[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006098346A1 - 鋼材の熱処理方法 - Google Patents

鋼材の熱処理方法 Download PDF

Info

Publication number
WO2006098346A1
WO2006098346A1 PCT/JP2006/305077 JP2006305077W WO2006098346A1 WO 2006098346 A1 WO2006098346 A1 WO 2006098346A1 JP 2006305077 W JP2006305077 W JP 2006305077W WO 2006098346 A1 WO2006098346 A1 WO 2006098346A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat treatment
steel
steel material
outer ring
Prior art date
Application number
PCT/JP2006/305077
Other languages
English (en)
French (fr)
Inventor
Mitsuru Kamikawa
Hiroaki Yoshida
Shigekazu Ito
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to EP06729098A priority Critical patent/EP1860202A4/en
Publication of WO2006098346A1 publication Critical patent/WO2006098346A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/38Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • F27B19/04Combinations of furnaces of kinds not covered by a single preceding main group arranged for associated working

Definitions

  • the present invention relates to a heat treatment method for a steel material that is applied to a steel material that has been plastically deformed by plastic deformation.
  • An outer ring member of a constant velocity joint constituting a traveling engine of an automobile generally performs forward extrusion molding, upsetting molding, and backward extrusion molding sequentially on a carbon steel workpiece made of a cylindrical body, Manufactured by plastically deforming a carbon steel workpiece into the shape of an outer ring member.
  • the carbon steel workpiece may be heated to a predetermined temperature before performing the above forging process. That is, when manufacturing an outer ring member, warm forging or hot forging may be performed.
  • the outer ring member molded in this way is cooled to room temperature and then transported to a heat treatment facility.
  • a heat treatment facility that softens the outer ring member to improve the deformability or homogenize the hardness
  • various heat treatments such as low temperature annealing, spheroidizing annealing, or normalizing are performed.
  • a shot blasting process is performed to remove oxide scales and the like generated during the heat treatment, and a lubricating chemical conversion film having a zinc phosphate isotropic force is formed on the outer surface of the outer ring member.
  • ironing sizing molding
  • This ironing process is usually cold forging.
  • the heat treatment is performed, for example, while the outer ring member placed on the belt conveyor is moved in the continuous heating furnace, and the outer ring member is carried into the continuous heating furnace and unloaded.
  • Time in other words, the processing time is long. The problem of low is becoming obvious. Note that the processing time cannot be shortened by changing to a notch-type furnace.
  • any heat treatment equipment for performing low temperature annealing, spheroidizing annealing, or normalization requires a large-scale equipment, and therefore, equipment investment increases.
  • JP-A-5-302117 discloses It has been proposed to omit tempering and perform only tempering.
  • Japanese Patent Laid-Open No. 5-255739 discloses that a steel workpiece is subjected to plastic deformation processing at a temperature between Acl and Ac3 at a temperature of 45 to 65%, and then air-cooled (natural cooling). Is disclosed.
  • a general object of the present invention is to provide a method for heat-treating a steel material that does not require a storage space for the steel material.
  • a main object of the present invention is to provide an efficient heat treatment method that can be performed in a short time.
  • Another object of the present invention is to provide a steel material heat treatment method that can be implemented with simple equipment.
  • Another object of the present invention is to provide a heat treatment method for a steel material that can easily make the metal structure of the final product uniform.
  • the processing heat remains in the steel material that has been subjected to the processing heat accompanying the plastic deformation processing! /
  • a steel heat treatment method in which the holding time in the first step is within 10 minutes.
  • the metal structure may be slightly uneven.
  • this steel material is maintained at a temperature between Acl and Ac3 points, whereby a metal structure in which austenite and ferrite coexist is formed substantially uniformly in the steel material. That is, this temperature holding makes it possible to make the metal structure of the steel material substantially uniform.
  • the steel material softens and the hardness of the steel material becomes substantially the same regardless of the part or the distance of the surface force.
  • all the parts can be deformed with substantially the same degree in post-processing such as ironing. Accordingly, cracks are hardly generated in the molded body, and the dimensional accuracy of the molded body is improved.
  • the heat treatment is performed at the time when the processing heat remains, that is, at the time of so-called processing self-heating, so it is not necessary to store the steel material that has undergone plastic deformation processing. Therefore, it is not necessary to prepare a space for storage, and the space can be effectively used for other purposes.
  • the scale of the heat treatment equipment is spheroidizing and annealing equipment. Thus, it can be made smaller than conventional heat treatment equipment. For this reason, it is possible to avoid a surge in capital investment.
  • the heat treatment efficiency is improved, the energy required for the heat treatment is reduced and the production efficiency is improved. After all, it becomes advantageous in cost.
  • the "plastic deformation process” includes a process of applying a pressure to a steel material to cause plastic deformation. Specifically, forging, forging, rolling, etc. are exemplified.
  • the pearlite precipitation finish temperature of the steel material is approximately in the range of 600 to 680 ° C, which is a force that varies depending on the cooling rate in the second step and the type of steel material. Therefore, it is sufficient to perform the second step until the temperature reaches 600 to 680 ° C.
  • the cooling rate in the second step is preferably 5 to 10 ° CZ. In this case, the structure becomes finer, and as a result, hardness variation is further suppressed.
  • the temperature of the steel material is within the range of the Arl point or lower and 500 ° C or higher. It is preferable to start at a point in time.
  • the Arl point is defined as the temperature at which eutectoid transformation from austenite to ferrite and cementite starts when the steel is cooled. Therefore, the metal structure of the steel material that has fallen below the Arl point is a substantially uniform structure containing ferrite and pearlite. For this reason, the final metallographic structure of the steel material that has undergone the second step can be made more uniform, and a steel material with almost uniform properties can be obtained.
  • the temperature increase may be started at the time when the processing self-heating is held, that is, when the temperature is equal to or higher than the temperature before the plastic deformation processing is performed.
  • the rate of temperature rise until the steel material reaches the temperature between Acl and Ac3 is preferably 15 to 50 ° CZ. Below 15 ° CZ, the heat treatment efficiency of the steel decreases. If the temperature exceeds 50 ° CZ, defects may occur in the metal structure of the steel.
  • a preferable example of the steel material is at least 0.1 to 0.55% C by mass, 0.03. ⁇ 0.35% Si ⁇ 0.2 ⁇ 1.0% Mn, 0.03% or less P, 0.03% or less S, 0.03 ⁇ 0.15% Cu, 0.01 ⁇
  • Examples include those containing 0.15% Ni, 0.1-1.2% Cr, and 0.45% or less Mo.
  • typical steel materials in the present invention include carbon steel, boron steel, chromium steel, nickel chromium steel, nickel chromium molybdenum steel, manganese steel, or chromium manganese steel.
  • FIG. 1 is a flowchart of a steel material heat treatment method according to the present embodiment.
  • FIGS. 2A to 2E are process explanatory views showing the plastic deformation from the workpiece to the outer ring member.
  • FIG. 3 is a schematic diagram for explaining a work area from the transfer of the outer ring member to the heat treatment furnace from the forging station.
  • FIG. 4 is a graph showing a general temperature pattern when forging is performed at a temperature below the Acl point.
  • FIG. 5 is a graph showing a general temperature pattern when forging is performed at a temperature higher than the Acl point.
  • Fig. 6 is a graph for explaining the variation in hardness of the shaft portion when the temperature is raised and maintained to a temperature exceeding Ac3.
  • FIG. 7 is a horizontal cross-sectional view at a position 50 mm from the tip of the shaft for explaining the parts A to D in FIG.
  • FIG. 8 is a graph showing the hardness directed toward the inside from the surface of the shaft portion of the outer ring member that has undergone the second step.
  • FIG. 9 is a graph showing the hardness that is directed from the surface of the shaft portion of the outer ring member to the inside when the cooling rate in the second step is 5 to 10 ° CZ.
  • Fig. 10 shows the inner ring from the surface of the shaft portion of the outer ring member that has been subjected to heat treatment after forging. It is a graph which shows directional force hardness in a part.
  • FIG. 11 is a chart showing the composition ratio of the steel materials of the test piece.
  • FIG. 12 is a chart showing the forging temperature, heating and holding temperature, surface hardness, center hardness and hardness difference of the test pieces.
  • FIG. 13 is a chart showing the Acl point, Ac3 point, and heating rate of the test piece.
  • a carbon steel-powered workpiece is heated to a temperature above the Acl point or an appropriate temperature below the Acl point, and then subjected to forging and constant velocity joint.
  • a preferred embodiment will be described by taking as an example the case of plastic deformation of the outer ring member, and will be described in detail with reference to the accompanying drawings.
  • FIG. 1 is a flowchart showing a heat treatment method for steel according to the present embodiment.
  • This heat treatment method includes a first step of maintaining the outer ring member (carbon steel) that has undergone plastic deformation at a temperature between Acl and Ac3, and a second step of cooling the outer ring member that has been heated and held. Yes.
  • the cylindrical workpiece 10 having a carbon steel force shown in FIG. 2A is heated to a predetermined temperature.
  • the temperature of the workpiece 10 may be 600-1250 ° C., for example. However, since the transformation point of carbon steel exists above 720 to less than 800 ° C, it is preferable to avoid this temperature range. That is, the temperature of the workpiece 10 is 600 to 720. C or 800 to 1250 ° C is preferable.
  • the workpiece 10 is subjected to forward extrusion molding. That is, the workpiece 10 is pressed from the other end surface side while the one end surface of the workpiece 10 is supported. As a result, the other end surface is crushed. As a result, as shown in FIG. 2B, a primary molded product 18 in which a large diameter portion 12, a reduced diameter portion 14 that has a tapered diameter, and a shaft portion 16 are formed. can get. Thereafter, the forward extrusion molding is performed again, and the secondary molded product 20 is provided as shown in FIG. 2C.
  • upset molding is performed on the secondary molded product 20. Specifically, as shown in FIG. 2D, the large-diameter portion 12 is expanded by compressing only the large-diameter portion 12 of the secondary molded product 20, and the third molded product 24 having the cup portion 22. And
  • Each forging process is performed by a separate forging machine, and the workpiece 10, the primary molded product 18, the secondary molded product 20, and the tertiary molded product 24 are transferred between the forging machines. Transported by first-class transport device.
  • the outer ring member 28 subjected to the above forging force is transferred by the operation of the robot 34 while being transferred from the forging case 30 to the heat treatment furnace 32.
  • the shaft portion 16 is aligned so that it faces upward.
  • the outer ring member 28 is preheated to a predetermined temperature before forging is performed. Further, the outer ring member 28 is heated to a high temperature as it undergoes forging and causes plastic deformation.
  • the outer ring member 28 is introduced into the heat treatment furnace 32 at a time when this high temperature is maintained.
  • FIGS. 4 and 5 show typical temperature patterns when the forging is performed at a temperature lower than the Acl point or at a temperature higher than the Acl point, respectively.
  • Figure 4 shows a case where forging is performed at a relatively high temperature below the Acl point.
  • the outer ring member 28 immediately after the rear extrusion is finished has a shape in which ferrite and pearlite are stretched in the crystal grains.
  • the temperature of the workpiece 10 during forging for example, to a value obtained by subtracting 180 ° C from the numerical value of the Acl point. It is more preferable to set the value at 150 ° C and the IV value (approximately 580 ° C) from the point value.
  • FIG. 5 shows a case where the forging force is measured at a temperature higher than the Acl point, and the outer ring member 28 is introduced into the heat treatment furnace 32 after reaching a temperature lower than the Acl point.
  • the temperature is higher than the Acl point, it is preferably set to the Ac3 point or higher.
  • the metal structure of the outer ring member 28 immediately after the rear extrusion is finished. Austenite will dominate.
  • recrystallization occurs in the metal structure, and dislocations are remarkably reduced. That is, by setting the Ac3 point or higher, the metal structure can be made more uniform.
  • the distance from the forging station 30 to the heat treatment furnace 32 is set to be as short as possible so that the forged outer ring member 28 is quickly introduced into the heat treatment furnace 32 (Fig.
  • the conveyance speed by the transfer 36 is set in accordance with the number of production of the outer ring member 28 per unit time.
  • the space for storing 8 becomes unnecessary, so that the space can be effectively used for other purposes.
  • the outer ring member 28 is exposed to the atmosphere from the time when it is taken out from the mold subjected to the backward extrusion until it reaches the heat treatment furnace 32. For this reason, the force that the temperature of the outer ring member 28 slightly decreases As described above, the outer ring member 28 is introduced into the heat treatment furnace 32 while maintaining a high temperature.
  • the temperature of the outer ring member 28 immediately before being introduced into the heat treatment furnace 32 is 500 ° regardless of whether the temperature of the cake during forging is equal to or higher than the Acl point and less than the Acl point. C or higher is preferable.
  • the outer ring member 28 whose temperature has dropped to below 500 ° C is introduced into the heat treatment furnace 32, it is necessary to set a large heating rate in order to increase the temperature from Ac 1 to Ac3 in a short time. Due to the coarsening of crystal grains, defects may occur in the metal structure, and the strength of the outer ring member 28 may be insufficient.
  • the temperature of the outer ring member 28 immediately before being introduced into the heat treatment furnace 32 is generally about 600 to 720 ° C.
  • the temperature below the Arl point which is the starting temperature of eutectoid transformation from austenite to ferrite and cementite during cooling, for example, the temperature obtained by subtracting 50 ° C from the numerical value of the Arl point, and even 500 °
  • the outer ring member 28 is introduced into the heat treatment furnace 32. You may do it. In this case, since the austenite disappears due to the metal structure force of the outer ring member 28, the outer ring member 28 in which a substantially uniform metal structure in which ferrite and pearlite coexist is formed can be easily obtained.
  • the numerical value of the Arl point changes according to the difference in temperature drop rate and is not constant, but is approximately 710 to 720 ° C when the temperature drop rate is 20 to 40 ° CZ.
  • the heat treatment furnace 32 has three furnaces: a temperature raising furnace 38, a soaking furnace 40, and a cooling furnace 42. Of these, the heating furnace 38 and the soaking furnace 40 are maintained at the same temperature. N gas inside the 3 furnaces
  • the outer ring member 28 introduced into the temperature raising furnace 38 is heated until it reaches a temperature between the Acl and Ac3 points.
  • the temperature of the heating furnace 38 that avoids this is preferably set so as to obtain a heating rate of 50 ° CZ or less. If the rate of temperature rise is less than 15 ° CZ, the heat treatment efficiency of the outer ring member 28 is reduced. Further, in order not to lower the heat treatment efficiency even at a temperature rising rate of less than 15 ° CZ, it is necessary to make the heat treatment furnace 32 large-scale, so that the capital investment increases. In the end, the preferred rate of temperature rise is 15-50 ° CZ, more preferably 17-46 ° CZ.
  • the temperature of the heating furnace 38 that obtains the rate of temperature increase is set to 800 to 850 ° C.
  • the outer ring member 28 that has passed through the heating furnace 38 is then introduced into the soaking furnace 40.
  • the outer ring member 28 heated to about 720 to 780 ° C. in the heating furnace 38 is maintained at that temperature.
  • the outer ring member 28 maintained at a temperature between the Acl and Ac3 points has a metal structure in which austenite and ferrite coexist.
  • the cooling rate of the outer ring member 28 is set within a predetermined range, specifically, 5 to 45 ° C Z.
  • a predetermined range specifically, 5 to 45 ° C Z.
  • the cooling rate is more preferably 5 to 10 ° CZ.
  • a spheroidized structure is formed, and as shown in FIG. 9, the hardness from the surface to the inside becomes more uniform, and the elongation and squeezing of the outer ring member 28 are improved.
  • FIG. 10 shows the hardness of the outer ring member 28 that has been subjected to heat treatment after forging and has been subjected to heat treatment. Comparing FIG. 8 and FIG. 9 with FIG. 10, the heat treatment according to the present embodiment causes the outer ring member 28 to soften and the hardness of the outer ring member 28 varies. It is clear that it can be suppressed.
  • the cooling may be performed up to a temperature at which the precipitation of pearlite is completed.
  • the precipitation end temperature varies depending on the temperature drop rate and the type of steel material, but is generally between 680 and 600 ° C. Therefore, it is preferable to continue the cooling until the temperature is between 680-600 ° C, for example 650 This can be done until the temperature drops to ° C. Along with this temperature drop, a metal structure in which ferrite and pearlite coexist is formed in the outer ring member 28.
  • the outer ring member 28 passes through the heating furnace 38, the soaking furnace 40, and the cooling furnace 42 in a short time. For this reason, the heat treatment equipment from the heating furnace 38 to the cooling furnace 42 can be configured simply.
  • the outer ring member 28 is unloaded from the cooling furnace 42 by the transfer 36.
  • a shot blast process and a chemical conversion film forming process for lubrication are performed and transferred to a forging machine station where ironing is performed.
  • the outer ring member 28 is improved in elongation and drawing, so that the outer ring member 2
  • the hardness of the outer ring member 28 is substantially the same regardless of the part, and the force is substantially constant from the surface to the inside. For this reason, the deformability is substantially the same for all parts, and therefore the degree of deformation is also substantially the same. For this reason, the outer ring member 28 having excellent dimensional accuracy can be manufactured up to a comparatively small portion such as a tooth portion.
  • the workpiece may be a steel other than carbon steel, boron steel, chrome steel, nickel chrome steel, nickel chrome molybdenum steel, manganese steel, or chrome manganese steel, and a free cutting component such as Pb is added. It may be free-cutting steel. Also, you may make something other than the outer ring member 28 as the final product.
  • cold forging may be performed on the steel workpiece. Even in this case, the steel workpiece is heated with plastic deformation. When this processing heat is maintained, in other words, when the temperature is higher than before the plastic deformation processing, the above-mentioned heat treatment is performed on the steel cake. That's fine.
  • the plastic deformation process is not particularly limited to the forging process, and may be any process that applies a pressure to the work and deforms the work. For example, rolling is included.
  • Example 1 Cylindrical specimens having a diameter of 23.8 mm and a length of 48 mm were produced using steels 1 to 10 each having the composition shown in Fig. 11 (numbers are% by mass). The test piece was heated to a predetermined temperature with a high-frequency heating device, held for 1 minute, and then cooled by air to 50 ° C. Thereafter, forward extrusion molding with a reduction in area of 65% was performed.
  • “s—” before the element name means that the element exists in a solid solution state in the steel material.
  • test piece whose temperature has been lowered to 600 ° C is introduced into a heat treatment furnace, heated to a predetermined temperature and held, and then cooled down to 680 ° C while controlling the cooling rate. did.
  • the test piece was derived from the heat treatment furnace power and allowed to cool to room temperature.
  • Steel 1 to steel 4 and steel 8 to steel 11 in FIG. 11 were prepared with test pieces having the same dimensions, and each test piece was individually heated and then air-cooled until the temperature dropped to a predetermined temperature. Furthermore, it heated at the predetermined temperature increase rate to the temperature between each Acl-Ac3 point shown in FIG. Figure 13 also shows the temperature drop and the temperature rise rate.
  • the cooling rate was controlled to 650 ° C, and the power was removed, and then the test piece was also led to the heat treatment furnace and allowed to cool to room temperature. did.
  • the metal structure of each specimen was observed with a scanning electron microscope, it was confirmed that the metal structure was a substantially uniform structure of ferrite and pearlite, and there were almost no defects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Forging (AREA)

Description

鋼材の熱処理方法
技術分野
[0001] 本発明は、塑性変形加工によって塑性変形された鋼材に対して施される鋼材の熱 処理方法に関する。
背景技術
[0002] 自動車の走行機関を構成する等速ジョイントの外輪部材は、一般的に、円柱体から なる炭素鋼製ワークに対し、前方押し出し成形、据え込み成形、後方押し出し成形を 順次行 、、該炭素鋼製ワークを外輪部材の形状に塑性変形することによって製造さ れている。なお、以上の鍛造加工を行う前に、炭素鋼製ワークを所定の温度に加熱 することもある。すなわち、外輪部材を製造する場合、温間鍛造ないし熱間鍛造が行 われることちある。
[0003] このようにして成形加工された外輪部材は、室温まで冷却された後、熱処理設備ま で搬送される。そして、外輪部材を軟化させて変形能を向上させたり、又は硬度の均 質化を図るベぐこの熱処理設備において、低温焼き鈍し、球状化焼き鈍し、又は焼 きならし等の各種の熱処理が施される。
[0004] 次に、前記熱処理の際に発生する酸化スケール等を除去するショットブラスト処理 が行われ、さらに、外輪部材の外表面にリン酸亜鉛等力もなる潤滑用化成皮膜が形 成される。その後、外輪部材に対してしごき加工 (サイジング成形)が行われ、これに より該外輪部材が最終的な寸法に仕上げられるに至る。なお、このしごき加工は、通 常、冷間鍛造である。
[0005] ところで、このような製造過程を経る場合、熱処理を施す前の外輪部材を保管して おくための広大なスペースが必要である力 保管の目的のみにスペースを確保する ことは経済的に不利である。
[0006] また、熱処理は、例えば、ベルトコンベア上に載置された外輪部材を連続式加熱炉 内で移動させながら行われるが、外輪部材が連続式加熱炉内に搬入されて力 搬出 されるまでの時間、換言すれば、処理時間が長ぐこのために外輪部材の生産効率 が低いという不具合が顕在化している。なお、ノツチ式加熱炉に変更しても、処理時 間を短縮することはできな 、。
[0007] さらに、低温焼き鈍し、球状化焼き鈍し、又は焼きならしを行うための熱処理設備は 、いずれも大規模な設備が必要であり、従って、設備投資が高騰してしまう。
[0008] し力しながら、このような不具合を回避するべく熱処理を省略すると、外輪部材が軟 化することも硬度が均質になることもないので、しごき加工の際に割れが発生したり、 外輪部材の軸部に歯部を設ける際に該歯部の寸法精度が低下する等の不都合を招
<o
[0009] 以上のような観点から、短時間で終了し、且つ簡素な設備で実施することが可能な 熱処理方法を確立することが希求されており、例えば、特開平 5— 302117号公報に は、焼入れを省いて焼き戻しのみを行うようにすることが提案されている。また、特開 平 5— 255739号公報には、鋼製ワークを Acl〜Ac3点間の温度で力卩ェ度 45〜65 %の塑性変形加工を行い、その後、空冷(自然放冷)することが開示されている。
[0010] 特開平 5— 302117号公報に記載された熱処理方法では、鍛造加工後の成形品 が放冷される。このため、成形品を保管するスペースを確保しなければならない。換 言すれば、特開平 5— 302117号公報記載の熱処理方法では、保管スペースを狭 小化することができない。
[0011] また、特開平 5— 255739号公報記載の加工方法は温間鍛造であり、冷間鍛造や 熱間鍛造を行った場合に適用することはできな 、と 、う問題がある。
[0012] し力も、例えば、熱間鍛造を行った場合、鍛造時力 温度が降下した鋼材では金属 組織中に存在する相が変態を起こし、このことに起因して金属組織が不均一化する ことがある。このような事態が生じると、鋼材の諸特性が部位によって相違するという 不具合を招くので、金属組織を可及的に均一化する熱処理方法が希求される。しか しながら、金属組織を可及的に均一化可能で、し力も、効率に優れる熱処理方法は これまでのところ知られて!/ヽな 、。
発明の開示
[0013] 本発明の一般的な目的は、鋼材の保管スペースが不要となる鋼材の熱処理方法を 提供することにある。 [0014] 本発明の主たる目的は、短時間で実施することが可能な効率的な熱処理方法を提 供することにある。
[0015] 本発明の別の目的は、簡素な設備で実施することが可能な鋼材の熱処理方法を提 供することにある。
[0016] 本発明のまた別の目的は、最終製品の金属組織の均一化を図ることが容易な鋼材 の熱処理方法を提供することにある。
[0017] 本発明の一実施形態によれば、塑性変形加工が施されることに伴って加工熱を帯 びた鋼材を、加工熱が残留して!/ヽる時点で加熱して Acl〜Ac3点間の温度に保持 する第 1工程と、
加熱保持された前記鋼材を、パーライトの析出が終了する温度となるまで 5〜45°C Z分の冷却速度で冷却する第 2工程と、
を有し、
前記第 1工程における保持時間を 10分以内とする鋼材の熱処理方法が提供される
[0018] 塑性変形加工が施された後、温度が降下した鋼材では、金属組織が若干不均一 である場合がある。本発明においては、この鋼材を Acl〜Ac3点間の温度に保持し 、これにより該鋼材にオーステナイトとフェライトが共存する金属組織を略均等に形成 する。すなわち、この温度保持により、鋼材の金属組織を略均一化することが可能と なる。
[0019] また、第 1工程及び第 2工程を経ることにより、鋼材が軟ィ匕するとともに、該鋼材の硬 度が部位や表面力もの距離によらず略同等となる。換言すれば、しごき成形等の後 加工において全部位を略同等の度合いで変形させることができる。従って、成形体 に割れが発生し難くなるとともに、該成形体の寸法精度が良好となる。
[0020] しかも、本発明においては、加工熱が残留している時点、すなわち、いわゆる加工 自熱を有する時点で熱処理を行うので、塑性変形加工が施された鋼材を保管する必 要がない。従って、保管のためのスペースを用意することも不要となるので、スペース を他の用途に有効活用することができる。
[0021] また、保持時間を 10分以内とするので、熱処理設備の規模を球状化焼き鈍し設備 等の従来の熱処理設備に比して小さくすることができる。このため、設備投資が高騰 することが回避される。その上、熱処理効率が向上するので、熱処理に要するェネル ギが低減されるとともに、生産効率が向上する。結局、コスト的に有利となる。
[0022] なお、本発明にお ヽて、「塑性変形加工」には、鋼材に対して圧力を付与して塑性 変形を生じさせる加工が含まれる。具体的には、鍛造加工、鍛圧加工、圧延加工等 が例示される。
[0023] ここで、鋼材のパーライト析出終了温度は、第 2工程における冷却速度や鋼材の種 類に応じて相違する力 概ね 600〜680°Cの範囲内である。従って、第 2工程は、 60 0〜680°Cとなるまで行えば十分である。
[0024] 第 2工程の冷却速度は、 5〜10°CZ分とすることが好ましい。この場合、組織が一 層微細化し、その結果、硬度のバラツキが一層抑制される。
[0025] 鋼材の温度を Acl点以上の温度に上昇させて塑性変形加工を行った場合、該鋼 材の加熱(昇温)は、該鋼材の温度が Arl点以下且つ 500°C以上の範囲内である時 点で開始することが好まし 、。
[0026] Arl点は、鋼材を冷却する際、オーステナイトからフェライトとセメンタイトへの共析 変態が開始する温度として定義される。従って、 Arl点以下まで降下した鋼材の金 属組織は、フェライトとパーライトを含む略均一組織となる。このため、第 2工程を経た 鋼材の最終的な金属組織が一層均一化され、諸特性が略均質な鋼材を得ることが できる。
[0027] また、鋼材を Acl点未満の温度まで加熱して塑性変形加工を行った場合、該鋼材 の加熱 (昇温)は、 500°C以上である時点で開始することが好ましい。
[0028] ここで、冷間鍛造の場合、加工自熱を保有して ヽる時点、すなわち、塑性変形加工 が施される前の温度以上である時点で昇温を開始すればよい。
[0029] そして、前記第 1工程中、鋼材が Acl〜Ac3点間の温度に到達するまでの昇温速 度は、 15〜50°CZ分とすることが好ましい。 15°CZ分未満では、鋼材の熱処理効 率が低下する。また、 50°CZ分を超えると、鋼材の金属組織に欠陥が発生すること がある。
[0030] なお、鋼材の好適な例としては、少なくとも、質量%で 0. 1〜0. 55%の C、 0. 03 〜0. 35%の Siゝ 0. 2〜1. 0%の Mn、 0. 03%以下の P、 0. 03%以下の S、 0. 03 〜0. 15%の Cu、0. 01〜0. 15%の Ni、0. 1〜1. 2%の Cr、 0. 45%以下の Moを 含有するものを挙げることができる。その他、必要に応じて、例えば、 0. 03-0. 05 %の Ti、 0. 02〜0. 04%の Al、 0. 001〜0. 002%の B、 0. 1%程度の 、 0. 05% 以下の Nb、 0. 05%以下の Ca、 0. 2%以下の Pb、 0. 1%以下の Bi等の他の元素を 含有していてもよい。
[0031] すなわち、本発明における代表的な鋼材としては、炭素鋼、ボロン鋼、クロム鋼、二 ッケルクロム鋼、ニッケルクロムモリブデン鋼、マンガン鋼、又はクロムマンガン鋼を挙 げることができる。
図面の簡単な説明
[0032] [図 1]図 1は、本実施の形態に係る鋼材の熱処理方法のフローチャートである。
[図 2]図 2A〜図 2Eは、ワークから外輪部材に塑性変形されるまでを示す工程説明図 である。
[図 3]図 3は、外輪部材を鍛造加工ステーションから熱処理炉に移送するまでの作業 場を説明する模式図である。
[図 4]図 4は、 Acl点未満の温度で鍛造加工を行った場合における一般的な温度パ ターンを示すグラフである。
[図 5]図 5は、 Acl点以上の温度で鍛造加工を行った場合における一般的な温度パ ターンを示すグラフである。
[図 6]図 6は、 Ac3を超える温度まで昇温 '保持した場合における軸部の硬度のバラ ツキを説明するグラフである。
[図 7]図 7は、図 6中の A〜Dの部位を説明する軸部の先端部から 50mmの位置の水 平断面図である。
[図 8]図 8は、第 2工程を経た外輪部材の軸部の表面から内部に向力う硬度を示すグ ラフである。
[図 9]図 9は、第 2工程での冷却速度を 5〜10°CZ分とした場合の外輪部材の軸部の 表面から内部に向力う硬度を示すグラフである。
[図 10]図 10は、鍛造加工後に熱処理を施さな力つた外輪部材の軸部の表面から内 部に向力 硬度を示すグラフである。
[図 11]図 11は、試験片の鋼材の組成比を示す図表である。
[図 12]図 12は、試験片の鍛造温度、加熱保持温度、表面硬度、中心硬度及び硬度 差を示す図表である。
[図 13]図 13は、試験片の Acl点、 Ac3点及び昇温速度を示す図表である。
発明を実施するための最良の形態
[0033] 以下、本発明に係る鋼材の熱処理方法につき、炭素鋼力 なるワークを Acl点以 上の温度、又は Acl点未満の適切な温度まで加熱した後、鍛造加工を施して等速ジ ョイントの外輪部材に塑性変形する場合を例として好適な実施の形態を挙げ、添付 の図面を参照して詳細に説明する。
[0034] 本実施の形態に係る鋼材の熱処理方法をフローチャートにして図 1に示す。この熱 処理方法は、塑性変形加工が施された外輪部材 (炭素鋼)を Acl〜Ac3点間の温度 に保持する第 1工程と、加熱保持が終了した外輪部材を冷却する第 2工程とを有す る。
[0035] はじめに塑性変形加工につき説明する。先ず、図 2Aに示す炭素鋼力もなる円柱体 形状のワーク 10を、所定の温度に加熱する。ワーク 10の温度は、例えば、 600-12 50°Cとすればよい。ただし、 720超〜 800°C未満には炭素鋼の変態点が存在するた め、この温度域を避けることが好ましい。すなわち、ワーク 10の温度は、 600〜720 。C、又は 800〜1250°Cとすることが好ましい。
[0036] その後、このワーク 10に対して前方押し出し成形を施す。すなわち、ワーク 10の一 端面を支持した状態で該ワーク 10を他端面側から押圧する。これに伴って他端面が 圧潰され、その結果、図 2Bに示すように、大径部 12、テーパ状に縮径した縮径部 14 、軸部 16が形成された第 1次成形品 18が得られる。その後、前方押し出し成形が再 度行われ、図 2Cに示すように、第 2次成形品 20が設けられる。
[0037] 次に、第 2次成形品 20に対して据え込み成形を行う。具体的には、図 2Dに示すよ うに、第 2次成形品 20の大径部 12のみを圧縮することによって該大径部 12を拡径し 、カップ部 22を有する第 3次成形品 24とする。
[0038] 次に、第 3次成形品 24に対して後方押し出し成形を行い、カップ部 22を伸張すると ともに該カップ部 22に 6個のボール溝 26a〜26fを形成する。すなわち、ボール溝 26 a〜26fを形成するための突出部を有するパンチをカップ部 22の一端面の中央部に 当接させ、続いて、軸部 16の先端部を押圧して第 3次成形品 24を該パンチに指向し て変位させる。これにより、図 2Eに示す外輪部材 28が得られる。
[0039] なお、各鍛造加工は別個の鍛造成形装置で行われ、ワーク 10、第 1次成形品 18、 第 2次成形品 20、第 3次成形品 24は、各鍛造成形装置間をトランスファ一等の搬送 装置によって移送される。
[0040] 以上の鍛造力卩ェが施された外輪部材 28は、図 3に示すように、鍛造カ卩エステーショ ン 30から熱処理炉 32に移送される間、ロボット 34の作業によって、トランスファー 36 上で軸部 16が上方を臨むようにして整列される。
[0041] 上記したように、外輪部材 28は、鍛造加工が行われる前に予め所定温度に加熱さ れている。また、外輪部材 28は、鍛造加工が施されて塑性変形を起こすことに伴い、 加工熱を帯びて高温となって 、る。
[0042] 本実施の形態にぉ 、ては、外輪部材 28は、この高温が保たれて 、る時点で熱処 理炉 32内に導入される。
[0043] 鍛造加工を、 Acl点未満の温度、又は Acl点以上の温度で行った場合における 一般的な温度パターンを、図 4及び図 5にそれぞれ示す。この中の図 4は、 Acl点未 満の比較的高温で鍛造加工を行った場合を示している。この場合、ワーク 10が Acl 点よりも低温であるので、後方押し出し成形が終了した直後の外輪部材 28では、結 晶粒中でフェライトとパーライトが延伸した形状となっている。
[0044] 図 4に示す温度パターンで鍛造加工を施す場合、鍛造カ卩ェ時のワーク 10の温度 は、例えば、 Acl点の数値から 180°C差し引いた値に設定することが好ましぐ Acl 点の数値から 150°C差し弓 I Vヽた値(およそ 580°C)とすることがより好ま U、。
[0045] 一方、図 5は、 Acl点を上回る高温で鍛造力卩ェを行い、外輪部材 28が Acl点を下 回る温度となった後に熱処理炉 32内に導入した場合を示す。なお、この図 5に示さ れるように、 Acl点を上回る高温とする場合、 Ac3点以上に設定することが好ましい。 この場合、ワーク 10の温度がフェライトのオーステナイトへの変態が完了する Ac3点 を上回っているので、後方押し出し成形が終了した直後の外輪部材 28の金属組織 は、オーステナイトが大半を占めるようになる。また、前記金属組織では再結晶が起こ り、このために転位が著しく低減する。すなわち、 Ac3点以上に設定することにより、 金属組織の一層の均一化を図ることができる。
[0046] 鍛造加工ステーション 30から熱処理炉 32までの距離は、鍛造加工が施された外輪 部材 28を速やかに熱処理炉 32内に導入するべぐ可及的に短く設定されている(図
3参照)。また、トランスファー 36による搬送速度は、外輪部材 28の単位時間当たりの 生産数に合わせて設定される。
[0047] このように、本実施の形態によれば、塑性変形された直後で熱を帯びた外輪部材 2
8を熱処理炉 32に可及的に速やかに導入するようにしている。このため、外輪部材 2
8を保管するスペースが不要となり、従って、スペースを他の用途に有効利用すること ができるようになる。
[0048] 外輪部材 28は、後方押し出し成形を行った金型から取り出されて熱処理炉 32に至 るまでの間に大気に露呈され、このために該外輪部材 28の温度が若干降下する力 上記したように、外輪部材 28は、高温を保った状態で熱処理炉 32内に導入される。
[0049] ここで、熱処理炉 32に導入される直前の外輪部材 28の温度は、鍛造加工時のヮ ークの温度が Acl点以上である力 Acl点未満であるかに関わらず、 500°C以上とす ることが好ましい。 500°Cを下回るまで温度が降下した外輪部材 28を熱処理炉 32に 導入すると、 Ac l〜Ac3点まで短時間で昇温するために昇温速度を大きく設定する 必要があるが、この場合、結晶粒が粗大化することに起因して金属組織に欠陥が生 じたりすることがあり、外輪部材 28としては強度が十分でないものとなることがある。
[0050] また、これを回避するべぐ 500°Cを下回る温度まで降下した外輪部材 28を緩慢な 昇温速度で昇温するには、熱処理炉 32を大規模なものとして設ける必要があり、設 備投資の高騰を招く。
[0051] Acl点以上の温度で鍛造加工を行った場合、熱処理炉 32に導入される直前の外 輪部材 28の温度は、一般的には 600〜720°C程度である力 図 5に示すように、冷 却時におけるオーステナイトからフェライトとセメンタイトへの共析変態の開始温度で ある Arl点を下回る温度、例えば、 Arl点の数値から 50°Cを差し引いた程度の温度 まで、さらには 500°Cまで降下した時点で、外輪部材 28が熱処理炉 32に導入される ようにしてもよい。この場合、外輪部材 28の金属組織力ゝらオーステナイトが消失する ので、フェライトとパーライトが共存する略均一な金属組織が形成された外輪部材 28 を容易に得られるからである。
[0052] Arl点の数値は温度降下速度の相違に応じて変化し、一定ではないが、温度降下 速度が 20〜40°CZ分である場合、概ね 710〜720°Cである。
[0053] この場合、熱処理炉 32は、昇温炉 38、均熱炉 40、除冷炉 42の 3炉を有する。この うち、昇温炉 38と均熱炉 40は同一温度に保持されている。なお、 3炉の内部に Nガ
2 スを導入して N雰囲気で加熱 ·保持 ·除冷が行われるようにしてもよ!、。
2
[0054] 外輪部材 28は、トランスファー 36上に載置された状態で、先ず、昇温炉 38に導入 され、図 1に示す第 1工程 S1が開始される。
[0055] 昇温炉 38に導入された外輪部材 28は、 Acl〜Ac3点の間の温度となるまで加熱 される。
[0056] ここで、上記したように、昇温速度を過度に大きく設定すると、結晶粒が粗大化して 金属組織に欠陥が発生することがある。このことを回避するべぐ昇温炉 38の温度は 、 50°CZ分以下の昇温速度が得られるように設定することが好ましい。なお、昇温速 度が 15°CZ分未満であると、外輪部材 28の熱処理効率が低下する。また、 15°CZ 分未満の昇温速度でも熱処理効率を低下させないようにするには、熱処理炉 32を大 規模ィ匕する必要があるので設備投資が高騰してしまう。結局、好適な昇温速度は 15 〜50°CZ分であり、 17〜46°CZ分とすることが一層好まし 、。
[0057] 本実施の形態においては、この昇温速度を得るベぐ昇温炉 38の温度が 800〜85 0°Cに設定される。昇温炉 38の導入前に 500〜720°Cであった外輪部材 28は、昇 温炉 38を通過する前までに 720〜780°Cに達する。
[0058] そして、昇温炉 38を通過した外輪部材 28は、次に、均熱炉 40に導入される。この 均熱炉 40では、昇温炉 38で 720〜780°C程度に昇温された外輪部材 28が、その 温度に保持される。
[0059] 以上の昇温'保持は、合わせて 10分以内とすれば十分である。加熱処理をこれ以 上行うようにした場合、熱処理炉 32やトランスファー 36が長くなるので熱処理設備が 大規模となる。すなわち、設備投資が高騰する。また、 10分を超える加熱保持を行つ ても、軟ィ匕や硬度の均質ィ匕の度合いは 10分以内の場合とほとんど同等であるので、 コスト的に不利である。昇温 '保持時間は、合わせて 5分以内であっても十分であり、 例えば、 3分とすることができる。
[0060] Acl〜Ac3点の間の温度に保持された外輪部材 28では、オーステナイトとフェライ トが共存する金属組織となる。
[0061] なお、外輪部材 28の最終的な温度が Acl点未満である場合、該外輪部材 28を軟 化することや硬度の均質ィ匕を図ることが困難となる。また、 Ac3点を超える温度まで 昇温'保持した場合、オーステナイトの粗大化 (異常粒成長)が起こる。このため、図 6 に示すように、異なる部位間や、表面力 の距離によって硬度にバラツキが認められ る。なお、図 6中の A〜Dは、図 7に示すように、軸部 16の先端部から 50mmの位置 の部位 A〜Dにおける測定値を表し、各測定値は、表面力も水平断面内部に向かつ て測定されたものであり、以下においても同様である。
[0062] このようにして加熱保持された外輪部材 28は、次に、除冷炉 42に導入され、これに より第 2工程 S2が開始される。
[0063] 除冷炉 42では、外輪部材 28の冷却速度が所定の範囲内、具体的には、 5〜45°C Z分となるように設定される。冷却速度をこのような範囲に設定することにより、表面 力 内部に至るまで略均一な組織が得られ、図 8に示すように、硬度のバラツキがほ とんど認められなくなる。
[0064] 冷却速度は、 5〜10°CZ分であることがより好まし 、。この場合、球状化組織が形 成されるようになり、図 9に示すように、表面から内部に至る硬度が一層均一になると ともに、外輪部材 28の伸びや絞りが向上する。
[0065] ここで、鍛造カ卩ェ後に熱処理を施さな力つた外輪部材 28における硬度を図 10に示 す。前記図 8、図 9とこの図 10とを比較すれば、本実施の形態に係る熱処理を施すこ とによって、外輪部材 28が軟ィ匕すること、また、該外輪部材 28の硬度のバラツキを抑 制することができることが明らかである。
[0066] 除冷は、パーライトの析出が終了する温度まで行えばよい。この析出終了温度は、 降温速度や鋼材の種類に応じて相違するが、概ね 680〜600°Cの間である。従って 、除冷は、温度が 680〜600°Cの間となるまで続行することが好ましぐ例えば、 650 °Cに低下するまで行えばよい。この温度降下に伴い、外輪部材 28には、フェライトと パーライトが共存する金属組織が形成される。
[0067] このように、本実施の形態においては、外輪部材 28が昇温炉 38、均熱炉 40、除冷 炉 42を短時間で通過するようにしている。このため、昇温炉 38から除冷炉 42に至る 熱処理設備を簡素な構成とすることができる。
[0068] 第 2工程 S2が終了した外輪部材 28は、トランスファー 36で除冷炉 42から搬出され
、室温まで冷却された後、ショットブラスト処理、潤滑用化成皮膜形成処理が行われ、 しごき成形が行われる鍛造カ卩工ステーションに移送される。
[0069] このしごき成形では、外輪部材 28の伸びや絞りが向上しているため、該外輪部材 2
8が容易に変形する。また、外輪部材 28の硬度は、部位に関わらず略同等であり、し 力も、表面から内部に至るまで略一定である。このため、変形能はすべての部位にわ たって略同等となり、従って、変形する度合いも略同等である。このため、歯部等の比 較的小形状の部位に至るまで寸法精度に優れた外輪部材 28を作製することができ る。
[0070] なお、上記した実施の形態は、炭素鋼力 なるワークを Acl点以上の温度又は未 満の温度として鍛造加工によって等速ジョイントの外輪部材 28に塑性変形する場合 を例示して説明した力 特にこれに限定されるものではないことはいうまでもない。例 えば、ワークは炭素鋼以外の鋼材、ボロン鋼、クロム鋼、ニッケルクロム鋼、ニッケルク ロムモリブデン鋼、マンガン鋼、又はクロムマンガン鋼であってもよいし、 Pb等の快削 成分が添加された快削鋼であってもよい。また、外輪部材 28以外のものを最終製品 として作製するようにしてもょ 、。
[0071] また、鋼製ワークに対して冷間鍛造を施すようにしてもよい。この場合においても、 鋼製ワークは塑性変形に伴って加工熱を帯びる。この加工熱が保持されて ヽる時点 で、換言すれば、塑性変形加工が施される前よりも高温となっている時点で、鋼製ヮ ークに対して上記の熱処理を行うようにすればよい。
[0072] さらに、塑性変形加工は鍛造加工に特に限定されるものではなぐワークに圧力を 付与して該ワークを変形させる加工であればよい。例えば、圧延加工が含まれる。 実施例 1 [0073] 図 11に示す組成(数字は質量%)を有する鋼 1〜10の各々力 なり、直径 23. 8m m X長さ 48mmの円柱体形状の試験片を作製した。この試験片を高周波加熱装置 によって所定の温度まで昇温し、 1分間の温度保持後、空冷によって 50°Cだけ温度 を低下させた。その後、減面率 65%の前方押し出し成形を実施した。なお、図 11中 、元素名の前に付された「s—」は、その元素が鋼材内に固溶した状態で存在すること を意味する。
[0074] 次いで、 600°Cまで温度が低下した試験片を熱処理炉に導入して、所定の温度ま で加熱して保持し、さら〖こ、 680°Cまで冷却速度を制御しながら除冷した。そして、試 験片を熱処理炉力 導出し、室温となるまで放冷した。
[0075] その後、押し出し部の表面から深さ 0. 5mmの位置と、中心部におけるビッカース 硬度を 3点測定して平均値を計算した。さらに、表層硬度と中心硬度との硬度差を算 出した。
[0076] 以上の鍛造温度、加熱保持温度、冷却速度、表層硬度、中心硬度、硬度差を図 1 2に一括して示す。表層硬度が低ぐ且つ硬度差が小さいほど、しごき成形で割れ難 ぐ成形後の寸法精度が良好となるものであることを意味する。
[0077] また、比較のため、同一寸法の試験片に対し、加熱保持温度を Acl点未満又は A c3点超として熱処理を施した。この場合における加熱保持温度、冷却速度、表層硬 度、中心硬度、硬度差を図 12に併せて示す。図 12から、比較例の試験片では硬度 差が大き!/ヽことが明らかである。
実施例 2
[0078] 図 11中の鋼 1〜鋼 4、鋼 8〜鋼 11にっき同一寸法の試験片を作製し、各試験片を 個別に加熱した後、所定の温度に降下するまで空冷した。さらに、図 13に示す各々 の Acl〜Ac3点の間の温度まで所定の昇温速度で加熱した。降下温度及び昇温速 度を図 13に併せて示す。
[0079] そして、 Acl〜Ac3点の間の温度で保持した後、 650°Cまで冷却速度を制御しな 力 除冷した後、試験片を熱処理炉カも導出し、室温となるまで放冷した。各試験片 の金属組織を走査型電子顕微鏡で観察したところ、該金属組織はフェライトとパーラ イトの略均一な組織であり、欠陥がほとんど存在しな ヽことが確認された。

Claims

請求の範囲
[1] 塑性変形加工が施されることに伴って加工熱を帯びた鋼材を、加工熱が残留して V、る時点で加熱して Ac 1〜Ac3点間の温度に保持する第 1工程と、
加熱保持された前記鋼材を、パーライトの析出が終了する温度となるまで 5〜45°C Z分の冷却速度で冷却する第 2工程と、
を有し、
前記第 1工程における保持時間を 10分以内とすることを特徴とする鋼材の熱処理 方法。
[2] 請求項 1記載の熱処理方法において、前記第 2工程を鋼材が 600〜680°Cとなる まで行うことを特徴とする鋼材の熱処理方法。
[3] 請求項 1又は 2記載の熱処理方法において、前記第 2工程の冷却速度を 5〜10°C
Z分とすることを特徴とする鋼材の熱処理方法。
[4] 請求項 1〜3のいずれか 1項に記載の熱処理方法において、前記鋼材を Acl点以 上の温度に加熱して前記塑性変形加工を行い、且つ前記第 1工程で前記鋼材の温 度が Arl点以下〜 500°C以上の範囲内である時点で該鋼材の加熱を開始すること を特徴とする鋼材の熱処理方法。
[5] 請求項 1〜3のいずれか 1項に記載の熱処理方法において、前記鋼材を Acl点未 満の温度に加熱して前記塑性変形加工を行い、且つ前記第 1工程で前記鋼材の温 度が 500°C以上である時点で該鋼材の加熱を開始することを特徴とする鋼材の熱処 理方法。
[6] 請求項 1〜5のいずれか 1項に記載の熱処理方法において、前記第 1工程での Ac l〜Ac3点間の温度に到達するまでの昇温速度を 15〜50°CZ分とすることを特徴と する鋼材の熱処理方法。
[7] 請求項 1〜6のいずれか 1項に記載の熱処理方法において、前記鋼材が、少なくと も、質量0 /0で 0. 1〜0. 55%の。、 0. 03〜0. 35%の Siゝ 0. 2〜1. 0%の Mn、 0. 0 3%以下の P、 0. 03%以下の S、 0. 03〜0. 15%の Cu、 0. 01〜0. 15%の Niゝ 0. 1〜1. 2%の Cr、0. 45%以下の Moを含有するものであることを特徴とする鋼材の 熱処理方法。 請求項 7記載の熱処理方法において、前記鋼材が、炭素鋼、ボロン鋼、クロム鋼、 ニッケルクロム鋼、ニッケルクロムモリブデン鋼、マンガン鋼、又はクロムマンガン鋼で あることを特徴とする鋼材の熱処理方法。
PCT/JP2006/305077 2005-03-16 2006-03-15 鋼材の熱処理方法 WO2006098346A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06729098A EP1860202A4 (en) 2005-03-16 2006-03-15 PROCESS FOR HOT TREATMENT OF STEEL MATERIALS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-075580 2005-03-16
JP2005075580 2005-03-16
JP2006-063437 2006-03-09
JP2006063437A JP4884803B2 (ja) 2005-03-16 2006-03-09 鋼材の熱処理方法

Publications (1)

Publication Number Publication Date
WO2006098346A1 true WO2006098346A1 (ja) 2006-09-21

Family

ID=36991688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305077 WO2006098346A1 (ja) 2005-03-16 2006-03-15 鋼材の熱処理方法

Country Status (4)

Country Link
US (1) US7767044B2 (ja)
EP (1) EP1860202A4 (ja)
JP (1) JP4884803B2 (ja)
WO (1) WO2006098346A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758073A (zh) * 2012-07-18 2012-10-31 浙江天马轴承股份有限公司 一种轴承的热处理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101917447B1 (ko) 2016-12-20 2018-11-09 주식회사 포스코 고온연신 특성이 우수한 고강도 강판, 온간프레스 성형부재 및 이들의 제조방법
CN111979392A (zh) * 2020-08-31 2020-11-24 昆山海子精密金属工业有限公司 模具钢材高效加工工艺
CN114410947B (zh) * 2022-01-26 2024-01-16 马鞍山钢铁股份有限公司 一种铁路机车用渗碳从动齿轮毛坯高效热处理工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524156B2 (ja) * 1987-05-18 1996-08-14 株式会社豊田中央研究所 高炭素鋼強靭部品の製造方法
JPH11302734A (ja) * 1998-04-17 1999-11-02 Sanyo Special Steel Co Ltd 冷間加工性及び強度に優れた等速ジョイントの製造方法
JP2005120432A (ja) * 2003-10-16 2005-05-12 Jfe Steel Kk 冷間鍛造性に優れた線・棒の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970718A (ja) 1982-10-18 1984-04-21 Mitsubishi Steel Mfg Co Ltd 温間鍛造・浸炭処理材の細整粒化方法
JPS60135519A (ja) 1983-12-23 1985-07-18 Honda Motor Co Ltd 冷間鍛造用素材の製造方法
JPS61174322A (ja) * 1985-01-28 1986-08-06 Nippon Steel Corp 機械構造用鋼の圧延材軟質化法
CN85101950B (zh) 1985-04-01 1988-06-01 云南轴承厂 高碳低合金钢高温形变球化退火工艺
JPS62196321A (ja) 1986-02-24 1987-08-29 Sumitomo Metal Ind Ltd 表面軟化厚鋼板の製造方法
JPS62253724A (ja) * 1986-04-25 1987-11-05 Nippon Steel Corp 粒状セメンタイト組織を有する冷鍜用線材の製造法
JPH05302117A (ja) 1991-04-04 1993-11-16 Aichi Steel Works Ltd 熱間鍛造用焼入省略鋼の製造方法
JPH05255739A (ja) 1992-03-12 1993-10-05 Sanyo Special Steel Co Ltd 高強度高靱性非調質鋼部品の製造方法
KR19980072267A (ko) * 1997-03-03 1998-11-05 토니헬샴 비조질강의 가열.냉각방법 및 그 장치
JP3485805B2 (ja) * 1997-09-18 2004-01-13 株式会社神戸製鋼所 高い疲れ限度比を有する熱間鍛造非調質鋼およびその製造方法
JP2001011575A (ja) * 1999-06-30 2001-01-16 Nippon Steel Corp 冷間加工性に優れた機械構造用棒鋼・鋼線及びその製造方法
GB2355271B (en) * 1999-10-11 2003-12-24 Sanyo Special Steel Co Ltd Process for producing constant velocity joint having improved cold workability and strength
JP3888865B2 (ja) * 2000-10-25 2007-03-07 株式会社ゴーシュー 鍛造方法
JP4556334B2 (ja) * 2001-02-01 2010-10-06 大同特殊鋼株式会社 軟窒化用非調質鋼熱間鍛造部品
JP2003342687A (ja) * 2002-05-28 2003-12-03 Nippon Steel Corp 強度延性バランスの優れた鋼管とその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524156B2 (ja) * 1987-05-18 1996-08-14 株式会社豊田中央研究所 高炭素鋼強靭部品の製造方法
JPH11302734A (ja) * 1998-04-17 1999-11-02 Sanyo Special Steel Co Ltd 冷間加工性及び強度に優れた等速ジョイントの製造方法
JP2005120432A (ja) * 2003-10-16 2005-05-12 Jfe Steel Kk 冷間鍛造性に優れた線・棒の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1860202A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758073A (zh) * 2012-07-18 2012-10-31 浙江天马轴承股份有限公司 一种轴承的热处理方法

Also Published As

Publication number Publication date
EP1860202A1 (en) 2007-11-28
EP1860202A4 (en) 2011-05-04
JP4884803B2 (ja) 2012-02-29
US20080210352A1 (en) 2008-09-04
JP2006291353A (ja) 2006-10-26
US7767044B2 (en) 2010-08-03

Similar Documents

Publication Publication Date Title
CN105829561B (zh) 热压钢板构件、其制造方法以及热压用钢板
JP5083752B2 (ja) 鋼板を変形して構成部品を製造する方法およびその方法を実施する装置
KR100961022B1 (ko) 열간 성형강 제품의 제조 방법
JP5709025B2 (ja) 波動歯車用基材の製造方法
JP3966493B2 (ja) 冷間鍛造用線材及びその製造方法
JP5895266B2 (ja) 鍛造物の製造方法
CN107520581A (zh) 一种超高强钢车轮轮辐及其加工方法
WO2006098346A1 (ja) 鋼材の熱処理方法
TW201329254A (zh) 淬火性優良且面內異向性小的高碳熱軋鋼板及其製造方法
CN109468444A (zh) 热处理钢的方法
CN100487140C (zh) 钢材的热处理方法
JP2007270345A (ja) 輸送機器用部材の製造方法
RU2631069C1 (ru) Способ получения листов из высокомарганцевой стали
JP2007270343A (ja) 外輪部材の製造方法
JPH10128402A (ja) 鋼線の製造方法及び製造設備
JP2007239024A (ja) 鋼材の熱処理方法
JP2007239023A (ja) 鋼材の熱処理方法
CN112384637A (zh) 马氏体系不锈钢钢带及其制造方法
JP2007239028A (ja) 鋼材の熱処理方法
RU2795332C1 (ru) Способ термической обработки детали из стали
JPH09316540A (ja) 冷鍛性に優れた輪郭高周波焼入用機械構造用鋼の製造方法及び冷間鍛造部品の製造方法
JP2004011017A (ja) 回転しごき加工用熱延鋼板およびその製造方法ならびに自動車用部品
JP7329780B2 (ja) 冷延鋼板および鋼製部品
JP2000265211A (ja) 高c含有ステンレス鋼片の熱処理方法とこれを利用したステンレス鋼製部品の製造方法
JP2524156B2 (ja) 高炭素鋼強靭部品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1350/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006729098

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680000791.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11662661

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729098

Country of ref document: EP