[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006054488A1 - Piezoelectric pump and stirling refrigerator - Google Patents

Piezoelectric pump and stirling refrigerator Download PDF

Info

Publication number
WO2006054488A1
WO2006054488A1 PCT/JP2005/020694 JP2005020694W WO2006054488A1 WO 2006054488 A1 WO2006054488 A1 WO 2006054488A1 JP 2005020694 W JP2005020694 W JP 2005020694W WO 2006054488 A1 WO2006054488 A1 WO 2006054488A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal
casing
space
outlet
inlet
Prior art date
Application number
PCT/JP2005/020694
Other languages
French (fr)
Japanese (ja)
Inventor
Hengliang Zhang
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US11/666,151 priority Critical patent/US20080101965A1/en
Priority to EP05806011A priority patent/EP1813811A1/en
Publication of WO2006054488A1 publication Critical patent/WO2006054488A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/09Pumps having electric drive
    • F04B43/095Piezoelectric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/11Kind or type liquid, i.e. incompressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/60Fluid transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6015Resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/20Resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Definitions

  • the present invention relates to a piezoelectric pump and a Stirling Refrigerator / Freezer, and more particularly to a piezoelectric pump that efficiently circulates fluid in a negative pressure / positive pressure state and a Stirling refrigerator equipped with the piezoelectric pump. About.
  • a piezoelectric pump using a piezoelectric element such as crystal or lithium niobate has been conventionally used.
  • FIG. 6 is a cross-sectional view showing an example of a conventional piezoelectric pump.
  • the piezoelectric pump 106 includes a casing 132 and a working space 134 and a back pressure space 135 in the casing 132 as shown in FIG.
  • the working space 134 and the back pressure space 135 are separated by the piezoelectric element 136.
  • the casing on the working space 134 side is provided with an inlet portion 137 for sucking the medium and an outlet portion 138 for discharging the medium.
  • the casing on the back pressure space 135 side is provided with the pressure of the back pressure space 135.
  • a back pressure hole 135A for adjustment is provided.
  • the inlet portion 137 and the outlet portion 138 are provided with check valves 139 and 140 that do not allow the medium to flow backward, respectively.
  • the piezoelectric element 136 When the above-described piezoelectric pump 106 is operated, an electric signal is given to the piezoelectric element 136. As a result, the piezoelectric element 136 performs an amplitude motion in the direction of the dashed arrow in FIG. At this time, the end of the piezoelectric element 136 is fixed to the casing 132, and the piezoelectric element 136 performs an amplitude motion while being deformed into a convex shape. As a result, the volume of the working space 134 varies, the pressure in the working space 134 varies according to the deformation state of the piezoelectric element 136, and the medium is sucked and discharged.
  • the volume of the back pressure space 135 also changes.
  • the pressure in the back pressure space 135 fluctuates, the movement direction of the piezoelectric element 136 is reversed.
  • the operation efficiency of the piezoelectric pump 106 is reduced.
  • the pressure in the back pressure space 135 is constant regardless of the deformation state of the piezoelectric element 136.
  • a back pressure hole 135A is provided on the back pressure space 135 side of the casing 132.
  • thermosiphon a high temperature portion for releasing the compression heat of the working gas due to the reverse Stirling cycle to the outside, a low temperature portion for absorbing the expansion heat of the working gas due to the reverse Stirling cycle from the outside, Cooling heat that transports the cold heat of the low temperature section with a low temperature side circulation circuit that has a closed circuit force that connects a low temperature side condenser thermally coupled to the low temperature section and a plurality of low temperature side evaporators to form a thermosiphon
  • a Stirling refrigeration system is disclosed in which a carrier medium is enclosed in a low-temperature side circulation circuit.
  • the heat in the high temperature part is dissipated from the high temperature side heat exchange cycle (heat dissipation system).
  • the high temperature side heat exchange cycle includes a high temperature side evaporator and a high temperature side condenser connected by piping, and heat is transferred and released by the thermosyphon principle.
  • a casing, a piezoelectric vibrator provided inside the casing, and a pump chamber on one side of the piezoelectric vibrator are provided.
  • a piezoelectric pump having a suction check valve and a discharge check valve is disclosed.
  • the pump chamber communicates with an anti-pump chamber located on the opposite side of the pump chamber with respect to the piezoelectric vibrator.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-50073
  • Patent Document 2 Registered Utility Model No. 2505727
  • a casing is formed by using a plurality of opposing members so as to form a space inside.
  • sealing between a plurality of members is generally performed using an O-ring or the like.
  • a slow leak of the working medium occurs, in a closed system in which the pressure in the circuit is lower or higher than the atmospheric pressure (referred to herein as a negative pressure state or a positive pressure state). It cannot be used for a long time.
  • a problem is caused by the piezoelectric pump shown in Conventional Example 2. Will not be resolved.
  • the piezoelectric element used in the piezoelectric pump has low heat resistance, in order to improve the sealing performance, when joining the plurality of members by welding, how to transfer the welding heat to the piezoelectric element. The question is whether to do it. By reducing the amount of heat transmitted to the piezoelectric element, the function of the piezoelectric element is improved, and as a result, the fluid circulation efficiency is improved.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a piezoelectric pump and a Stirling cooler that efficiently circulates fluid in a negative pressure-positive pressure state. It is in.
  • a piezoelectric pump includes a casing formed by joining a plurality of metal members, a piezoelectric element that partitions a space in the casing into first and second internal spaces, a casing, and a piezoelectric element. And a non-metallic first and second internal parts for holding the piezoelectric element.
  • the plurality of metal members constituting the casing are joined by welding.
  • a piezoelectric pump that can be used for a long time in a closed system that operates at a pressure lower or higher than atmospheric pressure is provided. Further, by providing a non-metallic internal part between the metal casing and the piezoelectric element and separating the casing and the piezoelectric element, it is possible to suppress welding heat from being transmitted to the piezoelectric element.
  • the first and second internal parts are made of resin, and the first and second internal parts respectively define outer peripheries of the first and second internal spaces, and the first and second internal parts It is preferable to hold the piezoelectric element so that the piezoelectric element is sandwiched between them.
  • a piezoelectric pump can be manufactured at low cost by using a resin that can be easily molded and holding the piezoelectric element with a simple structure.
  • the piezoelectric pump is formed on a first internal component, and an inlet portion through which a working medium directed to the first internal space serving as a suction pipe force working space outside the casing passes, (1) An outlet formed on an internal part and through which a working medium that passes from the first inner space to a discharge pipe outside the casing passes, and a first installed between the inlet and the first inner space.
  • the first and second check valve installation portions where the first and second check valves are respectively installed, and the plurality of groove portions where the plurality of O-rings are respectively installed. Is preferably provided.
  • the communication device further includes a communication portion that communicates the second internal space as the back pressure space with the inlet portion or the outlet portion, and the communication portion is formed by holes or grooves formed in the first and second internal components. Preferably, it is configured.
  • the pressure in the working space (first internal space) and the back pressure space (second internal space) can be made substantially equal. Further, by providing a groove hole in the internal part made of resin, the communication part can be easily formed without providing a communication pipe outside the casing. As a result, a compact piezoelectric pump that circulates fluid efficiently can be formed at low cost.
  • the communication portion communicates with a joint portion of a plurality of metal members in the casing.
  • the communication part can be used as a leak check hole of the casing.
  • the piezoelectric pump is formed on a first internal part, and a first suction pipe force outside the casing passes through a working medium facing the first internal space as a working space.
  • a second inlet pipe formed on the second internal part and through which the working medium directed to the second internal space as the working space outside the casing passes, and on the first internal part
  • the first internal space force is formed on the second outlet part and the first outlet part through which the working medium that flows toward the first discharge pipe outside the casing passes, and from the second internal space to the first outlet part outside the casing.
  • first to fourth check valve forces S are installed in the first and second internal parts, respectively, and the first to fourth check valve installation portions and the plurality of groove portions in which the plurality of O-rings are respectively installed. It is preferable to set up with.
  • both sides of the piezoelectric element can be used as the working space.
  • a recess or groove in an internal part made of a resin it is possible to easily form an installation base or groove on which a check valve or an O-ring is provided. As a result, a piezoelectric pump that circulates fluid efficiently is provided at low cost.
  • This communication hole can be used as a leak check hole of the casing.
  • the piezoelectric pump is formed on a first internal component, and a suction pipe force outside the casing, a first inlet portion through which a working medium that passes through the first internal space as the working space passes, (2) Force at the first inlet formed on the internal part
  • a first outlet portion through which the working medium toward the discharge pipe passes, a second outlet portion formed on the second internal part and through which the working medium directed toward the first outlet portion passes, 1 and 2 are formed by holes or grooves formed in the second internal part
  • the first communication part is formed by holes and grooves formed in the first and second internal parts.
  • a second communication part for communicating the first outlet with the second outlet part, the first and second inlet parts, and the first and second parts.
  • First and second check valves installed between the first and second outlet spaces, and third and fourth check valves respectively installed between the first and second outlet portions and the first and second inner spaces.
  • the first to fourth check valves are installed in the first and second internal parts, respectively, the first to fourth check valves are installed, and the plurality of grooves are installed with a plurality of O-rings. Is preferably provided.
  • both sides of the piezoelectric element can be used as the working space.
  • the first and second communication portions can be formed without providing a communication pipe outside the casing.
  • by providing recesses and grooves in the internal parts made of grease it is possible to easily form installation bases and grooves on which check valves and O-rings are provided. As a result, a compact piezoelectric pump that efficiently circulates fluid is provided at low cost.
  • one of the first and second communicating portions may be communicated with a joint portion of the metal member in the casing.
  • the communication part can be used as a leak check hole of the casing.
  • another O-ring for sealing the first communication part or the second communication part may be further provided at the joint surface between the first internal part and the second internal part.
  • each of the plurality of metal members constituting the casing may have a flange portion, and the casing may be formed by welding the front end portions of the flange portion. Thereby, a welding location and a piezoelectric element can be further moved away. Therefore, the effect of suppressing heat input to the piezoelectric element can be further enhanced.
  • the above-described piezoelectric pump is provided in the working medium circulation circuit on the high temperature side.
  • a piezoelectric pump in which a slow leak does not occur even if it is used for a long time in a negative pressure / positive pressure sealed system.
  • FIG. 1 is an example of a piping system diagram of a Stirling refrigerator.
  • FIG. 2 is a cross-sectional view of the piezoelectric pump according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a piezoelectric pump according to Embodiment 2 of the present invention.
  • FIG. 4 is a cross-sectional view of a piezoelectric pump according to Embodiment 3 of the present invention.
  • FIG. 5 is an example of a side sectional view showing a Stirling refrigerator in a Stirling refrigerator.
  • FIG. 6 is a cross-sectional view of a conventional piezoelectric pump.
  • cooling box is a concept including all of “refrigerator”, “freezer”, and “freezer refrigerator”.
  • a Stirling cooler as a Stirling engine-equipped device equipped with a Stirling refrigerator will be described.
  • a Stirling engine-equipped device in which the piezoelectric pump according to the present invention is installed is a Stirling cooler. Not limited to
  • the Stirling engine is also used as a generator, for example.
  • FIG. 1 is an example of a piping system diagram of a Stirling cooler in which a piezoelectric pump according to Embodiments 1 to 3 of the present invention to be described later is provided in a working medium circulation circuit on a high temperature side.
  • the Stirling refrigerator 1 includes a Stirling refrigerator 4 (Stirling engine) having a heat dissipating part 2 and a heat absorbing part 3, a high-temperature side evaporator 5 attached to the heat dissipating part 2, 1st high-temperature side circulation circuit (first circulation circuit) including high-temperature side condenser 7 and pipes 2A and 2B, and high temperature Side evaporator 5, circulation pump 6, dew prevention pipe 9 and pipes 2C, 2D, 2E, 2F, 2nd high temperature side circulation circuit (second circulation circuit), and low temperature side condenser 10 attached to heat absorption part 3 And a low temperature side circulation circuit including the low temperature side evaporator 11 and the pipes 3A and 3B.
  • first circulation circuit including high-temperature side condenser 7 and pipes 2A and 2B
  • high temperature Side evaporator 5 1st high-temperature side circulation circuit (first circulation circuit) including high-temperature side condenser 7 and pipes 2A and 2B, and high temperature Side
  • the first high temperature side circulation circuit cools the heat dissipating part 2 of the Stirling refrigerator 4, and the second high temperature side circulation circuit supplies heat to the dew condensation prevention pipe 9. Further, the low-temperature side circulation circuit performs heat exchange between the air in the refrigerator and the heat absorption part 3 of the Stirling refrigerator 4.
  • Water (H20) or the like is sealed as a refrigerant in the first and second high-temperature side circulation circuits.
  • the refrigerant evaporated in the high temperature side evaporator 5 reaches the high temperature side condenser 7 via the pipe 2A (high temperature side conduit) (broken arrow in FIG. 1).
  • the refrigerant is condensed by heat exchange with the outside air in the high-temperature side condenser 7.
  • a fan 8 for generating an air flow is provided in the vicinity of the high-temperature side condenser 7.
  • the condensed refrigerant returns to the high temperature side evaporator 5 via the pipe 2B (high temperature side return pipe).
  • the high-temperature side condenser 7 is used so that the heat generated in the heat dissipating section 2 can be transferred using the natural circulation caused by the evaporation and condensation of the refrigerant. It is arranged above the high temperature side evaporator 5. In order to adjust the boiling point of the refrigerant, the pressure in the circulation circuit system is adjusted (substantially reduced in vacuum).
  • a pipe 2 C is connected to the lower part of the high temperature side evaporator 5.
  • High-temperature side evaporator 5 Power pipe Liquid refrigerant flows into pipe 2C.
  • the refrigerant flowing into the pipe 2C reaches the circulating pump 6 provided below the Stirling refrigerator 4 through the pipe 2D.
  • the refrigerant discharged from the circulation pump 6 is sent to the dew condensation prevention pipe 9 through the pipe 2E.
  • the refrigerant flowing in the dew generation preventing noise 9 is kept at a relatively high temperature by the heat given from the heat dissipating part 2 of the Stirling refrigerator 4. Therefore, by providing the dew prevention pipe 9 on the front surface of the refrigerator, it is possible to suppress dew generation at the door portion and the like.
  • the refrigerant that has flowed through the dew prevention pipe 9 returns to the high temperature side evaporator 5 through the pipe 2F.
  • forced circulation by the circulation pump 6 is performed in the second high temperature side circulation circuit.
  • Carbon dioxide, hydrocarbons, or the like is sealed as a refrigerant in the low temperature side circulation circuit.
  • the refrigerant condensed in the low temperature side condenser 10 reaches the low temperature side evaporator 11 via the pipe 3A (low temperature side conduit).
  • Low temperature side evaporator 11 As the refrigerant evaporates, heat exchange takes place Is called.
  • a fan 12 for generating an air flow is provided in the vicinity of the low-temperature side evaporator 11. After the heat exchange, the gasified refrigerant returns to the low temperature side condenser 10 via the pipe 3B (low temperature side return pipe).
  • the low-temperature side evaporator 11 is thus connected to the low-temperature side condensation so that the cold heat generated in the heat-absorbing section 3 can be transmitted using the natural circulation caused by the evaporation and condensation of the refrigerant. It is arranged below the vessel 10. Also, in order to adjust the boiling point of the refrigerant, the pressure in the circulation circuit system is adjusted (substantially reduced to a vacuum state).
  • FIG. 2 is a cross-sectional view showing the piezoelectric pump according to the first embodiment.
  • the piezoelectric pump 6 includes a casing 32 formed by welding a plurality of metal members, and a space in the casing 32 as a working space 34 (first internal Space) and back pressure space 35 (second internal space), and a non-metallic internal component 33A, which is provided between the casing 32 and the piezoelectric element 36 and holds the piezoelectric element 36.
  • 33B first and second internal parts.
  • the internal parts 33A and 33B are made of a resin that is easily processed and molded.
  • the internal part 33A defines the outer periphery of the working space 34 (pump chamber), and the internal part 33B defines the outer periphery of the back pressure space 35.
  • a recess is formed between the internal parts 33A and 33B, and the piezoelectric element 36 is received and held in the recess. That is, the internal parts 33A and 33B hold the piezoelectric element 36 so as to sandwich the piezoelectric element 36.
  • the check valve 39 first check valve
  • Check valve 40 second check valve
  • the installation base on which the check valves 39 and 40 are respectively installed are provided in advance in the internal parts 33A and 33B. It is provided by processing.
  • the piezoelectric pump 6 has a communication portion 44 that allows the back pressure space 35 and the inlet portion 37 to communicate with each other.
  • the communication part 44 is configured by a hole or groove formed in the internal parts 33A and 33B.
  • the communication portion 44 reaches the inner surface of the casing 32 and communicates with the welded portions of the plurality of metal members.
  • a communication part for communicating the back pressure space 35 and the outlet part 38 may be provided.
  • the durability against leakage of the working medium can be improved by joining a plurality of members constituting the casing 32 by welding.
  • the piezoelectric pump 6 that can be used for a long time in a closed system of negative pressure and positive pressure.
  • the inner parts 33A and 33B made of resin are provided between the metal casing 32 and the piezoelectric element 36, and the casing 32 and the piezoelectric element 36 are separated from each other, so that the welding heat at the time of welding the metal member is increased. Can be prevented from being transmitted to the piezoelectric element 36. Therefore, the operation efficiency of the piezoelectric element 36 is improved, and as a result, the circulation efficiency of the working medium is improved.
  • the internal parts 33A and 33B a resin-made part that can be easily molded is used, and the piezoelectric pump 36 is held at a low cost by holding the piezoelectric element 36 with a simple structure as described above. Can be produced.
  • the installation base and groove in which the check valves 39 and 40 and the plurality of O-rings 43 are provided can be easily formed by providing recesses and grooves in the resin internal parts 33A and 33B. it can.
  • the communication portion 44 Furthermore, by forming the communication portion 44, the working space 34 (first internal space) and the back pressure air The pressure in the space 35 (second internal space) can be kept approximately equal. As a result, the circulation efficiency of the working medium is improved in the negative pressure / positive pressure state.
  • the communication part 44 can be easily formed without providing a communication pipe outside the casing by providing grooves in the internal parts 33A, 33B made of resin. As a result, the compact structure of the piezoelectric pump 6 can be realized at low cost. Further, the communication portion 44 can be used as a leak check hole (communication hole) of the casing by communicating the communication portion 44 with a welded portion of a plurality of metal members.
  • Each of the plurality of metal members constituting the casing 32 has a flange portion 46, and the casing 32 is formed by welding the front end portions of the flange portion 46.
  • the welded portion and the piezoelectric element 36 can be further away from each other. Therefore, the effect of suppressing heat input to the piezoelectric element 36 can be further enhanced.
  • FIG. 3 is a sectional view showing the piezoelectric pump according to the second embodiment.
  • the piezoelectric pump 6 according to the present embodiment is a modification of the piezoelectric pump 6 according to the first embodiment, and uses both sides of the piezoelectric element 36 as pump chambers (operating spaces 34A, 34B). Features.
  • the piezoelectric pump 6 is formed on the internal part 33A (first internal part), and from the inlet pipe 41 A (first suction pipe) outside the casing 32 to the working space 34A (first 1 Internal space) Directing force 37A (first inlet part) through which the working medium passes and the internal part 33B (second internal part) are formed on the inlet pipe 41B (second suction pipe) outside the casing 32
  • An inlet 37B (second inlet) through which the working medium directed to the working space 34B (second inner space) passes and an inner part 33A are formed on the inner part 33A, and the outlet pipe outside the casing 32 from the working space 34A.
  • Check valves 40A and 40B (third and fourth check valves), working spaces 34A and 34B and piezoelectric element 3 And a plurality of O-rings 43 that seal the gaps between the inlets 37A and 37B and the outlets 38A and 38B and the inner surface of the casing 32, respectively.
  • the installation base on which the check valves 39A, 39B, 40A, 40B are respectively installed (the first to fourth check valve installation portions) and the groove portion on which each O-ring 43 is installed are The parts 33A and 33B are provided by machining in advance.
  • Piezoelectric pump 6 has leak check holes 44A (communication holes) in internal parts 33A and 33B that reach the inner surface of casing 32 from inlets 37A and 37B and communicate with the welded portions of a plurality of metal members. .
  • the leak check hole 44A may be provided only in one of the internal parts 33A and 33B. Instead of the leak check hole 44A, the leak check hole 44A reaches the inner surface of the casing 32 from the outlet portions 38A and 38B, and a plurality of metals.
  • a leak check hole communicating with the welded part of the manufactured member may be provided.
  • the piezoelectric pump 6 with high circulation efficiency that can be used for a long period in a closed system of negative pressure and positive pressure is provided at low cost.
  • the leakage check of the casing can be performed by communicating the leak check hole 44A with the welded portions of the plurality of metal members.
  • FIG. 4 is a cross-sectional view showing the piezoelectric pump according to the third embodiment.
  • the piezoelectric pump 6 according to the present embodiment is a modification of the piezoelectric pump 6 according to the first embodiment, and uses both sides of the piezoelectric element 36 as pump chambers (operating spaces 34A, 34B). Features.
  • the piezoelectric pump 6 is formed on the internal part 33A (first internal part), and the inlet 32 of the casing 32 outside the intake 41 (suction pipe) also has a working space 34A (first internal space). Formed on the inlet part 37A (first inlet part) and the internal part 33B (second internal part) through which the working medium that is directed to the directional force passes from the inlet part 37A to the working space 34B (second internal space).
  • the working medium is directed toward the outlet pipe 42 (discharge pipe) outside the working space 3 4A force casing 32
  • Outlet part 38A first outlet part
  • an outlet part 38B second outlet part formed on the internal part 33B through which the working medium passes from the working space 34B to the outlet part 38A, and the internal parts 33A, 3 Consists of holes or grooves formed in 3B, and includes inlet communication part 44B (first communication part) that communicates inlet parts 37A and 37B, and holes or grooves formed in internal parts 33A and 33B.
  • An outlet communication part 44C (second communication part) for communicating the outlet parts 38A and 38B, and check valves 39A and 39B (first and first valves) installed between the inlet parts 37A and 37B and the working spaces 34A and 34B, respectively. 2 check valves), check valves 40A and 40B (third and fourth check valves) installed between outlets 38A and 38B and working spaces 34A and 34B, and working spaces 34A and 34B.
  • the installation base on which the check valves 39A, 39B, 40A, 40B are installed (the first to fourth check valve installation parts) and the groove part on which each O-ring 43 is installed are: It is provided by machining the internal parts 33A and 33B in advance.
  • the inlet communication portion 44B reaches the inner surface of the casing 32 and communicates the welded portions of a plurality of metal members.
  • the inlet communication portion 44B can be used as a leak check hole.
  • the outlet communication portion 44C is sealed by providing an O-ring (other O-ring) on the joint surface of the internal parts 33A and 33B. Does not communicate.
  • the inlet communication portion 44B may be sealed, and the outlet communication portion 44C may be communicated with the welding location.
  • the piezoelectric pump 6 with high circulation efficiency that can be used for a long period in a closed system in a negative pressure / positive pressure state is provided at low cost.
  • the inlet communication portion 44B and the outlet communication portion 44C can be easily formed without providing a communication pipe outside the casing by providing grooves in the internal parts 33A and 33B made of resin. . As a result, a compact structure of the piezoelectric pump 6 is realized.
  • the Stirling refrigerator 4 of the present embodiment is a free piston type Stirling engine, which includes a casing 30, a cylinder 13 assembled to the casing 30, and a cylinder. 13 reciprocating piston 14 and displacer 15, regenerator 16, working space 17 including compression space 17A and expansion space 17B, heat dissipating part 2, heat absorbing part 3, and linear as a piston drive means
  • a motor 23, a piston spring 24, a displacer spring 25, a displacer rod 26, and a back pressure space 27 are provided.
  • the outer shell (outer wall) of the Stirling refrigerator 4 is not composed of a single container, and the casing 30 (bessel portion) located on the back pressure space 27 side and the working space 17 Consists mainly of heat dissipating part 2, tube 18A and heat absorbing part 3 located on the side.
  • the casing 30 defines a back pressure space 27.
  • Various parts including a cylinder 13, a linear motor 23, a piston spring 24, and a displacer spring 25 are assembled in the casing 30.
  • the outer shell is filled with a working medium such as helium gas, hydrogen gas, or nitrogen gas.
  • the cylinder 13 has a substantially cylindrical shape, and receives therein a piston 14 and a displacer 15 as a free piston so as to be capable of reciprocating.
  • the piston 14 and the displacer 15 are coaxially spaced apart, and the piston 14 and the displacer 15 partition the working space 17 in the cylinder 13 into a compression space 17A and an expansion space 17B.
  • the working space 17 is a space located closer to the displacer 15 than the end face of the piston 14 on the displacer 15 side, and a compression space 17A is formed between the piston 14 and the displacer 15, and An expansion space 17B is formed between the part 3 and the part 3.
  • the compression space 17A is mainly surrounded by the heat dissipating part 2, and the expansion space 17B is mainly surrounded by the heat absorbing part 3.
  • regenerator 16 in which a film is wound while having a predetermined gap on the inner peripheral surface of the tube 18A is disposed.
  • Regenerator 1 The compression space 17 ⁇ / b> A and the expansion space 17 ⁇ / b> B communicate with each other through 6.
  • a closed circuit is formed in the Stirling refrigerator 4.
  • the working medium enclosed in the closed circuit flows in accordance with the operations of the piston 14 and the displacer 15, thereby realizing a reverse Stirling cycle described later.
  • a linear motor 23 is disposed in the back pressure space 27 located outside the cylinder 13.
  • the linear motor 23 has an inner yoke 20, a movable magnet portion 21, and an outer yoke 22, and the piston 14 is driven in the axial direction of the cylinder 13 by the linear motor 23.
  • One end of the piston 14 is connected to a piston spring 24 composed of a plate panel or the like.
  • the piston spring 24 functions as an elastic force applying means for applying an elastic force to the piston 14.
  • the piston 14 can be reciprocated in the cylinder 13 more stably and periodically.
  • One end of the displacer 15 is connected to a displacer spring 25 via a displacer rod 26.
  • the displacer rod 26 is disposed through the piston 14, and the displacer spring 25 is constituted by a plate panel or the like.
  • the peripheral edge of the displacer spring 25 and the peripheral edge of the piston spring 24 are supported by a support member that extends from the linear motor 23 to the back pressure space 27 side of the piston 14 (hereinafter sometimes referred to as rear).
  • a back pressure space 27 surrounded by a casing 30 is disposed on the side opposite to the displacer 15 with respect to the piston 14.
  • the back pressure space 27 includes an outer peripheral region located around the piston 14 in the casing 30 and a rear region located closer to the piston spring 24 (rear side) than the piston 14 in the casing 30.
  • a working medium is also present in the back pressure space 27.
  • a heat exchanger 18 and a heat exchanger 19 are provided on the inner peripheral surfaces of the heat radiating unit 2 and the heat absorbing unit 3, respectively.
  • the heat exchanges 18 and 19 perform heat exchange between the compression space 17A and the expansion space 17B and the heat radiation unit 2 and the heat absorption unit 3, respectively.
  • a balance mass 29 is attached to the rear side of the casing 30 via a plate panel 28.
  • the balance mass 29 is a mass member that absorbs the vibration of the casing 30 caused by the vibration of the piston 14 and the displacer 15. Specifically, when the piston 14 is vibrated in the casing 30 due to the vibration of the displacer 15, this case is used. As the balance mass 29 vibrates so as to follow the vibration of the single 30, the vibration of the Stirling refrigerator 4 is reduced.
  • the linear motor 23 is operated to drive the piston 14.
  • the piston 14 driven by the linear motor 23 approaches the displacer 15 and compresses the working medium (working gas) in the compression space 17A.
  • the high pressure working medium that has flowed into the expansion space 17B has the displacer 15 on the piston 14 side.
  • the present invention is applied to a piezoelectric pump and a Stirling cooler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A piezoelectric pump and a Stirling refrigerator. The piezoelectric pump (6) comprises a casing (32) formed by welding a plurality of metal members to each other, a piezoelectric element (36) partitioning a space in the casing (32) into an operating space (34) and a back pressure space (35), and resin internal parts (33A, 33B) installed between the casing (32) and the piezoelectric element (36) and holding the piezoelectric element (36). The internal parts (33A, 33B) are formed of an easy-to-machine and easy-to-mold resin. The internal part (33A) specifies the outer periphery of the operating space (34) and the internal part (33B) specifies the outer periphery of the back pressure space (35). Since a recessed part is formed between the internal parts (33A, 33B) by facing the internal parts (33A, 33B) each other, the piezoelectric element (36) can be holdingly stored in the recessed part.

Description

明 細 書  Specification
圧電ポンプおよびスターリング冷却庫  Piezoelectric pump and Stirling refrigerator
技術分野  Technical field
[0001] 本発明は、圧電ポンプおよびスターリング冷却庫(Stirling Refrigerator/Free zer)に関し、特に、負圧'正圧状態において流体を効率よく循環させる圧電ポンプお よび該圧電ポンプを備えたスターリング冷却庫に関する。  TECHNICAL FIELD [0001] The present invention relates to a piezoelectric pump and a Stirling Refrigerator / Freezer, and more particularly to a piezoelectric pump that efficiently circulates fluid in a negative pressure / positive pressure state and a Stirling refrigerator equipped with the piezoelectric pump. About.
背景技術  Background art
[0002] 媒体を循環させるポンプとして、水晶やニオブ酸リチウムなどの圧電素子を用いた 圧電ポンプが従来から用いられて 、る。  As a pump for circulating a medium, a piezoelectric pump using a piezoelectric element such as crystal or lithium niobate has been conventionally used.
[0003] 図 6は、従来の圧電ポンプの一例を示した断面図である。図 6を参照して、圧電ポ ンプ 106は、図 6に示すように、ケーシング 132と、該ケーシング 132内に作動空間 1 34および背圧空間 135とを備える。ここで、作動空間 134と背圧空間 135とは圧電 素子 136によって隔てられている。また、作動空間 134側のケーシングには、媒体を 吸引する入口部 137と、該媒体を吐出する出口部 138とが設けられ、背圧空間 135 側のケーシングには、背圧空間 135の圧力を調整するための背圧孔 135Aが設けら れている。なお、入口部 137と出口部 138には、媒体を逆流させない逆止弁 139, 1 40がそれぞれ設けられて ヽる。  FIG. 6 is a cross-sectional view showing an example of a conventional piezoelectric pump. Referring to FIG. 6, the piezoelectric pump 106 includes a casing 132 and a working space 134 and a back pressure space 135 in the casing 132 as shown in FIG. Here, the working space 134 and the back pressure space 135 are separated by the piezoelectric element 136. The casing on the working space 134 side is provided with an inlet portion 137 for sucking the medium and an outlet portion 138 for discharging the medium. The casing on the back pressure space 135 side is provided with the pressure of the back pressure space 135. A back pressure hole 135A for adjustment is provided. Note that the inlet portion 137 and the outlet portion 138 are provided with check valves 139 and 140 that do not allow the medium to flow backward, respectively.
[0004] 上記の圧電ポンプ 106を動作させる際は、圧電素子 136に電気信号を与える。こ れにより、圧電素子 136は図 6中の破線矢印の方向に振幅運動する。なお、この際、 圧電素子 136の端部はケーシング 132に固定されており、圧電素子 136は凸面形状 に変形しながら振幅運動する。この結果、作動空間 134の体積が変動し、作動空間 134内の圧力が圧電素子 136の変形状態に応じて変動して、媒体を吸込 Z吐出す る。  When the above-described piezoelectric pump 106 is operated, an electric signal is given to the piezoelectric element 136. As a result, the piezoelectric element 136 performs an amplitude motion in the direction of the dashed arrow in FIG. At this time, the end of the piezoelectric element 136 is fixed to the casing 132, and the piezoelectric element 136 performs an amplitude motion while being deformed into a convex shape. As a result, the volume of the working space 134 varies, the pressure in the working space 134 varies according to the deformation state of the piezoelectric element 136, and the medium is sucked and discharged.
[0005] ここで、上記の圧電素子 136の変形により、背圧空間 135の体積も変化することに なるが、この結果、背圧空間 135の圧力が変動すると、圧電素子 136の運動方向と 逆向きの力を生じさせることになり、結果として圧電ポンプ 106の動作効率が低下す る。これに対し、圧電素子 136の変形状態に関わらず背圧空間 135の圧力が一定と なるように、ケーシング 132の背圧空間 135側に背圧孔 135Aが設けられている。 Here, due to the deformation of the piezoelectric element 136, the volume of the back pressure space 135 also changes. As a result, when the pressure in the back pressure space 135 fluctuates, the movement direction of the piezoelectric element 136 is reversed. As a result, the operation efficiency of the piezoelectric pump 106 is reduced. In contrast, the pressure in the back pressure space 135 is constant regardless of the deformation state of the piezoelectric element 136. Thus, a back pressure hole 135A is provided on the back pressure space 135 side of the casing 132.
[0006] また、逆スターリングサイクルによる熱交換を冷却庫に適用したものとして、たとえば[0006] Further, assuming that heat exchange by a reverse Stirling cycle is applied to a refrigerator, for example,
、特開 2003— 50073号公報 (従来例 1)に記載されたものなどが挙げられる。 And those described in JP-A-2003-50073 (conventional example 1).
[0007] 従来例 1においては、逆スターリングサイクルによる作動ガスの圧縮熱を外部に放 熱するための高温部と、逆スターリングサイクルによる作動ガスの膨張熱を外部から 吸熱するための低温部と、低温部に熱的に結合された低温側凝縮器および複数の 低温側蒸発器をサーモサイフォンを構成するように連結した閉回路力 なる低温側 循環回路とを備え、低温部の冷熱を搬送する冷熱搬送媒体を低温側循環回路内に 封入したことを特徴とするスターリング冷凍システムが開示されている。ここで、高温 部における熱は、高温側熱交換サイクル (放熱システム)〖こより放熱される。高温側熱 交換サイクルは、配管により接続された高温側蒸発器と高温側凝縮器とを含み、サ ーモサイフォン原理により熱が搬送、放出される。 [0007] In Conventional Example 1, a high temperature portion for releasing the compression heat of the working gas due to the reverse Stirling cycle to the outside, a low temperature portion for absorbing the expansion heat of the working gas due to the reverse Stirling cycle from the outside, Cooling heat that transports the cold heat of the low temperature section with a low temperature side circulation circuit that has a closed circuit force that connects a low temperature side condenser thermally coupled to the low temperature section and a plurality of low temperature side evaporators to form a thermosiphon A Stirling refrigeration system is disclosed in which a carrier medium is enclosed in a low-temperature side circulation circuit. Here, the heat in the high temperature part is dissipated from the high temperature side heat exchange cycle (heat dissipation system). The high temperature side heat exchange cycle includes a high temperature side evaporator and a high temperature side condenser connected by piping, and heat is transferred and released by the thermosyphon principle.
[0008] なお、登録実用新案第 2505727号公報 (従来例 2)にお 、ては、ケーシングと、ケ 一シングの内部に設けられた圧電振動子と、圧電振動子の片側のポンプ室に設けら れた吸込用、吐出用のチェック弁とを備えた圧電ポンプが開示されている。この圧電 ポンプにお 、て、ポンプ室と圧電振動子に対して上記ポンプ室の反対側に位置する 反ポンプ室とが連通して 、る。 [0008] In registered utility model No. 2505727 (conventional example 2), a casing, a piezoelectric vibrator provided inside the casing, and a pump chamber on one side of the piezoelectric vibrator are provided. A piezoelectric pump having a suction check valve and a discharge check valve is disclosed. In this piezoelectric pump, the pump chamber communicates with an anti-pump chamber located on the opposite side of the pump chamber with respect to the piezoelectric vibrator.
特許文献 1:特開 2003 - 50073号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-50073
特許文献 2:登録実用新案第 2505727号公報  Patent Document 2: Registered Utility Model No. 2505727
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] しかしながら、上記のような圧電ポンプにおいては、以下のような問題があった。 However, the piezoelectric pump as described above has the following problems.
図 6に示すような圧電ポンプにおいては、内部に空間を形成するように対向する複 数の部材を用いてケーシングが構成される。ここで、複数の部材間のシールは、一般 に、 Oリングなどを用いて行なわれる。このような構成においては、作動媒体のスロー リークが生じるため、回路内の圧力が大気圧よりも低いまたは高い状態 (本願明細書 では、負圧状態または正圧状態と称する。)の密閉系において、長期間に亘つて使 用しつづけることができない。このような問題は、従来例 2に示される圧電ポンプによ つても解決されない。 In the piezoelectric pump as shown in FIG. 6, a casing is formed by using a plurality of opposing members so as to form a space inside. Here, sealing between a plurality of members is generally performed using an O-ring or the like. In such a configuration, since a slow leak of the working medium occurs, in a closed system in which the pressure in the circuit is lower or higher than the atmospheric pressure (referred to herein as a negative pressure state or a positive pressure state). It cannot be used for a long time. Such a problem is caused by the piezoelectric pump shown in Conventional Example 2. Will not be resolved.
[0010] また、圧電ポンプに用いられる圧電素子は耐熱性が低いため、シール性を向上さ せるために上記複数の部材を溶接により接合する場合には、その溶接熱をいかに圧 電素子に伝えに《するかが課題となる。圧電素子に伝わる熱量を低減することで、 該圧電素子の機能が向上し、結果として、流体の循環効率が向上する。  [0010] In addition, since the piezoelectric element used in the piezoelectric pump has low heat resistance, in order to improve the sealing performance, when joining the plurality of members by welding, how to transfer the welding heat to the piezoelectric element. The question is whether to do it. By reducing the amount of heat transmitted to the piezoelectric element, the function of the piezoelectric element is improved, and as a result, the fluid circulation efficiency is improved.
[0011] 本発明は、上記のような問題に鑑みてなされたものであり、本発明の目的は、負圧- 正圧状態において流体を効率よく循環させる圧電ポンプおよびスターリング冷却庫 を提供することにある。  The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a piezoelectric pump and a Stirling cooler that efficiently circulates fluid in a negative pressure-positive pressure state. It is in.
課題を解決するための手段  Means for solving the problem
[0012] 本発明に係る圧電ポンプは、複数の金属製部材を接合して形成されるケーシング と、ケーシング内の空間を第 1と第 2内部空間に仕切る圧電素子と、ケーシングと圧 電素子との間に設けられ、圧電素子を保持する非金属製の第 1と第 2内部部品とを 備える。  [0012] A piezoelectric pump according to the present invention includes a casing formed by joining a plurality of metal members, a piezoelectric element that partitions a space in the casing into first and second internal spaces, a casing, and a piezoelectric element. And a non-metallic first and second internal parts for holding the piezoelectric element.
[0013] ケーシングを構成する複数の金属製部材は、溶接により接合されることが好ましい。  [0013] It is preferable that the plurality of metal members constituting the casing are joined by welding.
該部材を溶接で接合することにより、作動媒体のリークに対する耐久性を向上させる ことができる。この結果、大気圧よりも低いまたは高い圧力で運転する密閉系におい て長期間使用可能な圧電ポンプが提供される。また、金属製のケーシングと圧電素 子との間に非金属製の内部部品を設け、ケーシングと圧電素子とを離間させることで 、溶接熱が圧電素子に伝わることを抑制することができる。  By joining the members by welding, durability against leakage of the working medium can be improved. As a result, a piezoelectric pump that can be used for a long time in a closed system that operates at a pressure lower or higher than atmospheric pressure is provided. Further, by providing a non-metallic internal part between the metal casing and the piezoelectric element and separating the casing and the piezoelectric element, it is possible to suppress welding heat from being transmitted to the piezoelectric element.
[0014] ここで、第 1と第 2内部部品は榭脂製であり、第 1と第 2内部部品がそれぞれ第 1と第 2内部空間の外周を規定し、第 1と第 2内部部品の間に圧電素子を挟むようにして該 圧電素子を保持することが好まし 、。  [0014] Here, the first and second internal parts are made of resin, and the first and second internal parts respectively define outer peripheries of the first and second internal spaces, and the first and second internal parts It is preferable to hold the piezoelectric element so that the piezoelectric element is sandwiched between them.
[0015] 成型が行ないやすい榭脂を用い、かつ、簡単な構造で圧電素子を保持することに より、圧電ポンプを低コストで作製することができる。  [0015] A piezoelectric pump can be manufactured at low cost by using a resin that can be easily molded and holding the piezoelectric element with a simple structure.
[0016] 上記圧電ポンプは、 1つの局面では、第 1内部部品上に形成され、ケーシング外部 の吸込パイプ力 作動空間としての第 1内部空間に向力う作動媒体が通過する入口 部と、第 1内部部品上に形成され、第 1内部空間からケーシング外部の吐出パイプに 向力う作動媒体が通過する出口部と、入口部と第 1内部空間との間に設置される第 1 逆止弁と、出口部と第 1内部空間との間に設置される第 2逆止弁と、第 1および第 2内 部空間と圧電素子との間の隙間と、入口部および出口部とケーシングとの間の隙間 とをそれぞれシールする複数の Oリングとをさらに備える。ここで、第 1内部部品に、第 1と第 2逆止弁がそれぞれ設置される第 1と第 2逆止弁設置部と、複数の Oリングがそ れぞれ設置される複数の溝部とを設けることが好ましい。 [0016] In one aspect, the piezoelectric pump is formed on a first internal component, and an inlet portion through which a working medium directed to the first internal space serving as a suction pipe force working space outside the casing passes, (1) An outlet formed on an internal part and through which a working medium that passes from the first inner space to a discharge pipe outside the casing passes, and a first installed between the inlet and the first inner space. A check valve, a second check valve installed between the outlet portion and the first inner space, a gap between the first and second inner spaces and the piezoelectric element, an inlet portion and an outlet portion And a plurality of O-rings each sealing a gap between the casing and the casing. Here, in the first internal part, the first and second check valve installation portions where the first and second check valves are respectively installed, and the plurality of groove portions where the plurality of O-rings are respectively installed. Is preferably provided.
[0017] 本構成においては、榭脂からなる内部部品に凹部や溝を設けることにより、逆止弁 および Oリングが設けられる設置台や溝を簡単に形成することができる。  [0017] In this configuration, by providing a recess or groove in an internal part made of grease, an installation table or groove in which a check valve and an O-ring are provided can be easily formed.
[0018] ここで、背圧空間としての第 2内部空間と入口部または出口部とを連通させる連通 部をさらに備え、連通部は、第 1と第 2内部部品に形成された孔または溝により構成さ れることが好ましい。  [0018] Here, the communication device further includes a communication portion that communicates the second internal space as the back pressure space with the inlet portion or the outlet portion, and the communication portion is formed by holes or grooves formed in the first and second internal components. Preferably, it is configured.
[0019] 連通部を形成することにより、作動空間 (第 1内部空間)と背圧空間 (第 2内部空間) との圧力をほぼ等しくすることができる。また、榭脂からなる内部部品に溝ゃ孔を設け ることにより、ケーシングの外部に連通管を設けることなく簡単に連通部を形成するこ とができる。この結果、流体を効率よく循環させるコンパクトな圧電ポンプが低コストで 形成される。  [0019] By forming the communication portion, the pressure in the working space (first internal space) and the back pressure space (second internal space) can be made substantially equal. Further, by providing a groove hole in the internal part made of resin, the communication part can be easily formed without providing a communication pipe outside the casing. As a result, a compact piezoelectric pump that circulates fluid efficiently can be formed at low cost.
[0020] さらに、上記連通部は、ケーシングにおける複数の金属製部材の接合箇所と連通 することが好ましい。これにより、連通部をケーシングのリークチェック孔として用いる ことができる。  [0020] Further, it is preferable that the communication portion communicates with a joint portion of a plurality of metal members in the casing. Thereby, the communication part can be used as a leak check hole of the casing.
[0021] 上記圧電ポンプは、他の局面では、第 1内部部品上に形成され、ケーシング外部 の第 1吸込パイプ力 作動空間としての第 1内部空間に向力う作動媒体が通過する 第 1入口部と、第 2内部部品上に形成され、ケーシング外部の第 2吸込パイプ力 作 動空間としての第 2内部空間に向力う作動媒体が通過する第 2入口部と、第 1内部部 品上に形成され、第 1内部空間力 ケーシング外部の第 1吐出パイプに向力う作動 媒体が通過する第 1出口部と、第 2内部部品上に形成され、第 2内部空間からケーシ ング外部の第 2吐出パイプに向力う作動媒体が通過する第 2出口部と、第 1および第 2入口部と第 1および第 2内部空間との間にそれぞれ設置される第 1と第 2逆止弁と、 第 1および第 2出口部と第 1および第 2内部空間との間にそれぞれ設置される第 3と 第 4逆止弁と、第 1および第 2内部空間と圧電素子との間の隙間と、第 1および第 2入 口部ならびに第 1および第 2出口部とケーシングとの間の隙間とをそれぞれシールす る複数の Oリングとをさらに備える。ここで、第 1と第 2内部部品に、第 1から第 4逆止弁 力 Sそれぞれ設置される第 1から第 4逆止弁設置部と、複数の Oリングがそれぞれ設置 される複数の溝部とを設けることが好まし 、。 [0021] In another aspect, the piezoelectric pump is formed on a first internal part, and a first suction pipe force outside the casing passes through a working medium facing the first internal space as a working space. Part, a second inlet pipe formed on the second internal part and through which the working medium directed to the second internal space as the working space outside the casing passes, and on the first internal part The first internal space force is formed on the second outlet part and the first outlet part through which the working medium that flows toward the first discharge pipe outside the casing passes, and from the second internal space to the first outlet part outside the casing. (2) a second outlet portion through which the working medium facing the discharge pipe passes, and first and second check valves respectively installed between the first and second inlet portions and the first and second internal spaces A third and a third outlet installed between the first and second outlets and the first and second internal spaces, respectively; 4 and the check valve, the gap between the first and second inner space and the piezoelectric element, the first and second input And a plurality of O-rings for sealing the opening and the gap between the first and second outlets and the casing, respectively. Here, the first to fourth check valve forces S are installed in the first and second internal parts, respectively, and the first to fourth check valve installation portions and the plurality of groove portions in which the plurality of O-rings are respectively installed. It is preferable to set up with.
[0022] 本構成においては、圧電素子の両側を作動空間として利用することができる。また 、榭脂からなる内部部品に凹部や溝を設けることにより、逆止弁や Oリングが設けられ る設置台や溝を簡単に形成することができる。この結果、流体を効率よく循環させる 圧電ポンプが低コストで提供される。  In this configuration, both sides of the piezoelectric element can be used as the working space. In addition, by providing a recess or groove in an internal part made of a resin, it is possible to easily form an installation base or groove on which a check valve or an O-ring is provided. As a result, a piezoelectric pump that circulates fluid efficiently is provided at low cost.
[0023] 第 1もしくは第 2入口部または第 1もしくは第 2出口部と金属製部材の接合箇所とを 連通させる連通孔を設けることが好ま 、。  [0023] It is preferable to provide a communication hole for communicating the first or second inlet portion or the first or second outlet portion with the joint portion of the metal member.
[0024] この連通孔は、ケーシングのリークチェック孔として用いることができる。  [0024] This communication hole can be used as a leak check hole of the casing.
上記圧電ポンプは、さらに他の局面では、第 1内部部品上に形成され、ケーシング 外部の吸込パイプ力 作動空間としての第 1内部空間に向力う作動媒体が通過する 第 1入口部と、第 2内部部品上に形成され、第 1入口部力 第 2内部空間に向力う作 動媒体が通過する第 2入口部と、第 1内部部品上に形成され、第 1内部空間からケー シング外部の吐出パイプに向かう作動媒体が通過する第 1出口部と、第 2内部部品 上に形成され、第 2内部空間力 第 1出口部に向力う作動媒体が通過する第 2出口 部と、第 1と第 2内部部品に形成された孔または溝により構成され第 1と第 2入口部を 連通させる第 1連通部と、第 1と第 2内部部品に形成された孔または溝により構成され 第 1と第 2出口部を連通させる第 2連通部と、第 1および第 2入口部と第 1および第 2 内部空間との間にそれぞれ設置される第 1と第 2逆止弁と、第 1および第 2出口部と 第 1および第 2内部空間との間にそれぞれ設置される第 3と第 4逆止弁と、第 1および 第 2内部空間と圧電素子との間の隙間と、第 1および第 2入口部ならびに第 1および 第 2出口部とケーシングとの間の隙間とをそれぞれシールする複数の Oリングとをさら に備える。ここで、第 1と第 2内部部品に、第 1から第 4逆止弁がそれぞれ設置される 第 1から第 4逆止弁設置部と、複数の Oリングがそれぞれ設置される複数の溝部とを 設けることが好ましい。  In still another aspect, the piezoelectric pump is formed on a first internal component, and a suction pipe force outside the casing, a first inlet portion through which a working medium that passes through the first internal space as the working space passes, (2) Force at the first inlet formed on the internal part The second inlet through which the working medium directed to the second internal space passes, and formed on the first internal part, from the first internal space to the exterior of the casing A first outlet portion through which the working medium toward the discharge pipe passes, a second outlet portion formed on the second internal part and through which the working medium directed toward the first outlet portion passes, 1 and 2 are formed by holes or grooves formed in the second internal part, and the first communication part is formed by holes and grooves formed in the first and second internal parts. A second communication part for communicating the first outlet with the second outlet part, the first and second inlet parts, and the first and second parts. First and second check valves installed between the first and second outlet spaces, and third and fourth check valves respectively installed between the first and second outlet portions and the first and second inner spaces. A plurality of Os for sealing the valve, the gap between the first and second inner spaces and the piezoelectric element, and the gap between the first and second inlet portions and the first and second outlet portions and the casing, respectively. Provide a ring and more. Here, the first to fourth check valves are installed in the first and second internal parts, respectively, the first to fourth check valves are installed, and the plurality of grooves are installed with a plurality of O-rings. Is preferably provided.
[0025] 本構成においては、圧電素子の両側を作動空間として利用することができる。また 、ケーシングの外部に連通管を設けることなく第 1と第 2連通部を形成することができ る。さらに、榭脂からなる内部部品に凹部や溝を設けることにより、逆止弁や Oリング が設けられる設置台や溝を簡単に形成することができる。この結果、流体を効率よく 循環させるコンパクトな圧電ポンプが低コストで提供される。 In this configuration, both sides of the piezoelectric element can be used as the working space. Also The first and second communication portions can be formed without providing a communication pipe outside the casing. In addition, by providing recesses and grooves in the internal parts made of grease, it is possible to easily form installation bases and grooves on which check valves and O-rings are provided. As a result, a compact piezoelectric pump that efficiently circulates fluid is provided at low cost.
[0026] ここで、第 1と第 2連通部の一方をケーシングにおける金属製部材の接合箇所と連 通させてもよい。これにより、連通部をケーシングのリークチェック孔として用いること ができる。 [0026] Here, one of the first and second communicating portions may be communicated with a joint portion of the metal member in the casing. Thereby, the communication part can be used as a leak check hole of the casing.
[0027] また、第 1内部部品と第 2内部部品との接合面において第 1連通部または第 2連通 部をシールする他の Oリングをさらに設けてもよい。これにより、作動媒体の通路とな る第 1と第 2連通部の密閉性を確保することができる。  [0027] Further, another O-ring for sealing the first communication part or the second communication part may be further provided at the joint surface between the first internal part and the second internal part. As a result, it is possible to ensure the hermeticity of the first and second communicating portions that serve as a passage for the working medium.
[0028] なお、ケーシングを構成する複数の金属製部材はそれぞれフランジ部を有し、フラ ンジ部の先端部どうしを溶接してケーシングを形成してもよい。これにより、溶接箇所 と圧電素子とをさらに遠ざけることができる。したがって、圧電素子への入熱の抑制効 果をさらに高めることができる。 [0028] It should be noted that each of the plurality of metal members constituting the casing may have a flange portion, and the casing may be formed by welding the front end portions of the flange portion. Thereby, a welding location and a piezoelectric element can be further moved away. Therefore, the effect of suppressing heat input to the piezoelectric element can be further enhanced.
[0029] 本発明に係るスターリング冷却庫においては、上述した圧電ポンプが高温側の作 動媒体循環回路に設けられている。 In the Stirling refrigerator according to the present invention, the above-described piezoelectric pump is provided in the working medium circulation circuit on the high temperature side.
発明の効果  The invention's effect
[0030] 本発明によれば、負圧.正圧の密閉系において長期間使用しつづけてもスローリー クが生じることのな!/、圧電ポンプが提供される。  [0030] According to the present invention, there is provided a piezoelectric pump in which a slow leak does not occur even if it is used for a long time in a negative pressure / positive pressure sealed system.
図面の簡単な説明  Brief Description of Drawings
[0031] [図 1]スターリング冷却庫の配管系統図の一例である。 [0031] FIG. 1 is an example of a piping system diagram of a Stirling refrigerator.
[図 2]本発明の実施の形態 1に係る圧電ポンプの断面図である。  FIG. 2 is a cross-sectional view of the piezoelectric pump according to the first embodiment of the present invention.
[図 3]本発明の実施の形態 2に係る圧電ポンプの断面図である。  FIG. 3 is a cross-sectional view of a piezoelectric pump according to Embodiment 2 of the present invention.
[図 4]本発明の実施の形態 3に係る圧電ポンプの断面図である。  FIG. 4 is a cross-sectional view of a piezoelectric pump according to Embodiment 3 of the present invention.
[図 5]スターリング冷却庫におけるスターリング冷凍機を示した側断面図の一例である  FIG. 5 is an example of a side sectional view showing a Stirling refrigerator in a Stirling refrigerator.
[図 6]従来の圧電ポンプの断面図である。 FIG. 6 is a cross-sectional view of a conventional piezoelectric pump.
符号の説明 [0032] 1 スターリング冷却庫、 2 放熱部、 2A〜2F パイプ (高温側循環回路)、 3 吸熱 部、 3A, 3B ノイブ (低温側循環回路)、 4 スターリング冷凍機、 5 高温側蒸発器 、 6 循環ポンプ、 7 高温側凝縮器、 8 ファン、 9 発露防止パイプ、 10 低温側凝 縮器、 11 低温側蒸発器、 12 ファン、 13 シリンダ、 14 ピストン、 15 ディスプレ ーサ、 16 再生器、 17 作動空間、 17A 圧縮空間、 17B 膨張空間、 18, 19 熱 交換器、 18A チューブ、 20 インナーヨーク、 21 可動マグネット、 22 アウターョ ーク、 23 リニアモータ、 24 ピストンスプリング、 25 ディスプレーサスプリング、 26 ディスプレーサロッド、 27 背圧空間、 28 板パネ、 29 バランスマス、 30, 32 ケー シング、 33A, 33B 内部部品、 34, 34A, 34B 作動空間、 35 背圧空間、 36 圧 電素子、 37, 37A, 37B 入口部、 38, 38A, 38B 出口部、 39, 39A, 39B, 40, 40A, 40B 逆止弁、 41 , 41A, 41B 入ロノィプ、 42, 42A, 42B 出ロノィプ、 4 3 Oリング、 44 連通部、 44A リークチェック孔、 44B 入口連通部、 44C 出口連 通部、 45 電源端子、 46 フランジ部。 Explanation of symbols [0032] 1 Stirling refrigerator, 2 heat dissipating section, 2A to 2F pipe (high temperature side circulation circuit), 3 heat absorption section, 3A, 3B Neuve (low temperature side circulation circuit), 4 Stirling refrigerator, 5 high temperature side evaporator, 6 Circulation pump, 7 Hot condenser, 8 Fan, 9 Anti-condensation pipe, 10 Low condenser, 11 Low evaporator, 12 Fan, 13 Cylinder, 14 Piston, 15 Displacer, 16 Regenerator, 17 Operation Space, 17A Compression space, 17B Expansion space, 18, 19 Heat exchanger, 18A tube, 20 Inner yoke, 21 Moving magnet, 22 Outer yoke, 23 Linear motor, 24 Piston spring, 25 Displacer spring, 26 Displacer rod, 27 Back pressure space, 28 plate panel, 29 balance mass, 30, 32 casing, 33A, 33B internal parts, 34, 34A, 34B working space, 35 back pressure space, 36 piezoelectric element, 37, 37A, 37B inlet, 38, 38A, 38B Outlet, 39, 39A, 39B, 40, 40A, 40B Check valve, 41, 41A, 41B Inlet ronop, 42, 42A, 42B Outlet ronop, 4 3 O-ring, 44 communicating portion, 44A Leak check hole, 44B Inlet communication section, 44C outlet communication section, 45 power terminal, 46 flange section.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0033] 以下に、本発明に基づく圧電ポンプおよびスターリング冷却庫の実施の形態につ いて、図 1から図 5を用いて説明する。 Hereinafter, embodiments of a piezoelectric pump and a Stirling cooler according to the present invention will be described with reference to FIGS. 1 to 5.
[0034] なお、本願明細書において、「冷却庫」とは、「冷蔵庫」、「冷凍庫」および「冷凍冷 蔵庫」の全てを含む概念である。 In the specification of the present application, “cooling box” is a concept including all of “refrigerator”, “freezer”, and “freezer refrigerator”.
[0035] また、本願明細書においては、スターリング冷凍機を備えたスターリング機関搭載 機器としてのスターリング冷却庫について説明するが、本発明に係る圧電ポンプが設 けられるスターリング機関搭載機器は、スターリング冷却庫に限定されるものではない[0035] Further, in this specification, a Stirling cooler as a Stirling engine-equipped device equipped with a Stirling refrigerator will be described. However, a Stirling engine-equipped device in which the piezoelectric pump according to the present invention is installed is a Stirling cooler. Not limited to
。スターリング機関は、たとえば、発電機としても用いられる。 . The Stirling engine is also used as a generator, for example.
[0036] (スターリング冷却庫についての説明) [0036] (Explanation about Stirling refrigerator)
図 1は、後述する本発明の実施の形態 1〜3に係る圧電ポンプが高温側の作動媒 体循環回路に設けられたスターリング冷却庫の配管系統図の一例である。  FIG. 1 is an example of a piping system diagram of a Stirling cooler in which a piezoelectric pump according to Embodiments 1 to 3 of the present invention to be described later is provided in a working medium circulation circuit on a high temperature side.
[0037] スターリング冷却庫 1は、図 1に示すように、放熱部 2と吸熱部 3とを有するスターリン グ冷凍機 4 (スターリング機関)と、放熱部 2に取付けられた高温側蒸発器 5、高温側 凝縮器 7およびパイプ 2A, 2Bを含む第 1高温側循環回路 (第 1循環回路)と、高温 側蒸発器 5、循環ポンプ 6、発露防止パイプ 9およびパイプ 2C, 2D, 2E, 2Fを含む 第 2高温側循環回路 (第 2循環回路)と、吸熱部 3に取付けられた低温側凝縮器 10、 低温側蒸発器 11およびパイプ 3A, 3Bを含む低温側循環回路とを備える。第 1高温 側循環回路は、スターリング冷凍機 4の放熱部 2の冷却を行ない、第 2高温側循環回 路は、発露防止パイプ 9に熱を供給する。また、低温側循環回路は、冷却庫内の空 気とスターリング冷凍機 4の吸熱部 3との熱交換を行なう。 [0037] As shown in FIG. 1, the Stirling refrigerator 1 includes a Stirling refrigerator 4 (Stirling engine) having a heat dissipating part 2 and a heat absorbing part 3, a high-temperature side evaporator 5 attached to the heat dissipating part 2, 1st high-temperature side circulation circuit (first circulation circuit) including high-temperature side condenser 7 and pipes 2A and 2B, and high temperature Side evaporator 5, circulation pump 6, dew prevention pipe 9 and pipes 2C, 2D, 2E, 2F, 2nd high temperature side circulation circuit (second circulation circuit), and low temperature side condenser 10 attached to heat absorption part 3 And a low temperature side circulation circuit including the low temperature side evaporator 11 and the pipes 3A and 3B. The first high temperature side circulation circuit cools the heat dissipating part 2 of the Stirling refrigerator 4, and the second high temperature side circulation circuit supplies heat to the dew condensation prevention pipe 9. Further, the low-temperature side circulation circuit performs heat exchange between the air in the refrigerator and the heat absorption part 3 of the Stirling refrigerator 4.
[0038] 第 1と第 2高温側循環回路内には水 (H20)などが冷媒として封入されている。高 温側蒸発器 5において蒸発した冷媒はパイプ 2A (高温側導管)を介して高温側凝縮 器 7に達する(図 1中の破線矢印)。高温側凝縮器 7において外気との熱交換が行な われることで冷媒が凝縮する。この熱交換を促進するために、高温側凝縮器 7近傍に 気流を生じさせるファン 8が設けられている。凝縮した冷媒は、パイプ 2B (高温側戻り 管)を介して高温側蒸発器 5に戻る。第 1高温側循環回路においては、このように、冷 媒の蒸発と凝縮とによる自然循環を利用して、放熱部 2で発生した熱を伝達すること ができるように、高温側凝縮器 7が高温側蒸発器 5より上方に配置されている。また、 冷媒の沸点を調整するために、循環回路系内の圧力が調整(ほぼ真空状態に減圧) されている。 [0038] Water (H20) or the like is sealed as a refrigerant in the first and second high-temperature side circulation circuits. The refrigerant evaporated in the high temperature side evaporator 5 reaches the high temperature side condenser 7 via the pipe 2A (high temperature side conduit) (broken arrow in FIG. 1). The refrigerant is condensed by heat exchange with the outside air in the high-temperature side condenser 7. In order to promote this heat exchange, a fan 8 for generating an air flow is provided in the vicinity of the high-temperature side condenser 7. The condensed refrigerant returns to the high temperature side evaporator 5 via the pipe 2B (high temperature side return pipe). In the first high-temperature side circulation circuit, the high-temperature side condenser 7 is used so that the heat generated in the heat dissipating section 2 can be transferred using the natural circulation caused by the evaporation and condensation of the refrigerant. It is arranged above the high temperature side evaporator 5. In order to adjust the boiling point of the refrigerant, the pressure in the circulation circuit system is adjusted (substantially reduced in vacuum).
[0039] 一方、高温側蒸発器 5の下部には、パイプ 2Cが接続されて ヽる。高温側蒸発器 5 力 パイプ 2Cに液相の冷媒が流入する。パイプ 2Cに流入した冷媒は、パイプ 2Dを 介して、スターリング冷凍機 4よりも下方に設けられた循環ポンプ 6に達する。循環ポ ンプ 6から吐出された冷媒は、パイプ 2Eを介して発露防止パイプ 9に送られる。ここで 、発露防止ノイブ 9内を流れる冷媒は、スターリング冷凍機 4の放熱部 2から与えられ た熱により比較的高温に保たれている。したがって、発露防止パイプ 9を冷却庫の前 面に配置することで、ドア部等における発露を抑制することができる。発露防止パイ プ 9内を流れた冷媒は、パイプ 2Fを介して高温側蒸発器 5内に戻る。このように、第 2 高温側循環回路においては、循環ポンプ 6による強制循環が行なわれている。  On the other hand, a pipe 2 C is connected to the lower part of the high temperature side evaporator 5. High-temperature side evaporator 5 Power pipe Liquid refrigerant flows into pipe 2C. The refrigerant flowing into the pipe 2C reaches the circulating pump 6 provided below the Stirling refrigerator 4 through the pipe 2D. The refrigerant discharged from the circulation pump 6 is sent to the dew condensation prevention pipe 9 through the pipe 2E. Here, the refrigerant flowing in the dew generation preventing noise 9 is kept at a relatively high temperature by the heat given from the heat dissipating part 2 of the Stirling refrigerator 4. Therefore, by providing the dew prevention pipe 9 on the front surface of the refrigerator, it is possible to suppress dew generation at the door portion and the like. The refrigerant that has flowed through the dew prevention pipe 9 returns to the high temperature side evaporator 5 through the pipe 2F. Thus, forced circulation by the circulation pump 6 is performed in the second high temperature side circulation circuit.
[0040] 低温側循環回路内には二酸化炭素や炭化水素などが冷媒として封入されている。  [0040] Carbon dioxide, hydrocarbons, or the like is sealed as a refrigerant in the low temperature side circulation circuit.
低温側凝縮器 10において凝縮した冷媒はパイプ 3A (低温側導管)を介して低温側 蒸発器 11に達する。低温側蒸発器 11にお!ヽて冷媒が蒸発することで熱交換が行な われる。この熱交換を促進するために、低温側蒸発器 11近傍に気流を生じさせるフ アン 12が設けられている。熱交換の後、ガス化された冷媒は、パイプ 3B (低温側戻り 管)を介して低温側凝縮器 10に戻る。低温側循環回路においては、このように、冷媒 の蒸発と凝縮とによる自然循環を利用して、吸熱部 3で発生した冷熱を伝達すること ができるように、低温側蒸発器 11が低温側凝縮器 10より下方に配置されている。ま た、冷媒の沸点を調整するために、循環回路系内の圧力が調整(ほぼ真空状態に減 圧)されている。 The refrigerant condensed in the low temperature side condenser 10 reaches the low temperature side evaporator 11 via the pipe 3A (low temperature side conduit). Low temperature side evaporator 11! As the refrigerant evaporates, heat exchange takes place Is called. In order to promote this heat exchange, a fan 12 for generating an air flow is provided in the vicinity of the low-temperature side evaporator 11. After the heat exchange, the gasified refrigerant returns to the low temperature side condenser 10 via the pipe 3B (low temperature side return pipe). In the low-temperature side circulation circuit, the low-temperature side evaporator 11 is thus connected to the low-temperature side condensation so that the cold heat generated in the heat-absorbing section 3 can be transmitted using the natural circulation caused by the evaporation and condensation of the refrigerant. It is arranged below the vessel 10. Also, in order to adjust the boiling point of the refrigerant, the pressure in the circulation circuit system is adjusted (substantially reduced to a vacuum state).
[0041] スターリング冷凍機 4を作動させると、該冷凍機 4の放熱部 2で発生した熱が、高温 側凝縮器 7を介して空気と熱交換される。一方、スターリング冷凍機 4の吸熱部 3で発 生した冷熱は、低温側蒸発器 11を介して冷却庫内の空気と熱交換される。冷却庫内 からの暖かくなつた気流は、再び低温側蒸発器 11近傍に送られ、繰り返し冷却され る。  When the Stirling refrigerator 4 is operated, heat generated in the heat radiating unit 2 of the refrigerator 4 is exchanged with air through the high-temperature side condenser 7. On the other hand, the cold generated in the heat absorption part 3 of the Stirling refrigerator 4 is heat-exchanged with the air in the refrigerator through the low temperature side evaporator 11. The warm air flowing from the inside of the refrigerator is sent again to the vicinity of the low temperature side evaporator 11 and repeatedly cooled.
[0042] (実施の形態 1)  [0042] (Embodiment 1)
図 2は、実施の形態 1に係る圧電ポンプを示した断面図である。  FIG. 2 is a cross-sectional view showing the piezoelectric pump according to the first embodiment.
[0043] 本実施の形態に係る圧電ポンプ 6は、図 2に示すように、複数の金属製部材を溶接 して形成されるケーシング 32と、ケーシング 32内の空間を作動空間 34 (第 1内部空 間)と背圧空間 35 (第 2内部空間)とに仕切る圧電素子 36と、ケーシング 32と圧電素 子 36との間に設けられ、圧電素子 36を保持する非金属製の内部部品 33A, 33B ( 第 1と第 2内部部品)とを備える。  As shown in FIG. 2, the piezoelectric pump 6 according to the present embodiment includes a casing 32 formed by welding a plurality of metal members, and a space in the casing 32 as a working space 34 (first internal Space) and back pressure space 35 (second internal space), and a non-metallic internal component 33A, which is provided between the casing 32 and the piezoelectric element 36 and holds the piezoelectric element 36. 33B (first and second internal parts).
[0044] 内部部品 33A, 33Bは、加工、成型が行な 、やす 、榭脂で構成される。内部部品 33Aは、作動空間 34 (ポンプ室)の外周を規定し、内部部品 33Bは、背圧空間 35の 外周を規定する。内部部品 33A, 33Bを対向させることにより、内部部品 33A, 33B 間に凹部が形成され、該凹部内に圧電素子 36が受け入れられて保持される。すな わち、内部部品 33A, 33Bは、圧電素子 36を挟むようにして圧電素子 36を保持する  [0044] The internal parts 33A and 33B are made of a resin that is easily processed and molded. The internal part 33A defines the outer periphery of the working space 34 (pump chamber), and the internal part 33B defines the outer periphery of the back pressure space 35. By making the internal parts 33A and 33B face each other, a recess is formed between the internal parts 33A and 33B, and the piezoelectric element 36 is received and held in the recess. That is, the internal parts 33A and 33B hold the piezoelectric element 36 so as to sandwich the piezoelectric element 36.
[0045] 図 2の例では、内部部品 33A上に形成され、ケーシング 32外部の入口パイプ 41 ( 吸込パイプ)から作動空間 34に向力 作動媒体が通過する入口部 37と、内部部品 3 3A上に形成され、作動空間 34からケーシング 32外部の出口パイプ 42 (吐出パイプ )に向力 作動媒体が通過する出口部 38と、入口部 37と作動空間 34との間に設置さ れる逆止弁 39 (第 1逆止弁)と、出口部 38と作動空間 34との間に設置される逆止弁 4 0 (第 2逆止弁)と、作動空間 34および背圧空間 35と圧電素子 36との間の隙間と、入 口部 37および出口部 38とケーシング 32内面との間の隙間とをそれぞれシールする 複数の Oリング 43とが設けられている。ここで、逆止弁 39, 40がそれぞれ設置される 設置台 (第 1と第 2逆止弁設置部)と、各々の Oリング 43が取付けられる溝部とは、内 部部品 33A, 33Bに予め加工を施すことによって設けられている。 In the example of FIG. 2, an inlet 37 formed on the internal part 33A and through which the working medium passes from the inlet pipe 41 (suction pipe) outside the casing 32 to the working space 34, and the internal part 33A Formed in the working space 34 to the casing 32 outlet pipe 42 (discharge pipe) ) Between the outlet portion 38 through which the working medium passes, the check valve 39 (first check valve) installed between the inlet portion 37 and the working space 34, and the outlet portion 38 and the working space 34. Check valve 40 (second check valve) installed between the working space 34 and the back pressure space 35 and the piezoelectric element 36, the inlet 37 and outlet 38 and the inner surface of the casing 32 Are provided with a plurality of O-rings 43 that seal the gaps between the two and each other. Here, the installation base on which the check valves 39 and 40 are respectively installed (the first and second check valve installation portions) and the groove portion on which each O-ring 43 is installed are provided in advance in the internal parts 33A and 33B. It is provided by processing.
[0046] 圧電ポンプ 6は、背圧空間 35と入口部 37とを連通させる連通部 44を有する。連通 部 44は、内部部品 33A, 33Bに形成された孔または溝により構成される。連通部 44 は、ケーシング 32の内面上に達し、複数の金属製部材の溶接箇所と連通している。 なお、連通部 44に代えて、背圧空間 35と出口部 38とを連通させる連通部が設けら れてもよい。 The piezoelectric pump 6 has a communication portion 44 that allows the back pressure space 35 and the inlet portion 37 to communicate with each other. The communication part 44 is configured by a hole or groove formed in the internal parts 33A and 33B. The communication portion 44 reaches the inner surface of the casing 32 and communicates with the welded portions of the plurality of metal members. Instead of the communication part 44, a communication part for communicating the back pressure space 35 and the outlet part 38 may be provided.
[0047] 実際に圧電ポンプ 6を作動させる際は、電源端子 45を介して圧電素子 36に電気 信号を与え、圧電素子 36を図 2中の左右方向に振幅運動させる。  When actually operating the piezoelectric pump 6, an electric signal is given to the piezoelectric element 36 via the power supply terminal 45, and the piezoelectric element 36 is moved in an amplitude direction in the left-right direction in FIG.
[0048] 上記構成においては、ケーシング 32を構成する複数の部材を溶接で接合すること により、作動媒体のリークに対する耐久性を向上させることができる。この結果、負圧' 正圧状態の密閉系において長期間使用可能な圧電ポンプ 6が提供される。また、金 属製のケーシング 32と圧電素子 36との間に榭脂製の内部部品 33A, 33Bを設け、 ケーシング 32と圧電素子 36とを離間させることで、金属部材を溶接する際の溶接熱 が圧電素子 36に伝わることを抑制することができる。したがって、圧電素子 36の動作 効率が向上し、結果として、作動媒体の循環効率が向上する。  [0048] In the above configuration, the durability against leakage of the working medium can be improved by joining a plurality of members constituting the casing 32 by welding. As a result, there is provided the piezoelectric pump 6 that can be used for a long time in a closed system of negative pressure and positive pressure. In addition, the inner parts 33A and 33B made of resin are provided between the metal casing 32 and the piezoelectric element 36, and the casing 32 and the piezoelectric element 36 are separated from each other, so that the welding heat at the time of welding the metal member is increased. Can be prevented from being transmitted to the piezoelectric element 36. Therefore, the operation efficiency of the piezoelectric element 36 is improved, and as a result, the circulation efficiency of the working medium is improved.
[0049] また、内部部品 33A, 33Bとして、成型が行ないやすい榭脂製の部品を用い、かつ 、上述したように簡単な構造で圧電素子 36を保持することにより、圧電ポンプ 6を低コ ストで作製することができる。  [0049] Also, as the internal parts 33A and 33B, a resin-made part that can be easily molded is used, and the piezoelectric pump 36 is held at a low cost by holding the piezoelectric element 36 with a simple structure as described above. Can be produced.
[0050] また、逆止弁 39, 40や複数の Oリング 43がそれぞれ設けられる設置台や溝は、榭 脂製の内部部品 33A, 33Bに凹部や溝を設けることにより簡単に形成することができ る。  [0050] In addition, the installation base and groove in which the check valves 39 and 40 and the plurality of O-rings 43 are provided can be easily formed by providing recesses and grooves in the resin internal parts 33A and 33B. it can.
[0051] さらに、連通部 44が形成されることにより、作動空間 34 (第 1内部空間)と背圧空 間 35 (第 2内部空間)との圧力をほぼ等しく保つことができる。この結果、負圧'正圧 状態において、作動媒体の循環効率は向上する。ここで、連通部 44は、榭脂製の内 部部品 33A, 33Bに溝ゃ孔を設けることにより、ケーシングの外部に連通管を設ける ことなく簡単に形成することができる。この結果、圧電ポンプ 6のコンパクトな構造が低 コストで実現される。また、連通部 44を複数の金属製部材の溶接箇所と連通させるこ とにより、連通部 44をケーシングのリークチェック孔 (連通孔)として用いることができ る。 [0051] Furthermore, by forming the communication portion 44, the working space 34 (first internal space) and the back pressure air The pressure in the space 35 (second internal space) can be kept approximately equal. As a result, the circulation efficiency of the working medium is improved in the negative pressure / positive pressure state. Here, the communication part 44 can be easily formed without providing a communication pipe outside the casing by providing grooves in the internal parts 33A, 33B made of resin. As a result, the compact structure of the piezoelectric pump 6 can be realized at low cost. Further, the communication portion 44 can be used as a leak check hole (communication hole) of the casing by communicating the communication portion 44 with a welded portion of a plurality of metal members.
[0052] ケーシング 32を構成する複数の金属製部材はそれぞれフランジ部 46を有し、フラ ンジ部 46の先端部どうしを溶接することによりケーシング 32が形成されている。フラン ジ部 46が設けられることにより、溶接箇所と圧電素子 36とをさらに遠ざけることができ る。したがって、圧電素子 36への入熱の抑制効果をさらに高めることができる。  Each of the plurality of metal members constituting the casing 32 has a flange portion 46, and the casing 32 is formed by welding the front end portions of the flange portion 46. By providing the flange portion 46, the welded portion and the piezoelectric element 36 can be further away from each other. Therefore, the effect of suppressing heat input to the piezoelectric element 36 can be further enhanced.
[0053] (実施の形態 2)  [0053] (Embodiment 2)
図 3は、実施の形態 2に係る圧電ポンプを示した断面図である。  FIG. 3 is a sectional view showing the piezoelectric pump according to the second embodiment.
[0054] 本実施の形態に係る圧電ポンプ 6は、実施の形態 1に係る圧電ポンプ 6の変形例で あって、圧電素子 36の両側をポンプ室(作動空間 34A, 34B)として利用することを 特徴とする。  [0054] The piezoelectric pump 6 according to the present embodiment is a modification of the piezoelectric pump 6 according to the first embodiment, and uses both sides of the piezoelectric element 36 as pump chambers (operating spaces 34A, 34B). Features.
[0055] 圧電ポンプ 6は、図 3に示すように、内部部品 33A (第 1内部部品)上に形成され、 ケーシング 32外部の入口パイプ 41 A (第 1吸込パイプ)から作動空間 34 A (第 1内部 空間)に向力 作動媒体が通過する入口部 37A (第 1入口部)と、内部部品 33B (第 2 内部部品)上に形成され、ケーシング 32外部の入口パイプ 41B (第 2吸込パイプ)か ら作動空間 34B (第 2内部空間)に向力う作動媒体が通過する入口部 37B (第 2入口 部)と、内部部品 33A上に形成され、作動空間 34Aからケーシング 32外部の出口パ イブ 42A (第 1吐出パイプ)に向力 作動媒体が通過する出口部 38A (第 1出口部)と 、内部部品 33B上に形成され、作動空間 34B力もケーシング 32外部の出ロノィプ 4 2B (第 2吐出パイプ)に向かう作動媒体が通過する出口部 38B (第 2出口部)と、入口 部 37A, 37Bと作動空間 34A, 34Bとの間にそれぞれ設置される逆止弁 39A, 39B (第 1と第 2逆止弁)と、出口部 38A, 38Bと作動空間 34A, 34Bとの間にそれぞれ設 置される逆止弁 40A, 40B (第 3と第 4逆止弁)と、作動空間 34A, 34Bと圧電素子 3 6との間の隙間ならびに入口部 37A, 37Bおよび出口部 38A, 38Bとケーシング 32 内面との間の隙間をそれぞれシールする複数の Oリング 43とが設けられている。ここ で、ここで、逆止弁 39A, 39B, 40A, 40Bがそれぞれ設置される設置台(第 1から第 4逆止弁設置部)と、各々の Oリング 43が取付けられる溝部とは、内部部品 33A, 33 Bに予め加工を施すことによって設けられて 、る。 As shown in FIG. 3, the piezoelectric pump 6 is formed on the internal part 33A (first internal part), and from the inlet pipe 41 A (first suction pipe) outside the casing 32 to the working space 34A (first 1 Internal space) Directing force 37A (first inlet part) through which the working medium passes and the internal part 33B (second internal part) are formed on the inlet pipe 41B (second suction pipe) outside the casing 32 An inlet 37B (second inlet) through which the working medium directed to the working space 34B (second inner space) passes and an inner part 33A are formed on the inner part 33A, and the outlet pipe outside the casing 32 from the working space 34A. 42A (first discharge pipe) Directing force 38A (first outlet) through which the working medium passes and the inner part 33B are formed on the inner part 33B, and the working space 34B force is also outside the casing 32. The outlet part 38B (second outlet part) through which the working medium heading to the pipe) passes and the inlet parts 37A, 37B Check valves 39A and 39B (first and second check valves) installed between the spaces 34A and 34B, respectively, and between the outlet portions 38A and 38B and the working spaces 34A and 34B, respectively. Check valves 40A and 40B (third and fourth check valves), working spaces 34A and 34B and piezoelectric element 3 And a plurality of O-rings 43 that seal the gaps between the inlets 37A and 37B and the outlets 38A and 38B and the inner surface of the casing 32, respectively. Here, the installation base on which the check valves 39A, 39B, 40A, 40B are respectively installed (the first to fourth check valve installation portions) and the groove portion on which each O-ring 43 is installed are The parts 33A and 33B are provided by machining in advance.
[0056] 圧電ポンプ 6は、内部部品 33A, 33Bに、入口部 37A, 37Bからケーシング 32の 内面上に達し、複数の金属製部材の溶接箇所と連通するリークチェック孔 44A (連通 孔)を有する。なお、リークチェック孔 44Aは、内部部品 33A, 33Bの一方にのみ設 けられてもよいし、リークチェック孔 44Aに代えて、出口部 38A, 38Bからケーシング 32の内面上に達し、複数の金属製部材の溶接箇所と連通するリークチェック孔が設 けられてもよい。 [0056] Piezoelectric pump 6 has leak check holes 44A (communication holes) in internal parts 33A and 33B that reach the inner surface of casing 32 from inlets 37A and 37B and communicate with the welded portions of a plurality of metal members. . The leak check hole 44A may be provided only in one of the internal parts 33A and 33B. Instead of the leak check hole 44A, the leak check hole 44A reaches the inner surface of the casing 32 from the outlet portions 38A and 38B, and a plurality of metals. A leak check hole communicating with the welded part of the manufactured member may be provided.
[0057] 上記構成によっても、実施の形態 1と同様に、負圧'正圧状態の密閉系において長 期間使用可能な循環効率の高い圧電ポンプ 6が低コストで提供される。  Also with the above configuration, as in the first embodiment, the piezoelectric pump 6 with high circulation efficiency that can be used for a long period in a closed system of negative pressure and positive pressure is provided at low cost.
[0058] さらに、リークチェック孔 44Aを複数の金属製部材の溶接箇所と連通させることによ り、ケーシングのリークチェックを行なうことが可能になる。 [0058] Furthermore, the leakage check of the casing can be performed by communicating the leak check hole 44A with the welded portions of the plurality of metal members.
[0059] なお、本実施の形態において、上述した実施の形態 1と同様の事項については、 詳細な説明は繰り返されな 、。 [0059] In the present embodiment, detailed description of the same matters as in the above-described first embodiment will not be repeated.
[0060] (実施の形態 3) [0060] (Embodiment 3)
図 4は、実施の形態 3に係る圧電ポンプを示した断面図である。  FIG. 4 is a cross-sectional view showing the piezoelectric pump according to the third embodiment.
[0061] 本実施の形態に係る圧電ポンプ 6は、実施の形態 1に係る圧電ポンプ 6の変形例で あって、圧電素子 36の両側をポンプ室(作動空間 34A, 34B)として利用することを 特徴とする。 [0061] The piezoelectric pump 6 according to the present embodiment is a modification of the piezoelectric pump 6 according to the first embodiment, and uses both sides of the piezoelectric element 36 as pump chambers (operating spaces 34A, 34B). Features.
[0062] 圧電ポンプ 6は、図 4に示すように、内部部品 33A (第 1内部部品)上に形成され、 ケーシング 32外部の入ロノイブ 41 (吸込パイプ)力も作動空間 34A (第 1内部空間) に向力う作動媒体が通過する入口部 37A (第 1入口部)と、内部部品 33B (第 2内部 部品)上に形成され、入口部 37Aから作動空間 34B (第 2内部空間)に向力 作動媒 体が通過する入口部 37B (第 2入口部)と、内部部品 33A上に形成され、作動空間 3 4A力 ケーシング 32外部の出口パイプ 42 (吐出パイプ)に向かう作動媒体が通過す る出口部 38A (第 1出口部)と、内部部品 33B上に形成され、作動空間 34Bから出口 部 38Aに向力 作動媒体が通過する出口部 38B (第 2出口部)と、内部部品 33A, 3 3Bに形成された孔または溝により構成され、入口部 37A, 37Bを連通させる入口連 通部 44B (第 1連通部)と、内部部品 33A, 33Bに形成された孔または溝により構成 され、出口部 38A, 38Bを連通させる出口連通部 44C (第 2連通部)と、入口部 37A , 37Bと作動空間 34A, 34Bとの間にそれぞれ設置される逆止弁 39A, 39B (第 1と 第 2逆止弁)と、出口部 38A, 38Bと作動空間 34A, 34Bとの間にそれぞれ設置され る逆止弁 40A, 40B (第 3と第 4逆止弁)と、作動空間 34A, 34Bと圧電素子 36との 間の隙間ならびに入口部 37A, 37Bおよび出口部 38A, 38Bとケーシング 32内面と の間の隙間とをそれぞれシールする複数の Oリング 43とが設けられている。ここで、こ こで、逆止弁 39A, 39B, 40A, 40Bがそれぞれ設置される設置台(第 1から第 4逆 止弁設置部)と、各々の Oリング 43が取付けられる溝部とは、内部部品 33A, 33Bに 予め加工を施すことによって設けられて 、る。 [0062] As shown in Fig. 4, the piezoelectric pump 6 is formed on the internal part 33A (first internal part), and the inlet 32 of the casing 32 outside the intake 41 (suction pipe) also has a working space 34A (first internal space). Formed on the inlet part 37A (first inlet part) and the internal part 33B (second internal part) through which the working medium that is directed to the directional force passes from the inlet part 37A to the working space 34B (second internal space). Formed on the inlet part 37B (second inlet part) through which the working medium passes and the internal part 33A, the working medium is directed toward the outlet pipe 42 (discharge pipe) outside the working space 3 4A force casing 32 Outlet part 38A (first outlet part), an outlet part 38B (second outlet part) formed on the internal part 33B through which the working medium passes from the working space 34B to the outlet part 38A, and the internal parts 33A, 3 Consists of holes or grooves formed in 3B, and includes inlet communication part 44B (first communication part) that communicates inlet parts 37A and 37B, and holes or grooves formed in internal parts 33A and 33B. An outlet communication part 44C (second communication part) for communicating the outlet parts 38A and 38B, and check valves 39A and 39B (first and first valves) installed between the inlet parts 37A and 37B and the working spaces 34A and 34B, respectively. 2 check valves), check valves 40A and 40B (third and fourth check valves) installed between outlets 38A and 38B and working spaces 34A and 34B, and working spaces 34A and 34B. There are a plurality of O-rings 43 that seal the gap between the piezoelectric element 36 and the gap between the inlet portions 37A and 37B and the outlet portions 38A and 38B and the inner surface of the casing 32. It has been kicked. Here, the installation base on which the check valves 39A, 39B, 40A, 40B are installed (the first to fourth check valve installation parts) and the groove part on which each O-ring 43 is installed are: It is provided by machining the internal parts 33A and 33B in advance.
[0063] ここで、入口連通部 44Bは、ケーシング 32の内面上に達し、複数の金属製部材の 溶接箇所とを連通している。これにより、入口連通部 44Bをリークチェック孔として用 いることができる。一方、出口連通部 44Cは、図 4に示すように、内部部品 33A, 33B の接合面に Oリング (他の Oリング)を設けることによりシールされており、複数の金属 製部材の溶接箇所とは連通しない。なお、入口連通部 44Bをシールし、出口連通部 44Cを溶接箇所と連通させてもよい。このように、入口連通部 44Bおよび出口連通部 44Cの一方のみを溶接箇所と連通させ、他方を Oリングによりシールすることで、作 動媒体の通路となる入口部 37A, 37Bと出口部 38A, 38Bとが互いに連通すること を避けることができる。 [0063] Here, the inlet communication portion 44B reaches the inner surface of the casing 32 and communicates the welded portions of a plurality of metal members. Thus, the inlet communication portion 44B can be used as a leak check hole. On the other hand, as shown in FIG. 4, the outlet communication portion 44C is sealed by providing an O-ring (other O-ring) on the joint surface of the internal parts 33A and 33B. Does not communicate. In addition, the inlet communication portion 44B may be sealed, and the outlet communication portion 44C may be communicated with the welding location. In this way, only one of the inlet communication portion 44B and the outlet communication portion 44C is communicated with the welded portion, and the other is sealed with an O-ring, so that the inlet portions 37A, 37B and the outlet portions 38A, which serve as a working medium passage, are provided. It is possible to avoid communicating with 38B.
[0064] 上記構成によっても、実施の形態 1と同様に、負圧 '正圧状態の密閉系において長 期間使用可能な循環効率の高い圧電ポンプ 6が低コストで提供される。  [0064] Also with the above configuration, as in the first embodiment, the piezoelectric pump 6 with high circulation efficiency that can be used for a long period in a closed system in a negative pressure / positive pressure state is provided at low cost.
[0065] また入口連通部 44Bおよび出口連通部 44Cは、榭脂製の内部部品 33A, 33Bに 溝ゃ孔を設けることにより、ケーシングの外部に連通管を設けることなく簡単に形成 することができる。この結果、圧電ポンプ 6のコンパクトな構造が実現される。  [0065] Further, the inlet communication portion 44B and the outlet communication portion 44C can be easily formed without providing a communication pipe outside the casing by providing grooves in the internal parts 33A and 33B made of resin. . As a result, a compact structure of the piezoelectric pump 6 is realized.
[0066] なお、本実施の形態において、上述した実施の形態 1と同様の事項については、 詳細な説明は繰り返されな 、。 [0066] In the present embodiment, the same matters as in the first embodiment described above are described. The detailed explanation will not be repeated.
[0067] (スターリング冷凍機についての説明)  [0067] (Explanation about Stirling refrigerator)
図 5を用いて、スターリング冷凍機 4の構造の一例およびその動作について説明す る。  An example of the structure of Stirling refrigerator 4 and its operation will be described with reference to FIG.
[0068] 図 5に示すように、本実施の形態のスターリング冷凍機 4は、フリーピストン型のスタ 一リング機関であって、ケーシング 30と、該ケーシング 30に組付けられたシリンダ 13 と、シリンダ 13内で往復動するピストン 14およびディスプレーサ 15と、再生器 16と、 圧縮空間 17Aと膨張空間 17Bとを含む作動空間 17と、放熱部 2と、吸熱部 3と、ビス トン駆動手段としてのリニアモータ 23と、ピストンスプリング 24と、ディスプレーサスプ リング 25と、ディスプレーサロッド 26と、背圧空間 27とを備える。  As shown in FIG. 5, the Stirling refrigerator 4 of the present embodiment is a free piston type Stirling engine, which includes a casing 30, a cylinder 13 assembled to the casing 30, and a cylinder. 13 reciprocating piston 14 and displacer 15, regenerator 16, working space 17 including compression space 17A and expansion space 17B, heat dissipating part 2, heat absorbing part 3, and linear as a piston drive means A motor 23, a piston spring 24, a displacer spring 25, a displacer rod 26, and a back pressure space 27 are provided.
[0069] 図 5の例では、スターリング冷凍機 4の外殻体 (外壁)は、単一の容器で構成されず 、背圧空間 27側に位置するケーシング 30 (ベッセル部分)と、作動空間 17側に位置 する放熱部 2、チューブ 18Aおよび吸熱部 3とで主に構成される。ケーシング 30は、 背圧空間 27を規定する。ケーシング 30には、シリンダ 13、リニアモータ 23、ピストン スプリング 24およびディスプレーサスプリング 25をはじめとする種々の部品が組付け られる。上記外殻体の内部には、ヘリウムガスや水素ガス、窒素ガスなどの作動媒体 が充填される。  [0069] In the example of FIG. 5, the outer shell (outer wall) of the Stirling refrigerator 4 is not composed of a single container, and the casing 30 (bessel portion) located on the back pressure space 27 side and the working space 17 Consists mainly of heat dissipating part 2, tube 18A and heat absorbing part 3 located on the side. The casing 30 defines a back pressure space 27. Various parts including a cylinder 13, a linear motor 23, a piston spring 24, and a displacer spring 25 are assembled in the casing 30. The outer shell is filled with a working medium such as helium gas, hydrogen gas, or nitrogen gas.
[0070] シリンダ 13は、略円筒状の形状を有し、内部にピストン 14とフリーピストンとしての ディスプレーサ 15とを往復動可能に受け入れる。シリンダ 13内において、ピストン 14 とディスプレーサ 15とは同軸上に間隔をあけて配置され、このピストン 14およびディ スプレーサ 15によってシリンダ 13内の作動空間 17が圧縮空間 17Aと膨張空間 17B とに区画される。より詳しくは、作動空間 17は、ピストン 14におけるディスプレーサ 15 側の端面よりもディスプレーサ 15側に位置する空間であり、ピストン 14とディスプレー サ 15との間に圧縮空間 17Aが形成され、ディスプレーサ 15と吸熱部 3との間に膨張 空間 17Bが形成される。圧縮空間 17Aは主に放熱部 2によって囲まれ、膨張空間 17 Bは主に吸熱部 3によって囲まれている。  [0070] The cylinder 13 has a substantially cylindrical shape, and receives therein a piston 14 and a displacer 15 as a free piston so as to be capable of reciprocating. In the cylinder 13, the piston 14 and the displacer 15 are coaxially spaced apart, and the piston 14 and the displacer 15 partition the working space 17 in the cylinder 13 into a compression space 17A and an expansion space 17B. . More specifically, the working space 17 is a space located closer to the displacer 15 than the end face of the piston 14 on the displacer 15 side, and a compression space 17A is formed between the piston 14 and the displacer 15, and An expansion space 17B is formed between the part 3 and the part 3. The compression space 17A is mainly surrounded by the heat dissipating part 2, and the expansion space 17B is mainly surrounded by the heat absorbing part 3.
[0071] 圧縮空間 17Aと膨張空間 17Bとの間には、チューブ 18Aの内周面上に所定の隙 間を有しながらフィルムが卷回されてなる再生器 16が配設されており、この再生器 1 6を介して圧縮空間 17Aと膨張空間 17Bとが連通する。それにより、スターリング冷凍 機 4内に閉回路が構成される。この閉回路内に封入された作動媒体が、ピストン 14 およびディスプレーサ 15の動作に合わせて流動することにより、後述する逆スターリ ングサイクルが実現される。 [0071] Between the compression space 17A and the expansion space 17B, a regenerator 16 in which a film is wound while having a predetermined gap on the inner peripheral surface of the tube 18A is disposed. Regenerator 1 The compression space 17 </ b> A and the expansion space 17 </ b> B communicate with each other through 6. As a result, a closed circuit is formed in the Stirling refrigerator 4. The working medium enclosed in the closed circuit flows in accordance with the operations of the piston 14 and the displacer 15, thereby realizing a reverse Stirling cycle described later.
[0072] シリンダ 13の外側に位置する背圧空間 27にはリニアモータ 23が配設される。リニ ァモータ 23は、インナーヨーク 20と、可動マグネット部 21と、アウターヨーク 22とを有 し、このリニアモータ 23によって、シリンダ 13の軸方向にピストン 14が駆動される。  A linear motor 23 is disposed in the back pressure space 27 located outside the cylinder 13. The linear motor 23 has an inner yoke 20, a movable magnet portion 21, and an outer yoke 22, and the piston 14 is driven in the axial direction of the cylinder 13 by the linear motor 23.
[0073] ピストン 14の一端は、板パネなどで構成されるピストンスプリング 24と接続される。  [0073] One end of the piston 14 is connected to a piston spring 24 composed of a plate panel or the like.
該ピストンスプリング 24は、ピストン 14に弾性力を付与する弾性力付与手段として機 能する。該ピストンスプリング 24に弾性力を付加することにより、シリンダ 13内でピスト ン 14をより安定して周期的に往復動させることが可能となる。ディスプレーサ 15の一 端は、ディスプレーサロッド 26を介してディスプレーサスプリング 25と接続される。デ イスプレーサロッド 26はピストン 14を貫通して配設され、ディスプレーサスプリング 25 は板パネなどで構成される。該ディスプレーサスプリング 25の周縁部と、ピストンスプ リング 24の周縁部は、リニアモータ 23からピストン 14の背圧空間 27側(以下、後方と 称する場合がある。 )に延びる支持部材により支持される。  The piston spring 24 functions as an elastic force applying means for applying an elastic force to the piston 14. By applying an elastic force to the piston spring 24, the piston 14 can be reciprocated in the cylinder 13 more stably and periodically. One end of the displacer 15 is connected to a displacer spring 25 via a displacer rod 26. The displacer rod 26 is disposed through the piston 14, and the displacer spring 25 is constituted by a plate panel or the like. The peripheral edge of the displacer spring 25 and the peripheral edge of the piston spring 24 are supported by a support member that extends from the linear motor 23 to the back pressure space 27 side of the piston 14 (hereinafter sometimes referred to as rear).
[0074] ピストン 14に対しディスプレーサ 15と反対側には、ケーシング 30によって囲まれた 背圧空間 27が配設されている。背圧空間 27は、ケーシング 30内でピストン 14の周 囲に位置する外周領域と、ケーシング 30内でピストン 14よりもピストンスプリング 24側 (後方側)に位置する後方領域とを含む。この背圧空間 27内にも、作動媒体が存在 する。  A back pressure space 27 surrounded by a casing 30 is disposed on the side opposite to the displacer 15 with respect to the piston 14. The back pressure space 27 includes an outer peripheral region located around the piston 14 in the casing 30 and a rear region located closer to the piston spring 24 (rear side) than the piston 14 in the casing 30. A working medium is also present in the back pressure space 27.
[0075] 放熱部 2、吸熱部 3の内周面上には、それぞれ熱交換器 18と熱交換器 19とが設け られる。熱交 18, 19は、それぞれ、圧縮空間 17A,膨張空間 17Bと放熱部 2, 吸熱部 3との間の熱交換を行なう。  A heat exchanger 18 and a heat exchanger 19 are provided on the inner peripheral surfaces of the heat radiating unit 2 and the heat absorbing unit 3, respectively. The heat exchanges 18 and 19 perform heat exchange between the compression space 17A and the expansion space 17B and the heat radiation unit 2 and the heat absorption unit 3, respectively.
[0076] ケーシング 30の後方側には、板パネ 28を介してバランスマス 29が取付けられてい る。バランスマス 29は、ピストン 14やディスプレーサ 15が振動することによって生じる ケーシング 30の振動を吸収する質量部材である。具体的には、ピストン 14ゃデイス プレーサ 15が振動することによってケーシング 30に振動が生じた場合に、このケー シング 30の振動に対して追従するようにバランスマス 29が振動することにより、スター リング冷凍機 4の振動が低減される。 A balance mass 29 is attached to the rear side of the casing 30 via a plate panel 28. The balance mass 29 is a mass member that absorbs the vibration of the casing 30 caused by the vibration of the piston 14 and the displacer 15. Specifically, when the piston 14 is vibrated in the casing 30 due to the vibration of the displacer 15, this case is used. As the balance mass 29 vibrates so as to follow the vibration of the single 30, the vibration of the Stirling refrigerator 4 is reduced.
[0077] 次に、このスターリング冷凍機 4の動作について説明する。 Next, the operation of this Stirling refrigerator 4 will be described.
まず、リニアモータ 23を作動させてピストン 14を駆動する。リニアモータ 23によって 駆動されたピストン 14は、ディスプレーサ 15に接近し、圧縮空間 17A内の作動媒体 (作動ガス)を圧縮する。  First, the linear motor 23 is operated to drive the piston 14. The piston 14 driven by the linear motor 23 approaches the displacer 15 and compresses the working medium (working gas) in the compression space 17A.
[0078] ピストン 14がディスプレーサ 15に接近することにより、圧縮空間 17A内の作動媒体 の温度は上昇するが、放熱部 2によってこの圧縮空間 17A内に発生した熱が外部へ と放出される。そのため、圧縮空間 17A内の作動媒体の温度はほぼ等温に維持され る。すなわち、本過程は、逆スターリングサイクルにおける等温圧縮過程に相当する  When the piston 14 approaches the displacer 15, the temperature of the working medium in the compression space 17 A rises, but the heat generated in the compression space 17 A is released to the outside by the heat radiating unit 2. Therefore, the temperature of the working medium in the compression space 17A is maintained almost isothermal. That is, this process corresponds to an isothermal compression process in a reverse Stirling cycle.
[0079] ピストン 14がディスプレーサ 15に接近した後にディスプレーサ 15は吸熱部 3側に 移動する。他方、ピストン 14によって圧縮空間 17A内において圧縮された作動媒体 は再生器 16内に流入し、さらに膨張空間 17Bへと流れ込む。その際、作動媒体の持 つ熱が再生器 16に蓄熱される。すなわち、本過程は、逆スターリングサイクルの等容 冷却過程に相当する。 [0079] After the piston 14 approaches the displacer 15, the displacer 15 moves to the heat absorbing portion 3 side. On the other hand, the working medium compressed in the compression space 17A by the piston 14 flows into the regenerator 16, and further flows into the expansion space 17B. At that time, the heat of the working medium is stored in the regenerator 16. In other words, this process corresponds to an isovolumetric cooling process in a reverse Stirling cycle.
[0080] 膨張空間 17B内に流入した高圧の作動媒体は、ディスプレーサ 15がピストン 14側  [0080] The high pressure working medium that has flowed into the expansion space 17B has the displacer 15 on the piston 14 side.
(後方側)へ移動することにより膨張する。このようにディスプレーサ 15が後方側へ移 動するのに伴い、ディスプレーサスプリング 25の中央部も後方側に突出するように変 形する。  It expands by moving to (rear side). Thus, as the displacer 15 moves rearward, the center portion of the displacer spring 25 is deformed so as to protrude rearward.
[0081] 上記のように膨張空間 17B内で作動媒体が膨張することにより、膨張空間 17B内 の作動媒体の温度は下降するが、吸熱部 3によって外部の熱が膨張空間 17B内へと 伝熱されるため、膨張空間 17B内はほぼ等温に保たれる。すなわち、本過程は、逆 スターリングサイクルの等温膨張過程に相当する。  [0081] As the working medium expands in the expansion space 17B as described above, the temperature of the working medium in the expansion space 17B decreases, but heat from the outside is transferred to the expansion space 17B by the heat absorbing portion 3. Therefore, the inside of the expansion space 17B is kept almost isothermal. That is, this process corresponds to the isothermal expansion process of the reverse Stirling cycle.
[0082] その後、ディスプレーサ 15がピストン 14力も遠ざ力る方向に移動し始める。それに より、膨張空間 17B内の作動媒体は再生器 16を通過して再び圧縮空間 17A側へと 戻る。その際に再生器 16に蓄熱されていた熱が作動媒体に与えられるため、作動媒 体は昇温する。すなわち、本過程は、逆スターリングサイクルの等容加熱過程に相当 する。 Thereafter, the displacer 15 starts to move in a direction in which the piston 14 also moves away. As a result, the working medium in the expansion space 17B passes through the regenerator 16 and returns to the compression space 17A side again. At that time, since the heat stored in the regenerator 16 is given to the working medium, the temperature of the working medium rises. In other words, this process is equivalent to a constant volume heating process in a reverse Stirling cycle. To do.
[0083] この一連の過程 (等温圧縮過程 等容冷却過程 等温膨張過程 等容加熱過程 )が繰り返されることにより、逆スターリングサイクルが構成される。この結果、吸熱部 3 は徐々に低温になり、極低温 (たとえば— 50°C程度)を有するに至る。一方で、放熱 部 2は徐々に高温 (たとえば 60°C程度)になる。上述したように、吸熱部 3における冷 熱は、低温側循環回路を介して冷却庫内に供給され、放熱部 2における熱は、第 1と 第 2高温側循環回路を介して冷却庫外に放出される。  [0083] By repeating this series of processes (isothermal compression process, isothermal cooling process, isothermal expansion process, isothermal heating process), an inverse Stirling cycle is configured. As a result, the endothermic portion 3 is gradually lowered in temperature and has an extremely low temperature (for example, about −50 ° C.). On the other hand, the heat dissipating part 2 gradually becomes hot (eg about 60 ° C). As described above, the cold heat in the heat absorption part 3 is supplied into the refrigerator through the low-temperature side circulation circuit, and the heat in the heat dissipation part 2 goes outside the refrigerator through the first and second high-temperature side circulation circuits. Released.
[0084] 以上、本発明の実施の形態にっ 、て説明した力 上述した各実施の形態の特徴部 分を適宜組合わせることは、当初から予定されている。また、今回開示された実施の 形態は全ての点で例示であって制限的なものではな 、と考えられるべきである。本発 明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内で の全ての変更が含まれることが意図される。  As described above, according to the embodiment of the present invention, it is planned from the beginning to appropriately combine the features of each embodiment described above. Further, it should be considered that the embodiment disclosed this time is illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
産業上の利用可能性  Industrial applicability
[0085] 以上のように、本発明は、圧電ポンプおよびスターリング冷却庫に適用される。 [0085] As described above, the present invention is applied to a piezoelectric pump and a Stirling cooler.

Claims

請求の範囲 The scope of the claims
[1] 複数の金属製部材を接合して形成されるケーシング (32)と、  [1] a casing (32) formed by joining a plurality of metal members;
前記ケーシング(32)内の空間を第 1と第 2内部空間(34, 34A, 34B, 35)に仕切 る圧電素子(36)と、  A piezoelectric element (36) that partitions the space in the casing (32) into first and second internal spaces (34, 34A, 34B, 35);
前記ケーシング (32)と前記圧電素子(36)との間に設けられ、前記圧電素子(36) を保持する非金属製の第 1と第 2内部部品(33A, 33B)とを備えた圧電ポンプ。  A piezoelectric pump provided between the casing (32) and the piezoelectric element (36) and having first and second non-metallic internal parts (33A, 33B) for holding the piezoelectric element (36) .
[2] 前記第 1と第 2内部部品(33A, 33B)は榭脂製であり、 [2] The first and second inner parts (33A, 33B) are made of grease.
前記第 1と第 2内部部品(33A, 33B)がそれぞれ前記第 1と第 2内部空間(34, 35 )の外周を規定し、  The first and second internal parts (33A, 33B) define the outer peripheries of the first and second internal spaces (34, 35), respectively;
前記第 1と第 2内部部品(33A, 33B)の間に前記圧電素子(36)を挟むようにして 該圧電素子(36)を保持する、請求の範囲第 1項に記載の圧電ポンプ。  The piezoelectric pump according to claim 1, wherein the piezoelectric element (36) is held so as to sandwich the piezoelectric element (36) between the first and second internal parts (33A, 33B).
[3] 前記第 1内部部品(33A)上に形成され、前記ケーシング(32)外部の吸込パイプ( 41)力 作動空間としての前記第 1内部空間(34)に向力う作動媒体が通過する入口 部(37)と、 [3] The working medium formed on the first internal part (33A) and facing the first internal space (34) as a working space for the suction pipe (41) outside the casing (32) passes. The entrance (37),
前記第 1内部部品(33A)上に形成され、前記第 1内部空間(34)力 前記ケーシン グ(32)外部の吐出パイプ (42)に向かう作動媒体が通過する出口部(38)と、 前記入口部(37)と前記第 1内部空間(34)との間に設置される第 1逆止弁 (39)と、 前記出口部(38)と前記第 1内部空間(34)との間に設置される第 2逆止弁 (40)と、 前記第 1および第 2内部空間(34, 35)と前記圧電素子(36)との間の隙間と、前記 入口部(37)および前記出口部(38)と前記ケーシング(32)との間の隙間とをそれぞ れシールする複数の Oリング (43)とをさらに備え、  An outlet part (38) formed on the first internal part (33A), through which the working medium directed to the discharge pipe (42) outside the casing (32) force of the first internal space (34) passes, A first check valve (39) installed between the inlet (37) and the first inner space (34); and between the outlet (38) and the first inner space (34). A second check valve (40) installed, a gap between the first and second internal spaces (34, 35) and the piezoelectric element (36), the inlet part (37) and the outlet part A plurality of O-rings (43) for sealing gaps between the casing (32) and the casing (32), respectively.
前記第 1内部部品(33A)に、前記第 1と第 2逆止弁(39, 40)がそれぞれ設置され る第 1と第 2逆止弁設置部と、前記複数の Oリング (43)がそれぞれ設置される複数の 溝部とを設けた、請求の範囲第 1項に記載の圧電ポンプ。  The first internal part (33A) includes first and second check valve installation portions where the first and second check valves (39, 40) are installed, and the plurality of O-rings (43). 2. The piezoelectric pump according to claim 1, further comprising a plurality of grooves that are respectively installed.
[4] 背圧空間としての前記第 2内部空間(35)と前記入口部(37)または前記出口部(3[4] The second internal space (35) as the back pressure space and the inlet portion (37) or the outlet portion (3
8)とを連通させる連通部 (44)をさらに備え、 8) further comprising a communication part (44) for communicating with
前記連通部 (44)は、前記第 1と第 2内部部品(33A,33B)に形成された孔または 溝により構成される、請求の範囲第 3項に記載の圧電ポンプ。 The piezoelectric pump according to claim 3, wherein the communication portion (44) is configured by a hole or a groove formed in the first and second internal parts (33A, 33B).
[5] 前記入口部(37)または前記出口部(38)と前記金属製部材の接合箇所とを連通さ せる連通孔 (44)を設ける、請求の範囲第 3項に記載の圧電ポンプ。 [5] The piezoelectric pump according to claim 3, further comprising a communication hole (44) for communicating the inlet portion (37) or the outlet portion (38) with a joint portion of the metal member.
[6] 前記第 1内部部品(33A)上に形成され、前記ケーシング(32)外部の第 1吸込パイ プ (41A)力 作動空間としての前記第 1内部空間(34A)に向力 作動媒体が通過 する第 1入口部(37A)と、 [6] First suction pipe (41A) force formed on the first internal part (33A) and external to the casing (32). Force is applied to the first internal space (34A) as a working space. A first inlet (37A) passing through;
前記第 2内部部品(33B)上に形成され、前記ケーシング(32)外部の第 2吸込パイ プ (41B)力 作動空間としての前記第 2内部空間(34B)に向力う作動媒体が通過 する第 2入口部(37B)と、  A working medium formed on the second internal part (33B) and directed toward the second internal space (34B) as a second working pipe (41B) force working space outside the casing (32) passes therethrough. The second entrance (37B),
前記第 1内部部品(33A)上に形成され、前記第 1内部空間(34A)力 前記ケーシ ング(32)外部の第 1吐出パイプ (42A)に向力う作動媒体が通過する第 1出口部(38 A first outlet portion formed on the first internal part (33A) and through which the working medium that passes through the first internal space (34A) force and directed toward the first discharge pipe (42A) outside the casing (32) (38
A)と、 A) and
前記第 2内部部品(33B)上に形成され、前記第 2内部空間(34B)から前記ケーシ ング(32)外部の第 2吐出パイプ (42B)に向力う作動媒体が通過する第 2出口部(38 A second outlet portion formed on the second internal part (33B) through which the working medium passes from the second internal space (34B) to the second discharge pipe (42B) outside the casing (32). (38
B)と、 B) and
前記第 1および第 2入口部(37A, 37B)と前記第 1および第 2内部空間(34A, 34 B)との間にそれぞれ設置される第 1と第 2逆止弁(39A, 39B)と、  First and second check valves (39A, 39B) installed between the first and second inlet portions (37A, 37B) and the first and second internal spaces (34A, 34B), respectively; ,
前記第 1および第 2出口部(38A, 38B)と前記第 1および第 2内部空間(34A, 34 B)との間にそれぞれ設置される第 3と第 4逆止弁 (40A, 40B)と、  Third and fourth check valves (40A, 40B) installed between the first and second outlet portions (38A, 38B) and the first and second inner spaces (34A, 34B), respectively. ,
前記第 1および第 2内部空間(34A, 34B)と前記圧電素子(36)との間の隙間と、 前記第 1および第 2入口部(37A, 37B)ならびに前記第 1および第 2出口部(38A, 38B)と前記ケーシング(32)との間の隙間とをそれぞれシールする複数の Oリング (4 3)とをさらに備え、  A gap between the first and second internal spaces (34A, 34B) and the piezoelectric element (36), the first and second inlet portions (37A, 37B), and the first and second outlet portions ( 38A, 38B) and a plurality of O-rings (43) each sealing a gap between the casing (32),
前記第 1と第 2内部部品(33A, 33B)に、前記第 1から第 4逆止弁(39A, 39B, 40 A, 40B)がそれぞれ設置される第 1から第 4逆止弁設置部と、前記複数の Oリング (4 3)がそれぞれ設置される複数の溝部とを設けた、請求の範囲第 1項に記載の圧電ポ ンプ。  A first to a fourth check valve installation portion in which the first to fourth check valves (39A, 39B, 40A, 40B) are respectively installed on the first and second internal parts (33A, 33B); 2. The piezoelectric pump according to claim 1, further comprising a plurality of grooves in which the plurality of O-rings (43) are respectively installed.
[7] 前記第 1もしくは第 2入口部(37A, 37B)または前記第 1もしくは第 2出口部(38A , 38B)と前記金属製部材の接合箇所とを連通させる連通孔 (44A)を設ける、請求 の範囲第 6項に記載の圧電ポンプ。 [7] A communication hole (44A) is provided for communicating the first or second inlet portion (37A, 37B) or the first or second outlet portion (38A, 38B) with the joint portion of the metal member. Claim A piezoelectric pump according to claim 6 in the range.
[8] 前記第 1内部部品(33A)上に形成され、前記ケーシング(32)外部の吸込パイプ( 41)力 作動空間としての前記第 1内部空間(34A)に向力う作動媒体が通過する第 1入口部(37A)と、 [8] A working medium formed on the first internal part (33A) and facing the first internal space (34A) as a working space for the suction pipe (41) outside the casing (32) passes. The first entrance (37A),
前記第 2内部部品(33B)上に形成され、前記第 1入口部(37A)力 前記第 2内部 空間(34B)に向力 作動媒体が通過する第 2入口部(37B)と、  A second inlet part (37B) formed on the second inner part (33B), through which the first inlet part (37A) force passes a directional force working medium into the second inner space (34B);
前記第 1内部部品(33A)上に形成され、前記第 1内部空間(34A)力 前記ケーシ ング(32)外部の吐出パイプ (42)に向力う作動媒体が通過する第 1出口部(38A)と 前記第 2内部部品(33B)上に形成され、前記第 2内部空間(33B)から前記第 1出 口部(38A)に向力 作動媒体が通過する第 2出口部(38B)と、  A first outlet portion (38A) formed on the first internal part (33A) and through which the working medium passing through the first internal space (34A) force and the casing (32) is directed to the discharge pipe (42) outside the casing (32A). ) And a second outlet part (38B) formed on the second inner part (33B), through which a directional working medium passes from the second inner space (33B) to the first outlet part (38A),
前記第 1と第 2内部部品(33A, 33B)に形成された孔または溝により構成され、前 記第 1と第 2入口部(37A, 37B)を連通させる第 1連通部 (44B)と、  A first communication part (44B), which is constituted by a hole or a groove formed in the first and second internal parts (33A, 33B) and communicates the first and second inlet parts (37A, 37B);
前記第 1と第 2内部部品(33A, 33B)に形成された孔または溝により構成され、前 記第 1と第 2出口部(38A, 38B)を連通させる第 2連通部 (44C)と、  A second communication part (44C) constituted by a hole or a groove formed in the first and second internal parts (33A, 33B) and communicating the first and second outlet parts (38A, 38B);
前記第 1および第 2入口部(37A, 37B)と前記第 1および第 2内部空間(34A, 34 B)との間にそれぞれ設置される第 1と第 2逆止弁(39A, 39B)と、  First and second check valves (39A, 39B) installed between the first and second inlet portions (37A, 37B) and the first and second internal spaces (34A, 34B), respectively; ,
前記第 1および第 2出口部(38A, 38B)と前記第 1および第 2内部空間(34A, 34 B)との間にそれぞれ設置される第 3と第 4逆止弁 (40A, 40B)と、  Third and fourth check valves (40A, 40B) installed between the first and second outlet portions (38A, 38B) and the first and second inner spaces (34A, 34B), respectively. ,
前記第 1および第 2内部空間(34A, 34B)と前記圧電素子(36)との間の隙間と、 前記第 1および第 2入口部(37A, 37B)ならびに前記第 1および第 2出口部(38A, 38B)と前記ケーシング(32)との間の隙間とをそれぞれシールする複数の Oリング (4 3)とをさらに備え、  A gap between the first and second internal spaces (34A, 34B) and the piezoelectric element (36), the first and second inlet portions (37A, 37B), and the first and second outlet portions ( 38A, 38B) and a plurality of O-rings (43) each sealing a gap between the casing (32),
前記第 1と第 2内部部品(33A, 33B)に、前記第 1から第 4逆止弁(39A, 39B, 40 A, 40B)がそれぞれ設置される第 1から第 4逆止弁設置部と、前記複数の Oリング (4 3)がそれぞれ設置される複数の溝部とを設けた、請求の範囲第 1項に記載の圧電ポ ンプ。  A first to a fourth check valve installation portion in which the first to fourth check valves (39A, 39B, 40A, 40B) are respectively installed on the first and second internal parts (33A, 33B); 2. The piezoelectric pump according to claim 1, further comprising a plurality of grooves in which the plurality of O-rings (43) are respectively installed.
[9] 請求の範囲第 1項に記載の圧電ポンプ (6)を高温側の作動媒体循環回路に設け たスターリング冷却庫。 [9] The piezoelectric pump (6) according to claim 1 is provided in the working medium circulation circuit on the high temperature side. Stirling refrigerator.
PCT/JP2005/020694 2004-11-17 2005-11-11 Piezoelectric pump and stirling refrigerator WO2006054488A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/666,151 US20080101965A1 (en) 2004-11-17 2005-11-11 Piezoelectric Pump and Stirling Refrigerator/Freezer
EP05806011A EP1813811A1 (en) 2004-11-17 2005-11-11 Piezoelectric pump and stirling refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004333189A JP3949135B2 (en) 2004-11-17 2004-11-17 Piezoelectric pump and Stirling refrigerator
JP2004-333189 2004-11-17

Publications (1)

Publication Number Publication Date
WO2006054488A1 true WO2006054488A1 (en) 2006-05-26

Family

ID=36407032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020694 WO2006054488A1 (en) 2004-11-17 2005-11-11 Piezoelectric pump and stirling refrigerator

Country Status (6)

Country Link
US (1) US20080101965A1 (en)
EP (1) EP1813811A1 (en)
JP (1) JP3949135B2 (en)
KR (1) KR20070073973A (en)
CN (1) CN101057077A (en)
WO (1) WO2006054488A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8485793B1 (en) * 2007-09-14 2013-07-16 Aprolase Development Co., Llc Chip scale vacuum pump
CN101634292B (en) * 2009-08-10 2011-04-13 胡军 Piezoelectric ceramic pump used for electronic product and CPU cooling system
CN102678527A (en) * 2012-05-23 2012-09-19 浙江师范大学 Piezoelectric vibrator bilateral fluid driven series connection pump
CN105229397B (en) * 2013-04-24 2018-11-16 西门子医疗有限公司 Component including two-stage low temperature refrigeration machine and associated mounting device
KR20140147345A (en) * 2013-06-19 2014-12-30 삼성전기주식회사 Micro pump device
JP2015117647A (en) * 2013-12-19 2015-06-25 東芝テック株式会社 Piezoelectric pump and ink jet recording device with piezoelectric pump
EP2930363B1 (en) * 2014-04-10 2020-06-10 Stichting Nationaal Lucht- en Ruimtevaart Laboratorium Piezoelectric pump assembly and pressurised circuit provided therewith
KR20150124390A (en) * 2014-04-25 2015-11-05 주식회사 서남 cryogenic refrigeration system
CN106150986A (en) * 2015-03-25 2016-11-23 深圳市华简泵业科技有限公司 Piezoelectric pump potsherd localization method
CN104929916A (en) * 2015-07-13 2015-09-23 李伦 Double-cavity piezoelectric gas pump
JP6695154B2 (en) * 2016-01-28 2020-05-20 東芝テック株式会社 Ink circulation device and printer
WO2018063829A1 (en) 2016-09-30 2018-04-05 Conocophillips Company Tool for metal plugging or sealing of casing
CN109891096B (en) * 2016-10-27 2020-08-18 日东工器株式会社 Liquid pump
JP2018103380A (en) * 2016-12-22 2018-07-05 東芝テック株式会社 Liquid circulation module, liquid discharge device, and liquid discharge method
CN106766540A (en) * 2017-03-31 2017-05-31 宁波华斯特林电机制造有限公司 A kind of multi gear ice chest
CN108168135A (en) * 2018-02-21 2018-06-15 杨厚成 A kind of acoustic energy refrigeration machine and its expansion piston
US10753653B2 (en) * 2018-04-06 2020-08-25 Sumitomo (Shi) Cryogenic Of America, Inc. Heat station for cooling a circulating cryogen
CN108870793A (en) * 2018-08-02 2018-11-23 杨厚成 A kind of sound energy free-piston type refrigeration machine
US12089374B2 (en) 2018-08-10 2024-09-10 Frore Systems Inc. MEMS-based active cooling systems
US11464140B2 (en) 2019-12-06 2022-10-04 Frore Systems Inc. Centrally anchored MEMS-based active cooling systems
US11043444B2 (en) * 2018-08-10 2021-06-22 Frore Systems Inc. Two-dimensional addessable array of piezoelectric MEMS-based active cooling devices
CN109162902B (en) * 2018-09-20 2023-12-15 长春工业大学 Floating type I-shaped valve piezoelectric pump
WO2021086873A1 (en) 2019-10-30 2021-05-06 Frore System Inc. Mems-based airflow system
US11510341B2 (en) 2019-12-06 2022-11-22 Frore Systems Inc. Engineered actuators usable in MEMs active cooling devices
US11796262B2 (en) 2019-12-06 2023-10-24 Frore Systems Inc. Top chamber cavities for center-pinned actuators
WO2021126791A1 (en) 2019-12-17 2021-06-24 Frore Systems Inc. Mems-based cooling systems for closed and open devices
US12033917B2 (en) 2019-12-17 2024-07-09 Frore Systems Inc. Airflow control in active cooling systems
KR20230075503A (en) 2020-10-02 2023-05-31 프로리 시스템스 인코포레이티드 active heatsink
CN113237246B (en) * 2021-04-15 2022-01-14 成都仙德科技有限公司 Stirling refrigerating and heating integrated machine
US11614177B2 (en) 2021-08-16 2023-03-28 Mueller Refrigeration, LLC Seal arrangement and check valve including same
CN114825166B (en) * 2022-04-20 2023-04-11 温州市龙湾永强供电公司 Wireless communication type multifunctional large-scale power transmission line maintenance device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287468A (en) * 1999-03-29 2000-10-13 Ngk Spark Plug Co Ltd Piezoelectric actuator
JP2004101050A (en) * 2002-09-09 2004-04-02 Sharp Corp Cooling warehouse
JP2004517240A (en) * 2000-09-18 2004-06-10 パー テクノロジーズ エルエルシー. Piezoelectric actuator and pump using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213077A (en) * 1997-01-30 1998-08-11 Kasei Optonix Co Ltd Reed valve for pump
US7198250B2 (en) * 2000-09-18 2007-04-03 Par Technologies, Llc Piezoelectric actuator and pump using same
US7219848B2 (en) * 2004-11-03 2007-05-22 Meadwestvaco Corporation Fluid sprayer employing piezoelectric pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287468A (en) * 1999-03-29 2000-10-13 Ngk Spark Plug Co Ltd Piezoelectric actuator
JP2004517240A (en) * 2000-09-18 2004-06-10 パー テクノロジーズ エルエルシー. Piezoelectric actuator and pump using the same
JP2004101050A (en) * 2002-09-09 2004-04-02 Sharp Corp Cooling warehouse

Also Published As

Publication number Publication date
JP3949135B2 (en) 2007-07-25
JP2006144591A (en) 2006-06-08
KR20070073973A (en) 2007-07-10
CN101057077A (en) 2007-10-17
US20080101965A1 (en) 2008-05-01
EP1813811A1 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP3949135B2 (en) Piezoelectric pump and Stirling refrigerator
US7143586B2 (en) Thermoacoustic device
WO2002016835A1 (en) Sterling refrigerating system and cooling device
JP2839141B1 (en) Stirling refrigerator
JP5660979B2 (en) Cryo pump and cryogenic refrigerator
EP0515559A4 (en) Stirling free piston cryocoolers
JPH07180921A (en) Stirling cold storage box
JP2006292135A (en) Gas bearing structure, stirling engine and stirling cooling storage
JP2714155B2 (en) Cooling room
JP2009062909A (en) Stirling engine and stirling engine mounting apparatus
US6813892B1 (en) Cryocooler with multiple charge pressure and multiple pressure oscillation amplitude capabilities
JP2006112260A (en) Thermoacoustic engine
JP2006144690A (en) Piezo-electric pump and sterling refrigerator/freezer
JP2010527436A (en) Cryocooler with movable piston and movable cylinder
JPH068705B2 (en) Gas refrigerator
JPH1194382A (en) Pulse tube refrigerator
JP2004163038A (en) Staring refrigerator
JP2003240373A (en) Jacket for heat-exchanger, and stirling refrigerating engine
JP3878924B2 (en) Stirling refrigerator
JPH085179A (en) Stirling refrigerator
JP2006162200A (en) Stirling engine and stirling cooling storage
JP2006162201A (en) Stirling engine, and stirling refrigeration warehouse
JP2000018742A (en) Cooling device
JP3643761B2 (en) Stirling refrigerator
JP2006105483A (en) Stirling engine mounted equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11666151

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580039113.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005806011

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077013161

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005806011

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2005806011

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11666151

Country of ref document: US