[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006057403A1 - 画像処理装置 - Google Patents

画像処理装置 Download PDF

Info

Publication number
WO2006057403A1
WO2006057403A1 PCT/JP2005/021872 JP2005021872W WO2006057403A1 WO 2006057403 A1 WO2006057403 A1 WO 2006057403A1 JP 2005021872 W JP2005021872 W JP 2005021872W WO 2006057403 A1 WO2006057403 A1 WO 2006057403A1
Authority
WO
WIPO (PCT)
Prior art keywords
image signal
image
signal
amount
contour
Prior art date
Application number
PCT/JP2005/021872
Other languages
English (en)
French (fr)
Inventor
Shuichi Ojima
Bunpei Toji
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/666,892 priority Critical patent/US8107012B2/en
Priority to JP2006520568A priority patent/JP4843489B2/ja
Publication of WO2006057403A1 publication Critical patent/WO2006057403A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • H04N5/205Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic
    • H04N5/208Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic for compensating for attenuation of high frequency components, e.g. crispening, aperture distortion correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/142Edging; Contouring

Definitions

  • the present invention relates to an image processing device that performs digital signal processing on an image signal, and more particularly to an image processing device that corrects the contour of an image displayed on an image display device such as a television receiver. .
  • the contour correction technique is a technique that increases the sharpness of an image by correcting the contour portion of the image.
  • This contour correction technology can be roughly divided into two types.
  • the contour correction technology includes a shoot-type contour correction technology that adds overshoot and undershoot before and after the contour portion, and a sharp change in the luminance signal of the contour portion. There is a tricky shootless contour correction technology.
  • FIG. 1 is a functional block diagram of the image processing apparatus disclosed in Patent Document 1.
  • This image processing apparatus 800 includes a holding unit 810, a differentiating unit 820, a coring unit 830, a comparator unit 840, and a signal selection unit 850.
  • Holding unit 810 acquires image signal G1 and holds the image signal G1.
  • Differentiating unit 820 performs differentiation on image signal G1, and outputs a first-order differential signal G2 indicating the result of the differentiation.
  • the coring unit 830 removes the small amplitude of the primary differential signal G2 and shapes the waveform.
  • Comparator unit 840 ranks rising and falling levels in primary differential signal G2 waveform-shaped by coring unit 830.
  • the signal selection unit 850 selects a value corresponding to the rank output from the comparator unit 840 from a plurality of values included in the image signal G1 held in the holding unit 810. As a result, the signal selection unit 850 generates and outputs a corrected image signal G9.
  • Such an image processing device 800 acquires an image signal G1 and differentiates the image signal G1.
  • the first-order differential signal G2 generated by doing this is used as the contour correction control signal.
  • the image processing apparatus 800 corrects the image signal G1 according to the primary differential signal G2 that is the contour correction control signal, and generates a corrected image signal G9.
  • FIG. 2 is a diagram for explaining a signal generated by the image processing apparatus 800 of Patent Document 1.
  • the image signal G1 is a signal indicating the luminance Y for each horizontal pixel position X.
  • the image signal G1 shown in FIG. 2 shows the outline of the black image and the white image.
  • the image processing device 800 selects, for each horizontal pixel position X, the luminance Y of the image signal G1 at the horizontal pixel position X that is separated by a distance corresponding to the value indicated by the primary differential signal G2.
  • the corrected image signal G9 generated in this way has a clear outline with a larger gradient in luminance Y than the image signal G1.
  • FIG. 3 is a functional block diagram of the image processing apparatus disclosed in Patent Document 2.
  • This image processing apparatus 900 includes a delay unit 910, a first differentiation unit 920, an absolute value calculation unit 930,
  • the second differentiation unit 940 and the time axis modulation unit 950 are provided.
  • the delay unit 910 acquires the image signal T1, and delays the image signal T1 in order to match the timing with the average delay time of the time axis modulation unit 950.
  • First differentiation section 920 performs differentiation on image signal T1 delayed by delay section 910, and outputs the result as a primary differentiation signal.
  • Absolute value calculation section 930 takes the absolute value of the value indicated by the primary differential signal and outputs the result as an absolute value signal.
  • the second differentiating unit 940 performs differentiation on the absolute value signal! And outputs the result as a second-order differential signal T2.
  • the time axis modulation unit 950 includes a memory and stores the image signal T1 in the memory. Then, the time axis modulation unit 950 selects a value corresponding to the secondary differential signal T2 output from the second differential unit 940 from a plurality of values (for example, luminance) indicated by the image signal T1. As a result, the time axis modulation unit 950 generates and outputs a corrected image signal T9.
  • Such an image processing apparatus 900 uses the secondary differential signal T2 generated by acquiring the image signal T1 and secondarily differentiating the image signal T1 as the contour correction control signal. Then, the image processing apparatus 900 corrects the image signal T1 according to the secondary differential signal T2 that is the contour correction control signal, and generates a corrected image signal T9.
  • FIG. 4 is a diagram for explaining a signal generated by the image processing apparatus 900 disclosed in Patent Document 2.
  • the image signal T1 is a signal indicating the luminance Y for each horizontal pixel position X.
  • the image signal T1 shown in FIG. 4 shows the outline of the black image and the white image.
  • the value indicated by the secondary differential signal T2 repeats increasing and decreasing as it moves from the left horizontal pixel position X to the right horizontal pixel position X.
  • the image processing apparatus 900 selects the luminance Y of the image signal T1 at the horizontal pixel position X that is separated by a distance corresponding to the value indicated by the secondary differential signal T2.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-32298 (Page 5, Figure 1)
  • Patent Document 2 JP-A-4 6960 (Page 7, Figure 1)
  • the image processing apparatuses of Patent Document 1 and Patent Document 2 have a problem that the outline cannot be clarified at an appropriate position. That is, in the corrected image signal G9 generated by the image processing apparatus 800 of Patent Document 1 described above, as shown in FIG. 2, the sharpness of the rising portion of the contour is insufficient and the contour is clearly shown. I can't. Further, the black area indicated by the corrected image signal G9 is wider than the black area indicated by the image signal G1, while the white area indicated by the corrected image signal G9 is narrower than the white area indicated by the image signal G1. That is, in the corrected image signal G9, the black area is enlarged, while the white area is reduced, and the position of the contour is shifted.
  • the whiteness indicated by the force-corrected image signal T9 with sufficient sharpness of the contour is obtained.
  • the area becomes wider than the white area indicated by the image signal T1. Therefore, for example, when an image of a white column is displayed by the image signal T1, the white column is displayed thicker in the corrected image signal T9. That is, in the corrected image signal T9, the contour cannot be shown at an appropriate position.
  • the present invention has been made in view of the problem of power, and an object of the present invention is to provide an image processing apparatus that makes a contour clear at an appropriate position.
  • the image processing apparatus corrects the contour of the image indicated by the image signal, thereby generating a corrected image signal indicating the corrected contour of the image.
  • the apparatus is a device for acquiring the image signal, and a waveform representing a change in the minute value of the image signal with respect to the image space is applied to the left and right sides of the contour region of the image indicated by the image signal.
  • a correction means for generating different corrected image signals.
  • the waveform of the image signal and the waveform of the corrected image signal cross in the contour region, the waveform of the corrected image signal of the present invention is compared with the waveform of the corrected image signal generated only by the conventional first derivative. As a result, the contour can be clarified. Further, since the areas of the two regions surrounded by the two waveforms in the contour region are different from each other, the size of the white region indicated by the corrected image signal of the present invention is compared with the conventional second-order differential. The size of the white area indicated by the image signal can be made smaller than the size of the white area indicated by the corrected image signal generated by. As a result, the contour can be clarified at an appropriate position. Therefore, the display object such as the white pillar or white character indicated by the image signal can be sharply displayed without being excessively thick or thin.
  • the correction unit is configured to calculate a movement amount for moving the waveform in the contour region of the image signal, and to sharpen the waveform in the contour region of the image signal.
  • the image signal of the contour region is corrected by integrating the sharpening amount calculation means for calculating the sharpening amount of the image, and the movement amount and the sharpening amount calculated by the movement amount calculation means and the sharpening amount calculation means.
  • a generating unit that generates the corrected image signal by correcting the image signal of the contour region by the correction amount calculated by the integrating unit. May be.
  • the correction amount includes the movement amount
  • the waveform of the image signal can be moved in accordance with the movement amount, and the surfaces of the two regions surrounded by the both waveforms described above by the movement.
  • the product can be surely different.
  • the amount of correction includes the amount of steepness
  • the waveform of the image signal can be made steep according to the amount of steepness, and the contour can be clearly defined.
  • the movement amount calculation means further adjusts the gain of the calculated movement amount
  • the sharpening amount calculation means further adjusts the gain of the calculated sharpening amount
  • the integration unit may calculate the correction amount by integrating the movement amount and the sharpening amount adjusted for gain.
  • the size of the white region indicated by the corrected image signal can be freely adjusted. That is, the position of the contour can be freely adjusted, and the degree of freedom in correcting the contour of the image can be increased.
  • the integration unit weights the movement amount and the sharpening amount, respectively, and calculates the correction amount by adding the weighted movement amount and the sharpening amount. Also good.
  • the generation means applies each value indicated by the image signal.
  • the corrected image signal is generated by weighting and correcting the weighted image signal.
  • the smoothness of the corrected image signal can be freely adjusted, and a smooth and steep corrected image signal can be generated.
  • the movement amount calculating means performs at least one of primary differentiation and secondary differentiation on each value in the image space indicated by the image signal, and based on the result of the calculation, It is also possible to calculate the amount of movement by!
  • the steepening amount calculating means performs at least one of primary differentiation and secondary differentiation on each value in the image space indicated by the image signal, and based on the result of the calculation, And calculating the steep amount.
  • the waveform of the image signal can be appropriately steepened.
  • the movement amount calculation means calculates the movement amount for each position in the image space
  • the steepening amount calculation means calculates the sharpening amount for each position in the image space
  • the integration means For each position in the image space, the correction amount at the position is calculated by adding the amount of movement of the position and the amount of steep deviation at the separated position separated from the position by the amount of movement of the position. It may be characterized by.
  • the image signal indicates a value related to the image for each position in the image space
  • the corrected image signal indicates a correction value related to the image for each position in the image space
  • the generation means includes the image space in the image space.
  • the corrected image signal may be generated so that the value of the image signal at the separated position separated by the correction amount of the position force corresponding to the position becomes the correction value of the position! ⁇ .
  • the image signal can be appropriately corrected according to the correction amount calculated by the integration unit.
  • the image processing apparatus further includes a conversion unit that converts the image signal acquired by the signal acquisition unit so that the pixel accuracy of the image indicated by the image signal is an integral multiple.
  • Display control means for displaying the corrected image signal generated by the correction means on the basis of the converted image signal on a display means having a light emitting element of the integral multiple as one pixel. It is characterized by having
  • the image indicated by the image signal can be displayed on the display means with high image quality and sharpness.
  • the present invention can be realized not only as such an image processing apparatus but also as its method and program, and as a storage medium for storing the program.
  • the image processing apparatus of the present invention has an operational effect that a contour can be clarified at an appropriate position.
  • FIG. 1 is a functional block diagram of an image processing apparatus disclosed in Patent Document 1.
  • FIG. 2 is a diagram for explaining a signal generated by the image processing apparatus of Patent Document 1.
  • FIG. 3 is a functional block diagram of the image processing apparatus disclosed in Patent Document 2.
  • FIG. 4 is a diagram for explaining a signal generated by the image processing apparatus of Patent Document 2.
  • FIG. 5 is a functional block diagram of the image processing apparatus in the embodiment of the present invention.
  • FIG. 6 is a functional block diagram of a contour movement amount calculation unit.
  • FIG. 7 is a diagram showing an image signal and a movement signal.
  • FIG. 8 is a functional block diagram of a steep amount calculation unit.
  • FIG. 9 is a diagram showing an image signal, a primary differential signal, a secondary differential signal, and a steep signal.
  • FIG. 10 is a functional block diagram of an integrated correction amount calculation unit.
  • FIG. 11 is an explanatory diagram for explaining the operation of the integrated correction amount calculation unit.
  • FIG. 12 is a diagram showing a movement signal, a steep signal, and a corrected steep signal.
  • FIG. 13 is a functional block diagram of an image generation unit.
  • FIG. 14 is a diagram showing an image signal and a corrected image signal.
  • FIG. 15 is a diagram showing a corrected image signal of the present embodiment as compared with a corrected image signal generated by a conventional image processing apparatus.
  • FIG. 16 is a diagram showing each signal generated based on the image signal.
  • FIG. 17 is a flowchart showing the operation of the image processing apparatus in the embodiment of the present invention.
  • FIG. 18 is a functional block diagram of an image processing apparatus that works on a modification of the embodiment of the present invention.
  • FIG. 5 is a functional block diagram of the image processing apparatus according to the embodiment of the present invention.
  • the image processing apparatus 100 is an apparatus for clarifying the contour of the image indicated by the image signal F1 at an appropriate position, and includes a sharpening amount calculation unit 110 and a contour movement amount calculation. Unit 120, integrated correction amount calculation unit 130, and image generation unit 140.
  • the contour movement amount calculation unit 120 acquires the image signal F1, generates a movement signal F3 by performing differentiation on the image signal F1, and outputs it.
  • the steep amount calculation unit 110 generates and outputs the steep signal F2 by acquiring and processing the image signal F1.
  • the integrated correction amount calculation unit 130 integrates the movement signal F3 output from the contour movement amount calculation unit 120 and the steep signal F2 output from the steepness amount calculation unit 110, thereby correcting the contour correction. Generate and output control signal F4.
  • the image generation unit 140 acquires the image signal F1 and the contour correction control signal F4 output from the integrated correction amount calculation unit 130. Then, the image generation unit 140 generates and outputs a corrected image signal F9 by correcting the image signal F1 in accordance with the contour correction control signal F4.
  • the contour movement amount calculation unit 120, the steep steepness amount calculation unit 110, and the image generation unit 140 are configured as signal acquisition means for acquiring the image signal F1, and the contour movement amount calculation is performed.
  • the unit 120, the sharpening amount calculation unit 110, the integrated correction amount calculation unit 130, and the image generation unit 140 are configured as correction means.
  • the correcting means constituted by these forces is applied to the image signal F1 and the correction when the waveform representing the change in the differential value of the image signal F1 with respect to the image space is the left and right object in the image contour region indicated by the image signal F1.
  • There is an intersection in the waveform representing the change in each value in the image space indicated by each of the image signals F9, and the corrected image signal F9 is such that the areas of the two regions sandwiching the intersection are different from each other. Is generated.
  • the horizontal axis represents an image space, for example, a pixel column.
  • This is the shape of the signal represented by the horizontal and vertical axes, where each pixel position is the vertical axis and the value (intensity) is the vertical axis.
  • the waveform of the above signal has the time on the horizontal axis and the time on the vertical axis. This is the same as the signal shape expressed as a value in.
  • FIG. 6 is a functional block diagram of the contour movement amount calculation unit 120.
  • the contour movement amount calculation unit 120 includes a band limiting unit 121, a first differentiation unit 122, and a control amount adjustment unit 123.
  • the band limiting unit 121 is configured as, for example, a low-pass filter, and removes a high frequency component included in the image signal F1, and outputs the image signal F1 from which the high frequency component has been removed to the first sub unit 122. To do.
  • the first differentiation unit 122 performs differentiation on the image signal F1 output from the band limiting unit 121, that is, performs a difference operation on the image signal F1.
  • the first differentiation unit 122 outputs the differentiation result as a first-order differential signal Fla.
  • the control amount adjusting unit 123 adjusts the gain of the primary differential signal Fla, and outputs the adjustment result as the movement signal F3.
  • the movement signal F3 is a signal indicating a movement amount for moving the waveform in the contour region of the image signal F1 for each position in the image space. That is, the contour movement amount calculation unit 120
  • the amount of movement is calculated for each position in the image space.
  • FIG. 7 is a diagram showing the image signal F1 and the movement signal F3.
  • the image signal F1 indicates, for example, the luminance Y at each horizontal pixel position X.
  • the luminance Y of each horizontal pixel position X gradually increases as it moves from the horizontal pixel position Xa to the horizontal pixel position Xc, and is constant between the horizontal pixel position Xc force and the horizontal pixel position Xd, and the horizontal pixel position X d Gradually decreases with increasing direction from horizontal pixel position Xf.
  • the region from the horizontal pixel position Xa to the horizontal pixel position Xc and the region from the horizontal pixel position Xd to the horizontal pixel position Xf are respectively black and white contour regions included in the image indicated by the image signal F1.
  • Al and A2 are shown.
  • the contour movement amount calculation unit 120 acquires the image signal F1 as described above, for example, the contour movement amount calculation unit 120 A movement signal F3 having a maximum value at the contour center Xb of the region A1 and a minimum value at the contour center Xe of the contour region A2 is generated.
  • the contour center is a horizontal pixel position indicating an intermediate value between the maximum value and the minimum value of the luminance Y in the contour region.
  • the waveform of the movement signal F3 has a symmetrical shape with respect to the contour center Xb in the contour region A1, and a symmetrical shape with respect to the contour center Xe in the contour region A2.
  • FIG. 8 is a functional block diagram of the steep amount calculation unit 110.
  • the steep amount calculation unit 110 includes a band limiting unit 111, a first differentiating unit 112, a second differentiating unit 113,
  • a code extraction unit 114 A code extraction unit 114, a code inversion unit 115, and a control amount adjustment unit 116.
  • the band limiting unit 111 is configured as, for example, a low-pass filter, similar to the band limiting unit 121 of the contour movement amount calculating unit 120, and removes the high frequency component contained in the image signal F1, and the high frequency component is removed.
  • the removed image signal F1 is output to the first differentiator 112.
  • the first differentiating unit 112 is a band limiting unit, similar to the first differentiating unit 122 of the contour movement amount calculating unit 120.
  • the image signal F1 output from 111 is differentiated, that is, a difference is calculated for the image signal F1.
  • the first differentiation unit 122 outputs the differentiation result as a primary differentiation signal Fib.
  • Second differentiation section 113 performs differentiation on primary differential signal Fib output from first differentiation section 112, and outputs the differentiation result as secondary differentiation signal Flc.
  • the code extraction unit 114 acquires the primary differential signal Fib output from the first differential unit 112, and
  • the sign inverting unit 115 acquires the secondary differential signal Flc, and reverses the sign indicated by the secondary differential signal Flc based on the code extracted by the code extraction unit 114, thereby inverting the sign. Generate and output signal Fid.
  • Control amount adjustment section 116 adjusts the gain of sign inversion signal Fid output from sign inversion section 115 and outputs the adjustment result as steep signal F2.
  • the steep signal F2 is a signal indicating a steep amount for steepening the waveform in the contour region of the image signal F1 for each position in the image space. That is, the steep light amount calculation unit 110 calculates the steep light amount for each position in the image space.
  • FIG. 9 shows the image signal Fl, the primary differential signal Flb, the secondary differential signal Flc, and the steep signal F2.
  • the primary differential signal Fib shows a waveform similar to that of the movement signal F3 shown in FIG. That is, the primary fine signal Fib shows a symmetrical waveform that has a maximum value at the contour center Xb in the contour region A1, and has a maximum value at the contour center Xe in the contour region A2.
  • the right and left target waveforms are shown.
  • the code extraction unit 114 Based on the primary differential signal Fib, the code extraction unit 114 extracts a positive code in the region of the horizontal pixel positions Xa to Xc, and outputs a negative code in the region of the horizontal pixel positions Xd to Xf. Extract.
  • the secondary differential signal Flc shows a waveform convex in the positive direction in the region of the horizontal pixel positions Xa to Xb, and shows a waveform convex in the negative direction in the region of the horizontal pixel positions Xb to Xc.
  • a convex waveform is shown in the negative direction in the region of the positions Xd to Xe, and a convex waveform is shown in the positive direction in the region of the horizontal pixel positions Xe to Xf.
  • the sign inverting unit 115 applies the code extracted by the code extracting unit 114 to the secondary differential signal Flc. That is, the sign inverting unit 115 inverts only the waveform in the region of the horizontal pixel positions Xd to Xf of the secondary differential signal Flc.
  • the control amount adjusting unit 116 adjusts the gain of the second-order differential signal Flc thus inverted, and generates a steep signal F2 as shown in FIG.
  • FIG. 10 is a functional block diagram of the integrated correction amount calculation unit 130.
  • the integrated correction amount calculation unit 130 includes a plurality of (for example, n) delay units 131, a correction amount calculation unit 132, and a calorie calculator 133.
  • the delay unit 131 is configured as a memory, and stores a value at the horizontal pixel position X of the steep signal F2.
  • the steep signal F2 indicates the value f 21 to f2n of the horizontal pixel position XI ⁇ : Xn so that the value of the horizontal pixel position XI is 3 ⁇ 421 and the value of the horizontal pixel position X2 is f22.
  • the integrated correction amount calculation unit 130 acquires such a steep signal F2
  • the values f21 to f2n of the horizontal pixel positions Xl to Xn indicated by the steep signal F2 are calculated from the value f21 of the horizontal pixel position XI.
  • each delay unit 131 is stored in each delay unit 131.
  • the correction amount calculation unit 132 selects a delay unit 131 corresponding to the value indicated by the movement signal F3 for each horizontal pixel position X, and is stored in the delay unit 131. Read the value and read the value read at each horizontal pixel position X as the correction steep signal F2a. Output to adder 133.
  • the adder 133 adds the value indicated by the movement signal F3 for each horizontal pixel position X to the correction steep signal F 2a, and adds the value added for each horizontal pixel position X to the contour correction control signal F4. Output as.
  • the integrated correction amount calculation unit 130 integrates the movement amount and the steep amount calculated by the contour movement amount calculation unit 120 and the steep amount calculation unit 110. As a result, it is configured as an integration means for calculating a correction amount for correcting the image signal F1 in the contour region. That is, the contour correction control signal F4 indicates the correction amount for each position in the image space.
  • FIG. 11 is an explanatory diagram for explaining the operation of the integrated correction amount calculation unit 130.
  • the steep signal F2 is in the order of ⁇ 1, 2, 2, 1, 0, +1, +2, + as the respective values of the horizontal pixel positions (Xb + 4) to (Xb ⁇ 4). 2, + 1 is shown.
  • each delay unit 131 stores the value of each horizontal pixel position indicated by the steep signal F2.
  • the correction amount calculation unit 132 acquires the movement signal F3 indicating the value "+1" of the horizontal pixel position Xb, the horizontal pixel position Xb force is negatively increased by the value "+1” indicated by the movement signal F3.
  • the value of the separated horizontal pixel position (Xb—1) is stored, and the value “+1” is read from the delay unit 131. Then, the correction amount calculation unit 132 outputs a correction steep signal F2a indicating the value “+1” as the value of the horizontal pixel position Xb.
  • the adder 133 adds the value “+1” of the horizontal pixel position Xb indicated by the movement signal F3 and the value “+1” of the horizontal pixel position Xb indicated by the correction steep signal F2a, and adds the value “+”.
  • the contour correction control signal F4 indicating “2” as the value of the horizontal pixel position Xb is output.
  • the integrated correction amount calculation unit 130 for each position in the image space, the amount of movement of the position, and the steepness in the separated position separated by the position force by the amount of movement of the position. Calculate the amount of correction at that position by adding the amount of wrinkles
  • FIG. 12 is a diagram showing the movement signal F3, the steep signal F2, and the corrected steep signal F2a.
  • the corrected steep signal F2a moves at each horizontal pixel position X at each horizontal pixel position X. Indicates the value of the steep signal F2 at the horizontal pixel position X separated by the value of the signal F3. For example, if the value of the movement signal F3 at the horizontal pixel position Xb is “1”, the value of the corrected steep signal F2a at the horizontal pixel position Xb is the value of the steep signal F2 at the horizontal pixel position (Xb-1). Show. That is, the corrected steep signal F2a indicates a waveform in which the waveform of the steep signal F2 is moved in the distance and direction according to the movement signal F3.
  • FIG. 13 is a functional block diagram of the image generation unit 140.
  • the image generation unit 140 includes a plurality of (for example, n) delay units 141 and a selection unit 142.
  • the delay unit 141 is configured as a memory similarly to the delay unit 131 of the integrated correction amount calculation unit 130, and stores a value at the horizontal pixel position X of the image signal F1.
  • the image signal F1 is a value f 11 of the horizontal pixel positions XI
  • the value of the horizontal pixel position X2 is a f 12, showing the respective values fl L ⁇ fln horizontal pixel position Kai1 ⁇ kai eta .
  • the image generation unit 140 acquires such an image signal F1
  • the values fl 1 to fln of the horizontal pixel positions Xl to Xn indicated by the image signal F1 are sequentially from the value f 11 of the horizontal pixel position XI.
  • the selection unit 142 performs the same operation as that of the correction amount calculation unit 132 of the integrated correction amount calculation unit 130.
  • the selection unit 142 selects a delay unit 141 corresponding to the value indicated by the contour correction control signal F4 for each horizontal pixel position X, and stores the delay unit 141 in the delay unit 141.
  • the value read for each horizontal pixel position X is output as the corrected image signal F9.
  • the image generating unit 140 generates the corrected image signal F9 by correcting the contour region image signal F1 by the correction amount calculated by the integrated correction amount calculating unit 130. It is configured as. Then, for each position in the image space, the image generation unit 140 corrects the corrected image signal F9 so that the value of the image signal F1 at the separated position separated by the position force by the correction amount of the position becomes the correction value of the position. Is generated.
  • F9 (X) is expressed by the following (Expression 1) and (Expression 2).
  • Fl (X ⁇ L) represents a value at the horizontal pixel position (X ⁇ L) of the image signal Fl.
  • F3 (X) indicates the value of the movement signal F3 at the horizontal pixel position X
  • F2 (X-F3 (X)) indicates the value of the steep signal F2 at the horizontal pixel position (X—F3 (X)).
  • FIG. 14 is a diagram showing the image signal F1 and the corrected image signal F9.
  • the waveform of the signal H has a shape in which the waveform in the contour region A1 of the image signal F1 is moved to the right according to the value indicated by the movement signal F3, and the waveform in the contour region A2 of the image signal F1. Is moved to the left according to the value indicated by the movement signal F3.
  • the waveform of the corrected image signal F9 has a shape such that the waveform of the signal H in the contour region A1 is steep while the value at the contour center Xb of the signal H is fixed, and the signal H While the waveform at the contour center Xe ′ is fixed, the waveform of the signal H in the contour region A2 is steep.
  • FIG. 15 is a diagram showing a corrected image signal F9 of the present embodiment as compared with the corrected image signal generated by the conventional image processing device.
  • the white area of the corrected image signal F9 of the present embodiment is larger than the white area of the corrected image signal G9 generated by the conventional image processing apparatus 800.
  • the image signal Fl has a width substantially equal to the white area narrower than the corrected image signal T9 generated.
  • the waveform of the corrected image signal G9 does not have an intersection that intersects the waveform of the image signal F1 in the contour region A1. Furthermore, the waveform of the corrected image signal T9 has an intersection that intersects the waveform of the image signal F1 in the contour region A1, but sandwiches the intersection point surrounded by the respective waveforms of the image signal F1 and the corrected image signal T9. The areas of the two regions are equal to each other.
  • FIG. 16 is a diagram showing each signal generated based on the image signal F1.
  • the image processing apparatus 100 when the image processing apparatus 100 according to the present embodiment acquires the image signal F1, it generates a steep signal F2 and a movement signal F3 based on the image signal F1. Then, the image processing apparatus generates the contour correction control signal F4 by integrating the steep signal F2 and the movement signal F3.
  • the image generation unit 140 of the image processing apparatus 100 generates the corrected image signal F9 by correcting the image signal F1 according to the contour correction control signal F4.
  • the image generation unit 140 adjusts the gains of the control amount adjustment units 123 and 116 provided in each of the sharpening amount calculation unit 110 and the contour movement amount calculation unit 120.
  • the generated corrected image signal F9 can be adjusted. Therefore, the difference between the area S1 and the area S2 in the contour region A1 shown in FIG. 14 and the difference between the area S3 and the area S4 in the contour region A2 can be freely adjusted.
  • the image processing apparatus 100 adjusts the gains of the control amount adjusting units 123 and 116, thereby correcting the corrected image signals F 9 and F 10 indicating images having different white area sizes. , F11 can be generated, and the area can be adjusted to an appropriate size desired by the user.
  • FIG. 17 is a flowchart showing the operation of the image processing apparatus 100 in the present embodiment.
  • the image processing apparatus 100 acquires the image signal F1 (step S100). Then, the image processing apparatus 100 generates the steep signal F2 and the movement signal F3 based on the acquired image signal F1 (step S102).
  • the image processing apparatus 100 performs the steep signal F2 and the movement signal F3 generated in step S102. And the contour correction control signal F4 is generated (step S104).
  • the image processing apparatus 100 corrects the image signal F1 in accordance with the contour correction control signal F4 generated in step S104, and as a result, generates a corrected image signal F9 (step S106).
  • the waveform of the image signal F1 and the waveform of the corrected image signal F9 intersect in the contour region, the waveform of the corrected image signal F9 is generated only by the conventional first derivative. It can be steeper than the waveform of the corrected image signal G9, and as a result, the contour can be clarified. Further, since the areas of the two regions surrounded by both waveforms in the contour region are different from each other, the size of the white region indicated by the corrected image signal F9 is determined by the corrected image signal generated by the conventional second order differentiation. It can be made smaller than the size of the white area indicated by T9 to approach the size of the white area indicated by the image signal F1. As a result, the outline can be clarified at an appropriate position. Accordingly, the display power S such as the white pillars and white characters indicated by the image signal F1, and the display object that is not excessively thick or thin can be displayed sharply.
  • FIG. 18 is a functional block diagram of an image processing apparatus that works on the present modification.
  • the image processing apparatus 100a generates a corrected image signal F9 'having a pixel accuracy higher than the pixel accuracy of the image signal F1, and calculates the steepening amount according to the above embodiment.
  • Unit 110 contour movement amount calculation unit 120, integrated correction amount calculation unit 130, image generation unit 140, conversion unit 150, and display control unit 160.
  • the conversion unit 150 acquires the image signal F1 and converts the image signal F1 into a post-conversion image signal F1 'so that the pixel accuracy of the image signal F1 is tripled. For example, when the image signal F1 indicates the value of each pixel at each horizontal pixel position, the conversion unit 150 interpolates between each pixel and converts the pixel accuracy three times in the horizontal direction. A post-image signal F1 ′ is generated.
  • a method for converting the image signal F1 into the converted image signal F1 ′ there is a conventional enlargement method, for example, a method such as linear interpolation. More preferably, the image signal F1 is converted into a post-conversion image signal F1 'by a method that adds high-frequency components such as cubic interpolation. May be converted to
  • the steep amount calculation unit 110 obtains the converted image signal F1 ', and performs the same processing as the processing performed on the image signal F1 as described above on the converted image signal F1'. To do. As a result, the steep amount calculation unit 110 generates and outputs a steep signal F2 ′.
  • the contour movement amount calculation unit 120 acquires the converted image signal F1 ', and performs the same processing as the processing performed on the image signal F1 as described above on the converted image signal F1'. To do. As a result, the contour movement amount calculation unit 120 generates and outputs a movement signal F3 ′.
  • the integrated correction amount calculation unit 130 acquires the steep signal F2 'and the movement signal F3', and performs the same processing as that performed on the steep signal F2 and the movement signal F3 as described above. For signal F2 'and movement signal F3'. As a result, the integrated correction amount calculation unit 130 generates and outputs a contour correction control signal F4 ′.
  • the image generation unit 140 acquires the contour correction control signal F4 ′ and corrects the converted image signal F1 ′ according to the contour correction control signal F4 ′. As a result, the image generation unit 140 generates and outputs a corrected image signal F9 ′ having a pixel accuracy three times that of the corrected image signal F9.
  • the display control unit 160 Upon acquiring the corrected image signal F9 ', the display control unit 160 displays the image indicated by the corrected image signal F9' in a state where the above-described pixel accuracy is maintained, such as a liquid crystal panel or a PDP (Plasma Display Panel). Display on a display device using a sub-pixel structure. This display device has, for example, three light emitting elements of RGB as one pixel as subpixels.
  • the pixel accuracy of the image indicated by the corrected image signal is improved more than the pixel accuracy of the image signal F1, and thus the contour of the image indicated by the image signal F1 can be further clarified. I'll do it.
  • the image processing apparatuses 100 and 100a according to the present embodiment and the modification may be realized as an LSI that is an integrated circuit. Further, each of the image processing apparatuses 100 and 100a may be made into one chip, or a part thereof may be made into one chip. In addition, the above integrated circuit is integrated with IC, Any of system LSI, super LSI, and ultra LSI may be used.
  • the contour movement amount calculation unit 120 and the sharpening amount calculation unit 110 are each provided with the control amount adjustment units 123 and 116 to adjust the gains of the movement signal F3 and the steep signal F2.
  • the integrated correction amount calculation unit 130 may weight each of the movement signal F3 and the steep signal F2. That is, the integrated correction amount calculation unit 130 generates the corrected image signal F9 by adding the weighted movement signal F3 and the steep signal F2.
  • the image generation unit 140 weights the value indicated by the acquired image signal F1, and the weighted image signal F1 is subjected to the contour correction control output from the integrated correction amount calculation unit 130. You can correct it according to signal F4. By weighting such an image signal F1, the position of the contour can be freely adjusted as described above. Furthermore, in this case, the smoothness of the corrected image signal can be freely adjusted, and a smooth and steep corrected image signal can be generated.
  • the contour movement amount calculation unit 120 generates the movement signal F3 by performing the first order differentiation, and the steepness amount calculation unit 110 performs the second order differentiation, so that the steep signal F2
  • the contour movement amount calculation unit 120 generates the movement signal F3 by performing the second derivative
  • the steep curve calculation unit 110 generates the steep signal F2 by performing the first derivative.
  • the contour movement amount calculation unit 120 and the steep steepness amount calculation unit 110 may generate the movement signal F3 and the steep signal F2 by first-order fine and second-order differential polynomials, respectively.
  • the image processing apparatus of the present invention has an effect that the outline can be clarified at an appropriate position, and can be applied to, for example, high image quality technology such as a television receiver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Picture Signal Circuits (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

 適切な位置で輪郭を明確にする画像処理装置を提供する。  画像処理装置100は、画像信号F1を取得し、画像信号F1の示す画像の輪郭領域において、画像空間に対する画像信号F1の微分値の変化を表す波形が左右対象である場合には、画像信号F1および補正画像信号F9のそれぞれによって示される画像空間における各値の変化を表す波形に交点があり、その両波形によって囲まれた、交点を挟む2つの領域の面積S1,S2が互いに異なるような補正画像信号F9を生成する急峻化量算出部110、輪郭移動量算出部120、統合補正量算出部130、および画像生成部140を備える。                                                                                 

Description

明 細 書
画像処理装置
技術分野
[0001] 本発明は、画像信号に対してデジタル信号処理を行なう画像処理装置に関し、特 に、テレビジョン受像機のような画像表示装置に表示される画像の輪郭を補正する画 像処理装置に関する。
背景技術
[0002] 輪郭補正技術とは、画像の輪郭部を補正し画像の鮮鋭感を増す技術である。この 輪郭補正技術は大きく二つに分けられ、輪郭補正技術には、輪郭部分の前後にォ 一バーシュートやアンダーシュートを付加するシュート型輪郭補正技術と、輪郭部分 の輝度信号の変化を急峻ィ匕するシュートレス型輪郭補正技術がある。
[0003] また、シュートレス型輪郭補正技術には、補正対象の画素の近傍にある画素の値( 例えば輝度)を 1つ選択し、その選択した値を上記補正対象の画素の値とする方法 力 Sある(例えば、特許文献 1および特許文献 2参照)。
[0004] 図 1は、上記特許文献 1の画像処理装置の機能ブロック図である。
[0005] この画像処理装置 800は、保持部 810と、微分部 820と、コアリング部 830と、コン パレータ部 840と、信号選択部 850とを備えて ヽる。
[0006] 保持部 810は、画像信号 G1を取得してその画像信号 G1を保持する。
[0007] 微分部 820は、画像信号 G1に対して微分を行 ヽ、その微分結果を示す 1次微分 信号 G2を出力する。
[0008] コアリング部 830は、 1次微分信号 G2の小振幅を除去して波形整形する。
[0009] コンパレータ部 840は、コアリング部 830によって波形整形された 1次微分信号 G2 における立ち上がりおよび立下りのレベルをランク分けする。
[0010] 信号選択部 850は、保持部 810に保持されている画像信号 G1に含まれる複数の 値から、コンパレータ部 840から出力されたランクに応じた値を選択する。その結果、 信号選択部 850は、補正画像信号 G9を生成して出力する。
[0011] このような画像処理装置 800は、画像信号 G1を取得して、その画像信号 G1を微分 することによって生成された 1次微分信号 G2を輪郭補正制御信号として用いる。そし て、画像処理装置 800は、その輪郭補正制御信号たる 1次微分信号 G2に応じて画 像信号 G1を補正し、補正画像信号 G9を生成する。
[0012] 図 2は、上記特許文献 1の画像処理装置 800によって生成される信号を説明するた めの図である。
[0013] 例えば、画像信号 G1は、水平画素位置 Xごとの輝度 Yを示す信号である。ここで、 水平画素位置 Xにおいて、輝度 Yが小さいほどその位置の画素は黒ぐ輝度 Yが大 きいほどその位置の画素は白い。したがって、図 2に示す画像信号 G1は、黒色画像 と白色画像との輪郭を示して 、る。
[0014] 1次微分信号 G2の示す各水平画素位置 Xにおける値は、図 2に示すように、左側 の水平画素位置 Xから右側の水平画素位置 Xに向力うにつれて、次第に増加して輪 郭中心 Xtで最大となった後、次第に減少していく。
[0015] 画像処理装置 800は、水平画素位置 Xごとに、このような 1次微分信号 G2の示す 値に応じた距離だけ離れた水平画素位置 Xにおける画像信号 G1の輝度 Yを選択し
、図 2に示すような補正画像信号 G9を生成する。
[0016] このように生成された補正画像信号 G9では、画像信号 G1よりも輝度 Yの勾配が大 きぐ輪郭が明確になっている。
[0017] 図 3は、上記特許文献 2の画像処理装置の機能ブロック図である。
[0018] この画像処理装置 900は、遅延部 910と、第 1微分部 920と、絶対値演算部 930と
、第 2微分部 940と、時間軸変調部 950とを備えている。
[0019] 遅延部 910は、画像信号 T1を取得して、時間軸変調部 950の平均遅延時間とタイ ミングを合わせるために、その画像信号 T1を遅延させる。
[0020] 第 1微分部 920は、遅延部 910によって遅延された画像信号 T1に対して微分を行 い、その結果を 1次微分信号として出力する。
[0021] 絶対値演算部 930は、 1次微分信号の示す値の絶対値を取り、その結果を絶対値 信号として出力する。
[0022] 第 2微分部 940は、絶対値信号に対して微分を行! ヽ、その結果を 2次微分信号 T2 として出力する。 [0023] 時間軸変調部 950は、メモリを備えて画像信号 T1をそのメモリに格納する。そして 、時間軸変調部 950は、その画像信号 T1によって示される複数の値 (例えば輝度) から、第 2微分部 940から出力された 2次微分信号 T2に応じた値を選択する。その 結果、時間軸変調部 950は、補正画像信号 T9を生成して出力する。
[0024] このような画像処理装置 900は、画像信号 T1を取得して、その画像信号 T1を 2次 微分することによって生成された 2次微分信号 T2を輪郭補正制御信号として用いる 。そして、画像処理装置 900は、その輪郭補正制御信号たる 2次微分信号 T2に応じ て画像信号 T1を補正し、補正画像信号 T9を生成する。
[0025] 図 4は、上記特許文献 2の画像処理装置 900によって生成される信号を説明するた めの図である。
[0026] 例えば、画像信号 T1は、水平画素位置 Xごとの輝度 Yを示す信号である。ここで、 水平画素位置 Xにおいて、輝度 Yが小さいほどその位置の画素は黒ぐ輝度 Yが大 きいほどその位置の画素は白い。したがって、図 4に示す画像信号 T1は、黒色画像 と白色画像との輪郭を示して 、る。
[0027] 2次微分信号 T2の示す値は、図 4に示すように、左側の水平画素位置 Xから右側 の水平画素位置 Xに向力うにつれて、増加および減少を繰り返す。
[0028] 画像処理装置 900は、水平画素位置 Xごとに、このような 2次微分信号 T2の示す 値に応じた距離だけ離れた水平画素位置 Xにおける画像信号 T1の輝度 Yを選択し
、図 4に示すような補正画像信号 T9を生成する。
[0029] このように生成された補正画像信号 T9では、画像信号 T1よりも輝度 Yの勾配が大 きぐ輪郭が明確になっている。さらに、この補正画像信号 T9は、上記特許文献 1の 画像処理装置 800で生成された補正画像信号 G9よりも輪郭を明確に示している。 特許文献 1 :特開 2000— 32298号公報 (第 5頁、図 1)
特許文献 2 :特開平 4 6960号公報 (第 7頁、図 1)
発明の開示
発明が解決しょうとする課題
[0030] しかしながら、上記特許文献 1および特許文献 2の画像処理装置では、適切な位置 で輪郭を明確にすることができな 、と 、う問題がある。 [0031] 即ち、上記特許文献 1の画像処理装置 800によって生成される補正画像信号 G9 では、図 2に示すように、輪郭の立ち上がり部分の急峻ィ匕が不十分で、輪郭を明確に 示すことができない。さらに、補正画像信号 G9の示す黒色の領域は、画像信号 G1 の示す黒色の領域より広くなる一方、補正画像信号 G9の示す白色の領域は、画像 信号 G1の示す白色の領域よりも狭くなる。即ち、補正画像信号 G9では黒色の領域 が拡大する一方、白色の領域が縮小し、輪郭の位置がずれてしまう。
[0032] また、上記特許文献 2の画像処理装置 900によって生成される補正画像信号 T9で は、図 4に示すように、輪郭の急峻ィ匕が十分である力 補正画像信号 T9の示す白色 の領域が画像信号 T1の示す白色の領域よりも広くなつてしまう。したがって、例えば 、画像信号 T1によって白い柱の画像が表示されるような場合、補正画像信号 T9で は、その白い柱がより太く表示される。即ち、補正画像信号 T9では、輪郭を適切な位 置に示すことができないのである。
[0033] そこで、本発明は、力かる問題に鑑みてなされたものであって、適切な位置で輪郭 を明確にする画像処理装置を提供することを目的とする。
課題を解決するための手段
[0034] 上記目的を達成するために、本発明に係る画像処理装置は、画像信号により示さ れる画像の輪郭を補正することにより、補正された画像の輪郭を示す補正画像信号 を生成する画像処理装置であって、前記画像信号を取得する信号取得手段と、前記 画像信号の示す画像の輪郭領域にぉ 、て、画像空間に対する前記画像信号の微 分値の変化を表す波形が左右対象である場合には、前記画像信号および補正画像 信号のそれぞれによって示される画像空間における各値の変化を表す波形に交点 があり、前記両波形によって囲まれた、前記交点を挟む 2つの領域の面積が互いに 異なるような前記補正画像信号を生成する補正手段とを備えることを特徴とする。
[0035] これにより、輪郭領域において画像信号の波形と補正画像信号の波形とが交わる ため、本発明の補正画像信号の波形を、従来の 1次微分だけで生成される補正画像 信号の波形よりも急峻にすることができ、その結果、輪郭を明確にすることができる。 さらに、輪郭領域においてその両波形によって囲まれた 2つの領域の面積が互いに 異なるため、本発明の補正画像信号の示す白色の領域の大きさを、従来の 2次微分 により生成される補正画像信号の示す白色の領域の大きさよりも小さくして、画像信 号の示す白色の領域の大きさに近づけることができる。その結果、適切な位置で輪 郭を明確にすることができる。したがって、画像信号の示す白い柱や白い文字などの 表示物が、過度に太ったり、細ったりすることなぐその表示物を鮮鋭に表示すること ができる。
[0036] また、前記補正手段は、前記画像信号の輪郭領域における前記波形を移動させる ための移動量を算出する移動量算出手段と、前記画像信号の輪郭領域における前 記波形を急峻にさせるための急峻化量を算出する急峻化量算出手段と、前記移動 量算出手段および急峻化量算出手段により算出された移動量および急峻化量を統 合することにより、前記輪郭領域の画像信号を補正するための補正量を算出する統 合手段と、前記統合手段により算出された補正量だけ前記輪郭領域の画像信号を 補正することにより前記補正画像信号を生成する生成手段とを備えることを特徴とし てもよい。
[0037] これにより、補正量には移動量が含まれるため、その移動量に応じて画像信号の波 形を移動することができ、その移動によって上述の両波形で囲まれる 2つの領域の面 積を確実に異ならせることができる。さらに、補正量には急峻ィ匕量が含まれるため、そ の急峻ィ匕量に応じて画像信号の波形を急峻にすることができ、輪郭を確実に明確に することができる。
[0038] また、前記移動量算出手段は、さらに、算出された前記移動量のゲインを調整し、 前記急峻化量算出手段は、さらに、算出された前記急峻化量のゲインを調整し、前 記統合手段は、ゲイン調整された前記移動量および急峻化量を統合することにより 前記補正量を算出することを特徴としてもよい。
[0039] これにより、補正画像信号の示す白色の領域の大きさを自由に調整することができ る。即ち、輪郭の位置を自在に調整することができ、画像の輪郭補正の自由度を高 めることができる。
[0040] また、前記統合手段は、前記移動量および急峻化量に対してそれぞれ重みを付け 、重み付けされた移動量および急峻化量を加算することにより前記補正量を算出す ることを特徴としてもよい。または、前記生成手段は、前記画像信号の示す各値に対 して重みを付け、重み付けされた画像信号を補正することにより前記補正画像信号 を生成することを特徴としてもょ 、。
[0041] これにより、補正画像信号の滑らかさを自由に調節することができ、滑らかで且つ急 峻な補正画像信号を生成することができる。
[0042] また、前記移動量算出手段は、前記画像信号の示す画像空間における各値に対 して、 1次微分および 2次微分の少なくとも一方の演算を行い、前記演算の結果に基 づ 、て前記移動量を算出することを特徴としてもよ!、。
[0043] これにより、画像信号の波形を適切に移動させることができる。
[0044] また、前記急峻化量算出手段は、前記画像信号の示す画像空間における各値に 対して、 1次微分および 2次微分の少なくとも一方の演算を行い、前記演算の結果に 基づ 、て前記急峻ィ匕量を算出することを特徴としてもょ 、。
[0045] これにより、画像信号の波形を適切に急峻にさせることができる。
[0046] また、前記移動量算出手段は、画像空間における位置ごとに前記移動量を算出し 、前記急峻化量算出手段は、画像空間における位置ごとに前記急峻化量を算出し、 前記統合手段は、画像空間における位置ごとに、当該位置の移動量と、当該位置か ら当該位置の移動量だけ離れた離間位置における急峻ィ匕量とを加算することにより 、当該位置における前記補正量を算出することを特徴としてもよい。
[0047] これにより、画像信号の波形を移動してその移動された波形を急峻化するような補 正量を適切に算出することができる。
[0048] また、前記画像信号は、画像空間における位置ごとに画像に関する値を示し、前記 補正画像信号は、画像空間における位置ごとに画像に関する補正値を示し、前記生 成手段は、画像空間における位置ごとに、当該位置力 当該位置の補正量だけ離 れた離間位置における画像信号の値が、当該位置の前記補正値となるように、前記 補正画像信号を生成することを特徴としてもよ!ヽ。
[0049] これにより、統合手段により算出された補正量に応じて画像信号を適切に補正する ことができる。
[0050] また、前記画像処理装置は、さらに、前記画像信号の示す画像の画素精度が整数 倍になるように、前記信号取得手段により取得された画像信号を変換する変換手段 と、変換された前記画像信号に基づ 、て前記補正手段により生成された前記補正画 像信号を、前記整数倍の数の発光素子を 1つの画素として有する表示手段に表示さ せる表示制御手段とを備えることを特徴としてもょ 、。
[0051] これにより、画像信号の示す画像を高画質で鮮鋭に表示手段に表示させることが できる。
[0052] なお、本発明は、このような画像処理装置として実現することができるだけでなぐそ の方法やプログラム、そのプログラムを格納する記憶媒体としても実現することができ る。
発明の効果
[0053] 本発明の画像処理装置は、適切な位置で輪郭を明確にすることができるという作用 効果を奏する。
図面の簡単な説明
[0054] [図 1]図 1は、特許文献 1の画像処理装置の機能ブロック図である。
[図 2]図 2は、特許文献 1の画像処理装置によって生成される信号を説明するための 図である。
[図 3]図 3は、特許文献 2の画像処理装置の機能ブロック図である。
[図 4]図 4は、特許文献 2の画像処理装置によって生成される信号を説明するための 図である。
[図 5]図 5は、本発明の実施の形態における画像処理装置の機能ブロック図である。
[図 6]図 6は、輪郭移動量算出部の機能ブロック図である。
[図 7]図 7は、画像信号および移動信号を示す図である。
[図 8]図 8は、急峻ィ匕量算出部の機能ブロック図である。
[図 9]図 9は、画像信号、 1次微分信号、 2次微分信号、および急峻信号を示す図で ある。
[図 10]図 10は、統合補正量算出部の機能ブロック図である。
[図 11]図 11は、統合補正量算出部の動作を説明するための説明図である。
[図 12]図 12は、移動信号、急峻信号および補正急峻信号を示す図である。
[図 13]図 13は、画像生成部の機能ブロック図である。 [図 14]図 14は、画像信号および補正画像信号を示す図である。
[図 15]図 15は、従来の画像処理装置によって生成される補正画像信号と比較して、 本実施の形態の補正画像信号を示す図である。
[図 16]図 16は、画像信号に基づいて生成される各信号を示す図である。
[図 17]図 17は、本発明の実施の形態における画像処理装置の動作を示すフローチ ヤートである。
[図 18]図 18は、本発明の実施の形態の変形例に力かる画像処理装置の機能ブロッ ク図である。
符号の説明
100, 100a 画像処理装置
110 急峻化量算出部
111 帯域制限部
112 第 1微分部
113 第 2微分部
114 符号抽出部
115 符号反転部
116 制御量調整部
120 輪郭移動量算出部
121 帯域制限部
122 第 1微分部
123 制御量調整部
130 統合補正量算出部
131 遅延部
132 補正量演算部
133 加算器
140 画像生成部
141 遅延部
142 選択部 発明を実施するための最良の形態
[0056] 以下、本発明の実施の形態における画像処理装置について図面を参照しながら説 明する。
[0057] 図 5は、本発明の実施の形態における画像処理装置の機能ブロック図である。
[0058] 本実施の形態における画像処理装置 100は、画像信号 F1により示される画像の輪 郭を適切な位置で明確にする装置であって、急峻化量算出部 110と、輪郭移動量算 出部 120と、統合補正量算出部 130と、画像生成部 140とを備えている。
[0059] 輪郭移動量算出部 120は、画像信号 F1を取得し、その画像信号 F1に対して微分 を行なうことにより移動信号 F3を生成して出力する。
[0060] 急峻ィ匕量算出部 110は、画像信号 F1を取得して処理することにより、急峻信号 F2 を生成して出力する。
[0061] 統合補正量算出部 130は、輪郭移動量算出部 120から出力された移動信号 F3と 、急峻ィ匕量算出部 110から出力された急峻信号 F2とを統合することにより、輪郭補 正制御信号 F4を生成して出力する。
[0062] 画像生成部 140は、画像信号 F1と、統合補正量算出部 130から出力された輪郭 補正制御信号 F4とを取得する。そして、画像生成部 140は、その輪郭補正制御信号 F4に応じて画像信号 F 1を補正することにより、補正画像信号 F9を生成して出力す る。
[0063] なお、本実施の形態では、輪郭移動量算出部 120、急峻ィ匕量算出部 110および画 像生成部 140が、画像信号 F1を取得する信号取得手段として構成され、輪郭移動 量算出部 120、急峻化量算出部 110、統合補正量算出部 130および画像生成部 14 0が補正手段として構成されている。つまり、これら力 構成される補正手段は、画像 信号 F1の示す画像の輪郭領域において、画像空間に対する画像信号 F1の微分値 の変化を表す波形が左右対象である場合には、画像信号 F1および補正画像信号 F 9のそれぞれによって示される画像空間における各値の変化を表す波形に交点があ り、その両波形によって囲まれた、交点を挟む 2つの領域の面積が互いに異なるよう な補正画像信号 F9を生成する。
[0064] また、本実施の形態における信号の波形とは、横軸を画像空間、例えば画素列に おける各画素位置とし、縦軸をその各画素位置における値 (強度)とした場合に、そ の横軸および縦軸によって表現されるその信号の形状である。また、その信号が、一 定の時間ごとに各画素位置における値 (強度)を画素の配列順に示すような場合に は、上述の信号の波形は、横軸を時刻とし、縦軸をその時刻における値として表現さ れる信号の形状と同一である。
[0065] 図 6は、輪郭移動量算出部 120の機能ブロック図である。
[0066] 輪郭移動量算出部 120は、帯域制限部 121と、第 1微分部 122と、制御量調整部 1 23とを備えて ヽる。
[0067] 帯域制限部 121は、例えばローノ スフィルタとして構成されており、画像信号 F1に 含まれる高周波成分を除去し、その高周波成分が除去された画像信号 F1を第 1微 分部 122に出力する。
[0068] 第 1微分部 122は、帯域制限部 121から出力された画像信号 F1に対して微分、即 ち画像信号 F1に対して差分演算する。第 1微分部 122は、その微分結果を 1次微分 信号 Flaとして出力する。
[0069] 制御量調整部 123は、 1次微分信号 Flaのゲインを調整し、その調整結果を移動 信号 F3として出力する。
[0070] なお、移動信号 F3は、画像空間の位置ごとに、画像信号 F1の輪郭領域における 波形を移動させるための移動量を示す信号である。即ち、輪郭移動量算出部 120は
、画像空間の位置ごとにその移動量を算出している。
[0071] 図 7は、画像信号 F1および移動信号 F3を示す図である。
[0072] 画像信号 F1は各水平画素位置 Xにおける例えば輝度 Yを示す。その各水平画素 位置 Xの輝度 Yは、水平画素位置 Xaから水平画素位置 Xcに向力うにつれて次第に 増加し、水平画素位置 Xc力 水平画素位置 Xdの間で一定であり、水平画素位置 X dから水平画素位置 Xfに向力 につれて次第に減少する。
[0073] したがって、水平画素位置 Xaから水平画素位置 Xcまでの領域と、水平画素位置 X dから水平画素位置 Xfまでの領域は、それぞれ画像信号 F1の示す画像に含まれる 黒と白の輪郭領域 Al, A2を示す。
[0074] 輪郭移動量算出部 120は、上述のような画像信号 F1を取得すると、例えば、輪郭 領域 A 1の輪郭中心 Xbで最大の値となり、輪郭領域 A2の輪郭中心 Xeで最小の値と なる移動信号 F3を生成する。なお、輪郭中心とは、輪郭領域において輝度 Yの最大 値と最小値との間の中間値を示す水平画素位置である。
[0075] また、その移動信号 F3の波形は、輪郭領域 A1においてその輪郭中心 Xbを境に 左右対称の形状となるとともに、輪郭領域 A2においてその輪郭中心 Xeを境に左右 対称の形状となる。
[0076] 図 8は、急峻ィ匕量算出部 110の機能ブロック図である。
[0077] 急峻ィ匕量算出部 110は、帯域制限部 111と、第 1微分部 112と、第 2微分部 113と
、符号抽出部 114と、符号反転部 115と、制御量調整部 116とを備えている。
[0078] 帯域制限部 111は、輪郭移動量算出部 120の帯域制限部 121と同様、例えばロー パスフィルタとして構成されており、画像信号 F1に含まれる高周波成分を除去し、そ の高周波成分が除去された画像信号 F1を第 1微分部 112に出力する。
[0079] 第 1微分部 112は、輪郭移動量算出部 120の第 1微分部 122と同様、帯域制限部
111から出力された画像信号 F1に対して微分、即ち画像信号 F1に対して差分演算 する。第 1微分部 122は、その微分結果を 1次微分信号 Fibとして出力する。
[0080] 第 2微分部 113は、第 1微分部 112から出力された 1次微分信号 Fibに対して微分 を行い、その微分結果を 2次微分信号 Flcとして出力する。
[0081] 符号抽出部 114は、第 1微分部 112から出力された 1次微分信号 Fibを取得して、
1次微分信号 Fibの示す符号を抽出する。
[0082] 符号反転部 115は、 2次微分信号 Flcを取得して、その 2次微分信号 Flcの示す 符号を、符号抽出部 114によって抽出された符号に基づいて反転することにより、符 号反転信号 Fidを生成して出力する。
[0083] 制御量調整部 116は、符号反転部 115から出力された符号反転信号 Fidのゲイン を調整し、その調整結果を急峻信号 F2として出力する。
[0084] なお、急峻信号 F2は、画像空間の位置ごとに、画像信号 F1の輪郭領域における 波形を急峻にさせるための急峻ィ匕量を示す信号である。即ち、急峻ィ匕量算出部 110 は、画像空間の位置ごとにその急峻ィ匕量を算出している。
[0085] 図 9は、画像信号 Fl、 1次微分信号 Flb、 2次微分信号 Flc、および急峻信号 F2 を示す図である。
[0086] 1次微分信号 Fibは、図 7に示す移動信号 F3と同様の波形を示す。即ち、 1次微 分信号 Fibは、輪郭領域 A1にお ヽて輪郭中心 Xbで最大値となるような左右対称の 波形を示し、輪郭領域 A2にお ヽて輪郭中心 Xeで最大値となるような左右対象の波 形を示す。
[0087] 符号抽出部 114は、このような 1次微分信号 Fibに基づいて、水平画素位置 Xa〜 Xcの領域において正の符号を抽出し、水平画素位置 Xd〜Xfの領域において負の 符号を抽出する。
[0088] 2次微分信号 Flcは、水平画素位置 Xa〜Xbの領域において正方向に凸の波形を 示し、水平画素位置 Xb〜Xcの領域において負方向に凸の波形を示すとともに、水 平画素位置 Xd〜Xeの領域において負方向に凸の波形を示し、水平画素位置 Xe〜 Xfの領域にぉ 、て正方向に凸の波形を示す。
[0089] 符号反転部 115は、 2次微分信号 Flcに対して、符号抽出部 114で抽出された符 号をかける。即ち、符号反転部 115は、 2次微分信号 Flcの水平画素位置 Xd〜Xf の領域における波形のみ反転させる。制御量調整部 116は、そのように反転された 2 次微分信号 Flcのゲインを調整し、図 9に示すような急峻信号 F2を生成する。
[0090] 図 10は、統合補正量算出部 130の機能ブロック図である。
[0091] この統合補正量算出部 130は、複数 (例えば n個)の遅延部 131と、補正量演算部 132と、カロ算器 133とを備えている。
[0092] 遅延部 131は、メモリとして構成されており、急峻信号 F2の水平画素位置 Xにおけ る値が格納される。例えば、急峻信号 F2は、水平画素位置 XIの値力 ¾21であり、水 平画素位置 X2の値が f 22であるように、水平画素位置 XI〜: Xnのそれぞれの値 f 21 〜f2nを示す。そして、統合補正量算出部 130がこのような急峻信号 F2を取得すると 、その急峻信号 F2によって示される各水平画素位置 Xl〜Xnの値 f21〜f2nは、水 平画素位置 XIの値 f 21から順に、それぞれ各遅延部 131に各別に格納される。
[0093] 補正量演算部 132は、移動信号 F3を取得すると、水平画素位置 Xごとに、その移 動信号 F3の示す値に応じた遅延部 131を選択し、その遅延部 131に格納されて!ヽ る値を読み出して、水平画素位置 Xごとに読み出された値を補正急峻信号 F2aとして 加算器 133に出力する。
[0094] 加算器 133は、水平画素位置 Xごとに、移動信号 F3の示す値を、補正急峻信号 F 2aに加算して、その水平画素位置 Xごとに加算された値を輪郭補正制御信号 F4とし て出力する。
[0095] なお、本実施の形態では、統合補正量算出部 130が、輪郭移動量算出部 120およ び急峻ィ匕量算出部 110により算出された移動量および急峻ィ匕量を統合することによ り、輪郭領域の画像信号 F1を補正するための補正量を算出する統合手段として構 成されている。つまり、輪郭補正制御信号 F4は、画像空間における位置ごとにその 補正量を示している。
[0096] 図 11は、統合補正量算出部 130の動作を説明するための説明図である。
[0097] 例えば、急峻信号 F2は、水平画素位置 (Xb+4)〜(Xb— 4)のそれぞれの値とし て順に、ー1、 2、 2、 1、 0、 + 1、 + 2、 + 2、 + 1を示す。この場合には、図 11 に示すように、遅延部 131のそれぞれには、その急峻信号 F2の示す各水平画素位 置の値が格納される。
[0098] 補正量演算部 132は、水平画素位置 Xbの値「 + 1」を示す移動信号 F3を取得する と、水平画素位置 Xb力 その移動信号 F3の示す値「 + 1」だけ負方向に離れた水平 画素位置 (Xb— 1)の値を格納して 、る遅延部 131から、その値「 + 1」を読み出す。 そして、補正量演算部 132は、その値「 + 1」を水平画素位置 Xbの値として示す補正 急峻信号 F2aを出力する。
[0099] 加算器 133は、移動信号 F3の示す水平画素位置 Xbの値「 + 1」と、補正急峻信号 F2aの示す水平画素位置 Xbの値「 + 1」とを加算し、その値「 + 2」を水平画素位置 X bの値として示す輪郭補正制御信号 F4を出力する。
[0100] このように、本実施の形態における統合補正量算出部 130は、画像空間における 位置ごとに、その位置の移動量と、その位置の移動量だけその位置力 離れた離間 位置における急峻ィ匕量とを加算することにより、その位置における補正量を算出する
[0101] 図 12は、移動信号 F3、急峻信号 F2および補正急峻信号 F2aを示す図である。
[0102] 補正急峻信号 F2aは、水平画素位置 Xごとに、その水平画素位置 Xにおける移動 信号 F3の値だけ離れた水平画素位置 Xにおける急峻信号 F2の値を示す。例えば、 水平画素位置 Xbにおける移動信号 F3の値が「1」であれば、水平画素位置 Xbにお ける補正急峻信号 F2aの値は、水平画素位置 (Xb— 1)における急峻信号 F2の値を 示す。つまり、補正急峻信号 F2aは、急峻信号 F2の波形が移動信号 F3に応じた距 離および方向に移動された波形を示す。
[0103] 図 13は、画像生成部 140の機能ブロック図である。
[0104] 画像生成部 140は、複数 (例えば n個)の遅延部 141と、選択部 142とを備えている
[0105] 遅延部 141は、統合補正量算出部 130の遅延部 131と同様にメモリとして構成され ており、画像信号 F1の水平画素位置 Xにおける値が格納される。例えば、画像信号 F1は、水平画素位置 XIの値が f 11であり、水平画素位置 X2の値が f 12であるように 、水平画素位置 Χ1〜χηのそれぞれの値 fl l〜flnを示す。そして、画像生成部 14 0がこのような画像信号 F1を取得すると、その画像信号 F1によって示される各水平 画素位置 Xl〜Xnの値 fl l〜flnは、水平画素位置 XIの値 f 11から順に、それぞれ 各遅延部 141に各別に格納される。
[0106] 選択部 142は、統合補正量算出部 130の補正量演算部 132と同様の動作を行う。
即ち、選択部 142は、輪郭補正制御信号 F4を取得すると、水平画素位置 Xごとに、 その輪郭補正制御信号 F4の示す値に応じた遅延部 141を選択し、その遅延部 141 に格納されている値を読み出して、水平画素位置 Xごとに読み出された値を補正画 像信号 F9として出力する。
[0107] なお、本実施の形態では、画像生成部 140が、統合補正量算出部 130により算出 された補正量だけ輪郭領域の画像信号 F1を補正することにより補正画像信号 F9を 生成する生成手段として構成されている。そして画像生成部 140は、画像空間にお ける位置ごとに、その位置の補正量だけその位置力 離れた離間位置における画像 信号 F1の値力 その位置の補正値となるように、補正画像信号 F9を生成する。
[0108] このように生成される補正画像信号 F9の水平画素位置 Xにおける値を F9 (X)とす ると、 F9 (X)は以下の(式 1)および (式 2)により示される。
[0109] F9 (X) =F1 (X-L) …(式 1) L = F3 (X) +F2 (X-F3 (X) ) …(式 2)
[0110] ここで、 Fl (X-L)は、画像信号 Flの水平画素位置 (X— L)における値を示す。ま た、 F3 (X)は、水平画素位置 Xにおける移動信号 F3の値を示し、 F2 (X-F3 (X) ) は、水平画素位置 (X— F3 (X) )における急峻信号 F2の値を示す。
[0111] 本実施の形態では、輪郭移動量算出部 120が移動信号 F3の値として F3 (X)を算 出し、急峻ィ匕量算出部 110および統合補正量算出部 130の補正量演算部 132が補 正急峻信号 F2aの値として F2 (X— F3 (X) )を算出する。そして、統合補正量算出部 130のカロ算器 133力 水平画素位置 Xからの距離 L= (F3 (X) +F2 (X— F3 (X) ) ) を算出する。画像生成部 140は、画像信号 F1の各水平画素位置における値の中か ら、水平画素位置 Xから距離 Lだけ離れた水平画素位置 (X— L)における値 Fl (X— L)を選択し、その値 Fl (X-L)を水平画素位置 Xにおける補正画像信号 F9の値 F9 (X)とする。
[0112] 図 14は、画像信号 F1および補正画像信号 F9を示す図である。
[0113] 輪郭領域 Al, A2において、画像信号 F1および補正画像信号 F9のそれぞれの波 形に交点 Bl, B2がある。そして、画像信号 F1および補正画像信号 F9のそれぞれ の波形によって囲まれた、交点 B1を挟む 2つの領域の面積 SI, S2が互いに異なる とともに、交点 B2を挟む 2つの領域の面積 S3, S4が互いに異なる。
[0114] ここで、信号 Hの波形は、画像信号 F1の輪郭領域 A1における波形を移動信号 F3 の示す値に応じて右側に移動させた形状を有するとともに、画像信号 F1の輪郭領域 A2における波形を移動信号 F3の示す値に応じて左側に移動させた形状を有する。
[0115] したがって、補正画像信号 F9の波形は、信号 Hの輪郭中心 Xb,における値を固定 しながら、輪郭領域 A1における信号 Hの波形を急峻にしたような形状を有し、且つ、 信号 Hの輪郭中心 Xe'における波形を固定しながら、輪郭領域 A2における信号 H の波形を急峻にしたような形状を有する。
[0116] 図 15は、従来の画像処理装置によって生成される補正画像信号と比較して、本実 施の形態の補正画像信号 F9を示す図である。
[0117] 本実施の形態の補正画像信号 F9の白の領域は、従来の画像処理装置 800によつ て生成される補正画像信号 G9の白の領域よりも広ぐ従来の画像処理装置 900によ つて生成される補正画像信号 T9よりも狭ぐ画像信号 Flの白の領域と略等しい広さ を有する。
[0118] なお、補正画像信号 G9の波形は、輪郭領域 A1において画像信号 F1の波形と交 わる交点を持たない。さらに、補正画像信号 T9の波形は、輪郭領域 A1において画 像信号 F1の波形と交わる交点を持つが、画像信号 F1と補正画像信号 T9のそれぞ れの波形によって囲まれた、上記交点を挟む 2つの領域の面積が互いに等しくなる。
[0119] 図 16は、画像信号 F1に基づいて生成される各信号を示す図である。
[0120] 本実施の形態の画像処理装置 100は、図 16に示すように、画像信号 F1を取得す ると、その画像信号 F1に基づいて、急峻信号 F2と移動信号 F3とを生成する。そして 、画像処理装置は、その急峻信号 F2と移動信号 F3とを統合することにより輪郭補正 制御信号 F4を生成する。
[0121] そして、画像処理装置 100の画像生成部 140は、画像信号 F1を輪郭補正制御信 号 F4に応じて補正することにより補正画像信号 F9を生成する。
[0122] また、本実施の形態では、急峻化量算出部 110および輪郭移動量算出部 120の それぞれに備えられた制御量調整部 123, 116のゲインを調整することにより、画像 生成部 140によって生成される補正画像信号 F9を調整することができる。したがって 、図 14に示す輪郭領域 A1における面積 S1と面積 S2との差や、輪郭領域 A2におけ る面積 S3と面積 S4との差を自在に調整することができる。
[0123] 即ち、本実施の形態の画像処理装置 100は、制御量調整部 123, 116のゲインを 調整することにより、白色の領域の大きさが互いに異なる画像を示す補正画像信号 F 9, F10, F11を生成することができ、その領域をユーザの望む適切な大きさに調整 することができる。
[0124] 図 17は、本実施の形態における画像処理装置 100の動作を示すフローチャートで ある。
[0125] 画像処理装置 100は、まず、画像信号 F1を取得する(ステップ S100)。そして、画 像処理装置 100は、その取得した画像信号 F1に基づいて、急峻信号 F2および移動 信号 F3を生成する (ステップ S 102)。
[0126] 次に、画像処理装置 100は、ステップ S 102で生成した急峻信号 F2と移動信号 F3 とを統合することにより、輪郭補正制御信号 F4を生成する (ステップ S104)。
[0127] そして、画像処理装置 100は、ステップ S104で生成した輪郭補正制御信号 F4に 応じて画像信号 F1を補正し、その結果、補正画像信号 F9を生成する (ステップ S 10 6)。
[0128] このように本実施の形態では、輪郭領域において画像信号 F1の波形と補正画像 信号 F9の波形とが交わるため、補正画像信号 F9の波形を、従来の 1次微分だけで 生成される補正画像信号 G9の波形よりも急峻にすることができ、その結果、輪郭を 明確にすることができる。さらに、輪郭領域においてその両波形によって囲まれた 2 つの領域の面積が互 、に異なるため、補正画像信号 F9の示す白色の領域の大きさ を、従来の 2次微分により生成される補正画像信号 T9の示す白色の領域の大きさよ りも小さくして、画像信号 F1の示す白色の領域の大きさに近づけることができる。その 結果、適切な位置で輪郭を明確にすることができる。したがって、画像信号 F1の示 す白い柱や白い文字などの表示物力 S、過度に太ったり、細ったりすることなぐその表 示物を鮮鋭に表示することができる。
[0129] (変形例)
ここで、本実施の形態の画像処理装置の変形例について説明する。
[0130] 図 18は、本変形例に力かる画像処理装置の機能ブロック図である。
[0131] 本変形例に力かる画像処理装置 100aは、画像信号 F1の画素精度よりも高い画素 精度を有する補正画像信号 F9'を生成するものであって、上記実施の形態の急峻化 量算出部 110、輪郭移動量算出部 120、統合補正量算出部 130および画像生成部 140と、変換部 150と、表示制御部 160とを備える。
[0132] 変換部 150は、画像信号 F1を取得して、その画像信号 F1の画素精度が 3倍にな るように、その画像信号 F1を変換後画像信号 F1 'に変換する。例えば、変換部 150 は、画像信号 F1が各水平画素位置にある各画素の値を示している場合には、その 各画素の間を補間して、水平方向に 3倍の画素精度を有する変換後画像信号 F1 ' を生成する。なお、画像信号 F1を変換後画像信号 F1 'に変換する方法には、従来 の拡大手法、例えば、線形補間などの方法がある。より好ましくは、キュービック補間 法などの高周波成分を付加するような方法で、画像信号 F1を変換後画像信号 F1 ' に変換してもよい。
[0133] 急峻ィ匕量算出部 110は、変換後画像信号 F1 'を取得し、上述のように画像信号 F1 に対して行なった処理と同様の処理を、その変換後画像信号 F1 'に対して行なう。そ の結果、急峻ィ匕量算出部 110は、急峻信号 F2'を生成して出力する。
[0134] 輪郭移動量算出部 120は、変換後画像信号 F1 'を取得し、上述のように画像信号 F1に対して行なった処理と同様の処理を、その変換後画像信号 F1 'に対して行なう 。その結果、輪郭移動量算出部 120は、移動信号 F3'を生成して出力する。
[0135] 統合補正量算出部 130は、急峻信号 F2'および移動信号 F3'を取得し、上述のよ うに急峻信号 F2および移動信号 F3に対して行なった処理と同様の処理を、その急 峻信号 F2'および移動信号 F3'に対して行なう。その結果、統合補正量算出部 130 は、輪郭補正制御信号 F4'を生成して出力する。
[0136] 画像生成部 140は、輪郭補正制御信号 F4'を取得して、その輪郭補正制御信号 F 4'に応じて変換後画像信号 F1 'を補正する。その結果、画像生成部 140は、補正画 像信号 F9の 3倍の画素精度を有する補正画像信号 F9'を生成して出力する。
[0137] 表示制御部 160は、補正画像信号 F9'を取得すると、その補正画像信号 F9'の示 す画像を、上述の画素精度が保たれた状態で、液晶パネルや PDP (Plasma Display Panel)などのサブピクセル構造を利用した表示装置に表示させる。この表示装置は、 サブピクセルとして例えば RGBの 3つの発光素子を 1つの画素として有する。
[0138] なお、このような画像処理装置 100aにおいて画素精度を向上する方法は、例えば 、特開 2002— 318561号公報に掲載されている方法を用いて実現される。
[0139] このように本変形例では、補正画像信号の示す画像の画素精度が、画像信号 F1 の画素精度よりも向上するため、画像信号 F1の示す画像の輪郭をより明確にするこ とがでさる。
[0140] 以上、本発明につ 、て実施の形態およびその変形例を用いて説明した力 本発明 はこれらに限定されるものではない。
[0141] 例えば、本実施の形態および変形例における画像処理装置 100, 100aを集積回 路である LSIとして実現してもよい。また、画像処理装置 100, 100aをそれぞれ 1チッ プ化しても良いし、その一部を 1チップィ匕しても良い。また、上述の集積回路を、 IC、 システム LSI、スーパー LSI、およびウルトラ LSIの何れ力としてもよい。
[0142] また、本実施の形態では、輪郭移動量算出部 120および急峻化量算出部 110の それぞれに制御量調整部 123, 116を備えて、移動信号 F3および急峻信号 F2のゲ インを調整することにより、輪郭の位置、つまり白色の領域の大きさを調整したが、統 合補正量算出部 130が、移動信号 F3および急峻信号 F2のそれぞれに重みを付け てもよい。即ち、統合補正量算出部 130は、重み付けされた移動信号 F3と急峻信号 F2とを加算することにより補正画像信号 F9を生成する。このように重み付けを行なう ことによつても、上述と同様、輪郭の位置、つまり白色の領域の大きさを自在に調整 することができる。さらに、この場合には、補正画像信号の滑らかさを自由に調節する ことができ、滑らかで且つ急峻な補正画像信号を生成することができる。
[0143] また、画像生成部 140が、取得した画像信号 F1の示す値に対して重みを付けて、 その重み付けされた画像信号 F1を、統合補正量算出部 130から出力された輪郭補 正制御信号 F4に応じて補正してもよ 、。このような画像信号 F1に対して重み付けを 行なうことによつても、上述と同様、輪郭の位置を自在に調整することができる。さらに 、この場合には、補正画像信号の滑らかさを自由に調節することができ、滑らかで且 つ急峻な補正画像信号を生成することができる。
[0144] また、本実施の形態では、輪郭移動量算出部 120が 1次微分を行うことにより移動 信号 F3を生成し、急峻ィ匕量算出部 110が 2次微分を行なうことにより急峻信号 F2を 生成したが、逆に、輪郭移動量算出部 120が 2次微分を行うことにより移動信号 F3を 生成し、急峻ィ匕量算出部 110が 1次微分を行なうことにより急峻信号 F2を生成しても よい。また、輪郭移動量算出部 120および急峻ィ匕量算出部 110はそれぞれ、 1次微 分および 2次微分の多項式により移動信号 F3および急峻信号 F2を生成してもよい。 産業上の利用可能性
[0145] 本発明の画像処理装置は、適切な位置で輪郭を明確にすることができるという効果 を奏し、例えば、テレビジョン受像機などの高画質ィ匕技術に適用することができる。

Claims

請求の範囲
[1] 画像信号により示される画像の輪郭を補正することにより、補正された画像の輪郭 を示す補正画像信号を生成する画像処理装置であって、
前記画像信号を取得する信号取得手段と、
前記画像信号の示す画像の輪郭領域にお!ヽて、画像空間に対する前記画像信号 の微分値の変化を表す波形が左右対象である場合には、前記画像信号および補正 画像信号のそれぞれによって示される画像空間における各値の変化を表す波形に 交点があり、前記両波形によって囲まれた、前記交点を挟む 2つの領域の面積が互 いに異なるような前記補正画像信号を生成する補正手段と
を備えることを特徴とする画像処理装置。
[2] 前記補正手段は、
前記画像信号の輪郭領域における前記波形を移動させるための移動量を算出す る移動量算出手段と、
前記画像信号の輪郭領域における前記波形を急峻にさせるための急峻ィ匕量を算 出する急峻化量算出手段と、
前記移動量算出手段および急峻化量算出手段により算出された移動量および急 峻ィ匕量を統合することにより、前記輪郭領域の画像信号を補正するための補正量を 算出する統合手段と、
前記統合手段により算出された補正量だけ前記輪郭領域の画像信号を補正するこ とにより前記補正画像信号を生成する生成手段とを備える
ことを特徴とする請求項 1記載の画像処理装置。
[3] 前記移動量算出手段は、さらに、算出された前記移動量のゲインを調整し、
前記急峻化量算出手段は、さらに、算出された前記急峻化量のゲインを調整し、 前記統合手段は、ゲイン調整された前記移動量および急峻化量を統合すること〖こ より前記補正量を算出する
ことを特徴とする請求項 2記載の画像処理装置。
[4] 前記統合手段は、前記移動量および急峻化量に対してそれぞれ重みを付け、重 み付けされた移動量および急峻ィ匕量を加算することにより前記補正量を算出する ことを特徴とする請求項 2記載の画像処理装置。
[5] 前記生成手段は、前記画像信号の示す各値に対して重みを付け、重み付けされた 画像信号を補正することにより前記補正画像信号を生成する
ことを特徴とする請求項 2記載の画像処理装置。
[6] 前記移動量算出手段は、前記画像信号の示す画像空間における各値に対して、 1 次微分および 2次微分の少なくとも一方の演算を行い、前記演算の結果に基づいて 前記移動量を算出する
ことを特徴とする請求項 2記載の画像処理装置。
[7] 前記急峻化量算出手段は、前記画像信号の示す画像空間における各値に対して 、 1次微分および 2次微分の少なくとも一方の演算を行い、前記演算の結果に基づい て前記急峻化量を算出する
ことを特徴とする請求項 2記載の画像処理装置。
[8] 前記移動量算出手段は、画像空間における位置ごとに前記移動量を算出し、 前記急峻化量算出手段は、画像空間における位置ごとに前記急峻化量を算出し、 前記統合手段は、画像空間における位置ごとに、当該位置の移動量と、当該位置 力 当該位置の移動量だけ離れた離間位置における急峻ィ匕量とを加算することによ り、当該位置における前記補正量を算出する
ことを特徴とする請求項 2記載の画像処理装置。
[9] 前記画像信号は、画像空間における位置ごとに画像に関する値を示し、
前記補正画像信号は、画像空間における位置ごとに画像に関する補正値を示し、 前記生成手段は、画像空間における位置ごとに、当該位置から当該位置の補正量 だけ離れた離間位置における画像信号の値が、当該位置の前記補正値となるように 、前記補正画像信号を生成する
ことを特徴とする請求項 2記載の画像処理装置。
[10] 前記画像処理装置は、さらに、
前記画像信号の示す画像の画素精度が整数倍になるように、前記信号取得手段 により取得された画像信号を変換する変換手段と、
変換された前記画像信号に基づいて前記補正手段により生成された前記補正画 像信号を、前記整数倍の数の発光素子を 1つの画素として有する表示手段に表示さ せる表示制御手段とを備える
ことを特徴とする請求項 1記載の画像処理装置。
[11] 画像信号により示される画像の輪郭を補正することにより、補正された画像の輪郭 を示す補正画像信号を生成する画像処理方法であって、
前記画像信号を取得する信号取得ステップと、
前記画像信号の示す画像の輪郭領域にお!ヽて、画像空間に対する前記画像信号 の微分値の変化を表す波形が左右対象である場合には、前記画像信号および補正 画像信号のそれぞれによって示される画像空間における各値の変化を表す波形に 交点があり、前記両波形によって囲まれた、前記交点を挟む 2つの領域の面積が互 いに異なるような前記補正画像信号を生成する補正ステップと
を含むことを特徴とする画像処理方法。
[12] 画像信号により示される画像の輪郭を補正することにより、補正された画像の輪郭 を示す補正画像信号を生成するためのプログラムであって、
前記画像信号を取得する信号取得ステップと、
前記画像信号の示す画像の輪郭領域にお!ヽて、画像空間に対する前記画像信号 の微分値の変化を表す波形が左右対象である場合には、前記画像信号および補正 画像信号のそれぞれによって示される画像空間における各値の変化を表す波形に 交点があり、前記両波形によって囲まれた、前記交点を挟む 2つの領域の面積が互 いに異なるような前記補正画像信号を生成する補正ステップと
をコンピュータに実行させることを特徴とするプログラム。
PCT/JP2005/021872 2004-11-29 2005-11-29 画像処理装置 WO2006057403A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/666,892 US8107012B2 (en) 2004-11-29 2005-11-29 Image process apparatus and method for contour correction
JP2006520568A JP4843489B2 (ja) 2004-11-29 2005-11-29 画像処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004343484 2004-11-29
JP2004-343484 2004-11-29

Publications (1)

Publication Number Publication Date
WO2006057403A1 true WO2006057403A1 (ja) 2006-06-01

Family

ID=36498136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021872 WO2006057403A1 (ja) 2004-11-29 2005-11-29 画像処理装置

Country Status (4)

Country Link
US (1) US8107012B2 (ja)
JP (1) JP4843489B2 (ja)
CN (1) CN100479496C (ja)
WO (1) WO2006057403A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022443A (ja) * 2006-07-14 2008-01-31 Mitsubishi Electric Corp 輪郭補正装置および映像信号処理装置
JP2015052603A (ja) * 2014-10-09 2015-03-19 セイコーエプソン株式会社 分光測定装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6542524B2 (ja) 2014-10-29 2019-07-10 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 画像処理装置、画像処理方法、およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208036A (ja) * 1997-01-08 1998-08-07 Texas Instr Inc <Ti> 信号プロセッサおよび信号処理方法
JP2001119610A (ja) * 1999-08-10 2001-04-27 Alps Electric Co Ltd 輪郭検出回路及び画像表示装置
JP2003208609A (ja) * 2002-01-11 2003-07-25 Sharp Corp 画像処理方法および画像処理装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668073A (en) * 1979-11-07 1981-06-08 Canon Inc Outline correcting device of video signal
JPH0754966B2 (ja) * 1985-12-09 1995-06-07 株式会社日立製作所 輪郭補正回路
JPS63292777A (ja) * 1987-05-25 1988-11-30 Mitsubishi Electric Corp 輪郭補正装置
JPH07120496B2 (ja) * 1989-09-25 1995-12-20 三菱電機株式会社 電磁接触器
AU641938B2 (en) * 1989-10-04 1993-10-07 Sony Corporation Signal processing circuit for a solid state imaging apparatus
JPH046960A (ja) 1990-04-24 1992-01-10 Matsushita Electric Ind Co Ltd 映像信号処理装置
US5237625A (en) * 1990-04-24 1993-08-17 Matsushita Electric Industrial Co., Ltd. Image contour enhancing device
JP2756070B2 (ja) * 1992-04-09 1998-05-25 三菱電機エンジニアリング株式会社 波形整形方法及び波形整形装置並びに搬送色信号の輪郭補正装置
JP3076810B2 (ja) * 1994-01-20 2000-08-14 モトローラ株式会社 垂直輪郭補正回路
JPH08317252A (ja) * 1995-05-16 1996-11-29 Ikegami Tsushinki Co Ltd 輪郭補正方法および装置
US5920357A (en) 1996-01-11 1999-07-06 Texas Instruments Incorporated Digital color transient improvement
US6052491A (en) * 1996-01-26 2000-04-18 Texas Instruments Incorporated Non-monotonic contour diffusion and algorithm
JP3179036B2 (ja) * 1996-10-14 2001-06-25 三菱電機株式会社 ディスプレイ装置
US5966461A (en) * 1997-03-27 1999-10-12 Xerox Corporation Reduction of false contours by chrominance modulation
DE69838779D1 (de) * 1997-08-26 2008-01-10 Matsushita Electric Ind Co Ltd Korrekturvorrichtung für senkrechte konturen
WO1999055078A1 (en) * 1998-04-17 1999-10-28 Matsushita Electric Industrial Co., Ltd. False contour correcting apparatus and method
JP2000032298A (ja) 1998-07-08 2000-01-28 Nec Corp 輪郭補正回路
DE60008192T2 (de) * 1999-11-06 2004-07-29 Samsung Electronics Co., Ltd., Suwon Verfahren und Vorrichtung zur Korrektur von falschen Konturen in einem Bilddarstellungssystem
JP4390506B2 (ja) * 2003-09-02 2009-12-24 三洋電機株式会社 水平輪郭補正回路
JP4325388B2 (ja) * 2003-12-12 2009-09-02 ソニー株式会社 信号処理装置、画像表示装置および信号処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208036A (ja) * 1997-01-08 1998-08-07 Texas Instr Inc <Ti> 信号プロセッサおよび信号処理方法
JP2001119610A (ja) * 1999-08-10 2001-04-27 Alps Electric Co Ltd 輪郭検出回路及び画像表示装置
JP2003208609A (ja) * 2002-01-11 2003-07-25 Sharp Corp 画像処理方法および画像処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022443A (ja) * 2006-07-14 2008-01-31 Mitsubishi Electric Corp 輪郭補正装置および映像信号処理装置
JP2015052603A (ja) * 2014-10-09 2015-03-19 セイコーエプソン株式会社 分光測定装置

Also Published As

Publication number Publication date
US20080002042A1 (en) 2008-01-03
JPWO2006057403A1 (ja) 2008-06-05
JP4843489B2 (ja) 2011-12-21
CN101069415A (zh) 2007-11-07
US8107012B2 (en) 2012-01-31
CN100479496C (zh) 2009-04-15

Similar Documents

Publication Publication Date Title
JP4817000B2 (ja) 画像処理装置および方法、並びにプログラム
JP5080899B2 (ja) 映像処理装置及びその制御方法
CN101924899B (zh) 图像处理设备和图像处理方法
US8913876B2 (en) Image processing apparatus, image processing method, and storage medium
JP2009271135A (ja) 動画像処理装置および方法、プログラム
CN102209180A (zh) 图像处理设备和图像处理方法
CN102123237B (zh) 图像处理装置及其控制方法
JP2008107507A (ja) 映像データ変換装置および映像表示装置
JP2008039868A (ja) 液晶表示装置
JP5460987B2 (ja) 画像処理装置、画像処理方法、および画像処理プログラム
WO2010008039A1 (ja) 映像信号処理装置及び映像信号処理方法
CN105824515A (zh) 一种元素显示的方法及装置
WO2006057403A1 (ja) 画像処理装置
US9373291B2 (en) Method and device for mapping input grayscales into output luminance
US10198982B2 (en) Image processing apparatus, method thereof, and image display apparatus
JP2016080950A (ja) 画像処理装置及びその制御方法、画像表示装置、コンピュータプログラム
JP4011073B2 (ja) 階調補正装置
JP4821922B2 (ja) 画像処理装置および方法、並びにプログラム
CN101567965A (zh) 图像处理装置
JP2008259097A (ja) 映像信号処理回路および映像表示装置
JP6218575B2 (ja) 画像処理装置及びその制御方法
KR20070010910A (ko) 영상신호의 크기에 기초한 적응적 영상 스케일러 및 영상스케일링 방법
JP2005250470A (ja) Lcdのオーバードライブに対する動的システムアプローチ
JP2008250175A (ja) 画像処理装置および方法、並びにプログラム
JP2009171182A (ja) 映像信号処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006520568

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11666892

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580040985.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05811475

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11666892

Country of ref document: US