[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006027956A1 - 光学材料用樹脂組成物 - Google Patents

光学材料用樹脂組成物 Download PDF

Info

Publication number
WO2006027956A1
WO2006027956A1 PCT/JP2005/015391 JP2005015391W WO2006027956A1 WO 2006027956 A1 WO2006027956 A1 WO 2006027956A1 JP 2005015391 W JP2005015391 W JP 2005015391W WO 2006027956 A1 WO2006027956 A1 WO 2006027956A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
light
resin composition
optical material
Prior art date
Application number
PCT/JP2005/015391
Other languages
English (en)
French (fr)
Inventor
Kazuaki Matsumoto
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2006535110A priority Critical patent/JPWO2006027956A1/ja
Publication of WO2006027956A1 publication Critical patent/WO2006027956A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Definitions

  • the present invention relates to a resin composition for an optical material that exhibits excellent luminous efficiency by dispersing nanophosphor particles much smaller than a conventional Balta phosphor in a polymer without agglomeration. .
  • Nanoparticles with a particle size of ⁇ ⁇ lOOnm are more mechanical, optical, and magnetic than particles with submicrometers or larger, which are produced by ordinary mechanical grinding. Attention has been focused on the fact that it has properties and that there is a marked difference in chemical reactivity. As a phenomenon that does not appear in the Balta state of the material as the particle size decreases, for example, the carrier kinetic energy increases due to the confinement effect! ], External dielectric effect, increased band gap, decreased electron affinity energy, increased ionization potential, improved carrier-recombination efficiency. These unique physical properties can be applied to various functional materials such as EL devices, photoconductive devices, and piezo devices.
  • nanoparticles are dispersed in the medium without aggregating or condensing.
  • nanoparticles have a remarkably large surface energy, they tend to agglomerate between particles and bond between the agglomerated particles, resulting in large particles, and once agglomeration occurs and the particle size increases, Dispersion becomes extremely difficult.
  • inorganic nanoparticles since the particle surface has a large polarity, it is difficult to disperse it in an organic medium such as a low polarity organic solvent or polymer.
  • dispersion of nanoparticles in a polymer such as a polymer in order to prevent aggregation of the nanoparticles is usually that the polarity of the polymer and the nanoparticles are significantly different and the viscosity of the solution in solution and in the molten state is high. It is generally very difficult because it is not easy to give. Therefore, polymer / nanoparticle composite materials have reached the point of widespread industrial widespread use! /, NA! /.
  • Non-Patent Document 2 a polymer having a molecular weight and a terminal group controlled by key-on polymerization is first polymerized, and this terminal group is converted into propylene sulfide. After the substitution, a polymer having a mercapto group at the end is obtained, and the surface of the metal nanoparticles is modified with this polymer, thereby realizing the dispersion of the metal nanoparticles in the polymer.
  • This method is very interesting in that a composition in which nanoparticles are dispersed can be obtained by simply mixing prepolymerized polymers and pre-synthesized nanoparticles.
  • blue LED chips that emit blue light and ultraviolet LED chips that emit ultraviolet light have been used as light-emitting elements using gallium nitride compound semiconductors (eg, GaN, InGaN, AlGaN, InGaAlN, etc.). It has been developed. The light emitted from these LED chip cartridges is characterized by having a single-wavelength emission peak with a narrow half-value width. On the other hand, these LED chips are expected to be applied to display and lighting applications, but white light is often required for display and lighting applications.
  • gallium nitride compound semiconductors eg, GaN, InGaN, AlGaN, InGaAlN, etc.
  • Patent Documents 2, 3, and 4 disclose a light-emitting device using a combination of an LED chip and a phosphor powder as described above.
  • the light emitting devices disclosed in these publications are L Common in that phosphor powder that is excited by the light emitted from LED chip force and dispersed in light-transmitting resin (for example, epoxy resin) used as the sealing part and mold part of ED chip is dispersed.
  • light-transmitting resin for example, epoxy resin
  • part of the light emitted by the LED chip force is also transmitted through the translucent resin as it is, and transmitted by the other part of the emitted light from the LED chip force.
  • Light whose wavelength is converted by excitation of the phosphor powder in the synthetic resin is also emitted to the outside.
  • white light can be obtained as the combined light of the light emitted from the LED chip cover and the light emitted from the phosphor powder.
  • the LED chip is a blue LED chip
  • the phosphor emitting yellow light using the blue light from the LED chip as an excitation light is combined, or the phosphor emitting red light and green is emitted.
  • white light can be obtained as synthetic light.
  • the LED chip is an ultraviolet LED chip
  • white light can be obtained as combined light by combining three types of phosphors that emit red, green, and blue light using the ultraviolet light from the LED chip as excitation light. be able to. By obtaining white light in this way, in recent years it has become possible to apply LED chips to lighting applications.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-60581
  • Patent Document 2 JP-A-5-152609
  • Patent Document 3 Japanese Patent Laid-Open No. 7-99345
  • Patent Document 4 Japanese Patent Laid-Open No. 10-242513
  • Non-Patent Document 1 S. Huang et al., J. Vac. Sci. Technol., B 19 ⁇ , 2 045 (2001)
  • Non-Patent Document 2 M. K. Corbierr et al., J. Am. Chem. Soc., 123 ⁇ , 10411 (2001)
  • the phosphor powder in the above-described light-emitting device is a phosphor having an average particle diameter of several ⁇ m (approximately 5 ⁇ m), which has been conventionally used in cathode ray tubes (CRT) and fluorescent lamps ( Hereinafter, it is generally used as a Balta phosphor).
  • Balta phosphors have a sufficiently large particle size compared to the wavelength of visible light or excitation light. Due to the large size, the excitation light is irradiated only on the surface of the phosphor powder, and there is a problem that the light emission efficiency is lowered with respect to the amount of the phosphor powder used. Further, since the phosphor powder itself blocks the visible light obtained from the phosphor powder, the obtained light cannot be taken out to the outside sufficiently, which also reduces the luminous efficiency. It was.
  • the luminous flux per LED chip is relatively small, so it is necessary to collect a large number of LED chips to make a module.
  • Balta phosphors generally have a characteristic (temperature quenching) in which the luminous efficiency decreases at high temperatures, although the degree varies depending on the material. Therefore, in a lighting device combining a Balta phosphor and an LED chip, due to the large luminous flux, even if the LED chip integration density (arrangement density) is increased, the current quenching is sufficient. There is another problem that the luminous flux cannot be obtained.
  • the object of the present invention is to develop a technique for dispersing nanophosphor particles in a polymer, thereby generating light emitted from a conventional light emitting device using a Balta phosphor. It is an object to provide a light emitting device that can increase the light efficiency and is less likely to cause a decrease in luminance due to a temperature rise.
  • the present inventor polymerizes a bulle-based polymer having an SH group at the terminal, and modifies the surface of the nanophosphor particle with the obtained polymer.
  • the present inventors succeeded in obtaining a rosin composition in which nanophosphor particles are well dispersed in a polymer, leading to the present invention.
  • nanophosphor particles having an average particle diameter of 0.1 nm to 100 nm are provided at the ends.
  • a resin composition for optical materials wherein the composition is dispersed in a polymer by modification with a vinyl polymer having an SH group.
  • the number average molecular weight of the vinyl polymer having an SH group at the terminal is 2000 or more and 100000 or less.
  • the molecular weight distribution represented by the ratio between the weight average molecular weight and the number average molecular weight of the vinyl polymer having an SH group at the terminal is 1.5 or less.
  • a vinyl polymer having an SH group at the end is used for acrylic acid, methacrylic acid, gold acrylate Metal salt, metal methacrylate, acrylic acid ester, methacrylic acid ester, styrene, acrylo-tolyl, butyl acetate, butyl chloride, N-alkylacrylamide, N-alkylmethacrylamide, N, N dialkylacrylamide, N, N It is obtained by radical polymerization of one or more monomers selected from dialkylmethacrylamide, N-bulupyridine, 2-bulupyridine, 4-vinylpyridine, maleic anhydride, maleimide, and powerful compounds.
  • a vinyl polymer having an SH group at the terminal is a polymer that transmits visible light.
  • a vinyl polymer having an SH group at the end is obtained by treating a polymer polymerized by reversible addition / desorption chain transfer polymerization with a treating agent,
  • the emission peak wavelength of nanophosphor particles is in the wavelength range of 380 nm to 800 nm, and it is powerful 20 ⁇ ! It is a particle that can emit light when irradiated with light in the wavelength range of ⁇ 500 nm.
  • the nanophosphor particle is an undoped semiconductor nanophosphor particle consisting only of a host crystal
  • the nanophosphor particle is a doped semiconductor nanophosphor particle in which a luminescent ion is added to a host crystal
  • a nanophosphor particle modified with a vinyl-based resin having an SH group at its end is mixed with a thermosetting resin.
  • thermosetting resin is a silicon-based thermosetting resin.
  • a silicon-based thermosetting resin having (A) an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule; (B) at least two in one molecule; A resin composition for an optical material, characterized in that it is a silicone-based thermosetting resin containing a silicon compound containing a single Si H group and (C) a hydrosilylation catalyst.
  • the present invention relates to a light emitting device using the resin composition for optical material.
  • nanophosphor particles are used as the fluorescent material and dispersed in the polymer without aggregation.
  • the quantum size effect appears, and as a luminescent material, Balta firefly with a particle size of several / zm as in the past is used.
  • the luminous efficiency of the fluorescent material can be increased only by nano-size the particle size without changing the composition.
  • temperature quenching can be reduced, it is possible to increase the luminous efficiency of the entire device as compared with the conventional case, and to suppress a decrease in luminance due to a rise in temperature.
  • FIG. 1 is a TEM photograph of a resin film obtained in Example 1.
  • FIG. 2 is a TEM photograph of a resin film obtained in Comparative Example 2.
  • the composition of the vinyl polymer having an SH group at the terminal used in the present invention is not particularly limited.
  • the vinyl polymer means a polymer obtained by polymerizing a vinyl monomer capable of radical polymerization.
  • a radically polymerizable vinyl monomer is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, metal acrylate, metal methacrylate, acrylate monomer, and methacrylate.
  • Examples of the metal acrylate include sodium acrylate, potassium acrylate, zinc acrylate, and the like.
  • metal methacrylate salt examples include sodium methacrylate, potassium methacrylate, zinc methacrylate, and the like.
  • Acrylic acid ester monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, tert-butyl acrylate, n-xyl acrylate, acrylic 2-ethylhexyl acid, n-octyl acrylate, n-decyl acrylate, n-dodecyl acrylate, tridecyl acrylate, stearyl acrylate, cyclohexyl acrylate, phenol acrylate, benzyl acrylate, 2-Methylethyl acrylate, 3-methoxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, glycidyl acrylate, 3-atallyloyloxy pill dimethoxymethylsilane, 3-atallyloylo Xylpropyltrimethoxy
  • Methacrylic acid ester monomers include methyl methacrylate, ethyl acetate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, n-xyl methacrylate, and methacrylic acid.
  • styrenic monomer examples include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, ⁇ -methoxystyrene, and indene.
  • Examples of the cyanide bur monomer include acrylonitrile and meta-tallow-tolyl.
  • Examples of the unsaturated amide monomer include acrylamide and methacrylamide.
  • conjugation-based monomer examples include butadiene, isoprene, black-opened plane, and the like.
  • halogen-containing bur monomer examples include butyl chloride, vinylidene chloride, tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride.
  • butyl ester monomer examples include butyl acetate, butyl propionate, vinyl pivalate, vinyl benzoate, and vinyl cinnamate.
  • Examples of unsaturated dicarboxylic acid compounds and derivatives thereof include maleic anhydride, maleic acid, maleic acid monoester, maleic acid diester, fumaric acid, fumaric acid monoester, and fumaric acid diester.
  • maleimide compound examples include maleimide, methylmaleimide, ethylmaleimide, phenol maleimide, cyclohexylmaleimide and the like.
  • These monomers may be used alone or in combination. Multiple In the case where a copolymer is formed by combining these, the form is not particularly limited, and examples thereof include a random copolymer, a block copolymer, a graft copolymer, and a gradient copolymer. What is necessary is just to select the monomer to be used according to the required characteristic of a resin composition.
  • monomers when used as an optical material, in consideration of necessary properties such as visible light and ultraviolet light transmittance, weather resistance, heat resistance, and affinity for thermosetting resin.
  • Preferred monomers include acrylic acid, methacrylic acid, metal acrylate, metal methacrylate, acrylate, methacrylate, styrene, acrylonitrile, butyl acetate, butyl chloride, N-alkylacrylamide, N —Selected from alkylmethacrylamide, N, N-dialkylacrylamide, N, N-dialkylmethacrylamide, N-Burpyridine, 2-Byrpyridine, 4-Burpyridine, Maleic anhydride, Maleimide, Powerful compound 1 Mention may be made of more than one species of monomer.
  • the vinyl polymer having an SH group at the end is preferably a polymer that transmits visible light.
  • the polymer that transmits visible light specifically indicates a resin having a total light transmittance of 50% or more measured at a thickness of 2 mm based on ASTM D1003.
  • the haze value measured at a thickness of 2 mm based on ASTM D1003 is also small.
  • the haze value is 10% or less, preferably 7% or less, more preferably 5% or less, and most preferably 3% or less.
  • These polymers can be used as a mixture of two or more. However, when two or more kinds of polymers are mixed and used, it is preferable that visible light can be transmitted even after the two are mixed.
  • the monomers are methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, and force.
  • the structure of the vinyl polymer having an SH group at the terminal used in the present invention is not particularly limited, but the modification efficiency when modifying the nanophosphor particles and the handling when used as an optical material
  • the number average molecular weight (Mn) of the polymer is 2000 considering the ease of It is preferably 100000 or less. More preferably, it is 2500 or more and 80000 or less, more preferably ⁇ is 2700 or more and 60000 or less, and most preferably ⁇ is 3000 or more and 50000 or less. If the Mn of the polymer is less than 2000, only the same effect as that obtained by modification with an SH group-containing low molecular weight compound can be obtained, and the dispersibility of the nanophosphor particles tends to be insufficient in the composition. . If the Mn of the polymer exceeds 100000, the number of SH groups in the polymer decreases, so that modification of the nanophosphor particles tends to be difficult.
  • the molecular weight distribution represented by the ratio of the weight average molecular weight and the number average molecular weight of the vinyl polymer having an SH group at the terminal used in the present invention is the reactivity between the SH group and the nanophosphor particle surface. From the point that it is easy to control, it is preferably 1.5 or less. More preferably, it is 1.4 or less, more preferably 1.3 or less.
  • the three-dimensional structure of the polymer having an SH group at the terminal used in the present invention is not particularly limited, and may be linear or branched in the molecule.
  • the branching in the molecule may be regular or irregular, and there is no limit to the number of branching 'lengths'. It may be a cage polymer having a large number of branches. Further, it may have SH groups at all terminals of the polymer branch, or may have a structure having SH groups only at a part of the terminals or at only one of the terminals. However, in consideration of the reactivity between the polymer and the surface of the nanophosphor particle, it is preferable that the polymer is linear when the polymer has fewer branches. When the polymer is linear, it may have an SH group only at one end, or may have an SH group at both ends.
  • the polymerization method of the polymer having an SH group at the terminal used in the present invention is not particularly limited, but it is possible to introduce the SH group surely, the molecular weight and molecular weight distribution, the regularity of the monomer, etc. It is preferable to use a reversible addition-elimination chain transfer (RAFT) polymerization method for the reason that it is easy to impart the.
  • RAFT reversible addition-elimination chain transfer
  • the polymer obtained by this method has a dithioester structure or a trithiocarbonate structure at the molecular end or in the molecular chain.
  • the polymer used in the present invention as an embodiment is obtained by treating a polymer having a dithioester structure or trithiocarbonate structure obtained by RAFT polymerization with a treating agent, and then dithioester. It can be obtained by reacting a portion of the thiol structure or trithiocarbonate structure and converting it to an SH group.
  • the chain transfer agent having a dithioester structure used in the RAFT polymerization is not particularly limited, and examples thereof include compounds described in JP 2000-515181 A and compounds represented by the following general formula (1). Can be used.
  • R is a monovalent organic group having 1 or more carbon atoms
  • p is an integer of 1 or more; and when p is 2 or more, Rs may be the same or different
  • the monovalent organic group R having 1 or more carbon atoms is not particularly limited, and in addition to a carbon atom, a hydrogen atom, a nitrogen atom, an oxygen atom, a sulfur atom, a halogen atom, a key atom, a phosphorus atom, And a high molecular weight polymer that may contain at least one of metal atoms.
  • R include an alkyl group, an aralkyl group, and substituents thereof. From the viewpoint of availability and polymerization activity, the structures of the following general formulas (2) and (3) are preferred.
  • n is an integer of 1 or more, and r is an integer of 0 or more
  • n and r are preferably 500 or less, more preferably 200 or less, and even more preferably 100 or less.
  • R is particularly preferably a group having 2 to 30 carbon atoms in view of availability and polymerization activity.
  • the RAFT polymerization reaction conditions are not particularly limited, and conventionally known conditions such as Patent Document 5 can be applied. However, in terms of reactivity, it is preferable to react at a temperature of 70 ° C or higher, more preferably 80 ° C or higher.
  • the type of polymerization is bulk polymerization, solution weight However, bulk polymerization or solution polymerization is preferred in that it can be easily carried out for conversion to SH groups after polymerization.
  • the treating agent used for converting the polymer obtained by RAFT polymerization into a polymer having an SH group is not particularly limited, but a compound containing hydrogen and nitrogen bonds is high in terms of high efficiency of conversion to an SH group.
  • a compound selected from the group consisting of a base and a reducing agent is preferred.
  • the hydrogen-nitrogen bond-containing compound is not particularly limited.
  • ammonia, hydrazine, primary amine compound, secondary amine compound, amide compound, and amine hydrochloride examples thereof include compounds, hydrogen-nitrogen bond-containing polymers, and hindered amine light stabilizers (HALS).
  • primary amine compounds include 3-amino-1-propanol, arylamine, isopropylamine, monoethylamine, 2-ethylhexylamine, n-butylamine, and t-butylamine.
  • secondary amine compounds include diarylamine, diisopropylamine, jetylamine, diisobutylamine, di-2-ethylhexylamine, and bis (hydroxyethyl).
  • amide compounds include adip Acid dihydrazide, N isopropylacrylamide, carbohydrazide, guarthiourea, glycylglycine, oleic acid amide, stearic acid amide, adipic acid dihydrazide, formamide, methacrylamide, acetolide, acetoacetate lide, acetoacetate Examples include toluidoide, toluenesulfonamide, phthalimide, isocyanuric acid, succinimide, hydantoin, ferrazolidone, benzamide, acetoamide, acrylamide, propionic acid amide, 2, 2, 2-trifluoroacetamide and the like.
  • ammine hydrochloride-based compounds include: acetamidine hydrochloride, monomethylamine hydrochloride, dimethylamine hydrochloride, monoethylamine hydrochloride, jetylamine hydrochloride, monopropylamine hydrochloride Salt, dipropylamine hydrochloride, semicarbazide hydrochloride, guanidine hydrochloride, disteamine hydrochloride and the like.
  • hydrogen-nitrogen bond-containing compounds specific examples include trade names: Polyment (manufactured by Nippon Shokubai Co., Ltd.), polyethyleneimine, aminopolyacrylamide, nylon. 6, nylon 66, nylon 610, nylon 612, nylon 11, nylon 12, nylon MXD6, nylon 46, polyamideimide, polyallylamine, polyurethane, etc.
  • HALS hindered amine light stabilizer
  • ADK STAB LA-77 manufactured by Asahi Denki Kogyo Co., Ltd.
  • Chimassorb 944LD Cho
  • Product name: Tinuvin 144 manufactured by Chinoku 'specialty' chemicals
  • product name: ADK STAB LA-57 manufactured by Asahi Denki Kogyo Co., Ltd.
  • product name: ADK STAB LA—67 manufactured by Asahi Denki Kogyo Co., Ltd.
  • ADK STAB LA—68 Asahi Denka Kogyo Co., Ltd.
  • ADK STAB LA—87 Alahi Denki Kogyo Co., Ltd.
  • Goods name: Goodrite UV-3034 manufactured by Goodrich.
  • the base is not particularly limited, and specific examples thereof include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, and zinc hydroxide.
  • examples thereof include metal hydroxides; metal alkoxides such as sodium methoxide, sodium ethoxide, sodium phenoxide, magnesium methoxide; sodium carbonate, potassium carbonate, and the like.
  • the reducing agent is not particularly limited, and specifically, metal hydrogen such as sodium hydride, lithium hydride, calcium hydride, lithium aluminum hydride, sodium borohydride, and the like. C), LiBEt H, hydrogen, hydrogen-containing gas, etc.
  • treatment agents may be used alone or in combination of two or more.
  • a hydrogen-nitrogen bond-containing compound having a boiling point of 20 ° C. to 200 ° C. and a reducing agent are preferable because the reaction efficiency and handling are easy.
  • monomethylamine, monoethylamine, dimethylamine, jetylamine, monobutylamine, dibutylamine, and cyclohexylamine are more preferable in terms of availability and ease of recovery and removal.
  • the amount of the treatment agent used is not particularly limited.
  • a base When a base is used as the treating agent, 0.01 to 100 parts by weight is preferable with respect to 100 parts by weight of the polymer in terms of ease of handling and reactivity, and 0.05 to 50 parts by weight is more preferable. 0.1 to 30 parts by weight is particularly preferred.
  • the present invention is characterized in that nanophosphor particles having an average particle size of 0.1 nm to 100 nm are modified with a bull polymer having an SH group at the terminal and dispersed in the polymer.
  • the nanophosphor particles having a number average primary particle size of 0.1 nm to 100 nm used in the present invention include undoped semiconductor nanophosphor particles consisting of only a host crystal, and a doped type in which a luminescent ion is added to the host crystal.
  • the semiconductor nanophosphor particles can also be used preferably.
  • a nanoparticle containing a transition metal element corresponding to any of Groups 8 to 13 of the periodic table is capable of forming a coordination bond between the SH group of the polymer having an SH group at the end and the transition metal element. It is preferable because the surface modification reaction of nanophosphor particles progresses rapidly.
  • These undoped semiconductor nanophosphor particles that can only be used as a base crystal and have a light emission band in and around the visible region include GaN, GaP, GaAs, InN, InP and other periodic group 13 elements. And compounds of group 15 of the periodic table, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS, etc. Compound of In O , In S and the like. Among them, the controllability of the grain size of semiconductor crystals and the light emission ability are suitable.
  • compound semiconductors of Group 12 elements of the periodic table and Group 16 elements of the periodic table such as ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, etc., especially ZnO, Zn S ZnSe, CdS, CdSe, etc. are more preferably used for this purpose.
  • doped semiconductor nanophosphor particles in which luminescent ions are added to the host crystal, light of a desired wavelength can be emitted by appropriately selecting the host crystal and the luminescent ions according to the excitation wavelength. I like it because it is possible.
  • doped semiconductor nanophosphor particles include the following.
  • the peak wavelength at which the emission intensity is maximum is 380 ⁇ !
  • Examples of doped semiconductor nanophosphor particles of up to 500 nm include, for example, BaMgAl 2 O: Eug BaMg Al 2 O: Eu, M (PO 2) Cl: Eu
  • M is at least one element selected from among Sr, Ca, Ba, and Mg), M (PO
  • ZnS Ag ⁇ ZnS: Ag, Al, ZnS: Ag, Cl, (ZnCd) S: Ag, (ZnCd) S: Ag, A1, (ZnCd) S: Ag, CI, etc. .
  • the peak wavelength at which the emission intensity is maximum is 500 nn!
  • the doped semiconductor nanophosphor particles of ⁇ 600 nm for example, Sr 2 Si 2 O 2 SrCl: Eu, Ba MgSi 2 O: Eu, SrGa S: Eu,
  • M is at least one selected element of Al, Ga, In), ZnS: Cu ⁇ ZnS: Cu, Cl, ZnS: Cu, Al, ZnS: Cu, Ag ZnS: Cu, Au, Al, (ZnCd) S: Cu, (ZnCd) S: Cu, Cl, (ZnCd) S: Cu, Al, (ZnCd) S: Cu, Ag, (ZnC d) S: Cu , Au, Al and the like.
  • the peak wavelength at which the emission intensity is maximum is 600 nn!
  • Examples of doped semiconductor nanophosphor particles of up to 800 nm include Y O: Eu, Y O S: Eu, Y O S: Eu, Bi, YVO: Eu, YV
  • the emission peak wavelength of these nanophosphor particles is 380 ⁇ ! It is preferable to have a wavelength range of ⁇ 800 nm. By having this peak wavelength, it can be used as a visible light emitting element. A more preferable emission peak wavelength is 390 nm to 780 nm.
  • the light emitting device as a whole can obtain synthesized light having the emission peak wavelength of each nanophosphor particle, so that a light emitting element that emits white light is produced. It is also possible.
  • Each nanophosphor for obtaining white light As a wavelength range including the emission peak wavelength of each nanoparticle, 380 ⁇ ! It is sufficient to select from the three wavelength regions of ⁇ 500nm, 500nm ⁇ 600nm, 600nm ⁇ 800nm.
  • the nanophosphor particles are preferably particles that can emit light when irradiated with light in a wavelength range of 200 nm to 500 nm.
  • a white light emitting element can be obtained by a combination with a blue light emitting element or an ultraviolet light emitting element.
  • a more preferable wavelength range of the excitation light is 250 nm to 450 nm, and an even more preferable wavelength range of the excitation light is 300 ⁇ ! ⁇ 400 nm, the most preferable wavelength range of excitation light is 350 nm to 400 nm.
  • the nanophosphor particles used in the present invention are generally produced by synthesizing the precursor power of a semiconductor using a commonly used nanoparticle production method such as a gas phase method or a liquid phase method.
  • the production method of nanophosphor particles is not limited to these methods, and any known method can be used.
  • a method in which a raw material aqueous solution is present in reverse micelles of a non-polar organic solvent to grow crystals (reverse micelle method)
  • a method in which thermally decomposable raw materials are grown in a high-temperature liquid organic solvent hot soap method. It can be produced by spray drying method, spray pyrolysis method, CVD method, etc., and these methods are preferably used because the particle size of the nanoparticles obtained can be easily controlled.
  • the number average primary particle diameter of the nanophosphor particles used in the present invention in an unaggregated state is from 0. Inm to 100 nm.
  • the upper limit of the particle diameter is preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 15 nm or less. If the number-average primary particle size in the unaggregated state is larger than 10 Onm, it is difficult to expect improvement in luminous efficiency because it exhibits the same characteristics as a Balta state material. In addition, the excellent dispersibility from the viewpoint of nanophosphors
  • the preferred lower limit of the number average primary particle size in the unaggregated state of the particles is 0.2 nm, more preferably lnm.
  • the coefficient of variation (particle size distribution) of the number average primary particle diameter in the non-aggregated state of the nanophosphor particles is preferably 50% or less, and more preferably 30% or less. If the particle size distribution of the nano-phosphor particles is too wide, that is, if the coefficient of variation of the particle size exceeds 50%, the light emission efficiency may decrease or the light emission characteristics may vary widely from one light emitting device to another.
  • the number average primary particle size in the unaggregated state in the present invention is a particle size of at least 100 particles using a photograph taken with a transmission electron microscope or a scanning electron microscope. It is a number average particle diameter measured by a ruler and calculated by number average. However, if the particle photograph taken with an electron microscope is not circular, the circle diameter can be used when the area occupied by the particle is calculated and then replaced with a circle having the same area.
  • the shape of the nanophosphor particles that can be used in the present invention can be any shape without particular limitation. Specifically, three-dimensional shapes close to a sphere such as a sphere, rugby ball, soccer ball, and icosahedron, hexahedron, rod, needle, plate, scale, crushed, irregular shape, etc. Shape. Furthermore, it may be a porous particle having a large number of holes on the surface or inside which may have a cavity or a defect on the surface or inside of the particle. However, the nano-phosphor particles are easy to manufacture, easy to disperse in the resin, and easy to treat the particle surface. U, preferred to be cubic. Close to a sphere!
  • the cubic shape means (particle surface area) / (sphere surface area of the same volume as the particle) specific force, preferably less than 3 times, more preferably less than 2 times, especially 1.5 It is preferable that it is less than 2 times.
  • the nanophosphor particles used in the present invention may be used alone or in combination of two or more kinds of particles having different types or shapes. Sarasako may be used in combination of two or more types with different particle size distribution.
  • the nanophosphor particles used in the present invention are excellent because the dispersibility in the resin composition is remarkably improved by modifying the surface with a vinyl polymer having an SH group at the terminal. Thus, it is possible to easily obtain a resin composition for optical material having luminous efficiency.
  • Method for modifying surface of nanophosphor particle with vinyl polymer having SH group at terminal There is no particular limitation, and any method can be used. For example, when it is possible to dissolve a vinyl polymer having an SH group at the terminal in a solvent capable of dispersing nanophosphor particles, the nanophosphor particles are dispersed in a solvent and then the terminal By dissolving a vinyl polymer having SH groups in the same solvent and stirring, the SH group at the end of the bull polymer is bonded to the surface of the nanophosphor particles, and the nanophosphor particle surface is modified. Is possible.
  • the nanoparticle can be prepared by various operations as described below. It is possible to modify the surface.
  • a modifying agent that has a relatively weak coordinating ligand such as an amino group, a phosphine oxide group, or a phosphine group in the molecule and is soluble in a solvent in which nanophosphor particles are dispersed.
  • a ligand having a weak coordinating power is previously bonded to the surface of the nanophosphor particle. Therefore, the nanoparticles are isolated by an operation such as centrifugation, and dispersed again in a solvent in which a vinyl polymer having an SH group at a terminal can be dissolved, and the vinyl polymer having an SH group at the terminal is added to the solvent.
  • the coordination power is weak and the ligand can be replaced with an SH group. is there.
  • a weakly coordinating compound such as pyridine in a liquid phase containing a large excess (usually used as a solvent)
  • a vinyl polymer having an SH group at the terminal is added in the first step.
  • Ligand exchange by a two-step process which can be as powerful as possible, may be preferred.
  • nanophosphor particles are dispersed in a dispersible solvent in advance, and a beryl polymer having an SH group at the end is dissolved in a separately dissolvable solvent, and both solutions are mixed.
  • the surface of the nanophosphor particle can be modified.
  • the solvent in which the nanophosphor particles are dispersed is not compatible with the solvent in which the vinyl polymer is dissolved!
  • nanophosphor particles are extracted to the solvent side in which the bull polymer is dissolved as the surface modification of the nanophosphor particles progresses, so it is easy to check whether the modification is complete. I like it.
  • a phase transfer catalyst such as tetraalkyl ammonium salt or tetraalkylphosphonium salt in some cases.
  • an SH group is added at the end to the reaction liquid phase. It is also effective to add a vinyl polymer having the same. According to this method, the modification of the surface of the nanophosphor particle can be completed simultaneously with the synthesis of the nanophosphor particle, and the effect of preventing the nanophosphor particles from aggregating with each other during the synthesis of the nanophosphor particle. Therefore, it is preferable as a modification method.
  • the modification reaction can be completed more efficiently by stirring uniformly.
  • the surface can be uniformly modified while preventing aggregation by irradiating ultrasonic waves.
  • irradiation with microwaves can locally impart energy to the particles, which may significantly improve the efficiency of surface modification.
  • the weight ratio between the vinyl polymer having an SH group at the terminal and the nanophosphor particle is determined by the purpose of use, the composition and molecular weight of the vinyl polymer, the specific gravity of the nanophosphor particle, It depends on the particle size and surface area, the surface state of the nanophosphor particles, and the like. That is, when the molecular weight of the vinyl polymer is relatively large, the number of SH groups in the vinyl polymer is small V. Therefore, in order to modify the entire particle surface, a relatively large amount of the bull polymer is used. In contrast, when the molecular weight of the vinyl polymer is relatively small, the number of SH groups in the bull polymer is large, so the amount of vinyl polymer added is small. It may be good.
  • the particle size of the nanophosphor particle is relatively small, the number of nanophosphor particles is increased and the surface area ratio is increased. Therefore, a relatively large amount of vinyl-based weight is necessary to modify the entire particle surface. While it is necessary to use a coalescence, the addition amount of the vinyl polymer may be small if the particle diameter of the nanophosphor particle is relatively large.
  • the number of atoms present on the surface of the particle among the atoms constituting the nanophosphor particle And the number of SH groups in the bull polymer may be calculated and used so that they are close to each other. That is, if the ratio of the atoms present on the particle surface among the atoms constituting the nanophosphor particle is high, such as the particle size of the nanophosphor particle is small, the particle surface is uneven, or the particle is porous, etc. As is apparent, the dispersibility tends to be better when more vinyl polymers having SH groups at the ends are used.
  • thermosetting resin a method of mixing and dispersing the polymer-modified nanophosphor particles in a thermosetting resin.
  • thermosetting resin any known mixing method with no particular limitation can be used.
  • polymer-modified nanophosphor particles are dispersed in a solvent that can dissolve the resin, and the monomer or oligomer of the thermosetting resin and the curing agent are simultaneously dissolved in the solvent to be uniform.
  • a resin composition in which nanophosphor particles are dispersed in a thermosetting resin can be easily obtained by a method such as evaporation and curing of the solvent, and other generally known methods. I can do things.
  • the solution of the nanophosphor particles can be stirred with various known devices for the purpose of improving the dispersibility of the nanophosphor particles or preventing the aggregation of the nanophosphor particles. This is preferable because a resin composition in which particles are well dispersed can be obtained.
  • Stirring methods include a method of rotating a rotating device such as a stir bar and a stirring rod in a solvent, a method of stirring using a medium such as beads, a method of stirring by irradiating with ultrasonic waves, a high speed rotation, etc.
  • Examples of the method include stirring by applying a high shear force, but are not limited thereto.
  • thermosetting resin used when the polymer-modified nanophosphor particles are used as a light-emitting device is not particularly limited, and one kind of various thermosetting resins known as necessary may be used. Alternatively, two or more types can be selected and used in any combination.
  • thermosetting resins include, but are not limited to, epoxy resins, silicone resins, cyanate resins, phenol resins, polyimide resins, polyurethane resins, and modified resins thereof. It is not something. Among these, from the viewpoint of high transparency and excellent practical properties such as adhesiveness, a transparent epoxy resin, a silicone-based thermosetting resin containing a key molecule in the molecule, and a transparent polyimide resin are preferable.
  • Examples of the transparent epoxy resin include bisphenol A diglycidyl ether, 2, 2,
  • the transparent polyimide resin include a fluorine-containing polyimi
  • thermosetting resins described above a silicon-based thermosetting resin is preferable because it is excellent in weather resistance, light transmittance, heat resistance, and the like.
  • silicone-based thermosetting resins include silicone resins, modified silicone resins, epoxy group-containing silicone resins, and curable resins made of caged silsesquioxane having reactive functional groups. Is mentioned.
  • thermosetting resins (A) an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule, (B) in one molecule It is more preferable to use a silicone-based thermosetting resin comprising a silicon compound containing at least two SiH groups, and (C) a hydrosilylation catalyst.
  • the component (A) is not particularly limited as long as it is an organic compound containing at least two carbon-carbon double bonds having reactivity with the SiH group in one molecule.
  • the organic compound include polysiloxane-organic block copolymer and polysiloxane-organic graft copolymer.
  • a compound containing no element other than C, H, N, 0, S and halogen is more preferable.
  • a compound containing a siloxane unit there are problems such as reactivity.
  • the bonding position of the carbon-carbon double bond having reactivity with the SiH group is not particularly limited, and may be present anywhere in the molecule.
  • Component (A) may be used alone or in combination of two or more.
  • the compound of component (A) can be classified into an organic polymer compound and an organic monomer compound.
  • the organic polymer-based compound is not particularly limited.
  • polyether-based, polyester-based, polyarylate-based, polycarbonate-based, saturated hydrocarbon-based, unsaturated carbon examples thereof include hydrogen fluoride-based, polyacrylic acid ester-based, polyamide-based, phenol-formaldehyde-based (phenolic resin), and polyimide-based compounds.
  • the organic monomer-based compound is not particularly limited, but examples thereof include a phenol-based, bis-phenol-based, aromatic hydrocarbon-based such as benzene, naphthalene, etc .; linear, cyclic, etc. aliphatic hydrocarbon-based; complex Ring system compounds; and mixtures thereof.
  • the carbon-carbon double bond reactive with the SiH group of component (A) is not particularly limited, but the following general formula (4)
  • R 1 is a hydrogen atom! / Represents a methyl group
  • R 1 is a hydrogen atom! / Represents a methyl group
  • a group in which R 1 is a hydrogen atom is particularly preferable because of easy availability of raw materials.
  • the carbon-carbon double bond having reactivity with the SiH group of component (A) includes the following general formula (5)
  • R represents a hydrogen atom or a methyl group.
  • Two R 2 may be the same or different.
  • the carbon-carbon double bond having reactivity with the SiH group may be directly bonded to the skeleton of the component (A) or may be covalently bonded via a divalent or higher substituent.
  • the divalent or higher valent substituent is not particularly limited, but is preferably a substituent that does not contain any element other than C, H, N, 0, S, and neurogen as a constituent element that is preferably a substituent having 0 to 10 carbon atoms. Groups are more preferred.
  • Examples of the group covalently bonded to the skeleton of the component (A) include a vinyl group, an aryl group, a methallyl group, an acrylic group, a methacryl group, a 2-hydroxy-1- (aryloxy) propyl group, and a 2-arylphenol.
  • the organic compound of component (A) includes a skeleton portion and a group having a carbon-carbon double bond.
  • Low molecular weight compounds that are difficult to express separately can also be used.
  • Specific examples of the low molecular weight compound include aliphatic chain polyene compound systems such as butadiene, isoprene, octacene and decadiene, cyclopentagen, cyclooctagen, dicyclopentagen, tricyclopentagen and norbornagen. Examples thereof include aliphatic cyclic polyphenylene compound systems, and substituted aliphatic cyclic olefinic compound systems such as vinyl cyclopentene and burcyclohexene.
  • carbon double bonds that are reactive with SiH groups are contained in an amount of not less than 0.001 mol per lg of component (A). Those containing 0.05 mol or more are more preferred, and those containing 0.008 mol or more are more preferred.
  • the strength of the component (A) is that the aromatic ring component weight ratio is 50% by weight or less. More preferred is 40% by weight or less, and more preferred is 30% by weight or less. Most preferred U is one that does not contain an aromatic hydrocarbon ring.
  • the number of carbon-carbon double bonds reactive with the SiH group of component (A) may be at least two per molecule, but from the viewpoint of further improving heat resistance, two carbon-carbon double bonds may be used. It is more preferable to have 3 or more, and 4 or more is particularly preferable. However, if component (A) is a mixture of various compounds and the number of carbon-carbon double bonds of each compound cannot be identified, the average number of carbon-carbon double bonds per molecule for the entire mixture And that is the number of carbon-carbon double bonds in component (A). If the number of carbon-carbon double bonds that are reactive with the SiH group of component (A) is 1 or less per molecule, only a graft structure is formed even if it reacts with component (B). Don't be.
  • the component (A) preferably has fluidity at a temperature of 100 ° C or lower in order to obtain uniform mixing with other components and good workability.
  • the component (A) may be linear or branched.
  • the molecular weight of component (A) is not particularly limited, but any of 50 to LOOO can be preferably used.
  • the component (A) preferably has a molecular weight of less than 900, more preferably less than 700, and even more preferably less than 500.
  • component (A) from the viewpoint of availability and reactivity, bisphenol A diallyl ether, 2,2'-diallylbisphenol A, novolak phenol aryl ether, diallyl phthalate, burcyclohexene, dibi- Norebenzene, di-bibiphenol, trilinoleisocyanurate, diaryl ether of 2, 2 bis (4 hydroxycyclohexyl) propane, 1, 2, 4 Trivinylcyclohexane is preferred heat resistance 'Triallyl isocyanurate from the point of light resistance Is particularly preferred!
  • the component (B) is not particularly limited as long as it is a compound containing at least two SiH groups in one molecule.
  • a compound described in International Publication W096Z15194, Those having at least two SiH groups in one molecule can be used.
  • R 3 represents an organic group having 1 to 6 carbon atoms, and n represents a number of 3 to 10], and has at least two SiH groups in one molecule. Cyclic polyorganosiloxane is more preferred.
  • the substituent R 3 in the compound represented by the general formula (6) includes an element other than C, H, and O, preferably a substituent, and more preferably a hydrocarbon group.
  • Component (B) is selected from a chain-like and Z- or cyclic polyorganosiloxane having at least two SiH groups in one molecule, and an organic compound having a carbon-carbon double bond having reactivity with SiH groups.
  • a reaction product with one or more kinds of compounds (hereinafter referred to as component (E)) is also preferred.
  • component (E) a reaction product with one or more kinds of compounds
  • a product obtained by removing unreacted siloxanes from the reactant by devolatilization or the like can be used.
  • the component (E) contains at least one carbon-carbon double bond reactive with the SiH group in one molecule.
  • An organic compound containing the same component as the component (A) can be used.
  • the component (E) include triallyl isocyanurate, novolak phenol aryl ether, bisphenol A Diaryl ether, 2,2'-diarylbisphenol A, diallyl phthalate, bis (2-aryloxetyl) ester of phthalic acid, styrene, ⁇ -methylstyrene, aryl-terminated polypropylene oxide, polyethylene oxide, etc. Is mentioned.
  • the organic compound ( ⁇ ) may be used alone or in combination of two or more.
  • the component (ii) may be used alone or in combination of two or more.
  • the component includes a reaction product of 1, 3, 5, 7-tetramethylcyclotetrasiloxane and butylcyclohexene, 1, 3, 5, 7— Reaction of tetramethylcyclotetrasiloxane and dicyclopentagen, reaction of 1, 3, 5, 7-tetramethylcyclotetrasiloxane and triallyl isocyanurate, 1, 3, 5, 7-tetramethylcyclo Reaction of tetrasiloxane and 2,2 bis (4-hydroxycyclohexyl) propane diallyl ether, reaction of 1, 3, 5, 7-tetramethylcyclotetrasiloxane and 1, 2, 4-tributylcyclohexane Is mentioned.
  • Particularly preferred ( ⁇ ) components include a reaction product of 1,3,5,7-tetramethylcyclotetrasiloxane and triallyl isocyanurate, 1,3,5,7-tetramethylcyclotetrasiloxane and 2,2 bis.
  • Examples include a reaction product of (4-hydroxycyclohexyl) propane diallyl ether, a reaction product of 1,3,5,7-tetramethylcyclotetrasiloxane and 1,2,4 trivinylcyclohexane.
  • the mixing ratio of component ( ⁇ ) and component ( ⁇ ) is not particularly limited as long as the required strength is not lost!
  • the specific force of the total number of SiH groups in the component ( ⁇ ) ( ⁇ ) to the total number of carbon-carbon double bonds (X) in the component ( ⁇ ) is 2.0 ⁇ Y / X ⁇ 0.9. 1. 8 ⁇ / ⁇ 1.0 is more preferred. If ⁇ / ⁇ > 2.0, sufficient curability may not be obtained and sufficient strength may not be obtained. If Y / X ⁇ 0.9, the carbon-carbon double bond will be excessive and colored. Can be a cause of
  • the hydrosilylation catalyst as component (C) has a catalytic activity for the hydrosilylation reaction.
  • a simple substance of platinum e.g., a simple substance of platinum, a support of solid platinum on a support such as alumina, silica, or carbon black, a complex of chloroplatinic acid, chloroplatinic acid and alcohol, aldehyde, ketone, or the like.
  • hydrosilylation catalysts other than platinum compounds examples include RhCl (PPh), RhCl, RhAl
  • chloroplatinic acid platinum 1-year-old refin complex
  • platinum-bulusiloxane complex platinum-bulusiloxane complex and the like are preferred from the viewpoint of catalytic activity.
  • the hydrosilylation catalyst may be used alone or in combination of two or more.
  • the addition amount of the hydrosilylation catalyst is not particularly limited, but in order to have sufficient curability and keep the cost of the composition for optical materials relatively low, the preferred lower limit of the addition amount is (B) 10 to 8 mol, more preferably 10 to 6 mol, per mol of SiH group in the component, and the upper limit of the preferred amount of added calorie is 10 to 1 mol per mol of SiH group of component (B). preferably 10-2 mole.
  • the lower limit of the content of the nanophosphor particles in 100% by weight of the composition is preferably 0.0001% by weight, more preferably 0.8%. 001% by weight, more preferably 0.01% by weight, and most preferably 0.1% by weight.
  • the upper limit of the blending amount is preferably 95% by weight, more preferably 70% by weight, further preferably 50% by weight, and most preferably 20% by weight. If the content of the nanophosphor particles is less than 0.0001% by weight, there is a tendency that sufficient light emission intensity cannot be obtained. When the content is more than 95% by weight, it tends to be difficult to disperse the nanophosphor particles in the composition.
  • An inorganic filler may be added to the composition for optical materials of the present invention as necessary.
  • the addition of an organic filler is effective in preventing fluidity of the composition and increasing the strength of the material.
  • an inorganic filler alumina, hydroxyaluminum, fused silica, crystalline silica, ultrafine powder amorphous silica, hydrophobic ultrafine silica, talc, sulfuric acid, which do not degrade optical properties and are preferred to be fine particles, are preferred. Barium etc. can be mentioned. Among them, it is preferable to use nanoparticles having a particle size of 0.1 nm to 100 nm because of excellent light transmittance. A more preferred particle size range is 1 nm to 50 nm, most preferred! /, And a particle size range is 2 nm to 20 nm.
  • Examples of the method for adding the filler include hydrolyzable silane monomers or oligomers such as alkoxysilanes, acyloxysilanes, and halogenosilanes, and metal alkoxides, acyloxides, halides such as titanium and aluminum. Can be added to the composition of the present invention and reacted in the composition or a partial reaction product of the composition to form an inorganic filler in the composition.
  • additives may be added to the resin composition for optical material of the present invention.
  • additives include colorants such as bluing agents that absorb a specific wavelength, acid titanium such as acid titanium, acid aluminum, silica, and quartz glass for diffusing light, and talc.
  • Various inorganic or organic diffusion materials such as calcium carbonate, melamine resin, CTU guanamine resin, benzoguanamine resin, glass, metal oxides such as aluminosilicate, metal nitride such as aluminum nitride, boron nitride, etc.
  • the thermal conductivity of the filler can be mentioned.
  • Additives for improving optical material characteristics may be contained uniformly, or may be contained with a gradient in content.
  • the reaction can be carried out by simply mixing, or the reaction can be carried out by heating. If the reaction is fast and generally easy to obtain a material with high heat resistance, V, the method of reacting by heating the viewpoint power is preferred.
  • the reaction temperature can be variously set. For example, a temperature of 30 to 300 ° C can be applied, and 80 to 250 ° C is more preferable, and 100 to 200 ° C is more preferable. If the reaction temperature is low, the reaction time for sufficient reaction will be long, and if the reaction temperature is high, molding will tend to be difficult. [0124]
  • the reaction may be carried out at a constant temperature, but the temperature may be changed in multiple steps or continuously as required. It is preferable that the reaction is carried out while increasing the temperature in a multistage or continuous manner rather than at a constant temperature, so that a uniform cured product can be obtained without distortion.
  • reaction times can be set, it is easier to obtain a uniform cured product without distortion by reacting at a relatively low temperature for a longer time than at a high temperature for a short time. I like it.
  • the pressure during the reaction can be variously set as required, and the reaction can be carried out under normal pressure, high pressure, or reduced pressure. In terms of easy removal of volatile matter generated by hydrolysis condensation, the reaction is preferably carried out under reduced pressure.
  • the shape of the optical material obtained by curing can be variously selected depending on the application, and is not particularly limited.
  • it may be a film, sheet, tube, rod, film, or butter shape. It can be a shape.
  • Various molding methods can be employed including a conventional thermosetting resin molding method.
  • a molding method such as a casting method, a pressing method, a casting method, a transfer molding method, a coating method, or a RIM method can be applied.
  • polishing glass, hard stainless steel polishing plate, polycarbonate plate, polyethylene terephthalate plate, polymethyl methacrylate plate and the like can be applied.
  • polyethylene terephthalate film, polycarbonate film, polychlorinated bure film, polyethylene film, polytetrafluoroethylene film, polypropylene film, polyimide film, etc. may be applied to improve the releasability from the mold. it can.
  • Various treatments may be performed as necessary during molding. For example, a treatment for defoaming the composition or a partially reacted composition by centrifugation, decompression, etc., or a treatment for releasing pressure during pressing can be applied to suppress voids generated during molding. .
  • Various light emitting devices such as light emitting diodes can be produced using the resin composition for optical elements of the present invention.
  • the light emitting device in this case can be manufactured by a method of coating the light emitting element with the resin composition for an optical element of the present invention. It is not limited to the law.
  • the light-emitting element is not particularly limited, and a light-emitting element that can be used for a light-emitting device can be used. For example, it can be produced by laminating a semiconductor material on a substrate provided with a buffer layer of GaN, A1N or the like, if necessary, by various methods such as MOCVD, HDVPE, and liquid phase growth.
  • the substrate is not particularly limited, and examples thereof include sapphire, spinel, SiC, Si, ZnO, and GaN single crystal. Of these, sapphire is preferable because GaN having good crystallinity can be easily formed and the industrial power is high.
  • the semiconductor material to be laminated is not particularly limited, and examples thereof include GaAs, GaP, GaAlAs, GaAsP, AlGaInP, GaN, InN, A1N, InGaN, InGaAIN, and SiC. Of these, nitride-based compound semiconductors (inxGayAlzN) are preferred because of their high level of brightness.
  • the semiconductor material may contain an activator or the like!
  • the structure of the light-emitting element is not particularly limited, and examples thereof include a MIS junction, a pn junction, a homojunction having a PIN junction, a heterojunction, and a double heterostructure. It can also be a single or multiple quantum well structure.
  • the light-emitting element may or may not be provided with a passivation layer.
  • An electrode can be formed on the light emitting element by a conventionally known method.
  • the electrode on the light-emitting element can be electrically connected to the lead terminal or the like by various methods.
  • the electrical connection member is not particularly limited, but preferably has good ohmic mechanical connectivity with the electrode of the light emitting element, for example, bonding using gold, silver, copper, platinum, aluminum, or an alloy thereof.
  • a wire etc. are mentioned. It is also possible to use a conductive adhesive filled with a resin filler such as silver or carbon. Of these, aluminum wire or gold wire is preferred from the viewpoint of good workability.
  • Measurement of the number average primary particle size of nanophosphor particles in an unaggregated state Ultrasonic dispersion of an appropriate amount of nanophosphor particles in a dispersible solvent and then fixation on a mesh with a collodion film attached And observed with a transmission electron microscope (TEM). Use an electron micrograph to measure the particle size of 100 or more nanophosphor particles using a ruler with a scale. The number average primary particle diameter was measured by measuring.
  • TEM transmission electron microscope
  • Measurement of dispersion state of nano-phosphor particles in rosin composition Ultrafine for TEM observation using ultramicrotome (Leica Ultracut UCT) from rosin composition obtained by the method shown in Examples After preparing a thin section, the dispersion state of the nanoparticles was photographed at a plurality of locations at a magnification of 100,000 to 400,000 using a transmission electron microscope (TEM) (JEOL JEM—1200 EX). Using multiple TEM photographs obtained, the number of independent particles that can be confirmed in the field of view is counted in the range of 100 m 2 or more, and the number of particles that exist independently of the total number of particles is counted. The percentage was calculated.
  • TEM transmission electron microscope
  • test piece having a size of X 2 mm was formed.
  • the total light transmittance was measured based on ASTM D1003 under the conditions of a temperature of 23 ° C ⁇ 2 ° C and a humidity of 50% ⁇ 5% with a turbidimeter 300A manufactured by Nippon Denshoku Industries Co., Ltd.
  • Undoped nanophosphor particles l (CdSe nanoparticles 1): synthesized according to Non-Patent Document 8.
  • the number average primary particle size of CdSe particles by TEM observation was 5 nm.
  • the shape was a spherical particle.
  • excitation light having a wavelength of 365 nm by a fluorometer
  • light was emitted with a peak wavelength of 595 nm and a half-value width of 40 nm.
  • CdSe nanoparticle 2 M. Kawa et al., J. Nano part. Res., 5 ⁇ , 81 (2003).
  • TEM observation The number average primary particle size of these CdSe particles was 4 nm. The shape was a true spherical particle. Fluorometer When a toluene solution was irradiated with excitation light having a wavelength of 365 nm, light was emitted with a peak wavelength of 555 nm and a half-value width of 47 nm.
  • Undoped nanophosphor particle 3 (CdSe nanoparticle 3): synthesized according to Non-Patent Document 8.
  • the number average primary particle size of CdSe particles by TEM observation was about 3 nm, and the shape was a true spherical particle.
  • the toluene solution was irradiated with excitation light having a wavelength of 365 nm by a fluorometer, the light emitted at a peak wavelength of 519 nm and a half-value width of 48 nm.
  • Non-doped nanophosphor particles 4 (CdSe core ZZnS shell composite nanoparticles): Manufactured according to Production Example 1 below.
  • trioctylphosphine oxide In a brown glass flask filled with dry argon gas, put 15 g of trioctylphosphine oxide, and melt it at 130-150 ° C for about 2 hours while repeating vacuuming and injecting dry argon gas. Stir and dry the trioctylphosphine oxide. After cooling this to 100 ° C., a solution prepared by dissolving 0.094 g of CdSe nanoparticle solid powder in 1.5 g of trioctylphosphine was added to obtain a CdSe nanoparticle solution. This was stirred at 100 ° C. under reduced pressure for 60 minutes, the temperature was set to 180 ° C., and the pressure was returned to atmospheric pressure with dry argon gas.
  • a raw material solution prepared by dissolving 1.34 mL of 1N n-hexane solution of jetyl zinc and 0.239 g of bis (trimethylsilyl) sulfide in 9 mL of trioctylphosphine was shielded from light.
  • This raw material solution was dropped into the CdSe solution with a syringe over 20 minutes, and the temperature was lowered to 90 ° C. and stirring was continued for 60 minutes. After standing at room temperature for about 24 hours, the mixture was again heated and stirred at 90 ° C for 3 hours.
  • the particle size by TEM observation is about 3 ⁇ !
  • the number average primary particle size was 4.5 nm and the shape was a true spherical particle. This When the body powder was dispersed in toluene, it became a homogeneous solution, and when irradiated with excitation light having a wavelength of 468 nm, light was emitted with a peak wavelength of 555 nm and a half-value width of 96 nm.
  • the number average primary particle size of the 2 3 particles was about 40 nm and the shape was almost spherical.
  • excitation light with a wavelength of 365 nm with a fluorimeter it emits light with a peak wavelength of 611 nm and a half-value width of 20 ⁇ m.
  • Doped nanophosphor particles 6 (LaPO: Ce, Tb nanoparticles): B. Xia et al., Adv.
  • the number average primary particle size of the 4 particles was about 23 nm and the shape was almost spherical.
  • the peak wavelength is 543nm and the half-value width is 21 ⁇ m.
  • Doped nanophosphor particles 7 BaMgAl 2 O: Eu, Mn nanoparticles: B. Xia et al.,
  • the obtained polymer was dissolved in 220 mL of toluene, 45.5 g of n-butylamine was added, stirred at room temperature for 30 hours, and then poured into 2 L of methanol to precipitate the polymer. Furthermore, it was washed with methanol and dried to obtain 74. lg of polymethyl methacrylate having an SH group at one end.
  • the sulfur content measured by the oxygen flame combustion method was 0.25% by weight before the addition of the amine and 0.14% by weight after the amine treatment.
  • the total light transmittance was 93% of a polymer that transmitted visible light.
  • Poly-n-butyl acrylate having an SH group at one end was obtained in substantially the same manner as in Production Example 8 except that n-butyl acrylate was used instead of methyl methacrylate as the monomer.
  • a partially cured product of a silicone-based thermosetting resin was produced according to Production Example 4.
  • the obtained surface-modified nanoparticles were dispersed in 5.5 L of toluene, and after adding 400 g of terminal SH group-containing polymethyl methacrylate obtained in Production Example 2, the temperature was adjusted to 20 ° C. in a water bath. While stirring, an ultrasonic wave of 80W38kHz was irradiated through the temperature-controlled water in the water tank. A toluene solution of CdSe nanophosphor particles whose surface was modified with a polymer was obtained by allowing the mixture to stand for 24 hours after stirring and ultrasonic irradiation.
  • Undoped nanophosphor particles Dispersed undoped nanophosphor particles in the same manner as in Example 1 except that the undoped nanophosphor particles 4 obtained in Production Example 1 were used instead of the three types.
  • a PMMA resin film was obtained. The appearance of the obtained film was uniform and transparent, and the average thickness was 60 m. When the obtained resin film was irradiated with excitation light having a wavelength of 468 nm, light was emitted almost white.
  • Example 3 9.9 g of triallyl isocyanurate, 70 mg of a platinum butylsiloxane complex in xylene solution (containing 3 wt% as platinum), 13.9 g of the partial reaction product A obtained in Production Example 4, and 1% obtained in Example 1
  • a pulverized product of a fat film 1.2 g (containing 5 wt%) and 70 mg of 1-etul-1-cyclohexanol were stirred and degassed at 23 ° C.
  • the terminal SH group-containing poly (n-butyl acrylate) obtained in Production Example 3 was used as the bull polymer having an SH group at the terminal.
  • an n-butyl acrylate resin film in which undoped nanophosphor particles were dispersed was obtained.
  • the appearance of the obtained film was uniformly transparent, and the average thickness was 60 m.
  • the obtained resin film was irradiated with excitation light having a wavelength of 365 nm, it emitted white light.
  • a colorless and transparent sheet-like cured product was obtained in the same manner as in Example 3, except that the pulverized product of the mortar film obtained in Example 4 was used instead of the mortar film obtained in Example 1.
  • the obtained sheet was irradiated with excitation light having a wavelength of 365 nm, it emitted white light.
  • Undoped nanophosphor particles instead of 3 types, doped nanophosphor particles 5 2. Og, doped nanophosphor particles 6 2. Og, doped nanophosphor particles 7 Og, total 6.
  • a PMMA resin film in which doped nanophosphor particles were dispersed was obtained in the same manner as in Example 1 except that Og was used. The appearance of the obtained film was uniform and transparent, and the average thickness was 60 m. When the obtained resin film was irradiated with 365 nm wavelength excitation light, it emitted white light
  • Example 6 The powder of the resin film obtained in Example 6 instead of the resin film obtained in Example 1 A colorless and transparent sheet-like cured product was obtained in the same manner as in Example 3 except that 1.2 g of crushed material was used. When the obtained sheet was irradiated with excitation light having a wavelength of 365 nm, it emitted white light.
  • the sheet-like cured product prepared in Example 7 is cut into an appropriate shape and fixed to a light transmitting window provided on a can-type metal cap.
  • a double heterostructure light-emitting device formed on a sapphire substrate by MOCVD (metal organic vapor phase epitaxy) method, with an InGaN active layer doped with Si and Zn sandwiched between n-type and p-type AlGaN cladding layers Prepare.
  • this light-emitting element is placed on a can-type metal stem, and then p-electrode and n-electrode are wire-bonded to each lead with Au wire. This is hermetically sealed with the above-described metal cap for can type. In this way, a can-type light emitting diode could be produced.
  • the appearance of the obtained resin film was such that the particles were agglomerated so that the agglomerated portion of the particles could be visually confirmed, and had a non-uniform appearance, and the average thickness was 60 m. Even when the obtained resin film was irradiated with excitation light having a wavelength of 365 nm with a fluorometer, no clear emission peak was observed.
  • Figure 2 shows the TEM observation results of the obtained resin film.
  • Example 6 instead of the three types of doped nanophosphor particles used in Example 6, three types of commercially available blue butterfly phosphor, green butterfly phosphor, and red butterfly phosphor (all manufactured by Kasei Optonitas Co., Ltd.)
  • a PMMA resin film in which Balta phosphor particles were dispersed was obtained in the same manner as in Example 6 except that 2. Og of each was added.
  • the obtained resin film was irradiated with excitation light having a wavelength of 365 nm with a fluorimeter, white light was emitted as in Example 6, but when the excitation light was continuously irradiated, the temperature gradually increased due to heat generation, After continuous irradiation for 1 hour, the resin began to dissolve due to heat generation.
  • composition of the present invention By using the composition of the present invention, it is possible to exhibit excellent luminous efficiency by dispersing nanophosphor particles much smaller than the conventional Balta phosphor without aggregation in the polymer.
  • the rosin composition for optical materials can be obtained.
  • a light emitting device using this composition can greatly improve the light emission efficiency as compared with the conventional one, so that it can be expected to be widely used as a future lighting material and is very useful industrially.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

 従来のバルク蛍光体よりもはるかに小さなナノ蛍光体粒子を、重合体中に凝集することなく分散させることにより、すぐれた発光効率を示しうる、光学材料用樹脂組成物を得ることである。さらには、該光学材料用樹脂組成物を用いた発光装置を得ることである。数平均一次粒子径が0.1nm~100nmのナノ蛍光体粒子の表面を、末端にSH基を有するビニル系重合体で修飾し、重合体中に分散させることを特徴とする、光学材料用樹脂組成物により達成される。                                                                               

Description

明 細 書
光学材料用樹脂組成物
技術分野
[0001] 本発明は、従来のバルタ蛍光体よりもはるかに小さなナノ蛍光体粒子を、重合体中 に凝集することなく分散させることにより、すぐれた発光効率を示す光学材料用榭脂 組成物に関する。
背景技術
[0002] 粒子径力^〜 lOOnmのナノ粒子は、通常の機械的な粉砕等によって製造される粒 子径がサブマイクロメートル以上の粒子と比較して、さまざまな機械的、光学的、磁気 的性質を有して 、ること、化学的反応性に際立った差異が見られること等力 注目さ れている。粒子径が小さくなるに従って物質のバルタ状態には見られない現象として は、例えば、閉じ込め効果によるキャリアー運動エネルギーの増力!]、外部誘電効果、 バンドギャップの増大、電子親和エネルギーの減少、イオン化ポテンシャルの増加、 キャリア一再結合効率の向上等が挙げられる。これらの特異な物性は、 EL素子や光 導電素子、ピエゾ素子等のさまざまな機能材料に応用されうる。
[0003] ナノ粒子の特性を生かすためには通常、ナノ粒子が凝集'凝結せずに媒体中に分 散されていることが望まれる。しかしながら、ナノ粒子は表面エネルギーが著しく大き いため、粒子同士の凝集や、凝集した粒子同士の結合が生じて大きな粒子となりや すいうえ、一旦凝集 '凝結が起こり粒子径が増大してしまうと、再分散させることが極 めて困難になる。さらに無機ナノ粒子の場合、粒子表面は極性が大きいため、極性 の低い有機溶媒やポリマー等の有機媒体中へ分散させて用いることも困難である。 なかでもポリマー等の重合体中にナノ粒子を凝集しないよう分散させることは、通常 ポリマーとナノ粒子との極性が著しく異なる上、ポリマーの溶液や溶融状態の粘度が 高いため機械的な分散力を与えるのも容易ではないこと等から、一般的には非常に 困難である。それゆえポリマーとナノ粒子との複合材料は、工業的に広く普及するま でには至って!/、な!/、のが現状である。
[0004] 一方で、有機チオール化合物が金属表面と容易に結合する特徴を利用し、分子内 にチオール基を有する化合物を用いたナノ粒子表面の有機修飾方法も種々検討さ れており、例えば、特許文献 1、非特許文献 1に示されるように、有機溶媒中で均一 分散が可能なナノ粒子を得ることも可能である。このような方法を用いれば有機溶媒 中で安定的に分散可能なナノ粒子を得ることができるものの、同様の手法を用いてポ リマー等の重合体中にナノ粒子を分散させようとしても、表面修飾剤と重合体との極 性や粘度に差があるため、容易ではなかった。
[0005] このような問題を解決するため、例えば非特許文献 2では、ァ-オン重合により分子 量と末端基とが制御されたポリマーをまず重合し、この末端基をプロピレンスルフイド にー且置換した上で、末端にメルカプト基を有するポリマーを得、このポリマーで金 属ナノ粒子の表面を修飾することにより、ポリマー中への金属ナノ粒子分散を実現し ている。この方法は、予め重合されたポリマーと、予め合成されたナノ粒子とを、単純 に混合するだけでナノ粒子が分散した組成物を得られる点で非常に興味深 ヽ。しか しながら、このような方法で重合可能な重合体の種類は限定されるうえ、ナノ粒子修 飾用重合体を得るまでには何段階もの末端置換反応を経る必要があるため、汎用的 に工業ィ匕可能な規模で適用できる技術ではな 、。
[0006] 一方で近年、窒化ガリウム系化合物半導体(例えば、 GaN、 InGaN、 AlGaN、 InG aAlNなど)を用いた発光素子として、青色光を放射する青色 LEDチップや紫外光を 放射する紫外 LEDチップが開発された。これらの LEDチップカゝら放射される光は半 値幅の狭い単一波長の発光ピークを有するという特徴がある。一方、これらの LEDチ ップは、表示用途や照明用途などへの応用が期待されているが、表示用途や照明用 途では白色光が必要とされる場合が多い。そこで、青色光あるいは紫外光を放射す る LEDチップと、この LEDチップ力 放射された光の一部を励起源として発光する種 々の蛍光体粉末とを組み合わせることにより、白色を含め LEDチップの発光色とは 異なる色合 、の光を出す発光装置の研究 ·開発が各所で行われて 、る。この種の発 光装置は、小型、軽量、省電力といった長所があり、現在、表示用光源、小型電球の 代替光源、液晶パネル用光源などとして広く用いられて 、る。
[0007] 上述のような LEDチップと蛍光体粉末とを組み合わせた方式の発光装置は、例え ば特許文献 2、 3、 4等に開示されている。これら各公報に開示された発光装置は、 L EDチップの封止部やモールド部として用いる透光性榭脂(例えば、エポキシ榭脂) 中に、 LEDチップ力 放射された光により励起されて発光する蛍光体粉末を分散し ている点に共通の特徴がある。このような発光装置では、 LEDチップ力も放射された 光の一部が透光性榭脂をそのまま透過して外部へ放射されるとともに、 LEDチップ 力 放射された光の他の一部により透光性榭脂中の蛍光体粉末が励起され波長変 換された光も外部へ放射される。したがって、 LEDチップカゝら放射される光と蛍光体 粉末から放射される光との合成光として、例えば白色光を得ることができる。すなわち 、 LEDチップが青色 LEDチップの場合には、この LEDチップからの青色光を励起光 として黄色の光を発光する蛍光体を組み合わせたり、あるいは赤色の光を発光する 蛍光体と緑色に発光する 2種類の蛍光体を組み合わせれば、合成光として白色光を 得ることができる。また、 LEDチップが紫外 LEDチップの場合には、この LEDチップ からの紫外光を励起光としてそれぞれ赤色、緑色、青色を発光する 3種類の蛍光体 を組み合わせれば、合成光として白色光を得ることができる。このようにして白色光が 得られることにより、近年では照明用途への LEDチップの応用が可能となった。 特許文献 1:特開平 11― 60581号公報
特許文献 2:特開平 5— 152609号公報
特許文献 3:特開平 7— 99345号公報
特許文献 4:特開平 10— 242513号公報
非特許文献 1 : S. Huang et al. , J. Vac. Sci. Technol. , B 19卷, 2 045 (2001)
非特許文献 2 : M. K. Corbierr et al. , J. Am. Chem. Soc. , 123卷, 10411 (2001)
発明の開示
発明が解決しょうとする課題
[0008] ところで、上述の発光装置における蛍光体粉末には、従来からブラウン管 (CRT) や蛍光ランプなどに用いられて 、る平均粒子径が数 μ m (概ね 5 μ m程度)の蛍光体 (以下、バルタ蛍光体と称す)を流用しているのが一般的である。
[0009] しかしながら、バルタ蛍光体は粒子径が可視光や励起光の波長に比べて十分に大 きなサイズであるため、励起光が照射されるのは蛍光体粉末の表面のみとなり、蛍光 体粉末の使用量に対して発光効率が低下してしまうという問題点がある。また、蛍光 体粉末から得られる可視光を蛍光体粉末自体が遮ってしまうため、得られた光を十 分に外部に取り出すことができず、これによつても発光効率が低下してしまっていた。
[0010] また LEDチップを照明装置に応用する場合には、 LEDチップ 1個当たりの光束が 比較的小さいので多数個の LEDチップを集めてモジュール化する必要があり、かな り大きな総発熱量となる。し力もバルタ蛍光体は、材料によって程度の違いはあるもの の、一般的に高温になると発光効率が低下する特性 (温度消光)を有している。した がって、バルタ蛍光体と LEDチップとを組み合わせた照明装置において、大光束ィ匕 のために LEDチップの集積密度 (配置密度)ゃ通電電流を大きくしても、温度消光に より十分な光束が得られな 、と 、う問題もある。
[0011] 以上のような状況に鑑み、本発明の目的は、ナノ蛍光体粒子を重合体中に分散さ せる技術を開発することにより、従来のバルタ蛍光体を用いた発光素子に比べて発 光効率を高めることができるとともに、温度上昇に伴う輝度の低下が起こりにくい発光 装置を提供することにある。
課題を解決するための手段
[0012] 本発明者は、上述の課題を解決すべく鋭意検討した結果、末端に SH基を有する ビュル系重合体を重合し、得られた重合体でナノ蛍光体粒子の表面を修飾すること により、重合体中にナノ蛍光体粒子が良好に分散している榭脂組成物を得ることに 成功し、本発明に至った。
[0013] すなわち本発明は、平均粒子径が 0. lnm〜100nmのナノ蛍光体粒子を、末端に
SH基を有するビニル系重合体で修飾することにより、重合体中に分散させることを 特徴とする、光学材料用榭脂組成物である。
[0014] 好ましい実施態様としては、(1)末端に SH基を有するビニル系重合体の数平均分 子量が 2000以上 100000以下である、
(2)末端に SH基を有するビニル系重合体の重量平均分子量と数平均分子量との比 で表される分子量分布が 1. 5以下である、
(3)末端に SH基を有するビニル系重合体が、アクリル酸、メタクリル酸、アクリル酸金 属塩、メタクリル酸金属塩、アクリル酸エステル、メタクリル酸エステル、スチレン、ァク リロ-トリル、酢酸ビュル、塩化ビュル、 N—アルキルアクリルアミド、 N—アルキルメタ クリルアミド、 N, N ジアルキルアクリルアミド、 N, N ジアルキルメタクリルアミド、 N —ビュルピリジン、 2 ビュルピリジン、 4 ビニルピリジン、無水マレイン酸、マレイミ ド、力 なる化合物より選ばれる 1種以上のモノマーをラジカル重合して得られるもの である、
(4)末端に SH基を有するビニル系重合体が可視光を透過する重合体である、
(5)末端に SH基を有するビニル系重合体が、可逆的付加脱離連鎖移動重合により 重合されるポリマーを処理剤にて処理したものである、
(6)未凝集状態でのナノ蛍光体粒子の数平均一次粒子径が Inn!〜 30nmである、
(7)ナノ蛍光体粒子の発光ピーク波長が 380nm〜800nmの波長域であり、力つ 20 Οηπ!〜 500nmの波長域の光を照射することで発光しうる粒子である、
(8)ナノ蛍光体粒子が、母体結晶のみからなる非ドープ型半導体ナノ蛍光体粒子で ある、
(9)ナノ蛍光体粒子が、母体結晶中に発光イオンを添加したドープ型半導体ナノ蛍 光体粒子である、
(10)末端に SH基を有するビニル系榭脂で修飾されたナノ蛍光体粒子を、熱硬化性 榭脂と混合してなる、
(11)熱硬化性榭脂が、ケィ素系熱硬化性榭脂である、
(12)ケィ素系熱硬化性榭脂が、(A) SiH基と反応性を有する炭素 炭素二重結合 を 1分子中に少なくとも 2個含有する有機化合物、 (B) 1分子中に少なくとも 2個の Si H基を含有するケィ素化合物、(C)ヒドロシリルイ匕触媒、を含有してなるシリコーン系 熱硬化性榭脂である、ことを特徴とする、光学材料用榭脂組成物である。
[0015] さらには、これら光学材料用榭脂組成物を用いた発光装置に関する。
発明の効果
[0016] 本発明により得られる光学材料用榭脂組成物においては、蛍光物質としてナノ蛍 光体粒子を用い、これを重合体中に凝集することなく分散させている。これによつて 量子サイズ効果が発現し、発光物質として従来のように粒子径が数/ z mのバルタ蛍 光体を用いた場合に比べて、組成を変更することなしに粒子径をナノサイズィ匕するだ けで蛍光物質での発光効率を高めることができる。さらには温度消光を低減できるの で、従来に比べて装置全体としての発光効率を高めることができるとともに、温度上 昇に伴う輝度の低下を抑制することができるという効果がある。
図面の簡単な説明
[0017] [図 1]実施例 1で得られた榭脂フィルムの TEM写真である。
[図 2]比較例 2で得られた榭脂フィルムの TEM写真である。
発明を実施するための最良の形態
[0018] 本発明で使用する、末端に SH基を有するビニル系重合体の組成としては特に限 定されない。ここでビニル系重合体とは、ラジカル重合可能なビニル系単量体を重合 して得られる重合体を意味する。このようなラジカル重合可能なビニル系単量体とし ては特に限定されないが、たとえば、アクリル酸、メタクリル酸、アクリル酸金属塩、メタ クリル酸金属塩、アクリル酸エステル系単量体、メタクリル酸エステル系単量体、スチ レン系単量体、シアン化ビニル系単量体、不飽和アミド系単量体、共役ジェン系単 量体、ハロゲン含有ビュル系単量体、ビュルエステル系単量体、不飽和ジカルボン 酸ィ匕合物およびその誘導体、マレイミドィ匕合物等が挙げられる。
[0019] アクリル酸金属塩としては、アクリル酸ナトリウム、アクリル酸カリウム、アクリル酸亜鉛 、等が挙げられる。
[0020] メタクリル酸金属塩としては、メタクリル酸ナトリウム、メタクリル酸カリウム、メタクリル 酸亜鉛、等が挙げられる。
[0021] アクリル酸エステル系単量体としては、アクリル酸メチル、アクリル酸ェチル、アタリ ル酸 n—プロピル、アクリル酸イソプロピル、アクリル酸 n—ブチル、アクリル酸 tーブチ ル、アクリル酸 n キシル、アクリル酸 2—ェチルへキシル、アクリル酸 n—ォクチル 、アクリル酸 n—デシル、アクリル酸 n—ドデシル、アクリル酸トリデシル、アクリル酸ス テアリル、アクリル酸シクロへキシル、アクリル酸フエ-ル、アクリル酸ベンジル、アタリ ル酸 2—メトキシェチル、アクリル酸 3—メトキシブチル、アクリル酸 2—ヒドロキシェチ ル、アクリル酸 2—ヒドロキシプロピル、アクリル酸グリシジル、 3—アタリロイルォキシプ 口ピルジメトキシメチルシラン、 3—アタリロイルォキシプロピルトリメトキシシラン、アタリ ル酸 2, 2, 2—トリフルォロェチル、アクリル酸ァリル等が挙げられる。
[0022] メタクリル酸エステル系単量体としては、メタクリル酸メチル、メタクリル酸ェチル、メ タクリル酸 n—プロピル、メタクリル酸イソプロピル、メタクリル酸 n—ブチル、メタクリル 酸 tーブチル、メタクリル酸 n キシル、メタクリル酸 2—ェチルへキシル、メタクリル 酸 n—ォクチル、メタクリル酸 n—デシル、メタクリル酸 n—ドデシル、メタクリル酸トリデ シル、メタクリル酸ステアリル、メタクリル酸シクロへキシル、メタクリル酸フエニル、メタ クリル酸ベンジル、メタクリル酸 2—メトキシェチル、メタクリル酸 3—メトキシブチル、メ タクリル酸 2—ヒドロキシェチル、メタクリル酸 2—ヒドロキシプロピル、メタクリル酸グリ シジル、 3—メタクリロイルォキシプロピルジメトキシメチルシラン、 3—メタクリロイルォ キシプロピルトリメトキシシラン、メタクリル酸 2, 2, 2—トリフルォロェチル、メタクリル酸 ァリル等が挙げられる。
[0023] スチレン系単量体としては、スチレン、 α—メチルスチレン、 ρ—メチルスチレン、 ρ ーメトキシスチレン、インデン等が挙げられる。
[0024] シアン化ビュル系単量体としては、アクリロニトリル、メタタリ口-トリル等が挙げられ る。
[0025] 不飽和アミド系単量体としては、アクリルアミド、メタクリルアミド等が挙げられる。
[0026] 共役ジェン系単量体としては、ブタジエン、イソプレン、クロ口プレン等が挙げられる
[0027] ハロゲン含有ビュル系単量体としては、塩化ビュル、塩化ビ-リデン、テトラフルォ 口エチレン、へキサフルォロプロピレン、フッ化ビ-リデン等が挙げられる。
[0028] ビュルエステル系単量体としては、酢酸ビュル、プロピオン酸ビュル、ピバリン酸ビ ニル、安息香酸ビニル、けい皮酸ビニル等が挙げられる。
[0029] 不飽和ジカルボン酸化合物およびその誘導体としては、無水マレイン酸、マレイン 酸、マレイン酸モノエステル、マレイン酸ジエステル、フマル酸、フマル酸モノエステ ル、フマル酸ジエステル等が挙げられる。
[0030] マレイミド化合物としては、マレイミド、メチルマレイミド、ェチルマレイミド、フエ-ル マレイミド、シクロへキシルマレイミド等が挙げられる。
[0031] これら単量体は単独で使用してもよぐ複数を組み合わせて使用してもよい。複数 を組み合わせて共重合体とする場合には、その形態は特に限定されず、例えば、ラ ンダム共重合体、ブロック共重合体、グラフト共重合体、傾斜共重合体等を挙げるこ とができる。使用する単量体は、榭脂組成物の要求特性に応じて選択すればよい。
[0032] これら単量体のうち、光学材料として用いる際の、可視光や紫外光の透過性、耐候 性、耐熱性、熱硬化性榭脂との親和性、など必要となる特性を考慮すると、好ましい 単量体としては、アクリル酸、メタクリル酸、アクリル酸金属塩、メタクリル酸金属塩、ァ クリル酸エステル、メタクリル酸エステル、スチレン、アクリロニトリル、酢酸ビュル、塩 化ビュル、 N—アルキルアクリルアミド、 N—アルキルメタクリルアミド、 N, N—ジアル キルアクリルアミド、 N, N—ジアルキルメタクリルアミド、 N—ビュルピリジン、 2—ビ- ルビリジン、 4—ビュルピリジン、無水マレイン酸、マレイミド、力 なる化合物より選ば れる 1種以上の単量体を挙げることができる。
[0033] さらには光学用材料として用いる際の、可視光や紫外光の透過性を特に考慮する と、末端に SH基を有するビニル系重合体は可視光を透過する重合体である事が好 ましい。ここで可視光を透過する重合体とは具体的には、 ASTM D1003に基づき 厚さ 2mmで測定した全光線透過率が 50%以上の榭脂を示すものとする。全光線透 過率の値は大きいほど適しており、好ましくは 60%以上、よりに好ましくは 70%以上 、さらに好ましくは 80%以上、最も好ましくは 85%以上である。また可視光を透過す る榭脂においては、 ASTM D1003に基づき厚さ 2mmで測定したヘイズの値も小 さい方が好ましい。具体的にはヘイズの値が 10%以下、好ましくは 7%以下、さらに 好ましくは 5%以下、最も好ましくは 3%以下である。これらの重合体は 2種以上複数 種類を混合して用いることもできる。但し 2種以上の重合体を混合して用いる際には、 両者を混合したあとでも可視光を透過しうることが好ましい。
[0034] これらのなかでも特に好まし!/、単量体は、メタクリル酸、メチルメタタリレート、ェチル メタタリレート、ブチルメタタリレート、アクリル酸、メチルアタリレート、ェチルアタリレー ト、ブチルアタリレート、力もなる化合物より選ばれる 1種以上の単量体である。
[0035] 本発明で使用する、末端に SH基を有するビニル系重合体の構造としては特に限 定されないが、ナノ蛍光体粒子を修飾する際の修飾効率、および光学用材料とした ときの取り扱いの容易さ、などを考慮すると、重合体の数平均分子量 (Mn)は 2000 以上 100000以下であることが好ましい。より好ましくは 2500以上 80000以下であり 、さらに好まし <は 2700以上 60000以下であり、最も好まし <は 3000以上 50000以 下である。重合体の Mnが 2000未満であると、 SH基含有低分子化合物で修飾した 場合と同様の効果しか得られず、組成物中でナノ蛍光体粒子の分散性が不十分とな る傾向がある。重合体の Mnが 100000を超えると、重合体中の SH基の数が減少す るため、ナノ蛍光体粒子の修飾が難しくなる傾向がある。
[0036] 本発明で使用する末端に SH基を有するビニル系重合体の重量平均分子量と数平 均分子量との比で表される分子量分布は、 SH基とナノ蛍光体粒子表面との反応性 を制御しやすいという点から、 1. 5以下であることが好ましい。より好ましくは 1. 4以下 、さらに好ましくは 1. 3以下である。
[0037] 本発明で使用する末端に SH基を有する重合体の立体構造については特に限定 は無ぐ直鎖状であっても分子内に分岐を有していても良い。分子内の分岐は規則 的であっても不規則であっても良ぐまた分岐の頻度 '長さ'数などにも制限は無い。 多数の分岐を有する榭状重合体であっても良 、。また重合体の分岐の全ての末端 に SH基を有していても良ぐ一部の末端にのみあるいは末端の中の 1点のみに SH 基を有する構造であっても良い。但し重合体とナノ蛍光体粒子表面との反応性を考 慮すると、重合体に分岐が少ないほうが好ましぐ重合体が直鎖状であることが好まし い。重合体が直鎖状である場合には、片末端のみに SH基を有していても良ぐ両末 端に SH基を有して 、ても良 、。
[0038] 本発明で使用する末端に SH基を有する重合体の重合方法としては特に限定はさ れないが、 SH基を確実に導入できること、分子量や分子量分布、単量体の規則性、 などを付与しやすいこと、などの理由から、可逆的付加脱離連鎖移動 (RAFT)重合 法を用いるのが好ましい。すなわち、ジチォエステル構造を有する化合物を連鎖移 動剤として、ビュル系モノマーをラジカル重合する方法であり、制御ラジカル重合の 一種である。該方法により得られるポリマーは、分子末端あるいは分子鎖中にジチォ エステル構造あるいはトリチォカーボネート構造を有する。好まし 、実施態様として本 発明で用いるポリマーは、この RAFT重合により得られるジチォエステル構造あるい はトリチォカーボネート構造を有するポリマーを、処理剤により処理し、ジチォエステ ル構造あるいはトリチォカーボネート構造の部分を反応させて SH基に変換すること により得られる。
[0039] 上記 RAFT重合に使用するジチォエステル構造を有する連鎖移動剤としては特に 限定されず、例えば特表 2000— 515181号公報に記載されている化合物、および 以下に示す一般式(1)の化合物を用いることができる。
[0040] [化 1]
Figure imgf000011_0001
[0041] (式中、 Rは炭素数 1以上の 1価の有機基であり; Zは硫黄原子 (p = 2の場合)、酸素 原子 (p = 2の場合)、窒素原子 (p = 3の場合)、または炭素数 1以上の p価の有機基 であり; pは 1以上の整数であり; pが 2以上の場合、 Rは互いに同じでもよく異なってい てもよい)
上記化合物において、炭素数 1以上の 1価の有機基 Rとしては特に限定されず、炭 素原子以外に水素原子、窒素原子、酸素原子、硫黄原子、ハロゲン原子、ケィ素原 子、リン原子、および金属原子のうちの少なくとも一つを含んでいてもよぐ高分子量 体であってもよい。 Rの例としては、アルキル基、ァラルキル基、およびこれらの置換 体などを挙げることができる。入手性および重合活性の点で、以下に示す一般式 (2) および(3)の構造が好ま 、。
[0042] [化 2] M M c————
Figure imgf000012_0001
e Me Me Me
C CN I
C—— Me CH2-C—— Me e I I
Me Me
e c M M—— e
I
S -Me CH2CH2COOH CH— CN e
Me
I
C CN ― CH2COOH CH2CN
Et
[0043] (式中、 Meはメチル基、 Etはェチル基、 Phはフヱ-ル基、 Acはァセチル基を示す) [0044] [化 3] O
CH2 - CO~(cH2CH20 CH3
Figure imgf000013_0001
Figure imgf000013_0002
CN O
C― CH2CH2— CO~(cH2CH20 CH3
O CH,
CH2CH2— CO~(cHCH2o "CH3
CN
C I—— CH2CH2COOH
I
CH3
[0045] (式中、 nは 1以上の整数であり、 rは 0以上の整数である)
上記式中、入手性の点で nおよび rは 500以下であることが好ましぐ 200以下であ ることがより好ましく、 100以下であることがさらに好ましい。また Rとしては、入手性お よび重合活性の点で、炭素数 2〜30の基が特に好ま 、。
[0046] 上記 RAFT重合の反応条件としては特に限定されず、上記特許文献 5をはじめと する従来公知の条件を適用可能である。但し反応性の点では 70°C以上の温度で反 応させることが好ましぐ 80°C以上がより好ましい。重合の形式は塊状重合、溶液重 合、乳化重合、懸濁重合など限定されないが、重合後の SH基に変換する反応を容 易に実施できる点で、塊状重合または溶液重合が好まし 、。
[0047] RAFT重合で得られたポリマーを、 SH基を有するポリマーに変換する際に使用す る処理剤としては特に限定されないが、 SH基に変換する効率が高い点で、水素 窒素結合含有化合物、塩基、および還元剤からなる群より選ばれる化合物が好まし い。
[0048] 前記処理剤のうち水素 窒素結合含有ィ匕合物としては特に限定されないが、例え ば、アンモニア、ヒドラジン、 1級ァミン系化合物、 2級ァミン系化合物、アミド系化合物 、ァミン塩酸塩系化合物、水素 窒素結合含有高分子、およびヒンダードアミン系光 安定剤 (HALS)等を挙げることができる。
[0049] 前記水素 窒素結合含有化合物のうち、 1級ァミン系化合物の具体例としては、 3 —アミノー 1—プロパノール、ァリルァミン、イソプロピルァミン、モノェチルァミン、 2- ェチルへキシルァミン、 n—ブチルァミン、 tーブチルァミン、 n—プロピルァミン、 3— メトキシプロピルァミン、 2—アミノエタノール、エチレンジァミン、ジエチレントリァミン、 トリエチレンテトラミン、 1, 4ージアミノブタン、 1, 2 ジァミノプロパン、 1, 3 ジァミノ プロパン、ジァミノマレオニトリル、シクロへキシルァミン、へキサメチレンジァミン、 n— へキシルァミン、モノメチルァミン、モノメチルヒドラジン、ァニシジン、ァニリン、 p ァ ミノ安息香酸ェチル、ァミノフエノール、トルイジン、フエ-ルヒドラジン、フエ-レンジァ ミン、フエネチルァミン、ベンジルァミン、メシジン、アミノビリジン、メラミン等を挙げるこ とがでさる。
[0050] 前記水素 窒素結合含有化合物のうち、 2級ァミン系化合物の具体例としては、ジ ァリルァミン、ジイソプロピルァミン、ジェチルァミン、ジイソブチルァミン、ジ 2—ェ チルへキシルァミン、ビス(ヒドロキシェチル)ァミン、 N ェチルエチレンジァミン、ェ チレンィミン、ジシクロへキシルァミン、ジ—n—ブチルァミン、ジ—tーブチルァミン、 ジメチルァミン、 N ェチルァ-リン、ジフエ-ルァミン、ジベンジルァミン、 N—メチル ァ-リン、イミダゾール、 2, 5 ジメチルビペラジン、ピぺラジン、ピぺリジン、ピロリジ ン、モルホリン等を挙げることができる。
[0051] 前記水素 窒素結合含有化合物のうち、アミド系化合物の具体例としては、アジピ ン酸ジヒドラジド、 N イソプロピルアクリルアミド、カルボヒドラジド、グァ-ルチオ尿素 、グリシルグリシン、ォレイン酸アミド、ステアリン酸アミド、アジピン酸ジヒドラジド、ホル ムアミド、メタクリルアミド、ァセトァ-リド、ァセト酢酸ァ-リド、ァセト酢酸トルイダイド、 トルエンスルホンアミド、フタルイミド、イソシァヌル酸、コハク酸イミド、ヒダントイン、フ ェ-ルビラゾリドン、ベンズアミド、ァセトアミド、アクリルアミド、プロピオン酸アミド、 2, 2, 2—トリフルォロアセトアミド等を挙げることができる。
[0052] 前記水素 窒素結合含有化合物のうち、ァミン塩酸塩系化合物の具体例としては 、ァセトアミジン塩酸塩、モノメチルァミン塩酸塩、ジメチルァミン塩酸塩、モノェチル ァミン塩酸塩、ジェチルァミン塩酸塩、モノプロピルアミン塩酸塩、ジプロピルアミン塩 酸塩、塩酸セミカルバジド、塩酸グァ-ジン、ジステアミン塩酸塩等を挙げることがで きる。
[0053] 前記水素 窒素結合含有化合物のうち、水素 窒素結合含有高分子の具体例と しては、商品名:ポリメント((株)日本触媒製)、ポリエチレンィミン、ァミノポリアクリル アミド、ナイロン 6、ナイロン 66、ナイロン 610、ナイロン 612、ナイロン 11、ナイロン 12 、ナイロン MXD6、ナイロン 46、ポリアミドイミド、ポリアリルァミン、ポリウレタン等を挙 げることができる。
[0054] 前記水素 窒素結合含有化合物のうち、ヒンダードアミン系光安定剤 (HALS)とし ては、商品名:アデカスタブ LA— 77 (旭電ィ匕工業 (株)製)、商品名: Chimassorb 944LD (チノく'スペシャルティ'ケミカルズ社製)、商品名: Tinuvin 144 (チノく'スぺ シャルティ'ケミカルズ社製)、商品名:アデカスタブ LA— 57 (旭電ィ匕工業 (株)製)、 商品名:アデカスタブ LA— 67 (旭電ィ匕工業 (株)製)、商品名:アデカスタブ LA— 68 (旭電化工業 (株)製)、商品名:アデカスタブ LA— 87 (旭電ィ匕工業 (株)製)、および 商品名: Goodrite UV— 3034 (Goodrich社製)等を挙げることができる。
[0055] 前記処理剤のうち、塩基としては特に限定されないが、具体的には、水酸化ナトリウ ム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、 水酸ィ匕亜鉛等の金属水酸ィ匕物;ナトリウムメトキサイド、ナトリウムェトキサイド、ナトリウ ムフエノキサイド、マグネシウムメトキサイド等の金属アルコキサイド;炭酸ナトリウム、 炭酸カリウム、等を挙げることができる。 [0056] 前記処理剤のうち、還元剤としては特に限定されないが、具体的には、水素化ナト リウム、水素化リチウム、水素化カルシウム、水素化リチウムアルミニウム、水素化ホウ 素ナトリウム等の金属水素化物、 LiBEt H、水素、水素含有ガス、等を挙げることが
3
出来る。
[0057] これらの処理剤は、単独で用いても良ぐ 2種類以上を組み合わせて用いても良い 。また前記処理剤の中でも、反応の効率や取り扱いが容易である点などから、沸点が 20°C〜200°Cの水素-窒素結合含有ィ匕合物、および還元剤が好ましい。中でも入 手性および回収除去の容易さの点でモノメチルァミン、モノェチルァミン、ジメチルァ ミン、ジェチルァミン、モノブチルァミン、ジブチルァミン、シクロへキシルァミンがより 好ましい。前記処理剤の使用量は特に限定されない。処理剤として塩基を使用する 場合、取り扱いやすさおよび反応性の点で、重合体 100重量部に対して 0. 01〜10 0重量部が好ましぐ 0. 05〜50重量部がより好ましぐ 0. 1〜30重量部が特に好ま しい。
[0058] 本発明は、平均粒子径が 0. lnm〜100nmのナノ蛍光体粒子を、上記末端に SH 基を有するビュル系重合体で修飾し、重合体中に分散させることを特徴とする。本発 明で用いられる数平均一次粒子径が 0. lnm〜100nmのナノ蛍光体粒子としては、 母体結晶のみからなる非ドープ型半導体ナノ蛍光体粒子、母体結晶中に発光イオン を添加したドープ型半導体ナノ蛍光体粒子、を 、ずれも好ましく用いることができる。
[0059] 母体結晶のみ力 なる非ドープ型半導体ナノ蛍光体粒子の場合は、母体結晶のバ ンドギャップよりも大きなエネルギーを持つ波長の光を照射することで、バンドギヤッ プに相当する波長の光を発光させることが可能となるので好ましい。これらの中でも、 周期表第 8〜13族のいずれかに該当する遷移金属元素を含有するナノ粒子が、末 端に SH基を有する重合体の SH基と遷移金属元素との配位結合形成力が高ぐナノ 蛍光体粒子の表面修飾反応が速やかに進行するため好ま 、。このような母体結晶 のみ力 なる非ドープ型半導体ナノ蛍光体粒子で、可視領域とその近傍に発光帯を 有するナノ粒子としては、 GaN、 GaP、 GaAs、 InN、 InP等の周期表第 13族元素と 周期表第 15族元素とのィ匕合物、 ZnO、 ZnS、 ZnSe、 ZnTe、 CdO、 CdS、 CdSe、 C dTe、 HgO、 HgS等の周期表第 12族元素と周期表第 16族元素との化合物、 In O 、 In S等が挙げられる。中でも半導体結晶の粒径の制御性と発光能力 好適であり
2 3
工業的にも重要なのは、 ZnO、 ZnS、 ZnSe、 ZnTe、 CdO、 CdS、 CdSe、 CdTe、等 の周期表第 12族元素と周期表第 16族元素との化合物半導体であり、特に ZnO、 Zn S、 ZnSe、 CdS、 CdSe等がこの目的では更に好適に用いられる。
[0060] また母体結晶中に発光イオンを添加したドープ型半導体ナノ蛍光体粒子の場合は 、励起波長に応じて母体結晶および発光イオンを適宜選択することにより、所望の波 長の光の放射が可能となるので好まし 、。ドープ型半導体ナノ蛍光体粒子としては、 例えば以下のものがある。
[0061] 発光強度が最大となるピーク波長が 380ηπ!〜 500nmのドープ型半導体ナノ蛍光 体粒子としては、例えば、 BaMgAl O : Euゝ BaMg Al O : Eu、 M (PO ) Cl:Eu
10 17 2 16 27 5 4 3
(ただし、 Mは Sr、 Ca、 Ba、 Mgの中力 選ばれた少なくとも 1種類の元素)、 M (PO
10
) C1: Eu (ただし、 Mは Sr、 Ca、 Ba、 Mgの中力 選ばれた少なくとも 1種類の元素)
4 6 2
、 Sr Al O : Eu, (Sr, Ba)Al Si O: Eu, 2SrO-XP O -YB O: Eu (ただし、 X+
4 14 25 2 2 8 2 5 2 3
Y=l)、 ZnS:Agゝ ZnS:Ag, Al、 ZnS:Ag, Cl、(ZnCd)S:Ag、 (ZnCd)S:Ag, A 1、 (ZnCd)S:Ag, CIなどが挙げられる。
[0062] 発光強度が最大となるピーク波長が 500nn!〜 600nmのドープ型半導体ナノ蛍光 体粒子としては、例えば、 Sr Si O -2SrCl: Eu、 Ba MgSi O: Eu、 SrGa S: Eu、
2 3 8 2 3 2 8 2 4
Y SiO: Ce, Tbゝ LaPO: Ce, Tbゝ MgAl O : Ce, Tbゝ GdMgB O : Ce, Tbゝ Z
2 5 4 11 19 5 10 n SiO: Mn、 Re M O : Ce (ただし、 Reは Y、 Lu、 Se、 La、 Gd、 Smの中から選ば
2 4 3 5 12
れた少なくとも 1種類の元素、 Mは Al、 Ga、 Inの中力 選ばれた少なくとも 1種類の元 素)、 ZnS:Cuゝ ZnS:Cu, Cl、 ZnS:Cu, Al、 ZnS:Cu, Ag、 ZnS:Cu, Au, Al、 ( ZnCd)S:Cu、 (ZnCd)S:Cu, Cl、 (ZnCd)S:Cu, Al、 (ZnCd)S:Cu, Ag、 (ZnC d)S:Cu, Au, Alなどが挙げられる。
[0063] 発光強度が最大となるピーク波長が 600nn!〜 800nmのドープ型半導体ナノ蛍光 体粒子としては、例えば、 Y O :Eu、 Y O S:Eu、 Y O S:Eu, Bi、 YVO: Eu、 YV
2 3 2 2 2 2 4
O: Eu, Bi、Y(PV)0: Eu、Y(PV)0: Eu, Biゝ CaS:Euゝ SrS:Eu、 (CaSr)S:E
4 4 4
u、 3.5MgO-0.5MgF -GeO: Mn、 Re M O : Ce, Pr (ただし、 Reは Y、 Lu、 Se
2 2 3 5 12
、 La、 Gd、 Smの中力も選ばれた少なくとも 1種類の元素、 Mは Al、 Ga、 Inの中から 選ばれた少なくとも 1種類の元素)などが挙げられる。
[0064] これらナノ蛍光体粒子の発光ピーク波長は、 380ηπ!〜 800nmの波長域を有する ものであることが好ましい。このピーク波長を有することにより、可視光の発光素子とし て用いることが可能である。より好ましい発光ピーク波長は 390nm〜780nmである。 また複数の発光ピーク波長を有するナノ蛍光体粒子を併用することにより、発光装置 全体としては、各ナノ蛍光体粒子の発光ピーク波長の合成光が得られるため、白色 光を発する発光素子を作製することも可能となる。白色光を得る場合の各ナノ蛍光体 ナノ粒子それぞれの発光ピーク波長の含まれる波長域として、 380ηπ!〜 500nm、 5 00nm〜600nm、 600nm〜800nmの 3つの波長域の 、ずれかから選択すれば良 い。
[0065] ナノ蛍光体粒子は、 200nm〜500nmの波長域の光を照射することで発光しうる粒 子であることが好ましい。これにより、青色発光素子や紫外発光素子との組み合わせ により白色発光素子を得ることができる。より好ましい励起光の波長範囲は、 250nm 〜450nm、さらに好ましい励起光の波長範囲は、 300ηπ!〜 400nm、最も好ましい 励起光の波長範囲は、 350nm〜400nmである。
[0066] 本発明で用いられるナノ蛍光体粒子は、気相法、液相法等一般的に用いられるナ ノ粒子の製造方法を用いて半導体の前駆体力 合成して製造されるのが一般的であ る力 ナノ蛍光体粒子の製造方法はこれらの方法に限定されるものではなぐ公知の 任意の方法を用いる事ができる。たとえば、原料水溶液を非極性有機溶媒の逆ミセ ル中に存在させ、結晶成長させる方法 (逆ミセル法)、熱分解性の原料を高温の液体 有機溶媒中で結晶成長させる方法 (ホットソープ法)、噴霧乾燥法、噴霧熱分解法、 CVD法、等により製造可能であり、これらの方法を用いれば得られるナノ粒子の粒子 径制御が容易であること等力 好ましく用いられる。
[0067] 本発明で使用するナノ蛍光体粒子の未凝集状態での数平均一次粒子径は 0. In m〜100nmである。粒子径の上限値は好ましくは 50nm以下、より好ましくは 30nm 以下、さらに好ましくは 15nm以下である。未凝集状態での数平均一次粒子径が 10 Onmよりも大きい場合には、バルタ状態の物質と同等の特性を示すため、発光効率 の向上を期待するのは困難である。またより優れた分散性の観点力もは、ナノ蛍光体 粒子の未凝集状態での数平均一次粒子径の好ましい下限値は 0. 2nmであり、より 好ましくは lnmである。またナノ蛍光体粒子の未凝集状態での数平均一次粒子径の 変動係数 (粒径分布)は、 50%以下が好ましぐさらには 30%以下が好ましい。ナノ 蛍光体粒子の粒径分布が広すぎる、すなわち粒径の変動係数が 50%を超えると、 発光効率が低下したり、発光素子ごとの発光特性のばらつきが大きくなつたりする事 がある。
[0068] 本発明における未凝集状態での数平均一次粒子径とは、透過型電子顕微鏡ある いは走査型電子顕微鏡にて撮影された写真を用いて、少なくとも 100個以上の粒子 の粒子径を定規により測定し、数平均により算出した数平均粒子径をいう。但し、電 子顕微鏡で撮影された粒子の写真が円形でな ヽ場合には、粒子の占める面積を算 出した後、同面積を有する円形に置き換えた時の円直径を用いることが出来る。
[0069] 本発明で使用できるナノ蛍光体粒子の形状は特に限定はなぐ任意の形状をとるこ とが出来る。具体的には、球状、ラグビーボール状やサッカーボール状や 20面体状 等の球に近い立体形状、 6面体状、ロッド状、針状、板状、鱗片状、破砕状、不定形 状等の形状が挙げられる。さらには粒子の表面または内部に空洞部分や欠陥部分 を有していても良ぐ表面や内部に多数の穴を有するような多孔質の粒子であっても 良い。しかしながら、ナノ蛍光体粒子の製造が容易であること、榭脂中へ分散させる のが容易であること、粒子表面の処理が容易であること等から、球状、或いは、球に 近!、立方体状である事が好ま U、。球に近!、立方体状とは (粒子の表面積) / (粒子 と同じ体積の球の表面積)比率力 好ましくは、 3倍以下であるものをいい、さらには 2 倍以下、特には 1. 5倍以下であることが好ましい。また本発明で使用されるナノ蛍光 体粒子は、単独で用いても良ぐ種類や形状の異なる 2種以上の粒子を組み合わせ て使用しても良い。さら〖こは粒子径分布の異なる 2種以上の複数種類を組み合わせ て使用しても良い。
[0070] 本発明で用いられるナノ蛍光体粒子は、末端に SH基を有するビニル系重合体に て表面を修飾することにより、榭脂組成物中での分散性が著しく向上するため、優れ た発光効率を有する光学材料用榭脂組成物を容易に得る事ができることとなる。
[0071] 末端に SH基を有するビニル系重合体にてナノ蛍光体粒子の表面を修飾する方法 としては特に限定されず、任意の方法を用いる事ができる。例えば、ナノ蛍光体粒子 を分散可能な溶媒に対して、末端に SH基を有するビニル系重合体を溶解させる事 が可能な場合には、ナノ蛍光体粒子を溶媒に分散させた上で、末端に SH基を有す るビニル系重合体を同じ溶媒に溶解し攪拌することにより、ビュル系重合体末端の S H基がナノ蛍光体粒子の表面に結合し、ナノ蛍光体粒子表面を修飾することが可能 である。
[0072] ナノ蛍光体粒子が分散可能な溶媒に対して末端に SH基を有するビニル系重合体 が溶解しない場合、あるいは溶解が困難な場合には、以下のような種々の操作により ナノ粒子の表面を修飾することが可能である。
[0073] 例えば、アミノ基、ホスフィンォキシド基、ホスフィン基等の、比較的配位力の弱 ヽ配 位子を分子内に有し、かつナノ蛍光体粒子が分散する溶媒に溶解しうる修飾剤を選 定した上で、予め配位力の弱い配位子をナノ蛍光体粒子表面に結合させる。そのう えで遠心分離等の操作によりナノ粒子を単離し、改めて末端に SH基を有するビニル 系重合体が溶解可能な溶媒中に分散させ、末端に SH基を有するビニル系重合体を 該溶媒に溶解し、ナノ蛍光体粒子を含む液相中で接触させることにより配位子交換 反応を生じさせれば、該配位力の弱!、配位子を SH基に置換する事が可能である。 また、ピリジン等の弱配位性ィ匕合物を大過剰量 (通常溶媒として用いる)に含む液相 に分散する第一工程、次 、で末端に SH基を有するビニル系重合体を加える第二ェ 程、力もなる 2段階工程による配位子交換が好ましい場合もある。
[0074] また、ナノ蛍光体粒子を予め分散可能な溶媒に分散させ、末端に SH基を有するビ -ル系重合体を別途溶解可能な溶媒に溶解しておき、両者の溶液を混合する事に より、ナノ蛍光体粒子表面を修飾する事が可能な場合もある。この時ナノ蛍光体粒子 を分散させた溶媒とビニル系重合体を溶解させた溶媒とが相溶しな!ヽ場合には、ナ ノ蛍光体粒子表面の修飾が進むに従いナノ蛍光体粒子がビュル系重合体を溶解さ せた溶媒側に抽出されていくので、修飾が完了した力どうかの確認が容易であり好ま しい。この際、テトラアルキルアンモ-ゥム塩ゃテトラアルキルホスホ-ゥム塩等の相 間移動触媒を併用する方が好まし 、場合もある。
[0075] さらに、液相中でナノ蛍光体粒子を生成させる際に、反応液相中へ末端に SH基を 有するビニル系重合体を添加する方法も有効である。この方法によれば、ナノ蛍光 体粒子の合成と同時にナノ蛍光体粒子表面の修飾を完了させる事が可能である上、 ナノ蛍光体粒子の合成時にナノ蛍光体粒子同士が凝集するのを防ぐ効果も期待で きるので、修飾方法として好ましい。
[0076] ナノ蛍光体粒子を末端に SH基を有するビニル系重合体で修飾する際には、均一 に攪拌を行う事によって、より効率的に修飾反応を完了させる事ができる。攪拌を行う 際には、超音波を照射する事により、凝集を防止しながら均一に表面修飾する事が できる。またマイクロ波を照射すれば、粒子に局所的にエネルギーを付与できるため 、表面修飾の効率が著しく改善される場合がある。
[0077] 末端に SH基を有するビニル系重合体とナノ蛍光体粒子との重量比率は、使用す る目的、ビニル系重合体の組成や分子量、ナノ蛍光体粒子の比重、ナノ蛍光体粒子 の粒径及び表面積、ナノ蛍光体粒子の表面状態、等により異なる。即ち該ビニル系 重合体の分子量が比較的大きい場合には、ビニル系重合体中の SH基の数が少な V、ため、粒子表面全体を修飾するためには相対的に多量のビュル系重合体を用い る必要があるのに対し、該ビニル系重合体の分子量が比較的小さい場合にはビュル 系重合体中の SH基の数が多いため、該ビニル系重合体の添加量は少なくても良い 場合がある。またナノ蛍光体粒子の粒径が比較的小さい場合には、ナノ蛍光体粒子 の粒子数が増え表面積の割合が多くなるため、粒子表面全体を修飾するためには 相対的に多量のビニル系重合体を用いる必要があるのに対し、ナノ蛍光体粒子の粒 径が比較的大きい場合には、該ビニル系重合体の添加量は少なくても良い場合があ る。
[0078] 末端に SH基を有するビニル系重合体とナノ蛍光体粒子と重量比率の一般的な目 安としては、ナノ蛍光体粒子を構成する原子のうち、粒子の表面に存在する原子の 数と、ビュル系重合体の SH基の数とが、ほぼ近い値となるように計算して使用すれ ば良い。すなわち、ナノ蛍光体粒子の粒径が小さい、粒子表面に凹凸が多い、粒子 が多孔性である、など、ナノ蛍光体粒子を構成する原子のうち粒子表面に存在する 原子の比率が高くなればなるほど、末端に SH基を有するビニル系重合体を多く使用 するほうが分散性良好となる傾向がある。 [0079] 上記のようにして得られた重合体修飾ナノ蛍光体粒子を発光素子として用いる場合 には、重合体修飾ナノ蛍光体粒子を熱硬化性榭脂中に混合分散させて用いる方法 が好ま ヽ。熱硬化性榭脂と重合体修飾ナノ蛍光体粒子との混合方法には特に制 限は無ぐ公知の任意の混合方法を用いる事ができる。
[0080] 例えば、重合体修飾ナノ蛍光体粒子を榭脂が溶解可能な溶媒中に分散しておき、 該溶媒に同時に熱硬化性榭脂のモノマーあるいはオリゴマーおよび硬化剤を溶解さ せ均一になるまで攪拌した上で、溶媒を蒸発させ硬化させる等の方法、その他一般 的に知られた公知の方法により、ナノ蛍光体粒子が熱硬化性榭脂中に分散した榭脂 組成物を容易に得る事ができる。このような方法を用いる際、ナノ蛍光体粒子の分散 性を改善したりナノ蛍光体粒子同士の凝集を防止したりする目的で、溶液を公知の 種々の装置で攪拌することも、ナノ蛍光体粒子が良好に分散した榭脂組成物を得ら れるので好ましい。攪拌方法としては、攪拌子や攪拌棒等の回転機器を溶媒中で回 転させる方法、ビーズ等の媒体を用いて攪拌する方法、超音波等を照射して攪拌す る方法、高速回転等の高剪断力を付与する事により攪拌する方法等を例示する事が できるが、これらに限定されるものではない。
[0081] 重合体修飾ナノ蛍光体粒子を発光素子として用いる際に用いられる熱硬化性榭脂 としては特に制限は無ぐ広く知られた各種熱硬化性榭脂の中から必要に応じて 1種 または 2種以上を任意の組み合わせで選択して用いる事が可能である。熱硬化性榭 脂としては、エポキシ榭脂、シリコーン榭脂、シアナート榭脂、フエノール榭脂、ポリイ ミド榭脂、ポリウレタン榭脂、およびこれらの変性榭脂、等が例示されるがこれに限定 されるものではない。これらのうち、透明性が高く接着性等の実用特性に優れるという 観点から、透明エポキシ榭脂、分子内にケィ素を含有するケィ素系熱硬化性榭脂、 透明ポリイミド榭脂、が好ましい。
[0082] 透明エポキシ榭脂としては、例えばビスフエノール Aジグリシジルエーテル、 2, 2,
ビス(4 グリシジノレ才キシシクロへキシノレ)プロパン、 3, 4—エポキシシクロへキシ ルメチルー 3, 4—エポキシシクロへキサンカーボキシレート、ビュルシクロへキセンジ オキサイド、 2- (3, 4 エポキシシクロへキシル) -5, 5—スピロ一(3, 4 エポキシ シクロへキサン) 1, 3 ジォキサン、ビス(3, 4 エポキシシクロへキシノレ)アジべ ート、 1, 2—シクロプロパンジカルボン酸ビスグリシジルエステル、トリグリシジルイソシ レート等のエポキシ榭脂をへキサヒドロ無水フタル酸、メチルへキサヒドロ無水フタル 酸、トリアルキルテトラヒドロ無水フタル酸、水素ィ匕メチルナジック酸無水物等の脂肪 族酸無水物で硬化させるものが挙げられる。これらのエポキシ榭脂あるいは硬化剤 はそれぞれ単独で用いても、複数のものを組み合わせてもよい。透明ポリイミド榭脂と しては、フッ素含有ポリイミド榭脂が挙げられる。
[0083] 上記熱硬化性榭脂の中でも、榭脂の耐候性、光透過性、耐熱性、などに優れる点 から、ケィ素系熱硬化性榭脂が好ましい。ケィ素系熱硬化性榭脂としては、シリコー ン榭脂、変性シリコーン榭脂、エポキシ基含有シリコーン榭脂、反応性官能基を有す るかご状シルセスキォキサンよりなる硬化性榭脂、などが挙げられる。
[0084] 上記ケィ素系熱硬化性榭脂の中でも、 (A) SiH基と反応性を有する炭素-炭素二 重結合を 1分子中に少なくとも 2個含有する有機化合物、 (B) 1分子中に少なくとも 2 個の SiH基を含有するケィ素化合物、(C)ヒドロシリルイ匕触媒、よりなるシリコーン系 熱硬化性榭脂であることがさらに好ましい。
[0085] 以下で上記シリコーン系熱硬化性榭脂おける (A)成分について説明する。
[0086] (A)成分は、 SiH基と反応性を有する炭素-炭素二重結合を 1分子中に少なくとも 2個含有する有機化合物であれば特に限定されない。上記有機化合物としては、ポ リシロキサン一有機ブロックコポリマーやポリシロキサン一有機グラフトコポリマー等の
、シロキサン単位 (Si O Si)を含む化合物以外のものが好ましぐ構成元素として C、 H、 N、 0、 S及びハロゲン以外の元素を含まない化合物がより好ましい。シロキサ ン単位を含む化合物の場合は、反応性などの問題がある。 SiH基と反応性を有する 炭素 炭素二重結合の結合位置は特に限定されず、分子内のどこに存在してもよい 。 (A)成分は、単独で用いても良いし、 2種以上のものを組み合わせて用いてもよい
[0087] (A)成分の化合物は、有機重合体系の化合物と有機単量体系の化合物に分類で きる。有機重合体系化合物としては特に限定されないが、例えば、ポリエーテル系、 ポリエステル系、ポリアリレート系、ポリカーボネート系、飽和炭化水素系、不飽和炭 化水素系、ポリアクリル酸エステル系、ポリアミド系、フエノールーホルムアルデヒド系( フエノール榭脂系)、ポリイミド系の化合物等が挙げられる。
[0088] 有機単量体系化合物としては特に限定されないが、例えば、フ ノール系、ビスフ ノール系、ベンゼン、ナフタレン等の芳香族炭化水素系;鎖状、環状等の脂肪族炭 化水素系;複素環系の化合物;これらの混合物等が挙げられる。
[0089] (A)成分の SiH基と反応性を有する炭素 炭素二重結合としては特に限定されな いが、下記一般式 (4)
Figure imgf000024_0001
(式中 R1は水素原子ある!/、はメチル基を表す。 )で示される基が反応性の点から好適 である。中でも原料の入手の容易さから、 R1が水素原子である基が特に好ましい。
[0090] さらに、(A)成分の SiH基と反応性を有する炭素 炭素二重結合としては、下記一 般式 (5)
— R2C = CR2— (5)
(式中 Rは水素原子あるいはメチル基を表す。 2つの R2は同じであってもよいし異なつ ていてもよい。)で表される部分構造を環内に有する脂環式の基力 硬化物の耐熱 性が高いという点力も好適である。中でも原料の入手の容易さから、 R2がともに水素 原子である基が特に好ま 、。
[0091] SiH基と反応性を有する炭素-炭素二重結合は (A)成分の骨格部分に直接結合 していてもよぐ 2価以上の置換基を介して共有結合していてもよい。上記 2価以上の 置換基としては特に限定されないが、炭素数 0〜10の置換基が好ましぐ構成元素と して C、 H、 N、 0、 S及びノヽロゲン以外の元素を含まない置換基がより好ましい。
[0092] (A)成分の骨格部分に共有結合する基の例としては、ビニル基、ァリル基、メタリル 基、アクリル基、メタクリル基、 2 ヒドロキシ一 3— (ァリルォキシ)プロピル基、 2 ァリ ルフエ-ル基、 3 ァリルフエ-ル基、 4 ァリルフエ-ル基、 2— (ァリルォキシ)フエ -ル基、 3 (ァリルォキシ)フエ-ル基、 4 (ァリルォキシ)フエ-ル基、 2 (ァリル ォキシ)ェチル基、 2, 2 ビス(ァリルォキシメチル)ブチル基、 3 ァリルォキシ—2, 2—ビス(ァリルォキシメチル)プロピル基、などが挙げられる。
[0093] (A)成分の有機化合物としては、骨格部分と炭素 炭素二重結合を有する基とに 分けて表現しがたい低分子量ィ匕合物も用いることができる。上記低分子量化合物の 具体例としては、ブタジエン、イソプレン、ォクタジェン、デカジエン等の脂肪族鎖状 ポリェン化合物系、シクロペンタジェン、シクロォクタジェン、ジシクロペンタジェン、ト リシクロペンタジェン、ノルボルナジェン等の脂肪族環状ポリェンィ匕合物系、ビニルシ クロペンテン、ビュルシクロへキセン等の置換脂肪族環状ォレフィンィ匕合物系等が挙 げられる。
[0094] (A)成分としては、耐熱性をより向上し得ると!、う観点から、 SiH基と反応性を有す る炭素 炭素二重結合を (A)成分 lgあたり 0. OOlmol以上含有するものが好ましく 、 0. O05mol以上含有するものがより好ましぐ 0. 008mol以上含有するものがさら に好ましい。
[0095] (A)成分の具体的な例としては、上述のほか、ジァリルフタレート、トリアリルトリメリ テート、ジエチレングリコールビスァリルカーボネート、トリメチロールプロパンジァリル エーテル、ペンタエリスリトールトリアリルエーテル、 1, 1, 2, 2—テトラァリロキシエタ ン、ジァリリデンペンタエリスリット、トリァリルシアヌレート、トリアリルイソシァヌレート、 2 , 2 ビス(4 ヒドロキシシクロへキシル)プロパンのジァリルエーテル、 1, 2, 4 トリ ビュルシクロへキサン、ジビュルベンゼン類(純度 50〜100%のもの、好ましくは純 度 80〜100%のもの)、ジビ-ルビフエ-ル、 1, 3 ジイソプロぺ-ルベンゼン、 1, 4 ージイソプロべ-ルベンゼン、それらのオリゴマー、 1, 2—ポリブタジエン(1, 2比率 1 0〜100%のもの、好ましくは 1, 2比率 50〜100%のもの)、ノボラックフエノールのァ リルエーテル、ァリル化ポリフエ-レンオキサイド、エポキシ榭脂のグリシジル基の一 部あるいは全部をァリル基に置き換えたもの、
[0096] [化 4]
Figure imgf000026_0001
OSOMM
Figure imgf000026_0002
[0097] [化 5]
Figure imgf000027_0001
Figure imgf000027_0002
Figure imgf000027_0003
Figure imgf000027_0004
[0098] 等が挙げられる。
[0099] これらの中でも、複屈折率、紫外線透過性、等の光学特性が良好であるという観点 力らは、(A)成分中における芳香環の成分重量比が 50重量%以下であるものが好 ましぐ 40重量%以下のものがより好ましぐ 30重量%以下のものがさらに好ましい。 最も好ま U、のは芳香族炭化水素環を含まな 、ものである。
[0100] (A)成分の SiH基と反応性を有する炭素-炭素二重結合の個数は、 1分子当たり 少なくとも 2個あればよいが、耐熱性をより向上し得るという観点から、 2個を越えるこ と力 子ましく、 3個以上であることがより好ましぐ 4個以上であることが特に好ましい。 ただし (A)成分が種々の化合物の混合物であり、各化合物の上記炭素-炭素二重 結合の個数が同定できない場合には、上記混合物全体に関して 1分子あたりの上記 炭素 炭素二重結合の平均個数を求め、それを、(A)成分の上記炭素 炭素二重 結合の個数とする。(A)成分の SiH基と反応性を有する炭素 炭素二重結合の数が 1分子内当たり 1個以下の場合は、(B)成分と反応してもグラフト構造となるのみで架 橋構造とならない。
[0101] (A)成分としては、他の成分との均一な混合及び良好な作業性を得るためには、 1 00°C以下の温度において流動性があるものが好ましい。(A)成分は、線状でも枝分 かれ状でもよい。(A)成分の分子量は特に制約はないが、 50〜: LOOOの任意のもの が好適に使用できる。(A)成分としては、分子量が 900未満のものが好ましぐ 700 未満のものがより好ましぐ 500未満のものがさらに好ましい。
[0102] (A)成分としては、入手性、反応性の点から、ビスフエノール Aジァリルエーテル、 2 , 2'ージァリルビスフエノール A、ノボラックフエノールのァリルエーテル、ジァリルフタ レート、ビュルシクロへキセン、ジビ-ノレベンゼン、ジビ-ルビフエ-ル、トリァリノレイソ シァヌレート、 2, 2 ビス(4 ヒドロキシシクロへキシル)プロパンのジァリルエーテル 、 1, 2, 4 トリビニルシクロへキサンが好ましぐ耐熱性'耐光性の点からトリァリルイ ソシァヌレートが特に好まし!/、。
[0103] 次に上記シリコーン系熱硬化性榭脂おける(B)成分について説明する。
[0104] (B)成分は、 1分子中に少なくとも 2個の SiH基を含有する化合物であれば特に限 定されない。例えば国際公開特許 W096Z15194号公報に記載される化合物で、 1分子中に少なくとも 2個の SiH基を有するもの等が使用できる。
[0105] 入手性の面からは、 1分子中に少なくとも 2個の SiH基を有する鎖状及び Z又は環 状オルガノポリシロキサンが好ましい。なかでも、(A)成分との相溶性が良いという観 点から、下記一般式 (6)
[0106] [化 6]
Figure imgf000029_0001
[0107] (式中、 R3は炭素数 1〜6の有機基を表し、 nは 3〜10の数を表す。)で表される、 1分 子中に少なくとも 2個の SiH基を有する環状ポリオルガノシロキサンがより好ましい。 なお、一般式 (6)で表される化合物中の置換基 R3は、 C、 H及び O以外の元素を含 まな 、置換基が好ましく、炭化水素基がより好ま 、。
[0108] (B)成分は、 1分子中に少なくとも 2個の SiH基を有する鎖状及び Z又は環状ポリ オルガノシロキサンと、 SiH基と反応性を有する炭素 炭素二重結合を有する有機 化合物から選ばれた 1種以上の化合物(以降 (E)成分と称する)との反応物も好まし い。この場合、反応物の (A)成分との相溶性をさらに高めるために、反応物から未反 応のシロキサン類等を脱揮等により除去したものを用いることもできる。
[0109] (E)成分は SiH基と反応性を有する炭素 炭素二重結合を 1分子中に少なくとも 1 個含有する有機化合物であって、前記 (A)成分と同じものも使用できる。
[0110] (B)成分の (A)成分に対する相溶性が高くし得るという観点からは、(E)成分の好 ましい具体例として、トリアリルイソシァヌレート、ノボラックフエノールのァリルエーテル 、ビスフエノール Aジァリルエーテル、 2, 2'ージァリルビスフエノール A、ジァリルフタ レート、フタル酸のビス(2—ァリルォキシェチル)エステル、スチレン、 α—メチルスチ レン、ァリル末端ポリプロピレンォキシド及びポリエチレンォキシド等が挙げられる。( Ε)成分の有機化合物は単独で用いてもよ!、し、 2種以上のものを組み合わせて用い てもよい。
[0111] (Β)成分は単独で用いてもよいし、 2種以上のものを組み合わせて用いてもよい。
[0112] 光学特性が良好であるという観点力もより好ましい (Β)成分としては、 1, 3, 5, 7- テトラメチルシクロテトラシロキサンとビュルシクロへキセンの反応物、 1, 3, 5, 7—テ トラメチルシクロテトラシロキサンとジシクロペンタジェンの反応物、 1, 3, 5, 7—テトラ メチルシクロテトラシロキサンとトリアリルイソシァヌレートの反応物、 1, 3, 5, 7—テト ラメチルシクロテトラシロキサンと 2, 2 ビス(4ーヒドロキシシクロへキシル)プロパン のジァリルエーテルの反応物、 1, 3, 5, 7—テトラメチルシクロテトラシロキサンと 1, 2 , 4—トリビュルシクロへキサンの反応物が挙げられる。特に好ましい(Β)成分として は、 1, 3, 5, 7—テトラメチルシクロテトラシロキサンとトリアリルイソシァヌレートの反応 物、 1, 3, 5, 7—テトラメチルシクロテトラシロキサンと 2, 2 ビス(4ーヒドロキシシクロ へキシル)プロパンのジァリルエーテルの反応物、 1, 3, 5, 7—テトラメチルシクロテト ラシロキサンと 1, 2, 4 トリビニルシクロへキサンの反応物等が挙げられる。
[0113] (Α)成分と (Β)成分の混合比率は、必要な強度を失わな ヽ限り特に限定されな!、 力 (Β)成分中の SiH基の総数 (Υ)の (Α)成分中の炭素-炭素二重結合の総数 (X )に対する比力 2. 0≥Y/X≥0. 9であることが好ましぐ 1. 8≥Υ/Χ≥1. 0がより 好ましい。 Υ/Χ> 2. 0の場合は、十分な硬化性が得られず、充分な強度が得られ ない場合があり、 Y/X< 0. 9の場合は炭素 炭素二重結合が過剰となり着色の原 因となり得る。
[0114] 次に上記シリコーン系熱硬化性榭脂おける(C)成分について説明する。
[0115] (C)成分であるヒドロシリルイ匕触媒としては、ヒドロシリルイ匕反応の触媒活性があれ ば特に限定されないが、例えば、白金の単体、アルミナ、シリカ、カーボンブラック等 の担体に固体白金を担持させたもの、塩化白金酸、塩ィヒ白金酸とアルコール、アル デヒド、ケトン等との錯体、白金—ォレフィン錯体 (例えば、 Pt (CH =CH ) (PPh )
2 2 2 3 2
、 Pt (CH =CH ) CI ) ,白金—ビニルシロキサン錯体(例えば、 Pt (ViMe SiOSiM
2 2 2 2 2 e Vi) 、 Pt[ (MeViSiO) ] ) ,白金—ホスフィン錯体(例えば、 Pt (PPh ) 、Pt (PBu
2 n 4 m 3 4
) ) ,白金一ホスファイト錯体 (例えば、 Pt[P (OPh) ]、 Pt[P (OBu) ] ) (式中、 Me
3 4 3 4 3 4
はメチル基、 Buはブチル基、 Viはビュル基、 Phはフエ-ル基を表し、 n、 mは、整数 を示す。)、ジカルボ-ルジクロ口白金、カールシュテト(Karstedt)触媒、アシュビー( Ashby)の米国特許第 3159601号公報、米国特許第 3159662号公報中に記載さ れた白金—炭化水素複合体、ラモロー(Lamoreaux)の米国特許第 3220972号公 報中に記載された白金アルコラート触媒等が挙げられる。さらに、モディック (Modic) の米国特許第 3516946号公報中に記載された塩ィ匕白金—ォレフィン複合体も本発 明において有用である。
[0116] 白金化合物以外のヒドロシリル化触媒の例としては、 RhCl (PPh)、 RhCl、 RhAl
3 3 2
O、 RuCl、 IrCl、 FeCl、 A1C1、 PdCl · 2Η 0、 NiCl、 TiCl等が挙げられる。
3 3 3 3 3 2 2 2 4
[0117] これらの中では、触媒活性の点から、塩化白金酸、白金一才レフイン錯体、白金 ビュルシロキサン錯体等が好まし 、。上記ヒドロシリル化触媒は単独で使用してもよく 、 2種以上を併用してもよい。
[0118] ヒドロシリルイ匕触媒の添加量は特に限定されないが、十分な硬化性を有し、かつ光 学材料用組成物のコストを比較的低く抑えるため、好ましい添加量の下限は、(B)成 分の SiH基 1モルに対して 10— 8モル、より好ましくは 10— 6モルであり、好ましい添カロ量 の上限は(B)成分の SiH基 1モルに対して 10— 1モル、より好ましくは 10— 2モルである。
[0119] 本発明の光学材料用榭脂組成物において、組成物 100重量%中の、ナノ蛍光体 粒子の含有量の下限値は、好ましくは 0. 0001重量%であり、より好ましくは 0. 001 重量%であり、さらに好ましくは 0.01重量%であり、最も好ましくは 0. 1重量%である 。配合量の上限値は、好ましくは 95重量%であり、より好ましくは 70重量%であり、さ らに好ましくは 50重量%であり、最も好ましくは 20重量%である。ナノ蛍光体粒子の 含有量が 0. 0001重量%より少ないと、十分な発光強度が得られない傾向があり、含 有量が 95重量%より多いと、ナノ蛍光体粒子を組成物中で分散させることが困難とな る傾向がある。
[0120] 本発明の光学材料用組成物には必要に応じて無機フィラーを添加してもよい。無 機フイラ一を添加すると、組成物の流動性の防止、材料の高強度化に効果がある。 無機フイラ一としては光学特性を低下させない、微粒子状なものが好ましぐアルミナ 、水酸ィ匕アルミニウム、溶融シリカ、結晶性シリカ、超微粉無定型シリカや疎水性超微 粉シリカ、タルク、硫酸バリウム等を挙げることができる。なかでも光透過性に優れるこ とから、粒径が 0. lnm〜100nmのナノ粒子を用いることが好ましい。さらに好ましい 粒径範囲は lnm〜50nm、最も好まし!/、粒径範囲は 2nm〜20nmである。
[0121] フィラーを添加する方法としては、例えばアルコキシシラン、ァシロキシシラン、ハロ ゲンィ匕シラン等の加水分解性シランモノマーあるいはオリゴマーや、チタン、アルミ- ゥム等の金属のアルコキシド、ァシロキシド、ハロゲン化物等を、本発明の組成物に 添加して、組成物中あるいは組成物の部分反応物中で反応させ、組成物中で無機 フィラーを生成させる方法も挙げることができる。
[0122] 本発明の光学材料用榭脂組成物には光学材料の特性を改善するために種々の添 加剤を添加してもよい。添加剤としては例えば、特定の波長を吸収するブルーイング 剤等の着色剤、光を拡散させるための酸ィ匕チタン、酸ィ匕アルミニウム、シリカ、石英ガ ラス等の酸ィ匕ケィ素、タルク、炭酸カルシウム、メラミン榭脂、 CTUグアナミン榭脂、ベ ンゾグアナミン榭脂等のような各種無機あるいは有機拡散材、ガラス、アルミノシリケ ート等の金属酸化物、窒化アルミニウム、窒化ボロン等の金属窒化物等の熱伝導性 フイラ一等を挙げることができる。光学材料特性改善のための添加剤は均一に含有さ せても良いし、含有量に傾斜を付けて含有させてもよい。本発明の光学素子用組成 物を硬化させる方法としては、単に混合するだけで反応させることもできるし、加熱し て反応させることもできる。反応が速く、一般に耐熱性の高い材料が得られやすいと V、う観点力も加熱して反応させる方法が好ま U、。
[0123] 反応温度としては種々設定できる力 例えば 30〜300°Cの温度が適用でき、 80〜 250°Cがより好ましぐ 100〜200°Cがさらに好ましい。反応温度が低いと十分に反 応させるための反応時間が長くなり、反応温度が高いと成形加工が困難となりやすい [0124] 反応は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度 を変化させてもよい。一定の温度で行うより多段階的あるいは連続的に温度を上昇さ せながら反応させた方が歪のな 、均一な硬化物が得られやす ヽと 、う点にぉ 、て好 ましい。
[0125] 反応時間も種々設定できるが、高温短時間で反応させるより、比較的低温長時間 で反応させた方が歪のな 、均一な硬化物が得られやす ヽと 、う点にぉ 、てので好ま しい。
[0126] 反応時の圧力も必要に応じ種々設定でき、常圧、高圧、あるいは減圧状態で反応 させることもできる。加水分解縮合により発生する揮発分を除きやすいという点におい ては、減圧状態で反応させることが好ましい。
[0127] 硬化させて得られる光学用材料の形状も用途に応じて種々とりうるので特に限定さ れないが、例えばフィルム状、シート状、チューブ状、ロッド状、塗膜状、バルタ状等 の形状とすることができる。
[0128] 成形する方法も従来の熱硬化性榭脂の成形方法をはじめとして種々の方法をとる ことができる。例えば、キャスト法、プレス法、注型法、トランスファー成形法、コーティ ング法、 RIM法等の成形方法を適用することができる。成形型は研磨ガラス、硬質ス テンレス研磨板、ポリカーボネート板、ポリエチレンテレフタレート板、ポリメチルメタク リレート板等を適用することができる。また、成形型との離型性を向上させるためポリ エチレンテレフタレートフィルム、ポリカーボネートフィルム、ポリ塩化ビュルフィルム、 ポリエチレンフィルム、ポリテトラフルォロエチレンフィルム、ポリプロピレンフィルム、ポ リイミドフィルム等を適用することができる。
[0129] 成形時に必要に応じ各種処理を施すこともできる。例えば、成形時に発生するボイ ドの抑制のために組成物あるいは一部反応させた組成物を遠心、減圧等により脱泡 する処理、プレス時にー且圧力を開放する処理等を適用することもできる。
[0130] 本発明の光学素子用榭脂組成物を用いて発光ダイオードをはじめとする各種発光 装置を製造することができる。この場合の発光装置は、本発明の光学素子用榭脂組 成物によって発光素子を被覆する方法などによって製造することができるが、この方 法に限定されるものではない。上記発光素子としては特に限定されず、発光装置に 用いられ得る発光素子を用いることができる。例えば、 MOCVD法、 HDVPE法、液 相成長法といった各種方法によって、必要に応じて GaN、 A1N等のバッファ一層を 設けた基板上に半導体材料を積層して作製したものが挙げられる。
[0131] 上記基板としては特に限定されないが、例えば、サファイア、スピネル、 SiC、 Si、 Z nO、 GaN単結晶等が挙げられる。これらのうち、結晶性の良好な GaNを容易に形成 でき、工業的利用価値が高いという観点力もは、サファイアが好ましい。
[0132] 積層される上記半導体材料としては特に限定されないが、例えば、 GaAs、 GaP、 GaAlAs、 GaAsP、 AlGaInP、 GaN, InN、 A1N、 InGaN、 InGaAIN, SiC等が挙 げられる。これらのうち、高輝度が得られるという観点力もは、窒化物系化合物半導体 (inxGayAlzN)が好まし 、。上記半導体材料は付活剤等を含んで 、てもよ!/、。
[0133] 上記発光素子の構造としては特に限定されないが、例えば、 MIS接合、 pn接合、 P IN接合を有するホモ接合、ヘテロ接合やダブルへテロ構造等が挙げられる。また、 単一あるいは多重量子井戸構造とすることもできる。
[0134] 上記発光素子はパッシベーシヨン層を設けていてもよいし、設けなくてもよい。上記 発光素子には従来知られている方法によって電極を形成することができる。
[0135] 発光素子上の電極は種々の方法でリード端子等と電気接続できる。電気接続部材 としては特に限定されないが、発光素子の電極とのォーミック性機械的接続性等が 良いものが好ましぐ例えば、金、銀、銅、白金、アルミニウムやそれらの合金等を用 いたボンディングワイヤー等が挙げられる。銀、カーボン等の導電性フィラーを榭脂 に充填した導電性接着剤等を用いることもできる。これらのうち、作業性が良好である t 、う観点からは、アルミニウム線或いは金線が好ま 、。
実施例
[0136] 以下に実施例を挙げて本発明を説明する力 これらに何ら限定されるものではない 。ナノ蛍光体粒子の未凝集状態での数平均一次粒子径測定:ナノ蛍光体粒子の適 量を分散可能な溶媒中に超音波分散させた後、コロジオン膜を貼り付けたメッシュ上 に固定した状態にて透過型電子顕微鏡 (TEM)で観察した。電子顕微鏡写真を用 いて 100個以上のナノ蛍光体粒子について粒径を目盛り付きの定規を用いて手計 測することにより、数平均一次粒子径を測定した。
[0137] 榭脂組成物中のナノ蛍光体粒子の分散状態測定:実施例に示す方法にて得られ た榭脂組成物から、ウルトラミクロトーム (ライカ製ウルトラカット UCT)を用いて TEM 観察用超薄切片を作成した後、透過型電子顕微鏡 (TEM) (日本電子 JEM— 1200 EX)を用いて、倍率 10万倍〜 40万倍にてナノ粒子の分散状態を複数箇所で写真 撮影した。得られた TEM写真を複数用いて、視野内で確認可能な独立した粒子の 数を 100 m2以上の範囲でカウントし、全粒子数に対して、独立して存在している粒 子数の割合を算出した。
[0138] 発光波長の測定: PERKIN— ELMER製蛍光光度計 LS55を用い、溶媒中に分 散した粒子は石英セル(12. 5 X 12. 5 X 45mm)中で、榭脂フィルムゃ榭脂シート はフィルムやシートのままで、励起光を照射したときの発光波長を測定した。
[0139] 可視光透過性の測定:日精榭脂工業 (株)製 80t射出成形機にて 50mm X 50mm
X 2mmのサイズの試験片を成形した。この試験片を用い、 日本電色工業製濁度計 3 00Aにて、温度 23°C± 2°C、湿度 50% ± 5%の条件で、 ASTM D1003に基づき 全光線透過率を測定した。
[0140] 分子量および分子量分布の測定: Waters社製ゲルパーミユエーシヨンクロマトグラ フィー(GPC)システムにて、クロ口ホルム溶媒、昭和電工 (株)製 ShodexK— 805と K— 806カラム、 RI検出器を用い、ポリスチレン標準サンプルで計算される分子量を 測定した。
[0141] 母体結晶のみからなる非ドープ型半導体ナノ蛍光体粒子は、以下のものを用いた
•非ドープ型ナノ蛍光体粒子 l (CdSeナノ粒子 1):非特許文献 8に従い合成した。 T EM観察による CdSe粒子の数平均一次粒子径は 5nmであった。形状は真球状粒 子であった。蛍光光度計によりトルエン溶液に 365nm波長の励起光を照射したとこ ろ、ピーク波長 595nm、半値幅 40nmに発光した。
•非ドープ型ナノ蛍光体粒子 2 (CdSeナノ粒子 2) : M. Kawa et al. , J. Nano part. Res. , 5卷, 81 (2003)【こ従!ヽ合成した。 TEM観察【こよる CdSe粒子 の数平均一次粒子径は 4nmであった。形状は真球状粒子であった。蛍光光度計に よりトルエン溶液に 365nm波長の励起光を照射したところ、ピーク波長 555nm、半 値幅 47nmに発光した。
•非ドープ型ナノ蛍光体粒子 3 (CdSeナノ粒子 3):非特許文献 8に従い合成した。 T EM観察による CdSe粒子の数平均一次粒子径は約 3nmで、形状は真球状粒子で あった。蛍光光度計によりトルエン溶液に 365nm波長の励起光を照射したところ、ピ ーク波長 519nm、半値幅 48nmに発光した。
•非ドープ型ナノ蛍光体粒子 4 (CdSeコア ZZnSシェル複合ナノ粒子):以下の製造 例 1に従い製造した。
(製造例 1)
乾燥アルゴンガスを満たした褐色ガラスフラスコ中に、トリオクチルホスフィンォキシ ド 15gを入れ、 130〜150°Cでの溶融状態で、減圧と乾燥アルゴンガスを注入する操 作とを繰り返しながら約 2時間攪拌し、トリオクチルホスフィンォキシドを乾燥した。これ を 100°Cに冷却後、 CdSeナノ粒子固形粉体 0. 094gをトリオクチルホスフィン 1. 5g に溶解させた溶液を加えて、 CdSeナノ粒子溶液を得た。これを 100°Cで減圧下 60 分間攪拌後、温度を 180°Cに設定して乾燥アルゴンガスで大気圧に戻した。別途、 乾燥窒素雰囲気のグローブボックス内で、ジェチル亜鉛の 1N濃度 n—へキサン溶液 1. 34mLと、ビス(トリメチルシリル)スルフイド 0. 239gとをトリオクチルホスフィン 9mL 中に溶解させた原料溶液を、遮光ガラス瓶中で調製した。この原料溶液を注射器に より、前記の CdSe溶液中に 20分間かけて滴下し、 90°Cに降温後 60分間攪拌を継 続した。室温で約 24時間静置後、再び 90°Cで 3時間加熱攪拌した。これに n—ブタ ノール 8mLをカ卩えて室温まで冷却することにより、透明な赤色溶液を得た。この赤色 溶液の一部(8mL)を、乾燥窒素気流下、室温で無水メタノール 16mL中に滴下し 2 0分間攪拌を継続する沈殿操作により赤色不溶物を得た。この赤色不溶物を遠心分 離及びデカンテーシヨンにより分離し、精製トルエン 14mLに再溶解した。この再溶 解トルエン溶液力 再び上記と同様の沈殿、遠心分離、デカンテーシヨンの一連の 精製操作を、さらに 2度繰り返し行うことにより、 ZnSシェルを有するコアシェル型 CdS eナノ粒子固体粉末を得た。 TEM観察による粒子の粒径は約 3ηπ!〜 6nmの範囲で 分散しており、数平均一次粒子径は 4. 5nmで、形状は真球状粒子であった。この固 体粉末をトルエンに分散させると均一溶液となり、ここに 468nm波長の励起光を照射 すると、ピーク波長 555nm、半値幅 96nmに発光した。
[0143] 母体結晶中に発光イオンを添加したドープ型半導体ナノ蛍光体粒子は、以下のも のを用いた。
•ドープ型ナノ蛍光体粒子 5 (Y O :Euナノ粒子): B. Xia et al. , Adv. Mater
2 3
. , 13卷(20) , 1579 (2001)、 H. Chang et al. , Jpn. J. Appl. Phy s. , 43卷(6A) , 3535 (2004)、に従い合成した。 TEM観察による Y O :Eu
2 3 粒子の数平均一次粒子径は約 40nmで、形状は球状に近い粒子であった。蛍光光 度計により 365nm波長の励起光を照射したところ、ピーク波長 611nm、半値幅 20η mに発光し 7こ。
•ドープ型ナノ蛍光体粒子 6 (LaPO: Ce, Tbナノ粒子): B. Xia et al. , Adv.
4
Mater. , 13卷(20) , 1579 (2001)、 I. W. Lenggoro et al. , Mater. Lett. , 50卷, 92 (2001)、に従い合成した。 TEM観察による LaPO : Ce, Tb
4 粒子の数平均一次粒子径は約 23nmで、形状は球状に近い粒子であった。蛍光光 度計により 365nm波長の励起光を照射したところ、ピーク波長 543nm、半値幅 21η mに発光し 7こ。
•ドープ型ナノ蛍光体粒子 7 (BaMgAl O : Eu, Mnナノ粒子): B. Xia et al. ,
10 17
Adv. Mater. , 13卷(20) , 1579 (2001)、 Y. C. Kang et al. , Appl.
Phys. A, 72卷(1) , 103 (2001)、に従い合成した。 TEM観察による BaM gAl O : Eu, Mn粒子の数平均一次粒子径は約 27nmで、形状は球状に近い粒子
10 17
であった。蛍光光度計により 365nm波長の励起光を照射したところ、ピーク波長 486 nm、半値幅 26nmに発光した。
[0144] 末端に SH基を有するビュル系重合体は、製造例 2〜3に従い製造した。
[0145] (製造例 2)
末端 SH基含有ポリメタクリル酸メチルの製造
還流冷却管、窒素ガス導入管、温度計、磁気撹拌子を備えた反応器に、連鎖移動 剤として 2-(2-フエ-ルプロピル)ジチォベンゾエート 1. 21g、重合開始剤として 2, 2, —ァゾビスイソプチ口-トリル 0. 27gを秤取した。別の容器に単量体としてメタクリル 酸メチル 149. 9g、溶媒としてトルエン 149. 2gを秤取し、両方の容器をキヤヌラで接 続し、窒素ガスを導入しながら系内を減圧する方法により脱酸素 ·窒素置換を行った 。メタクリル酸メチル Zトルエン溶液の約 1Z10を、キヤヌラを通して反応器へ移し、 撹拌しながら 70°Cに加熱した。 1時間後に、残りのメタクリル酸メチル /トルエン溶液 をゆっくり追加した。 3時間かけて追加を終了した後、さらに 70°Cで 7時間撹拌した。 反応液をメタノール 2Lに注 、で重合体を析出させ、さらにメタノールで洗浄後乾燥さ せて、片末端にチォカルボ二ルチオ基を有するポリメタクリル酸メチル 78. 2gを得た 。得られた重合体をトルエン 220mLに溶解し、 n—ブチルァミン 45. 5gをカ卩えた後室 温で 30時間撹拌し、次いでメタノール 2Lに注いで重合体を析出させた。さらにメタノ ールで洗浄後乾燥させ、片末端に SH基を有するポリメタクリル酸メチル 74. lgを得 た。分子量は、 Mw= 25000, Mn= 21100, Mw/Mn= l. 19であった。酸素フラ スコ燃焼法により測定した硫黄含有量は、ァミン添加前 0. 25重量%に対してァミン 処理後は 0. 14重量%であった。また全光線透過率は 93%の可視光を透過する重 合体であった。
[0146] (製造例 3)
末端 SH基含有ポリアクリル酸 n—ブチルの製造
単量体としてメタクリル酸メチルのかわりにアクリル酸 n ブチルを用いた以外は製 造例 8とほぼ同様にして、片末端に SH基を有するポリアクリル酸 n—ブチルを得た。 分子量は、 Mw= 22000, Mn= 18000、 Mw/Mn= l . 22であった。また全光線 透過率 87%の可視光を透過する重合体であった。
[0147] シリコーン系熱硬化性榭脂の部分硬化物は、製造例 4に従い製造した。
[0148] (製造例 4)
シリコーン系熱硬化性榭脂部分硬化物の製造
5Lのセパラブルフラスコにトルエン 1. 8L、 1, 3, 5, 7—テトラメチルシクロテトラシ ロキサン 1. 44kgを加え、内温が 104°Cになるように加熱した。そこにトリアリルイソシ ァヌレート 200g、白金ビュルシロキサン錯体のキシレン溶液(白金として 3wt%含有 ) 1. 44mL、トルエン 200mLの混合物を滴下した。 120°Cのオイルバス中で 7時間 加熱還流させた。 1 ェチ-ルー 1ーシクロへキサノール 1. 7gを加えた。未反応の 1 , 3, 5, 7—テトラメチルシクロテトラシロキサンおよびトルエンを減圧留去した。 1H- NMRによりこのものは 1, 3, 5, 7—テトラメチルシクロテトラシロキサンの SiH基の一 部がトリアリルイソシァヌレートと反応したもの(部分反応物 Aと称す、 SiH価: 9. Omm ol/g,ァリル価: 0. 13mmolZg)であることがわかった。
[0149] (実施例 1)
非ドープ型ナノ蛍光体粒子 1を 2g、非ドープ型ナノ蛍光体粒子 2を 2g、非ドープ型 ナノ蛍光体粒子 3を 2g、製造例 2で得られた末端 SH基含有ポリメタクリル酸メチルを 200g、全てトルエン 5. 5Lに溶解し、水槽中で 23°Cに温調しながら攪拌しつつ、 80 W38kHzの超音波を水槽の温調水を介して照射した。 24時間攪拌及び超音波照 射を続けた後無水メタノール 20Lを注入して不溶物を生じさせた。この不溶物を遠心 分離にて上澄み液から分離し、室温にて約 1日間真空乾燥して表面修飾 CdSeナノ 粒子固形粉体を得た。得られた表面修飾ナノ粒子をトルエン 5. 5L中に分散させ、さ らに製造例 2で得られた末端 SH基含有ポリメタクリル酸メチル 400gを添加後、水槽 中で 20°Cに温調しながら攪拌しつつ、 80W38kHzの超音波を水槽の温調水を介し て照射した。 24時間攪拌及び超音波照射を続けた後静置する事により、表面が重合 体で修飾された CdSeナノ蛍光体粒子のトルエン溶液を得た。
[0150] この溶液を蒸発皿に均一塗布し 1日程度かけて溶媒を蒸発乾燥する事により、非ド ープ型ナノ蛍光体粒子が分散した PMMA榭脂フィルムを得た。得られたフィルムの 外観は均一透明であり、平均厚みは 60 mであった。得られた榭脂フィルムに 365η m波長の励起光を照射すると、白色に発光した。得られた榭脂フィルムの TEM観察 結果を図 1に示す。
[0151] (実施例 2)
非ドープ型ナノ蛍光体粒子 3種類のかわりに、製造例 1で得られた非ドープ型ナノ 蛍光体粒子 4を用いた以外は実施例 1と同様にして、非ドープ型ナノ蛍光体粒子が 分散した PMMA榭脂フィルムを得た。得られたフィルムの外観は均一透明であり、 平均厚みは 60 mであった。得られた榭脂フィルムに 468nm波長の励起光を照射 すると、ほぼ白色に発光した。
[0152] (実施例 3) トリアリルイソシァヌレート 9. 9g、白金ビュルシロキサン錯体のキシレン溶液(白金と して 3wt%含有) 70mg、製造例 4で得られた部分反応物 A13. 9g、実施例 1で得ら れた榭脂フィルムの粉砕物 1. 2g (5重量%配合)、 1—ェチュル— 1—シクロへキサノ ール 70mgを 23°Cにて攪拌、脱泡した。これを、 2枚のガラス板に 3mm厚みのシリコ ーンゴムシートをスぺーサ一としてはさみこんで作成したセルに流しこみ、 60°CZ6 時間、 70°CZl時間、 80°CZl時間、 100°CZl時間空気中で加熱を行い、無色透 明のシート状硬化物を得た。得られたシートに 365nm波長の励起光を照射すると、 白色に発光した。
[0153] (実施例 4)
末端に SH基を有するビュル系重合体として、製造例 2で得られた末端 SH基含有 ポリメタクリル酸メチルのかわりに、製造例 3で得られた末端 SH基含有ポリアクリル酸 n—ブチルを用いた以外は実施例 1と同様にして、非ドープ型ナノ蛍光体粒子が分 散したアクリル酸 n—ブチル榭脂フィルムを得た。得られたフィルムの外観は均一透 明であり、平均厚みは 60 mであった。得られた榭脂フィルムに 365nm波長の励起 光を照射すると、白色に発光した。
[0154] (実施例 5)
実施例 1で得られた榭脂フィルムのかわりに実施例 4で得られた榭脂フィルムの粉 砕物を用いた以外は実施例 3と同様にして、無色透明のシート状硬化物を得た。得ら れたシートに 365nm波長の励起光を照射すると、白色に発光した。
[0155] (実施例 6)
非ドープ型ナノ蛍光体粒子 3種類のかわりに、ドープ型ナノ蛍光体粒子 5を 2. Og、 ドープ型ナノ蛍光体粒子 6を 2. Og、ドープ型ナノ蛍光体粒子 7を 2. Og、合計 6. Og 用いた以外は実施例 1と同様にして、ドープ型ナノ蛍光体粒子が分散した PMMA榭 脂フィルムを得た。得られたフィルムの外観は均一透明であり、平均厚みは 60 mで あった。得られた榭脂フィルムに 365nm波長の励起光を照射すると白色に発光した
[0156] (実施例 7)
実施例 1で得られた榭脂フィルムのかわりに実施例 6で得られた榭脂フィルムの粉 砕物 1. 2gを用いた以外は実施例 3と同様にして、無色透明のシート状硬化物を得 た。得られたシートに 365nm波長の励起光を照射すると、白色に発光した。
[0157] (実施例 8)
実施例 7で作成したシート状硬化物を適当な形状に切断し、キャンタイプ用の金属 キャップに設けた光透過用窓の部分に固定する。一方で、 MOCVD (有機金属気相 成長)法によりサファイア基板上に形成した、 Siと Znがドープされた InGaN活性層を n型と p型の AlGaNクラッド層で挟んだダブルへテロ構造の発光素子を用意する。続 いて、この発光素子をキャンタイプ用の金属のステムに載置した後、 p電極、 n電極を それぞれのリードに Au線でワイヤーボンディングする。これを上記のキャンタイプ用 の金属キャップで気密封止する。この様にしてキャンタイプの発光ダイオードを作成 することができた。
[0158] (比較例 1)
実施例 1で用いた末端 SH基含有ポリメタクリル酸メチルのかわりに、末端に SH基 を有していない通常の PMMA榭脂(Aldrich製、 Mw= 120, 000、全光線透過率 9 3%)を用いた以外は実施例 1と同様にして、非ドープ型ナノ蛍光体粒子を含む PM MA榭脂フィルムを得た。フィルムの外観は着色して不透明であり、可視光をほとんど 透過しなかった。得られた榭脂フィルムに蛍光光度計にて 365nm波長の励起光を 照射してみたが、発光しな力つた。
[0159] (比較例 2)
非ドープ型ナノ蛍光体粒子 1を 2g、非ドープ型ナノ蛍光体粒子 2を 2g、非ドープ型 ナノ蛍光体粒子 3を 2g、ドデカンチオール 12gをトルエン 5. 5Lに溶解し、水槽中で 2 3°Cに温調しながら攪拌しつつ、 80W38kHzの超音波を水槽の温調水を介して照 射した。 24時間攪拌及び超音波照射を続けた後無水メタノール 20Lを注入して不溶 物を生じさせた。この不溶物を遠心分離にて上澄み液から分離し、室温にて約 1日 間真空乾燥して表面修飾 CdSeナノ粒子固形粉体を得た。得られた表面修飾ナノ粒 子をトルエン 5. 5L中に分散させ、さらに末端に SH基を有していない通常の PMMA 榭脂 (Aldrich製、 Mw= 120, 000、全光線透過率 93%) 588gを添加し攪拌する 事により、表面修飾 CdSeナノ蛍光体粒子含有 PMMA榭脂のトルエン溶液を得た。 [0160] この溶液を蒸発皿に均一塗布し 1日程度かけて溶媒を蒸発乾燥する事により、非ド ープ型ナノ蛍光体粒子含有 PMMA榭脂フィルムを得た。得られた榭脂フィルムの外 観は、粒子の凝集部分が目視で確認できるほどに粒子が凝集して不均一な外観を 有しており、平均厚みは 60 mであった。得られた榭脂フィルムに蛍光光度計にて 3 65nm波長の励起光を照射しても、明確な発光ピークは観察されな力つた。得られた 榭脂フィルムの TEM観察結果を図 2に示す。
[0161] (比較例 3)
実施例 6で用いたドープ型ナノ蛍光体粒子 3種類のかわりに、市販の青色バルタ蛍 光体、緑色バルタ蛍光体、赤色バルタ蛍光体、の 3種 (いずれも化成ォプトニタス (株 )社製)を各 2. Ogずつ添加した以外は実施例 6と同様にして、バルタ蛍光体粒子が 分散した PMMA榭脂フィルムを得た。得られた榭脂フィルムに蛍光光度計にて 365 nm波長の励起光を照射すると、実施例 6と同様白色に発光したが、励起光を連続し て照射すると徐々に発熱により温度が上昇し、 1時間連続照射した後に発熱のため 榭脂が溶解しはじめた。
産業上の利用可能性
[0162] 本発明の組成物を用いることにより、従来のバルタ蛍光体よりもはるかに小さなナノ 蛍光体粒子を、重合体中に凝集することなく分散させることにより、すぐれた発光効 率を示しうる、光学材料用榭脂組成物を得ることができる。この組成物を用いた発光 素子は、従来のものと比べて発光効率を大幅に向上させることができるので、未来の 照明用素材として幅広い活用が期待でき、工業的にも非常に有用である。

Claims

請求の範囲
[1] 数平均一次粒子径が 0. Inn!〜 lOOnmのナノ蛍光体粒子を、末端に SH基を有す るビニル系重合体で修飾し、重合体中に分散させることを特徴とする、光学材料用榭 脂組成物。
[2] 末端に SH基を有するビュル系重合体の数平均分子量が 2000以上 100000以下 である、請求項 1記載の光学材料用榭脂組成物。
[3] 末端に SH基を有するビニル系重合体の重量平均分子量と数平均分子量との比で 表される分子量分布が、 1. 5以下である、請求項 1または 2記載の光学材料用榭脂 組成物。
[4] 末端に SH基を有するビュル系重合体力 アクリル酸、メタクリル酸、アクリル酸金属 塩、メタクリル酸金属塩、アクリル酸エステル、メタクリル酸エステル、スチレン、アタリ口 二トリル、酢酸ビュル、塩化ビュル、 N—アルキルアクリルアミド、 N—アルキルメタタリ ルアミド、 N, N—ジアルキルアクリルアミド、 N, N—ジアルキルメタクリルアミド、 N- ビュルピリジン、 2—ビュルピリジン、 4—ビュルピリジン、無水マレイン酸、マレイミド、 力 なる化合物より選ばれる 1種以上のモノマーをラジカル重合して得られるものであ る、請求項 1〜3の何れか 1項に記載の光学材料用榭脂組成物。
[5] 末端に SH基を有するビニル系重合体が可視光を透過する重合体である、請求項 1〜4の何れか 1項に記載の光学材料用榭脂組成物。
[6] 末端に SH基を有するビニル系重合体が、可逆的付加脱離連鎖移動重合により重 合されるポリマーを処理剤にて処理したものである、請求項 1〜5の何れか 1項に記 載の光学材料用樹脂組成物。
[7] 未凝集状態でのナノ蛍光体粒子の数平均一次粒子径が Inn!〜 30nmである、請 求項 1〜6の何れか 1項に記載の光学材料用榭脂組成物。
[8] ナノ蛍光体粒子の発光ピーク波長が 380nm〜800nmの波長域であり、力つ 200 ηπ!〜 500nmの波長域の光を照射することで発光しうる粒子である、請求項 1〜7の 何れか 1項に記載の光学材料用榭脂組成物。
[9] ナノ蛍光体粒子が、母体結晶のみ力もなる非ドープ型半導体ナノ蛍光体粒子であ る、請求項 1〜8の何れか 1項に記載の光学材料用榭脂組成物。
[10] ナノ蛍光体粒子が、母体結晶中に発光イオンを添加したドープ型半導体ナノ蛍光 体粒子である、請求項 1〜8の何れか 1項に記載の光学材料用榭脂組成物。
[11] 末端に SH基を有するビニル系重合体で修飾されたナノ蛍光体粒子を、熱硬化性 榭脂と混合してなる、請求項 1〜10の何れか 1項に記載の光学材料用榭脂組成物。
[12] 熱硬化性榭脂が、ケィ素系熱硬化性榭脂である、請求項 11に記載の光学材料用 榭脂組成物。
[13] ケィ素系熱硬化性榭脂が、 (A) SiH基と反応性を有する炭素-炭素二重結合を 1 分子中に少なくとも 2個含有する有機化合物、 (B) 1分子中に少なくとも 2個の SiH基 を含有するケィ素化合物、(C)ヒドロシリルイ匕触媒、を含有してなるシリコーン系熱硬 化性榭脂である、請求項 11または 12に記載の光学材料用榭脂組成物。
[14] 請求項 1〜13の何れか 1項に記載の光学材料用榭脂組成物を用いた発光装置。
PCT/JP2005/015391 2004-09-08 2005-08-25 光学材料用樹脂組成物 WO2006027956A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006535110A JPWO2006027956A1 (ja) 2004-09-08 2005-08-25 光学材料用樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-260792 2004-09-08
JP2004260792 2004-09-08

Publications (1)

Publication Number Publication Date
WO2006027956A1 true WO2006027956A1 (ja) 2006-03-16

Family

ID=36036244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015391 WO2006027956A1 (ja) 2004-09-08 2005-08-25 光学材料用樹脂組成物

Country Status (2)

Country Link
JP (1) JPWO2006027956A1 (ja)
WO (1) WO2006027956A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213592A (ja) * 2005-01-06 2006-08-17 Hitachi Software Eng Co Ltd 半導体ナノ粒子表面修飾方法
JP2008156174A (ja) * 2006-12-26 2008-07-10 National Institute For Materials Science アルミン酸ストロンチウムよりなる結晶性ナノ構造物とその製造方法
WO2009025130A1 (ja) * 2007-08-20 2009-02-26 Konica Minolta Opto, Inc. 複合材料及びそれを用いた光学素子
JP2009536679A (ja) * 2006-05-10 2009-10-15 スリーエム イノベイティブ プロパティズ カンパニー 蛍光無機ナノ粒子を含有する組成物及びコーティング
JP2012082324A (ja) * 2010-10-12 2012-04-26 Hitachi Chemical Co Ltd 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
CN103382256A (zh) * 2013-07-01 2013-11-06 上海交通大学 聚甲基丙烯酸甲酯/纳米硅复合膜的制备方法
JPWO2012077485A1 (ja) * 2010-12-06 2014-05-19 日立化成株式会社 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
WO2014001404A3 (en) * 2012-06-26 2014-07-03 Nikon Corporation Liquid polymerizable composition comprising mineral nanoparticles and its use to manufacture an optical article
JP2015108149A (ja) * 2014-12-26 2015-06-11 日立化成株式会社 球状蛍光体の製造方法、波長変換型太陽電池封止材、波長変換型太陽電池封止材の製造方法、太陽電池モジュール、太陽電池モジュールの製造方法
WO2016134820A1 (en) * 2015-02-27 2016-09-01 Merck Patent Gmbh A photosensitive composition and color converting film
JP2017526777A (ja) * 2014-08-11 2017-09-14 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA クラスター化ナノ結晶ネットワークおよびナノ結晶複合体
JP2018131608A (ja) * 2017-02-16 2018-08-23 ダウ グローバル テクノロジーズ エルエルシー 量子ドットの分散及びバリア性の改善のためにチオール基を有する反応性添加剤を含むポリマー複合体及びフィルム
JP2021504544A (ja) * 2017-11-30 2021-02-15 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 半電導性発光ナノ粒子を含む組成物
CN114644802A (zh) * 2022-03-22 2022-06-21 浙江华帅特新材料科技有限公司 蓝相增效pmma耐热板材的制造方法及蓝相增效pmma耐热板材

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080733A (ja) * 2000-04-21 2002-03-19 Kanegafuchi Chem Ind Co Ltd 光学材料用組成物、光学用材料、その製造方法およびそれを用いた液晶表示装置およびled
JP2002265508A (ja) * 2001-03-07 2002-09-18 Kanegafuchi Chem Ind Co Ltd 末端にメルカプト基を有する重合体の製造方法
JP2003034743A (ja) * 2001-07-24 2003-02-07 Kanegafuchi Chem Ind Co Ltd 光学材料用組成物、光学用材料、その製造方法およびそれを用いた液晶表示装置および発光ダイオード
JP2004151313A (ja) * 2002-10-30 2004-05-27 Toppan Forms Co Ltd 金属ナノコロイド微粒子を含有するカラーフィルター

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080733A (ja) * 2000-04-21 2002-03-19 Kanegafuchi Chem Ind Co Ltd 光学材料用組成物、光学用材料、その製造方法およびそれを用いた液晶表示装置およびled
JP2002265508A (ja) * 2001-03-07 2002-09-18 Kanegafuchi Chem Ind Co Ltd 末端にメルカプト基を有する重合体の製造方法
JP2003034743A (ja) * 2001-07-24 2003-02-07 Kanegafuchi Chem Ind Co Ltd 光学材料用組成物、光学用材料、その製造方法およびそれを用いた液晶表示装置および発光ダイオード
JP2004151313A (ja) * 2002-10-30 2004-05-27 Toppan Forms Co Ltd 金属ナノコロイド微粒子を含有するカラーフィルター

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213592A (ja) * 2005-01-06 2006-08-17 Hitachi Software Eng Co Ltd 半導体ナノ粒子表面修飾方法
JP2009536679A (ja) * 2006-05-10 2009-10-15 スリーエム イノベイティブ プロパティズ カンパニー 蛍光無機ナノ粒子を含有する組成物及びコーティング
JP2008156174A (ja) * 2006-12-26 2008-07-10 National Institute For Materials Science アルミン酸ストロンチウムよりなる結晶性ナノ構造物とその製造方法
WO2009025130A1 (ja) * 2007-08-20 2009-02-26 Konica Minolta Opto, Inc. 複合材料及びそれを用いた光学素子
JP2012082324A (ja) * 2010-10-12 2012-04-26 Hitachi Chemical Co Ltd 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JPWO2012077485A1 (ja) * 2010-12-06 2014-05-19 日立化成株式会社 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP5857974B2 (ja) * 2010-12-06 2016-02-10 日立化成株式会社 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
WO2014001404A3 (en) * 2012-06-26 2014-07-03 Nikon Corporation Liquid polymerizable composition comprising mineral nanoparticles and its use to manufacture an optical article
US10934451B2 (en) 2012-06-26 2021-03-02 Nikon Corporation Liquid polymerizable composition comprising mineral nanoparticles and its use to manufacture an optical article
CN103382256A (zh) * 2013-07-01 2013-11-06 上海交通大学 聚甲基丙烯酸甲酯/纳米硅复合膜的制备方法
JP2017526777A (ja) * 2014-08-11 2017-09-14 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA クラスター化ナノ結晶ネットワークおよびナノ結晶複合体
JP2015108149A (ja) * 2014-12-26 2015-06-11 日立化成株式会社 球状蛍光体の製造方法、波長変換型太陽電池封止材、波長変換型太陽電池封止材の製造方法、太陽電池モジュール、太陽電池モジュールの製造方法
US10509319B2 (en) 2015-02-27 2019-12-17 Merck Patent Gmbh Photosensitive composition and color converting film
WO2016134820A1 (en) * 2015-02-27 2016-09-01 Merck Patent Gmbh A photosensitive composition and color converting film
JP2018131608A (ja) * 2017-02-16 2018-08-23 ダウ グローバル テクノロジーズ エルエルシー 量子ドットの分散及びバリア性の改善のためにチオール基を有する反応性添加剤を含むポリマー複合体及びフィルム
JP7274260B2 (ja) 2017-02-16 2023-05-16 ダウ グローバル テクノロジーズ エルエルシー 量子ドットの分散及びバリア性の改善のためにチオール基を有する反応性添加剤を含むポリマー複合体及びフィルム
JP2021504544A (ja) * 2017-11-30 2021-02-15 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 半電導性発光ナノ粒子を含む組成物
US11732188B2 (en) 2017-11-30 2023-08-22 Merck Patent Gmbh Composition comprising a semiconducting light emitting nanoparticle
CN114644802A (zh) * 2022-03-22 2022-06-21 浙江华帅特新材料科技有限公司 蓝相增效pmma耐热板材的制造方法及蓝相增效pmma耐热板材

Also Published As

Publication number Publication date
JPWO2006027956A1 (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
Pan et al. General strategy for the preparation of stable luminous nanocomposite inks using chemically addressable CsPbX3 peroskite nanocrystals
WO2006027956A1 (ja) 光学材料用樹脂組成物
KR101961232B1 (ko) 양자점 조성물
TWI516546B (zh) 含有螢光體之聚矽氧硬化物、其製造方法、含有螢光體之聚矽氧組成物、其組成物前驅物、片狀成形物、led封裝體、發光裝置及led安裝基板之製造方法
JP4694371B2 (ja) 硬化性組成物とその調製方法、遮光ペースト、遮光用樹脂とその形成方法、発光ダイオード用パッケージ及び半導体装置
KR101757786B1 (ko) 표면수식 금속산화물 입자재료, 분산액, 실리콘 수지 조성물, 실리콘 수지 복합체, 광반도체 발광 장치, 조명 기구 및 액정 화상 장치
Yoon et al. Fabrication of highly transparent and luminescent quantum dot/polymer nanocomposite for light emitting diode using amphiphilic polymer-modified quantum dots
US9773953B2 (en) Organic phosphor-functionalized nanoparticles and compositions comprising the same
CN104662683B (zh) 光电子器件、光学元件和其制造方法
TW201130891A (en) Material for a molded resin body for use in a semiconductor light-emitting device
CN112442272B (zh) 马来酰亚胺树脂膜和马来酰亚胺树脂膜用组合物
WO2013172476A1 (ja) 表面修飾金属酸化物粒子材料、分散液、シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
Le et al. Highly Elastic and> 200% Reversibly Stretchable Down‐Conversion White Light‐Emitting Diodes Based on Quantum Dot Gel Emitters
Zhu et al. Macromonomer-induced CdTe quantum dots toward multicolor fluorescent patterns and white LEDs
JP5228464B2 (ja) 発光装置及び電子機器
JP6257446B2 (ja) 有機−無機ハイブリッドポリマーで封止した紫外発光ダイオードおよびその製造方法
EP2936217A1 (en) Optical composition
TWI846756B (zh) 異向性薄膜、及異向性薄膜的製造方法
Chou et al. Quantum Dot–Acrylic Acrylate Oligomer Hybrid Films for Stable White Light-Emitting Diodes
JP2007165508A (ja) 発光素子封止用組成物及び発光素子並びに光半導体装置
JP2006321966A (ja) 蛍光構造体、超微粒子構造体およびコンポジット、並びに発光装置、発光装置集合体
JP6354119B2 (ja) 表面修飾金属酸化物粒子材料、分散液、シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
KR102706533B1 (ko) 경화성 실리콘 조성물 및 이의 경화물
JP2017186479A (ja) 熱硬化性樹脂組成物
JP6239948B2 (ja) 多面体構造ポリシロキサンを添加した硬化性組成物、硬化物および半導体発光装置、半導体発光装置の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535110

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase