[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005001969A - Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor - Google Patents

Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor Download PDF

Info

Publication number
JP2005001969A
JP2005001969A JP2003169949A JP2003169949A JP2005001969A JP 2005001969 A JP2005001969 A JP 2005001969A JP 2003169949 A JP2003169949 A JP 2003169949A JP 2003169949 A JP2003169949 A JP 2003169949A JP 2005001969 A JP2005001969 A JP 2005001969A
Authority
JP
Japan
Prior art keywords
raw coke
double layer
electric double
carbon
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003169949A
Other languages
Japanese (ja)
Inventor
Yoichi Kawano
陽一 川野
Kazuhiko Mizuuchi
和彦 水内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2003169949A priority Critical patent/JP2005001969A/en
Publication of JP2005001969A publication Critical patent/JP2005001969A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a carbon material which is used for a polarizable electrode of an electric double layer capacitor having low internal resistance and high electrostatic capacity and is produced from raw coke produced in a delayed coker. <P>SOLUTION: In producing raw coke from a petroleum-derived or coal-derived heavy oil as a raw material in a delayed coker, a graphite powder is dispersed in the raw material oil and coked. Thus produced raw coke is subjected to pulverizing and then to an alkali activation treatment or an oxidative-gas activation treatment or the raw coke is subjected to an alkali activation treatment or an oxidative-gas activation treatment and then to spherical pulverizing; thus, a fine spherical carbon powder is produced. From this fine porous carbon powder, a polarizable electrode which, when used for an electric double layer capacitor, exhibits electrostatic capacity of 20 F/mL or higher is yielded. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電気二重層キャパシタに用いたときの内部抵抗が低く、体積あたりの容量が高い球状炭素微粉と、これを使用した電気二重層キャパシタに関する。
【0002】
【従来の技術】
電気二重層とは、固体と液体など二つの異なる層が接触すると、その境界面にプラスとマイナスの電荷が存在する状態をいう。この原理を利用し電気を貯蔵したものが、電気二重層キャパシタである。通常使われる電池に比べ、急速充電が可能なこと、化学反応を伴わないので繰り返し充放電による劣化が少ないこと、メンテナンスフリー等非常に優れた特性を示す素子である。
【0003】
電気二重層キャパシタの用途はコンピュータ用のメモリーバックアップに利用されつつあるし、自動車などのパワー用途分野でもハイブリッドカーへの応用展開が活発化している。また、電気二重層キャパシタに活性炭等の多孔質炭素材料を使用することは知られている(例えば特許文献1参照)。
【0004】
電気二重層キャパシタは、通常使われる電池に比べ、急速充電が可能であるが、充放電特性に影響を及ぼす因子として、電極内の内部抵抗がある。内部抵抗が高いとエネルギー効率が顕著に低下するため、電極内部抵抗を改善するためにいろいろな検討がなされてきた。電極に使用される炭素多孔質に関しては、例えば炭素を黒鉛化し、黒鉛化度を上げる方法(例えば特許文献2参照)や、バインダに導電性材料を混合する方法(例えば特許文献3参照)が提案されてきた。
【0005】
【特許文献1】
特開2001−319837号公報
【特許文献2】
特開1999−139712号公報
【特許文献3】
特開平10−4037号公報
【0006】
内部抵抗低減を目的に、黒鉛化した炭素原料を使用すると、材料の結晶化が進んでいるため、硬くなり、賦活が有効にできなくなる。賦活後に黒鉛化すると、炭素構造の収縮/変形が起こり、賦活過程で生じた細孔構造が消失してしまうという問題がある。バインダの伝導性を上げることは有効ではあるが、多孔質との密着性で改善の余地がある。
【0007】
【発明が解決しようとする課題】
本発明の目的は、比較的安価に、且つ工業的に大量に製造することが可能な生コークスを原料として、内部抵抗が低く、且つ静電容量の高い電気二重層キャパシタを与える球状炭素微粉の製造方法を提供することである。また、他の目的は体積あたりの静電容量の高い電気二重層キャパシタを提供することである。
【0008】
【課題を解決するための手段】
本発明者らは、前記の課題を解決するため鋭意研究を行った結果、ディレードコーカーにより、石炭あるいは石油系重油等の重質油に導電性物質を添加して得られる生コークスを、原料とすることにより、低内部抵抗且つ高静電容量の電気二重層キャパシタが製造可能であることを見出し、本発明に到った。
【0009】
本発明は、ディレードコーカーで製造する生コークス原料油中に、黒鉛微紛を添加し、導電材含有生コークスを得、次いでこの生コークスを粉砕した後に、アルカリ賦活及び酸化性ガス賦活から選択される1種又は2種の賦活処理をすることを特徴とする炭素微粉の製造方法である。賦活に先立ち、熱処理を行い、炭化度を調整しても良い。ここで、生コークスが石炭系重質油及び石油系重質油から選択される少なくとも1種を原料としてディレードコーカーで製造したものであること、粉砕した平均粒径が1mm以下であること、又は賦活処理温度が生コークスの製造温度を超える温度であることは、本発明の好ましい態様の一つである。
【0010】
また、本発明は、前記の製造方法によって得られた球状炭素微粉からなる多孔質炭素材料であって、電気二重層キャパシタ用の電極材料に使用したとき、体積あたりの静電容量が20F/ml以上であることを特徴とする多孔質炭素材料である。更に、本発明は、前記の球状炭素材料を電極とする電気二重層キャパシタである。
【0011】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明で使用する原料油は、ピッチ、瀝青物、重油等と称される石炭系又は石油系の重質油が使用可能である。原料の重質油にはキノリン不溶分(QI)が含まれるが、1wt%程度以下に脱QIすると異方性の生コークスが得られ、数%以上であると等方性の生コークスが得られるが、異方性の生コークスが電極用炭素材料として優れる傾向が認められる。しかし、等方性の生コークスであっても電極用炭素材料として優れるものが得られるので、30wt%程度までのQIの存在は差し支えない。また、この生コークスはピッチコークス(特に、ニードルコークス)を製造する際の中間体として多量に得られるので、これを使用することが可能である。
【0012】
本発明で使用する黒鉛粉末は、黒鉛層間距離(d002)が0.340nm以下のものが好ましい。
キッシュ黒鉛や、2000℃以上で熱処理したニードルコークスを公知の方法で粉砕したものが使用できる。黒鉛の粉砕粒度は、平均粒径が、50μ以下、好ましくは30μ以下、更に望ましくは20μ以下にするのが良い。黒鉛粉末は、予め原料油中に、公知の方法で分散して、ディレードコーカーに導入すればよい。添加量は原料油に対し、1−30wt%が良い。10wt%を超えると、得られる生コークス中の黒鉛の割合が過大になり、賦活が十分でなくなる。
【0013】
ディレードコーカーの運転条件は公知の範囲で差し支えなく、通常、400〜600℃程度、5〜50時間程度の条件でディレードコーキングが行われる。ディレードコーキング条件は、好ましくは450〜550℃程度、15〜25時間程度であり、揮発分を5〜15%程度含有する。生コークスは、揮発分を持つことから賦活処理が可能となる。
【0014】
生コークスはディレードコーキング温度が低い場合は、揮発分が高くなり、高温で行う賦活処理時に融着現象が起こり、粉体のまま取出すことができなくなる。このような場合には、表面を酸化して融着現象を抑えることが可能である。酸化は酸化性のガスや液体であれば特に限定するものではなく、コストの面から見れば気体であれば空気、液体であれば硫酸が望ましい。
【0015】
粉砕した生コークスの賦活処理では、アルカリ賦活又は酸化性ガス賦活又は両者の処理を行う。賦活処理温度は、特に限定するものではないが通常400℃以上の高温が必要である。アルカリ賦活の場合は、ディレードコーカーでのコーキング温度を超える温度が好ましく、より好ましくは600〜1000℃である。1000℃を超える温度では、コスト的に増大する。賦活処理時間は、賦活処理温度によって変化するが、通常0.1〜10hr、好ましくは0.5〜5hr程度である。酸化性ガス賦活の場合は、賦活処理温度は400〜700℃程度であり、賦活処理時間は賦活処理温度や酸化性ガスの種類によって変化するが、通常0.05〜5hr、好ましくは0.1〜1hr程度である。
【0016】
アルカリ賦活は、KOH、NaOH、KCO等のアルカリを生コークス粉に混合して行う。生コークス粉とアルカリの混合は、固体混合であっても、アルカリ水溶液を含浸させる方法であってもよい。生コークス粉とアルカリの混合割合(重量比)は、0.5〜10程度、好ましくは1〜5程度である。雰囲気は不活性ガス雰囲気が通常であるが、水蒸気等が存在してもよい。酸化性ガス賦活は、空気、酸素、二酸化炭素などの酸化性ガスの存在下で加熱を行う公知の方法を採用できる。また、水蒸気等が存在してもよい。また、上記2つの賦活処理を組合せてもよいし、水蒸気賦活処理を組合せてもよいし、処理条件が合致すれば同時に行ってもよいし、順次行ってもよい。これらの賦活処理の組合せは、生コークスの構造や性状及び目的とされる比表面積や細孔分布とから、考慮し決定すればよい。
【0017】
生コークス粉末を賦活処理して得た球状炭素微粉は、冷却、アルカリを混合した場合はアルカリ除去のための水洗、粉砕等がされた後、キャパシタ用炭素材料として使用することができる。この炭素微粉は、比表面積が100〜2200m/g程度で、中心細孔径が1〜20μm程度で、平均粒径が1〜40μm程度であることが好ましい。また、この多孔質炭素微粉は、後記する実施例に記載する方法により静電容量を測定したとき、静電容量が20F/ml以上、好ましくは25F/ml以上であることがよい。
【0018】
キャパシタとしては、多孔質炭素材料を使用した電極、電解液及びセパレータを構成要素として含む公知の電気二重層キャパシタがある。このようなキャパシタは、前記公報の他、特開2001−118753号公報等に詳細に記載されているのでこれが参照される。多孔質炭素材料を使用した電極は例えば、前記多孔質炭素材料に、導電材としてのアセチレンブラック、結合材としてのポリテトラフルオロエチレン(PTFE)及び溶媒を混合してペースト状にし、これを圧縮成形し、加熱乾燥して所定の電極形状にすることにより得ることができる。分極性電極は、例えば、前記電極の片面にアルミニウム等の金属を溶射又は圧接して導電性集電材層を設けたり、前記ペースト状物をアルミニウム等の金属箔に塗布し、加熱乾燥することにより得ることができる。
【0019】
【実施例】
以下の実施例によって本発明を更に具体的に説明するが、本発明はこの実施例によって何ら限定されるものではない。また、%はwt%である。
【0020】
実施例1
キノリン不溶分(QI)を0.1%以下にした軟ピッチからなる原料精製した石炭系重質油に対し、平均粒子径5μに粉砕した黒鉛微紛を原料油に対し2.5wt%の割合になるよう添加したものを原料とし、ディレードコーカーにて、500℃24時間コーキングをして異方性生コークスを得た。黒鉛微紛は、新日鐵化学株式会社製ニードルコークスLPC−Uを2400℃に加熱したもの(d002=0.338)を用いた。この生コークスを、平均粒径30μmに球状粉砕した。この異方性生コークス1重量部に対し、ペレット状の水酸化カリウムを4重量倍配合し、均一に混合した後、アルゴン気流下で800℃、2hr賦活処理を行った。その後、これを冷却、水洗、乾燥して球状炭素微粉からなる炭素材料を得た。得られた炭素材料の比表面積、静電容量及び内部抵抗の測定結果を表1に示す。
【0021】
比較例
黒鉛粉末を分散させないこと以外は、実施例1と同様に調整し、賦活した炭素材料を得た。得られた炭素材料の比表面積、静電容量及び内部抵抗の測定結果を表1に示す。
【0022】
表面積の測定は、ユアサ アイオニクス製のAUTOSORB1−C装置によりBET表面積を求めた。
【0023】
静電容量の測定は、賦活処理して得られた炭素材とカーボンブラック(ケッチェンブラック)、PTFEを8:1:1になるようにして電極を調製した。電気容量はこれら二枚を重ね合わせキャパシタを作成した。作成したキャパシタの放電電流2.4mA、24mAから静電容量を求めた。電解液はEtNBFを用い、放電容量Cは、TOYO SYSTEM製TOSCAT−3000K装置を用い、次の式の放電勾配より求めた。
C=I×(T2−T1)/(V1−V2)
V1:充電電圧の80%となる値
V2:充電電圧の40%となる値
T1:V1における時間
T2:V2における時間
I:放電電量
【0024】
内部抵抗が小さいほど、大電流放電時の静電容量が大きくなると考えられることから、内部抵抗の大きさは、充放電試験に於ける放電初期のIRドロップ量(電流2.4mA)で評価した。
【0025】
【表1】

Figure 2005001969
【0026】
【発明の効果】
本発明の方法によれば、ディレードコーカーで製造した生コークスを原料として、低内部抵抗且つ体積あたりの高静電容量を発現する電気二重層キャパシタ用分極性電極材料を安価に製造が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spherical carbon fine powder having a low internal resistance and a high capacity per volume when used in an electric double layer capacitor, and an electric double layer capacitor using the same.
[0002]
[Prior art]
The electric double layer is a state in which positive and negative charges are present at the interface when two different layers such as a solid and a liquid come into contact with each other. An electric double layer capacitor stores electricity using this principle. Compared to a battery that is normally used, it is an element that exhibits extremely excellent characteristics such as being capable of rapid charging, being free from deterioration due to repeated charge / discharge because it does not involve a chemical reaction, and being maintenance-free.
[0003]
Applications of electric double layer capacitors are being used for computer memory backup, and application development to hybrid cars is also active in the field of power applications such as automobiles. In addition, it is known to use a porous carbon material such as activated carbon for the electric double layer capacitor (see, for example, Patent Document 1).
[0004]
The electric double layer capacitor can be rapidly charged as compared with a normally used battery, but there is an internal resistance in the electrode as a factor affecting the charge / discharge characteristics. When the internal resistance is high, the energy efficiency is remarkably lowered. Therefore, various studies have been made to improve the internal resistance of the electrode. Regarding the carbon porous used for the electrode, for example, a method of graphitizing carbon to increase the degree of graphitization (for example, see Patent Document 2) and a method of mixing a conductive material in a binder (for example, see Patent Document 3) are proposed. It has been.
[0005]
[Patent Document 1]
JP 2001-319837 A [Patent Document 2]
JP-A-1999-139712 [Patent Document 3]
Japanese Patent Laid-Open No. 10-4037
When a graphitized carbon raw material is used for the purpose of reducing the internal resistance, the material is crystallized and becomes hard, so that activation cannot be effectively performed. When graphitizing after activation, there is a problem that shrinkage / deformation of the carbon structure occurs and the pore structure generated in the activation process disappears. Increasing the conductivity of the binder is effective, but there is room for improvement in adhesion with the porous material.
[0007]
[Problems to be solved by the invention]
The object of the present invention is to produce a spherical carbon fine powder that provides an electric double layer capacitor having a low internal resistance and a high capacitance, using raw coke that can be produced in large quantities industrially at a relatively low cost. It is to provide a manufacturing method. Another object is to provide an electric double layer capacitor having a high capacitance per volume.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have obtained raw coke obtained by adding a conductive substance to heavy oil such as coal or petroleum heavy oil by using a delayed coker as a raw material. As a result, it was found that an electric double layer capacitor having a low internal resistance and a high capacitance can be produced, and the present invention has been achieved.
[0009]
The present invention is selected from alkali activation and oxidizing gas activation after adding graphite fine powder to raw coke raw material oil produced with a delayed coker to obtain a conductive material-containing raw coke and then pulverizing the raw coke. It is a manufacturing method of the carbon fine powder characterized by performing the 1 type or 2 types of activation process. Prior to activation, heat treatment may be performed to adjust the carbonization degree. Here, the raw coke is manufactured with a delayed coker using at least one selected from coal-based heavy oil and petroleum-based heavy oil, the pulverized average particle size is 1 mm or less, or It is one of the preferable embodiments of the present invention that the activation treatment temperature exceeds the production temperature of raw coke.
[0010]
In addition, the present invention is a porous carbon material comprising spherical carbon fine powder obtained by the above production method, and when used as an electrode material for an electric double layer capacitor, the capacitance per volume is 20 F / ml. The porous carbon material is characterized by the above. Furthermore, the present invention is an electric double layer capacitor using the spherical carbon material as an electrode.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The raw material oil used in the present invention can be a coal-based or petroleum-based heavy oil called pitch, bitumen, heavy oil or the like. Heavy oil of raw material contains quinoline insoluble matter (QI), but when de-QI is about 1 wt% or less, anisotropic raw coke is obtained, and when it is more than several percent, isotropic raw coke is obtained. However, anisotropic raw coke tends to be excellent as a carbon material for electrodes. However, even if it is isotropic raw coke, what is excellent as a carbon material for electrodes can be obtained, so the presence of QI up to about 30 wt% is allowed. Moreover, since this raw coke is obtained in a large amount as an intermediate for producing pitch coke (particularly needle coke), it can be used.
[0012]
The graphite powder used in the present invention preferably has a graphite interlayer distance (d002) of 0.340 nm or less.
Kish graphite or needle coke heat-treated at 2000 ° C. or higher and pulverized by a known method can be used. The pulverized particle size of graphite should be an average particle size of 50 μm or less, preferably 30 μm or less, and more desirably 20 μm or less. The graphite powder may be previously dispersed in the raw material oil by a known method and introduced into the delayed coker. The addition amount is preferably 1-30 wt% with respect to the raw material oil. When it exceeds 10 wt%, the ratio of graphite in the obtained raw coke becomes excessive, and the activation becomes insufficient.
[0013]
The operating conditions of the delayed coker may be within a known range, and the delayed coking is usually performed under conditions of about 400 to 600 ° C. and about 5 to 50 hours. The delayed coking conditions are preferably about 450 to 550 ° C. and about 15 to 25 hours, and contain about 5 to 15% of volatile matter. Since raw coke has a volatile content, it can be activated.
[0014]
When raw coke has a low delayed coking temperature, the volatile matter becomes high, and a fusing phenomenon occurs during the activation process performed at a high temperature, making it impossible to take out the powder as it is. In such a case, it is possible to suppress the fusion phenomenon by oxidizing the surface. The oxidation is not particularly limited as long as it is an oxidizing gas or liquid. From the viewpoint of cost, air is preferable if it is gas, and sulfuric acid is preferable if it is liquid.
[0015]
In the activation process of the crushed raw coke, alkali activation or oxidizing gas activation or both are performed. The activation treatment temperature is not particularly limited, but usually requires a high temperature of 400 ° C. or higher. In the case of alkali activation, a temperature exceeding the coking temperature in the delayed coker is preferable, and more preferably 600 to 1000 ° C. If the temperature exceeds 1000 ° C., the cost increases. The activation treatment time varies depending on the activation treatment temperature, but is usually about 0.1 to 10 hr, preferably about 0.5 to 5 hr. In the case of oxidizing gas activation, the activation treatment temperature is about 400 to 700 ° C., and the activation treatment time varies depending on the activation treatment temperature and the type of the oxidizing gas, but is usually 0.05 to 5 hr, preferably 0.1. About 1 hr.
[0016]
Alkali activation is performed KOH, NaOH, an alkali such as K 2 CO 3 were mixed in a raw coke powder. The mixing of raw coke powder and alkali may be a solid mixing or a method of impregnating an alkaline aqueous solution. The mixing ratio (weight ratio) of raw coke powder and alkali is about 0.5 to 10, preferably about 1 to 5. The atmosphere is usually an inert gas atmosphere, but water vapor or the like may be present. For the oxidizing gas activation, a known method in which heating is performed in the presence of an oxidizing gas such as air, oxygen or carbon dioxide can be employed. Moreover, water vapor | steam etc. may exist. Further, the above two activation processes may be combined, a steam activation process may be combined, or may be performed simultaneously if the processing conditions are met, or may be performed sequentially. The combination of these activation treatments may be determined in consideration of the structure and properties of raw coke and the intended specific surface area and pore distribution.
[0017]
Spherical carbon fine powder obtained by activating raw coke powder can be used as a carbon material for capacitors after cooling and washing with water, pulverization, etc. when alkali is mixed. The carbon fine powder preferably has a specific surface area of about 100 to 2200 m 2 / g, a central pore size of about 1 to 20 μm, and an average particle size of about 1 to 40 μm. The porous carbon fine powder may have a capacitance of 20 F / ml or more, preferably 25 F / ml or more, when the capacitance is measured by a method described in Examples described later.
[0018]
As the capacitor, there is a known electric double layer capacitor including an electrode using a porous carbon material, an electrolytic solution, and a separator as constituent elements. Such a capacitor is described in detail in Japanese Patent Application Laid-Open No. 2001-118753 and the like in addition to the above-mentioned publication, and this is referred to. An electrode using a porous carbon material is, for example, a paste formed by mixing acetylene black as a conductive material, polytetrafluoroethylene (PTFE) as a binder, and a solvent into the porous carbon material, and then compressing it. It can be obtained by heating and drying into a predetermined electrode shape. For example, the polarizable electrode is formed by spraying or pressing a metal such as aluminum on one surface of the electrode to provide a conductive current collector layer, or applying the paste-like material to a metal foil such as aluminum and drying by heating. Obtainable.
[0019]
【Example】
The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the examples. Moreover,% is wt%.
[0020]
Example 1
A ratio of 2.5 wt% of graphite fine powder pulverized to an average particle size of 5μ to raw material oil with respect to raw material refined coal-based heavy oil consisting of soft pitch with a quinoline insoluble content (QI) of 0.1% or less The raw material was added so as to become a raw material, and coking was performed at 500 ° C. for 24 hours in a delayed coker to obtain anisotropic raw coke. As the graphite fine powder, needle coke LPC-U manufactured by Nippon Steel Chemical Co., Ltd. heated to 2400 ° C. (d002 = 0.338) was used. The raw coke was pulverized into an average particle size of 30 μm. After 4 parts by weight of pellet-like potassium hydroxide was blended with 1 part by weight of this anisotropic raw coke and mixed uniformly, an activation treatment was performed at 800 ° C. for 2 hours under an argon stream. Then, this was cooled, washed with water, and dried to obtain a carbon material made of spherical carbon fine powder. Table 1 shows the measurement results of the specific surface area, capacitance, and internal resistance of the obtained carbon material.
[0021]
Comparative Example An activated carbon material was obtained by adjusting in the same manner as in Example 1 except that the graphite powder was not dispersed. Table 1 shows the measurement results of the specific surface area, capacitance, and internal resistance of the obtained carbon material.
[0022]
For the measurement of the surface area, the BET surface area was determined with an AUTOSORB1-C apparatus manufactured by Yuasa Ionics.
[0023]
The capacitance was measured by preparing an electrode such that the carbon material obtained by the activation treatment, carbon black (Ketjen Black), and PTFE were 8: 1: 1. Capacitance was created by superposing these two sheets. The capacitance was determined from the discharge currents of 2.4 mA and 24 mA of the prepared capacitor. The electrolyte solution was Et 4 NBF 4 and the discharge capacity C was determined from the discharge gradient of the following formula using a TOSCAT-3000K device manufactured by TOYO SYSTEM.
C = I * (T2-T1) / (V1-V2)
V1: Value that is 80% of the charging voltage V2: Value that is 40% of the charging voltage T1: Time at V1 T2: Time at V2 I: Discharge amount
The smaller the internal resistance, the larger the electrostatic capacity during large current discharge. Therefore, the internal resistance was evaluated by the IR drop amount (current 2.4 mA) at the initial stage of discharge in the charge / discharge test. .
[0025]
[Table 1]
Figure 2005001969
[0026]
【The invention's effect】
According to the method of the present invention, it is possible to inexpensively produce a polarizable electrode material for an electric double layer capacitor that exhibits low internal resistance and high capacitance per volume, using raw coke produced by a delayed coker as a raw material. .

Claims (7)

ディレードコーカーの原料油中に黒鉛粉末を添加して得た、黒鉛粉末が分散した生コークスを原料とすることを特徴とする炭素微粉の製造方法。A method for producing fine carbon powder, characterized in that raw coke in which graphite powder is dispersed, obtained by adding graphite powder to a raw material oil of a delayed coker, is used as a raw material. アルカリ賦活及び酸化性ガス賦活から選択される1種又は2種の賦活処理をすることを特徴とする請求項1記載の炭素微粉の製造方法。The method for producing carbon fine powder according to claim 1, wherein one or two activation processes selected from alkali activation and oxidizing gas activation are performed. 生コークスが、石炭系重質油及び石油系重質油から選択される少なくとも1種を原料としてディレードコーカーで製造したものである請求項1または2記載の炭素微粉の製造方法。The method for producing fine carbon powder according to claim 1 or 2, wherein the raw coke is produced by a delayed coker using at least one selected from coal-based heavy oil and petroleum-based heavy oil as a raw material. 粉砕した生コークスの平均粒径が、1mm以下である請求項1〜3のいずれかに記載の球状炭素微粉の製造方法。The method for producing spherical carbon fine powder according to any one of claims 1 to 3, wherein the average particle size of the pulverized raw coke is 1 mm or less. 賦活処理温度が、生コークスの製造温度を超える温度である請求項1または2記載の多孔質炭素微粉の製造方法。The method for producing a porous carbon fine powder according to claim 1 or 2, wherein the activation treatment temperature is a temperature exceeding the production temperature of raw coke. 請求項1〜5のいずれかに記載の製造方法によって得られた炭素微粉からなる炭素材料であって、電気二重層キャパシタ用の電極材料に使用したとき、体積あたりの静電容量が20F/ml以上であることを特徴とするキャパシタ用多孔質炭素材料。A carbon material comprising carbon fine powder obtained by the production method according to any one of claims 1 to 5, wherein when used as an electrode material for an electric double layer capacitor, the capacitance per volume is 20 F / ml. A porous carbon material for capacitors, which is characterized by the above. 請求項4記載の球状炭素材料を電極としたことを特徴とする電気二重層キャパシタ。An electric double layer capacitor comprising the spherical carbon material according to claim 4 as an electrode.
JP2003169949A 2003-06-13 2003-06-13 Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor Withdrawn JP2005001969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169949A JP2005001969A (en) 2003-06-13 2003-06-13 Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003169949A JP2005001969A (en) 2003-06-13 2003-06-13 Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2005001969A true JP2005001969A (en) 2005-01-06

Family

ID=34094933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169949A Withdrawn JP2005001969A (en) 2003-06-13 2003-06-13 Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2005001969A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088004A1 (en) * 2005-02-21 2006-08-24 Shinano Kenshi Kabushiki Kaisha Electrode material for electric double layer capacitor and method for producing same
JP2006269494A (en) * 2005-03-22 2006-10-05 Nippon Steel Chem Co Ltd Carbonaceous material for polarized electrode for electric double-layer capacitor, and manufacturing method of polarized electrode
JP2006295144A (en) * 2005-03-14 2006-10-26 Nippon Steel Chem Co Ltd Porous carbon material for electric double layer capacitor polarizing electrode
JP2008066528A (en) * 2006-09-07 2008-03-21 Nippon Oil Corp Carbon material for electric double-layer capacitor electrode and electric double layer capacitor using the same
EP1959462A1 (en) * 2007-02-15 2008-08-20 Sgl Carbon Ag Porous coke
JP2009526743A (en) * 2006-02-15 2009-07-23 ラドヤード, ライル イストバン, Mesoporous activated carbon
JP2011079705A (en) * 2009-10-07 2011-04-21 Osaka Gas Chem Kk Method and apparatus for producing activated carbon
US7993619B2 (en) * 2005-06-21 2011-08-09 Nippon Oil Corporation Raw oil composition for carbon material for electric double layer capacitor electrode
US8313723B2 (en) 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
CN103003474A (en) * 2010-05-31 2013-03-27 西格里碳素欧洲公司 Carbon body, method for producing a carbon body and use thereof
US8580418B2 (en) 2006-01-31 2013-11-12 Nanocarbons Llc Non-woven fibrous materials and electrodes therefrom
US8709972B2 (en) 2007-02-14 2014-04-29 Nanocarbons Llc Methods of forming activated carbons
JPWO2013001578A1 (en) * 2011-06-29 2015-02-23 株式会社日立製作所 Input / output control device and frame processing method of input / output control device
US11304528B2 (en) 2012-09-20 2022-04-19 Steelcase Inc. Chair assembly with upholstery covering

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088004A1 (en) * 2005-02-21 2006-08-24 Shinano Kenshi Kabushiki Kaisha Electrode material for electric double layer capacitor and method for producing same
JP2006295144A (en) * 2005-03-14 2006-10-26 Nippon Steel Chem Co Ltd Porous carbon material for electric double layer capacitor polarizing electrode
JP2006269494A (en) * 2005-03-22 2006-10-05 Nippon Steel Chem Co Ltd Carbonaceous material for polarized electrode for electric double-layer capacitor, and manufacturing method of polarized electrode
US7993619B2 (en) * 2005-06-21 2011-08-09 Nippon Oil Corporation Raw oil composition for carbon material for electric double layer capacitor electrode
US8313723B2 (en) 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
US8580418B2 (en) 2006-01-31 2013-11-12 Nanocarbons Llc Non-woven fibrous materials and electrodes therefrom
JP2009526743A (en) * 2006-02-15 2009-07-23 ラドヤード, ライル イストバン, Mesoporous activated carbon
JP2008066528A (en) * 2006-09-07 2008-03-21 Nippon Oil Corp Carbon material for electric double-layer capacitor electrode and electric double layer capacitor using the same
US8709972B2 (en) 2007-02-14 2014-04-29 Nanocarbons Llc Methods of forming activated carbons
EP1959463A1 (en) * 2007-02-15 2008-08-20 Sgl Carbon Ag Porous coke
US7990680B2 (en) 2007-02-15 2011-08-02 Sgl Carbon Se Porous coke and method of producing the porous coke
RU2431899C2 (en) * 2007-02-15 2011-10-20 Сгл Карбон Се Porous coke
JP2010517919A (en) * 2007-02-15 2010-05-27 エスゲーエル カーボン ソシエタス ヨーロピア Porous coke
WO2008099015A1 (en) * 2007-02-15 2008-08-21 Sgl Carbon Ag Porous coke
EP1959462A1 (en) * 2007-02-15 2008-08-20 Sgl Carbon Ag Porous coke
JP2011079705A (en) * 2009-10-07 2011-04-21 Osaka Gas Chem Kk Method and apparatus for producing activated carbon
CN103003474A (en) * 2010-05-31 2013-03-27 西格里碳素欧洲公司 Carbon body, method for producing a carbon body and use thereof
CN103003474B (en) * 2010-05-31 2016-03-16 西格里碳素欧洲公司 Carbon body, the method for producing carbon body and uses thereof
JPWO2013001578A1 (en) * 2011-06-29 2015-02-23 株式会社日立製作所 Input / output control device and frame processing method of input / output control device
US11304528B2 (en) 2012-09-20 2022-04-19 Steelcase Inc. Chair assembly with upholstery covering

Similar Documents

Publication Publication Date Title
JP4618929B2 (en) Activated carbon for electric double layer capacitors
KR101056734B1 (en) Electrode of high density supercapacitor and method of manufacturing the same
JP2005136397A (en) Activated carbon, electrode material using it, and electric double layer capacitor
JP5448848B2 (en) Porous coke
JP2005001969A (en) Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor
JP2011176043A (en) Activated carbon for electric double layer capacitor
JP4616052B2 (en) Electrode material for electric double layer capacitor and manufacturing method thereof, electrode for electric double layer capacitor, and electric double layer capacitor
JP2004175660A (en) Activated carbon, method of manufacturing the same and polarizable electrode
JP2010517919A5 (en)
JP5302646B2 (en) Pre-doping power storage device
Anand et al. Walnut shell derived N, S co-doped activated carbon for solid-state symmetry supercapacitor device
JP2000138140A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP2006295144A (en) Porous carbon material for electric double layer capacitor polarizing electrode
KR102177976B1 (en) Method for manufacturing graphene composite, eletrode active material and secondary battery including the same
JP5164418B2 (en) Carbon material for electricity storage device electrode and method for producing the same
JP2005001968A (en) Production method for porous carbon
JP2005116829A (en) Manufacturing method of electrode for electric double layer capacitor
JP4503134B2 (en) Activated carbon for electric double layer capacitors
JP2005347517A (en) Method of manufacturing activated charcoal for electric double layer capacitor electrode
JP2008021833A (en) Porous carbon material for electric double layer capacitor, manufacturing method thereof, and non-aqueous electric double layer capacitor
JP2003171105A (en) Method for manufacturing porous carbon fine powder and electrical double layer capacitor
JP2005001967A (en) Production method for fine spherical carbon powder, and electric double layer capacitor
CN115668421A (en) Electrochemical device
JP4096653B2 (en) Method for producing activated carbon, polarizable electrode and electric double layer capacitor
JP2009260112A (en) Producing method of positive-electrode active material for electrochemical capacitor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905