[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006088004A1 - Electrode material for electric double layer capacitor and method for producing same - Google Patents

Electrode material for electric double layer capacitor and method for producing same Download PDF

Info

Publication number
WO2006088004A1
WO2006088004A1 PCT/JP2006/302494 JP2006302494W WO2006088004A1 WO 2006088004 A1 WO2006088004 A1 WO 2006088004A1 JP 2006302494 W JP2006302494 W JP 2006302494W WO 2006088004 A1 WO2006088004 A1 WO 2006088004A1
Authority
WO
WIPO (PCT)
Prior art keywords
double layer
electric double
electrode material
layer capacitor
carbon
Prior art date
Application number
PCT/JP2006/302494
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoya Iwasaki
Hitoshi Hashizume
Makoto Shimizu
Original Assignee
Shinano Kenshi Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinano Kenshi Kabushiki Kaisha filed Critical Shinano Kenshi Kabushiki Kaisha
Priority to JP2006524165A priority Critical patent/JPWO2006088004A1/en
Publication of WO2006088004A1 publication Critical patent/WO2006088004A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electric double layer capacitor electrode material, a manufacturing method thereof, and an electric double layer capacitor.
  • An electric double layer capacitor has been used as a small power storage device for a backup power source such as a portable device.
  • high power density capacitors are required for hybrid vehicles and fuel cell vehicles from the viewpoint of environmental issues.
  • a conductive material such as carbon black is added to the activated carbon material as a polarizable electrode material to increase the conductivity and decrease the internal resistance.
  • attempts have been made to reduce internal resistance by increasing the electrical conductivity by adding carbon nanofibers as a conductive material (Japanese Patent Laid-Open No. 2001-135554).
  • Patent Document 1 JP 2001-135554
  • the present invention has been made to solve the above-described problems, and the object of the present invention is to provide an electric double layer suitable for high-current high-speed charge / discharge, which can uniformly disperse force-bonded nanofibers, reduce internal resistance, and It is in providing a capacitor electrode material and a manufacturing method thereof.
  • the electrode material for an electric double layer capacitor according to the present invention is in a solution in which a polymer substance in which an atom group containing a helium atom such as nitrogen, oxygen or sulfur is present in the main chain or side chain is dissolved. Carbon nanofibers are dispersed, the dispersion solution is dried, and the dried product is also baked in a non-acidic atmosphere at 500 to 3,000 ° C. to obtain a composite carbon material force.
  • the composite carbon material is subjected to activation treatment, and a large number of pores are formed on the surface. It is characterized by.
  • the electrode material for the electric double layer capacitor is characterized by having a granularity of 1 ⁇ m to 1000 m.
  • the amount of carbon nanofibers relative to the polymer material is 1-30 wt%.
  • the polymer substance is characterized by comprising an amino acid, a protein having an amino acid strength, or a peptide.
  • the polymer material is also characterized by a silk material strength.
  • the composite carbon material includes a nitrogen element.
  • the carbon nanofiber is a single-layer, double-layer, or multi-layer carbon nanotube, a cap-stacked carbon nanotube, or a carbon nanohorn.
  • the electric double layer capacitor according to the present invention is a pair of electrode bodies made of a current collector and a polarizable electrode, a separator, and an electric double layer capacitor made of electrolytic solution. 9. An electrode material for an electric double layer capacitor as set forth in any one of 9 above.
  • the method for producing an electric double layer capacitor according to the present invention includes a polymer in which a polymer substance in which an atomic group containing a hetero atom such as nitrogen, oxygen, or sulfur is present in a main chain or a side chain is dissolved.
  • the method includes a step of dispersing carbon nanofibers in a solution derived from a substance, a step of drying the dispersion solution, and a step of firing a dried product to form a composite carbon material.
  • the dried product is preferably pulverized and then calcined.
  • the composite carbon material formed by firing the dried product may be crushed into particles.
  • carbon nanofibers are dispersed in an amount of 1 to 30 wt% with respect to the polymer substance.
  • the carbon nanofibers are uniformly dispersed and the carbide derived from the polymer material and the carbon nanofibers 1 are in close contact with each other, so that the internal resistance can be sufficiently reduced, and a high-current, high-speed Suitable for charging / discharging, high output electric double layer capacitor can be obtained.
  • FIG. 1 is a Raman spectrum diagram of a fired product when coarse-grained silk is fired at a high temperature of 2000 ° C.
  • FIG. 2 Raman spectrum of fired product when coarse silk is fired at a high temperature of 700 ° C.
  • FIG. 3 Raman spectrum of the fired product when coarse silk is fired at a high temperature of 1000 ° C.
  • FIG. 6 is a graph showing measured values of powder resistance of a composite carbon material.
  • FIG. 7 is a graph showing capacitor characteristics (volume capacity) of Examples and Comparative Examples.
  • the electric double layer capacitor is composed of a pair of electrode bodies composed of a current collector and a polarizable electrode, a separator, and an electrolyte (the structure itself can take various known structures and is not particularly shown).
  • This embodiment is characterized by the electrode material included in the polarizable electrode.
  • carbon nanofibers are dispersed in a solution in which a polymer substance in which atomic groups containing heteroatoms such as nitrogen, oxygen, and sulfur are present in the main chain or side chain is dissolved,
  • the dispersion solution is dried, and the dried product is composed of a composite carbon material fired in a non-oxidizing atmosphere at 500 ° C. to 3000 ° C.
  • a silk material can be used for the polymer material.
  • the silk material is a general term for woven fabrics, knitted fabrics, powders, cotton, yarns, etc., which are rabbits or barbaric. These can be used alone or in combination.
  • These silk materials have a higher-order protein structure, and there are coordinating groups containing various amino acid residues on the surface (including the folded inner surface).
  • a polymer material in addition to the silk material described above, a polymer material in which an atomic group containing donor atoms such as nitrogen, oxygen, and sulfur is present in the main chain or side chain can be used.
  • proteins such as keratin, milk protein, corn protein and collagen can also be used.
  • carbon nanofibers are added to a solution in which the above polymer material is dissolved and dispersed well.
  • To disperse the carbon nanofibers apply ultrasonic vibration.
  • the amount of carbon nanofiber added to the polymer material is preferably about 1 to 30 wt%.
  • the carbon nanofiber single-walled, double-walled, or multi-walled carbon nanotubes, cap-stacked carbon nanotubes, or carbon nanohorns can be used.
  • the mixed solution is naturally dried or heated to about 80 ° C. to remove moisture and dried.
  • this dried product is fired at a temperature of 500 ° C. to 3000 ° C. to obtain a composite carbon material.
  • an activation treatment is performed in which this composite carbon material is exposed to high-temperature steam at about 700 ° C.
  • This activation treatment a large number of pores are formed on the surface of the carbide derived from the polymer material in the composite carbon material.
  • the surface area is increased, which is suitable as an electrode material for the electric double layer capacitor.
  • the pores are extremely small with a diameter of 1 Onm or less, and as a result, the composite carbon material has a surface area as large as 100 to 3000 m 2 Zg.
  • the activated composite carbon material is pulverized to a size of about 1 ⁇ to 1000 / ⁇ m, preferably about 5 m to 10 m.
  • a polarizable electrode By pulverizing in this way, it is possible to obtain a polarizable electrode by binding with a binder such as PTFE (polytetrafluoroethylene).
  • the dried product dried in the above drying step may be pulverized and fired.
  • the polarizable electrode only the composite carbon material formed in the above-mentioned granular shape may be used, but other conductive materials such as activated carbon and carbon black may be used in combination.
  • the mixing ratio of the electrode material is not particularly limited.
  • the composite carbon material of the present embodiment 15 to 90 wt%, conductive material such as carbon black 3 to 15 wt%, PTFE3 to 2 Owt%, CMC ( (Carboxymethylcellulose) 3 to 20 wt% is preferable.
  • the firing temperature is more preferable as the firing is performed at a higher temperature because the carbide derived from the polymer material becomes graphite and the conductivity is improved. Specifically, when it is fired at 1400 ° C or higher, it becomes a carbide with good conductivity.
  • the dispersibility of the carbon nanofibers becomes uniform.
  • the silk material was baked alone and the physical properties of the fired product were examined.
  • the firing temperature of the silk material is about 500 ° C to 3000 ° C.
  • the firing atmosphere is performed in an inert gas atmosphere such as nitrogen gas or argon gas or in a vacuum to prevent the silk material from burning and ashing.
  • an inert gas atmosphere such as nitrogen gas or argon gas or in a vacuum to prevent the silk material from burning and ashing.
  • firing it is preferable that firing is performed in a plurality of stages while avoiding rapid firing.
  • the firing conditions are the same when firing the composite material.
  • the first firing temperature for example, 500 ° C
  • the temperature is raised at a moderate temperature increase rate of 0 ° C. or less, preferably 50 ° C. or less per hour, and the primary calcination is carried out at this primary calcination temperature for several hours.
  • a secondary firing temperature e.g., 700 ° C
  • the secondary firing is performed for several hours at the secondary firing temperature.
  • a third firing for example, 2000 ° C. of final firing
  • the firing conditions are not limited to the above, and can be changed as appropriate depending on the type of silk material, the function of the desired carbon material, and the like.
  • firing is performed in multiple stages, and by heating at a moderate temperature rise rate and firing, dozens of amino acids are involved in an amorphous structure and a crystalline structure. However, rapid degradation of protein conformation is avoided.
  • Figure 1 shows the Raman spectrum of the fired product when coarse-grained silk is fired at a high temperature of 2000 ° C (final stage firing temperature). 2681cm _1 , It is understood that graphitized since the peak is observed at the 1335cm _1.
  • FIG. 5 is a Raman spectrum diagram of a fired product when fired with C. When the firing temperature is 1400 ° C, the peak value is low, but the peaks at the above three locations are observed.
  • IX 10 is _5 ( ⁇ ⁇ ⁇ ), but does not extend to the graphite (4 ⁇ 7 ⁇ 10-7 ⁇ -m), become a better resistivity carbon (4 X 10- 5), good electrical conductivity It turns out that it has sex.
  • Table 1 shows the results of elemental analysis (semi-quantitative analysis results) using an electron microanalyzer of the fired product obtained by firing a silk knitted silk fabric at 700 ° C in a nitrogen atmosphere.
  • Measurement conditions are acceleration voltage: 15 kV, irradiation current: 1 ⁇ , and probe diameter: 100 m.
  • the values in the table indicate the tendency of the detected elements and are not guaranteed values.
  • Example 1 As described above, when the silk material is fired, a large amount of elements such as nitrogen element remain, which is suitable as an electrode material for a capacitor.
  • Example 1 As described above, when the silk material is fired, a large amount of elements such as nitrogen element remain, which is suitable as an electrode material for a capacitor.
  • a 65 wt% aqueous solution 11 of calcium chloride dihydrate 11 of calcium chloride dihydrate, 240 g of silk raw material was added, and the solution was heated and dissolved for 6 hours while maintaining the solution temperature at 95 ° C. After filtering the dissolved solution after the decomposition, the undissolved material was filtered off, and the filtrate was further desalted using a dialysis membrane with a molecular fraction of 300 to further dilute the sylk protein solution to 3 wt%.
  • Silk protein aqueous solution was used. Carbon nanofibers were mixed with 3 ml of this 3 wt% silk protein aqueous solution, and the carbon nanofibers were dispersed by applying ultrasonic waves and dried at room temperature.
  • FIG. 5 is an SEM photograph of the composite carbon material obtained in this way. It can be seen that the carbon nanofibers are bound by the carbide derived from the polymer material, and that the carbon nanofibers protrude in the shape of spines. When the electrode material is used, the protruding carbon nanofibers come into contact with each other, and high conductivity is obtained.
  • Example 6 shows a powder of a composite carbon material formed using DWCNT and MWCNT as the carbon nanofiber and a composite carbon material (comparative example) formed using carbon black instead of the carbon nanofiber. This is a graph of measured resistance. Using this composite carbon material 75wt%, PTFE 15wt%, CMC 10wt%, a polarizable electrode material was formed.
  • Example 2
  • Carbon nanofibers were mixed with 3 ml of a 3 wt% silk protein aqueous solution, and the carbon nanofibers were dispersed by applying ultrasonic waves and dried at 80 ° C. After drying, it was pulverized and calcined at 700 ° C in a nitrogen atmosphere to obtain a composite carbon material powder. This material was steam activated at 700 ° C to obtain a high surface area composite carbon material. Using this composite carbon material 75wt%, PTFE 15wt%, CMC 10wt%, a polarizable electrode material was formed.
  • Carbon nanofibers were mixed in 3 ml of a 3 wt% silk amino acid aqueous solution, and the carbon nanofibers were dispersed by applying ultrasonic waves and dried at 80 ° C. After drying, it was pulverized and calcined at 700 ° C in a nitrogen atmosphere to obtain a composite carbon material powder. This material was steam activated at 700 ° C to obtain a high surface area composite carbon material. Using this composite carbon material 75wt%, PTFE 15wt%, CMC 10wt%, a polarizable electrode material was formed.
  • Example 4 Example 4
  • Carbon nanofibers were mixed in 3 ml of a 3 wt% silk amino acid aqueous solution, and the carbon nanofibers were dispersed by applying ultrasonic waves and dried at 80 ° C. After drying, it was pulverized and calcined at 700 ° C in a nitrogen atmosphere to obtain a composite carbon material powder. This material was steam activated at 700 ° C to obtain a high surface area composite carbon material. Using this composite carbon material 75wt%, PTFE 15wt%, CMC 10wt%, a polarizable electrode material was formed.
  • Example 5 Example 5
  • Carbon nanofibers were mixed in 3 ml of a 3 wt% silk amino acid aqueous solution, and the carbon nanofibers were dispersed by applying ultrasonic waves and dried at room temperature. After drying, it was pulverized and fired at 700 ° C in a nitrogen atmosphere to obtain a composite carbon material powder. This material Furthermore, it was fired at 2000 ° C. in a nitrogen atmosphere to obtain a low resistance composite carbon material. Using this, a polarizable electrode material was obtained using 80 wt% activated carbon, 10 wt% low resistance composite carbon material, and 10 wt% PTFE.
  • a commercially available carbon black was used in place of the low resistance composite carbon material, and a silk amino acid aqueous solution was dried and the dried product was crushed without adding carbon nanofibers or carbon black.
  • a polarizable electrode material using a carbon material fired under the above conditions was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Disclosed is an electrode material for electric double layer capacitors wherein carbon nanofibers are uniformly dispersed. This electrode material enables to reduce the internal resistance, and is suitable for high-rate charge/discharge with a large current. Specifically disclosed is an electrode material for electric double layer capacitors which is composed of a composite carbon material obtained by dispersing carbon nanofibers in a solution wherein a polymer material having an atomic group including a heteroatom such as a nitrogen, oxygen or sulfur atom in a main chain or side chain is dissolved, drying the dispersion solution, and then firing the dried material at 500-3000˚C in a non-oxidizing atmosphere.

Description

明 細 書  Specification
電気二重層キャパシタ電極材料およびその製造方法  Electric double layer capacitor electrode material and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、電気二重層キャパシタ電極材料およびその製造方法、電気二重層キヤ パシタに関する。  TECHNICAL FIELD [0001] The present invention relates to an electric double layer capacitor electrode material, a manufacturing method thereof, and an electric double layer capacitor.
背景技術  Background art
[0002] 電気二重層キャパシタは小型の蓄電デバイスとして携帯機器などのバックアップ電 源に使用されてきた。しかし、近年では環境問題の観点からハイブリット車や燃料電 池車用に高出力密度のキャパシタが求められる。また、瞬停対策として短時間に大 電流を取り出せるキャパシタも求められている。これらは共に内部抵抗を低下させる ことが重要である。このため、分極性電極材料として活性炭材料にカーボンブラック などの導電材を添加し、導電性を高めて内部抵抗を低下させることは知られている。 さらにカーボンナノファイバーを導電材として添加することによって電気伝導度をあげ ることによる内部抵抗の低下を試みることも行われた (特開 2001— 135554)。  An electric double layer capacitor has been used as a small power storage device for a backup power source such as a portable device. However, in recent years, high power density capacitors are required for hybrid vehicles and fuel cell vehicles from the viewpoint of environmental issues. There is also a need for a capacitor that can extract a large current in a short time as a measure against momentary power interruption. Both of these are important to reduce internal resistance. For this reason, it is known that a conductive material such as carbon black is added to the activated carbon material as a polarizable electrode material to increase the conductivity and decrease the internal resistance. Furthermore, attempts have been made to reduce internal resistance by increasing the electrical conductivity by adding carbon nanofibers as a conductive material (Japanese Patent Laid-Open No. 2001-135554).
特許文献 1 :特開 2001— 135554  Patent Document 1: JP 2001-135554
発明の開示  Disclosure of the invention
[0003] しかし、カーボンナノファイバーを導電材として添カ卩しても、均一に分散できなかつ たり、カーボンナノファイバーと活性炭材料の接触抵抗が大きくなつてしまうという課 題があった。  [0003] However, even if carbon nanofibers are added as a conductive material, there is a problem that they cannot be uniformly dispersed and the contact resistance between the carbon nanofibers and the activated carbon material increases.
そこで本発明は上記課題を解決すべくなされたもので、その目的とするところは、力 一ボンナノファイバーを均一に分散でき、内部抵抗を減じて、大電流の高速充放電 に適する電気二重層キャパシタ電極材料およびその製造方法を提供するにある。 本発明に係る電気二重層キャパシタ用電極材料は、窒素、酸素、硫黄のようなへテ 口原子を含む原子団が主鎖や側鎖に存在している高分子物質が溶解された溶液中 にカーボンナノファイバーが分散され、該分散溶液が乾燥され、該乾燥物が 500〜3 000°C、非酸ィ匕性雰囲気中で焼成された複合炭素素材力もなる。  Accordingly, the present invention has been made to solve the above-described problems, and the object of the present invention is to provide an electric double layer suitable for high-current high-speed charge / discharge, which can uniformly disperse force-bonded nanofibers, reduce internal resistance, and It is in providing a capacitor electrode material and a manufacturing method thereof. The electrode material for an electric double layer capacitor according to the present invention is in a solution in which a polymer substance in which an atom group containing a helium atom such as nitrogen, oxygen or sulfur is present in the main chain or side chain is dissolved. Carbon nanofibers are dispersed, the dispersion solution is dried, and the dried product is also baked in a non-acidic atmosphere at 500 to 3,000 ° C. to obtain a composite carbon material force.
前記複合炭素材料に賦活処理が施され、表面に多数の細孔が形成されて 、ること を特徴とする。 The composite carbon material is subjected to activation treatment, and a large number of pores are formed on the surface. It is characterized by.
また、電気二重層キャパシタ用電極材料は、 1 μ m〜 1000 mの粒状をなすことを 特徴とする。  In addition, the electrode material for the electric double layer capacitor is characterized by having a granularity of 1 μm to 1000 m.
前記高分子物質に対するカーボンナノファイバーの量が l〜30wt%であることを 特徴とする。  The amount of carbon nanofibers relative to the polymer material is 1-30 wt%.
前記高分子物質がアミノ酸、アミノ酸力もなるタンパク質、またはペプチドからなるこ とを特徴とする。  The polymer substance is characterized by comprising an amino acid, a protein having an amino acid strength, or a peptide.
また、高分子物質が絹素材力もなることを特徴とする。  In addition, the polymer material is also characterized by a silk material strength.
また、複合炭素素材が窒素元素を含むことを特徴とする。  In addition, the composite carbon material includes a nitrogen element.
前記カーボンナノファイバーが単層、二層、もしくは多層のカーボンナノチューブ、 キャップスタック型カーボンナノチューブ、またはカーボンナノホーンであることを特徴 とする。  The carbon nanofiber is a single-layer, double-layer, or multi-layer carbon nanotube, a cap-stacked carbon nanotube, or a carbon nanohorn.
また本発明に係る電気二重層キャパシタは、集電体と分極性電極よりなる一対の電 極体と、セパレータと、電解液力 なる電気二重層キャパシタにおいて、前記分極性 電極に、請求項 1〜 9いずれか 1項記載の電気二重層キャパシタ用電極材料を含む ことを特徴とする。  The electric double layer capacitor according to the present invention is a pair of electrode bodies made of a current collector and a polarizable electrode, a separator, and an electric double layer capacitor made of electrolytic solution. 9. An electrode material for an electric double layer capacitor as set forth in any one of 9 above.
また、本発明に係る電気二重層キャパシタの製造方法は、窒素、酸素、硫黄のよう なへテロ原子を含む原子団が主鎖や側鎖に存在している高分子物質が溶解された 高分子物質由来の溶液中にカーボンナノファイバーを分散する工程と、該分散溶液 を乾燥させる工程と、乾燥物を焼成して複合炭素材料を形成する工程とを含むことを 特徴とする。  In addition, the method for producing an electric double layer capacitor according to the present invention includes a polymer in which a polymer substance in which an atomic group containing a hetero atom such as nitrogen, oxygen, or sulfur is present in a main chain or a side chain is dissolved. The method includes a step of dispersing carbon nanofibers in a solution derived from a substance, a step of drying the dispersion solution, and a step of firing a dried product to form a composite carbon material.
前記乾燥物を粉砕して後焼成すると好適である。  The dried product is preferably pulverized and then calcined.
あるいは乾燥物を焼成して形成された複合炭素材料を粒状に粉砕するよう〖こしてもよ い。 Alternatively, the composite carbon material formed by firing the dried product may be crushed into particles.
高分子物質に対してカーボンナノファイバーを l〜30wt%分散させることを特徴とす る。 It is characterized in that carbon nanofibers are dispersed in an amount of 1 to 30 wt% with respect to the polymer substance.
高分子物質に絹素材を用いることを特徴とする。 It is characterized by using a silk material as a polymer material.
発明の効果 本発明によれば、カーボンナノファイバーが均一に分散し、かつ高分子材料由来の 炭化物とカーボンナノファイバ一とが密着していることによって、内部抵抗を十分低減 することができ、大電流の高速充放電に適し、高出力の電気二重層キャパシタが得ら れる。 The invention's effect According to the present invention, the carbon nanofibers are uniformly dispersed and the carbide derived from the polymer material and the carbon nanofibers 1 are in close contact with each other, so that the internal resistance can be sufficiently reduced, and a high-current, high-speed Suitable for charging / discharging, high output electric double layer capacitor can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0005] [図 1]粗粒シルクを 2000°Cの高温で焼成した場合の焼成物のラマンスペクトル図で ある。  [0005] FIG. 1 is a Raman spectrum diagram of a fired product when coarse-grained silk is fired at a high temperature of 2000 ° C.
[図 2]粗粒シルクを 700°Cの高温で焼成した場合の焼成物のラマンスペクトル図であ る。  [Fig. 2] Raman spectrum of fired product when coarse silk is fired at a high temperature of 700 ° C.
[図 3]粗粒シルクを 1000°Cの高温で焼成した場合の焼成物のラマンスペクトル図で ある。  [Fig. 3] Raman spectrum of the fired product when coarse silk is fired at a high temperature of 1000 ° C.
[図 4]粗粒シルクを 1400°Cの高温で焼成した場合の焼成物のラマンスペクトル図で ある。  [Fig. 4] Raman spectrum of fired product when coarse silk is fired at a high temperature of 1400 ° C.
[図 5]複合炭素材料の SEM写真である。  [Figure 5] SEM photograph of composite carbon material.
[図 6]複合炭素材料の粉体抵抗の測定値を示すグラフである。  FIG. 6 is a graph showing measured values of powder resistance of a composite carbon material.
[図 7]実施例と比較例のキャパシタ特性 (体積容量)を示すグラフである。  FIG. 7 is a graph showing capacitor characteristics (volume capacity) of Examples and Comparative Examples.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0006] 以下本発明の好適な実施の形態を詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
電気二重層キャパシタは、集電体と分極性電極よりなる一対の電極体と、セパレータ と、電解液からなる(構造自体は種々の公知の構造をとることができるので、特に図示 しない)。  The electric double layer capacitor is composed of a pair of electrode bodies composed of a current collector and a polarizable electrode, a separator, and an electrolyte (the structure itself can take various known structures and is not particularly shown).
本実施の形態では、分極性電極に含む電極材料に特徴がある。  This embodiment is characterized by the electrode material included in the polarizable electrode.
すなわち、この電極材料は、窒素、酸素、硫黄のようなヘテロ原子を含む原子団が 主鎖や側鎖に存在している高分子物質が溶解された溶液中にカーボンナノファイバ 一が分散され、該分散溶液が乾燥され、該乾燥物が 500°C〜3000°C、非酸化性雰 囲気中で焼成された複合炭素素材からなることを特徴とする。  That is, in this electrode material, carbon nanofibers are dispersed in a solution in which a polymer substance in which atomic groups containing heteroatoms such as nitrogen, oxygen, and sulfur are present in the main chain or side chain is dissolved, The dispersion solution is dried, and the dried product is composed of a composite carbon material fired in a non-oxidizing atmosphere at 500 ° C. to 3000 ° C.
前記高分子材料に絹素材を用いることができる。  A silk material can be used for the polymer material.
絹素材とは、家蚕あるいは野蚕力 なる織物、編物、粉体、綿、糸等の総称である。 これらを単独もしくは併用して用いることができる。 The silk material is a general term for woven fabrics, knitted fabrics, powders, cotton, yarns, etc., which are rabbits or barbaric. These can be used alone or in combination.
これら絹素材はタンパク質の高次構造をとり、その表面 (折り畳み構造をなす、折り 畳まれて内側となる表面を含む)に、種々のアミノ酸残基を含む配位基が存在する。 高分子材料としては、上記の絹素材の他に、窒素、酸素、硫黄のようなドナー原子 を含む原子団が主鎖や側鎖に存在している高分子材料を用いることができる。  These silk materials have a higher-order protein structure, and there are coordinating groups containing various amino acid residues on the surface (including the folded inner surface). As the polymer material, in addition to the silk material described above, a polymer material in which an atomic group containing donor atoms such as nitrogen, oxygen, and sulfur is present in the main chain or side chain can be used.
このような高分子材料としては、ケラチン、牛乳タンパク、トウモロコシタンパク、コラ 一ゲン等のタンパク質も用いることができる。  As such a polymer material, proteins such as keratin, milk protein, corn protein and collagen can also be used.
具体的には、上記の高分子材料を溶解した溶液にカーボンナノファイバーを添カロ し、よく分散させる。カーボンナノファイバーを分散させるには、超音波振動を印加す るようにするとよ 、。  Specifically, carbon nanofibers are added to a solution in which the above polymer material is dissolved and dispersed well. To disperse the carbon nanofibers, apply ultrasonic vibration.
高分子物質に対するカーボンナノファイバーの添加量は l〜30wt%程度が好適で ある。  The amount of carbon nanofiber added to the polymer material is preferably about 1 to 30 wt%.
カーボンナノファイバ一は単層、二層、もしくは多層のカーボンナノチューブ、キヤッ プスタック型カーボンナノチューブ、またはカーボンナノホーンを用いることができる。 次いで、上記混合溶液を自然乾燥あるいは、 80°C程度に加温して水分を飛ばし、 乾燥させる。  As the carbon nanofiber, single-walled, double-walled, or multi-walled carbon nanotubes, cap-stacked carbon nanotubes, or carbon nanohorns can be used. Next, the mixed solution is naturally dried or heated to about 80 ° C. to remove moisture and dried.
次に、この乾燥物を 500°C〜3000°Cの温度で焼成して複合炭素材料を得る。 次 、で、この複合炭素材料を 700°C程度の高温の水蒸気に晒す賦活処理を行う。 この賦活処理により、複合炭素材料中の、高分子材料由来の炭化物表面に多数の 細孔が形成される。これにより、表面積が増大するので、電気二重層キャパシタの電 極材料として好適となる。細孔は直径 lOnm以下の極めて小さなもので、これにより、 複合炭素材料は、表面積が、 100〜3000m2Zgもの大きな表面積を有するものとな る。 Next, this dried product is fired at a temperature of 500 ° C. to 3000 ° C. to obtain a composite carbon material. Next, an activation treatment is performed in which this composite carbon material is exposed to high-temperature steam at about 700 ° C. By this activation treatment, a large number of pores are formed on the surface of the carbide derived from the polymer material in the composite carbon material. As a result, the surface area is increased, which is suitable as an electrode material for the electric double layer capacitor. The pores are extremely small with a diameter of 1 Onm or less, and as a result, the composite carbon material has a surface area as large as 100 to 3000 m 2 Zg.
次に、上記賦活処理した複合炭素材料を、 1 μ πι〜1000 /ζ m程度の大きさ、好ま しくは 5 m〜10 m程度の粒状となるように粉砕する。このように粉砕することで、 P TFE (ポリテトラフルォロエチレン)等のバインダーにより結着して、分極性電極とする ことができる。なお、上記乾燥工程で乾燥した乾燥物を粉砕し、これを焼成するように してちよい。 また、分極性電極として、上記粒状に形成した複合炭素材料のみでもよいが、他の 、活性炭、カーボンブラックなどの導電材と併用してもよい。 Next, the activated composite carbon material is pulverized to a size of about 1 μπι to 1000 / ζ m, preferably about 5 m to 10 m. By pulverizing in this way, it is possible to obtain a polarizable electrode by binding with a binder such as PTFE (polytetrafluoroethylene). The dried product dried in the above drying step may be pulverized and fired. In addition, as the polarizable electrode, only the composite carbon material formed in the above-mentioned granular shape may be used, but other conductive materials such as activated carbon and carbon black may be used in combination.
電極材料の配合比は特に限定されるものではないが、例えば、本実施の形態の複合 炭素材料: 15〜90wt%、カーボンブラック等の導電材料 3〜15wt%、 PTFE3〜2 Owt%、 CMC (カルボキシメチルセルロース) 3〜20wt%などが好適である。 The mixing ratio of the electrode material is not particularly limited. For example, the composite carbon material of the present embodiment: 15 to 90 wt%, conductive material such as carbon black 3 to 15 wt%, PTFE3 to 2 Owt%, CMC ( (Carboxymethylcellulose) 3 to 20 wt% is preferable.
上記焼成温度は、より高温で焼成するほど高分子材料由来の炭化物がグラフアイト 化して導電性がよくなるので好ましい。具体的には、 1400°C以上で焼成すると導電 性の良好な炭化物となる。  The firing temperature is more preferable as the firing is performed at a higher temperature because the carbide derived from the polymer material becomes graphite and the conductivity is improved. Specifically, when it is fired at 1400 ° C or higher, it becomes a carbide with good conductivity.
一方、 1400°Cよりも低温で焼成した場合は、高分子 (特に絹素材)中の窒素成分 が多く残存し、これら官能基が存在することによって電子が蓄積されやすぐこれによ りキャパシタの容量が向上するというメリットもある。導電性の点については、カーボン ナノファイバーが補ってくれる。また必要に応じてカーボンブラック等の導電材を添カロ して導電性を調整するとよ ヽ。  On the other hand, when fired at a temperature lower than 1400 ° C, a large amount of nitrogen components remain in the polymer (especially silk material), and the presence of these functional groups causes electrons to accumulate, which immediately results in the capacitor. There is also an advantage that the capacity is improved. In terms of conductivity, carbon nanofibers make up for it. If necessary, adjust the conductivity by adding a conductive material such as carbon black.
本実施の形態では、上記のように、高分子溶液中にカーボンナノファイバーを分散 させるので、カーボンナノファイバーの分散性が均一となる。  In the present embodiment, as described above, since the carbon nanofibers are dispersed in the polymer solution, the dispersibility of the carbon nanofibers becomes uniform.
そして、この高分子溶液を乾燥後、焼成するので、カーボンナノファイバーが高分 子由来の炭化物により結着され、また、カーボンナノファイバー同士も接触するので、 接触抵抗が減少し、高い導電性が得られるのである。したがって、電気二重層キャパ シタとした際に、内部抵抗を十分低減することができ、大電流の高速充放電に適し、 高出力の電気二重層キャパシタが得られる。  And since this polymer solution is dried and fired, the carbon nanofibers are bound by the carbide derived from the polymer, and the carbon nanofibers are also in contact with each other, so that the contact resistance is reduced and the high conductivity is obtained. It is obtained. Therefore, when an electric double layer capacitor is used, the internal resistance can be sufficiently reduced, and a high output electric double layer capacitor suitable for high-current high-speed charge / discharge can be obtained.
なお、絹素材の導電性を確認するため、絹素材を単独で焼成して、焼成物の物性 を調べた。  In order to confirm the conductivity of the silk material, the silk material was baked alone and the physical properties of the fired product were examined.
絹素材の焼成温度は 500°C〜3000°C程度の温度で行うようにする。  The firing temperature of the silk material is about 500 ° C to 3000 ° C.
また焼成雰囲気は、窒素ガスやアルゴンガス等の不活性ガス雰囲気中、あるいは 真空中で行い、絹素材が燃焼して灰化してしまうのを防止する。  The firing atmosphere is performed in an inert gas atmosphere such as nitrogen gas or argon gas or in a vacuum to prevent the silk material from burning and ashing.
焼成条件は、急激な焼成を避け、複数段に分けて焼成を行うようにするとよい。この 焼成条件は、上記複合素材を焼成する場合も同じである。  As for the firing conditions, it is preferable that firing is performed in a plurality of stages while avoiding rapid firing. The firing conditions are the same when firing the composite material.
例えば、不活性ガス雰囲気中で、第 1次焼成温度 (例えば 500°C)までは、毎時 10 0°C以下、好ましくは毎時 50°C以下の緩やかな昇温速度で昇温し、この第 1次焼成 温度で数時間保持して 1次焼成する。次いで、一旦常温にまで冷却した後、第 2次焼 成温度 (例えば 700°C)まで、やはり毎時 100°C以下、好ましくは 50°C以下の緩やか な昇温速度で昇温し、この第 2次焼成温度で数時間保持して 2次焼成するのである。 次いで冷却する。同様にして、第 3次焼成 (例えば最終焼成の 2000°C)を行って炭 素材料を得る。なお、焼成条件は上記に限定されるものではなぐ絹素材の種類、求 める炭素材料の機能等により適宜変更することができる。 For example, in an inert gas atmosphere, up to the first firing temperature (for example, 500 ° C) The temperature is raised at a moderate temperature increase rate of 0 ° C. or less, preferably 50 ° C. or less per hour, and the primary calcination is carried out at this primary calcination temperature for several hours. Next, after cooling to room temperature, the temperature is increased to a secondary firing temperature (e.g., 700 ° C) at a moderate temperature increase rate of 100 ° C or less, preferably 50 ° C or less per hour. The secondary firing is performed for several hours at the secondary firing temperature. Then it is cooled. Similarly, a third firing (for example, 2000 ° C. of final firing) is performed to obtain a carbon material. The firing conditions are not limited to the above, and can be changed as appropriate depending on the type of silk material, the function of the desired carbon material, and the like.
上記のように、焼成を複数段に分けて行うこと、また緩やかな昇温速度で昇温して 焼成することによって、十数種類のアミノ酸が、非晶性構造と結晶性構造とが入り組 んだタンパク高次構造の急激な分解が避けられる。  As described above, firing is performed in multiple stages, and by heating at a moderate temperature rise rate and firing, dozens of amino acids are involved in an amorphous structure and a crystalline structure. However, rapid degradation of protein conformation is avoided.
図 1は粗粒シルクを 2000°C (最終段の焼成温度)の高温で焼成した場合の焼成物 のラマンスペクトル図である。 2681cm_1
Figure imgf000008_0001
1335cm_1のところにピーク が見られることからグラフアイト化していることが理解される。
Figure 1 shows the Raman spectrum of the fired product when coarse-grained silk is fired at a high temperature of 2000 ° C (final stage firing temperature). 2681cm _1 ,
Figure imgf000008_0001
It is understood that graphitized since the peak is observed at the 1335cm _1.
図 2、図 3、図 4は、粗粒シルクをそれぞれ 700。C、 1000。C、 1400。Cで焼成した場 合の焼成物のラマンスペクトル図である。 1400°Cの焼成温度になると、ピーク値は低 いものの、上記 3箇所でのピークが見られる。  Figures 2, 3 and 4 show 700 coarse silks each. C, 1000. C, 1400. FIG. 5 is a Raman spectrum diagram of a fired product when fired with C. When the firing temperature is 1400 ° C, the peak value is low, but the peaks at the above three locations are observed.
1000°C未満の焼成温度の場合には、上記のピークが見られないことから、グラファ イト化はほとんど起こっておらず、良好な導電性は期待できな 、。  When the firing temperature is less than 1000 ° C, the above-mentioned peak is not observed, so that graphitization hardly occurs and good conductivity cannot be expected.
したがって、導電材料として用いるときは、 1000〜3000°C (最終段の焼成温度)の 高温で焼成するようにするのが好ま U、。  Therefore, when used as a conductive material, it is preferable to fire at a high temperature of 1000-3000 ° C (final stage firing temperature).
上記のようにして、 1400°C、 2000°Cで絹素材 (織布)を焼成して得た炭素材料の 比抵抗を測定 (単糸をほぐしたフィラメントで測定)したところ、いずれも、約 I X 10_5( Ω ·πι)であり、グラフアイト(4〜7 Χ 10—7 Ω -m)には及ばないものの、炭素(4 X 10—5 )より良好な比抵抗となり、良好な電気電導性を有していることがわかる。 As described above, the specific resistance of the carbon material obtained by firing the silk material (woven fabric) at 1400 ° C and 2000 ° C was measured (measured with a filament loosened from the single yarn). IX 10 is _5 (Ω · πι), but does not extend to the graphite (4~7 Χ 10-7 Ω -m), become a better resistivity carbon (4 X 10- 5), good electrical conductivity It turns out that it has sex.
表 1  table 1
兀素 C N O Na Ms Al Si P S CI K Ca Fe wt% 66.1 27.4 2.1 0.1 0.3 0.1 0.3 0.1 0.1 0.1 0.1 3.2 0.2 表 1は、家蚕絹紡糸編地を窒素雰囲気中で 700°Cで焼成した焼成物の電子線マイ クロアナライザーによる元素分析結果 (半定量分析結果)を示す。 Silicon CNO Na Ms Al Si PS CI K Ca Fe wt% 66.1 27.4 2.1 0.1 0.3 0.1 0.3 0.1 0.1 0.1 0.1 3.2 0.2 Table 1 shows the results of elemental analysis (semi-quantitative analysis results) using an electron microanalyzer of the fired product obtained by firing a silk knitted silk fabric at 700 ° C in a nitrogen atmosphere.
測定条件は、加速電圧: 15kV、照射電流: 1 μ Α、プローブ径: 100 mである。な お、表中の値は検出元素の傾向を示すものであり、保証値ではない。  Measurement conditions are acceleration voltage: 15 kV, irradiation current: 1 μΑ, and probe diameter: 100 m. The values in the table indicate the tendency of the detected elements and are not guaranteed values.
表 1から明らかなように、 27. 4wt%という多量の窒素元素が残存していることがわ かる。またアミノ酸由来のその他の元素も残存する多元素物であることがわかる。 このように比較的低温で絹素材を一次焼成すると、窒素元素等の元素が多く残存 している。この窒素元素は、アミノ酸残基に由来するものである。  As is clear from Table 1, it can be seen that 27.4 wt% of nitrogen element remains. In addition, it can be seen that other elements derived from amino acids are multi-elements that remain. In this way, when the silk material is primarily fired at a relatively low temperature, many elements such as nitrogen element remain. This nitrogen element is derived from an amino acid residue.
このように、絹素材を焼成すると、窒素元素等の元素が多く残存し、キャパシタの電 極材料として好適となる。 実施例 1  As described above, when the silk material is fired, a large amount of elements such as nitrogen element remain, which is suitable as an electrode material for a capacitor. Example 1
塩化カルシウム 2水和物の 65wt%水溶液 11中に、絹原料 240gを添カ卩し、溶液温 度を 95°Cに保持しつつ加熱溶解を 6時間行った。分解が終了した溶解液をろ過して 未溶解物をろ別した後、ろ液を分子分画 300の透析膜を用いて脱塩して得られたシ ルクタンパク溶液をさらに希釈して 3wt%のシルクタンパク水溶液にした。この 3wt% のシルクタンパク水溶液 3mlにカーボンナノファイバーを lg混合し、超音波をかけて カーボンナノファイバーを分散させ、そのまま室温で乾燥させた。乾燥後粉砕し、窒 素雰囲気中にて 700°Cで焼成して複合炭素材料粉末を得た。この材料を 700°Cに て水蒸気賦活を行い、高表面積複合炭素材料を得た。図 5は、このようにして得られ た複合炭素材料の SEM写真である。高分子材料由来の炭化物によりカーボンナノ ファイバーが結着されるとともに、カーボンナノファイバーがゥ二の棘状に突出してい るのがわかる。電極材とした際、この突出しているカーボンナノファイバー同士が接触 し、高い導電性が得られる。なお、図 6は、上記カーボンナノファイバ一として DWCN T、 MWCNTを用いて形成した複合炭素材料と、上記カーボンナノファイバーの代 わりにカーボンブラックを用いて形成した複合炭素材料 (比較例)の粉体抵抗を計測 したグラフである。 この複合炭素材料 75wt%、 PTFE15wt%、 CMC10wt%を用いて分極性電極 材料を形成した。 実施例 2 In a 65 wt% aqueous solution 11 of calcium chloride dihydrate, 240 g of silk raw material was added, and the solution was heated and dissolved for 6 hours while maintaining the solution temperature at 95 ° C. After filtering the dissolved solution after the decomposition, the undissolved material was filtered off, and the filtrate was further desalted using a dialysis membrane with a molecular fraction of 300 to further dilute the sylk protein solution to 3 wt%. Silk protein aqueous solution was used. Carbon nanofibers were mixed with 3 ml of this 3 wt% silk protein aqueous solution, and the carbon nanofibers were dispersed by applying ultrasonic waves and dried at room temperature. After drying, it was pulverized and calcined at 700 ° C in a nitrogen atmosphere to obtain a composite carbon material powder. This material was steam activated at 700 ° C to obtain a high surface area composite carbon material. Figure 5 is an SEM photograph of the composite carbon material obtained in this way. It can be seen that the carbon nanofibers are bound by the carbide derived from the polymer material, and that the carbon nanofibers protrude in the shape of spines. When the electrode material is used, the protruding carbon nanofibers come into contact with each other, and high conductivity is obtained. FIG. 6 shows a powder of a composite carbon material formed using DWCNT and MWCNT as the carbon nanofiber and a composite carbon material (comparative example) formed using carbon black instead of the carbon nanofiber. This is a graph of measured resistance. Using this composite carbon material 75wt%, PTFE 15wt%, CMC 10wt%, a polarizable electrode material was formed. Example 2
3wt%のシルクタンパク水溶液 3mlにカーボンナノファイバーを lg混合し、超音波 をかけてカーボンナノファイバーを分散させ、 80°Cで乾燥させた。乾燥後粉砕し、窒 素雰囲気中にて 700°Cで焼成して複合炭素材料粉末を得た。この材料を 700°Cに て水蒸気賦活を行い、高表面積複合炭素材料を得た。この複合炭素材料 75wt%、 PTFE15wt%、 CMC10wt%を用いて分極性電極材料を形成した。 実施例 3  Carbon nanofibers were mixed with 3 ml of a 3 wt% silk protein aqueous solution, and the carbon nanofibers were dispersed by applying ultrasonic waves and dried at 80 ° C. After drying, it was pulverized and calcined at 700 ° C in a nitrogen atmosphere to obtain a composite carbon material powder. This material was steam activated at 700 ° C to obtain a high surface area composite carbon material. Using this composite carbon material 75wt%, PTFE 15wt%, CMC 10wt%, a polarizable electrode material was formed. Example 3
3wt%のシルクアミノ酸水溶液 3mlにカーボンナノファイバーを lg混合し、超音波 をかけてカーボンナノファイバーを分散させ、 80°Cで乾燥させた。乾燥後粉砕し、窒 素雰囲気中にて 700°Cで焼成して複合炭素材料粉末を得た。この材料を 700°Cに て水蒸気賦活を行い、高表面積複合炭素材料を得た。この複合炭素材料 75wt%、 PTFE15wt%、 CMC10wt%を用いて分極性電極材料を形成した。 実施例 4  Carbon nanofibers were mixed in 3 ml of a 3 wt% silk amino acid aqueous solution, and the carbon nanofibers were dispersed by applying ultrasonic waves and dried at 80 ° C. After drying, it was pulverized and calcined at 700 ° C in a nitrogen atmosphere to obtain a composite carbon material powder. This material was steam activated at 700 ° C to obtain a high surface area composite carbon material. Using this composite carbon material 75wt%, PTFE 15wt%, CMC 10wt%, a polarizable electrode material was formed. Example 4
3wt%のシルクアミノ酸水溶液 3mlにカーボンナノファイバーを lg混合し、超音波 をかけてカーボンナノファイバーを分散させ、 80°Cで乾燥させた。乾燥後粉砕し、窒 素雰囲気中にて 700°Cで焼成して複合炭素材料粉末を得た。この材料を 700°Cに て水蒸気賦活を行い、高表面積複合炭素材料を得た。この複合炭素材料 75wt%、 PTFE15wt%、 CMC10wt%を用いて分極性電極材料を形成した。 実施例 5  Carbon nanofibers were mixed in 3 ml of a 3 wt% silk amino acid aqueous solution, and the carbon nanofibers were dispersed by applying ultrasonic waves and dried at 80 ° C. After drying, it was pulverized and calcined at 700 ° C in a nitrogen atmosphere to obtain a composite carbon material powder. This material was steam activated at 700 ° C to obtain a high surface area composite carbon material. Using this composite carbon material 75wt%, PTFE 15wt%, CMC 10wt%, a polarizable electrode material was formed. Example 5
3wt%のシルクアミノ酸水溶液 3mlにカーボンナノファイバーを lg混合し、超音波 をかけてカーボンナノファイバーを分散させ、そのまま室温で乾燥させた。乾燥後粉 砕し、窒素雰囲気中にて 700°Cで焼成して複合炭素材料粉末を得た。この材料をさ らに窒素雰囲気中にて 2000°Cで焼成して低抵抗複合炭素材料を得た。これを用い て、活性炭 80wt%、低抵抗複合炭素材料 10wt%、 PTFE10wt%を用いて分極性 電極材料を得た。 Carbon nanofibers were mixed in 3 ml of a 3 wt% silk amino acid aqueous solution, and the carbon nanofibers were dispersed by applying ultrasonic waves and dried at room temperature. After drying, it was pulverized and fired at 700 ° C in a nitrogen atmosphere to obtain a composite carbon material powder. This material Furthermore, it was fired at 2000 ° C. in a nitrogen atmosphere to obtain a low resistance composite carbon material. Using this, a polarizable electrode material was obtained using 80 wt% activated carbon, 10 wt% low resistance composite carbon material, and 10 wt% PTFE.
比較例として低抵抗複合炭素材料の代わりに市販のカーボンブラックを使用したもの 、およびカーボンナノファイバーもカーボンブラックも添加せず、シルクアミノ酸水溶 液を乾燥させ、乾燥物を粉砕したものを上記と同一の条件で焼成した炭素材料を使 用した分極性電極材料を得た。 As a comparative example, a commercially available carbon black was used in place of the low resistance composite carbon material, and a silk amino acid aqueous solution was dried and the dried product was crushed without adding carbon nanofibers or carbon black. A polarizable electrode material using a carbon material fired under the above conditions was obtained.
上記各分極性電極を使用し、キャパシタ用のセルに組み込み、 2. 5Vまで 5mAで 充電、 2. 5Vで 30分保持した後、 lmA、 4mA、 10mAにてそれぞれ放電を行った。 この場合のキャパシタ特性評価を図 7に示す。図 7に示されるように、カーボンナノフ アイバーもカーボンブラックも混入して 、な 、比較例(添加無し)の場合、 10mAにて 放電を行うと lmA、 4mAにて放電したときよりも体積容量が低下する力 カーボンブ ラックや複合炭素材料を用いたものでは 10mAで放電しても低下は起こらなカゝつた。 またカーボンブラックのものに比べて上記複合炭素材料を添加したものの方が 1F/ CCだけ高 ヽ体積容量となった。  Using each of the above polarizable electrodes, it was built in a capacitor cell, charged to 2.5V with 5mA, held at 2.5V for 30 minutes, and then discharged with lmA, 4mA, and 10mA, respectively. Figure 7 shows the capacitor characteristics evaluation in this case. As shown in Fig. 7, both carbon nanofiber and carbon black are mixed. In the comparative example (without addition), discharge at 10 mA has a volume capacity higher than that at 1 mA and 4 mA. Decreasing force With carbon black and composite carbon materials, there was no reduction even when discharged at 10 mA. Compared with carbon black, the one with the above composite carbon material added had a higher volume capacity of 1F / CC.
このように、複合炭素材料を用いたものの方力 カーボンブラックを用いたものと比 して同等以上のキャパシタ特性が得られた。  In this way, capacitor characteristics equivalent to or better than those using composite carbon material and carbon black were obtained.

Claims

請求の範囲 The scope of the claims
[I] 窒素、酸素、硫黄のようなヘテロ原子を含む原子団が主鎖や側鎖に存在している 高分子物質が溶解された溶液中にカーボンナノファイバーが分散され、該分散溶液 が乾燥され、該乾燥物が 500〜3000°C、非酸化性雰囲気中で焼成された複合炭素 素材カゝらなる電気二重層キャパシタ用電極材料。  [I] Atomic groups containing heteroatoms such as nitrogen, oxygen, and sulfur are present in the main chain and side chain Carbon nanofibers are dispersed in a solution in which a polymer substance is dissolved, and the dispersed solution is dried. An electrode material for an electric double layer capacitor comprising the composite carbon material obtained by firing the dried product in a non-oxidizing atmosphere at 500 to 3000 ° C.
[2] 前記複合炭素材料に賦活処理が施され、表面に多数の細孔が形成されていること を特徴とする請求項 1記載の電気二重層キャパシタ用電極材料。 [2] The electrode material for an electric double layer capacitor according to [1], wherein the composite carbon material is subjected to an activation treatment, and a plurality of pores are formed on a surface thereof.
[3] 粒状をなすことを特徴とする請求項 1または 2記載の電気二重層キャパシタ用電極 材料。 [3] The electrode material for an electric double layer capacitor according to claim 1 or 2, wherein the electrode material is granular.
[4] 1 μ m〜1000 μ mの粒状をなすことを特徴とする請求項 3記載の電気二重層キヤ パシタ用電極材料。  [4] The electrode material for an electric double layer capacitor according to claim 3, wherein the electrode material has a granular shape of 1 μm to 1000 μm.
[5] 前記高分子物質に対するカーボンナノファイバーの量が l〜30wt%であることを 特徴とする請求項 1〜4いずれか 1項記載の電気二重層キャパシタ用電極材料。  [5] The electrode material for an electric double layer capacitor according to any one of [1] to [4], wherein the amount of the carbon nanofibers relative to the polymer substance is 1 to 30 wt%.
[6] 前記高分子物質がアミノ酸、アミノ酸力もなるタンパク質、またはペプチドからなるこ とを特徴とする請求項 1〜5いずれか 1項記載の電気二重層キャパシタ用電極材料。  6. The electrode material for an electric double layer capacitor according to any one of claims 1 to 5, wherein the polymer substance comprises an amino acid, a protein having an amino acid strength, or a peptide.
[7] 高分子物質が絹素材力 なることを特徴とする請求項 1〜5いずれか 1項記載の電 気二重層キャパシタ用電極材料。  [7] The electrode material for an electric double layer capacitor as described in any one of [1] to [5], wherein the polymer substance has a silk material strength.
[8] 前記複合炭素素材が窒素元素を含むことを特徴とする請求項 1〜7いずれか 1項 記載の電気二重層キャパシタ用電極材料。  8. The electrode material for an electric double layer capacitor according to any one of claims 1 to 7, wherein the composite carbon material contains a nitrogen element.
[9] 前記カーボンナノファイバーが単層、二層、もしくは多層のカーボンナノチューブ、 キャップスタック型カーボンナノチューブ、またはカーボンナノホーンであることを特徴 とする請求項 1〜8いずれか 1項記載の電気二重層キャパシタ用電極材料。  [9] The electric double layer according to any one of claims 1 to 8, wherein the carbon nanofiber is a single-walled, double-walled, or multi-walled carbon nanotube, a cap-stacked carbon nanotube, or a carbon nanohorn. Electrode material for capacitors.
[10] 集電体と分極性電極よりなる一対の電極体と、セパレータと、電解液からなる電気 二重層キャパシタにおいて、前記分極性電極に、請求項 1〜9いずれか 1項記載の 電気二重層キャパシタ用電極材料を含むことを特徴とする電気二重層キャパシタ。  10. An electric double layer capacitor comprising a pair of electrode bodies comprising a current collector and a polarizable electrode, a separator, and an electrolytic solution. An electric double layer capacitor comprising an electrode material for a multilayer capacitor.
[II] 窒素、酸素、硫黄のようなヘテロ原子を含む原子団が主鎖や側鎖に存在している 高分子物質が溶解された高分子物質由来の溶液中にカーボンナノファイバーを分 散する工程と、 該分散溶液を乾燥させる工程と、 [II] Atomic groups containing heteroatoms such as nitrogen, oxygen, and sulfur are present in the main chain and side chain. Disperse carbon nanofibers in a solution derived from a polymer material in which the polymer material is dissolved. Process, Drying the dispersion solution;
乾燥物を焼成して複合炭素材料を形成する工程とを含むことを特徴とする電気二 重層キャパシタ用電極材料の製造方法。  A method of producing an electrode material for an electric double layer capacitor, comprising: baking a dried product to form a composite carbon material.
[12] 乾燥物を粉砕して後焼成することを特徴とする請求項 11記載の電気二重層キャパ シタ用電極材料の製造方法。  12. The method for producing an electrode material for an electric double layer capacitor according to claim 11, wherein the dried product is pulverized and then fired.
[13] 乾燥物を焼成して形成された複合炭素材料を粒状に粉砕することを特徴とする請 求項 11記載の電気二重層キャパシタ用電極材料の製造方法。 [13] The method for producing an electrode material for an electric double layer capacitor according to claim 11, wherein the composite carbon material formed by firing the dried product is pulverized into particles.
[14] 前記複合炭素材料に賦活処理を施す工程を含むことを特徴とする請求項 11〜13 いずれか 1項記載の電気二重層キャパシタ用電極材料の製造方法。 [14] The method for producing an electrode material for an electric double layer capacitor according to any one of [11] to [13], further comprising a step of applying an activation treatment to the composite carbon material.
[15] 高分子物質に対してカーボンナノファイバーを l〜30wt%分散させることを特徴と する請求項 11〜14いずれか 1項記載の電気二重層キャパシタ用電極材料の製造方 法。 [15] The method for producing an electrode material for an electric double layer capacitor according to any one of [11] to [14], wherein carbon nanofibers are dispersed in an amount of 1 to 30 wt% with respect to the polymer substance.
[16] 高分子物質に絹素材を用いることを特徴とする請求項 11〜15いずれ力 1項記載の 電気二重層キャパシタ用電極材料の製造方法。  16. The method for producing an electrode material for an electric double layer capacitor according to any one of claims 11 to 15, wherein a silk material is used as the polymer substance.
PCT/JP2006/302494 2005-02-21 2006-02-14 Electrode material for electric double layer capacitor and method for producing same WO2006088004A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006524165A JPWO2006088004A1 (en) 2005-02-21 2006-02-14 Electric double layer capacitor electrode material and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-044573 2005-02-21
JP2005044573 2005-02-21

Publications (1)

Publication Number Publication Date
WO2006088004A1 true WO2006088004A1 (en) 2006-08-24

Family

ID=36916410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302494 WO2006088004A1 (en) 2005-02-21 2006-02-14 Electrode material for electric double layer capacitor and method for producing same

Country Status (3)

Country Link
JP (1) JPWO2006088004A1 (en)
CN (1) CN1942985A (en)
WO (1) WO2006088004A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285658A (en) * 2007-04-16 2008-11-27 Shinano Kenshi Co Ltd Rubber composition blended with carbon powder and method for producing the same
JP2011230969A (en) * 2010-04-28 2011-11-17 Toyo Univ Carbon nanotube given with polyamino acid, and method of producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239157A (en) * 2000-02-28 2001-09-04 Rengo Co Ltd Inorganic ion exchanger-hydrophilic polymer active carbon composite and its production method
JP2003160323A (en) * 2001-09-11 2003-06-03 Showa Denko Kk Activated carbon, method for production thereof and use thereof
JP2005001969A (en) * 2003-06-13 2005-01-06 Nippon Steel Chem Co Ltd Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239157A (en) * 2000-02-28 2001-09-04 Rengo Co Ltd Inorganic ion exchanger-hydrophilic polymer active carbon composite and its production method
JP2003160323A (en) * 2001-09-11 2003-06-03 Showa Denko Kk Activated carbon, method for production thereof and use thereof
JP2005001969A (en) * 2003-06-13 2005-01-06 Nippon Steel Chem Co Ltd Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285658A (en) * 2007-04-16 2008-11-27 Shinano Kenshi Co Ltd Rubber composition blended with carbon powder and method for producing the same
JP2011230969A (en) * 2010-04-28 2011-11-17 Toyo Univ Carbon nanotube given with polyamino acid, and method of producing the same

Also Published As

Publication number Publication date
CN1942985A (en) 2007-04-04
JPWO2006088004A1 (en) 2008-07-03

Similar Documents

Publication Publication Date Title
Mofokeng et al. Defective 3D nitrogen-doped carbon nanotube-carbon fibre networks for high-performance supercapacitor: Transformative role of nitrogen-doping from surface-confined to diffusive kinetics
Liu et al. Oxygen‐deficient bismuth oxide/graphene of ultrahigh capacitance as advanced flexible anode for asymmetric supercapacitors
JP4597666B2 (en) Particles comprising a non-conductive core or a semi-conductive core coated with a hybrid conductive layer, a method for its production, and its use in electrochemical devices
Ding et al. Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors
An et al. Electrochemical properties of high‐power supercapacitors using single‐walled carbon nanotube electrodes
Kiruthiga et al. Reduced graphene oxide embedded V2O5 nanorods and porous honey carbon as high performance electrodes for hybrid sodium-ion supercapacitors
KR102305509B1 (en) Electrode Composition for Battery
Wang et al. Graphene/silk fibroin based carbon nanocomposites for high performance supercapacitors
Noked et al. Composite carbon nanotube/carbon electrodes for electrical double‐layer super capacitors
Guo et al. DNA-assisted assembly of carbon nanotubes and MnO 2 nanospheres as electrodes for high-performance asymmetric supercapacitors
US20110255212A1 (en) Carbon Nanotube Nanocomposites, Methods of Making Carbon Nanotube Nanocomposites, and Devices Comprising the Nanocomposites
JP2005203365A (en) Carbon-porous support compound electrode material, compound electrode, and manufacturing method of compound electrode material, secondary battery, and capacitor as well as electric capacity-deionization process apparatus
Hareesh et al. Ultra high stable supercapacitance performance of conducting polymer coated MnO 2 nanorods/rGO nanocomposites
Fiore et al. Electrochemical characterization of highly abundant, low cost iron (III) oxide as anode material for sodium-ion rechargeable batteries
Hiralal et al. Enhanced supercapacitors from hierarchical carbon nanotube and nanohorn architectures
JP2016518705A (en) Graphene / carbon composition
Jiang et al. Hybrid ternary rice paper–manganese oxide–carbon nanotube nanocomposites for flexible supercapacitors
JP2010517919A5 (en)
EP3251135A1 (en) Anode for lithium ion capacitor based on carbonized coconut shell
An et al. Characterization of supercapacitors using singlewalled carbon nanotube electrodes
KR101118186B1 (en) Electrode Material for Supercapacitor, Electrode for Supercapacitor using the Electrode Material and Method for Manufacturing the Same
KR102084771B1 (en) Pseudo capacitor anode material and method for preparing the same
WO2006088004A1 (en) Electrode material for electric double layer capacitor and method for producing same
KR102481903B1 (en) Carbon nanofiber composite for energy storage device, electrode including the same, and manufacturing method thereof
JP2008247627A (en) Method for manufacturing carbon material, carbon material and electric double layer capacitor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006524165

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680000072.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713635

Country of ref document: EP

Kind code of ref document: A1