブラリーをチップ上に配置し、糖ペプチド認 識タンパク質の検出、病理診断、細胞接着配列の検索、細胞増殖'アポトーシスなど に関連する配列解析などを網羅的に行うことが可能になる。

Claims

請求の範囲
[1] 以下の式:
X-C ( = 0) - (CH ) -A -A -A (I)
2 n 1 2 3
(式中、 Xは、水素原子、 C〜C アルキル、
1 30 c 6〜c ァリールまたは発色団を表し;
30
nは 0〜20の整数を表し;
Aは、—(CH ) — C ( = 0)—、—(CH CH O) —、重合度:!〜 10のオリゴ
1 2 0~20 2 2 1~10
もしくはポリアクリルアミド、重合度 1〜: 10のオリゴもしくはポリペプチド、酸素原子また は NHを表し;
Aは、プロテアーゼにより切断可能なアミノ酸残基を表し;
2
Aは、実質的にプロテアーゼにより切断可能な部位を含まない糖アミノ酸残基、ま
3
たはプロテアーゼにより切断可能な部位を含まず任意の糖アミノ酸を含む糖ペプチド 残基を表す)で表される、化合物。
[2] 前記 Aは、バシラス リケニホルミス(Bacillus Licheniformis)由来のプロテア
2 一 ゼで切断可能なグノレタミン酸残基またはシスティン残基である、請求項 1に記載の化 合物。
[3] 前記 Aの少なくとも一部力 ムチン型糖タンパク質 MUC1由来の配列番号 1〜60に
3
示されるアミノ酸配列からなる群から選択されるアミノ酸配列を有する、請求項 1に記 載の化合物。
[4] 請求項 1に記載の化合物と、保護されていてもよいアミノォキシ基、 N—アルキルアミ ノォキシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およ びシスティン残基からなる群から選択される官能基を含む担体と、が反応して得られ る、化合物。
[5] 前記担体は、以下:
a)保護されていてもよいアミノォキシ基またはヒドラジド基を有する、ビニル系単量 体の重合体もしくは共重合体、または保護されてレ、てもよレ、アミノォキシ基またはヒド ラジド基を有するポリエーテル類;
b)保護されてレ、てもよレ、アミノォキシ基またはヒドラジド基を有するシリカ担体、樹脂 担体、磁性ビーズまたは金属担体;ならびに c)以下の式:
[(NH OCH C( = 0)) -Lys] _Lys_NHCH CH C ( =〇) _R3
2 2 2 2 2 2
[(NH OCH C( = 0)) -Lys] _Lys_NHCH (CH SH) C ( =〇) _R3
2 2 2 2 2
[(NH OCH C( = 0)) -Lys] _Lys_Cys_NHCH CH C ( = 0) _R3 (配列
2 2 2 2 2 2
番号 61)、
{[(NH OCH C( = 0)) -Lys] _Lys_NHCH[C ( = 0) _R3]CH _S} 、
2 2 2 2 2 2
{[(NH OCH C( = 0)) -Lys] -Lys-NHCH[C ( = 0)NHCH CH C( = 0
2 2 2 2 2 2
) -R3]CH -S} 、
2 2
{[(NH OCH C( = 0)) -Lys] -Lys} Lys— NHCH CH C ( = 0)— R3 (
2 2 2 2 2 2 2
配列番号 62)、
{[(NH OCH C( = 0)) -Lys] -Lys} Lys— NHCH (CH SH) C ( = 0)—
2 2 2 2 2 2
R3 (配列番号 63)、
{[(NH OCH C( = 0)) -Lys] -Lys} Lys— Cys— N
2 2 2 2 2
HCH CH C( =〇) 一 R3 (配列番号 64)、
2 2
[[[(NH OCH C( = 0)) -Lys] -Lys] 一 Lys— NHCH[C ( =〇) 一 R3] CH
2 2 2 2 2 2 S] (配列番号 65)、
2
[[[(NH OCH C( = 0)) -Lys] -Lys] Lys— NHCH[C( =〇)NHCH C
2 2 2 2 2 2
H C( =〇) — R3]CH— S] (配列番号 66)、
2 2 2
[化 1]
[ (NH2 OCH2 C (=0) ) 2 -Ly s] - NHCHC (=0) - 3
[ (NH2 OCH2 C (=0) ) 2 "Ly s] -NH (CH2 ) 4
または
{ [ (NH2 OCH2 C ( = 0) ) 2 "L y s] 2 - Ly s } -NHCHC ( = 0) -R3
{ [ (NH2 OCH2 C ( = 0) ) 2 -Ly s] 2 -Ly s} - NH (CH2 ) 4
(式中、 R3はヒドロキシル基またはアミノ基を表し、 Lysはリジンを表し、 Cysはシスティ ンを表す)、
[化 2]
Figure imgf000684_0001
(式中、 nは:!〜 15の整数であり、 x:yは 1:0〜: 1:1000である)
で表される化合物、力もなる群から選択される、請求項 4に記載の化合物。
[6] 以下の式:
A -N = C(-X)-(CH ) -A -A -A (II)
4 2 n 1 2 3
[式中、 Xは水素原子、 c〜 、
1 c アルキル
30 c〜
6 c ァリールまたは発色団を表し; 30
nは 0〜20の整数を表し;
Aは、—(CH ) — C( = 0)—、—(CH CH O) —、重合度:!〜 10のオリゴ
1 2 0〜20 2 2 1〜10
もしくはポリアクリルアミド、重合度 1〜: 10のオリゴもしくはポリペプチド、酸素原子また は NHを表し;
Aは、バシラス リケニホルミス(Bacillus Licheniformis)由来のプロテアーゼで
2
切断可能なグルタミン酸残基またはシスティン残基であり;
Aは、実質的にプロテアーゼにより切断可能な部位を含まない糖アミノ酸残基、ま
3
はプロテアーゼにより切断可能な部位を含まず任意の糖アミノ酸を含む糖ペプチド 残基を表し; Aは、以下の式:
4
[化 3-1]
Figure imgf000685_0001
(式中、 sは 1〜: 15の整数であり、 x : yは 1 : 0〜1: 1000である)で表される基である] で表される化合物。
[7] 前記 Aの少なくとも一部力 ムチン型糖タンパク質 MUC1由来の配列番号 1〜60に
3
示されるアミノ酸配列からなる群から選択されるアミノ酸配列を有する、請求項 6に記 載の化合物。
[8] 以下の工程:
(A)請求項 1〜3のいずれ力 1項に記載の化合物と、ケトン残基またはアルデヒド残 基と特異的に反応しうる、保護されていてもよいアミノォキシ基、 N—アルキルアミノォ キシ基、ヒドラジド基、アジド基、チォセミカルバジド基、 1, 2—ジチオール基およびシ スティン残基からなる群から選択される官能基を含む担体と、を反応させる工程;
(B)工程 (A)で得た化合物に、糖ヌクレオチドの存在下で糖転移酵素を作用させる ことにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、糖鎖を伸長させた化 合物を得る工程; (C)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および
(D)糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる工程、 を包含する、糖ペプチドを製造する方法。
[9] 以下の工程:
(A)請求項 4〜7のいずれ力 1項に記載の化合物に、糖ヌクレオチドの存在下で糖転 移酵素を作用させることにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、 糖鎖
を伸長させた化合物を得る工程;
(B)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および
(C)糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる工程 を包含する、糖ペプチドを製造する方法。
[10] 以下の工程:
(A)請求項 4〜7のいずれ力 1項に記載の化合物に、糖ヌクレオチドの存在下で糖転 移酵素を作用させることにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、 糖鎖を伸長させた化合物を得る工程;
(B)工程 (A)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;
(C)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および
(D)複数の糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させるェ 程、を包含する、糖ペプチドを製造する方法。
[11] 以下の工程:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデヒ ド酸を原料にペプチド固相合成を行レ、、請求項 1〜3のいずれ力 4項に記載の化合 物を得る工程;
(B)工程 (A)で得た化合物と、ケトン残基またはアルデヒド残基と特異的に反応しうる 、保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒドラジド基、ァ ジド基、チォセミカルバジド基、 1, 2 _ジチオール基およびシスティン残基からなる 群から選択される官能基を含む担体とを反応させる工程;
(C)工程 (B)で得た化合物に、糖ヌクレオチドの存在下で糖転移酵素を作用させる ことにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、糖鎖を伸長させた化 合物を得る工程;
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および
(E)糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる工程、 を包含する、糖ペプチドを製造する方法。
[12] 以下の工程:
(A)プロテアーゼにより切断可能なアミノ酸、糖アミノ酸、およびケト酸またはアルデヒ ド酸を原料にペプチド固相合成を行い、請求項 1〜3のいずれ力 1項に記載の化合 物を得る工程;
(B)工程 (A)で得た化合物と、ケトン残基またはアルデヒド残基と特異的に反応しうる 保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、ヒドラジド基、アジ ド基、チォセミカルバジド基、 1, 2—ジチオール基およびシスティン残基からなる群 から選択される官能基を含む担体とを反応させ、これと同時に工程 (A)における未反 応物を除去する工程;
(C)工程 (B)で得た担体に結合した化合物に、糖ヌクレオチドの存在下で糖転移酵 素を作用させることにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、糖鎖 が伸長された化合物を得る工程;
(D)工程 (C)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;
(E)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および
(F)複数の糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させるェ 程、を包含する、糖ペプチドを製造する方法。
[13] 前記工程 (A)のケト酸またはアルデヒド酸力 以下の式:
X-C ( = 0) - (CH ) -A -COOH (III) (式中、 Xは水素原子、 c
1〜c アルキル、 c
30 6〜c ァリールまたは発色団を表し;
30
nは 0〜20の整数を表し;
Aは、メチレン鎖 1〜20個分の長さを有するリンカ一を表す)で表される化合物で ある、請求項 11または 12に記載の方法。
[14] 以下の工程:
(A)請求項 1〜3のいずれ力 1項に記載の化合物に、糖ヌクレオチドの存在下で糖転 移酵素を作用させることにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、 糖鎖を伸長させた化合物を得る工程;
(B)必要に応じて工程 (A)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;( C)糖残基が転移して糖鎖が伸長した化合物と、ケトン残基またはアルデヒド残基と特 異的に反応しうる保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、 ヒドラジド基、アジド基、チォセミカルバジド基、 1 , 2—ジチオール基およびシスティン 残基からなる群から選択される官能基を含む担体と、を反応させる工程;および
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;
を包含する、糖ペプチドを製造する方法。
[15] 以下の工程:
(A)請求項 1〜3のいずれ力 1項に記載の化合物に、糖ヌクレオチドの存在下で糖転 移酵素を作用させることにより、該糖ヌクレオチドより糖残基を該化合物に転移させ、 糖鎖を伸長させた化合物を得る工程;
(B)必要に応じて工程 (A)を 1回または 2回以上繰り返して糖鎖を伸長させる工程;( C)糖残基が転移して糖鎖が伸長した化合物と、ケトン残基またはアルデヒド残基と特 異的に反応しうる保護されていてもよいアミノォキシ基、 N—アルキルアミノォキシ基、 ヒドラジド基、アジド基、チォセミカルバジド基、 1 , 2—ジチオール基およびシスティン 残基からなる群から選択される官能基を含む担体と、を反応させる工程;
(D)必要に応じて未反応の糖ヌクレオチド類および副生したヌクレオチド類を除去す る工程;および
(E)糖残基が転移して糖鎖が伸長した化合物にプロテアーゼを作用させる工程、 を包含する、糖ペプチドを製造する方法。
前記糖ペプチドが、以下の式:
[化 3-2]
Figure imgf000689_0001
(配列番号 20)
(式中、 xi x3は、それぞれ独立して、水素原子または以下の式: [化 3-3]
Figure imgf000690_0001
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000691_0001
[式中、 Acはァセチルを表す]で表される基を表し;
Y1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し;
Y2は、水酸基、 NH、アルキルまたはァリールを表す。ただし、 X1〜X3のすべてが水
2
素原子である場合を除く)で表される糖ペプチドである、請求項 8〜: 15のいずれか 1 項に記載の方法。
前記糖ペプチドが、以下の式: [化 3-4]
χι X2 X3
- His- Gly-Va卜 Th「Se「Ala- Pro-Asp- Th「A「g-P「o_Ala-Pra_Gly-Se「Th「Ala-P「o_Pra_Ala _Y2
(配列番号 41)
(式中、 xi x3は、それぞれ独立して、水素原子または以下の式:
[化 3- 5]
Figure imgf000693_0001
[化 3-6]
Figure imgf000694_0001
[式中、 Acはァセチルを表す]で表される基を表し;
Y1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し;
Y2は、水酸基、 NH、アルキルまたはァリールを表す。ただし、 X1
2 〜X3のすべてが水 素原子である場合を除く)で表される糖ペプチドである、請求項 8〜: 15のいずれか 1 項に記載の方法。
[18] 以下の式:
[化 4]
X1 X2 X3
Y1-Ala-H is-G ly— VaH"hr-Ser-Ala-Pro-Asp— Thr-Arg-Y2
(配列番号 20)
[化 5]
X1 X2 X3 X4 X5
Y -Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp hr-Arg-Pro-Ala-Pro-Gly-Ser^hr-Ala-Y2
(配列番号 40)
または
[化 6]
X1 X2 X4 X5
Y1-His-Glv-Val-Thr-Ser-Ala-Pra-Asp -Thr-Ara-Pro-Ala-PrQ-Glv-Ser-Thr-Ala-Pro-Pro-Ala— Y'
(配列番号 41) (式中、 xi x5は、それぞれ独立して、水素原子または以下の式:
[化 7-1]
Figure imgf000695_0001
で表される基 [式中、 R1および R2は、それぞれ独立して、水素原子、単糖または糖鎖 を表す; Acはァセチル]を表し;
Y1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し;
Y2は、水酸基、 NH、アルキルまたはァリールを表す)で表される糖ペプチド。
2
式:
[化 7- 2]
Figure imgf000695_0002
(配列番号 20)
(式中、 xi x3は、それぞれ独立して、水素原子または以下の式:
[化 7-3]
Figure imgf000696_0001
969
S.69T0/S00Zdf/X3d 01?80ε0/900Ζ OAV
Figure imgf000697_0001
[式中、 Acはァセチルを表す]で表される基を表し;
Y1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し;
Y2は、水酸基、 NH、アルキルまたはァリールを表す。ただし、 X1〜X3のすべてが水
2
素原子である場合を除く)で表される、請求項 18に記載の糖ペプチド。
[20] 式:
[化 7- 4] χι X2 X3
- His- Gly-Va卜 Th「Se「Ala- Pro-Asp- Th「A「g-P「o_Ala-Pra_Gly-Se「Th「Ala-P「o_Pra_Ala _Y2
(配列番号 41)
(式中、 xi x3は、それぞれ独立して、水素原子または以下の式:
[化 7- 5]
Figure imgf000699_0001
[化 7-6]
Figure imgf000700_0001
[式中、 Acはァセチルを表す]で表される基を表し;
Y1は、水素原子、ァセチル、ァシル、アルキルまたはァリールを表し;
Y2は、水酸基、 NH、アルキルまたはァリールを表す。ただし、 X X3のすべてが水
2
素原子である場合を除く)で表される、請求項 18に記載の糖ペプチド。
PCT/JP2005/016975 2004-09-14 2005-09-14 ムチン型ペプチドの合成法とmuc1関連糖ペプチド WO2006030840A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05783456A EP1801118A4 (en) 2004-09-14 2005-09-14 METHOD FOR SYNTHESIS OF MUCIN-TYPE PEPTIDES AND GLUCKOPEPTIDES RELATED TO MUC1
JP2006535178A JPWO2006030840A1 (ja) 2004-09-14 2005-09-14 ムチン型ペプチドの合成法とmuc1関連糖ペプチド
US11/663,081 US20090263858A1 (en) 2004-09-14 2005-09-14 Process for synthesis of mucin-type peptides and muc1-related glycopeptides

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004267521 2004-09-14
JP2004-267521 2004-09-14
JP2005090182 2005-03-25
JP2005-090182 2005-03-25

Publications (1)

Publication Number Publication Date
WO2006030840A1 true WO2006030840A1 (ja) 2006-03-23

Family

ID=36060091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016975 WO2006030840A1 (ja) 2004-09-14 2005-09-14 ムチン型ペプチドの合成法とmuc1関連糖ペプチド

Country Status (4)

Country Link
US (1) US20090263858A1 (ja)
EP (1) EP1801118A4 (ja)
JP (1) JPWO2006030840A1 (ja)
WO (1) WO2006030840A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114307A1 (ja) * 2006-03-31 2007-10-11 National Institute Of Advanced Industrial Science And Technology ポリラクトサミン骨格を有するムチン型糖ペプチド

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9156906B2 (en) 2008-02-26 2015-10-13 The Regents Of The University Of California Glycopeptides and methods of making and using them
JP6603668B2 (ja) 2013-10-28 2019-11-06 ノーレックス インコーポレイテッド Nmda受容体モジュレーター及びプロドラッグ、塩、並びにこれらの使用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220399A (ja) * 1999-11-25 2001-08-14 Toyobo Co Ltd 糖ペプチドあるいはネオ糖ペプチド合成用高分子プライマーおよびその用途
JP2002521385A (ja) * 1998-07-24 2002-07-16 コーバス インターナショナル インコーポレーティッド 樹脂の誘導体化の方法およびその使用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016449A1 (en) * 1990-04-16 1991-10-31 The Trustees Of The University Of Pennsylvania Saccharide compositions, methods and apparatus for their synthesis
JP4003093B2 (ja) * 1997-07-29 2007-11-07 東洋紡績株式会社 糖類の製造方法
EP1537143A2 (en) * 2002-09-05 2005-06-08 Cell Center Cologne GmbH Immunogenic muc1 glycopeptides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521385A (ja) * 1998-07-24 2002-07-16 コーバス インターナショナル インコーポレーティッド 樹脂の誘導体化の方法およびその使用
JP2001220399A (ja) * 1999-11-25 2001-08-14 Toyobo Co Ltd 糖ペプチドあるいはネオ糖ペプチド合成用高分子プライマーおよびその用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KARSTEN U ET AL: "Enhanced binding of antibodies to the DTR motif of MUC1 tandem repeat peptide is mediated by site-specific glycosylation.", CANCER RESEARCH., vol. 58, no. 12, 15 June 1998 (1998-06-15), pages 2541 - 2549, XP002112486 *
RADEMANN J AND SCHMIDT RR.: "Solid-phase synthesis of a glycosylated hexapeptide of human sialophorin, using the trichloroacetimidate method.", CARBOHYDRATE RESEARCH., vol. 269, no. 2, 19 April 1995 (1995-04-19), pages 217 - 225, XP004022052 *
RIO-ANNEHEIM S ET AL: "Synthesis of the building blocks N-Fmoc-O-[-D-Ac3GalN3p-(1-3)a-D-Ac2GalN3p]-Thr-OPfp and Na-Fmoc-O-[a-D-Ac3GalN3p-(1-6)a-D-Ac2GalN3p]-Thr-OPfp and their application in the solid phase glycopeptide synthesis of core 5 and core 7 mucin O-glycopeptides.", JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1., no. 8, 1995, pages 1071 - 1080, XP002991394 *
See also references of EP1801118A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114307A1 (ja) * 2006-03-31 2007-10-11 National Institute Of Advanced Industrial Science And Technology ポリラクトサミン骨格を有するムチン型糖ペプチド

Also Published As

Publication number Publication date
US20090263858A1 (en) 2009-10-22
EP1801118A4 (en) 2009-09-02
JPWO2006030840A1 (ja) 2008-05-15
EP1801118A1 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
Herzner et al. Synthesis of glycopeptides containing carbohydrate and peptide recognition motifs
Seitz et al. Chemoenzymatic solution-and solid-phase synthesis of O-glycopeptides of the mucin domain of MAdCAM-1. A general route to O-LacNAc, O-sialyl-LacNAc, and O-sialyl-Lewis-X peptides
Arsequell et al. Recent advances in the synthesis of complex N-glycopeptides
KR100634664B1 (ko) 당사슬 아스파라긴을 갖는 당펩티드의 제조법 및 그당펩티드
US7955819B2 (en) Process for producing sugar chain asparagine derivative
US7273934B2 (en) Three-branched sugar-chain asparagine derivatives, the sugar-chain asparagines, the sugar chains, and processes for producing these
CN104936613B (zh) 糖链加成连接子、含有糖链加成连接子与生理活性物质的化合物或其盐、以及其制造方法
Liu et al. Advances in glycoprotein synthesis
EP2697247B1 (en) Method for the rapid chemoenzymatic glycosylation of conjugates between peptides and hydrophilic polymers
Dziadek et al. Synthetic glycopeptides for the development of antitumour vaccines
WO2004058789A9 (ja) 糖鎖アスパラギン誘導体およびその製造方法
WO2006030840A1 (ja) ムチン型ペプチドの合成法とmuc1関連糖ペプチド
JP2009215207A (ja) O−マンノース型糖鎖結合アミノ酸及びそれを用いた糖ペプチドの製造方法
US7700701B2 (en) Water-soluble polymer compound having sugar chains
WO2007114307A1 (ja) ポリラクトサミン骨格を有するムチン型糖ペプチド
Cudic et al. Preparation of glycosylated amino acids suitable for Fmoc solid-phase assembly
WO2010150558A1 (ja) 糖ペプチドの合成法
Kajihara et al. Chemical Glycoprotein Synthesis
KR102295590B1 (ko) 활성화 당쇄 유도체의 제조방법 및 활성화 당쇄 유도체
Westerlind et al. Advances in N‐and O‐glycopeptide synthesis–a tool to study glycosylation and develop new therapeutics
WO2016135071A1 (en) A compound for preparing polypeptides
Lönnberg 5 Natural polymers—chemistry
Danishefsky et al. Syntheses of oligosaccharides and glycopeptides on insoluble and soluble supports
EP4149563A1 (en) Peptidic scaffolds, processes for manufacturing the same, and uses thereof as soluble supports
WO2005108417A1 (ja) 糖ぺプチド合成用高分子プライマー

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535178

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005783456

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005783456

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11663081

Country of ref document: US