[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2006043394A1 - 膜電極接合体、その製造方法及び高分子電解質形燃料電池 - Google Patents

膜電極接合体、その製造方法及び高分子電解質形燃料電池 Download PDF

Info

Publication number
WO2006043394A1
WO2006043394A1 PCT/JP2005/017503 JP2005017503W WO2006043394A1 WO 2006043394 A1 WO2006043394 A1 WO 2006043394A1 JP 2005017503 W JP2005017503 W JP 2005017503W WO 2006043394 A1 WO2006043394 A1 WO 2006043394A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous base
base material
polymer electrolyte
electrode assembly
thickness
Prior art date
Application number
PCT/JP2005/017503
Other languages
English (en)
French (fr)
Inventor
Masaki Yamauchi
Yoshihiro Hori
Akihiko Yoshida
Mikiko Yoshimura
Makoto Uchida
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006542292A priority Critical patent/JP4083784B2/ja
Priority to US10/583,374 priority patent/US7687184B2/en
Publication of WO2006043394A1 publication Critical patent/WO2006043394A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a membrane electrode assembly used in a fuel cell, a method for producing the membrane electrode assembly, and further to a polymer electrolyte fuel cell using the membrane electrode assembly.
  • a polymer electrolyte fuel cell uses a polymer electrolyte membrane having hydrogen ion conductivity that selectively transports cations (hydrogen ions), and uses a fuel gas such as hydrogen and an acid such as air.
  • An agent gas reactive gas
  • Figure 8 shows the general configuration of such a polymer electrolyte fuel cell.
  • catalyst layers 102A and 102B mainly composed of carbon powder supporting an electrode catalyst (for example, platinum metal) are disposed in close contact with both surfaces of the polymer electrolyte membrane 101.
  • a pair of gas diffusion layers 111A and 11IB composed of fibrous base materials 104A and 104B and water-repellent carbon layers (coating layers) 103A and 103B are in close contact with the outer surfaces of the catalyst layers 102A and 102B. are arranged.
  • the water repellent carbon layers 103A and 103B have current collecting action, gas permeability and water repellency, and the catalyst layers 102A and 102B and the gas diffusion layers 111A and 111B constitute a gas diffusion electrode.
  • the polymer electrolyte membrane 101, the catalyst layers 102A and 102B, and the gas diffusion layers 111A and 11 IB membrane electrode assembly (MEA) 105 are formed.
  • conductive separator plates 106A and 106B are inserted between the MEAs 105.
  • Separator plates 106A and 106B have gas flow paths 107A and 107B for supplying fuel gas and oxidant gas to the catalyst layer on the fuel electrode side and oxidant electrode side, respectively, on one side, and the other side.
  • a sealing material 109 is arranged to prevent the reaction gas from leaking outside.
  • MEA 105 and a pair of separator plates 106A and 106B constitute a single cell, and a plurality of single cells are stacked to form a battery stack (stack).
  • This battery stack is fastened in the stacking direction with a predetermined fastening pressure by fastening bolts 110 so that fuel gas and oxidant gas do not leak and the contact resistance in the battery stack is reduced. Therefore, MEA105 and separator plates 106A and 106B are in surface contact under a predetermined pressure.
  • the gas diffusion layers 111A and 111B Gas diffusion layers 111A, 1 1 IB are located in the center of gas diffusion layers 111A, 111 where the area of the main surface is slightly larger than the area of the main surfaces of catalyst layers 102A, 102B.
  • the outer periphery (peripheral portion) of the catalyst layer is configured to be located outside the main surfaces of the catalyst layers 102A and 102B (for example, Patent Document 1).
  • the peripheral portions of the gas diffusion layers 111 A and 11 IB are in direct contact with the polymer electrolyte membrane 101 on both the fuel electrode side and the air electrode side. For this reason, there is a problem in that the polymer electrolyte membrane 101 is easily damaged in a long-term operation, particularly in the unevenness of the surface of the peripheral portions of the gas diffusion layers 111A and 11IB.
  • the unevenness of the surface of the gas diffusion layers 111A and 11 IB is caused by the structure and shape of the fibrous base materials 104A and 104B.
  • the above problems are related to the presence or absence of the water-repellent carbon layers 103A and 103B. It is a natural occurrence.
  • the battery stack of the conventional polymer electrolyte fuel cell has a fastening bolt 110 and a nut so that the contact resistance is reduced by applying a uniform pressure to the surface of the membrane electrode assembly 105. It is fastened in the stacking direction by four-point support using a gut (not shown) and a fastening plate.
  • a gut not shown
  • a fastening plate it is difficult to completely and uniformly apply pressure to the surface of the membrane electrode assembly by fastening at four points, and the area where the fastening bolts 110 are located, that is, around the gas diffusion layers 111A and 11 IB inevitably.
  • the pressure force applied to the part becomes stronger than the pressure applied to the central part.
  • the peripheral portions of the gas diffusion layers 111A and 11IB are in direct and strong contact with the polymer electrolyte membrane 101, and the polymer electrolyte membrane 101 described above is easily damaged. Problems tend to appear more prominent It is in.
  • the oxidant gas is mixed in the fuel gas, or the fuel is contained in the oxidant gas. Gas may get mixed in.
  • the mixed gas generated by this leak reacts by the catalytic action of the electrode catalyst, the polymer electrolyte membrane 101 is further damaged by the reaction heat. In such a case, the output voltage may decrease or the operation may be stopped. It is also possible to cause an electrical short between the fuel electrode and the air electrode even if the damage does not cause the reactant gas to leak. In this case as well, there arises a problem that the output voltage decreases.
  • Patent Documents 2 and 3 for example, the polymer electrolyte membrane is protected from the gas diffusion layer by providing a thin film-like resin membrane with a thickness of several tens of meters around the catalyst layer.
  • a method intended to solve the above problems has been proposed.
  • the thickness of the peripheral portion is made larger than the thickness of the central portion of the polymer electrolyte membrane, that is, the portion in contact with the catalyst layer (electrode reaction portion), and the prototyping in the electrode reaction portion is performed. Technologies have been proposed that are intended to prevent damage in the surrounding area while maintaining electrical conductivity.
  • the central part of the polymer electrolyte membrane is made of a material having hydrogen ion conductivity, and the polymer electrolyte is made of a material resistant to shear stress and heat without hydrogen ion conductivity.
  • a technology for constructing the outer periphery of the membrane has also been proposed!
  • Patent Document 1 JP 2002-208413 A
  • Patent Document 2 JP-A-5-174845
  • Patent Document 3 JP-A-8-185872
  • Patent Document 4 JP-A-8-185881
  • Patent Document 5 JP 2000-215903 A
  • the present invention reduces the battery output caused by the damage that hardly causes damage to the polymer electrolyte membrane even if the gas diffusion layer using the fibrous base material is used. It is an object of the present invention to provide a membrane electrode assembly capable of easily and reliably constructing a polymer electrolyte fuel cell that is unlikely to cause oxidization.
  • the present invention uses a membrane / electrode assembly that does not easily cause damage to the polymer electrolyte membrane even if it has a gas diffusion layer using a fibrous base material. It is an object to provide a polymer electrolyte fuel cell that is difficult to invite.
  • the present inventors have long-termed a fuel cell comprising a battery laminate comprising a membrane electrode assembly having a gas diffusion layer containing a fibrous base material.
  • a fuel cell comprising a battery laminate comprising a membrane electrode assembly having a gas diffusion layer containing a fibrous base material.
  • the unevenness of the fibrous base material that constitutes the gas diffusion layer at the time of fastening of the battery laminate damages the polymer electrolyte membrane and decreases the battery output. It was.
  • the present inventors have found that the unevenness in the peripheral portion of the fibrous base material is polymer electrolyte, particularly when the area of the main surface of the fibrous base material is larger than the area of the main surface of the catalyst layer. It has been found that adjusting the thickness of the peripheral part and the thickness of the central part corresponding to the catalyst layer is extremely effective in achieving the above-mentioned purpose so as not to damage the membrane.
  • the present invention has been reached.
  • a membrane electrode assembly comprising:
  • the thickness T of the central part facing the catalyst layer and the peripheral part of the central part is the thickness T of the central part facing the catalyst layer and the peripheral part of the central part
  • the thickness T of the minute has a relationship represented by the following formula (1):
  • the main surface of the fibrous base material refers to the surface on the polymer electrolyte membrane side of the fibrous base material
  • the main surface of the catalyst layer refers to the fibrous surface of the catalyst layer.
  • the surfaces on the substrate side and the polymer electrolyte membrane side Similar to the conventional polymer electrolyte fuel cell, the membrane electrode assembly of the present invention.
  • the area of the main surface of the fibrous base material is larger than the area of the main surface of the catalyst layer, and the area of the polymer electrolyte membrane is larger than the area of the main surface of the fibrous base material.
  • the central portion of the fibrous base material refers to a portion facing (in contact with) the catalyst layer when the catalyst layer is arranged at the center of the main surface of the fibrous base material.
  • the peripheral part of the fibrous base material is a part located in the periphery of the above-mentioned central part and is not in contact with the catalyst layer.
  • the area of the main surface of the fibrous base material is larger than the area of the main surface of the catalyst layer, and in the fibrous base material, the thickness ⁇ of the central portion facing the catalyst layer;
  • the thickness T is set so as to satisfy the relationship represented by the following formula (1) ⁇ ie, the formula (1)
  • the value is set to be 0.7 or more and 0.9 or less. This prevents the unevenness of the fibrous base material constituting the gas diffusion layer from damaging the polymer electrolyte membrane when fastening the battery stack. Therefore, it is possible to easily and reliably constitute a membrane electrode assembly that can prevent a decrease in battery output due to damage to the polymer electrolyte membrane. Furthermore, by adopting this membrane electrode assembly in a polymer electrolyte fuel cell, long-term operation can be performed. Can sufficiently prevent the battery output from decreasing.
  • the peripheral part of the fibrous base material will be too thin than the central part, and the power generation performance will be reduced due to the increase in contact resistance of the peripheral part during power generation, and furthermore, when the battery stack is fastened.
  • the pressure applied to the central portion is increased, the deterioration of the polymer electrolyte membrane is promoted.
  • the thickness of various substrates used for gas diffusion layers of various fuel cells can be accurately measured. More specifically, the thickness T of the central portion and the thickness T of the peripheral portion of the fibrous base material in the membrane electrode assembly of the present invention.
  • the thickness ⁇ is the central part of the gas diffusion layer from the fibrous base material facing the catalyst layer
  • a circular test piece having a diameter of 50 mm obtained by punching a fibrous base material with a punch is placed between two larger reference plates, and IMPa's Continue to apply pressure. Then, after 30 seconds while applying pressure, the scale between the reference plates is read using a thickness gauge (the scale is read while pressure is applied), and the read value indicates the thickness of the fibrous base material.
  • the thickness T of the central portion and the thickness T of the peripheral portion of the fibrous base material are thus measured. T is the center part
  • the analysis of whether the membrane electrode assembly of the present invention is OK or not is performed by decomposing the MEA, taking out the gas diffusion layer, and applying the same pressure as described above. In the middle This can be confirmed by measuring the thickness T and peripheral thickness ⁇ . Or the state described above
  • the present invention provides a polymer comprising the membrane electrode assembly of the present invention described above and a pair of conductive separators having gas flow paths disposed on both surfaces of the membrane electrode assembly.
  • An electrolyte fuel cell is provided.
  • the polymer electrolyte fuel cell of the present invention uses the membrane electrode assembly of the present invention described above, the unevenness of the fibrous base material constituting the gas diffusion layer when the battery stack is fastened is a high molecular electrolyte. It is possible to prevent the membrane from being damaged, and to prevent a decrease in battery output due to the damage of the polymer electrolyte membrane. In particular, a decrease in battery output can be sufficiently prevented even after long-term operation.
  • the present invention is a method for producing the membrane electrode assembly of the present invention described above, wherein in the fibrous base material, the thickness T of the central portion facing the catalyst layer and the central portion Peripheral part
  • the fibrous base material is prepared so that the thickness T of the fiber has a relationship represented by the following formula (1):
  • a process for producing a membrane electrode assembly comprising the steps of:
  • a membrane electrode assembly of the present invention it is possible to prevent the unevenness of the fibrous base material constituting the gas diffusion layer from damaging the polymer electrolyte membrane when the battery laminate is fastened. It is possible to prevent a decrease in battery output due to damage to the molecular electrolyte membrane.
  • a membrane electrode assembly and a polymer electrolyte fuel cell using the membrane electrode assembly that can sufficiently prevent a decrease in battery output even after long-term operation can be realized more reliably.
  • the present invention is defined by the thickness of the central portion and the peripheral portion of the gas diffusion layer base material as described above, another defining method is defined by the repulsive force when compressed to a certain thickness. can do.
  • the measurement method at this time is to first measure the thickness of the central portion T of the gas diffusion layer when the pressure of O. OlMPa is increased. The gas is then expanded to 75% of its thickness.
  • the present invention even if the area of the main surface of the fibrous base material is larger than the area of the main surface of the catalyst layer, the thickness of the central portion and the peripheral portion of the fibrous base material By adjusting the battery stack, it is possible to prevent the unevenness of the fibrous base material from damaging the polymer electrolyte membrane when fastening the battery stack, and to reduce the decrease in battery output caused by the damage. It is possible to provide a membrane electrode assembly that easily and reliably realizes a high polymer electrolyte fuel cell.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of one embodiment of a polymer electrolyte fuel cell of the present invention.
  • FIG. 2 is a schematic front view of a fibrous base material 21 in the first embodiment of the present invention.
  • FIG. 3 is a schematic front view of a fibrous base material 31 in the second embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a fibrous base material 41 in the second embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a fibrous base material 51 in a third embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a fibrous base material 61 in a fourth embodiment of the present invention.
  • FIG. 7 is a graph showing the relationship between the battery voltage and the elapsed time after the start of operation of the polymer electrolyte fuel cells produced in the present invention and comparative examples.
  • FIG. 8 is a schematic cross-sectional view showing a configuration of one embodiment of a conventional polymer electrolyte fuel cell.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of one embodiment of a polymer electrolyte fuel cell of the present invention.
  • cation (hydrogen ion) conduction The catalyst layers 2A and 2B mainly composed of carbon powder carrying an electrode catalyst (for example, platinum metal) are disposed in close contact with both surfaces of the polymer electrolyte membrane 1 having the property, and the outer surfaces of the catalyst layers 2A and 2B A pair of gas diffusion layers 11 A and 1 IB composed of the fibrous base materials 4 A and 4 B and the water-repellent carbon layers (coating layers) 3 A and 3 B are arranged in close contact with each other.
  • an electrode catalyst for example, platinum metal
  • the water-repellent carbon layers 3A and 3B have current collecting action, gas permeability and water repellency, and may be provided to enhance the drainage effect of the gas diffusion layer, but may be omitted. That is, the gas diffusion layers 11A and 11B in the present invention are composed of the fibrous base materials 4A and 4B and the water-repellent carbon layers 3A and 3B, which may be composed of only the fibrous base materials 4A and 4B. Also good. Further, the fibrous base materials 4A and 4B may be subjected to water repellent treatment as will be described later.
  • the water-repellent carbon layer When the water-repellent carbon layer is provided in this way, the adhesion between the catalyst layer and the gas diffusion layer is improved, the electrical contact resistance can be reduced, and the fibers of the constituent material of the gas diffusion layer are used as the catalyst. It is possible to more reliably prevent the penetration into the layer, and to obtain the same effect.
  • the catalyst layers 2A, 2B and the gas diffusion layers 11A, 11B constitute a gas diffusion electrode, and the polymer electrolyte membrane 1, the catalyst layers 2A, 2B, and the gas diffusion layers 11A, 11B are membrane electrode assemblies.
  • the MEA 5 is mechanically joined and the adjacent MEAs 5 are electrically connected to each other in series so that the separator plates 6A and 6B having conductivity are electrically connected. Is inserted between MEA5.
  • Separator plates 6A and 6B have gas flow paths 7A and 7B for supplying fuel gas and oxidizing agent gas to the catalyst layers on the fuel electrode side and the oxidant electrode side on one side, respectively,
  • a cooling water flow path 8 for cooling the MEA 5 is provided on the surface.
  • a sealing material 9 is arranged to prevent the reaction gas from leaking outside.
  • MEA 5 and a pair of separator plates 6A and 6B constitute a single cell, and a plurality of single cells are stacked to form a battery stack (stack).
  • the battery stack is fastened in the stacking direction by a fastening bolt 10 with a predetermined fastening pressure so that fuel gas and oxidant gas do not leak and to reduce the contact resistance in the battery stack. Therefore, ME A5 and separator plates 6A and 6B are in surface contact under a predetermined pressure.
  • the catalyst layers 2A and 2B in the present invention are conductive carbons carrying an electrode catalyst made of a noble metal. It can be formed by a method known in the art using a catalyst layer forming ink comprising a dispersion liquid containing elementary particles, a polymer electrolyte having cation (hydrogen ion) conductivity, and a dispersion medium. it can.
  • the “dispersed liquid containing the polymer electrolyte” is a state in which the polymer electrolyte is partly dissolved and the other part is dispersed without being dissolved in addition to the liquid in which the polymer electrolyte is dispersed. Including the liquid.
  • dispersible liquid means that a part of the polymer electrolyte can be dissolved even if it is a liquid that can disperse the polymer electrolyte that is used, or a liquid that can dissolve the polymer electrolyte. Others may be dispersible liquids.
  • the MEA 5 of the polymer electrolyte fuel cell of the present invention includes the polymer electrolyte membrane 1, the catalyst layers 2A, 2B, and the gas diffusion layers 11A, 11B using the fibrous base material described later. Can be produced by techniques known in the art.
  • the gas diffusion layer 11A, 1 The area of the main surface of IB is slightly larger than the area of the main surface of catalyst layers 2A and 2B, and catalyst layers 2A and 2B are arranged in the center of gas diffusion layers 11A and 11B.
  • the outer periphery (peripheral part) of 1A and 1IB is configured to be located outside the main surfaces of the catalyst layers 2A and 2B.
  • the partial force around the gas diffusion layers 111A and 11 IB is directly applied to the polymer electrolyte membrane 101.
  • the unevenness of the surface of the peripheral portion of the gas diffusion layers 111A and 111B tends to damage the polymer electrolyte membrane 101.
  • the area of the main surface of the fibrous base material constituting the gas diffusion layer is made larger than the area of the main surface of the catalyst layer, and the fibrous base material is used.
  • the central portion of the material corresponding to the catalyst layer ⁇ ie, the portion where the shadow of the catalyst layer is located when the catalyst layer is projected onto the fibrous substrate in the direction perpendicular to the plane of the fibrous substrate ⁇ Thickness T and center The outer part of the minute
  • FIG. 2 is a schematic front view of the fibrous base material 21 in the first embodiment of the present invention.
  • the fibrous base material 21 in the first embodiment of the present invention is composed of a woven fabric, and the thread diameter D of the peripheral portion 22 and the thread diameter D of the central portion 23 are expressed by the following formula (2).
  • Examples of the fibers constituting the yarn of the woven fabric that is the fibrous base material in the first embodiment include polyacrylonitrile (PAN), pitch, cellulose, polynosic, and other known carbon fibers. Can be used. Of these, polyacrylonitrile is preferably used because of its high mechanical strength and low impurities.
  • the diameter of the carbon fiber is usually 3 to 70 ⁇ m, but it is especially preferable to use 7 to 10 ⁇ m!
  • a single yarn obtained by twisting 10 to 600 single fibers as described above can be used as the yarn used for the central portion 23 of the fibrous base material.
  • the number of single fibers may be appropriately adjusted according to the desired thickness of the single yarn.
  • a double yarn obtained by twisting two single yarns or a three twisted yarn obtained by twisting three single yarns may be used. That is, as the above-mentioned yarn, any of single yarn, twin yarn and twisted yarn may be used. Of these, the twin yarn is preferably used because the yarn has a higher tensile strength than the single yarn.
  • the yarn used for the peripheral portion 22 of the fibrous base material a single yarn obtained by twisting together a single fiber in the range of 5 to 500 from the central portion 23 and less than the case of the central portion 23 is used. .
  • the central part it is preferable to use double yarn for the peripheral part. Yes.
  • a plain weave is preferable as the weaving method, but it may be a weave, satin or other arbitrary structure.
  • a thick thread with a thread diameter D is
  • the weft density (number of warps and wefts per unit area) when the above yarn is made into a plain weave with a loom is 100 to 500 ZlOcm 2; This is preferably Zl Ocm 2 . If the background density is too small, distortion, fraying and wrinkling of the yarn are likely to occur, and the strength will also decrease. If the background density is too large, it becomes densely packed, and the gas diffusibility and moisture permeability are lowered, affecting the battery performance. In addition, when a woven fabric is used, the thickness unevenness tends to increase.
  • the fibrous base material in the present invention can be obtained by graphitizing the woven fabric as described above.
  • the above woven fabric is carbonized by heating at 900 ° C. in a nitrogen atmosphere, and then graphitized by heating to 2000 ° C. in an argon atmosphere.
  • the fibrous base material in 1st embodiment of this invention can be produced.
  • the polymer electrolyte fuel cell (not shown) of the second embodiment has a different configuration from the fibrous substrates 4A and 4B in the polymer electrolyte fuel cell 100 of the first embodiment shown in FIG.
  • the configuration other than the fibrous base materials 4A and 4B is the same as that of the polymer electrolyte fuel cell 100 of the first embodiment.
  • FIG. 3 is a schematic front view of a fibrous base material provided in the polymer electrolyte fuel cell according to the second embodiment.
  • the fibrous base material 31 according to the second embodiment of the present invention satisfies the relationship represented by the above formula (1), is composed of a woven fabric, and has a number N of warp yarns and weft yarns driven per unit area of the peripheral portion 32. , Driving of warp and weft per unit area of the central part 33
  • the number N is characterized by having a relationship represented by the following formula (3).
  • This fibrous base material has a structure in which the peripheral portion 32 is sparser than the central portion 33 because the number of warps and wefts per unit area of the peripheral portion 32 is smaller than that of the central portion 33.
  • This structure makes it possible to reduce only the thickness of the peripheral portion 32 when the battery stack is fastened at a predetermined pressure, and the stress (thickness) applied to the peripheral portion of the polymer electrolyte membrane when the battery stack is fastened. (Repulsive force in the vertical direction) can be alleviated and deterioration of the polymer electrolyte membrane can be suppressed.
  • Equation (3) the values of N and N should be the same so that their units are the same.
  • [book Zcm 2 ] As a unit of the number of warps and wefts driven per unit area, for example, [book Zcm 2 ] can be used.
  • the fibrous base material in the second embodiment can be produced using the same materials and methods as the fibrous base material in the first embodiment.
  • the weft density (number of warp and weft per unit area) of the central portion 33 of the fibrous base material is 100 to 500 ZlOcm 2 , and even with a force of 150 to 300 ZlOcm 2 preferable.
  • the peripheral density of the peripheral portion 32 may be 10 to 200 ZlOcm 2 smaller than that of the central portion 33.
  • the fibrous base material in the second embodiment can be produced using a non-woven fabric in addition to the woven fabric described above.
  • Nonwoven fabrics (structures) include paper and felt due to differences in production methods.
  • carbon paper and carbon felt are used for fuel cells.
  • the paper can be produced, for example, by impregnating carbon fiber into an aqueous solution containing a resin (eg, polybulal alcohol) as an adhesive and scooping it up (paper making method, wet method).
  • a resin eg, polybulal alcohol
  • Felt can be made by compressing carbon fibers in air using a relatively small amount of rosin as an adhesive compared to paper (dry method).
  • the fraying (fluffing) cannot be suppressed due to the small amount of resin and the three-dimensional orientation of the fibers, and micro short-circuiting due to piercing to the membrane is not possible. It tends to occur.
  • Carbon fiber or the like can be used.
  • polyacrylonitrile because of its high mechanical strength and few impurities.
  • the non-woven fabric (paper, felt) can be produced by bonding the above short fibers of carbon fiber by a conventional method.
  • the fiber diameter of the short fiber of carbon fiber is preferably 2 to 25 m, and particularly preferably 4 to 15 / ⁇ ⁇ for increasing the strength of the fibrous base material.
  • the length of the short fiber is preferably about 2 to 30 mm, more preferably about 5 to 20 mm, in order to facilitate the production and increase the strength of the fibrous base material.
  • the laminated body obtained by laminating a plurality of sheets of paper is the fibrous form in the second embodiment. It can also be used as a substrate.
  • a paper 42 having the same area as the main surface of the catalyst layer are sandwiched between two papers 43 having a larger area, and the resulting laminate 41 is used as a fibrous substrate.
  • FIG. 4 is a schematic cross-sectional view of a fibrous base material having a paper force in the second embodiment of the present invention.
  • thermoplastic resins such as polybutyl alcohol and polyester, phenol resins, epoxy resins, furan resins, melamine resins, and thermosetting resins such as pitches. Adhere with grease!
  • the polymer electrolyte fuel cell (not shown) of this third embodiment has a different configuration from the fibrous base materials 4A and 4B in the polymer electrolyte fuel cell 100 of the first embodiment shown in FIG.
  • the configuration other than the fibrous base materials 4A and 4B is the same as that of the polymer electrolyte fuel cell 100 of the first embodiment.
  • FIG. 5 shows the height of the third embodiment. It is a schematic sectional drawing of the fibrous base material with which a child electrolyte type fuel cell is equipped.
  • the peripheral portion 52 that may be composed of either woven fabric or paper is pressed. It is characterized by being processed.
  • this fibrous base material is formed by pressing so that only the peripheral portion 52 is thinner than the central portion 53, when the battery stack is fastened at a predetermined pressure, the peripheral portion 52 is formed.
  • the stress at (the repulsive force in the thickness direction) is also reduced. Therefore, mechanical damage to the peripheral portion of the polymer electrolyte membrane can be reduced when the battery stack is fastened, and deterioration of the polymer electrolyte membrane can be suppressed.
  • Examples of the press treatment method include a hydraulic press at room temperature, a hot press, and a roll press.
  • the pressing pressure is preferably higher than the fastening pressure during power generation, and is preferably 20 kgZcm 2 or more and lOOOkgZcm 2 or less. If it is 20 kgZcm 2 or more, the effect of the present invention can be sufficiently obtained, and if it is 1OOOkgZcm 2 or less, the fibrous base material is not destroyed.
  • any pressing machine can be used as long as it can be pressed in a temperature range from room temperature to 1000 ° C. or less.
  • the press treatment may be performed before or after the woven fabric or paper is fired to perform carbonization and graphitization. Further, it may be performed between carbonization treatment and graphitization treatment.
  • the polymer electrolyte fuel cell (not shown) of the fourth embodiment has a different configuration from the fibrous substrates 4A and 4B in the polymer electrolyte fuel cell 100 of the first embodiment shown in FIG.
  • the configuration other than the fibrous base materials 4A and 4B is the same as that of the polymer electrolyte fuel cell 100 of the first embodiment.
  • FIG. 6 is a schematic cross-sectional view of a fibrous base material provided in the polymer electrolyte fuel cell of the fourth embodiment.
  • the fibrous base material 61 in the fourth embodiment of the present invention is a fibrous material in the third embodiment.
  • a water repellent material 64 that may be composed of either woven fabric or paper.
  • a large amount of water repellent material 64 is added to the periphery of the base material by a predetermined method, and then subjected to a press treatment, whereby the water repellent material grease particles are yarns made of carbon fibers. Heat-sealed in the gap.
  • the more water-repellent material 64 that is heat-sealed the easier it is to keep the shape while the thickness during pressing is reduced. Therefore, mechanical damage to the polymer electrolyte membrane can be prevented.
  • Equation (4) the values of H and H should be the same so that their units are the same.
  • the water repellent material 64 it is preferable to use fluorine resin in terms of chemical stability. Among them, polytetrafic mouth-and-mouth ethylene (PT FE) which is particularly excellent in durability, heat resistance and weather resistance. It is more preferable to use tetrafluoroethylene / hexafluoropropylene copolymer (FEP).
  • PT FE polytetrafic mouth-and-mouth ethylene
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • the amount of the water repellent material 64 is preferably adjusted so that the content of the water repellent material 64 after coating and drying is 5 to 30% by mass in the central portion 63 of the fibrous base material. . If the content of the water repellent material 64 is less than 5% by mass, sufficient water repellency cannot be imparted to the resulting gas diffusion layer. When the content of the water repellent material 64 is more than 30% by mass, the porosity of the obtained gas diffusion layer is lowered, the gas diffusing capacity is lowered, and the voltage is lowered due to the diffusion control of the reaction gas.
  • the fibrous base material in the fourth embodiment is produced, first, the entire fibrous base material is subjected to water repellency treatment, and then the peripheral portion 62 of the fibrous base material is further subjected to water repellency treatment. Add 3 to 15% by mass of water repellent 64.
  • a method for adding the water repellent material 64 is not particularly limited as long as the water repellent treatment liquid can sufficiently impregnate the fibrous base material, and can be appropriately selected by those skilled in the art.
  • the variation in the thickness T (the difference between the maximum value and the minimum value) of the peripheral portions 22, 32, 42, 52, 62 is 10 m
  • the difference between the maximum value and the minimum value is 10 m or less, the uneven shape on the surface of the peripheral portions 22, 32, 42, 52, 62 is difficult to be noticeable.
  • the fastening pressure is evenly distributed throughout, and mechanical damage to the polymer electrolyte membrane is difficult.
  • a polymer electrolyte fuel cell according to the first embodiment of the present invention having the structure shown in FIG. 1 was produced.
  • polyacrylonitrile-based carbon fiber as a single fiber
  • the yarn used for the central portion 23 of the fibrous base material a single yarn was obtained by twisting 300 single fibers, and a double yarn obtained by twisting these two single yarns was used.
  • the yarn used for the peripheral portion 22 the portion where the polymer electrolyte membrane and the gas diffusion layer are in direct contact
  • 150 single fibers are twisted to produce a single yarn, and the two single yarns are twisted together.
  • the twin yarn obtained in this way was used. Using these two types of twin yarn, weaving fabric was made by plain weaving using a normal loom. The background density at this time was 200/10 cm 2 .
  • the woven fabric was carbonized by heating at 900 ° C in a nitrogen atmosphere, and then graphitized by heating to 2000 ° C in an argon atmosphere to obtain the fibrous base material in the present invention. It was.
  • the thickness T of the central part and the thickness T of the peripheral part of the fibrous base material thus produced are
  • the measurement was made based on JIS L 1096 (general fabric test method).
  • the fibrous base material produced as described above is provided with a water-repellent carbon layer having conductive particles.
  • a gas diffusion layer was obtained.
  • Water repellent carbon layer with conductive particles is acetylene black
  • a single cell was formed by the following procedure, a battery operation test was conducted, and life characteristics were examined.
  • a catalyst body (25% by mass is 1 ⁇ ) in which platinum particles having an average particle size of about 30A were supported on acetylene black carbon powder was used as an electrode catalyst.
  • the dispersion obtained by dispersing this electrode catalyst in isopropanol was mixed with a dispersion obtained by dispersing perfluorocarbonsulfonic acid powder in ethyl alcohol to obtain a paste-like ink for forming a catalyst layer. .
  • This ink for forming a catalyst layer was applied to both surfaces of a polymer electrolyte membrane (Goa Select membrane manufactured by Japan Gore-Tex Co., Ltd., 30 m thick) by screen printing to form a catalyst layer.
  • the amount of platinum contained in the catalyst layer is 0.
  • the amount of perfluorocarbon sulfonic acid was adjusted to 1.2 mgZcm 2 .
  • the gas diffusion layer prepared as described above is arranged on both sides of the polymer electrolyte membrane coated with the catalyst layer on both sides so that the water-repellent carbon layer is in contact with the polymer electrolyte membrane and bonded with a hot press.
  • a membrane electrode assembly was produced.
  • a gasket made of silicone resin was arranged around the electrode that also serves as a gas diffusion layer and a catalyst layer in the MEA.
  • Adjacent MEAs are electrically connected in series with each other, and have conductivity that forms a gas flow path for supplying reaction gas to the electrode and carrying away water and excess gas generated by the reaction.
  • a pair of separator plates was placed on both sides of the MEA. These were fastened at a pressure of lOkgfZcm 2 to obtain a polymer electrolyte fuel cell of the present invention consisting of a single cell.
  • the gas diffusion layer produced in this example was measured for the repulsive stress in the central portion and the repulsive stress in the peripheral portion by the method described above.
  • the stress in the central part was 0.8 MPa
  • the peripheral part was 0.8 IMPa. Therefore, the central part is likely to cause mechanical damage to the catalyst layer or polymer film having a large stress, whereas the peripheral part is considered to have the effect of the present invention in which such a concern is small. .
  • a polymer electrolyte fuel cell according to the second embodiment of the present invention having the structure shown in FIG. 1 was produced.
  • the second embodiment of the present invention shown in FIG. 3 was produced using polyacrylonitrile-based carbon fibers (Toray Force T300 (trade name), diameter 7 / zm, manufactured by Toray Industries, Inc.) as single fibers.
  • a polymer electrolyte fuel cell of the present invention was produced in the same manner as in Example 1 except that the fibrous base material (woven fabric) in the form was used.
  • the yarn used for the central portion 33 of the fibrous base material a single yarn was obtained by twisting 300 single fibers, and a double yarn obtained by twisting these two single yarns was used. Using this double yarn, the number of warp and weft yarns was changed between the peripheral portion 32 and the central portion 33, and a woven fabric was produced by plain weaving using a normal loom. At this time, the woven fabric was prepared so that the background density of the central portion 33 was 200 Z1 Ocm 2 and the background density of the peripheral portion 32 was 120 ZlOcm 2 .
  • the woven fabric was carbonized by heating at 900 ° C in a nitrogen atmosphere, and then graphitized by heating to 2000 ° C in an argon atmosphere, whereby the fiber according to the second embodiment of the present invention was used.
  • a substrate was obtained.
  • a polymer electrolyte fuel cell according to the second embodiment of the present invention having the structure shown in FIG. 1 was produced.
  • the present invention shown in FIGS. 3 and 4 was produced using polyacrylonitrile-based carbon fiber (Toray Force T300 (trade name), diameter 7 / zm, manufactured by Toray Industries, Inc.) as a single fiber.
  • a polymer electrolyte fuel cell of the present invention was produced in the same manner as in Example 1 except that the fibrous base material (paper) in the second embodiment was used.
  • the single fiber was cut into a length of 20 mm to obtain a short fiber, and three thin papers were produced by a papermaking method.
  • One of the three papers was cut into a 5 cm square that was slightly smaller than the area of the main surface of the catalyst layer, and the remaining two papers were cut into 6 cm squares in the same manner as the catalyst layer.
  • Scissors by positioning the paper 5cm square in the center of the two paper 6cm angle as the periphery in the width lc m is formed, by coating a phenol ⁇ between paper, press at a pressure of 15KgZcm 2 at room temperature Was pressed and adhered to obtain a paper laminate.
  • the paper laminate was carbonized by heating at 900 ° C in a nitrogen atmosphere, and then heated to 2000 ° C in an argon atmosphere to perform a graphite soot treatment.
  • a fibrous base material according to the embodiment was obtained.
  • a polymer electrolyte fuel cell according to the third embodiment of the present invention having the structure shown in FIG. 1 was produced.
  • the fibrous form in the third embodiment of the present invention shown in FIG. 5 was prepared using commercially available paper (TGP — H-120 manufactured by Toray Industries, Inc., thickness 360 m, 6 cm square).
  • the polymer electrode of the present invention was the same as in Example 1 except that the substrate was used.
  • a denatured fuel cell was fabricated.
  • the above woven fabric was carbonized by heating at 900 ° C in a nitrogen atmosphere, and then graphitized by heating to 2000 ° C in an argon atmosphere. This was subjected to a hydraulic press of lOOkg / cm 2 at room temperature to obtain a fibrous base material according to the third embodiment of the present invention.
  • a polymer electrolyte fuel cell according to the fourth embodiment of the present invention having the structure shown in FIG. 1 was produced. Specifically, except that the fibrous base material in the fourth embodiment of the present invention shown in FIG. 6 produced using a commercially available woven fabric (GF-20-31E manufactured by Nippon Carbon Co., Ltd.) was used. In the same manner as in Example 1, a polymer electrolyte fuel cell of the present invention was produced.
  • an aqueous dispersion of polytetrafluoroethylene (PTFE) (D-1 manufactured by Daikin Industries, Ltd.) and water are used so that the volume ratio of the aqueous dispersion and water is 1:20.
  • PTFE polytetrafluoroethylene
  • the woven fabric was immersed in the first water-repellent treatment solution at room temperature for 1 minute. After 1 minute, the soaked woven fabric was taken out and fired at 270 ° C. for 2 hours to remove moisture and surfactant.
  • the amount of the water repellent material in the woven fabric after the first water repellent treatment was calculated based on the mass of the woven fabric before and after dipping, it was 10% by mass of the woven fabric before the first water repellent treatment. A corresponding amount of water repellent was added.
  • a second water repellent treatment (second water repellent treatment) was performed on the peripheral portion 62 of the woven fabric after the first water repellent treatment.
  • polytetrafluoroethylene (PTFE) aqueous purge Yong (D-1 manufactured by Daikin Industries, Ltd.) and water were mixed so that the volume ratio of aqueous dispersion and water was 1:10 to prepare a second water repellent treatment solution.
  • PTFE polytetrafluoroethylene
  • Yong D-1 manufactured by Daikin Industries, Ltd.
  • the woven fabric is taken out and baked at 350 ° C for 2 hours to obtain moisture and surfactant. Etc. were removed to obtain a fibrous base material of the present invention.
  • press treatment was performed.
  • a peripheral part (width 5 mm) 52 was subjected to a hydraulic press of 50 kg / cm 2 at room temperature to obtain a fibrous base material according to the fourth embodiment of the present invention.
  • the stress in the central part was 0.8 MPa.
  • the peripheral part was 0.15 MPa.
  • a polymer electrolyte fuel cell according to the fourth embodiment of the present invention having the structure shown in FIG. 1 was produced.
  • the fibrous base material according to the fourth embodiment of the present invention produced using commercially available paper (TGP — H-120 manufactured by Toray Industries, Inc., thickness 360 m, 6 cm square) is used.
  • the polymer electrolyte fuel cell of the present invention was produced in the same manner as in Example 1.
  • a first water-repellent treatment solution was prepared in the same manner as in Example 5, and the paper was removed from the first water-repellent treatment solution. It was immersed in a water-repellent treatment solution at room temperature in the air for 1 minute. After 1 minute, the soaked woven fabric was taken out and baked at 350 ° C for 3 hours to remove moisture and surfactant.
  • the amount of the water repellent material in the paper after the first water repellent treatment was calculated based on the mass of the woven fabric before and after dipping, it was 12% by mass of the woven fabric before the first water repellent treatment. An amount of water-repellent material corresponding to was added.
  • the second water-repellent treatment (second water-repellent treatment) was performed on the peripheral portion 62 of the paper after the first water-repellent treatment in the same manner as in Example 5 to obtain the fibrous base material of the present invention. Obtained.
  • press treatment was performed.
  • a peripheral part (width 5 mm) 52 was subjected to a hydraulic press of 50 kg / cm 2 at room temperature to obtain a fibrous base material according to the fourth embodiment of the present invention.
  • a commercially available woven fabric (GF-20-31E manufactured by Nippon Carbon Co., Ltd.) was replaced with an aqueous dispersion of polytetrafluoroethylene (PTFE) (D-1 manufactured by Daikin Industries, Ltd.).
  • PTFE polytetrafluoroethylene
  • water were immersed in a water-repellent treatment liquid obtained by mixing the aqueous dispersion and the water so that the volume ratio was 1:20 at room temperature in the air for 1 minute. After 1 minute, the soaked woven fabric was taken out and fired at 270 ° C. for 2 hours to remove moisture and surfactant, and a fibrous substrate was obtained.
  • the amount of the water repellent material in the entire woven fabric after the water repellent treatment was calculated based on the mass of the woven fabric before and after the immersion, it was calculated to be 10% by mass of the woven fabric before the water repellent treatment. A corresponding amount of water repellent material was added.
  • the ratio of the thickness of the central part to the thickness of the peripheral part of this fibrous base material and the thickness variation (difference between the maximum value and the minimum value) were measured in the same manner as in Example 1, and are shown in Table 1. .
  • a polymer electrolyte fuel cell composed of a single cell was produced in the same manner as in Example 1 except that the fibrous substrate was used, and a battery test was performed. The results of the battery test are shown in FIG.
  • the ratio of the thickness of the central part to the thickness of the peripheral part of this fibrous base material and the thickness variation (difference between the maximum value and the minimum value) were measured in the same manner as in Example 1, and are shown in Table 1.
  • the textile A polymer electrolyte fuel cell comprising a single cell was produced in the same manner as in Example 1 except that a fibrous substrate was used, and a battery test was conducted. The results of the battery test are shown in FIG.
  • the membrane / electrode assembly of the present invention is useful for various fuel cells such as liquid fuel cells and phosphoric acid fuel cells, in addition to polymer electrolyte fuel cells.
  • the membrane electrode assembly of the present invention can also be applied to gas generators such as oxygen, ozone, and hydrogen, gas purifiers, and various gas sensors such as oxygen sensors and alcohol sensors.
  • gas generators such as oxygen, ozone, and hydrogen
  • gas purifiers such as oxygen sensors and alcohol sensors.
  • the membrane electrode assembly of the present invention is particularly suitable for use in polymer electrolyte fuel cells for stationary use, automobile use, and mopile use.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

 従来の高分子膜電極接合体では、特に長期の運転において、ガス拡散層と高分子膜が直接接する部分において、高分子電解質膜の劣化が大きかった。そこで、水素イオン伝導性を有する高分子電解質膜と、高分子電解質膜の両面に配置された一対の触媒層と、触媒層の外側に配置された繊維状基材を含む一対のガス拡散層と、を具備する膜電極接合体において、繊維状基材における、触媒層に対応する中央部分の厚さTAと、中央部分の周辺部分の厚さTBとを、式(1):0.7≦TB/TA≦0.9を満たすように設定する。

Description

明 細 書
膜電極接合体、その製造方法及び高分子電解質形燃料電池
技術分野
[0001] 本発明は、燃料電池に用いる膜電極接合体、その製造方法、さら〖こは、膜電極接 合体を用いた高分子電解質形燃料電池に関する。
背景技術
[0002] 高分子電解質形燃料電池は、陽イオン (水素イオン)を選択的に輸送する水素ィォ ン伝導性を有する高分子電解質膜を用い、水素などの燃料ガスおよび空気などの酸 ィ匕剤ガス (反応ガス)を、電極触媒 (例えば白金など)を含む触媒層を有するガス拡散 電極で電気化学的に反応させ、電気と熱を同時に発生させるものである。このような 高分子電解質形燃料電池の一般的な構成を図 8に示す。
[0003] この高分子電解質形燃料電池 200において、高分子電解質膜 101の両面には、 電極触媒 (例えば白金金属)を担持したカーボン粉末を主成分とする触媒層 102A、 102Bが密着して配置され、さらに触媒層 102A、 102Bの外面には、繊維状基材 10 4A、 104Bと撥水カーボン層(被覆層) 103A、 103Bとで構成された一対のガス拡散 層 111A、 11 IBが密着して配置されている。撥水カーボン層 103A、 103Bは集電 作用、ガス透過性および撥水性を有し、触媒層 102A、 102Bおよびガス拡散層 111 A、 111Bが、ガス拡散電極を構成する。また、高分子電解質膜 101、触媒層 102A 、 102B、およびガス拡散層 111A、 11 IB力 膜電極接合体(membrane electrode as sembly、 MEA) 105を構成する。
[0004] この MEA105を機械的に接合するとともに、隣接する MEA105同士を互いに電 気的に直列に接続するために、導電性を有するセパレータ板 106A、 106Bが MEA 105間に挿入される。セパレータ板 106A、 106Bは、一方の面に、それぞれ燃料極 側および酸化剤極側の触媒層に、燃料ガスおよび酸化剤ガスを供給するガス流路 1 07A、 107Bを有し、他方の面に、 MEA105を冷却するための冷却水用の流路 108 を有する。また、反応ガスが外部に漏れることを防ぐためにシール材 109が配置され ている。 [0005] このようにして MEA105と一組のセパレータ板 106A、 106Bとが単電池を構成し、 単電池が複数個積層されて電池積層体 (スタック)が構成される。この電池積層体は 、燃料ガスや酸化剤ガスがリークしないように、また電池積層体内の接触抵抗を減ら すために、締結ボルト 110によって所定の締結圧で積層方向に締結される。したがつ て、 MEA105とセパレータ板 106A、 106Bとは所定の圧力のもとで面接触している
[0006] 一般に、触媒層の反応面積を有効利用し、高い電池出力を得るために、あるいは MEA組み立て時の作業性を良くするために、図 8のように、ガス拡散層 111A、 111 Bの主面の面積が、触媒層 102A、 102Bの主面の面積よりも一回り大きぐガス拡散 層 111A、 111 の中央部分に触媒層102八、 102Bが位置し、ガス拡散層 111A、 1 1 IBの外周(周辺部分)が触媒層 102A、 102Bの主面より外側に位置するように構 成される(例えば特許文献 1)。
[0007] し力しながら、上記のような従来の技術によれば、燃料極側および空気極側の両方 において、ガス拡散層 111A、 11 IBの周辺部分が、高分子電解質膜 101に直接接 するため、当該ガス拡散層 111A、 11 IBの周辺部分の表面の凹凸力 特に長期の 運転において、高分子電解質膜 101に損傷を与え易いという問題がある。ガス拡散 層 111A、 11 IBの周辺部分の表面の凹凸は、繊維状基材 104A、 104Bの構造や 形状に起因する力 上記のような問題は、撥水カーボン層 103A、 103Bの有無に関 ねらず生じるちのである。
[0008] さらに、従来の高分子電解質形燃料電池の電池積層体は、膜電極接合体 105の 面に対して均一に圧力が力かって接触抵抗が低減されるように、締結ボルト 110、ナ ット(図示せず)および締結板などを用いた 4点支持によって積層方向に締結されて いる。ところが、 4点における締結では膜電極接合体の面に対して完全に均一に圧 力をかけることは困難であり、どうしても締結ボルト 110が位置する部分、即ちガス拡 散層 111A、 11 IBの周辺部分に印加される圧力力 中央部分に印加される圧力に 比べて強くなつてしまう。そのため、燃料極側および空気極側の両方において、ガス 拡散層 111A、 11 IBの周辺部分が、高分子電解質膜 101に直接かつ強く接し、先 に述べた高分子電解質膜 101が損傷し易いという問題はより顕著にあらわれる傾向 にある。
[0009] 高分子電解質膜 101が損傷すると、反応ガス力 Sリークするほどの貫通孔が生じた場 合には、燃料ガス中に酸化剤ガスが混入したり、または、酸化剤ガス中に燃料ガスが 混入したりすることがある。このリークによって生じる混合ガスが電極触媒の触媒作用 によって反応すると、その反応熱によって高分子電解質膜 101にさらに大きな破損を 与えてしまう。このような場合、出力電圧の低下や運転停止を引き起こしかねない。ま た、反応ガスがリークしないほどの損傷であっても、燃料極と空気極との間で電気的 短絡を引き起こすことも考えられる。この場合も、出力電圧が低下してしまうという問題 が生じる。
[0010] これに対し、例えば特許文献 2および 3においては、触媒層の周辺部分に厚さ数十 mの薄いフィルム状の榭脂膜を設けることによって高分子電解質膜をガス拡散層 力 保護し、上記のような問題を解消することを意図した方法が提案されて 、る。 また、特許文献 4では、高分子電解質膜の中央部分、即ち触媒層と接する部分 (電 極反応部)の厚さに比べて、周辺部分の厚さを大きくし、当該電極反応部でのプロト ン伝導性を維持しつつ、周辺部分での損傷を防止することを意図した技術が提案さ れている。
[0011] さらに、特許文献 5においては、水素イオン伝導性を有する材料で高分子電解質 膜の中央部分を構成し、水素イオン伝導性を有さずせん断応力や熱に強 ヽ材料で 高分子電解質膜の外周部を構成する技術も提案されて!、る。
特許文献 1 :特開 2002— 208413号公報
特許文献 2:特開平 5 - 174845号公報
特許文献 3 :特開平 8— 185872号公報
特許文献 4:特開平 8 - 185881号公報
特許文献 5 :特開 2000— 215903号公報
発明の開示
発明が解決しょうとする課題
[0012] し力しながら、上記の特許文献 2および 3において提案されている技術では、膜電 極接合体の作製時に、厚さ数十 mの薄いフィルム状の榭脂膜を触媒層の周辺部 分に隙間無く設けることが困難であり、位置がずれて、榭脂膜と触媒層との間に空隙 が生じることがある。このような場合、この空隙から高分子電解質膜の損傷が生じてし ま 、、榭脂膜の効果が得られにくいと!、う問題がある。
[0013] また、特許文献 4によって提案されて ヽる技術では、高分子電解質膜を作製する時 点で、その中央部分および周辺部分の厚さにムラが生じ易い。そのため、薄くすべき 高分子電解質膜の中央部分に厚い島状部分が生じてイオン伝導性が低下してしま つたり、また、厚くすべき高分子電解質膜の周辺部分に薄い箇所が部分的に生じて 高分子電解質膜の損傷が大きくなつてしまったりするという問題がある。また、高分子 電解質膜の周辺部分が厚いため、高分子電解質膜の中心部分と触媒層との間で十 分な締結圧が得られず、接触抵抗が高くなるという問題もある。
[0014] さらに特許文献 5において提案されている技術では、高分子電解質膜の周辺部分 の強度を得るために、ポリエチレンテレフタレート(PTFE)で作製されたペーパーか らなる基材に水素イオン伝導性を有する溶液を含浸させて高分子電解質膜が作製さ れて 、るため、十分なプロトン伝導性が得られにく!、と!/、う問題がある。
[0015] 以上のような問題点に鑑み、本発明は、繊維状基材を用いたガス拡散層を有しても 高分子電解質膜の損傷を生じにくぐ当該損傷に起因する電池出力の低下を起こし にくい高分子電解質形燃料電池を容易且つ確実に構成することが可能な膜電極接 合体を提供することを目的とする。
さらに、本発明は、繊維状基材を用いたガス拡散層を有しても高分子電解質膜の 損傷を生じにくい膜電極接合体を用い、長期にわたる運転を行っても電池出力の低 下を招きにくい高分子電解質形燃料電池を提供することを目的とする。
課題を解決するための手段
[0016] 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、繊維状基材を含む ガス拡散層を有する膜電極接合体を具備する電池積層体からなる燃料電池を長期 にわたつて運転する場合、電池積層体の締結時にガス拡散層を構成する繊維状基 材の凹凸が高分子電解質膜に損傷を与えて電池出力を低下させる原因の一つにな つていることを見出した。そして、本発明者らは、特に繊維状基材の主面の面積が触 媒層の主面の面積よりも大きい場合、繊維状基材の周辺部分の凹凸が高分子電解 質膜に損傷を与えないように、当該周辺部分の厚さと、触媒層に対応する中央部分 の厚さとを調節することが、上述の目的を達成する上で極めて有効であることを見出 し、本発明に到達した。
[0017] すなわち、上記の課題を解決すベぐ本発明は、
水素イオン伝導性を有する高分子電解質膜と、高分子電解質膜の両面に配置され た一対の触媒層と、触媒層の外側に配置された繊維状基材を含む一対のガス拡散 層と、を具備する膜電極接合体であって、
繊維状基材において、触媒層に面する中央部分の厚さ Tと、中央部分の周辺部
A
分の厚さ Tとが、下記式(1)で示される関係を有すること、を特徴とする膜電極接合
B
体を提供する。
0. 7≤Τ /τ≤0. 9 · · · (1)
B A
[0018] ここで、繊維状基材の主面とは、繊維状基材のうち高分子電解質膜側の面のことを いい、また、触媒層の主面とは、触媒層のうち繊維状基材側および高分子電解質膜 側の面のことをいう。従来力もの高分子電解質形燃料電池と同様に、本発明の膜電 極接合体においても。繊維状基材の主面の面積は触媒層の主面の面積よりも大きく 、さらに高分子電解質膜の面積は、繊維状基材の主面の面積よりも大きい。
また、繊維状基材の中央部分とは、繊維状基材の主面の中央に触媒層を配置した ときに、当該触媒層に面する (接する)部分をいう。そして、繊維状基材の周辺部分と は、上述の中央部分の周辺に位置する部分であって、触媒層と接していない部分を いう。
[0019] 上述のように、繊維状基材の主面の面積を触媒層の主面の面積よりも大きくし、繊 維状基材において、触媒層に面する中央部分の厚さ τと、中央部分の周辺部分の
A
厚さ Tとが、下記式(1)で示される関係を満たすように設定すること {即ち、式(1)の
B
値が 0. 7以上で 0. 9以下となるように設定すること こより、電池積層体の締結時に ガス拡散層を構成する繊維状基材の凹凸が高分子電解質膜に損傷を与えることを 防止することができ、高分子電解質膜の損傷に起因する電池出力の低下を防止する ことができる、膜電極接合体を容易且つ確実に構成することができる。更に、この膜 電極接合体を高分子電解質形燃料電池に採用することにより、長期の運転を行って も電池出力の低下を十分に防止することができる。
[0020] 式(1)の値 {Τ /Ύ }が 0. 9を超えると、電池積層体の締結時に繊維状基材の周
B A
辺部分が高分子電解質膜に強く接触し過ぎてしま ヽ、高分子電解質膜の損傷を防 止するという本発明の効果が十分に得られない。また、式(1)の値 {Τ /Ύ }が 0. 7
B A
未満であると、繊維状基材の周辺部分が中央部分よりも薄過ぎることとなり、発電時 に周辺部分の接触抵抗が大きくなつて発電性能が低下してしまい、さらに、電池積層 体の締結時に中央部分にかかる圧力が大きくなつて、高分子電解質膜の劣化を促 進してしまうことになる。なお、式(1)の値 {Τ /Ύ }を求める際には、 T及び Tの値
B A A B
は、それぞれの単位が同一となるようにそろえた値を使用する。
[0021] ここで、本発明の膜電極接合体における繊維状基材の中央部分 Tの厚さ及び周
A
辺部分の厚さ Tは、 JIS L 1096 (—般織物試験方法)に基づく厚さ測定によって測定
B
することができる。 JIS L 1096 (—般織物試験方法)によれば、各種燃料電池のガス拡 散層に用いられる各種基材の厚さを正確に測定することができる。より詳しくは、本発 明の膜電極接合体における繊維状基材の中央部分の厚さ T及び周辺部分の厚さ T
A
Bは、繊維状基材に対して以下の圧力が印加された状態で測定される値である。その ため、本発明の膜電極接合体における繊維状基材の中央部分 Tの厚さ及び周辺部
A
分の厚さ τは、繊維状基材からガス拡散層の、触媒層に面する中央部分
B τの厚さ
A
及び当該中央部分の周辺部分の厚さ τにそれぞれ等しい値となる。
B
[0022] 即ち、具体的には、繊維状基材をポンチを用いて打ち抜いて得た直径 50mmの寸 法の円状の試験片を、それより大きな 2つのレファレンスプレートの間に置き、 IMPa の圧力を加え続ける。そして、圧力を印加しながら 30秒経過後に、厚さゲージを用い てレファレンスプレート間の目盛を読み取り(圧力を印加したまま目盛を読み取り)、 読み取った値が繊維状基材の厚さを示す。本発明においては、このようにして、繊維 状基材の中央部分の厚さ Tと周辺部分の厚さ Tとを測定する。なお、 Tは中央部分
A B A
の 5箇所以上の箇所で測定される厚さの測定値の相加平均値であり、 Tは周辺部分
B
の 5箇所以上の箇所で測定される厚さの測定値の相加平均値である。
[0023] また、本発明の膜電極接合体であるカゝ否かの分析は、 MEAを分解してガス拡散層 を取り出し、上述した状態と同一の圧力が印加された状態のもとでその中央部分の 厚さ Tと周辺部分の厚さ τを測定することにより確認できる。または、上述した状態と
A B
同一の圧力が印加された状態のもとで、 MEAの断層を EPMAにより観察し、ガス拡 散層の中央部分の厚さ Tと周辺部分の厚さ Tを測定することにより確認できる。
A B
[0024] 更に、本発明は、先に述べた本発明の膜電極接合体と、膜電極接合体の両面に 配置された、ガス流路を有する一対の導電性セパレータと、を具備する高分子電解 質形燃料電池を提供する。
本発明の高分子電解質形燃料電池は、先に述べた本発明の膜電極接合体を用い ているため、電池積層体の締結時にガス拡散層を構成する繊維状基材の凹凸が高 分子電解質膜に損傷を与えることを防止することができ、高分子電解質膜の損傷に 起因する電池出力の低下を防止することができる。特に長期の運転を行っても電池 出力の低下を十分に防止することができる。
[0025] 更にまた、本発明は、先に述べた本発明の膜電極接合体の製造方法であって、 繊維状基材において、触媒層に面する中央部分の厚さ Tと、中央部分の周辺部分
A
の厚さ Tとが、下記式(1)で示される関係を有するように、上記繊維状基材を作製す
B
る工程を含むこと、を特徴とする膜電極接合体の製造方法を提供する。
0. 7≤Τ · · · (1)
B /τ≤0. 9
A
本発明の膜電極接合体の製造方法によれば、電池積層体の締結時にガス拡散層 を構成する繊維状基材の凹凸が高分子電解質膜に損傷を与えることを防止すること ができ、高分子電解質膜の損傷に起因する電池出力の低下を防止することができる 。特に長期の運転を行っても電池出力の低下を十分に防止することができる、膜電 極接合体及びこれを用いた高分子電解質形燃料電池を、より確実に実現することが できる。
[0026] なお、本発明は、上記のようにガス拡散層基材の中央部分と周辺部分の厚さで規定 したが、別の規定方法として、一定の厚さまで圧縮した場合の反発力で定義すること ができる。このときの測定方法は、まず、 O.OlMPaの圧力をカ卩えたときの、ガス拡散層 の中央部分 Tの厚さを測定する。そして、その厚さの 75%の厚さとなるまで、ガス拡
A
散層を圧縮する。圧縮して 30秒後の中央部分の反発応力と周辺部分の反発応力を 測定した。 発明の効果
[0027] 以上のように、本発明によれば、繊維状基材の主面の面積が触媒層の主面の面積 よりも大きくても、繊維状基材の中央部分および周辺部分の厚さを調節することによ つて、電池積層体の締結時に繊維状基材の凹凸が高分子電解質膜に損傷を与える ことを防止し、当該損傷に起因する電池出力の低下を低減させた信頼性の高い高分 子電解質形燃料電池を容易且つ確実に実現する膜電極接合体を提供することがで きる。また、本発明によれば、高分子電解質膜の損傷に起因する電池出力の低下が 抑制され、長期にわたって安定した運転が行える信頼性の高い高分子電解質形燃 料電池を提供することができる。
図面の簡単な説明
[0028] [図 1]本発明の高分子電解質形燃料電池の一実施形態の構成を示す概略断面図で ある。
[図 2]本発明の第一実施形態における繊維状基材 21の概略正面図である。
[図 3]本発明の第二実施形態における繊維状基材 31の概略正面図である。
[図 4]本発明の第二実施形態における繊維状基材 41の概略断面図である。
[図 5]本発明の第三実施形態における繊維状基材 51の概略断面図である。
[図 6]本発明の第四実施形態における繊維状基材 61の概略断面図である。
[図 7]本発明および比較例で作製した高分子電解質形燃料電池の運転開始後の経 過時間と電池電圧の関係を示すグラフである。
[図 8]従来の高分子電解質形燃料電池の一実施形態の構成を示す概略断面図であ る。
発明を実施するための最良の形態
[0029] 以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、以 下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略す ることちある。
[第一実施形態]
図 1は、本発明の高分子電解質形燃料電池の一実施形態の構成を示す概略断面 図である。この高分子電解質形燃料電池 100において、陽イオン (水素イオン)伝導 性を有する高分子電解質膜 1の両面には、電極触媒 (例えば白金金属)を担持した カーボン粉末を主成分とする触媒層 2A、 2Bが密着して配置され、さらに触媒層 2A 、 2Bの外面には、繊維状基材 4A、 4Bと撥水カーボン層(被覆層) 3A、 3Bとで構成 された一対のガス拡散層 11 A、 1 IBが密着して配置されて 、る。
[0030] 撥水カーボン層 3A、 3Bは集電作用、ガス透過性および撥水性を有し、ガス拡散層 力もの排水効果を高めるために設けてもよいが、省略することもできる。即ち、本発明 におけるガス拡散層 11 A、 11Bは、繊維状基材 4A、 4Bだけで構成されてもよぐ繊 維状基材 4A、 4Bと撥水カーボン層 3A、 3Bとで構成されてもよい。また、繊維状基 材 4A、 4Bは、後述するように撥水処理されていてもよい。このように撥水カーボン層 を設ける場合には、触媒層とガス拡散層との、接着性が向上する、電気的な接触抵 抗が低減できる、及び、ガス拡散層の構成材料の繊維が触媒層に貫入するのをより 確実に防止できる、 t 、つた効果を得ることができる。
そして、触媒層 2A、 2Bおよびガス拡散層 11A、 11Bが、ガス拡散電極を構成し、 また、高分子電解質膜 1、触媒層 2A、 2B、およびガス拡散層 11A、 11Bが、膜電極 接合体、 membrane electrode assembly^ ME A) 5 構成する 0
[0031] 本発明の高分子電解質形燃料電池においては、この MEA5を機械的に接合する とともに、隣接する MEA5同士を互いに電気的に直列に接続するために、導電性を 有するセパレータ板 6A、 6Bが MEA5間に挿入される。セパレータ板 6A、 6Bは、一 方の面に、それぞれ燃料極側および酸化剤極側の触媒層に、燃料ガスおよび酸ィ匕 剤ガスを供給するガス流路 7A、 7Bを有し、他方の面に、 MEA5を冷却するための 冷却水用の流路 8を有する。また、反応ガスが外部に漏れることを防ぐためにシール 材 9が配置されている。
[0032] このようにして MEA5と一組のセパレータ板 6A、 6Bとが単電池を構成し、単電池 が複数個積層されて電池積層体 (スタック)が構成される。この電池積層体は、燃料 ガスや酸化剤ガスがリークしな ヽように、また電池積層体内の接触抵抗を減らすため に、締結ボルト 10によって所定の締結圧で積層方向に締結される。したがって、 ME A5とセパレータ板 6A、 6Bとは所定の圧力のもとで面接触して 、る。
[0033] 本発明における触媒層 2A、 2Bは、貴金属からなる電極触媒を担持した導電性炭 素粒子と、陽イオン (水素イオン)伝導性を有する高分子電解質と、分散媒と、を含む 分散液からなる触媒層形成用インクを用いて、当該分野で公知の方法により形成す ることができる。なお、「高分子電解質を含む分散液」は、高分子電解質が分散され た状態の液の他に、高分子電解質が一部溶解し、他の一部が溶解せずに分散され ている状態の液も含む。また、「分散媒」とは、使用される高分子電解質を分散可能 な液体であってもよぐ高分子電解質を溶解可能な液体であってもよぐ高分子電解 質を一部溶解可能で、他の一部は分散可能な液体であってもよ 、。
[0034] 本発明の高分子電解質形燃料電池の MEA5は、上記のような高分子電解質膜 1、 触媒層 2A、 2B、および後述する繊維状基材を用いたガス拡散層 11 A、 11Bから、 当該分野で公知の技術によって作製することができる。
そして、 MEA5においては、従来と同様に、触媒層の反応面積を有効利用して高 い電池出力を得るために、また MEA5の組み立て時の作業性を良くするために、ガ ス拡散層 11A、 1 IBの主面の面積を、触媒層 2A、 2Bの主面の面積よりも一回り大き くし、ガス拡散層 11 A、 11Bの中央部分に触媒層 2A、 2Bを配置させ、ガス拡散層 1 1A、 1 IBの外周(周辺部分)が触媒層 2A、 2Bの主面より外側に位置するように構成 する。
[0035] ここで、図 8を用いて上述したように、従来の高分子電解質形燃料電池の膜電極接 合体においては、ガス拡散層 111A、 11 IBの周辺部分力 高分子電解質膜 101に 直接接し、ガス拡散層 111A、 111Bの周辺部分の表面の凹凸が、高分子電解質膜 101に損傷を与え易いという問題がある。更に、締結ボルト 110、ナット(図示せず) および締結板などを用いた 4点支持によって積層方向に締結されていることから、ガ ス拡散層 111A、 11 IBの周辺部分に印加される圧力が、中央部分に印加される圧 力に比べて強くなつてしまい、ガス拡散層 111A、 11 IBの周辺部分力 高分子電解 質膜 101に直接かつ強く接し、高分子電解質膜 101がより損傷し易くなる。
[0036] そこで、本発明の膜電極接合体にぉ ヽては、ガス拡散層を構成する繊維状基材の 主面の面積を触媒層の主面の面積よりも大きくするとともに、繊維状基材が、触媒層 に対応する中央部分 {即ち、繊維状基材の面に対して垂直な方向において、触媒層 を繊維状基材に投影させたときに、触媒層の影が位置する部分 }の厚さ Tと、中央部 分の外側の周辺部分
の厚さ Tとを、下記式(1)を満たすように設定する。
B
0. 7≤Τ /Ύ ≤0. 9…ひ)
B A
[0037] 以下に、本発明の膜電極接合体の第一の実施形態において上記式(1)を満たす 繊維状基材について説明する。図 2は本発明の第一実施形態における繊維状基材 21の概略正面図である。本発明の第一実施形態における繊維状基材 21は織布で 構成され、周辺部分 22の糸径 Dと、中央部分 23の糸径 Dとが、下記式(2)で示さ
B A
れる関係を有することを特徴とする。
D < D · · · (2)
B A
[0038] この繊維状基材にお!/、ては、周辺部分 22の糸径 Dだけを細くすることで、周辺部
B
分 22の厚さだけを薄くすることが可能となり、電池積層体の締結時に高分子電解質 膜の周辺部分にかかる応力 (厚さ方向への反発力)を緩和し、高分子電解質膜の劣 化を抑制することができる。なお、式(2)において、 D及び Dの値は、それぞれの単
A B
位が同一となるようにそろえた値を使用する。
[0039] 第一実施形態における繊維状基材である織布の糸を構成する繊維としては、ポリ アクリロニトリル(PAN)系、ピッチ系、セルロース系、ポリノジック系、その他公知の任 意の炭素繊維などを用いることができる。なかでも、機械的強度が高いことや不純物 が少ないことから、ポリアクリロニトリル系を用いるのが好ましい。炭素繊維の単繊維の 直径は通常 3〜70 μ mあるが、特に 7〜10 μ mのものを用いるのが好まし!/、。
[0040] 繊維状基材の中央部分 23に用いる糸としては、上記の単繊維を 10〜600本撚り 合わせて得られる単糸を用いることができる。この際、所望する単糸の太さに合わせ て単繊維の本数を適宜調整すればよい。さらに、この単糸を 2本撚り合わせて得られ る双糸、または単糸を 3本撚り合わせて得られる 3本撚糸を用いてもよい。すなわち、 上述の糸としては、単糸、双糸および撚糸のいずれを用いてもよい。なかでも、双糸 の方が、単糸より糸の引張強度が大きいという点から、双糸を用いるのが好ましい。 一方、繊維状基材の周辺部分 22に用いる糸としては、中央部分 23よりも単繊維を 5〜500本の範囲でかつ中央部分 23の場合よりも減らして撚り合わせて得られる単 糸を用いる。また、中央部分と同様に、周辺部分の糸にも双糸を用いるほうが好まし い。
[0041] 上記のような単糸または双糸を用いて、通常の織機を用いて織布を作製する。
織布の織り方は平織が好ましいが、斜文織、朱子織その他任意の組織であっても 差し支えない。この場合、中央部分 23に位置する部位に糸径 Dの太い糸を、周辺
B
部分 22に位置する部位に糸径 Dの細い糸を配置して織ることで、周辺部分 22の厚
A
さが薄 、繊維状基材を作製することができる。
[0042] また、上記の糸を織機で平織にする場合の経緯密度(単位面積あたりの縦糸およ び横糸の本数)は、 100〜500本 ZlOcm2であればよぐな力でも 150〜300本 Zl Ocm2であるのが好ましい。経緯密度が小さすぎると、糸の歪みやほつれ、しわが生じ やすくなり、強度も低下する。経緯密度が大きすぎると、密に詰まった状態になり、ガ ス拡散性や透湿性が低下して、電池性能に影響を及ぼす。また、織布とした場合に 厚さのむらが大きくなり易い。
[0043] 以上のような織布を黒鉛化処理することによって、本発明における繊維状基材を得 ることができる。例えば、上記の織布を窒素雰囲気中、 900°Cで加熱して炭化処理し たのち、アルゴン雰囲気中で 2000°Cに加熱して黒鉛化処理を行う。このようにして、 本発明の第一実施形態における繊維状基材を作製することができる。
[0044] [第二実施形態]
次に、本発明の高分子電解質形燃料電池の第二実施形態について説明する。こ の第二実施形態の高分子電解質形燃料電池 (図示せず)は、図 1に示した第一実施 形態の高分子電解質形燃料電池 100に於ける繊維状基材 4A、 4Bを異なる構成に 代えたものであり、繊維状基材 4A、 4B以外の構成は第一実施形態の高分子電解質 形燃料電池 100と同様である。
[0045] 以下、第二実施形態の高分子電解質形燃料電池に備えられる繊維状基材 (本発 明の繊維状基材の第二実施形態)について説明する。図 3は、第二実施形態の高分 子電解質形燃料電池に備えられる繊維状基材の概略正面図である。
本発明の第二実施形態における繊維状基材 31は、上記式(1)で示される関係を 満たすとともに、織布で構成され、周辺部分 32の単位面積あたりの縦糸および横糸 の打ち込み本数 Nと、中央部分 33の単位面積あたりの縦糸および横糸の打ち込み 本数 Nとが、下記式 (3)で示される関係を有することを特徴とする。
A
N <N
B A… )
[0046] この繊維状基材は、周辺部分 32の単位面積あたりの縦糸および横糸の打ち込み 本数が、中央部分 33に比べて少ないため、周辺部分 32が中央部分 33に比べ疎な 構造となる。この構造により、電池積層体を所定の圧力で締結した場合に、周辺部分 32の厚さだけを薄くすることが可能となり、電池積層体の締結時に高分子電解質膜 の周辺部分にかかる応力 (厚さ方向への反発力)を緩和し、高分子電解質膜の劣化 を抑制することができる。
なお、式(3)において、 N及び Nの値は、それぞれの単位が同一となるようにそろ
A B
えた値を使用する。単位面積あたりの縦糸および横糸の打ち込み本数の単位として は、たとえば [本 Zcm2]を用いることができる。
[0047] 第二実施形態における繊維状基材は、第一実施形態における繊維状基材と同様 の材料および方法を用いて作製することができる。
ただし、 MEAを構成したときに、繊維状基材の中央部分 33の経緯密度(単位面積 あたりの縦糸および横糸の本数)は、 100〜500本 ZlOcm2、な力でも 150〜300本 ZlOcm2が好ましい。また、周辺部分 32の経緯密度は、中央部分 33よりも 10〜200 本 ZlOcm2小さくして作製すればよい。
[0048] また、第二実施形態における繊維状基材は、先に述べた織布の他に、不織布を用い て作製することも可能である。不織布 (構造)には、作製方法の違いから、ペーパーと フェルトがある。例えば、燃料電池用にはカーボンペーパー及びカーボンフェルトが 挙げられる。
ペーパーの作製方法は、例えば接着剤としての榭脂(例えば、ポリビュルアルコー ル)を含む水溶液中に炭素繊維を浸透させ、すくい上げることで作製することができ る(抄紙法、湿式法)。一方、フェルトはペーパーに比べ、比較的少量の榭脂を接着 剤に使用し、空気中で炭素繊維を圧縮することで作製できる (乾式法)。しかし、フエ ルトの場合、榭脂が少量であること、繊維が 3次元に配向していることより、繊維ほつ れ (毛羽立ち)を抑制することができず、膜への突き刺しによる微小ショートが発生し やすくなる。 第二実施形態における繊維状基材であるペーパー、フェルトを構成する繊維として は、先に述べた織布と同様に、ポリアクリロニトリル系、ピッチ系、セルロース系、ポリノ ジック系、その他公知の任意の炭素繊維などを用いることができる。なかでも、機械 的強度が高いことや不純物が少ないことから、ポリアクリロニトリル系を用いるのが好 ましい。
[0049] 不織布(ペーパー、フェルト)は上記の炭素繊維の短繊維を常法によって結合させ て作製することができる。この場合、炭素繊維の短繊維の繊維径は 2〜25 mである のが好ましぐ特に 4〜15 /ζ πιとすることが、繊維状基材の強度を高くするためにより 好ましい。
短繊維の長さは 2〜30mm程度とすることが好ましぐ 5〜20mm程度とするのが製 造の容易さ、および繊維状基材の強度を高くするためにさらに好ましい。
[0050] ただし、このようにして作製したペーパーは 1枚の単体では薄く強度が不足しがちで あるため、ペーパーを複数枚を貼り合わせて得られる積層体を第二実施形態におけ る繊維状基材として用いることも可能である。例えば、図 4に示すように、触媒層の主 面と同じ面積を有するペーパー 42の両面を、さらに大きな面積を有する 2枚のぺー パー 43で挟み、得られる積層体 41を繊維状基材として用いる。図 4は、本発明の第 二実施形態におけるペーパー力もなる繊維状基材の概略断面図である。
[0051] ペーパー 42とペーパー 43との間は、例えばポリビュルアルコール、ポリエステルな どの熱可塑性榭脂、フエノール榭脂、エポキシ榭脂、フラン榭脂、メラミン榭脂、ピッ チなどの熱硬化性榭脂で接着すればよ!、。
[0052] [第三実施形態]
次に、本発明の高分子電解質形燃料電池の第三実施形態について説明する。こ の第三実施形態の高分子電解質形燃料電池 (図示せず)は、図 1に示した第一実施 形態の高分子電解質形燃料電池 100に於ける繊維状基材 4A、 4Bを異なる構成に 代えたものであり、繊維状基材 4A、 4B以外の構成は第一実施形態の高分子電解質 形燃料電池 100と同様である。
[0053] 以下、第三実施形態の高分子電解質形燃料電池に備えられる繊維状基材 (本発 明の繊維状基材の第三実施形態)について説明する。図 5は、第三実施形態の高分 子電解質形燃料電池に備えられる繊維状基材の概略断面図である。
本発明の第三実施形態における繊維状基材 51は、上記式(1)で示される関係を 満たしていれば、織布およびペーパーのいずれで構成されていてもよぐ周辺部分 5 2がプレス処理されて 、ることを特徴とする。
[0054] この繊維状基材は、プレス処理することで、中央部分 53に比べて周辺部分 52だけ が薄く構成されているため、電池積層体を所定の圧力で締結した際に、周辺部分 52 における応力(厚さ方向への反発力)も小さくなる。したがって、電池積層体の締結時 に高分子電解質膜の周辺部分への機械的な損傷を低減させることができ、高分子電 解質膜の劣化を抑制することができる。
[0055] プレス処理の方法としては、例えば、室温での油圧プレス、ホットプレス、ロールプレ スなどが挙げられる。プレス圧としては、発電中の締結圧よりも高いことが望ましぐ具 体的には、 20kgZcm2以上、 lOOOkgZcm2以下が好ましい。 20kgZcm2以上であ れば、本発明の効果を十分に得ることができ、 lOOOkgZcm2以下であれば繊維状 基材を破壊してしまうことがない。プレスする手段としては、室温から 1000°C以下の 温度範囲にぉ 、てプレス可能であれば、任意のプレス機を使用することができる。 また、プレス処理を行うのは、織布またはペーパーを焼成して炭化処理および黒鉛 化処理を施す前であっても後であってもよい。また、炭化処理と黒鉛化処理の間に行 つてもよい。
[0056] [第四実施形態]
次に、本発明の高分子電解質形燃料電池の第四実施形態について説明する。こ の第四実施形態の高分子電解質形燃料電池(図示せず)は、図 1に示した第一実施 形態の高分子電解質形燃料電池 100に於ける繊維状基材 4A、 4Bを異なる構成に 代えたものであり、繊維状基材 4A、 4B以外の構成は第一実施形態の高分子電解質 形燃料電池 100と同様である。
[0057] 以下、第四実施形態の高分子電解質形燃料電池に備えられる繊維状基材 (本発 明の繊維状基材の第四実施形態)について説明する。図 6は、第四実施形態の高分 子電解質形燃料電池に備えられる繊維状基材の概略断面図である。
本発明の第四実施形態における繊維状基材 61は、第三実施形態における繊維状 基材において併せて行うことが望ましぐ上記式(1)で示される関係を満たすとともに 、織布およびペーパーのいずれで構成されていてもよぐ撥水材 64を含み、周辺部 分 62における撥水材 64の濃度 Hと、中央部分 63における撥水材 64の濃度 Hとが
B A
、下記式 (4)で示される関係を有することを特徴とする。
H >H …(4)
B A
[0058] この繊維状基材では、所定の方法にて撥水材 64を基材周辺部に多く添加した後、 プレス処理することにより、撥水材榭脂粒子が、炭素繊維からなる糸 65の隙間に熱 融着する。電池積層体に締結圧を加えた際の膜電極接合体においては、熱融着し ている撥水材 64が多いほど、プレス時の厚さが薄くなつたまま、形状を保持しやすく なる。従って、高分子電解質膜に与える機械的な損傷を防止することができる。
なお、式 (4)において、 H及び Hの値は、それぞれの単位が同一となるようにそろ
A B
えた値を使用する。
[0059] 撥水材 64としては、化学的安定性の観点力もフッ素榭脂を用いるのが好ましいが、 そのなかでも、特に耐久性、耐熱性、耐候性に優れたポリテトラフ口才口エチレン (PT FE)または、四フッ化工チレン'六フッ化プロピレン共重合体 (FEP)を用いるのがより 好ましい。
[0060] 撥水材 64の量に関しては、繊維状基材の中央部分 63においては、塗布'乾燥後 の撥水材 64の含有量が 5〜30質量%となるように調節するのが好ましい。撥水材 64 の含有量が 5質量%未満であると、得られるガス拡散層に十分な撥水性能を付与す ることができない。撥水材 64の含有量が 30質量%超であると、得られるガス拡散層 の気孔率が低下し、ガス拡散能が低下し、反応ガスの拡散律速となって電圧が低下 する。
[0061] 第四実施形態における繊維状基材を作製する場合は、まず繊維状基材全体に撥 水処理を施した後、さらに繊維状基材の周辺部分 62にのみ撥水処理を施し、 3〜15 質量%多くの撥水材 64を添加する。撥水材 64を添加する方法としては、撥水処理 液が繊維状基材に十分含浸させることができれば特に制限はなぐ当業者であれば 適宜選択することができる。
[0062] 以上、本発明の実施形態について詳細に説明したが、本発明は上記実施形態に 限定されるものではない。
さらに、本発明の第一実施形態〜第四実施形態における繊維状基材においては、 周辺部分 22、 32、 42、 52、 62の厚さ Tのばらつき(最大値と最小値の差)が 10 m
B
以下であることが好ましい。このように最大値と最小値の差が 10 m以下であると、 周辺部分 22、 32、 42、 52、 62の表面の凹凸形状が顕著となりにくぐ電池積層体の 締結時に高分子電解質膜の全体に均等に締結圧がカゝかり、高分子電解質膜に機械 的な損傷を与えにくい。
実施例
[0063] 以下に、実施例を用いて本発明をより詳細に説明するが、本発明は、これらのみに 限定されるものではない。
《実施例 1》
本実施例においては、図 1に示す構造を有する本発明の第一実施形態の高分子 電解質形燃料電池を作製した。まず、単繊維としてポリアクリロニトリル系の炭素繊維
(東レ株式会社製のトレ力 T300 (商品名)、直径 を用い、図 2に示す本発明の 第一実施形態における繊維状基材 (織布)を作製した。
[0064] 繊維状基材の中央部分 23に用いる糸としては、単繊維 300本を撚り合わせて単糸 を得、この単糸 2本を撚り合わせて得た双糸を用いた。また、周辺部分 22 (高分子電 解質膜とガス拡散層が直接接する部分)に用いる糸としては、単繊維 150本を撚り合 わせて単糸を作製し、この単糸 2本を撚り合わせて得た双糸を用いた。これら 2種類 の双糸を、通常の織機を用いて平織りによって織布を作製した。なお、このときの経 緯密度は、 200本/ 10cm2とした。
[0065] この織布を、窒素雰囲気中、 900°Cで加熱して炭化処理したのち、アルゴン雰囲気 中で 2000°Cに加熱して黒鉛化処理を行い、本発明における繊維状基材を得た。こ のようにして作製した繊維状基材の中央部分の厚さ Tと周辺部分の厚さ Tとを、上
A B
述したように JIS L 1096 (—般織物試験方法)に基づいて測定した。中央部分の厚さ Tと周辺部分の厚さ Tとの比 T /T及び厚さ Tのバラツキ(最大値と最小値の差)を
A B B A B
1に した。
[0066] 上記のように作製した繊維状基材に、導電性粒子を有する撥水カーボン層を設け て、ガス拡散層を得た。導電性粒子を有する撥水カーボン層は、アセチレンブラック
、水、ポリテトラフルォロエチレン(PTFE)、および界面活性剤(TritonX—lOO)を 1 5 : 80:4: 1の質量比で混合して、カーボンインクを調製し、ドクターブレードを用いて 当該カーボンインクを繊維状基材上に塗布し、 325°Cで 1時間焼成することによりガ ス拡散層を作製した。
[0067] このガス拡散層を用いて以下の手順で単電池を形成し、電池運転試験を行 ヽ、寿 命特性を調べた。アセチレンブラック系カーボン粉末に、平均粒径約 30Aの白金粒 子を担持させた触媒体 (25質量%が1^)を電極触媒として用いた。この電極触媒をィ ソプロパノールに分散させて得られる分散液に、パーフルォロカーボンスルホン酸の 粉末をエチルアルコールに分散させた分散液を混合し、ペースト状の触媒層形成用 インクを得た。
[0068] この触媒層形成用インクを、スクリーン印刷法を用いて、高分子電解質膜 (ジャパン ゴァテックス社製のゴァセレクト膜、膜厚 30 m)の両面に塗布し、触媒層を形成した o形成後の触媒層中に含まれる白金量は 0.
Figure imgf000020_0001
パーフルォロカーボンスル ホン酸の量は 1. 2mgZcm2となるよう調整した。
次に、触媒層を両面に塗布した高分子電解質膜の両面に、上記のように作製した ガス拡散層を、撥水カーボン層が高分子電解質膜と接するように配置し、ホットプレ スで接合して膜電極接合体を作製した。
[0069] 燃料ガスや酸化剤ガスをシールするために、 MEAにおけるガス拡散層と触媒層と 力もなる電極の周囲に、シリコーン榭脂製のガスケットを配置した。そして、隣接する MEA同士を互いに電気的に直列に接続し、電極に反応ガスを供給しかつ反応によ り発生した水や余剰のガスを運び去るためのガス流路を形成した導電性を有する一 対のセパレータ板を、 MEAの両面に配置した。これらを lOkgfZcm2の圧力で締結 し、単電池 1個からなる本発明の高分子電解質形燃料電池を得た。
[0070] 得られた高分子電解質形燃料電池の電池運転条件としては、燃料極側に水素を、 酸化剤極側に空気を流し、フル加湿運転とした。すなわち、電池温度を 80°Cに保持 し、水素ガスは 80°Cの露点を有するように加湿し、空気も 80°Cの露点を有するように 加湿した。そして、燃料利用率 80%、空気利用率 50%、電流密度 0. 35AZcm2で 運転した。この電池運転条件下における、経過時間と電池電圧との関係を図 7に示し た。
また、本実施例で作製したガス拡散層を、先に記した方法にて、中央部分の反発応 力と周辺部分の反発応力を測定した。その結果、中央部分には、 0. 8MPaの応力 であったのに対して、周辺部分は、 0. IMPaであった。したがって、中央部分は応力 が大きぐ触媒層や高分子膜に機械的ダメージを与えやすいのに対して、周辺部分 は、そのような懸念が小さぐ本発明の効果が得られていると考えられる。
[0071] 《実施例 2》
本実施例においては、図 1に示す構造を有する本発明の第二実施形態の高分子 電解質形燃料電池を作製した。具体的には、単繊維としてポリアクリロニトリル系の炭 素繊維 (東レ株式会社製のトレ力 T300 (商品名)、直径 7 /z m)を用いて作製した、図 3に示す本発明の第二実施形態における繊維状基材 (織布)を用いた他は、実施例 1と同様にして本発明の高分子電解質形燃料電池を作製した。
[0072] 繊維状基材の中央部分 33に用いる糸としては、単繊維 300本を撚り合わせて単糸 を得、この単糸 2本を撚り合わせて得た双糸を用いた。この双糸を用い、周辺部分 32 と中央部分 33とで縦糸および横糸の打ち込み本数を変え、通常の織機を用いて平 織りによって織布を作製した。なお、このときの中央部分 33の経緯密度は 200本 Z1 Ocm2となるようにし、周辺部分 32の経緯密度は、 120本 ZlOcm2となるようにして、 織布を作製した。
[0073] この織布を、窒素雰囲気中、 900°Cで加熱して炭化処理したのち、アルゴン雰囲気 中で 2000°Cに加熱して黒鉛化処理を行い、本発明の第二実施形態による繊維状 基材を得た。得られた繊維状基材の中央部分の厚さ Tと周辺部分の厚さ Tとの比 T
A B
/T及び厚さ Tのノ ラツキ (最大値と最小値の差)を実施例 1と同様の方法で測定し
B A B
、表 1に示した。さらに、当該繊維状基材を用いて実施例 1と同様にして単電池から なる高分子電解質形燃料電池を作製し、電池試験を行った。その電池試験の結果を 図 7に示した。
また、本実施例で作製したガス拡散層を、実施例 1と同様の方法にて、中央部分の反 発応力と周辺部分の反発応力を測定したところ、中央部分には、 0. 8MPaの応力で あつたのに対して、周辺部分は、 0. 06MPaであった。
[0074] 《実施例 3》
本実施例においては、図 1に示す構造を有する本発明の第二実施形態の高分子 電解質形燃料電池を作製した。具体的には、単繊維としてポリアクリロニトリル系の炭 素繊維 (東レ (株)製のトレ力 T300 (商品名)、直径 7 /z m)を用いて作製した、図 3お よび 4に示す本発明の第二実施形態における繊維状基材 (ペーパー)を用いた他は 、実施例 1と同様にして本発明の高分子電解質形燃料電池を作製した。
[0075] 上記の単繊維を長さ 20mmに切断して短繊維を得、抄紙法により、薄いペーパー を 3枚作製した。 3枚のうち 1枚のペーパーを触媒層の主面の面積よりも一回り小さい 5cm角に切断し、残りの 2枚のペーパーは触媒層と同様に 6cm角に切断した。幅 lc mの周辺部が形成されるように 6cm角のペーパー 2枚の中央に 5cm角のペーパーを 位置させて挟み、ペーパー間にフエノール榭脂を塗布し、室温で 15kgZcm2の圧力 でプレス機によりプレスして接着し、ペーパー積層体を得た。
[0076] このペーパー積層体を、窒素雰囲気中、 900°Cで加熱して炭化処理したのち、ァ ルゴン雰囲気中で 2000°Cに加熱して黒鉛ィ匕処理を行 、、本発明の第二実施形態 による繊維状基材を得た。得られた繊維状基材の中央部分の厚さ Tと周辺部分の
A
厚さ Tとの比 T /T及び厚さ Tのバラツキ (最大値と最小値の差)を実施例 1と同様
B B A B
の方法で測定し、表 1に示した。さら〖こ、当該繊維状基材を用いて実施例 1と同様に して単電池からなる高分子電解質形燃料電池を作製し、電池試験を行った。その電 池試験の結果を図 7に示した。
また、本実施例で作製したガス拡散層を、実施例 1と同様の方法にて、中央部分の反 発応力と周辺部分の反発応力を測定したところ、中央部分には、 0. 8MPaの応力で あつたのに対して、周辺部分は、 0. 08MPaであった。
[0077] 《実施例 4》
本実施例においては、図 1に示す構造を有する本発明の第三実施形態の高分子 電解質形燃料電池を作製した。具体的には、市販のペーパー (東レ (株)製の TGP — H— 120、厚さ 360 m、 6cm角)を用いて作製した、図 5に示す本発明の第三実 施形態における繊維状基材を用いた他は、実施例 1と同様にして本発明の高分子電 解質形燃料電池を作製した。
[0078] 上記の織布を、窒素雰囲気中、 900°Cで加熱して炭化処理したのち、アルゴン雰 囲気中で 2000°Cに加熱して黒鉛化処理を行い、その後、周辺部分(幅 5mm) 52〖こ 、室温で lOOkg/cm2の油圧プレスを施し、本発明の第三実施形態による繊維状基 材を得た。得られた繊維状基材の中央部分の厚さ Tと周辺部分の厚さ Tとの比 T
A B B I
T及び厚さ Tのノ ラツキ (最大値と最小値の差)を実施例 1と同様の方法で測定し、
A B
表 1に示した。さらに、当該繊維状基材を用いて実施例 1と同様にして単電池力もな る高分子電解質形燃料電池を作製し、電池試験を行った。その電池試験の結果を 図 7に示した。
また、本実施例で作製したガス拡散層を、実施例 1と同様の方法にて、中央部分の反 発応力と周辺部分の反発応力を測定したところ、中央部分には、 0. 8MPaの応力で あつたのに対して、周辺部分は、 0. 06MPaであった。
[0079] 《実施例 5》
本実施例においては、図 1に示す構造を有する本発明の第四実施形態の高分子 電解質形燃料電池を作製した。具体的には、市販の織布(日本カーボン (株)製の G F— 20— 31E)を用いて作製した、図 6に示す本発明の第四実施形態における繊維 状基材を用いた他は、実施例 1と同様にして本発明の高分子電解質形燃料電池を 作製した。
[0080] まず、ポリテトラフロォロエチレン(PTFE)の水性ディスパージヨン (ダイキン工業 (株 )製の D— 1)と水を、水性ディスパージヨンと水との体積比が 1: 20となるように混合し て第一の撥水処理液を調製した。そして、上記の織布をこの第一の撥水処理液中に 、室温、大気中で 1分間浸漬させた。 1分経過後、浸潰させた織布を取り出し、 270°C で 2時間焼成を行い、水分および界面活性剤などを取り除いた。ここで、第一の撥水 処理後の織布における撥水材の量を、浸漬前後の織布の質量に基づいて計算した ところ、第一の撥水処理前の織布の 10質量%に相当する量の撥水材が添加されて いた。
[0081] ついで、第一の撥水処理後の織布の周辺部分 62に二度目の撥水処理 (第二の撥 水処理)を行った。このとき、ポリテトラフロォロエチレン(PTFE)の水性ディスパージ ヨン (ダイキン工業 (株)製の D— 1)と水を、水性ディスパージヨンと水との体積比が 1: 10となるように混合して第二の撥水処理液を調製した。周辺部分 62のみを、第二の 撥水処理液中に室温、大気中で 1分間浸漬させ、 1分経過後、織布を取り出し、 350 °Cで 2時間焼成を行い、水分および界面活性剤などを取り除いて本発明の繊維状基 材を得た。
[0082] ここで、再度の撥水処理後のペーパーの周辺部分 62における撥水材の量を、浸 漬前後の織布の質量に基づ 、て計算したところ、第二の撥水処理前の織布の 5質量 %に相当する量の撥水材が添加されていた。すなわち、周辺部分 62においては、第 一の撥水処理および第二の撥水処理の前の周辺部分の 15質量%に相当する量の 撥水材が添加されていた。
撥水処理終了後、プレス処理を行った。プレス方法は、周辺部分(幅 5mm) 52に、 室温で 50kg/cm2の油圧プレスを施し、本発明の第四実施形態による繊維状基材 を得た。
[0083] 上記のようにして得られた繊維状基材の中央部分の厚さ Tと周辺部分の厚さ Tとの
A B
比 T /T及び厚さ Tのノ ラツキ (最大値と最小値の差)を実施例 1と同様の方法で測
B A B
定し、表 1に示した。さらに、当該繊維状基材を用いて実施例 1と同様にして単電池 からなる高分子電解質形燃料電池を作製し、電池試験を行った。その電池試験の結 果を図 7に示した。
また、本実施例で作製したガス拡散層を、実施例 1と同様の方法にて、中央部分の 反発応力と周辺部分の反発応力を測定したところ、中央部分には、 0. 8MPaの応力 であったのに対して、周辺部分は、 0. 15MPaであった。
[0084] 《実施例 6》
本実施例においては、図 1に示す構造を有する本発明の第四実施形態の高分子 電解質形燃料電池を作製した。具体的には、市販のペーパー (東レ (株)製の TGP — H— 120、厚さ 360 m、 6cm角)を用いて作製した、本発明の第四実施形態に おける繊維状基材を用いた他は、実施例 1と同様にして本発明の高分子電解質形燃 料電池を作製した。
[0085] まず、実施例 5と同じ方法で、第一の撥水処理液を調製し、ペーパーをこの第一の 撥水処理液中に、室温、大気中で 1分間浸潰させた。 1分経過後、浸潰させた織布 を取り出し、 350°Cで 3時間焼成を行い、水分および界面活性剤などを取り除いた。 ここで、第一の撥水処理後のペーパーにおける撥水材の量を、浸漬前後の織布の 質量に基づ 、て計算したところ、第一の撥水処理前の織布の 12質量%に相当する 量の撥水材が添加されて 、た。
ついで、第一の撥水処理後のペーパーの周辺部分 62に実施例 5と同様の方法で 、二度目の撥水処理 (第二の撥水処理)を行い、本発明の繊維状基材を得た。
[0086] ここで、再度の撥水処理後のペーパーの周辺部分 62における撥水材の量を、浸 漬前後のペーパーの質量に基づ 、て計算したところ、第二の撥水処理前のぺーパ 一の 6質量%に相当する量の撥水材が添加されていた。すなわち、周辺部分 62に おいては、第一の撥水処理および第二の撥水処理の前の周辺部分の 18質量%に 相当する量の撥水材が添加されていた。
撥水処理終了後、プレス処理を行った。プレス方法は、周辺部分(幅 5mm) 52に、 室温で 50kg/cm2の油圧プレスを施し、本発明の第四実施形態による繊維状基材 を得た。
[0087] 上記のようにして得られた繊維状基材の中央部分の厚さ Tと周辺部分の厚さ Tとの
A B
比 T /T及び厚さ Tのノ ラツキ (最大値と最小値の差)を実施例 1と同様の方法で測
B A B
定し、表 1に示した。さらに、当該繊維状基材を用いて実施例 1と同様にして単電池 からなる高分子電解質形燃料電池を作製し、電池試験を行った。その電池試験の結 果を図 7に示した。
また、本実施例で作製したガス拡散層を、実施例 1と同様の方法にて、中央部分の反 発応力と周辺部分の反発応力を測定したところ、中央部分には、 0. 8MPaの応力で あつたのに対して、周辺部分は、 0. IMPaであった。
[0088] 《比較例 1》
本比較例においては、市販のペーパー(東レ(株)製の TGP— H— 120、厚さ 360 μ m)をそのまま繊維状基材として用いた。この繊維状基材の中央部分の厚さと周辺 部分の厚さとの比及び厚さのバラツキ (最大値と最小値の差)を実施例 1と同様の方 法で測定し、表 1に示した。また、当該繊維状基材を用いた他は、実施例 1と同様に して単電池からなる高分子電解質形燃料電池を作製し、電池試験を行った。その電 池試験の結果を図 7に示した。
また、本比較例で作製したガス拡散層を、実施例 1と同様の方法にて、中央部分の反 発応力と周辺部分の反発応力を測定したところ、中央部分には、 0. 8MPaの応力で あつたのに対して、周辺部分は、 0. 7MPaであった。
[0089] 《比較例 2》
本比較例においては、市販の織布(日本カーボン (株)製の GF— 20— 31E)を、ポ リテトラフロォロエチレン(PTFE)の水性ディスパージヨン (ダイキン工業 (株)製の D - 1)と水とを、水性ディスパージヨンと水の体積比が 1: 20となるように混合して得た 撥水処理液中に、室温、大気中で 1分間浸潰させた。 1分経過後、浸潰させた織布 を取り出し、 270°Cで 2時間焼成を行い、水分および界面活性剤などを取り除いて繊 維状基材を得た。
[0090] ここで、撥水処理後の織布全体における撥水材の量を、浸漬前後の織布の質量に 基づ 、て計算したところ、撥水処理前の織布の 10質量%に相当する量の撥水材が 添カ卩されていた。
この繊維状基材の中央部分の厚さと周辺部分の厚さとの比及び厚さのバラツキ (最 大値と最小値の差)を実施例 1と同様の方法で測定し、表 1に示した。また、当該繊 維状基材を用いた他は、実施例 1と同様にして単電池からなる高分子電解質形燃料 電池を作製し、電池試験を行った。その電池試験の結果を図 7に示した。
また、本実施例で作製したガス拡散層を、実施例 1と同様の方法にて、中央部分の反 発応力と周辺部分の反発応力を測定したところ、中央部分には、 0. 8MPaの応力で あつたのに対して、周辺部分は、 0. 7MPaであった。
[0091] 《比較例 3》
市販のペーパー(東レ(株)製の TGP—H— 120、厚さ 360 m、 6cm角)の周辺 部分(幅 5mm)だけ、室温で油圧プレスを行った。プレス圧は 50kgZcm2とした。こ の織布はすでに炭化処理および黒鉛化処理が施されていた。
この繊維状基材の中央部分の厚さと周辺部分の厚さとの比及び厚さのバラツキ (最 大値と最小値の差)を実施例 1と同様の方法で測定し、表 1に示した。また、当該繊 維状基材を用いた他は、実施例 1と同様にして単電池からなる高分子電解質形燃料 電池を作製し、電池試験を行った。その電池試験の結果を図 7に示した。
[0092] [表 1]
Figure imgf000027_0001
[0093] 表 1および図 1から、本発明によれば、繊維状基材の主面の面積が触媒層の主面 の面積よりも大きくても、繊維状基材の中央部分および周辺部分の厚さを調節するこ とによって、電池積層体の締結時に繊維状基材の凹凸が高分子電解質膜に損傷を 与えることを防止し、当該損傷に起因する電池出力の低下を低減させた信頼性の高 い高分子電解質形燃料電池を容易且つ確実に実現することができることがわ力る。 産業上の利用可能性
[0094] 本発明の膜電極接合体は、高分子電解質形燃料電池の他、液体燃料電池、燐酸 型燃料電池など各種の燃料電池に有用である。また、本発明の膜電極接合体は、酸 素、オゾン、水素などのガス発生機やガス精製機、および酸素センサ、アルコールセ ンサなどの各種ガスセンサなどにも適用が可能である。さらに、本発明の膜電極接合 体は、定置用や自動車用、モパイル用の高分子電解質形燃料電池に使用すると特 に好適である。

Claims

請求の範囲
[1] 水素イオン伝導性を有する高分子電解質膜と、前記高分子電解質膜の両面に配 置された一対の触媒層と、前記触媒層の外側に配置された繊維状基材を含む一対 のガス拡散層と、を具備する膜電極接合体であって、
前記繊維状基材において、前記触媒層に面する中央部分の厚さ τと、前記中央
A
部分の周辺部分の厚さ Tとが、下記式(1)で示される関係を有すること、を特徴とす
B
る膜電極接合体。
0. 7≤Τ
B /τ≤0. 9 · · · (1)
A
[2] 前記繊維状基材において、前記中央部分の糸径 Dと、前記周辺部分の糸径 Dと
A B
力 下記式 (2)で示される関係を有すること、を特徴とする請求項 1に記載の膜電極 接合体。
D < D · · · (2)
B A
[3] 前記繊維状基材において、前記周辺部分の単位面積あたりの縦糸および横糸の 打ち込み本数 Nと、前記中央部分の単位面積あたりの縦糸および横糸の打ち込み
B
本数 Nとが、下記式(3)で示される関係を有すること、を特徴とする請求項 1に記載
A
の膜電極接合体。
N <N · · · (3)
B A
[4] 前記繊維状基材にお 、て、前記周辺部分がプレス処理されて 、ること、を特徴とす る請求項 1に記載の膜電極接合体。
[5] 前記繊維状基材が撥水材を含み、前記周辺部分における撥水材の濃度 Hと、前
B
記中央部分における撥水材の濃度 Hと力 下記式 (4)で示される関係を有すること
A
、を特徴とする請求項 1〜4の 、ずれかに記載の膜電極接合体。
H >H …(4)
B A
[6] 前記周辺部分の厚さ Tのばらつきが 10 m以下であること、を特徴とする請求項 1
A
〜5のうちのいずれかに記載の膜電極接合体。
[7] 前記ガス拡散層が、前記繊維状基材の前記触媒層側の主面に撥水カーボン層を 有すること、を特徴とする請求項 1〜6のうちのいずれかに記載の膜電極接合体。
[8] 請求項 1記載の膜電極接合体と、前記膜電極接合体の両面に配置された、ガス流 路を有する一対の導電性セパレータと、を具備する高分子電解質形燃料電池。
[9] 水素イオン伝導性を有する高分子電解質膜と、前記高分子電解質膜の両面に配置 された一対の触媒層と、前記触媒層の外側に配置された繊維状基材を含む一対の ガス拡散層と、を具備する膜電極接合体の製造方法であって、
前記繊維状基材において、前記触媒層に面する中央部分の厚さ Tと、前記中央
A
部分の周辺部分の厚さ Tとが、下記式(1)で示される関係を有するように、
B
前記中央部分の糸径 Dと、前記周辺部分の糸径 Dとが、下記式(2)で示される関
A B
係を有する前記繊維状基材を作製する工程を含むこと、
を特徴とする膜電極接合体の製造方法。
0. 7≤Τ /τ≤0. 9 · · · (1)
B A
D < D · · · (2)
B A
[10] 水素イオン伝導性を有する高分子電解質膜と、前記高分子電解質膜の両面に配置 された一対の触媒層と、前記触媒層の外側に配置された繊維状基材を含む一対の ガス拡散層と、を具備する膜電極接合体の製造方法であって、
前記繊維状基材において、前記触媒層に面する中央部分の厚さ τと、前記中央
A
部分の周辺部分の厚さ Tとが、下記式(1)で示される関係を有するように、
B
前記周辺部分の単位面積あたりの縦糸および横糸の打ち込み本数 Nと、前記中
B
央部分の単位面積あたりの縦糸および横糸の打ち込み本数 Nとが、下記式(3)で
A
示される関係を有する前記繊維状基材を作製する工程を含むこと、
を特徴とする膜電極接合体の製造方法。
0. 7≤Τ
B /τ≤0. 9 · · · (1)
A
Ν <Ν · · · (3)
Β A
[11] 水素イオン伝導性を有する高分子電解質膜と、前記高分子電解質膜の両面に配置 された一対の触媒層と、前記触媒層の外側に配置された繊維状基材を含む一対の ガス拡散層と、を具備する膜電極接合体の製造方法であって、
前記繊維状基材において、前記触媒層に面する中央部分の厚さ τと、前記中央
A
部分の周辺部分の厚さ Tとが、下記式(1)で示される関係を有するように、
B
前記周辺部分がプレス処理することによって前記繊維状基材を作製する工程を含 むこと、
を特徴とする膜電極接合体の製造方法。
0. 7≤Τ /τ≤0. 9 · · · (1)
B A
水素イオン伝導性を有する高分子電解質膜と、前記高分子電解質膜の両面に配置 された一対の触媒層と、前記触媒層の外側に配置された繊維状基材を含む一対の ガス拡散層と、を具備する膜電極接合体の製造方法であって、
前記繊維状基材において、前記触媒層に面する中央部分の厚さ τと、前記中央
A
部分の周辺部分の厚さ Tとが、下記式(1)で示される関係を有するように、
B
前記繊維状基材に撥水材を含ませ、前記周辺部分における撥水材の濃度 Hと、
B
前記中央部分における撥水材の濃度 Hとが、下記式 (4)で示される関係を有する前
A
記繊維状基材を作製する工程を含むこと、
を特徴とする膜電極接合体の製造方法。
0. 7≤Τ /τ≤0. 9 · · · (1)
B A
Η >Η …(4)
PCT/JP2005/017503 2004-10-19 2005-09-22 膜電極接合体、その製造方法及び高分子電解質形燃料電池 WO2006043394A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006542292A JP4083784B2 (ja) 2004-10-19 2005-09-22 膜電極接合体、その製造方法及び高分子電解質形燃料電池
US10/583,374 US7687184B2 (en) 2004-10-19 2005-09-22 Membrane electrode assembly with a fibrous substrate, method for producing the same and polymer electrolyte fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004304074 2004-10-19
JP2004-304074 2004-10-19

Publications (1)

Publication Number Publication Date
WO2006043394A1 true WO2006043394A1 (ja) 2006-04-27

Family

ID=36202816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017503 WO2006043394A1 (ja) 2004-10-19 2005-09-22 膜電極接合体、その製造方法及び高分子電解質形燃料電池

Country Status (4)

Country Link
US (1) US7687184B2 (ja)
JP (1) JP4083784B2 (ja)
CN (1) CN100444435C (ja)
WO (1) WO2006043394A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218410A (ja) * 2007-03-07 2008-09-18 Matsushita Electric Ind Co Ltd 燃料電池用電極およびその製造方法
WO2008129398A2 (en) * 2007-04-19 2008-10-30 Toyota Jidosha Kabushiki Kaisha Manufacturing method of membrane electrode assembly used in a fuel cell, and membrane electrode assembly
WO2011058677A1 (ja) 2009-11-12 2011-05-19 トヨタ自動車株式会社 燃料電池
JP2015005525A (ja) * 2014-08-25 2015-01-08 大日本印刷株式会社 燃料電池用ガス拡散層、その製造方法並びにそれを用いた燃料電池用ガス拡散電極、燃料電池用膜−電極接合体及び燃料電池
WO2015029366A1 (ja) * 2013-08-30 2015-03-05 Jx日鉱日石エネルギー株式会社 電気化学還元装置
WO2015198520A1 (ja) * 2014-06-24 2015-12-30 パナソニック株式会社 ガス拡散電極、電気化学装置、及び、燃料電池
JP2016516260A (ja) * 2013-02-26 2016-06-02 ヴィート エンフェー 電極で使用される電流密度ディストリビュータ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800322A (zh) * 2009-02-06 2010-08-11 北京金能燃料电池有限公司 液流电池电极
AT511065B1 (de) * 2011-06-09 2012-09-15 Rosendahl Masch Gmbh Verfahren und vorrichtung zum prüfen von batterieplatten-paketen
JP5259022B1 (ja) * 2011-07-19 2013-08-07 パナソニック株式会社 膜電極接合体およびガス拡散層の製造方法
US20150292094A1 (en) * 2012-06-12 2015-10-15 University Of Wollongong Gas permeable electrodes and electrochemical cells
JP6007163B2 (ja) * 2012-11-22 2016-10-12 本田技研工業株式会社 電解質膜・電極構造体
CN104950029B (zh) * 2014-03-26 2018-10-23 达特传感器(深圳)有限公司 氧传感器
US11374242B2 (en) * 2019-04-06 2022-06-28 Mark Minto Methods and apparatus for decoupling reactant activation and reaction completion

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295728A (ja) * 1993-04-08 1994-10-21 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池用電極およびそれを用いた燃料電池
JPH07220742A (ja) * 1994-01-27 1995-08-18 Matsushita Electric Ind Co Ltd 固体高分子電解質型燃料電池及び該燃料電池の電極−イオン交換膜接合体の製造方法
JPH08124583A (ja) * 1994-10-20 1996-05-17 Toyota Motor Corp 燃料電池
JPH10289722A (ja) * 1997-04-11 1998-10-27 Sanyo Electric Co Ltd 固体高分子型燃料電池およびその製造方法
JP2002305008A (ja) * 2001-04-05 2002-10-18 Fuji Electric Co Ltd 固体高分子電解質形燃料電池とその製造方法
JP2004087505A (ja) * 2003-11-28 2004-03-18 Toshiba Corp 固体高分子型燃料電池
JP2004087491A (ja) * 2002-08-07 2004-03-18 Matsushita Electric Ind Co Ltd 燃料電池
JP2005235736A (ja) * 2004-01-22 2005-09-02 Aisin Seiki Co Ltd 燃料電池用膜電極接合体及びその製造方法、燃料電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2961161B2 (ja) 1991-12-21 1999-10-12 工業技術院長 高分子電解質型燃料電池の製造法
JPH08185872A (ja) 1994-12-28 1996-07-16 Tokyo Gas Co Ltd 固体高分子型燃料電池及びその製造方法
JPH08185881A (ja) 1994-12-28 1996-07-16 Tokyo Gas Co Ltd 固体高分子型燃料電池及びその製造方法
JP2000215903A (ja) 1999-01-25 2000-08-04 Toshiba Corp 固体高分子電解質型燃料電池
JP2002208413A (ja) 2001-01-09 2002-07-26 Toshiba Corp 固体高分子電解質型燃料電池
JP5208338B2 (ja) * 2001-06-29 2013-06-12 本田技研工業株式会社 電解質膜・電極構造体及び燃料電池セル
US7150934B2 (en) * 2002-03-26 2006-12-19 Matsushita Electric Industrial Co., Ltd. Electrolyte film electrode union, fuel cell containing the same and process for producing them
KR100525974B1 (ko) * 2002-08-07 2005-11-03 마쯔시다덴기산교 가부시키가이샤 연료전지
CA2560069C (en) * 2004-03-15 2012-10-30 Cabot Corporation Modified carbon products, their use in fuel cells and similar devices and methods relating to the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295728A (ja) * 1993-04-08 1994-10-21 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池用電極およびそれを用いた燃料電池
JPH07220742A (ja) * 1994-01-27 1995-08-18 Matsushita Electric Ind Co Ltd 固体高分子電解質型燃料電池及び該燃料電池の電極−イオン交換膜接合体の製造方法
JPH08124583A (ja) * 1994-10-20 1996-05-17 Toyota Motor Corp 燃料電池
JPH10289722A (ja) * 1997-04-11 1998-10-27 Sanyo Electric Co Ltd 固体高分子型燃料電池およびその製造方法
JP2002305008A (ja) * 2001-04-05 2002-10-18 Fuji Electric Co Ltd 固体高分子電解質形燃料電池とその製造方法
JP2004087491A (ja) * 2002-08-07 2004-03-18 Matsushita Electric Ind Co Ltd 燃料電池
JP2004087505A (ja) * 2003-11-28 2004-03-18 Toshiba Corp 固体高分子型燃料電池
JP2005235736A (ja) * 2004-01-22 2005-09-02 Aisin Seiki Co Ltd 燃料電池用膜電極接合体及びその製造方法、燃料電池

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218410A (ja) * 2007-03-07 2008-09-18 Matsushita Electric Ind Co Ltd 燃料電池用電極およびその製造方法
WO2008129398A2 (en) * 2007-04-19 2008-10-30 Toyota Jidosha Kabushiki Kaisha Manufacturing method of membrane electrode assembly used in a fuel cell, and membrane electrode assembly
WO2008129398A3 (en) * 2007-04-19 2008-12-18 Toyota Motor Co Ltd Manufacturing method of membrane electrode assembly used in a fuel cell, and membrane electrode assembly
WO2011058677A1 (ja) 2009-11-12 2011-05-19 トヨタ自動車株式会社 燃料電池
CN102576885A (zh) * 2009-11-12 2012-07-11 丰田自动车株式会社 燃料电池
US8877393B2 (en) 2009-11-12 2014-11-04 Toyota Jidosha Kabushiki Kaisha Fuel cell
CN102576885B (zh) * 2009-11-12 2015-05-06 丰田自动车株式会社 燃料电池
JP2016516260A (ja) * 2013-02-26 2016-06-02 ヴィート エンフェー 電極で使用される電流密度ディストリビュータ
JPWO2015029366A1 (ja) * 2013-08-30 2017-03-02 Jxエネルギー株式会社 電気化学還元装置
WO2015029366A1 (ja) * 2013-08-30 2015-03-05 Jx日鉱日石エネルギー株式会社 電気化学還元装置
WO2015198520A1 (ja) * 2014-06-24 2015-12-30 パナソニック株式会社 ガス拡散電極、電気化学装置、及び、燃料電池
JPWO2015198520A1 (ja) * 2014-06-24 2017-05-25 パナソニック株式会社 ガス拡散電極、電気化学装置、及び、燃料電池
JP2015005525A (ja) * 2014-08-25 2015-01-08 大日本印刷株式会社 燃料電池用ガス拡散層、その製造方法並びにそれを用いた燃料電池用ガス拡散電極、燃料電池用膜−電極接合体及び燃料電池

Also Published As

Publication number Publication date
US20080311462A1 (en) 2008-12-18
CN1934734A (zh) 2007-03-21
JPWO2006043394A1 (ja) 2008-05-22
US7687184B2 (en) 2010-03-30
CN100444435C (zh) 2008-12-17
JP4083784B2 (ja) 2008-04-30

Similar Documents

Publication Publication Date Title
JP4439922B2 (ja) 電解質膜電極接合体、それを用いた燃料電池、およびその製造方法
US8916310B2 (en) Conductive sheet and production method for same
EP1139471A1 (en) Porous, electrically conductive sheet and method for production thereof
JP6717748B2 (ja) ガス拡散基材
EP2461401B1 (en) Use of a gas diffusion layer member in a solid polymer fuel cell
JP4083784B2 (ja) 膜電極接合体、その製造方法及び高分子電解質形燃料電池
JP2008204945A (ja) ガス拡散電極用基材、ガス拡散電極及びその製造方法、並びに燃料電池
WO2007136135A1 (ja) 燃料電池用電極及び燃料電池用電極の製造方法、膜-電極接合体及び膜-電極接合体の製造方法、並びに固体高分子型燃料電池
US11837732B2 (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
JP4177697B2 (ja) 高分子膜電極接合体および高分子電解質型燃料電池
JP2005100748A (ja) 電解質膜電極接合体及びその製造方法並びに固体高分子型燃料電池
JP2006222024A (ja) 固体高分子型燃料電池、膜−電極接合体およびガス拡散電極基材
JP2007149454A (ja) ガス拡散層、ガス拡散電極、膜電極接合体及び高分子電解質形燃料電池
JP4423063B2 (ja) 膜・電極接合体およびそれを用いた高分子電解質型燃料電池
US9859572B2 (en) Gas diffusion substrate
JP2011049179A (ja) 固体高分子型燃料電池用膜−電極接合体およびガス拡散電極基材
JP4202205B2 (ja) 燃料電池スタック
JP4959946B2 (ja) 固体高分子型燃料電池、膜−電極接合体およびガス拡散電極基材
JP2014017083A (ja) 燃料電池セル及び燃料電池
JP5426830B2 (ja) 固体高分子型燃料電池用ガス拡散電極、それを用いた膜−電極接合体およびその製造方法、ならびにそれを用いた固体高分子型燃料電池
JP2024148519A (ja) 膜電極接合体、その製造方法及び燃料電池
JP2006134654A (ja) 燃料電池
JP2012074319A (ja) 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10583374

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006542292

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580009122.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05785951

Country of ref document: EP

Kind code of ref document: A1