WO2006045275A2 - Systeme d'entrainement d'une presse de formage - Google Patents
Systeme d'entrainement d'une presse de formage Download PDFInfo
- Publication number
- WO2006045275A2 WO2006045275A2 PCT/DE2005/001871 DE2005001871W WO2006045275A2 WO 2006045275 A2 WO2006045275 A2 WO 2006045275A2 DE 2005001871 W DE2005001871 W DE 2005001871W WO 2006045275 A2 WO2006045275 A2 WO 2006045275A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drive system
- forming press
- press according
- drive
- plunger
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/14—Control arrangements for mechanically-driven presses
- B30B15/148—Electrical control arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B1/00—Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
- B30B1/10—Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by toggle mechanism
- B30B1/103—Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by toggle mechanism operated by screw means
Definitions
- the invention relates to a drive system of a forming press having the features of the preamble of one of the claims 1 and 4.
- Tappet is rigidly predetermined.
- JP 2001300778 A a servo-motor-driven press is known, in which a numerically controlled motor drives a central spindle, the spindle nut is connected via a toggle mechanism with the two pressure points.
- a first pair of levers on the one hand in each case hinged to the spindle nut and on the other hand in each case connected to a second pair of levers, whose second end is rotatably mounted fixed to the frame.
- the one end of a third pair of levers is additionally mounted, the other end is articulated in the plunger.
- the central spindle operates in reversing operation, wherein the reversing positions respectively correspond to the upper and lower reversal point of the plunger of the press.
- the joint action of the central spindle on the adjacent pressure points, the control of the tilting behavior of the plunger is limited.
- the vertically arranged central spindle requires an increased height. Since the direction of rotation of the spindle drive in the lower reversal point of the plunger takes place in the phase of high energy output, on the one hand, the power requirement is increased at a given number of cycles or limited the number of cycles at a given power.
- This disadvantage also relates to a further servo-motor-driven press according to JP 2002103089 A, in which a separate spindle of one numerically controlled one
- Motor is driven in combination with a
- Knee lever acts on each a pressure point of the plunger.
- the lever connected to the spindle nut is articulated in the common pivot point of the upper and lower legs of the toggle lever, whereby in conjunction with the horizontal
- the invention has for its object to make a drive system for a forming press so that either increased drive speed for a given drive power or drive speed is reduced for a given number of cycles, the size and sequence of strokes, speed and force profiles is freely programmable. Furthermore, a short overall height of the head piece for driving the press is to be achieved with the most compact possible design become. For forming presses with several pressure points, the possibility of a tilt control of the ram should be created.
- the core idea of the invention is to combine the advantages of hydraulic presses with regard to free programmability of the travel, speed and force profiles with the advantages of mechanical presses with regard to increased productivity, rigidity and path-controlled reproducibility of the lower reversal point. It is essential to the invention that one or more electric drives act as a servomotor in the form of a direct drive or with a downstream linear converter on a five-point toggle so that in addition to the free programmability of path, speed and force profiles flexible use of path and / or force-related motion sequences is possible. In the case of a force-applied ram movement, the lower reversal point is controlled in analogy to hydraulic presses as a function of the programmed forces.
- the simple stroke of the electric drive corresponds to a simple ram stroke
- the reversing of the electric drive is carried out in the lower reversal point of the plunger.
- the high positioning accuracy and mechanical stiffness of the servo axis also allows a path-bound plunger movement with reversing the electric drive in the lower reversal point of the plunger. If the electric drive swings through the toggle lever in the lower reversal point of the plunger without stopping, in another mode of operation, the advantage of the path-controlled plunger movement of mechanical presses at high clock rates can be utilized. It is achieved with a simple stroke of the electric drive, a double ram stroke with forward and return stroke, which reduces energy consumption and the cycle rate of the press is increased.
- the use of larger ram strokes is achieved by the advantageous embodiment of the five-point toggle lever by means of spatially separated hinge points of the input and output end of the double lever with the formation of a translation.
- the drive modules which can be designed from direct drives or servomotors with downstream linear converters, for example in the form of spindles, can drive several pressure points jointly by means of an intermediate power divider and can also be assigned separately to a pressure point.
- the individual pressure points respectively associated drive in the force and position control can be controlled separately, which on the one hand for parallel holding the plunger which can be developed due auserkittigem force attack tilting compensated and on the other hand, a target tilt can be achieved.
- the energy balance of the press is improved by an exchange of energy takes place between the servomotor for the main movement of the plunger and other present in the press for secondary movements servomotors, for example for electric motor driven pulling means that in the cycle of movement during the braking phases in the Generator mode of the servo motors regenerated energy is fed into the servomotor located in the motor mode.
- This effect can also be achieved if several presses belonging to a press line are operated out of phase relative to the plunger movement and an energy exchange takes place between the servomotor associated with each press for the main movement.
- Fig. 2 common servo spindle drive for a tandem five-point toggle mechanism in a first
- Fig. 8 diagram with movement and drive power for main and secondary movements
- the drive 2 is shown for reasons of simplicity without the associated frame.
- the drive is effected by means of knee lever 3 distributed to four pressure points (4) of the plunger 1, wherein the toggle lever 3 are each formed as a five-point toggle 25.
- the plunger 1 is shown in the left half in its upper stroke position and in the right half in its lower stroke position.
- the movement of the Quattro five-point toggle lever 25 is generated jointly by means of a central spindle drive.
- two spindles 7 are each driven by a servomotor 5 with an intermediate gear 6.
- the associated, not shown spindle nut is mounted in the slider 8 and causes the linear converter 15, the conversion of the rotational movement of the spindle 7 in a linear movement of the slider 8.
- the slider 8 serves as a power divider 19 for synchronous
- a tab 12 is operatively connected on the one hand to the slider 8 and on the other hand to the first leg 10 of a double lever 9.
- the double lever 9 is mounted on the rack side respectively in the double lever bearing 16 in the head piece, not shown.
- the second leg 11 of the double lever 9 provides via the hinged connecting rod 13, the operative connection to the pressure points 4 in the plunger 1 ago.
- the toggle lever 3 serves as a power amplifier for the axial force generated by the torque of the servomotor via the spindle 7 in the slider, which assumes its extreme value in the region of the extended position 18 of the toggle lever 3 for generating the pressing force required for the forming process.
- an inner buckling layer 14 which adjusts as an acute angle between the second leg 11 and the connecting rod 13.
- a flexible travel and speed characteristic is programmable for the movement of the plunger 1, wherein the transmission ratio of the toggle lever 3 is taken into account.
- the position, speed and torque of the servo motors 5 is controlled by means of an NC controller 32 so that the desired movement and force curves can be achieved. It is essential that the motion sequences are generated in a first embodiment by means of guide shaft-controlled electronic cams, which specify the desired position of the plunger 1.
- the forming press is on the one hand wegmap operated with a defined lower return point, which is in the extended position 18 of the bell crank 3.
- the servo-driven forming press can be operated by force, by the force is limited control side in the extended position 18.
- the axial force in the slider 8 can be generated by means of a direct drive 20 in the form of a linear motor 21.
- a plurality of linear motors 21 are used for power amplification in an advantageous manner so that several secondary parts 23 are mounted either in the slider 8 or in the frame and operatively connected to several primary parts 24 in the frame or slider 8.
- FIG. 2 shows in the second exemplary embodiment a common servo spindle drive for a tandem five-point toggle mechanism 25.
- the plunger 1 is in the upper stroke position.
- the right half shows the ram 1 in the area of the lower turning point.
- Several servomotors 5 drive via a centralized gear 6 a horizontally mounted pair of spindles 7, each having a left-handed in the left half and a right-handed thread in the right half.
- Each spindle 7 is connected via the separate sliders 8 with the five-point toggle mechanism 25 in operative connection.
- the toggle lever 3 is designed so that it swings through at the lower reversal point of the plunger 1 without support and thus takes advantage of the path-bound plunger movement to achieve a high clock rate.
- the plunger is not braked in the extended position 18 of the toggle lever during the phase of increased energy demand by the forming process.
- the energy consumption is reduced.
- the freely programmable servo motor 5 enables a flexible path characteristic.
- each with symmetrically positioned buckling layer 14, 17 of the forward and return stroke of the plunger 1 is the same size, with all odd-numbered strokes of the plunger 1, a mirror program of the motion profile of the even strokes is mobile.
- the pressing process per forming part takes place several times by the lower reversal point of the plunger 1 per pressing operation several times, suitably with different stroke, is passed.
- the outer and inner buckling layers 14, 17 are positioned asymmetrically.
- the input and output ends of the double lever 9 are arranged spatially separated. These are the first and second legs 10,11 in the double lever 9 to each other at an obtuse angle.
- FIG. 3 A second embodiment of the tandem five-point toggle mechanism is shown in FIG. 3 in a perspective view.
- the drive modules with the servomotors 5, gear 6, slider 8 and spindles 7 are each arranged laterally next to the head piece vertically in the region of the press stand 22 projecting downwards.
- the slider 8 is in analogy to the preceding embodiments with two toggle levers 3 in operative connection.
- a reduced overall height of the forming press is achieved in a compact design.
- the following figures show drives 2 for forming presses with toggle levers 3, in which each pressure point of the plunger 1 is driven separately.
- Fig. 4 shows two independently controllable pressure points 4, the five-point toggle mechanism 25 is driven in each case by a direct drive 20 designed as a linear motor 21.
- the tab 12 is hinged to the linear motor 21 belonging to the primary parts 24, which are in operative connection with the associated secondary parts 23.
- the toggle lever 3 is used to increase the force on the pressure points 20.
- FIG. 5 shows the position of the five-point toggle lever 25 in its inner buckling position 14, while the outer buckling layer 17 is shown in Fig. 6.
- drive module drives the servo motor 5 via intermediate gear 6 acting as a linear transducer 15 spindle 7 at.
- the axially movable slider 8 transmits the movement in analogy to one of the preceding embodiments of the five-point toggle 25. Due to the individual, independent position and force control of the pressure points 4 parallel holding the plunger 1 is also possible with off-center force application. On the other hand, it is conceivable that a defined desired tilting of the plunger 1 during the pressing process is adjustable.
- the essentially flywheel-free drives 2 by means of servomotors 5 can cause load fluctuations with not inconsiderable peak powers in the energy absorption from the supply network 29.
- One way to improve the energy balance of the forming press is supported by Figures 7 and 8, described below.
- further servomotors 28 for secondary movements in the forming press, such as drawing devices are used.
- the path-time characteristic with the phase-related positions for the Plunger 1 and the drive of the pulling device 28 shown.
- a further energy exchange can take place in the press cycle according to diagram Fig.8 in the phase of braking the servomotors for the plunger 1 to achieve the upper reversal point to the effect of the now fed back from the plunger 1 energy in the phase of run-up motor-driven drives for the pulling device 28 is supplied via the intermediate circuit coupling.
- the time-related courses of the motor-driven and regenerative drive powers can be seen in each case for the plunger 1 and the drives of the pulling device 28 from the two middle curves of the diagram according to FIG. The resulting drive power is shown in the lower curve.
- the load fluctuations can be reduced. It is also possible that an energy exchange between several forming presses takes place by the Umformpressen belonging to a press line are operated in phase with respect to their plunger movement and the energy is exchanged between the servomotors 5 for the main movement.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Press Drives And Press Lines (AREA)
- Control Of Presses (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004052007.0 | 2004-10-25 | ||
DE102004052007A DE102004052007B4 (de) | 2004-10-25 | 2004-10-25 | Antriebssystem einer Umformpresse |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006045275A2 true WO2006045275A2 (fr) | 2006-05-04 |
WO2006045275A3 WO2006045275A3 (fr) | 2006-07-27 |
Family
ID=35672970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2005/001871 WO2006045275A2 (fr) | 2004-10-25 | 2005-10-20 | Systeme d'entrainement d'une presse de formage |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102004052007B4 (fr) |
WO (1) | WO2006045275A2 (fr) |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008134990A1 (fr) * | 2007-05-02 | 2008-11-13 | Müller Weingarten AG | Système d'entraînement d'une presse de formage à poinçons multiples |
WO2012159778A1 (fr) | 2011-05-26 | 2012-11-29 | Unilever Plc | Composition de lessive liquide |
WO2013011071A1 (fr) | 2011-07-21 | 2013-01-24 | Unilever Plc | Composition de lessive liquide |
EP2899260A1 (fr) | 2014-01-22 | 2015-07-29 | Unilever PLC | Procédé de préparation d'une formulation de détergent liquide |
WO2016188693A1 (fr) | 2015-05-27 | 2016-12-01 | Unilever Plc | Composition détergente à lessive |
WO2016192905A1 (fr) | 2015-06-02 | 2016-12-08 | Unilever Plc | Composition détergente pour lessive |
WO2017055205A1 (fr) | 2015-10-01 | 2017-04-06 | Unilever Plc | Composition de détergent à lessive en poudre |
WO2017140392A1 (fr) | 2016-02-17 | 2017-08-24 | Unilever Plc | Composition de blanchiment |
WO2017140391A1 (fr) | 2016-02-17 | 2017-08-24 | Unilever Plc | Composition de blanchiment |
WO2017198574A1 (fr) | 2016-05-17 | 2017-11-23 | Unilever Plc | Compositions liquides de détergent pour lessive |
WO2017198438A1 (fr) | 2016-05-17 | 2017-11-23 | Unilever Plc | Compositions détergentes liquides pour le linge |
WO2018060139A1 (fr) | 2016-09-27 | 2018-04-05 | Unilever Plc | Procédé de blanchissage domestique |
WO2018072979A1 (fr) | 2016-10-18 | 2018-04-26 | Unilever Plc | Composition de blanchiment |
WO2019008035A1 (fr) | 2017-07-07 | 2019-01-10 | Unilever Plc | Composition de lessive pour le linge |
WO2019008036A1 (fr) | 2017-07-07 | 2019-01-10 | Unilever Plc | Composition de blanchiment |
WO2019105675A1 (fr) | 2017-11-30 | 2019-06-06 | Unilever Plc | Composition de détergent comprenant de la protéase |
WO2019162135A1 (fr) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Procédé de préparation d'une composition solide comprenant un aminopolycarboxylate |
WO2019192813A1 (fr) | 2018-04-03 | 2019-10-10 | Unilever N.V. | Granulé de colorant |
WO2019219531A1 (fr) | 2018-05-17 | 2019-11-21 | Unilever Plc | Composition de nettoyage |
WO2019219302A1 (fr) | 2018-05-17 | 2019-11-21 | Unilever Plc | Composition de nettoyage comprenant des tensioactifs à base de rhamnolipide et d'alkyl éther carboxylate |
WO2020016097A1 (fr) | 2018-07-17 | 2020-01-23 | Unilever Plc | Utilisation d'un rhamnolipide dans un système tensioactif |
WO2020058024A1 (fr) | 2018-09-17 | 2020-03-26 | Unilever Plc | Composition détergente |
WO2020104159A1 (fr) | 2018-11-20 | 2020-05-28 | Unilever Plc | Composition détergente |
WO2020104155A1 (fr) | 2018-11-20 | 2020-05-28 | Unilever Plc | Composition détergente |
WO2020104157A1 (fr) | 2018-11-20 | 2020-05-28 | Unilever Plc | Composition détergente |
WO2020104158A1 (fr) | 2018-11-20 | 2020-05-28 | Unilever Plc | Composition détergente |
WO2020104156A1 (fr) | 2018-11-20 | 2020-05-28 | Unilever Plc | Composition détergente |
EP3750978A1 (fr) | 2019-06-12 | 2020-12-16 | Unilever N.V. | Composition de détergent pour lessive |
EP3750979A1 (fr) | 2019-06-12 | 2020-12-16 | Unilever N.V. | Utilisation d'une composition de détergent à lessive |
WO2020260038A1 (fr) | 2019-06-28 | 2020-12-30 | Unilever Plc | Composition détergente |
WO2020259949A1 (fr) | 2019-06-28 | 2020-12-30 | Unilever Plc | Composition détergente |
WO2020259947A1 (fr) | 2019-06-28 | 2020-12-30 | Unilever Plc | Composition détergente |
WO2020260040A1 (fr) | 2019-06-28 | 2020-12-30 | Unilever Plc | Composition détergente |
WO2020259948A1 (fr) | 2019-06-28 | 2020-12-30 | Unilever Plc | Composition détergente |
WO2020260006A1 (fr) | 2019-06-28 | 2020-12-30 | Unilever Plc | Compositions détergentes |
WO2021032834A1 (fr) | 2019-08-21 | 2021-02-25 | Unilever Ip Holdings B.V. | Composition solide de détergent |
WO2021043764A1 (fr) | 2019-09-02 | 2021-03-11 | Unilever Global Ip Limited | Composition détergente |
WO2021069516A1 (fr) | 2019-10-07 | 2021-04-15 | Unilever Ip Holdings B.V. | Composition de détergent |
WO2021185870A1 (fr) | 2020-03-19 | 2021-09-23 | Unilever Ip Holdings B.V. | Composition détergente |
WO2021185956A1 (fr) | 2020-03-19 | 2021-09-23 | Unilever Ip Holdings B.V. | Composition détergente |
WO2021249927A1 (fr) | 2020-06-08 | 2021-12-16 | Unilever Ip Holdings B.V. | Procédé d'amélioration de l'activité protéase |
WO2022023250A1 (fr) | 2020-07-27 | 2022-02-03 | Unilever Ip Holdings B.V. | Utilisation d'une enzyme et d'un tensioactif pour inhiber des micro-organismes |
WO2022042989A1 (fr) | 2020-08-28 | 2022-03-03 | Unilever Ip Holdings B.V. | Tensioactif et composition détergente |
WO2022043042A1 (fr) | 2020-08-28 | 2022-03-03 | Unilever Ip Holdings B.V. | Composition détergente |
WO2022043138A1 (fr) | 2020-08-28 | 2022-03-03 | Unilever Ip Holdings B.V. | Tensioactif et composition de détergent |
WO2022043045A1 (fr) | 2020-08-28 | 2022-03-03 | Unilever Ip Holdings B.V. | Composition détergente |
WO2022042977A1 (fr) | 2020-08-28 | 2022-03-03 | Unilever Ip Holdings B.V. | Composition détergente |
WO2022128781A1 (fr) | 2020-12-17 | 2022-06-23 | Unilever Ip Holdings B.V. | Composition de nettoyage |
WO2022128786A1 (fr) | 2020-12-17 | 2022-06-23 | Unilever Ip Holdings B.V. | Utilisation et composition de nettoyage |
WO2022268728A1 (fr) | 2021-06-24 | 2022-12-29 | Unilever Ip Holdings B.V. | Composition de nettoyage en doses unitaires |
WO2023041694A1 (fr) | 2021-09-20 | 2023-03-23 | Unilever Ip Holdings B.V. | Composition détergente |
WO2023067075A1 (fr) | 2021-10-21 | 2023-04-27 | Unilever Ip Holdings B.V. | Compositions détergentes |
WO2023144071A1 (fr) | 2022-01-28 | 2023-08-03 | Unilever Ip Holdings B.V. | Composition de lessive |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006033562B3 (de) * | 2006-07-20 | 2008-02-28 | Schuler Pressen Gmbh & Co. Kg | Servopresse mit Energiemanagement |
JP2008043970A (ja) * | 2006-08-14 | 2008-02-28 | Ihi Corp | サーボプレスとその運転方法 |
DE102006059796A1 (de) * | 2006-12-15 | 2008-06-19 | Müller Weingarten AG | Verfahren und Vorrichtung zur Steuerung und Regelung von Stößellageabweichungen an servo-elektrischen Pressen |
DE102008034971A1 (de) * | 2008-07-25 | 2010-01-28 | Müller Weingarten AG | Antriebssystem einer Umformpresse |
FR2937892B1 (fr) | 2008-11-06 | 2012-03-16 | Thierry Perrocheau | Dispositif de fabrication d'une brique compressee et brique obtenue par un tel dispositif |
DE102009051876A1 (de) * | 2009-11-04 | 2011-05-05 | Dieffenbacher Gmbh + Co. Kg | Presse mit einem direkt angetriebenen Kurbeltrieb |
ITTV20130124A1 (it) * | 2013-08-01 | 2015-02-02 | Mac Srl | "dispositivo di spinta a ginocchiera per pressa" |
CN104841832B (zh) * | 2015-06-15 | 2017-02-08 | 吴丽清 | 一种用于锻造金属器件的电机锻造装置 |
EP3530446B1 (fr) * | 2018-02-26 | 2024-05-01 | Osterwalder AG | Presse à poudre dotée de levier à genouillère et d'entraînement électrique |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0383935A1 (fr) * | 1988-08-29 | 1990-08-29 | Fanuc Ltd. | Dispositif de serrage de moule du type a bras articule pour machine electrique de moulage a injection |
DE4109796A1 (de) * | 1991-03-26 | 1992-10-01 | Georg Burger | Einrichtung zum pressen, biegen und/oder stanzen |
DE4401499A1 (de) * | 1994-01-20 | 1995-08-03 | Haendle Gmbh & Co Kg | Presse zum Verpressen keramischer Massen, insbesondere zum Herstellen von Dachziegeln |
DE19918700A1 (de) * | 1999-04-26 | 2000-11-02 | Mueller Weingarten Maschf | Hydromechanischer Pressenantrieb |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH271726A (de) * | 1948-08-24 | 1950-11-15 | May Otto Ing Dr | Kniehebelpresse. |
DE1452772A1 (de) * | 1964-08-14 | 1969-10-30 | Weingarten Ag Maschf | Stufenpresse |
DE2516526A1 (de) * | 1975-04-15 | 1976-10-28 | Maschinenbaugesellschaft Mbh | Presse zur spanlosen formgebung |
JP2001300778A (ja) * | 2000-04-14 | 2001-10-30 | Amino:Kk | リンク式サーボプレス |
JP2002103089A (ja) * | 2000-09-29 | 2002-04-09 | Komatsu Ltd | プレス機械 |
JP2002137093A (ja) * | 2000-10-27 | 2002-05-14 | Aida Eng Ltd | リニア電動プレス機械 |
DE10222536A1 (de) * | 2002-05-17 | 2003-11-27 | Schuler Pressen Gmbh & Co | Presse mit einem hydraulisch angetriebenen Stempel |
JP2004261837A (ja) * | 2003-02-28 | 2004-09-24 | Amino:Kk | プレス装置 |
-
2004
- 2004-10-25 DE DE102004052007A patent/DE102004052007B4/de not_active Expired - Fee Related
-
2005
- 2005-10-20 WO PCT/DE2005/001871 patent/WO2006045275A2/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0383935A1 (fr) * | 1988-08-29 | 1990-08-29 | Fanuc Ltd. | Dispositif de serrage de moule du type a bras articule pour machine electrique de moulage a injection |
DE4109796A1 (de) * | 1991-03-26 | 1992-10-01 | Georg Burger | Einrichtung zum pressen, biegen und/oder stanzen |
DE4401499A1 (de) * | 1994-01-20 | 1995-08-03 | Haendle Gmbh & Co Kg | Presse zum Verpressen keramischer Massen, insbesondere zum Herstellen von Dachziegeln |
DE19918700A1 (de) * | 1999-04-26 | 2000-11-02 | Mueller Weingarten Maschf | Hydromechanischer Pressenantrieb |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008134990A1 (fr) * | 2007-05-02 | 2008-11-13 | Müller Weingarten AG | Système d'entraînement d'une presse de formage à poinçons multiples |
WO2012159778A1 (fr) | 2011-05-26 | 2012-11-29 | Unilever Plc | Composition de lessive liquide |
WO2013011071A1 (fr) | 2011-07-21 | 2013-01-24 | Unilever Plc | Composition de lessive liquide |
EP2899260A1 (fr) | 2014-01-22 | 2015-07-29 | Unilever PLC | Procédé de préparation d'une formulation de détergent liquide |
WO2015110444A1 (fr) | 2014-01-22 | 2015-07-30 | Unilever Plc | Procédé de préparation d'une formulation détergente liquide |
WO2016188693A1 (fr) | 2015-05-27 | 2016-12-01 | Unilever Plc | Composition détergente à lessive |
WO2016192905A1 (fr) | 2015-06-02 | 2016-12-08 | Unilever Plc | Composition détergente pour lessive |
WO2017055205A1 (fr) | 2015-10-01 | 2017-04-06 | Unilever Plc | Composition de détergent à lessive en poudre |
WO2017140392A1 (fr) | 2016-02-17 | 2017-08-24 | Unilever Plc | Composition de blanchiment |
WO2017140391A1 (fr) | 2016-02-17 | 2017-08-24 | Unilever Plc | Composition de blanchiment |
WO2017198574A1 (fr) | 2016-05-17 | 2017-11-23 | Unilever Plc | Compositions liquides de détergent pour lessive |
WO2017198438A1 (fr) | 2016-05-17 | 2017-11-23 | Unilever Plc | Compositions détergentes liquides pour le linge |
WO2018060139A1 (fr) | 2016-09-27 | 2018-04-05 | Unilever Plc | Procédé de blanchissage domestique |
WO2018072979A1 (fr) | 2016-10-18 | 2018-04-26 | Unilever Plc | Composition de blanchiment |
WO2019008035A1 (fr) | 2017-07-07 | 2019-01-10 | Unilever Plc | Composition de lessive pour le linge |
WO2019008036A1 (fr) | 2017-07-07 | 2019-01-10 | Unilever Plc | Composition de blanchiment |
WO2019105675A1 (fr) | 2017-11-30 | 2019-06-06 | Unilever Plc | Composition de détergent comprenant de la protéase |
WO2019162135A1 (fr) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Procédé de préparation d'une composition solide comprenant un aminopolycarboxylate |
WO2019162134A1 (fr) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Compositions solides comprenant un aminopolycarboxylate |
WO2019162133A1 (fr) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Composition de produit détergent mis en forme comprenant un aminopolycarboxylate |
WO2019162130A1 (fr) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Produit détergent façonné comprenant un aminopolycarboxylate |
WO2019162138A1 (fr) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Compositions solides comprenant un aminopolycarboxylate |
WO2019162132A1 (fr) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Composition solide détergente comprenant un aminopolycarboxylate et un acide inorganique |
WO2019162137A1 (fr) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Film soluble dans l'eau comprenant de l'aminopolycarboxylate |
WO2019162136A1 (fr) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Composition solide détergente comprenant un aminopolycarboxylate et un acide organique |
US12134749B2 (en) | 2018-02-23 | 2024-11-05 | Conopco Inc. | Shaped detergent product composition comprising aminopolycarboxylate |
WO2019192813A1 (fr) | 2018-04-03 | 2019-10-10 | Unilever N.V. | Granulé de colorant |
WO2019219531A1 (fr) | 2018-05-17 | 2019-11-21 | Unilever Plc | Composition de nettoyage |
WO2019219302A1 (fr) | 2018-05-17 | 2019-11-21 | Unilever Plc | Composition de nettoyage comprenant des tensioactifs à base de rhamnolipide et d'alkyl éther carboxylate |
WO2020016097A1 (fr) | 2018-07-17 | 2020-01-23 | Unilever Plc | Utilisation d'un rhamnolipide dans un système tensioactif |
WO2020058024A1 (fr) | 2018-09-17 | 2020-03-26 | Unilever Plc | Composition détergente |
WO2020104159A1 (fr) | 2018-11-20 | 2020-05-28 | Unilever Plc | Composition détergente |
WO2020104155A1 (fr) | 2018-11-20 | 2020-05-28 | Unilever Plc | Composition détergente |
WO2020104157A1 (fr) | 2018-11-20 | 2020-05-28 | Unilever Plc | Composition détergente |
WO2020104158A1 (fr) | 2018-11-20 | 2020-05-28 | Unilever Plc | Composition détergente |
WO2020104156A1 (fr) | 2018-11-20 | 2020-05-28 | Unilever Plc | Composition détergente |
EP3750978A1 (fr) | 2019-06-12 | 2020-12-16 | Unilever N.V. | Composition de détergent pour lessive |
EP3750979A1 (fr) | 2019-06-12 | 2020-12-16 | Unilever N.V. | Utilisation d'une composition de détergent à lessive |
WO2020260038A1 (fr) | 2019-06-28 | 2020-12-30 | Unilever Plc | Composition détergente |
WO2020259949A1 (fr) | 2019-06-28 | 2020-12-30 | Unilever Plc | Composition détergente |
WO2020259947A1 (fr) | 2019-06-28 | 2020-12-30 | Unilever Plc | Composition détergente |
WO2020260040A1 (fr) | 2019-06-28 | 2020-12-30 | Unilever Plc | Composition détergente |
WO2020259948A1 (fr) | 2019-06-28 | 2020-12-30 | Unilever Plc | Composition détergente |
WO2020260006A1 (fr) | 2019-06-28 | 2020-12-30 | Unilever Plc | Compositions détergentes |
WO2021032834A1 (fr) | 2019-08-21 | 2021-02-25 | Unilever Ip Holdings B.V. | Composition solide de détergent |
WO2021032818A1 (fr) | 2019-08-21 | 2021-02-25 | Unilever Ip Holdings B.V. | Composition détergente solide |
WO2021032815A1 (fr) | 2019-08-21 | 2021-02-25 | Unilever Ip Holdings B.V. | Solide détergent gaufré |
WO2021032833A1 (fr) | 2019-08-21 | 2021-02-25 | Unilever Ip Holdings B.V. | Composition solide de détergent |
WO2021032816A1 (fr) | 2019-08-21 | 2021-02-25 | Unilever Ip Holdings B.V. | Composition solide détergente |
WO2021032817A1 (fr) | 2019-08-21 | 2021-02-25 | Unilever Ip Holdings B.V. | Composition solide détergente |
WO2021043764A1 (fr) | 2019-09-02 | 2021-03-11 | Unilever Global Ip Limited | Composition détergente |
WO2021069516A1 (fr) | 2019-10-07 | 2021-04-15 | Unilever Ip Holdings B.V. | Composition de détergent |
WO2021185870A1 (fr) | 2020-03-19 | 2021-09-23 | Unilever Ip Holdings B.V. | Composition détergente |
WO2021185956A1 (fr) | 2020-03-19 | 2021-09-23 | Unilever Ip Holdings B.V. | Composition détergente |
WO2021249927A1 (fr) | 2020-06-08 | 2021-12-16 | Unilever Ip Holdings B.V. | Procédé d'amélioration de l'activité protéase |
WO2022023250A1 (fr) | 2020-07-27 | 2022-02-03 | Unilever Ip Holdings B.V. | Utilisation d'une enzyme et d'un tensioactif pour inhiber des micro-organismes |
WO2022042989A1 (fr) | 2020-08-28 | 2022-03-03 | Unilever Ip Holdings B.V. | Tensioactif et composition détergente |
WO2022043042A1 (fr) | 2020-08-28 | 2022-03-03 | Unilever Ip Holdings B.V. | Composition détergente |
WO2022043138A1 (fr) | 2020-08-28 | 2022-03-03 | Unilever Ip Holdings B.V. | Tensioactif et composition de détergent |
WO2022043045A1 (fr) | 2020-08-28 | 2022-03-03 | Unilever Ip Holdings B.V. | Composition détergente |
WO2022042977A1 (fr) | 2020-08-28 | 2022-03-03 | Unilever Ip Holdings B.V. | Composition détergente |
WO2022128781A1 (fr) | 2020-12-17 | 2022-06-23 | Unilever Ip Holdings B.V. | Composition de nettoyage |
WO2022128786A1 (fr) | 2020-12-17 | 2022-06-23 | Unilever Ip Holdings B.V. | Utilisation et composition de nettoyage |
WO2022268728A1 (fr) | 2021-06-24 | 2022-12-29 | Unilever Ip Holdings B.V. | Composition de nettoyage en doses unitaires |
WO2022268657A1 (fr) | 2021-06-24 | 2022-12-29 | Unilever Ip Holdings B.V. | Composition de nettoyage monodose |
WO2023041694A1 (fr) | 2021-09-20 | 2023-03-23 | Unilever Ip Holdings B.V. | Composition détergente |
WO2023067075A1 (fr) | 2021-10-21 | 2023-04-27 | Unilever Ip Holdings B.V. | Compositions détergentes |
WO2023067074A1 (fr) | 2021-10-21 | 2023-04-27 | Unilever Ip Holdings B.V. | Compositions de détergent |
WO2023067073A1 (fr) | 2021-10-21 | 2023-04-27 | Unilever Ip Holdings B.V. | Compositions détergentes |
WO2023144071A1 (fr) | 2022-01-28 | 2023-08-03 | Unilever Ip Holdings B.V. | Composition de lessive |
Also Published As
Publication number | Publication date |
---|---|
DE102004052007A1 (de) | 2006-04-27 |
WO2006045275A3 (fr) | 2006-07-27 |
DE102004052007B4 (de) | 2007-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102004052007B4 (de) | Antriebssystem einer Umformpresse | |
EP2321119B1 (fr) | Système d'entraînement d'une presse de formage | |
DE102004009256B4 (de) | Mechanische Mehrservopresse | |
EP0765735B1 (fr) | Presse poinçonneuse à genouillère | |
WO2006045279A2 (fr) | Système d'entraînement d'une presse de formage | |
WO2011003694A1 (fr) | Ensemble de fermeture à levier à genouillère | |
EP0786297A1 (fr) | Mécanisme d'entraînement pour une machine de formage | |
EP1832408A2 (fr) | Machine de formage thermique avec mécanisme à genouillère | |
DE102006019207B4 (de) | Antriebssystem einer Mehrstößel-Umformpresse | |
EP3277492A1 (fr) | Procédé de formage et presse | |
DE10327018B3 (de) | Stanz-Biege-Maschine sowie damit modular aufgebautes, kurvengesteuertes Stufen-Stanz-Biege-Bearbeitungszentrum | |
EP0724953B1 (fr) | Poinçonneuse avec espace allongé pour le montage de poinçons | |
DE102011113624B4 (de) | Modulares Antriebssystem für eine Umformmaschine | |
DE102005026818B4 (de) | Ziehkissenvorrichtung mit NC-Antrieben | |
WO2011064054A1 (fr) | Machine de façonnage, en particulier servopresse | |
WO2008134990A1 (fr) | Système d'entraînement d'une presse de formage à poinçons multiples | |
DE102004030678B4 (de) | Ziehkissen-Vorrichtung mit Hybrid-Antrieb | |
EP2114587B1 (fr) | Presse de formage présentant une fonction de coussin pneumatique intégrée au plateau coulissant | |
EP3024646B1 (fr) | Module de force et système de pressage modulaire | |
EP3838769A1 (fr) | Poste de travail pour une machine d'emballage doté d'un mécanisme de levage pourvu de mécanisme à genouillère | |
EP2874793B1 (fr) | Unité de fermeture pour une machine de moulage par injection de matière plastique | |
DD286979A5 (de) | Greiferschienenantrieb fuer transferpressen | |
DE19943441A1 (de) | Doppeltwirkende mechanische Umformmaschine | |
EP0783955B1 (fr) | Machine de moulage par injection à deux plateaux avec un plateau mobile et un plateau fixe | |
WO2023134828A1 (fr) | Dispositif et procédé de production de fils d'enroulement d'ondes pour un enroulement de bobine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DM DZ EC EE EG ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KM KP KZ LC LK LR LS LT LU LV LY MA MG MK MN MW MX MZ NA NG NI NZ OM PG PH PL PT RO RU SC SD SE SK SL SM SY TJ TM TN TR TT TZ UA US UZ VC VN YU ZA ZM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 05804478 Country of ref document: EP Kind code of ref document: A2 |