[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006011262A1 - 光信号増幅3端子装置 - Google Patents

光信号増幅3端子装置 Download PDF

Info

Publication number
WO2006011262A1
WO2006011262A1 PCT/JP2005/003780 JP2005003780W WO2006011262A1 WO 2006011262 A1 WO2006011262 A1 WO 2006011262A1 JP 2005003780 W JP2005003780 W JP 2005003780W WO 2006011262 A1 WO2006011262 A1 WO 2006011262A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
optical
input
terminal device
Prior art date
Application number
PCT/JP2005/003780
Other languages
English (en)
French (fr)
Inventor
Yoshinobu Maeda
Original Assignee
Nihon Yamamura Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co., Ltd. filed Critical Nihon Yamamura Glass Co., Ltd.
Priority to JP2006528352A priority Critical patent/JPWO2006011262A1/ja
Priority to US11/632,718 priority patent/US7688502B2/en
Publication of WO2006011262A1 publication Critical patent/WO2006011262A1/ja
Priority to US12/458,357 priority patent/US20090279165A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3515All-optical modulation, gating, switching, e.g. control of a light beam by another light beam
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/004Transferring the modulation of modulated light, i.e. transferring the information from one optical carrier of a first wavelength to a second optical carrier of a second wavelength, e.g. all-optical wavelength converter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2914Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using lumped semiconductor optical amplifiers [SOA]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01708Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells in an optical wavequide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/70Semiconductor optical amplifier [SOA] used in a device covered by G02F
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/5063Amplifier structures not provided for in groups H01S5/02 - H01S5/30 operating above threshold
    • H01S5/5072Gain clamping, i.e. stabilisation by saturation using a further mode or frequency

Definitions

  • the present invention relates to an optical signal amplification three-terminal device that can be suitably applied to optoelectronics such as optical communication, optical image processing, optical computer, optical measurement, and optical integrated circuit capable of advanced information processing. .
  • optical signals transmitted at high speed are once converted into electrical signals, information processing is performed in electronic circuits, and the processed signals are converted into light again and transmitted. Is the actual situation. That is, since light cannot be directly controlled by light, there is a limit to the high-speed signal processing.
  • Patent Document 1 proposes an optical functional element having a function of obtaining input signal light that has been amplified by controlling input light using control light.
  • a first input light having a first wavelength is input to a first semiconductor optical amplifying element together with a bias light having a constant intensity of a second wavelength, and an output light power of the first semiconductor optical amplifying element is selected.
  • Two laser beams with different wavelengths for example, the first wavelength
  • control light are mixed and input to the second semiconductor optical amplifying element, and one of the output lights of the second semiconductor optical amplifying element is mixed.
  • the first wavelength output signal light subjected to processing such as switching control by the control light can be obtained by positively feeding back the part and taking out the first wavelength output signal light from the remaining part.
  • a three-terminal optical functional device is disclosed.
  • Patent Document l WO02Z086616Al Disclosure of the invention
  • a second input light (bias light) having a second intensity with a constant intensity that is input to the first semiconductor optical amplifying element together with the input light is generated. Since a laser light source is required, it is difficult to reduce the size of the device or to make an integrated circuit. In addition, when a large number of optical signal amplification three-terminal devices are used, a large number of laser light sources are required and an optical circuit is required. There was an inconvenience of being expensive and complicated. In addition, since the bias light of the second input light is a laser light source, if the laser light intensity changes due to temperature changes, the output is greatly affected. In addition, when the wavelength of the laser light changes, the output from the first wavelength selection element changes and the characteristics change greatly.
  • the present invention has been made against the background of the above circumstances, and the object of the present invention is to input a second input light having a second wavelength of constant intensity that is input together with the input light to the first semiconductor optical amplifier element ( It is an object of the present invention to provide a simple optical signal amplification three-terminal device that eliminates the need for noise light. Another object of the present invention is to provide an optical signal amplification three-terminal device having stable characteristics by removing changes in characteristics due to temperature changes caused by bias light as a laser light source.
  • a wavelength for extracting the signal light of the bias light from the output light of the first semiconductor optical amplification element Since the selection filter is conventionally set to the narrowest possible band, for example, about 1 nm or less, the first semiconductor optical amplifying element is used to obtain the required intensity of the signal light of the bias light selected by the wavelength selection filter.
  • B If the intensity of the signal light of the bias light that can be transmitted through the wavelength selection filter is equal to or greater than a predetermined value, A sufficient mutual gain modulation effect can be obtained in the second semiconductor optical amplifying element without inputting a bias light of constant intensity from the laser light source to the first semiconductor optical amplifying element.
  • the wavelength band of the ambient light of the first wavelength may be used. Therefore, the intensity of the bias light can be increased by expanding the wavelength band selected by the wavelength selective filter.
  • the phase of the optical signal in the second semiconductor optical amplifier We have found that mutual gain modulation is possible. The present invention has been made based on such knowledge.
  • the gist of the optical signal amplification three-terminal device of the invention is that: (a) a first semiconductor optical amplification element and a second semiconductor optical amplification each provided with an active layer having a pn junction force An element; (b) first input means for inputting first input light having a first wavelength to the first semiconductor optical amplifier; and (c) light other than the first wavelength from light from the first semiconductor optical amplifier.
  • a first wavelength selection element that selects all or a part of the wavelength band of the peripheral light, and (d) a second input light of the second wavelength other than the first wavelength selected by the first wavelength selection element.
  • a second wavelength selection element for selecting and outputting the light of (D), wherein the first input light of the first wavelength is intensity-modulated input light.
  • the second input light of the second wavelength is control light, and the output light of the second wavelength has a signal waveform in which the intensity of the first input light is modulated in the input section of the control light.
  • the output light of the second semiconductor optical amplifier is the first input light of the first wavelength and the second input light of Z or the second wavelength. It has a waveform corresponding to intensity modulation or on / off.
  • the subject matter of the invention according to claim 2 is that: (a) a first semiconductor optical amplifying element including an active layer composed of a pn junction; and (b) first input light having a first wavelength and A first input means and a second input means for inputting a second input light having a second wavelength to one end face side force and the other end face side force of the first semiconductor optical amplifying element, respectively; (c) the first semiconductor optical amplifying element; Provided on one end surface side and transmits the first input light of the first wavelength from the first input means, but the light of the second wavelength out of the light of the first semiconductor light amplification element force is the first semiconductor light A third wavelength selection element that reflects to the amplifying element; and (d) is provided on the other end surface side of the first semiconductor optical amplifying element and transmits the second input light having the second wavelength from the second input means.
  • the fourth wavelength selection element that reflects the light of the first wavelength out of the light from the first semiconductor optical amplifier to the first semiconductor optical amplifier (E) the first input light of the first wavelength is intensity-modulated input light, the second input light of the second wavelength is control light, and the output light of the second wavelength is the first light
  • the signal is selected and output by a 4-wavelength selection element, and the first input in the control light input section A signal waveform corresponding to the intensity modulation of light is provided.
  • the gist of the invention according to claim 3 is that the second wavelength of the second input light used as control light or the like is the same as the first wavelength.
  • the gist of the invention according to claim 4 is that the signal amplification factor of the second wavelength output light with respect to the second wavelength second input light (control light) is 2 or more, preferably Make sure it is at least 10.
  • the gist of the invention according to claim 5 is that the first wavelength selection element is a wavelength selective filter having a spectral width of the selection light of 5 nm or more, more preferably lOnm or more. Come on.
  • the gist of the invention according to claim 6 is that the first wavelength selection element, the second wavelength selection element, the third wavelength selection element, and the Z or fourth wavelength selection element have a refractive index. It is composed of either a periodically changed grating filter or a multilayer filter in which a large number of layers having different refractive indexes are laminated.
  • the gist of the invention according to claim 7 is that the grating filter is composed of an inclined periodic diffraction grating cover.
  • the gist of the invention according to claim 8 is that the active layer of the first semiconductor optical amplifying element and the Z or second semiconductor optical amplifying element is a quantum well, a strained superlattice, or a quantum It is composed of dots.
  • the gist of the invention according to claim 9 is that the first semiconductor optical amplifying element and the Z or second semiconductor optical amplifying element reflect light that has passed through the active layer.
  • a reflecting means is provided on one end face, input light is input and output light is taken out through the other end face.
  • the gist of the invention according to claim 10 is that the reflecting means is a Bragg diffraction grating or a multilayer mirror in which a plurality of pairs of layers having different refractive indexes are laminated. is there.
  • the gist of the invention according to claim 11 is that the first input means and the Z or second input means are configured as an optical circulator, a directional coupling element, or an optical add-drop filter. It is to be a thing.
  • the gist of the invention according to claim 12 is that the optical signal amplification three-terminal device constitutes an optical arithmetic unit, a wavelength division multiplexing optical repeater, or an optical memory.
  • the optical signal amplification three-terminal device of the invention of claim 1 (a) a first semiconductor optical amplification device and a second semiconductor optical amplification device each including an active layer made of a pn junction, and (b) ) First input means for inputting the first input light of the first wavelength to the first semiconductor optical amplifier; and (c) the ambient light other than the first wavelength from the light from the first semiconductor optical amplifier.
  • a first wavelength selection element that selects light in all or part of the wavelength band; and (d) a second input light having a second wavelength that is selected from the ambient light other than the first wavelength selected by the first wavelength selection element.
  • the laser light source bias that the light of all or part of the ambient light with a wavelength different from the first wavelength that is input to the first wavelength is just inverted in intensity from the output signal light of the first wavelength. Since it has sufficient intensity even without light, it causes mutual gain modulation in the second semiconductor optical amplifying element, and the second input light (control light) of the second wavelength has sufficient optical signal amplification. can get.
  • the optical signal amplification three-terminal device it is not necessary to input a constant intensity bias light (laser light), which is the second input light of the second wavelength, to the first semiconductor optical amplification element. Therefore, stable operation with little temperature change can be obtained.
  • the first input light having the first wavelength is intensity-modulated input light
  • the second input light having the second wavelength is the control light. Since the output light of the second wavelength has a signal waveform in which the intensity of the first input light is modulated in the input section of the control light, the output of the waveform in response to the intensity modulation of the control light or on / off Light is obtained.
  • a first semiconductor optical amplification element including an active layer made of a pn junction, and (b) a first input of a first wavelength Input the light and the second input light of the second wavelength on the one end surface side and the other end surface side of the first semiconductor optical amplifier.
  • C provided on one end face side of the first semiconductor optical amplifier, and transmits the first input light having the first wavelength from the first input means.
  • a third wavelength selection element that reflects light of the second wavelength out of light from the first semiconductor optical amplification element to the first semiconductor optical amplification element; and (d) provided on the other end surface side of the first semiconductor optical amplification element.
  • the second input light of the second wavelength from the second input means is transmitted, but the light of the first wavelength out of the light from the first semiconductor optical amplifier is reflected to the first semiconductor optical amplifier.
  • the first input light of the first wavelength is intensity-modulated input light
  • the second input light of the second wavelength is control light
  • the second wavelength selection element The output light of the wavelength is selected and output by the fourth wavelength selection element, and the intensity of the first input light in the input section of the control light
  • a modulated signal waveform is provided. For this reason, the phase of the input optical signal and the output optical signal is inverted, and the wavelength is converted from the first wavelength to the second wavelength.
  • a mutual gain modulation effect is generated in the first semiconductor optical amplifier, and the second wavelength is changed.
  • the optical signal amplification effect is obtained by the second input light (control light). Further, since it is composed only of the first semiconductor optical amplifying element, the structure becomes simple and the manufacture becomes easy. Furthermore, according to the optical signal amplification three-terminal device of the invention of claim 2, the first input light having the first wavelength is intensity-modulated input light, and the second input light having the second wavelength is the control light. Since the output light of the second wavelength has a signal waveform in which the intensity of the first input light is modulated in the input section of the control light, the output light is intensity-modulated in response to the control light. Is obtained.
  • the gist of the invention according to claim 3 is that the second wavelength of the second input light used as control light or the like is the same as the first wavelength. Since the light of one wavelength is unified, the configuration of the optical circuit becomes simple.
  • the gist of the invention according to claim 4 is that the signal amplification factor of the output light of the second wavelength with respect to the second input light (control light) of the second wavelength is 10 or more, Sufficient signal gain can be obtained.
  • the gist of the invention according to claim 5 is that the light power from the first semiconductor optical amplifying element selects all of the peripheral light other than the first wavelength or light in a part of the wavelength band. Since the first wavelength selection element is a wavelength selective filter with a spectrum width of the selection light of 5 nm or more, it is possible to input ambient light having sufficient signal intensity to the second semiconductor optical amplification element. wear.
  • the gist of the invention according to claim 6 is that the first wavelength selection element, the second wavelength selection element, the third wavelength selection element, and the Z or fourth wavelength selection element have a refractive index. Since it is composed of a grating filter that is periodically changed and a multilayer filter in which a large number of layers having different refractive indexes are stacked, it is easy to integrate an optical signal amplification three-terminal device. It becomes.
  • the gist of the invention according to claim 7 is that the grating filter is also configured with a tilt period diffraction grating force, and therefore, a filter with a wide spectrum width can be configured.
  • the gist of the invention according to claim 8 is that an active layer of the first semiconductor optical amplifier or the second semiconductor optical amplifier is composed of a quantum well, a strained superlattice, or a quantum dot. Therefore, the high element response and the response speed can be obtained.
  • the gist of the invention according to claim 9 is that the first semiconductor optical amplifying element and the Z or second semiconductor optical amplifying element are for reflecting light that has passed through the active layer. Since the reflection means is provided on one end face, and input light is input and output light is extracted through the other end face, the optical signal amplification three-terminal device can be further reduced in size. In addition, high efficiency is obtained for signal conversion.
  • the gist of the invention according to claim 10 is that the reflecting means is a Bragg diffraction grating or a multilayer mirror in which a plurality of pairs of layers having different refractive indexes are laminated. It can be easily provided on the end face of the optical waveguide formed on the semiconductor chip using vapor deposition or sputtering technology.
  • the gist of the invention according to claim 11 is that the first input means and the Z or second input means are configured as an optical circulator, a directional coupling element, or an optical add-drop filter. Therefore, the optical signal amplification three-terminal device can be further downsized.
  • the gist of the invention according to claim 12 is that the optical signal amplification three-terminal device constitutes an optical computing unit, a wavelength division multiplexing optical repeater, or an optical memory.
  • the optical signal amplification three-terminal device constitutes an optical computing unit, a wavelength division multiplexing optical repeater, or an optical memory.
  • a high-speed optical computing unit, wavelength division multiplexing optical repeater, or optical memory that can be operated by itself is obtained.
  • FIG. 1 is a block diagram illustrating a circuit configuration of an optical signal amplification three-terminal device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an outer shape when the optical amplifying element constituting the optical signal amplifying three-terminal device of the embodiment of FIG. 1 is composed of a semiconductor optical amplifying element.
  • FIG. 3 is a diagram showing an output spectrum of the first semiconductor optical amplifying element in the optical signal amplification three-terminal device of FIG. 1, in which the output spectrum when the input signal light is on is in the upper stage, and the input signal light is The output spectrum when off is shown in the lower part.
  • FIG. 4 is a diagram showing the output power of the first semiconductor optical amplification element in the optical signal amplification three-terminal device of FIG. 1, and the surroundings after passing through the optical add / drop filter when the input signal light is on The optical spectrum of the light is shown in the upper part, and the optical spectrum of the ambient light after passing through the optical add / drop filter when the input signal light is off is shown in the lower part.
  • FIG. 5 is a time chart showing input / output signal waveforms of the optical signal amplification three-terminal device of the embodiment of FIG. 1.
  • FIG. 6 is a diagram illustrating input / output characteristics when the control light intensity is used as a parameter in the optical signal amplification three-terminal device of the embodiment of FIG. 1.
  • FIG. 6 is a diagram illustrating input / output characteristics when the control light intensity is used as a parameter in the optical signal amplification three-terminal device of the embodiment of FIG. 1.
  • FIG. 7 is a block diagram illustrating a circuit configuration of an optical signal amplification three-terminal device according to another embodiment of the present invention, and corresponds to FIG.
  • FIG. 8 is a block diagram illustrating a circuit configuration of an optical signal amplification three-terminal device according to another embodiment of the present invention, which corresponds to FIG.
  • FIG. 9 is a diagram illustrating an example in which the optical signal amplification three-terminal device of FIG. 1 or FIG. 7 is monolithically integrated into a one-chip semiconductor.
  • FIG. 10 is a diagram for explaining another example in which the optical signal amplification three-terminal device of FIG. 1 or FIG. 7 is monolithically integrated into a one-chip semiconductor.
  • FIG. 11 is a diagram for explaining another example in which the optical signal amplification three-terminal device of FIG. 1 is monolithically integrated into a one-chip semiconductor.
  • FIG. 12 is a diagram for explaining a configuration example of an optical signal storage device using the optical signal amplification three-terminal device of FIG. 1.
  • FIG. 13 is a diagram for explaining input signal light and output signal light stored therein in the optical signal storage device of FIG.
  • FIG. 14 is a block diagram illustrating a circuit configuration of an optical signal amplification three-terminal device according to another embodiment of the present invention, and corresponds to FIG.
  • FIG. 15 is another example of ambient light supplied to the second semiconductor optical amplifying element in the optical signal amplification three-terminal device of FIG. 1, FIG. 5 to FIG. 14, when the input signal light is on.
  • the optical spectrum of ambient light supplied to the two semiconductor optical amplifiers is shown in the upper part, and the optical spectrum of ambient light when the input signal light is off is shown in the lower part.
  • FIG. 16 is a block diagram illustrating a circuit configuration of an optical signal amplifier three-terminal device including a single semiconductor optical amplifier device according to another embodiment of the present invention.
  • FIG. 17 is a time chart for explaining an optical signal control operation in the embodiment of FIG.
  • FIG. 18 is a diagram for explaining another configuration example of an optical signal amplification three-terminal device including a single semiconductor optical amplification element.
  • FIG. 19 is a diagram for explaining another configuration example of an optical signal amplification three-terminal device including a single semiconductor optical amplification element.
  • FIG. 20 is a diagram illustrating another configuration example of an optical signal amplification three-terminal device including a single semiconductor optical amplification element.
  • Wavelength selection filter (second wavelength selection element)
  • Grating filter first wavelength selection element, second input means
  • Wavelength selective multilayer filter (first wavelength selection element, second input means)
  • Second wavelength selective mirror (second input means) 70 Optical signal amplification 3-terminal device
  • the semiconductor optical amplifying element is provided with an active layer having a pn junction force and amplifies an optical signal, but has a mutual gain modulation function.
  • this mutual gain modulation action amplifies and outputs a laser beam of that wavelength by the incidence of a monochromatic intensity-modulated laser beam, and at the same time has an ambient wavelength centered on that wavelength and Ambient light that increases or decreases in inverse proportion to the intensity modulation, that is, spontaneous emission light is also output.
  • laser light having a constant intensity of the second wavelength that is within the wavelength of the naturally emitted light is input, a powerful output light of the second wavelength modulated by inverting the incident light is obtained.
  • laser light of a second wavelength with constant intensity is input to the first semiconductor optical amplifier as bias light.
  • the ambient light is light generated in the left or right wavelength band or the surrounding wavelength band around the first wavelength of the input signal light, and is opposite to the output signal light of the first wavelength. Modulated to phase.
  • the first wavelength selection element may separate all of the ambient light of the input light having the first wavelength, or may separate one part. Then, it may be inputted together with the control light to the second semiconductor optical amplifying element.
  • the wavelength band of the ambient light of the first semiconductor optical amplifying element force input to the second semiconductor optical amplifying element is large as a whole by selecting a wide wavelength band although the intensity of each wavelength is weak (strong !, ) It is set so that light intensity can be obtained and a sufficient mutual gain modulation action can be generated in the second semiconductor optical amplifying element.
  • the second input light having the second wavelength as the control light may be signal light having a predetermined frequency or waveform for controlling or modulating the output light. There may be.
  • the optical signal amplification three-terminal device is used as a wavelength conversion device or a phase conversion device.
  • Input signal light having the first wavelength ⁇ such as laser light in the band (first input light) L force First input
  • the first semiconductor optical amplifying element 14 has a semiconductor chip force as shown in FIG.
  • an optical waveguide 14b formed on a semiconductor substrate 14a composed of a compound semiconductor such as indium phosphorus (InP) is a group III-V mixed crystal semiconductor epitaxially grown on the semiconductor substrate 14a.
  • photolithography is used to form a tape-shaped protrusion having a predetermined width.
  • the optical waveguide 14b is made of a material having a refractive index higher than that of the semiconductor substrate 14a.
  • the optical waveguide 14b has a function of propagating light while confining it in the thickness direction.
  • the multilayer film in the optical waveguide 14b includes an active layer 14c constituted by a pn junction, a cap layer, and the like, and an upper electrode 14d is fixed thereon.
  • an active layer 14c a voltage is applied between the lower electrode 14e fixed to the lower surface of the semiconductor substrate and the upper electrode 14d, and a current is passed through the pn junction to form an electron'hole pair. Then, the light passing through the active layer 14c is amplified by stimulated radiation!
  • the active layer 14c is composed of multiple quantum wells, strained superlattices, or quantum dots.
  • a multiple quantum well for example, it is composed of six pairs of InGaAs (100 A thickness) and InGaAsP (100 A thickness) lattice-matched by epitaxial growth from an InP semiconductor substrate 14a.
  • a guide layer (2000 A) having a Darin (GRIN) structure in which the composition (refractive index) is changed stepwise is sequentially provided on the active layer 14c.
  • the device length (optical path length) of this active layer 14c is 600 m, and for example, electrons injected by energy injection with a current value of 250 mA are moved to the valence band by stimulated emission by photons passing through. Sometimes it is thought that light energy is released to amplify the passing light.
  • a gain of about 20 dB at a wavelength of 1555 ⁇ m can be obtained.
  • the output light from the first semiconductor optical amplifying element 14 has a spectrum shown in FIG. 3, for example.
  • the upper part of Fig. 3 is when the input signal light L is on, and the lower part is the input signal light.
  • the ambient light L in the output light when on is the output light when the input signal light L is off.
  • the intensity is lower than the ambient light L inside.
  • Mutual gain modulation is a phenomenon in which the intensity of ambient light L with an ambient wavelength different from ⁇ is reversed.
  • the optical add / drop filter 16 functions as a first wavelength selection element and a second input means, and transmits light in a wavelength band of, for example, 1530 nm-1540 nm in an lOnm width.
  • Fig. 4 shows the spectrum of the light after passing through the optical add / drop filter 16. The upper part of Fig. 4 shows the case where the input light L is on, and the lower part shows the input spectrum.
  • the band is set so that the intensity of the ambient light L to the second semiconductor optical amplifying element 18 is sufficient to generate sufficient mutual gain modulation in the second semiconductor optical amplifying element 18.
  • the entire ambient light may be allowed to pass as long as the wavelength band is at least larger than the wavelength band having a width of 5 nm.
  • the optical add / drop filter 16 is a part of the ambient light L from the output light from the first semiconductor optical amplifying element 14.
  • the second semiconductor optical amplifier 18 is reflected by reflecting the control light (second input light) L of the second wavelength ⁇ supplied from the outside.
  • the second wavelength of this control light L is input to the second semiconductor optical amplifying element 18.
  • the same wavelength as that of the input signal light L For example, the same wavelength as that of the input signal light L.
  • the input signal light L of the optical signal amplification 3-terminal device 10 It may be 1 wavelength ⁇ .
  • the input signal light L of the optical signal amplification 3-terminal device 10 It may be 1 wavelength ⁇ .
  • the second semiconductor optical amplifying element 18 is configured in the same manner as the first semiconductor optical amplifying element 14, in which the second semiconductor optical amplifying element 18 is modulated and controlled by the control light L by the mutual gain modulation action.
  • Output including the output signal light L of the wavelength and the ambient light of the second wavelength.
  • the wavelength selection filter 20 includes a second wavelength selection element that selects the same wavelength as the control light L from the output light of the second semiconductor optical amplification element 18.
  • the wavelength selection filter 20 includes the second wave modulated and controlled by the control light L in the output light from the second semiconductor optical amplifying element 18.
  • Both 1 S 2 light (second input light) L are input to the second semiconductor optical amplifier 18. And the second half
  • the second modulated and controlled by the control light L by the mutual gain modulation action of the conductor optical amplifier 18.
  • Output including the output signal light L of the wavelength and the ambient light of the second wavelength.
  • the output signal light L for the second wavelength is transmitted by the wavelength selection filter 20 and output.
  • the light in the wavelength band is the output signal light L of the first wavelength 1
  • the second semiconductor optical amplifying element 18 has a second input of the second wavelength because the second semiconductor optical amplifier 18 has sufficient intensity even if there is no noise light as much as the laser light source power that is not only the intensity reversed from OUT.
  • Light control light
  • FIG. 5 shows the input signal light L, control light L, and output of the optical signal amplification three-terminal device 10 described above.
  • the output signal light L is a time chart showing the signal light L on a common time axis.
  • the output signal light L is
  • the input signal light L is amplified in-phase signal light, which depends on whether the control light L is turned on or off
  • the modulated one is shown. Also, the intensity (magnitude) of the output signal light L is controlled.
  • the output signal light L is also solid.
  • FIG. 6 shows optical input / output characteristics of the optical signal amplification three-terminal device 10 using the intensity of the control light L as a parameter.
  • the important characteristic is that the output light of the order of several mW can be controlled with the control light power of several tens / zW, and the signal amplification factor of the output light by the control light is about 10-30. Yes.
  • the optical signal amplification three-terminal device 10 of the present embodiment it is not necessary to input bias light (laser light) having a constant intensity to the first semiconductor optical amplification element 14, so that temperature change of the bias light, etc. It is possible to obtain a stable operation in which there is no characteristic fluctuation due to fluctuations.
  • the second semiconductor optical amplification element 18 is composed of a reflection type optical amplification element in which output light is reflected from the reflection end face 18m and output from the input side.
  • This second semiconductor optical amplifying element 18 is connected (coupled) to an optical circulator 26 provided between the optical add / drop filter 16 and the wavelength selection filter 20, and thus the optical signal amplification three-terminal device described above. Different from 10.
  • one of the ambient light L having a wavelength different from the first wavelength selected by the optical drop filter 16 is used.
  • the second semiconductor optical amplifying element 18 is input to the second semiconductor optical amplifying element 18 via the ulator 26, and the output light of the second semiconductor optical amplifying element 18 is supplied to the wavelength selective filter 20 via the circulator 26, and the second semiconductor optical amplifying element 18
  • the light is transmitted through the selective filter 20 and output.
  • the optical signal amplification three-terminal device 28 of Fig. 8 includes a reflection type optical amplification element in which the output light of the first semiconductor optical amplification element 14 is reflected from the reflection end face 14m and output from the input side.
  • the first semiconductor optical amplification element 14 is different from the optical signal amplification three-terminal device 24 in that it is connected (coupled) to an optical circulator 30 provided on the input side of the optical add / drop filter 16.
  • Light L is input to the first semiconductor optical amplifying element 14 via the optical circulator 30 and
  • the output light of the first semiconductor optical amplifying element 14 is supplied to the optical add / drop filter 16 via the optical circulator 30, and ambient light having a wavelength different from the first wavelength ⁇ selected by the optical add / drop filter 16 is provided. Control of part of L and second wavelength supplied from outside
  • the output signal light L of the second wavelength in the output light of the optical amplifying element 18 is the wavelength selective filter 2 Transmitted by 0 and output.
  • the optical signal amplification three-terminal device 32 in FIG. 9 is an embodiment integrated on a one-chip semiconductor substrate 34a.
  • an optical waveguide 34b formed on a semiconductor substrate 34a composed of a compound semiconductor such as indium phosphorus (InP) is a group III-V mixed crystal semiconductor grown epitaxially on the semiconductor substrate 34a. For example, it is formed so as to form a tape-like protrusion having a predetermined width using photolithography. Since the optical waveguide 34b is made of a material having a higher refractive index than the semiconductor substrate 34a, the optical waveguide 34b has a function of confining light in the thickness direction and propagating it, and the first semiconductor optical amplifier 14 and the second semiconductor.
  • the body light amplifying element 18 has a sufficient length that can be configured to input the control light L.
  • a branching waveguide 34d is connected to the output side end.
  • the multilayer film in the optical waveguide 34b includes, for example, an active layer, a cap layer, or the like having a pn junction force of a multiple quantum well, a strained superlattice, or a quantum dot structure.
  • a pair of first upper electrode 34e and second upper electrode 34f are fixed.
  • a voltage is applied between a lower electrode (not shown) fixed to the lower surface of the semiconductor substrate 34a and the pair of first upper electrode 34e and second upper electrode 34f, and a current flows through the pn junction.
  • the first semiconductor optical amplifying element 14 and the second semiconductor optical amplifying element 18 are formed between the pair of first upper electrode 34e and second upper electrode 34f and the lower electrode (not shown).
  • the refractive index is periodically changed between the pair of first upper electrode 34e and second upper electrode 34f, so that the output light of the first semiconductor optical amplifying element 14 is reduced.
  • a functioning grating filter 36 is provided.
  • the grating filter 36 does not pass light in a wavelength band of 1545 nm to 1560 nm, but has a characteristic of passing light in other wavelength bands.
  • the first wavelength is exclusively between the branch point of the optical waveguide 34b and the branching waveguide 34d and the output side end face of the optical waveguide 34b.
  • a wavelength selection filter 38 that passes light in a wavelength band of 1550 nm is provided.
  • This wavelength selective filter 38 has a pair of films with different refractive indexes. It may be affixed to the output side end face of the optical waveguide 34b by being composed of a multi-layered multilayer filter.
  • the optical signal amplification three-terminal device 40 of Fig. 10 is also an embodiment integrated on one semiconductor chip.
  • This optical signal amplification three-terminal device 40 has the above-mentioned optical signal amplification three-terminal device in that the wavelength selection filter 38 is provided between the branch point of the optical waveguide 34b and the branch waveguide 34d and the second upper electrode 34f. Although it is different from 32, others are constituted similarly.
  • Both the optical signal amplification three-terminal device 32 and the optical signal amplification three-terminal device 40 can operate in the same manner as the optical signal amplification three-terminal devices 10, 24, and 28 described above.
  • the control light L is transmitted at the second wavelength.
  • the control light L is transmitted at the second wavelength end.
  • the optical signal amplification three-terminal device 42 of FIG. 11 is also an embodiment integrated on one semiconductor chip.
  • This optical signal amplification three-terminal device 42 is composed of a compound semiconductor, for example, indium phosphide (InP) force, and has a rectangular semiconductor substrate 42a in plan view in which two of the four corners are chamfered at 45 °, and its
  • the optical waveguide 42b formed on the semiconductor substrate 42a is a III-V mixed crystal semiconductor multilayer film epitaxially grown on the semiconductor substrate 42a.
  • the optical waveguide 42b has a predetermined width using photolithography. It is formed to be a tape-like protrusion!
  • the optical waveguide 42b is made of a material having a higher refractive index than that of the semiconductor substrate 42a, the optical waveguide 42b has a function of propagating light while confining it in the thickness direction, and the first semiconductor optical amplifier 14 and the second semiconductor optical amplifier. It has a U-shape consisting of a pair of relatively long parallel portions of sufficient length that can constitute the element 18 and a relatively short connecting portion that connects them at one end.
  • the multilayer film in the optical waveguide 42b includes, for example, an active layer, a cap layer, or the like having a pn junction force of a multiple quantum well, a strained superlattice, or a quantum dot structure.
  • a pair of first upper electrode 42e and second upper electrode 42f are fixed to the upper surface, respectively. It is.
  • a voltage is applied between a lower electrode (not shown) fixed to the lower surface of the semiconductor substrate 42a and the pair of first upper electrode 42e and second upper electrode 42f, and a current flows through the pn junction. As a result, an electron'hole pair is formed, and light passing through the active layer is amplified by stimulated emission.
  • the first semiconductor optical amplification element 14 and the second semiconductor optical amplification element 18 are respectively configured between the pair of first upper electrode 42e and second upper electrode 42f and the lower electrode (not shown).
  • the chamfered portion of the semiconductor substrate 42a has no wavelength selectivity formed by a Bragg diffraction grating or a multilayer mirror in which a plurality of pairs of layers having different refractive indexes are laminated.
  • the total reflection mirror 44 and the control light L for the first wavelength of 1550 nm, for example, are transmitted.
  • a predetermined width different from the first wavelength ⁇ for example, a wavelength of lOnm width of 1525 to 1535 nm
  • the wavelength selective multilayer filter 46 that reflects the ambient light L of the band is fixed to each other.
  • the wavelength selective multilayer filter 46 functions as a first wavelength selection element and a second input means in the same manner as the optical add / drop filter 16 and the grating filter 36 described above. It is constructed by laminating a large number of layers. Further, only the first wavelength light is allowed to pass between the second semiconductor optical amplification element 18 and the output side end face on the output side of the pair of parallel portions of the optical waveguide 42b.
  • a wavelength selection filter 48 that allows light in the wavelength band of 1545 nm to 1560 nm to pass therethrough is provided. Similar to the wavelength selection filter 38 described above, the wavelength selection filter 48 is configured by a multilayer filter in which a plurality of pairs of films having different refractive indexes are stacked, so that the output side end face of the optical waveguide 34b is formed. In this embodiment, a part of the refractive index of the optical waveguide 42b is periodically changed.
  • the amplified signal light having the first wavelength ⁇ and the first wavelength are amplified.
  • Output light including ambient light of ⁇ is output and reflected by the total reflection mirror 44.
  • the light is incident on the wavelength selective multilayer filter 46.
  • the ambient light L having a predetermined width different from the first wavelength ⁇ , for example, a wavelength band of 1525 to 1535 nm, of the output light included in the output light from the first semiconductor optical amplifying element 14 is obtained.
  • Selective And the control light L of the second wavelength supplied from the outside is transmitted.
  • the ambient light L and the second wavelength in a wavelength band having a predetermined width different from those of the first wavelength
  • Both the control light L of ⁇ is incident on the second semiconductor optical amplifying element 18.
  • Control light L is modulated by the mutual gain conversion in the second semiconductor optical amplifier 18
  • Received output signal light L of the second wavelength and ambient light of the second wavelength are output.
  • the wavelength selective filter 48 selectively outputs the output signal light L for the second wavelength.
  • FIG. 12 shows a configuration example in which the optical signal amplification three-terminal device 10 of FIG. 1 is applied to an optical signal storage device (optical memory) 50.
  • This optical signal storage device 50 outputs the second wavelength output selectively output from the output light of the second semiconductor optical amplifying element 18 by the wavelength selective filter 20.
  • an optical waveguide In order to delay the propagation of the output signal light L of the second wavelength, for example, an optical wave
  • the bra 56 is configured by being provided in the optical signal amplification three-terminal device 10. According to the optical signal storage device 50 of the present embodiment, the input signal light L shown in the upper part of FIG.
  • the optical signal can be obtained by taking out the output signal light L at any timing.
  • An optical signal amplification three-terminal device 60 in FIG. 14 is configured to replace the optical add / drop filter 16 and the optical circuit 30 with a first wavelength selective mirror 62 that functions as a first wavelength selection element, and a second 8 is different from the optical signal amplification three-terminal device 28 of the embodiment of FIG. 8 in that a second wavelength selective mirror 64 functioning as an input means and a third semiconductor optical amplification element 66 are provided.
  • the first wavelength selective mirror 62 is a force that transmits light having a first wavelength ⁇ of 1550 nm.
  • the second wavelength selective mirror 64 transmits light of the second wavelength of 1555 nm.
  • Reflective multilayer filter using light wave interference configured to reflect side light L
  • the third semiconductor optical amplifying element 66 is configured in the same manner as the first semiconductor optical amplifying element 14 or the second semiconductor optical amplifying element 18.
  • the input signal light L of the first wavelength is the first wavelength.
  • the third semiconductor optical amplifying element 66 and the reflecting mirror 14k on the other end face are input to the reflecting first semiconductor optical amplifying element 14 through the selection mirror 62, reflected by the reflecting mirror 14k, and third semiconductor optical amplifying.
  • the ambient light L having a predetermined wavelength range of 1525 to 1535 nm is transmitted through the first wavelength selective mirror 62.
  • the light is transmitted through the wavelength selective filter 20 functioning as an element and output.
  • the same effect as that of the optical signal amplification three-terminal device 28 of the embodiment of FIG. 8 described above can be obtained, but the ambient light L is amplified by the third semiconductor optical amplification element 66. So high
  • Ambient light L in the short wavelength side is selected and input to the second semiconductor optical amplifier 18
  • the wavelength band centered around the first wavelength (
  • the semiconductor optical amplifying element 18 It may be input to the semiconductor optical amplifying element 18. In such a case, since the signal intensity supplied from the first semiconductor optical amplifying element 14 to the second semiconductor optical amplifying element 18 is increased, higher stability can be obtained.
  • the upper row shows the case where the input light L is on.
  • the lower row shows the case where the input light L is off.
  • the optical signal amplification three-terminal device 70 in FIG. 16 includes the first semiconductor optical amplification element 14 and the first wave The first input that allows the long first input light L to be input to one end side of the first semiconductor optical amplifier element 14
  • An optical fiber 12 that functions as a force means, and a wavelength selection unit that is provided between the optical fiber 12 and the first semiconductor optical amplifying element 14 and transmits light of the first wavelength but reflects light of the second wavelength.
  • the selective mirror 72 and the light (second wavelength ⁇ ) from the wavelength selective mirror 72 are reflected to the original optical path.
  • the filter 76 Provided on the output side of the filter 76, select the wavelength of the control light (second input light) L for the second wavelength.
  • the circulator 26 functions as second input means for inputting the second input light of the second wavelength also with the other-end surface side force of the first semiconductor optical amplifying element 14.
  • the wavelength-selective mirror 72 and the mirror 74 transmit the first input light L having the first wavelength ⁇ from the optical fiber 12, but the second wave of the light from the first semiconductor optical amplifying element 14 is transmitted.
  • the wavelength selective filter 76 has the second wavelength ⁇ from the circulator 26.
  • control light L is transmitted, but the first wavelength out of the light from the first semiconductor optical amplifier 14
  • the wavelength is converted from one wavelength ⁇ to the second wavelength ⁇ .
  • the first input light L of the first wavelength is the intensity-modulated input light
  • control light (second input light) L is control light whose intensity has been changed.
  • the output light L is modulated by the intensity of the first input light L in the input section of the control light L.
  • Output light L whose intensity is modulated in response to the control light L.
  • FIG. 18 is a modification of the optical signal amplification three-terminal device 70 of FIG. 16, in which the first semiconductor optical amplification is performed.
  • FIG. 4 is a plan view showing an optical signal amplification three-terminal device 80 in which an element 14 is provided on a one-chip semiconductor substrate 80a.
  • An optical waveguide 80b formed on a semiconductor substrate 80a composed of a compound semiconductor such as indium phosphide (InP) is a multilayer film of a III-V mixed crystal semiconductor grown epitaxially on the semiconductor substrate 80a. Yes, for example, it is formed to be a tape-shaped protrusion having a predetermined width by using photolithography.
  • InP indium phosphide
  • the multilayer film in the optical waveguide 80b includes, for example, an active layer composed of a multiple quantum well, a strained superlattice, or a pn junction having a quantum dot structure, a cap layer, etc.
  • a voltage is applied between the upper electrode 80d and a lower electrode (not shown) to cause excitation current to flow through the pn junction, thereby forming an electron-hole pair, and light passing through the active layer has an induced radiation effect. Therefore, it is designed to be amplified. That is, the first semiconductor optical amplification element 14 is configured between the upper electrode 80d and the lower electrode (not shown).
  • a first wavelength selective multilayer that transmits light of the first wavelength but reflects light of the second wavelength
  • a membrane filter 82 is provided on the input side end face of the semiconductor substrate 80a, and the second wavelength ⁇
  • the phase of the output light L output from the first semiconductor optical amplifying element 14 through the filter 84 and the circulator 26 is inverted, and the wavelength is converted to the first wavelength and the second wavelength.
  • Input light (control light) L can be used to amplify the optical signal.
  • the first wavelength selective multilayer filter 82 transmits the first input light L having the first wavelength from the optical fiber 12, but the first half.
  • the light having the second wavelength ⁇ is transmitted to the first semiconductor optical amplifier 14.
  • the second wavelength selective multilayer filter 84 force transmits the control light L of the second wavelength from the circulator 26, but the first half.
  • the light having the first wavelength ⁇ is converted into the first semiconductor light amplifying element 14.
  • the optical signal amplification three-terminal device 92 shown in FIG. 19 is the same as the optical signal amplification three-terminal device 32 shown in FIG.
  • the first semiconductor optical amplifying element 14 is removed, and the second semiconductor optical amplifying element 18 is changed to the first semiconductor optical amplifying element 14 at the same time.
  • the rest is configured in the same manner as the optical signal amplifying three-terminal device 32. ing. That is, an optical waveguide 34b formed on a semiconductor substrate 34a composed of a compound semiconductor, for example, indium phosphide (InP), is a III-V group mixed crystal semiconductor epitaxially grown on the semiconductor substrate 34a.
  • InP indium phosphide
  • the optical waveguide 34b is made of a material having a higher refractive index than that of the semiconductor substrate 34a, the optical waveguide 34b has a function of propagating light while confining it in the thickness direction, and a sufficiently long length capable of configuring the first semiconductor optical amplifier element 14. And a branching waveguide 34d for inputting the control light L is provided.
  • the multilayer film in the optical waveguide 34b includes, for example, an active layer or a cap layer having a pn junction force of a multiple quantum well, a strained superlattice, or a quantum dot structure, and the upper electrode 34e Is fixed.
  • the active layer a voltage is applied between the lower electrode (not shown) fixed to the lower surface of the semiconductor substrate 34a and the upper electrode 34e, and a current is passed through the pn junction, whereby an electron-hole pair is formed.
  • the light passing through the active layer is amplified by the stimulated radiation action. That is, the first semiconductor optical amplifier 14 is formed between the upper electrode 34e and a lower electrode (not shown).
  • the refractive index is periodically changed between the upper electrode 34e and the input side, so that the first wavelength can be obtained.
  • a first wavelength selection filter 94 that reflects light is provided. Further, in the optical waveguide 34b, between the branch point of the optical waveguide 34b with the branching waveguide 34d and the output side end face of the optical waveguide 34b, the light of the first wavelength is reflected and the light of the second wavelength is reflected. Second wavelength selection filter to transmit 96
  • the wavelength selective filters 94 and 96 are constituted by, for example, grating filters in which a large number of regions having different refractive indexes are arranged in a lattice.
  • the first input light L inputted through the first wavelength selection filter 94 and the first semiconductor optical amplification element 14 outputted through the wavelength selection filter 96 are output.
  • the phase of the output light L is inverted and the wavelength is converted to the first wavelength and the second wavelength.
  • the wavelength selection filter 94 transmits the first input light L having the first wavelength from the optical fiber 12, but the second of the light from the first semiconductor optical amplifier 14.
  • the wavelength selection filter 96 transmits the output light L having the second wavelength.
  • the first semiconductor optical amplifying element 14 amplifies the light of the first wavelength ⁇ as the first semiconductor optical amplifier.
  • FIG. 20 shows an optical signal amplification three-terminal device 100 having a first semiconductor optical amplification element 14 that amplifies light in the thickness direction of the semiconductor substrate.
  • the first semiconductor optical amplifying element 14 is III-V epitaxially grown on one surface (lower surface) of a semiconductor substrate 100a made of a compound semiconductor such as gallium arsenide (GaAs).
  • GaAs gallium arsenide
  • a multilayer film of a group III mixed crystal semiconductor is included, and the multilayer film includes an active layer 100c constituted by a pn junction.
  • the active layer 100c is composed of, for example, multiple quantum wells, strained superlattices, or quantum dots. In the active layer 100c, it is considered that when the electrons injected by the energy injection by the current value are moved to the valence band by the stimulated emission by the passing photons, light energy is emitted and the passing light is amplified.
  • the semiconductor substrate 100a is provided with a through hole 100f for allowing the amplified light to pass therethrough.
  • a first wavelength selection filter 102 that passes light but reflects light of the second wavelength ⁇ is provided.
  • the end face (upper surface) on the output side of the first semiconductor optical amplifying element 14 has a first wavelength end.
  • a second wavelength selection filter 104 that reflects the first light and transmits the second wavelength ⁇ is provided.
  • the first wavelength selection filter 102 and the second wavelength selection filter 104 are provided with transmission or reflection characteristics by using the light wave interference by laminating dielectric layers. Multi-layer filter force is configured.
  • a circulator 26 is provided on the output side of the first semiconductor optical amplifying element 14, and the control light L for the second wavelength is transmitted from the circulator 26.
  • phase of the output light L output from the first semiconductor optical amplifying element 14 through the second wavelength selection filter 104 and the circulator 26 are inverted, and the first wavelength output is also shifted to the second wavelength.
  • OUT 1 2 is converted in length, but a mutual gain modulation effect is generated in the first semiconductor optical amplifying element 14, and an optical signal amplification effect is obtained by the second input light (control light) L of the second wavelength ⁇ .
  • the first wavelength selection filter 102 transmits the first input light L having the first wavelength from the optical fiber 12, but the light from the first semiconductor optical amplifying element 14 is transmitted.
  • a third wavelength selection element that reflects light of the second wavelength ⁇ to the first semiconductor optical amplifier element 14 is used.
  • the second wavelength selection filter 104 transmits the control light L for the second wavelength from the circulator 26, but the second of the light from the first semiconductor optical amplifying element 14 is transmitted.
  • the wavelength selection filter 20 when the optical add / drop filter 16, the wavelength selection filter 20, the grating filter 36, and the wavelength selection filters 38 and 48 are configured by periodically changing the refractive index, It may be a so-called chirped grating filter in which the refractive index change period gradually increases or decreases in the light propagation direction.
  • an optical power bra and a wavelength selection filter having the same function may be provided.
  • an optical circulator or a directional coupling element may be configured!
  • the optical amplifying element 18 was also configured to have a reflective semiconductor optical amplifying element force using the reflection 14m or 18m as a reflecting means, but a reflective semiconductor optical amplifying element in which a multilayer reflective mirror was attached to the end face May be provided as a reflection means!
  • the multilayer mirror is constructed by laminating many pairs of layers with different refractive indexes. Also, a Bragg diffraction grating using Bragg reflection is provided in place of the multilayer reflection mirror.
  • the active layer 14c is made of another type of semiconductor that matches the wavelength at which the InGaAsP semiconductor is used to form a quantum well or multiple quantum well. May be.
  • a GalnNAs semiconductor is preferably used for an optical wavelength in the 1300 nm band. Since this GalnNAs semiconductor has excellent temperature characteristics! /, It has the advantage of not requiring a cooling means for cooling the semiconductor optical amplifier.
  • the force that was obtained by integrating one optical signal amplifying three-terminal device 10, 3 2 or 40 on one semiconductor chip A large number of optical signal amplifying 3-terminal devices 10, 32 or 40 may be integrated on a single semiconductor chip.
  • optical signal amplification three-terminal device 10, 24, 28, 32 or 40 of the above-described embodiment can be applied to an optical calculator and a wavelength division multiplexing optical repeater, and thus constitutes a part of them. It may be what you want to do.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 光信号増幅3端子装置10によれば、第1半導体光増幅素子14からの出力光の中から光アド・ドロップフィルタ16により選択された第1波長λ1 とは異なる波長の周囲光LS の一部と、外部から供給された第2波長λ2 の制御光LC とが共に第2半導体光増幅素子18に入力される。この第2半導体光増幅素子18の相互利得変調作用によって、制御光LC で変調制御された第2波長λ2 の出力信号光LOUT とその第2波長λ2 の周囲波長の周囲光とを含む出力光が第2半導体光増幅素子18から出力され、波長選択フィルタ20によって第2波長λ2 の出力信号光LOUT が透過させられて出力される。

Description

明 細 書
光信号増幅 3端子装置
技術分野
[0001] 本発明は、高度情報処理が可能な光通信、光画像処理、光コンピュータ、光計測、 光集積回路などの光エレクトロニクスに好適に適用可能な光信号増幅 3端子装置に 関するものである。
背景技術
[0002] 光通信の分野では、高速で伝送した光信号を一旦電気信号に変換し、電子回路 にお 、て情報処理が行われ、処理後の信号を再度光に変換して伝送するというのが 実情である。すなわち、光を光で直接制御することができないので、信号処理の高速 '性に限界があった。
[0003] したがって、広帯域且つ高速伝送が可能な光ファイバ通信を用いた動画像通信や 映像の分配といった広帯域な情報提供サービスゃ大容量の情報の高速処理などの 分野において、光信号で光信号を処理する技術が期待されている。そのため、たとえ ばエレクトロニクスで言うトランジスタに相当するような機能 (信号増幅作用)素子、す なわち光信号を他の光信号で直接制御して信号増幅できる光機能素子が望まれて いる。
[0004] これに対し、特許文献 1に記載されているように、本発明者等は入力光を制御光を 用いて制御し信号増幅された出力信号光を得る機能を備えた光機能素子或!ヽは光 機能装置を提案した。この特許文献 1には、第 1波長の第 1入力光を第 2波長の一定 強度のバイアス光と共に第 1半導体光増幅素子に入力させ、その第 1半導体光増幅 素子の出力光力 選択した第 2波長の光に異なる波長 (たとえば第 1波長)の他のレ 一ザ光 (制御光)を混合して第 2半導体光増幅素子に入力させ、その第 2半導体光 増幅素子の出力光の一部を正帰還させ、残りの一部から第 1波長の出力信号光を取 り出すことにより、制御光によってスイッチング制御等の処理が施された第 1波長の出 力信号光を得ることができる 3端子の光機能素子が開示されている。
[0005] 特許文献 l :WO02Z086616Al 発明の開示
発明が解決しょうとする課題
[0006] し力しながら、上記従来の光機能素子では、第 1半導体光増幅素子に入力光ととも に入力させる一定強度の第 2波長の第 2入力光 (バイアス光)を発生させるためのレ 一ザ光源を必要とすることから、装置の小型化或いは集積回路化が困難となるととも に、多数の光信号増幅 3端子装置を用いる場合に多数のレーザ光源が必要となって 光回路が高価で複雑となるという不都合があった。また、第 2入力光のバイアス光は レーザ光源であるため、温度変化などによりレーザ光強度が変化すると出力に大きく 影響を与える。さらに、レーザ光の波長が変化すると第 1波長選択素子からの出力が 変化して特性が大きく変化する不都合があった。
[0007] 本発明は以上の事情を背景として為されたものであり、その目的とするところは、第 1半導体光増幅素子に入力光とともに入力させる一定強度の第 2波長の第 2入力光 ( ノ ィァス光)を不要とするシンプルな光信号増幅 3端子装置を提供することにある。ま た、レーザ光源であるバイアス光による温度変化などによる特性の変化を除去し、安 定した特性を有する光信号増幅 3端子装置を提供することにある。
課題を解決するための手段
[0008] 本発明者は、上記の目的を達成するために種々検討を重ね且つ解析を行った結 果、(a)第 1半導体光増幅素子の出力光中からバイアス光の信号光を取り出す波長 選択フィルタは従来可及的に狭帯域たとえば lnm程度以下に設定されていることか ら、その波長選択フィルタによって選択されるバイアス光の信号光の必要強度を得る ために、第 1半導体光増幅素子に入力光とともに入力させる一定強度のバイアス光 を発生させるレーザ光源を必要とする点、(b)上記波長選択フィルタを透過させられ るバイアス光の信号光の強度が所定値以上であれば、上記レーザ光源からの一定 強度のバイアス光を第 1半導体光増幅素子に入力させなくても、第 2半導体光増幅 素子において相互利得変調作用が十分に得られる点、(c)上記バイアス光は第 2半 導体光増幅素子において相互利得変調を生じさせるためであってその第 1波長の周 囲光の波長帯でよいことから、上記波長選択フィルタによる選択波長帯を拡大するこ とによりバイアス光の強度が高められて第 2半導体光増幅素子における光信号の相 互利得変調が可能となるという点をそれぞれ見出した。本発明はこのような知見に基 づ 、て為されたものである。
[0009] すなわち、請求項 1に係る発明の光信号増幅 3端子装置の要旨とするところは、 (a) pn接合力 なる活性層をそれぞれ備えた第 1半導体光増幅素子および第 2半導体 光増幅素子と、 (b)第 1波長の第 1入力光を前記第 1半導体光増幅素子に入力させる 第 1入力手段と、 (c)前記第 1半導体光増幅素子からの光から前記第 1波長以外の周 辺光の全部または 1部の波長帯を選択する第 1波長選択素子と、 (d)第 2波長の第 2 入力光を、第 1波長選択素子により選択された前記第 1波長以外の周辺光の全部ま たは 1部の波長帯の光とともに、前記第 2半導体光増幅素子に入力させる第 2入力手 段と、 (e)前記第 2半導体光増幅素子力 の光力 第 2波長の光を選択して出力する 第 2波長選択素子とを含み、 (D前記第 1波長の第 1入力光は強度変調された入力光 であり、上記第 2波長の第 2入力光は制御光であり、前記第 2波長の出力光は、その 制御光の入力区間にお 、て第 1入力光の強度変調された信号波形を有するもので ある。この第 1発明の光信号増幅 3端子装置では、好適には、前記第 2半導体光増 幅素子の出力光は前記第 1波長の第 1入力光および Zまたは第 2波長の第 2入力光 の強度変調或いはオンオフに応じた波形を備えたものである。
[0010] また、請求項 2に係る発明の要旨とするところは、 (a) pn接合からなる活性層を備え た第 1半導体光増幅素子と、 (b)第 1波長の第 1入力光および第 2波長の第 2入力光 を前記第 1半導体光増幅素子の一端面側および他端面側力 それぞれ入力させる 第 1入力手段および第 2入力手段と、 (c)前記第 1半導体光増幅素子の一端面側に 設けられ、前記第 1入力手段からの第 1波長の第 1入力光を透過させるがその第 1半 導体光増幅素子力 の光のうち第 2波長の光をその第 1半導体光増幅素子へ反射 する第 3波長選択素子と、 (d)前記第 1半導体光増幅素子の他端面側に設けられ、 前記第 2入力手段からの第 2波長の第 2入力光を透過させるがその第 1半導体光増 幅素子からの光のうちの第 1波長の光をその第 1半導体光増幅素子へ反射する第 4 波長選択素子とを含み、 (e)前記第 1波長の第 1入力光は強度変調された入力光で あり、前記第 2波長の第 2入力光は制御光であり、前記第 2波長の出力光は、第 4波 長選択素子により選択して出力され、前記制御光の入力区間においてその第 1入力 光の強度変調に応じた信号波形を備えたものである。
[0011] また、請求項 3に係る発明の要旨とするところは、制御光などとして用いられる上記 第 2入力光の第 2波長は、前記第 1波長と同じであることにある。
[0012] また、請求項 4に係る発明の要旨とするところは、前記第 2波長の出力光の前記第 2 波長の第 2入力光 (制御光)に対する信号増幅率は、 2以上、好ましくは 10以上であ ることにめる。
[0013] また、請求項 5に係る発明の要旨とするところは、前記第 1波長選択素子は、選択 光のスペクトル幅が 5nm以上、さらに好適には lOnm以上の波長選択性フィルタで あること〖こめる。
[0014] また、請求項 6に係る発明の要旨とするところは、前記第 1波長選択素子、第 2波長 選択素子、第 3波長選択素子、および Zまたは第 4波長選択素子は、屈折率が周期 的に変化させられたグレーティングフィルタ、屈折率が異なる多数組の層が積層され て成る多層膜フィルタのいずれかから構成されたものであることにある。
[0015] また、請求項 7に係る発明の要旨とするところは、前記グレーティングフィルタは、傾 斜周期回折格子カゝら構成されたものであることにある。
[0016] また、請求項 8に係る発明の要旨とするところは、前記第 1半導体光増幅素子およ び Zまたは第 2半導体光増幅素子の活性層は、量子井戸、歪み超格子、または量子 ドットから構成されたものであることにある。
[0017] また、請求項 9に係る発明の要旨とするところは、前記第 1半導体光増幅素子およ び Zまたは第 2半導体光増幅素子は、前記活性層を通過した光を反射するための反 射手段をその一端面に備え、他端面を通して入力光が入力され且つ出力光が取り 出されるちのであること〖こある。
[0018] また、請求項 10に係る発明の要旨とするところは、前記反射手段は、ブラッグ回折 格子、または屈折率が異なる 1対の層が多数対積層されてなる多層膜ミラーであるこ とにある。
[0019] また、請求項 11に係る発明の要旨とするところは、前記第 1入力手段および Zまた は第 2入力手段は、光サーキユレータ、方向性結合素子、または光アド'ドロップフィ ルタカ 構成されたものであることにある。 [0020] また、請求項 12に係る発明の要旨とするところは、前記光信号増幅 3端子装置は、 光演算器、波長分割多重光中継器、または光メモリを構成するものであることにある
発明の効果
[0021] 請求項 1に係る発明の光信号増幅 3端子装置によれば、 (a) pn接合からなる活性層 をそれぞれ備えた第 1半導体光増幅素子および第 2半導体光増幅素子と、 (b)第 1波 長の第 1入力光を前記第 1半導体光増幅素子に入力させる第 1入力手段と、 (c)前記 第 1半導体光増幅素子からの光から前記第 1波長以外の周辺光の全部または 1部の 波長帯の光を選択する第 1波長選択素子と、 (d)第 2波長の第 2入力光を、第 1波長 選択素子により選択された前記第 1波長以外の周辺光の全部または 1部の波長帯の 光とともに、前記第 2半導体光増幅素子に入力させる第 2入力手段と、 (e)前記第 2半 導体光増幅素子からの光から第 2波長の光を選択し出力する第 2波長選択素子とを 含むことから、第 1半導体光増幅素子の出力光中から選択されて第 2半導体光増幅 素子に入力される、第 1波長とは異なる波長の周辺光の全部または 1部の波長帯の 光は、第 1波長の出力信号光と強度が反転しているだけでなぐレーザ光源力 のバ ィァス光がなくても十分な強度を備えているので、第 2半導体光増幅素子において相 互利得変調作用を生じさせ、第 2波長の第 2入力光 (制御光)によって十分な光信号 増幅作用が得られる。また、本請求項 1に係る発明の光信号増幅 3端子装置では、 第 2波長の第 2入力光である一定強度のバイアス光 (レーザ光)を第 1半導体光増幅 素子に入力させる必要がないので、温度変化が少なぐ安定した作動を得ることがで きる。さらに、本請求項 1に係る発明の光信号増幅 3端子装置によれば、第 1波長の 第 1入力光は強度変調された入力光であり、上記第 2波長の第 2入力光は制御光で あり、上記第 2波長の出力光は、その制御光の入力区間において第 1入力光の強度 変調された信号波形を有するものであるので、制御光の強度変調或いはオンオフに 応答した波形の出力光が得られる。
[0022] 請求項 2に係る発明の光信号増幅 3端子装置によれば、 (a) pn接合からなる活性層 を備えた第 1半導体光増幅素子と、 (b)第 1波長の第 1入力光および第 2波長の第 2 入力光を前記第 1半導体光増幅素子の一端面側および他端面側力 それぞれ入力 させる第 1入力手段および第 2入力手段と、 (c)前記第 1半導体光増幅素子の一端面 側に設けられ、前記第 1入力手段からの第 1波長の第 1入力光を透過させるがその 第 1半導体光増幅素子からの光のうち第 2波長の光をその第 1半導体光増幅素子へ 反射する第 3波長選択素子と、 (d)前記第 1半導体光増幅素子の他端面側に設けら れ、前記第 2入力手段からの第 2波長の第 2入力光を透過させるがその第 1半導体光 増幅素子からの光のうちの第 1波長の光をその第 1半導体光増幅素子へ反射する第 4波長選択素子とを含み、 (e)前記第 1波長の第 1入力光は強度変調された入力光 であり、前記第 2波長の第 2入力光は制御光であり、前記第 2波長の出力光は、第 4 波長選択素子により選択して出力され、前記制御光の入力区間においてその第 1入 力光の強度変調された信号波形を備えたものである。このため、入力光信号と出力 光信号との位相が反転し、第 1波長から第 2波長へ波長変換されるが、第 1半導体光 増幅素子において相互利得変調作用を生じさせ、第 2波長の第 2入力光 (制御光) によって光信号増幅作用が得られる。また、第 1半導体光増幅素子のみで構成され ているので、構造が単純となり、製造が容易となる。さらに、本請求項 2に係る発明の 光信号増幅 3端子装置によれば、第 1波長の第 1入力光は強度変調された入力光で あり、上記第 2波長の第 2入力光は制御光であり、上記第 2波長の出力光は、その制 御光の入力区間において第 1入力光の強度変調された信号波形を有するものである ので、制御光に応答して強度変調された出力光が得られる。
[0023] また、請求項 3に係る発明の要旨とするところは、制御光などとして用いられる上記 第 2入力光の第 2波長は、前記第 1波長と同じであるので、入出力信号が単一の波 長の光で統一されるので、光回路の構成が簡単となる。
[0024] また、請求項 4に係る発明の要旨とするところは、前記第 2波長の出力光の前記第 2 波長の第 2入力光 (制御光)に対する信号増幅率は 10以上であるので、十分な信号 増幅率が得られる。
[0025] また、請求項 5に係る発明の要旨とするところは、前記第 1半導体光増幅素子から の光力 前記第 1波長以外の周辺光の全部または 1部の波長帯の光を選択する第 1 波長選択素子は、選択光のスペクトル幅が 5nm以上の波長選択性フィルタであるの で、十分な信号強度を有する周辺光を第 2半導体光増幅素子へ入力させることがで きる。
[0026] また、請求項 6に係る発明の要旨とするところは、前記第 1波長選択素子、第 2波長 選択素子、第 3波長選択素子、および Zまたは第 4波長選択素子は、屈折率が周期 的に変化させられたグレーティングフィルタ、屈折率が異なる多数組の層が積層され て成る多層膜フィルタの 、ずれかから構成されたものであるので、光信号増幅 3端子 装置の集積化が容易となる。
[0027] また、請求項 7に係る発明の要旨とするところは、上記グレーティングフィルタは、傾 斜周期回折格子力も構成されたものであるので、スペクトル幅の広 、フィルタを構成 することができる。
[0028] また、請求項 8に係る発明の要旨とするところは、前記第 1半導体光増幅素子また は第 2半導体光増幅素子の活性層は、量子井戸、歪み超格子、または量子ドットから 構成されたものであるので、素子の高 、応答速度が得られる。
[0029] また、請求項 9に係る発明の要旨とするところは、前記第 1半導体光増幅素子およ び Zまたは第 2半導体光増幅素子は、前記活性層を通過した光を反射するための反 射手段をその一端面に備え、他端面を通して入力光が入力され且つ出力光が取り 出されるものであるので、光信号増幅 3端子装置を一層小型化できる。また、信号変 換に関して高効率が得られる。
[0030] また、請求項 10に係る発明の要旨とするところは、前記反射手段は、ブラッグ回折 格子、または屈折率が異なる 1対の層が多数対積層されてなる多層膜ミラーであるの で、蒸着或いはスパッタ技術を利用して半導体チップ上に形成された光導波路の端 面に容易に設けることができる。
[0031] また、請求項 11に係る発明の要旨とするところは、前記第 1入力手段および Zまた は第 2入力手段は、光サーキユレータ、方向性結合素子、または光アド'ドロップフィ ルタカ 構成されたものであるので、光信号増幅 3端子装置を一層小型化できる。
[0032] また、請求項 12に係る発明の要旨とするところは、前記光信号増幅 3端子装置は、 光演算器、波長分割多重光中継器、または光メモリを構成するものであるので、光信 号のみで作動可能な高速の光演算器、波長分割多重光中継器、または光メモリが得 られる。 図面の簡単な説明
[図 1]本発明の一実施例の光信号増幅 3端子装置の回路構成を説明するブロック図 である。
[図 2]図 1の実施例の光信号増幅 3端子装置を構成する光増幅素子が半導体光増幅 素子により構成された場合の外形を示す斜視図である。
[図 3]図 1の光信号増幅 3端子装置における第 1半導体光増幅素子の出力スペクトル を示す図であって、入力信号光がオンであるときの出力スペクトルを上段に、入力信 号光がオフであるときの出力スペクトルを下段に示している。
[図 4]図 1の光信号増幅 3端子装置において第 1半導体光増幅素子の出カスペ外ル を示す図であって、入力信号光がオンであるときの光アド'ドロップフィルタ透過後の 周囲光の光スペクトルを上段に示し、入力信号光がオフであるときの光アド'ドロップ フィルタ透過後の周囲光の光スペクトルを下段に示している。
[図 5]図 1の実施例の光信号増幅 3端子装置の入出力信号波形を示すタイムチャート である。
[図 6]図 1の実施例の光信号増幅 3端子装置において、制御光強度をパラメータとし た場合の入出力特性を説明する図である。
[図 7]本発明の他の実施例の光信号増幅 3端子装置の回路構成を説明するブロック 図であって、図 1に相当する図である。
[図 8]本発明の他の実施例の光信号増幅 3端子装置の回路構成を説明するブロック 図であって、図 1に相当する図である。
[図 9]図 1または図 7の光信号増幅 3端子装置が 1チップ半導体にモノリシック化され た例を説明する図である。
[図 10]図 1または図 7の光信号増幅 3端子装置が 1チップ半導体にモノリシック化され た他の例を説明する図である。
[図 11]図 1の光信号増幅 3端子装置が 1チップ半導体にモノリシック化された他の例 を説明する図である。
[図 12]図 1の光信号増幅 3端子装置を用いた光信号記憶装置の構成例を説明する 図である。 [図 13]図 12の光信号記憶装置の入力信号光とそれが記憶された出力信号光を説明 する図である。
[図 14]本発明の他の実施例の光信号増幅 3端子装置の回路構成を説明するブロック 図であって、図 1に相当する図である。
[図 15]図 1、図 5乃至図 14の光信号増幅 3端子装置において第 2半導体光増幅素子 へ供給される周囲光の他の例であって、入力信号光がオンであるときに第 2半導体 光増幅素子へ供給される周囲光の光スペクトルを上段に示し、入力信号光がオフで あるときの周囲光の光スペクトルを下段に示している。
[図 16]本発明の他の実施例であって、単一の半導体光増幅素子を備えた光信号増 幅 3端子装置の回路構成を説明するブロック図である。
[図 17]図 16の実施例における光信号制御作動を説明するタイムチャートである。
[図 18]単一の半導体光増幅素子を備えた光信号増幅 3端子装置の他の構成例を説 明する図である。
[図 19]単一の半導体光増幅素子を備えた光信号増幅 3端子装置の他の構成例を説 明する図である。
[図 20]単一の半導体光増幅素子を備えた光信号増幅 3端子装置の他の構成例を説 明する図である。
符号の説明
10、 24、 28、 32、 40、 42、 60 :光信号増幅 3端子装置
12 :光ファイバ (第 1入力手段)
14 :第 1半導体光増幅素子
16:光アド'ドロップフィルタ (第 1波長選択素子、第 2入力手段)
18 :第 2半導体光増幅素子
20、 38、 48 :波長選択フィルタ(第 2波長選択素子)
36:グレーティングフィルタ (第 1波長選択素子、第 2入力手段)
46:波長選択性多層膜フィルタ (第 1波長選択素子、第 2入力手段)
62:第 1波長選択性ミラー (第 1波長選択素子)
64:第 2波長選択性ミラー (第 2入力手段) 70 :光信号増幅 3端子装置
発明を実施するための最良の形態
[0035] ここで、前記半導体光増幅素子は、 pn接合力 成る活性層を備えて光信号を増幅 するものであるが、相互利得変調作用を有している。この相互利得変調作用は、たと えば、単色の強度変調されたレーザ光の入射によってその波長のレーザ光を増幅し て出力すると同時に、その波長を中心とする周囲波長を有してそのレーザ光の強度 変調に反比例して強度が増減する周囲光すなわち自然放出光をも出力する。この自 然放出光の波長内である第 2波長の一定強度のレーザ光が入力された場合には、 上記入射光と反転して変調された第 2波長の強力な出力光が得られる。従来の光信 号増幅 3端子装置では一定強度の第 2波長のレーザ光がバイアス光として第 1半導 体光増幅素子に入力されていた。
[0036] 一方、前記周囲光は、前記入力信号光の第 1波長を中心としてその左右の波長帯 或いは周囲の波長帯に発生する光であって、その第 1波長の出力信号光とは逆位 相に変調されている。このため、前記第 1波長選択素子は、第 1半導体光増幅素子 力 の出力光力 前記第 1波長の入力光の周辺光の全部を分離するものであっても よいし、 1部を分離して第 2半導体光増幅素子へ制御光と共に入力させるものであつ てもよい。この第 2半導体光増幅素子へ入力させる第 1半導体光増幅素子力 の周 囲光の波長帯は、個々の波長の強度は弱いが広い波長帯を選択することによって全 体として大きな (強!、)光強度が得られ、第 2半導体光増幅素子にぉ 、て十分な相互 利得変調作用を発生させられるように設定される。
[0037] 前記制御光としての第 2波長の第 2入力光は、出力光の制御或いは変調のための 所定の周波数或いは波形の信号光であってもよ 、し、オンオフ或いは一定強度の光 であってもよい。この一定強度の光である場合は、光信号増幅 3端子装置が波長変 換装置、或いは位相変換装置などとして用いられる。
実施例
[0038] 以下、本発明の一実施例の光信号増幅 3端子装置 10を図面に基づいて詳細に説 明する。
[0039] 図 1の光信号増幅 3端子装置 10において、たとえば 1550nmを中心波長とする狭 帯域のレーザ光などの第 1波長 λ を有する入力信号光 (第 1入力光) L 力 第 1入
1 IN
力手段として機能する光ファイバ 12を介して第 1半導体光増幅素子 (SOA) 14へ供 給され、そこで相互利得変調が行われる。この第 1半導体光増幅素子 14は、たとえ ば図 2に示す、半導体チップ力 構成される。図 2において、化合物半導体たとえば インジウム燐 (InP)から構成される半導体基板 14aの上に形成された光導波路 14b は、その半導体基板 14aの上にェピタキシャル成長させられた III-V族混晶半導体 の多層膜であり、たとえばホトリソグラフィーを用いて所定幅のテープ状突起となるよう に形成されている。この光導波路 14bは、半導体基板 14aよりも屈折率が高い物質で 構成されて 、るので、光を厚み方向に閉じ込めつつ伝播させる機能を備えて 、る。 上記光導波路 14b内の多層膜には、 pn接合により構成された活性層 14c、キャップ 層などが含まれ、その上には上部電極 14dが固着されている。この活性層 14cは、半 導体基板の下面に固着された下部電極 14eと上記上部電極 14dとの間に電圧が印 加され且つ上記 pn接合に電流が流されることによって電子'正孔対が形成され、そ の活性層 14cを通過する光が誘導放射作用によって増幅されるようになって!/、る。上 記活性層 14cは、多重量子井戸、歪み超格子、或いは量子ドットから構成されている 。多重量子井戸である場合は、たとえば、 InP半導体基板 14aからェピタキシャル成 長させられることにより格子整合された InGaAs (100 Aの厚み)と InGaAsP (100A の厚み)との 6対により構成され、その活性層 14cの上には、組成 (屈折率)が段階的 に変化させられたダリン (GRIN)構造のガイド層(2000 A)が順次設けられている。こ の活性層 14cのデバイス長(光路長さ)は 600 mであり、たとえば 250mAの電流値 によるエネルギ注入によって注入された電子が通過する光子による誘導放射によつ て価電子帯へ移動させられるときに光エネルギを放出して通過光を増幅させると考え られている。この 250mAの電流値によるエネルギ注入により、たとえば波長 1555η mにお!/、て 20dB程度の利得が得られる。
上記第 1半導体光増幅素子 14からの出力光は、たとえば図 3に示すスペクトルを備 えている。図 3の上段は入力信号光 L がオンであるときのものであり、下段は入力信
IN
号光 L がオフであるときのものである。図 3から明らかなように、入力信号光 L がオン
IN IN
であるときの出力光には、その入力信号光 L が増幅された第 1波長え の増幅光と その第 1波長え とは異なる周囲波長え の周囲光 L とが含まれ、入力信号光 L が
1 S S IN オンであるときの出力光中の周囲光 L は入力信号光 L がオフであるときの出力光
S IN
中の周囲光 L よりも強度が小さい。このように第 1波長え の増幅光とその第 1波長
S 1
λ とは異なる周囲波長え の周囲光 L との強度が反転する現象が相互利得変調
1 S S
作用と称される。
[0041] 図 1に戻って、光アド'ドロップフィルタ 16は、第 1波長選択素子および第 2入力手 段として機能するものであり、たとえば 1530nm— 1540nmの lOnm幅の波長帯の 光を透過させるがそれ以外の波長の光を反射するように構成されて 、る光波干渉を 利用した反射型多層膜フィルタである。図 4は光アド'ドロップフィルタ 16を透過後の 光のスペクトルを示し、その図 4の上段は入力光 L がオン状態の場合を、下段は入
IN
力光 L がオフ状態の場合を示している。この光アド'ドロップフィルタ 16の通過波長
IN
帯は、第 2半導体光増幅素子 18において十分な相互利得変調作用を発生させるに 足る、第 2半導体光増幅素子 18への周囲光 L の強度が得られるように設定されるの
S
で、少なくとも 5nm幅の波長帯よりも大きい幅の波長帯であればよぐ周囲光の全部 を通過させるものであってもよい。上記光アド'ドロップフィルタ 16は、上記第 1半導体 光増幅素子 14からの出力光中から、周囲光 L の一部である 1530nm— 1540nm
s
の波長帯を通過させて第 2半導体光増幅素子 18へ入力させる。また、外部から供給 された第 2波長 λ の制御光 (第 2入力光) L を反射して第 2半導体光増幅素子 18
2 C
へ入力させる。この制御光 L の第 2波長え は第 2半導体光増幅素子 18へ入力さ
C 2
れる周囲光 L と異なる波長であればよいので、たとえば前記入力信号光 L と同じ第
S IN
1波長 λ とされてもよい。この場合には、光信号増幅 3端子装置 10の入力信号光 L
1
と出力信号光 L とが同じ波長え となる利点がある。
IN OUT 1
[0042] 第 2半導体光増幅素子 18は上記第 1半導体光増幅素子 14と同様に構成されたも のであり、そこでは、相互利得変調作用によって、制御光 L で変調制御された第 2
C
波長え の出力信号光 L とその第 2波長え の周囲波長の周囲光とを含む出力
2 OUT 2
光が第 2半導体光増幅素子 18から出力される。波長選択フィルタ 20は、第 2半導体 光増幅素子 18の出力光中から制御光 L と同じ波長を選択する第 2波長選択素子と
C
して機能するものであり、たとえば 1555nmの波長帯の光すなわち第 2波長え の光 を透過させるがそれ以外の波長の光の透過を阻止 (反射)するように構成されて 、る 光波干渉を利用した多層膜フィルタである。したがって、上記波長選択フィルタ 20は 、第 2半導体光増幅素子 18からの出力光中の、制御光 L で変調制御された第 2波
C
長え の出力信号光 L を透過させることにより出力する。
2 OUT
[0043] 以上のようにして構成された光信号増幅 3端子装置 10によれば、第 1波長 λ の入
1 力信号光 L が第 1半導体光増幅素子 14に入力されたとき、その第 1半導体光増幅
IN
素子 14からの出力光の中から光アド'ドロップフィルタ 16により選択された第 1波長 λ とは異なる波長の周囲光 L の一部と、外部から供給された第 2波長え の制御
1 S 2 光 (第 2入力光) L とが共に第 2半導体光増幅素子 18に入力される。そして、第 2半
C
導体光増幅素子 18の相互利得変調作用によって、制御光 L で変調制御された第 2
C
波長え の出力信号光 L とその第 2波長え の周囲波長の周囲光とを含む出力
2 OUT 2
光が第 2半導体光増幅素子 18から出力されるので、波長選択フィルタ 20によって第 2波長え の出力信号光 L が透過させられて出力される。光アド'ドロップフィルタ
2 OUT
16を通過させられることにより選択される、第 1波長え とは異なる波長の周辺光の 1
1
部の波長帯の光は、第 1波長え 1の出力信号光 L
OUTと強度が反転しているだけでな ぐレーザ光源力ものノィァス光がなくても、十分な強度を備えているので、第 2半導 体光増幅素子 18において、第 2波長の第 2入力光 (制御光)によって十分な光信号 増幅作用或いは相互利得変調作用が得られる。
[0044] 図 5は、上記光信号増幅 3端子装置 10の入力信号光 L 、制御光 L 、および出力
IN C
信号光 L を、共通の時間軸上で示すタイムチャートである。出力信号光 L は、
OUT OUT
入力信号光 L が増幅を受けた同相の信号光であって、制御光 L のオンオフによる
IN C
変調を受けたものが示されている。また、その出力信号光 L の強度 (大きさ)は制
OUT
御光 L の強度 (大きさ)に応じて制御される特性が備えられており、制御光 L が実
C C
線に示す大きさから破線に示す大きさへ減少させられると、出力信号光 L も実線
OUT
に示す大きさから破線に示す大きさへ減少させられる。図 6は、光信号増幅 3端子装 置 10の上記の制御光 L の強度をパラメータとした光入出力特性を示している。ここ
C
で、重要な特性は数十/ z Wの制御光パワーで数 mWオーダの出力光が制御可能で あることであり、出力光の制御光による信号増幅率としては約 10乃至 30が得られて いる。
[0045] また、本実施例の光信号増幅 3端子装置 10では、一定強度のバイアス光(レーザ 光)を第 1半導体光増幅素子 14に入力させる必要がないので、バイアス光の温度変 化などの変動による特性変動がなぐ安定した作動を得ることができる。
[0046] 次に、本発明の他の実施例を説明する。なお、以下の説明において前述の実施例 と共通する部分には同一の符号を付して説明を省略する。
[0047] 図 7の光信号増幅 3端子装置 24では、第 2半導体光増幅素子 18が出力光が反射 端面 18mで反射されて入力側から出力される反射型光増幅素子から構成されており 、この第 2半導体光増幅素子 18は、光アド'ドロップフィルタ 16と波長選択フィルタ 20 との間に設けられた光サーキユレータ 26に接続 (結合)されている点で、前述の光信 号増幅 3端子装置 10と相違する。本実施例の光信号増幅 3端子装置 24では、光ァ ド 'ドロップフィルタ 16により選択された第 1波長え とは異なる波長の周囲光 L の一
1 S 部と、外部力 供給された第 2波長え の制御光 (第 2入力光) L とが共に光サーキ
2 C
ユレータ 26を介して第 2半導体光増幅素子 18に入力され、その第 2半導体光増幅素 子 18の出力光はサーキユレータ 26を介して波長選択フィルタ 20へ供給され、その 第 2半導体光増幅素子 18の出力光中の第 2波長 λ の出力信号光 L が波長選
2 OUT
択フィルタ 20によって透過させられて出力される。
[0048] 図 8の光信号増幅 3端子装置 28では、第 1半導体光増幅素子 14の出力光が反射 端面 14mで反射されて入力側から出力される反射型光増幅素子から構成されており 、この第 1半導体光増幅素子 14は、光アド'ドロップフィルタ 16の入力側に設けられ た光サーキユレータ 30に接続 (結合)されている点で、上記光信号増幅 3端子装置 2 4と相違する。本実施例の光信号増幅 3端子装置 28では、第 1波長 λ の入力信号
1
光 L が光サーキユレータ 30を介して第 1半導体光増幅素子 14に入力されるとともに
IN
その第 1半導体光増幅素子 14の出力光が光サーキユレータ 30を介して光アド'ドロ ップフィルタ 16に供給され、その光アド'ドロップフィルタ 16により選択された第 1波長 λ とは異なる波長の周囲光 L の一部と、外部から供給された第 2波長え の制御
1 S 2 光 (第 2入力光) L とが共に第 2半導体光増幅素子 18に入力され、その第 2半導体
C
光増幅素子 18の出力光中の第 2波長え の出力信号光 L が波長選択フィルタ 2 0によって透過させられて出力される。
[0049] 図 9の光信号増幅 3端子装置 32は、 1チップの半導体基板 34aに集積化した実施 例である。図 9において、化合物半導体たとえばインジウム燐 (InP)から構成される 半導体基板 34aの上に形成された光導波路 34bは、その半導体基板 34aの上にェ ピタキシャル成長させられた III-V族混晶半導体の多層膜であり、たとえばホトリソグ ラフィーを用いて所定幅のテープ状突起となるように形成されて 、る。この光導波路 3 4bは、半導体基板 34aよりも屈折率が高い物質で構成されているので、光を厚み方 向に閉じ込めつつ伝播させる機能と、前記第 1半導体光増幅素子 14および第 2半導 体光増幅素子 18を構成可能な十分な長さとを備え、制御光 L を入力させるための
C
分岐導波路 34dがその出力側端部に接続されている。
[0050] 上記光導波路 34b内の多層膜には、たとえば多重量子井戸、歪み超格子、或いは 量子ドット構造の pn接合力 構成された活性層、キャップ層などが含まれ、その上面 の位置には一対の第 1上部電極 34e、第 2上部電極 34fが固着されている。この活性 層は、半導体基板 34aの下面に固着された図示しない下部電極と上記一対の第 1上 部電極 34e、第 2上部電極 34fとの間に電圧が印加され且つ上記 pn接合に電流が 流されることによって電子'正孔対が形成され、その活性層 34cを通過する光が誘導 放射作用によって増幅されるようになっている。すなわち、上記一対の第 1上部電極 34e、第 2上部電極 34fと図示しない下部電極との間には、第 1半導体光増幅素子 1 4および第 2半導体光増幅素子 18がそれぞれ構成されている。
[0051] 上記光導波路 34bにおいて、一対の第 1上部電極 34eと第 2上部電極 34fとの間に は、屈折率が周期的に変化させられることにより第 1半導体光増幅素子 14の出力光 のうち周囲光 L の一部を通過させる第 1波長選択素子および第 2入力手段として機 s
能するグレーティングフィルタ 36が設けられている。このグレーティングフィルタ 36は 、たとえば 1545nm— 1560nmの波長帯の光を通過させないが、その他の波長帯の 光を通過させる特性を備えている。また、光導波路 34bにおいて、光導波路 34bの分 岐導波路 34dとの分岐点と光導波路 34bの出力側端面との間には、専ら第 1波長え
1 の光を通過させるために、たとえば 1550nmの波長帯の光を通過させる波長選択フ ィルタ 38が設けられている。この波長選択フィルタ 38は、屈折率が異なる 1対の膜が 多数積層されてなる多層膜フィルタで構成されることにより上記光導波路 34bの出力 側端面に貼り付けられてもよい。
[0052] 図 10の光信号増幅 3端子装置 40も 1個の半導体チップに集積ィ匕した実施例である 。この光信号増幅 3端子装置 40は、波長選択フィルタ 38が光導波路 34bの分岐導 波路 34dとの分岐点と第 2上部電極 34fとの間に設けられている点において上記光 信号増幅 3端子装置 32と相違するが、他は同様に構成されている。光信号増幅 3端 子装置 32および光信号増幅 3端子装置 40は、共に前述の光信号増幅 3端子装置 1 0、 24、 28と同様の作動が得られる。光信号増幅 3端子装置 40では、波長選択フィ ルタ 38が光導波路 34bの分岐導波路 34dとの分岐点と第 2上部電極 34fとの間に設 けられているので制御光 L が第 2波長え である必要があるが、光信号増幅 3端子
C 2
装置 32では、波長選択フィルタ 38が光導波路 34bの分岐導波路 34dとの分岐点と 光導波路 34bの出力側端面との間に設けられているため、制御光 L は第 2波長え
C 2 である必要がない。本実施例では、上記グレーティングフィルタ 36と同様に光導波路 34bの一部の屈折率が周期的に変化させられることによって構成される。
[0053] 図 11の光信号増幅 3端子装置 42も 1個の半導体チップに集積ィ匕した実施例である 。この光信号増幅 3端子装置 42は、化合物半導体たとえばインジウム燐 (InP)力 構 成されて四隅のうちの 2箇所に 45° の面取りが施された平面視で長方形の半導体基 板 42aと、その半導体基板 42aの上に形成された光導波路 42bは、その半導体基板 42aの上にェピタキシャル成長させられた III-V族混晶半導体の多層膜であり、たと えばホトリソグラフィーを用いて所定幅のテープ状突起となるように形成されて!、る。こ の光導波路 42bは、半導体基板 42aよりも屈折率が高い物質で構成されているので 、光を厚み方向に閉じ込めつつ伝播させる機能と、前記第 1半導体光増幅素子 14 および第 2半導体光増幅素子 18を構成可能な十分な長さの一対の相対的に長い平 行部とそれらを一端において連結する相対的に短い連結部とからなる U字形状とを 備えている。
[0054] 上記光導波路 42b内の多層膜には、たとえば多重量子井戸、歪み超格子、或いは 量子ドット構造の pn接合力 構成された活性層、キャップ層などが含まれ、その一対 の平行部の上面には一対の第 1上部電極 42e、第 2上部電極 42fがそれぞれ固着さ れている。この活性層は、半導体基板 42aの下面に固着された図示しない下部電極 と上記一対の第 1上部電極 42e、第 2上部電極 42fとの間に電圧が印加され且つ上 記 pn接合に電流が流されることによって電子'正孔対が形成され、その活性層を通 過する光が誘導放射作用によって増幅されるようになっている。すなわち、上記一対 の第 1上部電極 42e、第 2上部電極 42fと図示しない下部電極との間には、第 1半導 体光増幅素子 14および第 2半導体光増幅素子 18がそれぞれ構成されている。そし て、半導体基板 42aの面取りが施された部分には、ブラッグ回折格子、または屈折率 が異なる 1対の層が多数対積層されてなる多層膜ミラーなどにより構成された波長選 択性のない全反射鏡 44と、たとえば 1550nmの第 1波長え の制御光 L は透過さ
1 C
せるが第 1波長 λ とは異なる所定幅たとえば 1525乃至 1535nmの lOnm幅の波長
1
帯の周辺光 L を反射する波長選択性多層膜フィルタ 46とがそれぞれ固着されて ヽ s
る。波長選択性多層膜フィルタ 46は、前述の光アド'ドロップフィルタ 16やグレーティ ングフィルタ 36と同様に第 1波長選択素子および第 2入力手段として機能するもので あって、たとえば屈折率の異なる一対の層が多数組積層されることによって構成され る。また、上記光導波路 42bの一対の平行部のうちの出力側であって第 2半導体光 増幅素子 18と出力側端面との間には、専ら第 1波長え の光を通過させるために、た
1
とえば 1545nm— 1560nmの波長帯の光を通過させる波長選択フィルタ 48が設け られている。この波長選択フィルタ 48は、前述の波長選択フィルタ 38と同様に、屈折 率が異なる 1対の膜が多数積層されてなる多層膜フィルタで構成されることにより上 記光導波路 34bの出力側端面に貼り付けられてもよいが、本実施例では、光導波路 42bの一部の屈折率が周期的に変化させられることによって構成される。
以上のように構成された光信号増幅 3端子装置 42では、上記 U字形状の光導波路 42bの一方の平行部の一端面に第 1波長え の入力信号光 L が入射されると、第 1
1 IN
半導体光増幅素子 14からはそれが増幅された第 1波長 λ の信号光とその第 1波長
1
λ の周辺光とを含む出力光が出力されるとともに、全反射鏡 44によって反射されて
1
波長選択性多層膜フィルタ 46に入射させられる。この波長選択性多層膜フィルタ 46 では、その第 1半導体光増幅素子 14からの出力光に含まれる出力光のうち第 1波長 λ とは異なる所定幅たとえば 1525乃至 1535nmの波長帯の周辺光 L が選択的 に反射されるとともに、外部から供給される第 2波長え の制御光 L が透過させられ
2 C
ることにより、それら第 1波長え とは異なる所定幅の波長帯の周辺光 L と第 2波長
1 S
λ の制御光 L とが、ともに第 2半導体光増幅素子 18へ入射させられる。そして、こ
2 C
の第 2半導体光増幅素子 18における相互利得変換作用により制御光 L の変調を
C
受けた第 2波長え の出力信号光 L とその第 2波長え の周辺光とが出力される
2 OUT 2
力 波長選択フィルタ 48によってその第 2波長え の出力信号光 L が選択的に出
2 OUT
力される。
[0056] 図 12は、図 1の光信号増幅 3端子装置 10が光信号記憶装置 (光メモリ) 50に適用 された構成例を示している。この光信号記憶装置 50は、第 2半導体光増幅素子 18 の出力光中から波長選択フィルタ 20によって選択的に出力された第 2波長え の出
2 力信号光 L の一部を分割する光力ブラ 52と、その光力ブラ 52によって分割された
OUT
第 2波長え の出力信号光 L の伝播を遅延させるためにたとえば所定長さの光フ
2 OUT
アイバが卷回された光遅延素子 54と、その光遅延素子 54を通過した第 2波長え の
2 出力信号光 L を制御光 L と合波して光アド'ドロップフィルタ 16に供給する光力
OUT C
ブラ 56とが、光信号増幅 3端子装置 10に設けられることによって構成されている。本 実施例の光信号記憶装置 50によれば、図 13の上段に示す入力信号光 L が入射さ
IN
れると、図 13の下段に示す出力信号光 L が光力ブラ 52を経て周期的に取り出さ
OUT
れ得るので、任意のタイミングでその出力信号光 L を取り出すことによって光信号
OUT
記憶装置として利用される。
[0057] 図 14の光信号増幅 3端子装置 60は、光アド'ドロップフィルタ 16と光サーキユレ一 タ 30に代えて、第 1波長選択素子として機能する第 1波長選択性ミラー 62と、第 2入 力手段として機能する第 2波長選択性ミラー 64と、第 3半導体光増幅素子 66とを備 えている点で、図 8の実施例の光信号増幅 3端子装置 28と相違する。上記第 1波長 選択性ミラー 62は、 1550nmの第 1波長 λ の光を透過させる力 その第 1波長 λ
1 1 とは異なる所定幅たとえば 1525乃至 1535nmの 10nm幅の波長帯の周辺光 L を
s 反射するように構成されて 、る光波干渉を利用した反射型多層膜フィルタである。ま た、上記第 2波長選択性ミラー 64は、 1555nmの第 2波長え の光を透過させるが、
2
その第 2波長 λ とは異なる少なくとも前記所定幅 1525乃至 1535nmの波長帯の周 辺光 L を反射するように構成されて ヽる光波干渉を利用した反射型多層膜フィルタ
S
である。上記第 3半導体光増幅素子 66は、第 1半導体光増幅素子 14或いは第 2半 導体光増幅素子 18と同様に構成されたものである。
[0058] 以上の光信号増幅 3端子装置 60では、第 1波長え の入力信号光 L が第 1波長
1 IN
選択ミラー 62を通して第 3半導体光増幅素子 66、および反射鏡 14kを他端面に有 する反射型の第 1半導体光増幅素子 14へ入力され、その反射鏡 14kにて反射され 且つ第 3半導体光増幅素子 66および第 1半導体光増幅素子 14で増幅された光のう ち、所定幅 1525乃至 1535nmの波長帯の周辺光 L が第 1波長選択性ミラー 62お
S
よび第 2波長選択性ミラー 64により反射され、光サーキユレータ 26を通して、反射鏡 18kを他端面に有する反射型の第 2半導体光増幅素子 18へ供給され、その第 2半 導体光増幅素子 18の出力光中の第 2波長 λ の出力信号光 L が第 2波長選択
2 OUT
素子として機能する波長選択フィルタ 20によって透過させられて出力される。本実施 例によれば、前述の図 8の実施例の光信号増幅 3端子装置 28と同様の効果が得ら れるのにカ卩えて、第 3半導体光増幅素子 66により周辺光 L が増幅されるので、高い
S
ゲインおよび増幅作動の安定性が得られる。
[0059] ここで、以上の光信号増幅 3端子装置 10、 24、 32、 40、 42、 60において、光アド' ドロップフィルタ 16、グレーティングフィルタ 36、波長選択性多層膜フィルタ 46、或い は第 1波長選択性ミラー 62は、たとえば図 4に示すように、第 1半導体光増幅素子 14 力もの出力光中から、周囲光 L の一部であって第 1波長え ( = 1550nm)を含まな
S 1
い短波長側の波長帯の周囲光 L を選択して第 2半導体光増幅素子 18へ入力させ
S
るものであつたが、たとえば図 15に示すように、第 1波長え を中心とする波長帯 (た
1
とえば 1545nm 1555nm)を含まない周囲光 L の全体的な波長帯を選択して第 2
s
半導体光増幅素子 18へ入力させるものでもよい。このような場合には、第 1半導体光 増幅素子 14から第 2半導体光増幅素子 18へ供給される信号強度が高められるので 、一層高い安定性が得られる。図 15では、上段は入力光 L がオン状態の場合を、
IN
下段は入力光 L がオフ状態の場合を示している。
IN
[0060] 次に、単一の第 1半導体光増幅素子 14を用いた光信号増幅 3端子装置の例を説 明する。図 16の光信号増幅 3端子装置 70は、第 1半導体光増幅素子 14と、第 1波 長え の第 1入力光 L を第 1半導体光増幅素子 14の一端面側力 入力させる第 1入
1 IN
力手段として機能する光ファイバ 12と、光ファイバ 12と第 1半導体光増幅素子 14との 間に設けられ、第 1波長え の光を透過させるが第 2波長え の光を反射する波長選
1 2
択性ミラー 72と、波長選択性ミラー 72からの光 (第 2波長 λ )を元の光路へ反射す
2
るミラー 74と、第 1半導体光増幅素子 14の他端面側に設けられ、第 1波長 λ の光を
1 反射するが第 2波長え の光を透過させる波長選択性フィルタ 76と、波長選択性フィ
2
ルタ 76の出力側に設けられて、第 2波長え の制御光 (第 2入力光) L を波長選択
2 C
性フィルタ 76側へ導くとともに波長選択性フィルタ 76からの第 2波長 λ の出力光 L
2
を取り出すためのサーキユレータ 26とを備えて 、る。
OUT
[0061] 本実施例では、このサーキユレータ 26が、第 2波長の第 2入力光を第 1半導体光増 幅素子 14の他端面側力もそれぞれ入力させるための第 2入力手段として機能してい る。また、上記波長選択性ミラー 72およびミラー 74が、光ファイバ 12からの第 1波長 λ の第 1入力光 L を透過させるが第 1半導体光増幅素子 14からの光のうち第 2波
1 IN
長 λ の光を第 1半導体光増幅素子 14へ反射する第 3波長選択素子として機能して
2
いる。また、上記波長選択性フィルタ 76が、サーキユレータ 26からの第 2波長 λ の
2 制御光 L を透過させるが第 1半導体光増幅素子 14からの光のうちの第 1波長え の
C 1 光を第 1半導体光増幅素子 14へ反射する第 4波長選択素子として機能している。本 実施例では、図 17に示すように、第 1入力光 L と出力光 L との位相が反転し、第
IN OUT
1波長 λ から第 2波長 λ へ波長変換されるが、第 1半導体光増幅素子 14において
1 2
相互利得変調作用を生じさせ、第 2波長の第 2入力光 (制御光)によって光信号増幅 作用が得られる。また、第 1半導体光増幅素子 14のみで構成されているので、構造 が単純となり、製造が容易となる。さらに、本実施例の光信号増幅 3端子装置 70によ れば、第 1波長え の第 1入力光 L は強度変調された入力光であり、上記第 2波長
1 IN
λ の制御光 (第 2入力光) L は強度変化された制御光であり、上記第 2波長え の
2 C 2 出力光 L は、その制御光 L の入力区間において第 1入力光 L の強度変調され
OUT C IN
た信号波形を有するものであるので、制御光 L に応答して強度変調された出力光 L
C
OUTが得られる。
[0062] 図 18は、図 16の光信号増幅 3端子装置 70の変形例であって、第 1半導体光増幅 素子 14が 1チップの半導体基板 80aに設けられた光信号増幅 3端子装置 80を示す 平面図である。化合物半導体たとえばインジウム燐 (InP)から構成される半導体基板 80aの上に形成された光導波路 80bは、その半導体基板 80aの上にェピタキシャル 成長させられた III-V族混晶半導体の多層膜であり、たとえばホトリソグラフィーを用 いて所定幅のテープ状突起となるように形成されている。前述の実施例と同様に、光 導波路 80b内の多層膜には、たとえば多重量子井戸、歪み超格子、或いは量子ドッ ト構造の pn接合から構成された活性層、キャップ層などが含まれ、上部電極 80dと図 示しない下部電極との間に電圧が印加されて上記 pn接合に励起電流が流されること によって電子'正孔対が形成され、上記活性層を通過する光が誘導放射作用によつ て増幅されるようになっている。すなわち、上記上部電極 80dと図示しない下部電極 との間には、第 1半導体光増幅素子 14が構成されている。
[0063] 第 1波長え の光を透過させるが第 2波長え の光を反射する第 1波長選択性多層
1 2
膜フィルタ 82が上記半導体基板 80aの入力側端面に設けられており、第 2波長 λ
2 の光を透過させるが第 1波長 λ の光を反射する第 2波長選択性多層膜フィルタ 84
1
が上記半導体基板 80aの出力側端面に設けられている。本実施例では、第 1波長選 択性多層膜フィルタ 82を通して入力される第 1入力光 L と第 2波長選択性多層膜フ
IN
ィルタ 84およびサーキユレータ 26を通して第 1半導体光増幅素子 14から出力される 出力光 L との位相が反転し、第 1波長え 力 第 2波長え へ波長変換されるが、
OUT 1 2
第 1半導体光増幅素子 14において相互利得変調作用を生じさせ、第 2波長え の第
2
2入力光 (制御光) L によって光信号増幅作用が得られるので、図 16の光信号増幅
C
3端子装置 70と同様の効果が得られる。本実施例では、上記第 1波長選択性多層膜 フィルタ 82が光ファイバ 12からの第 1波長え の第 1入力光 L を透過させるが第 1半
1 IN
導体光増幅素子 14からの光のうち第 2波長 λ の光を第 1半導体光増幅素子 14へ
2
反射する第 3波長選択素子として機能している。また、上記第 2波長選択性多層膜フ ィルタ 84力 サーキユレータ 26からの第 2波長え の制御光 L を透過させるが第 1半
2 C
導体光増幅素子 14からの光のうちの第 1波長 λ の光を第 1半導体光増幅素子 14
1
へ反射する第 4波長選択素子として機能して 、る。
[0064] 図 19に示す光信号増幅 3端子装置 92は、図 9の光信号増幅 3端子装置 32におい て第 1半導体光増幅素子 14を除去すると同時に第 2半導体光増幅素子 18を第 1半 導体光増幅素子 14とした点において相違し、他はその光信号増幅 3端子装置 32と 同様に構成されている。すなわち、化合物半導体たとえばインジウム燐 (InP)から構 成される半導体基板 34aの上に形成された光導波路 34bは、その半導体基板 34aの 上にェピタキシャル成長させられた III-V族混晶半導体の多層膜であり、たとえばホト リソグラフィーを用いて所定幅のテープ状突起となるように形成されて 、る。この光導 波路 34bは、半導体基板 34aよりも屈折率が高い物質で構成されているので、光を 厚み方向に閉じ込めつつ伝播させる機能と、前記第 1半導体光増幅素子 14を構成 可能な十分な長さとを備え、制御光 L を入力させるための分岐導波路 34dがその出
C
力側端部に接続されている。上記光導波路 34b内の多層膜には、たとえば多重量子 井戸、歪み超格子、或いは量子ドット構造の pn接合力 構成された活性層、キャップ 層などが含まれ、その上面の位置には上部電極 34eが固着されている。その活性層 は、半導体基板 34aの下面に固着された図示しない下部電極と上記上部電極 34eと の間に電圧が印加され且つ上記 pn接合に電流が流されることによって電子 ·正孔対 が形成され、その活性層を通過する光が誘導放射作用によって増幅されるようになつ ている。すなわち、上記上部電極 34eと図示しない下部電極との間に第 1半導体光 増幅素子 14が構成されている。
上記光導波路 34bにおいて、上部電極 34eよりも入力側間には、屈折率が周期的 に変化させられることにより第 1波長え の
1 光を通過させるが第 2波長え の
2 光を反射 する第 1波長選択フィルタ 94が設けられている。また、光導波路 34bにおいて、光導 波路 34bの分岐導波路 34dとの分岐点と光導波路 34bの出力側端面との間には、第 1波長え の光を反射し且つ第 2波長え の光を透過させる第 2波長選択フィルタ 96
1 2
が設けられている。上記波長選択フィルタ 94および 96は、たとえば屈折率が異なる 領域が格子 (すだれ)状に多数配列されたグレーティングフィルタで構成される。本実 施例の光信号増幅 3端子装置 92では、第 1波長選択フィルタ 94を通して入力される 第 1入力光 L と波長選択フィルタ 96を通して第 1半導体光増幅素子 14から出力され
IN
る出力光 L との位相が反転し、第 1波長え 力 第 2波長え へ波長変換されるが
OUT 1 2
、第 1半導体光増幅素子 14において相互利得変調作用を生じさせ、第 2波長え の 第 2入力光 (制御光) L によって光信号増幅作用が得られるので、前述の実施例の
C
光信号増幅 3端子装置 80などと同様の効果が得られるとともに、サーキユレータ 26 が不要となる。本実施例では、上記波長選択フィルタ 94が光ファイバ 12からの第 1波 長え の第 1入力光 L を透過させるが第 1半導体光増幅素子 14からの光のうち第 2
1 IN
波長 λ の光を第 1半導体光増幅素子 14へ反射する第 3波長選択素子として機能し
2
ている。また、上記波長選択フィルタ 96が、第 2波長え の出力光 L を透過させる
2 OUT
が第 1半導体光増幅素子 14からの光のうちの第 1波長 λ の光を第 1半導体光増幅
1
素子 14へ反射する第 4波長選択素子として機能している。
[0066] 図 20は、半導体基板の厚み方向において光を増幅する形式の第 1半導体光増幅 素子 14を有する光信号増幅 3端子装置 100を示している。この第 1半導体光増幅素 子 14は、面発光半導体レーザと同様に、化合物半導体たとえばガリウム砒素 (GaAs )から構成される半導体基板 100aの一面(下面)上にェピタキシャル成長させられた III-V族混晶半導体の多層膜を備え、その多層膜には、 pn接合により構成された活 性層 100cなどが含まれている。基板の他面(上面)に固着された上部電極 100dと多 層膜側に設けられた下部電極 100eとの間に励起電流が流されると、活性層 100cで は、電子'正孔対が形成され、その活性層 100cを通過する光が誘導放射作用によつ て増幅されるようになっている。上記活性層 100cは、たとえば多重量子井戸、歪み 超格子、或いは量子ドットから構成されている。活性層 100cでは電流値によるエネ ルギ注入によって注入された電子が通過する光子による誘導放射によって価電子帯 へ移動させられるときに光エネルギを放出して通過光を増幅させると考えられている 。半導体基板 100aには、増幅された光と通過させるための貫通穴 100fが設けられ ている。
[0067] 上記第 1半導体光増幅素子 14の入力側の端面 (下面)には、第 1波長 λ の光を
1 通過させるが第 2波長 λ の光を反射する第 1波長選択フィルタ 102が設けられてい
2
る。また、その第 1半導体光増幅素子 14の出力側の端面 (上面)には、第 1波長え
1 の光を反射し且つ第 2波長 λ の光を透過させる第 2波長選択フィルタ 104が設けら
2
れている。第 1波長選択フィルタ 102および第 2波長選択フィルタ 104は、誘電体層 が積層されることにより上記光波干渉を利用して透過或いは反射特性が備えられた 多層膜フィルタ力 構成されている。上記第 1半導体光増幅素子 14の出力側にはサ ーキユレータ 26が設けられており、第 2波長え の制御光 L がサーキユレータ 26か
2 C
ら第 2波長選択フィルタ 104を通して第 1半導体光増幅素子 14へ入力され、その第 1 半導体光増幅素子 14力も第 2波長選択フィルタ 104およびサーキユレータ 26を通し て第 2波長え の出力光 L が出力されるようになっている。本実施例の光信号増
2 OUT
幅 3端子装置 100では、第 1波長選択フィルタ 102を通して入力される第 1入力光 L
IN
と第 2波長選択フィルタ 104およびサーキユレータ 26を通して第 1半導体光増幅素子 14から出力される出力光 L との位相が反転し、第 1波長え 力も第 2波長え へ波
OUT 1 2 長変換されるが、第 1半導体光増幅素子 14において相互利得変調作用を生じさせ、 第 2波長 λ の第 2入力光 (制御光) L によって光信号増幅作用が得られるので、前
2 C
述の実施例の光信号増幅 3端子装置 80などと同様の効果が得られるとともに、大幅 に小型化される。本実施例では、上記第 1波長選択フィルタ 102が光ファイバ 12から の第 1波長え の第 1入力光 L を透過させるが第 1半導体光増幅素子 14からの光の
1 IN
うち第 2波長 λ の光を第 1半導体光増幅素子 14へ反射する第 3波長選択素子とし
2
て機能している。また、上記第 2波長選択フィルタ 104が、サーキユレータ 26からの第 2波長え の制御光 L を透過させるが第 1半導体光増幅素子 14からの光のうちの第
2 C
1波長 λ の光を第 1半導体光増幅素子 14へ反射する第 4波長選択素子として機能
1
している。
[0068] 以上、本発明の一実施例を図面を用いて説明したが、本発明はその他の態様でも 適用される。
[0069] たとえば、前述の光アド'ドロップフィルタ 16、波長選択フィルタ 20、グレーティング フィルタ 36、波長選択フィルタ 38、 48は、屈折率が周期的に変化させられることによ り構成されるとき、その屈折率の変化周期が光の伝播方向において徐々に増加或い は減少する所謂チヤープドグレーティングフィルタであってもよい。
[0070] なお、前述の光アド'ドロップフィルタ 16に替えて、光力ブラと波長選択フィルタから 同様の機能に構成されたものが設けられてもよい。或いは、光サーキユレータ、方向 性結合素子カゝら構成されてもよ!ヽ。
[0071] また、前述の図 7、図 8の実施例では、第 1半導体光増幅素子 14或いは第 2半導体 光増幅素子 18は、端面反射 14m或いは 18mを反射手段として利用した反射型半導 体光増幅素子力も構成されていたが、多層膜反射ミラーが端面に貼り付けられた反 射型半導体光増幅素子が反射手段として設けられてもよ!ヽ。その多層膜反射ミラー は屈折率が異なる 1対の層が多数対積層されることにより構成される。また、ブラッグ 反射を利用したブラッグ回折格子がその上記多層膜反射ミラーに替えて設けられて ちょい。
[0072] また、前述の実施例の第 1半導体光増幅素子 14或いは第 2半導体光増幅素子 18 では、たとえばインジウム燐 (InP)力も成る半導体基板 14aよりも屈折率が高い物質 で構成された光導波路 14b内の多層膜において、活性層 14cには、量子井戸或い は多重量子井戸等を構成するために InGaAsP半導体が用いられていた力 動作す る波長に整合した他の種類の半導体が用いられてもよい。たとえば、 1300nm帯の 光波長に対しては、 GalnNAs半導体が好適に用いられる。この GalnNAs半導体は 優れた温度特性を備えて!/、るので、半導体光増幅素子を冷却するための冷却手段 を必要としない利点がある。
[0073] また、前述の図 9、図 10、図 11の実施例では、 1個の光信号増幅 3端子装置 10、 3 2或いは 40が 1個の半導体チップに集積されたものであった力 多数個の光信号増 幅 3端子装置 10、 32或いは 40が 1個の半導体チップに集積されたものであってもよ い。
[0074] また、前述の実施例の光信号増幅 3端子装置 10、 24、 28、 32或いは 40は、光演 算器、波長分割多重光中継器にも適用できるので、それらの一部を構成するもので あってもよい。
[0075] なお、上述したのはあくまでも本発明の一実施例であり、本発明はその主旨を逸脱 しな 、範囲にぉ 、て種々変更が加えられ得るものである。

Claims

請求の範囲
[1] pn接合力もなる活性層をそれぞれ備えた第 1半導体光増幅素子および第 2半導体 光増幅素子と、
第 1波長の第 1入力光を前記第 1半導体光増幅素子に入力させる第 1入力手段と、 前記第 1半導体光増幅素子からの光から前記第 1波長以外の周辺光の全部または
1部の所定幅の波長帯を選択する第 1波長選択素子と、
第 2波長の第 2入力光を、第 1波長選択素子により選択された前記第 1波長以外の 周辺光の全部または 1部の波長帯の光とともに、前記第 2半導体光増幅素子に入力 させる第 2入力手段と、
前記第 2半導体光増幅素子力 の光力 第 2波長の光を選択して出力する第 2波 長選択素子とを含み、
前記第 1波長の第 1入力光は強度変調された入力光であり、
前記第 2波長の第 2入力光は制御光であり、
前記第 2波長の出力光は、該制御光の入力区間において該第 1入力光の強度変 調された信号波形を備えたものであることを特徴とする光信号増幅 3端子装置。
[2] pn接合力 なる活性層を備えた第 1半導体光増幅素子と、
第 1波長の第 1入力光および第 2波長の第 2入力光を前記第 1半導体光増幅素子 の一端面側および他端面側から入力させる第 1入力手段および第 2入力手段と、 前記第 1半導体光増幅素子の一端面側に設けられ、前記第 1入力手段からの第 1 波長の第 1入力光を透過させるが該第 1半導体光増幅素子からの光のうち第 2波長 の光を該第 1半導体光増幅素子へ反射する第 3波長選択素子と、
前記第 1半導体光増幅素子の他端面側に設けられ、前記第 2入力手段からの第 2 波長の第 2入力光を透過させるが該第 1半導体光増幅素子力 の光のうちの第 1波 長の光を該第 1半導体光増幅素子へ反射する第 4波長選択素子とを含み、
前記第 1波長の第 1入力光は強度変調された入力光であり、
前記第 2波長の第 2入力光は制御光であり、
前記第 2波長の出力光は、第 4波長選択素子により選択して出力され、前記制御光 の入力区間において該第 1入力光の強度変調された信号波形を備えたものであるこ とを特徴とする光信号増幅 3端子装置。
[3] 前記第 2波長は、前記第 1波長と同じである請求項 1の光信号増幅 3端子装置。
[4] 前記第 2波長の出力光の前記第 2波長の制御光に対する信号増幅率は、 10以上 である請求項 1乃至 3のいずれかの光信号増幅 3端子装置。
[5] 前記第 1波長選択素子および Zまたは第 2波長選択素子は、選択する光のスぺタト ル幅が 5nm以上の波長選択性フィルタである請求項 1、 3乃至 4の!、ずれかの光信 号増幅 3端子装置。
[6] 前記第 1波長選択素子、第 2波長選択素子、第 3波長選択素子、および Zまたは 第 4波長選択素子は、屈折率が周期的に変化させられたグレーティングフィルタ、屈 折率が異なる多数組の層が積層されて成る多層膜フィルタのいずれかから構成され たものである請求項 1乃至 5のいずれかの光信号増幅 3端子装置。
[7] 前記グレーティングフィルタは、傾斜周期回折格子力も構成されたものである請求 項 6の光信号増幅 3端子装置。
[8] 前記第 1半導体光増幅素子および Zまたは第 2半導体光増幅素子の活性層は、 量子井戸、歪み超格子、または量子ドットから構成されたものである請求項 1乃至 7の
V、ずれかの光信号増幅 3端子装置。
[9] 前記第 1半導体光増幅素子および Zまたは第 2半導体光増幅素子は、前記活性 層を通過した光を反射するための反射手段をその一端面に備え、他端面を通して入 力光が入力され且つ出力光が取り出されるものである請求項 1乃至 8のいずれかの 光信号増幅 3端子装置。
[10] 前記反射手段は、ブラッグ回折格子、または屈折率が異なる 1対の層が多数対積 層されてなる多層膜ミラーである請求項 9の光信号増幅 3端子装置。
[11] 前記第 1入力手段および Zまたは第 2入力手段は、光サーキユレータ、方向性結合 素子、または光アド'ドロップフィルタ力も構成されたものである請求項 1乃至 10のい ずれかの光信号増幅 3端子装置。
[12] 前記光信号増幅 3端子装置は、光演算器、波長分割多重光中継器、または光メモ リを構成するものである請求項 1乃至 11のいずれかの光信号増幅 3端子装置。
PCT/JP2005/003780 2004-07-30 2005-03-04 光信号増幅3端子装置 WO2006011262A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006528352A JPWO2006011262A1 (ja) 2004-07-30 2005-03-04 光信号増幅3端子装置
US11/632,718 US7688502B2 (en) 2004-07-30 2005-03-04 Three-terminal optical signal amplifying device
US12/458,357 US20090279165A1 (en) 2004-07-30 2009-07-09 Three-terminal optical signal amplifying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004224726 2004-07-30
JP2004-224726 2004-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/458,357 Division US20090279165A1 (en) 2004-07-30 2009-07-09 Three-terminal optical signal amplifying device

Publications (1)

Publication Number Publication Date
WO2006011262A1 true WO2006011262A1 (ja) 2006-02-02

Family

ID=35786018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003780 WO2006011262A1 (ja) 2004-07-30 2005-03-04 光信号増幅3端子装置

Country Status (3)

Country Link
US (2) US7688502B2 (ja)
JP (1) JPWO2006011262A1 (ja)
WO (1) WO2006011262A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071894A (ja) * 2008-09-19 2010-04-02 Kinki Univ 光ファイバジャイロ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4436451B2 (ja) * 2002-10-23 2010-03-24 独立行政法人科学技術振興機構 光信号増幅3端子装置
JP5684188B2 (ja) * 2012-04-11 2015-03-11 サンコール株式会社 磁気ヘッドサスペンション
JP2016507892A (ja) * 2012-12-21 2016-03-10 デイビッド ウェルフォード, 光の波長放出を狭幅化するためのシステムおよび方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304801A (ja) * 1996-05-16 1997-11-28 Nippon Telegr & Teleph Corp <Ntt> 光波長変換装置
WO2002061502A1 (fr) * 2001-01-30 2002-08-08 Yoshinobu Maeda Procede et dispositif de commande optique
WO2002086616A1 (fr) * 2001-04-19 2002-10-31 Japan Science And Technology Corporation Element fonctionnel optique et dispositif optionnel optique

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264960A (en) * 1992-05-08 1993-11-23 At&T Bell Laboratories Optical wavelength shifter
JP3534550B2 (ja) * 1995-11-01 2004-06-07 住友電気工業株式会社 Otdr装置
JPH09321372A (ja) * 1996-05-28 1997-12-12 Nippon Telegr & Teleph Corp <Ntt> 全光クロック再生回路
FR2753285B1 (fr) * 1996-09-06 1998-10-09 Alsthom Cge Alcatel Amplificateur optique a semi conducteur
FR2762105B1 (fr) * 1997-04-10 1999-06-11 Alsthom Cge Alcatel Convertisseur de longueur d'onde de signaux optiques binaires
FR2768231B1 (fr) * 1997-09-08 1999-12-10 Alsthom Cge Alcatel Structure interferometrique integree
FR2778250B1 (fr) * 1998-04-30 2000-06-02 Alsthom Cge Alcatel Dispositif de mise en forme de signaux optiques binaires
KR100327897B1 (ko) * 1998-11-10 2002-08-08 한국전자통신연구원 상호이득변조방식의광파장변환기
KR20010088004A (ko) * 2000-03-10 2001-09-26 윤종용 파장 변환기
US6766072B2 (en) * 2000-07-28 2004-07-20 Pirelli Cavi E Sistemi S.P.A. Optical threshold and comparison devices and methods
JP2002229081A (ja) * 2001-02-02 2002-08-14 Nec Corp 全光型光信号再生方法および装置
US6950233B1 (en) * 2001-03-09 2005-09-27 Finisar Corporation System and method for wavelength conversion using a VLSOA
US20020176152A1 (en) * 2001-05-04 2002-11-28 Paola Parolari Intensity modulation of optical signals
JP2003110533A (ja) * 2001-09-27 2003-04-11 Fujitsu Ltd 光信号処理装置
JP3751268B2 (ja) * 2002-06-27 2006-03-01 松下電器産業株式会社 波長変換器及び光クロスコネクト装置
GB2390243B (en) * 2002-06-28 2005-11-02 Corning Inc Optical regenerator
KR100478506B1 (ko) * 2002-11-07 2005-03-28 한국전자통신연구원 높은 소광비 및 넓은 입력 다이너믹 영역을 갖는 xgm방식의 광 파장변환장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304801A (ja) * 1996-05-16 1997-11-28 Nippon Telegr & Teleph Corp <Ntt> 光波長変換装置
WO2002061502A1 (fr) * 2001-01-30 2002-08-08 Yoshinobu Maeda Procede et dispositif de commande optique
WO2002086616A1 (fr) * 2001-04-19 2002-10-31 Japan Science And Technology Corporation Element fonctionnel optique et dispositif optionnel optique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAEDA Y. ET AL: "All-optical triode based on a tandem wavelength converter using reflective semiconductor optical amplifiers", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 15, no. 2, February 2003 (2003-02-01), pages 257 - 259, XP001175611 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071894A (ja) * 2008-09-19 2010-04-02 Kinki Univ 光ファイバジャイロ

Also Published As

Publication number Publication date
US20090279165A1 (en) 2009-11-12
US20070201127A1 (en) 2007-08-30
JPWO2006011262A1 (ja) 2008-05-01
US7688502B2 (en) 2010-03-30

Similar Documents

Publication Publication Date Title
US6888973B2 (en) Tunable optical add/drop multiplexer with multi-function optical amplifiers
JP3490503B2 (ja) 波長分割多重化送信器
US7174058B2 (en) Traveling-wave optoelectronic wavelength converter
JP3262331B2 (ja) 周波数分割光通信システムのための端子
KR100916311B1 (ko) 이중 결합 링 공진기를 이용한 파장 가변 레이저 다이오드
JP4436451B2 (ja) 光信号増幅3端子装置
JP2017098362A (ja) 光集積素子及び光通信装置
JP3950028B2 (ja) 光増幅器
CN104937791A (zh) 激光装置、光调制装置以及光半导体元件
US6400864B1 (en) Broad band semiconductor optical amplifier module having optical amplifiers for amplifying demutiplexed signals of different wavelengths and optical communication system using it
JP2002169131A (ja) 光半導体素子及び光半導体素子の変調方法
JP4485745B2 (ja) 光機能素子および光機能装置
JPH1117279A (ja) 波長多重光通信用素子、送信器、受信器および波長多重光通信システム
US20090279165A1 (en) Three-terminal optical signal amplifying device
JP6245656B2 (ja) 半導体レーザ素子
JP4069111B2 (ja) 半導体レーザ装置
JP4321970B2 (ja) 半導体光増幅器およびase放射用光源装置および光ゲートアレイおよび波長可変レーザ装置および多波長レーザ装置および光伝送システム
WO2006006249A1 (ja) 光信号増幅装置
JP2006278729A (ja) 半導体光増幅素子
JP2006203100A (ja) 半導体レーザおよび光送信器モジュール
JP4242864B2 (ja) 波長可変レーザ光源を自体で生成する波長変換器
JP2007248901A (ja) 光トランシーバ
JP4036291B2 (ja) 光増幅素子
JPH04155317A (ja) マトリクス光スイッチ
JP4084994B2 (ja) 光スイッチングハブ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528352

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11632718

Country of ref document: US

Ref document number: 2007201127

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11632718

Country of ref document: US

122 Ep: pct application non-entry in european phase