[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005124899A1 - 二次電池およびその製造方法 - Google Patents

二次電池およびその製造方法 Download PDF

Info

Publication number
WO2005124899A1
WO2005124899A1 PCT/JP2005/004120 JP2005004120W WO2005124899A1 WO 2005124899 A1 WO2005124899 A1 WO 2005124899A1 JP 2005004120 W JP2005004120 W JP 2005004120W WO 2005124899 A1 WO2005124899 A1 WO 2005124899A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
secondary battery
ceramic
porous film
battery according
Prior art date
Application number
PCT/JP2005/004120
Other languages
English (en)
French (fr)
Inventor
Shigeo Ikuta
Yusuke Fukumoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP05720391A priority Critical patent/EP1657767B1/en
Priority to DE602005018591T priority patent/DE602005018591D1/de
Priority to JP2006514659A priority patent/JP4781263B2/ja
Priority to US11/314,008 priority patent/US7560193B2/en
Publication of WO2005124899A1 publication Critical patent/WO2005124899A1/ja
Priority to US11/655,164 priority patent/US7402184B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to a secondary battery having excellent discharge characteristics, and more particularly, to a secondary battery having an electrode plate provided with a porous film for improving battery safety.
  • a secondary battery such as a lithium ion secondary battery generally includes an electrode plate group including a positive electrode, a negative electrode, and a separator interposed therebetween.
  • the separator serves to electrically insulate both electrodes and to hold the electrolyte.
  • a slurry containing fine particles and a resin binder is applied to the surface of the electrode plate, and the coating film is dried with hot air to form a porous film.
  • Patent Document 1 A proposal has been made to unify.
  • a separator comprising a resin that also forms a polyolefin and inorganic fine particles has been proposed (see Patent Document 2).
  • a slurry in which raw materials for the porous membrane are dispersed in a liquid component by a disperser is generally used.
  • Raw materials for the porous film include fine particles serving as a filler for the porous film and resin serving as a binder for the fine particles.
  • the fine particles that become the filler are supplied to the disperser in a powder state.
  • FIG. 3 shows a schematic diagram of the aggregated particles 32 composed of the conventional primary particles 31.
  • Patent Document 1 Patent No. 3371301
  • Patent Document 2 JP-A-10-50287
  • Patent Document 3 Japanese Patent Laid-Open No. 10-106530 (FIG. 2)
  • an object of the present invention is to improve the discharge characteristics of a secondary battery in which a porous film is provided on an electrode plate for improving the safety of the battery, particularly at a low temperature and at a large current.
  • the present invention is a secondary battery including a positive electrode, a negative electrode, and a porous film adhered to at least one surface of the positive electrode and the negative electrode, wherein the porous film contains ceramic particles and a binder.
  • the ceramic particles relate to a secondary battery including polycrystalline particles obtained by mechanically crushing a ceramic fired body.
  • the ceramic fired body directly synthesized from the ceramic precursor is a fired body synthesized from the ceramic precursor without generating independent primary particles.
  • the bulk density of the ceramic particles is 0.1-0.
  • It is preferably 8 g / cm 3 .
  • the BET specific surface area of the ceramic particles is desirably 5 to 20 m 2 Zg. like this
  • Ceramic particles having a BET specific surface area are suitable for forming a high-porosity porous film in combination with a small amount of a binder.
  • the ceramic particles are polycrystalline particles obtained by mechanically crushing a ceramic fired body. For example, even if 70% by weight or more is polycrystalline particles and less than 30% by weight is other particles. Good. It is preferable that at least a part of the other particles have at least one kind of force selected from the group consisting of alumina, magnesia, silica, and zirconia.
  • the porosity of the porous film is desirably 40 to 80% from the viewpoint of achieving both the charge and discharge characteristics of the battery and the mechanical strength of the porous film. If the porous film has such a high porosity, the charge / discharge characteristics of the battery at a large current and the charge / discharge characteristics in a low-temperature environment are not significantly impaired. However, if the porosity is too high, the mechanical strength of the porous membrane becomes weak, and cracks and peeling are likely to occur.
  • the porous membrane can also function as a separator, but the present invention includes a sheet-like (cloth-like) separator interposed between the positive electrode and the negative electrode.
  • a sheet-like separator a conventional sheet-like separator such as a polyolefin microporous sheet can be used without any particular limitation.
  • Porous membranes also have a similar effect to conventional sheet separators, but their structure is significantly different from conventional sheet separators. Unlike a microporous sheet obtained by stretching a resin sheet, the porous membrane has a structure in which ceramic particles are bonded with a binder. Therefore, the tensile strength in the surface direction of the porous membrane is lower than that of the sheet separator. However, porous membranes are excellent in that they do not shrink heat unlike sheet separators even when exposed to high temperatures. Yes. The porous membrane has the function of preventing the short circuit from spreading, preventing abnormal heating, and enhancing the safety of the secondary battery when an internal short circuit occurs or the battery is exposed to high temperatures.
  • the present invention also provides a step of obtaining a ceramic sintered body having a ceramic precursor force, a step of mechanically pulverizing the ceramic sintered body to obtain ceramic particles containing polycrystalline particles,
  • the present invention relates to a method for producing a secondary battery, comprising: a step of obtaining a slurry containing a slurry and a binder; and a step of applying the slurry to the surface of an electrode and drying the slurry to obtain a porous film adhered to the surface of the electrode.
  • a porous film having high porosity, including ceramic particles including polycrystalline particles can be rationally formed. That is, the step of obtaining ceramic particles in the above method is suitable for obtaining polycrystalline particles having an irregular three-dimensional structure that is difficult to be packed at high density.
  • the ceramic particles preferably contain ⁇ -alumina.
  • ⁇ -alumina When obtaining ceramic particles containing ⁇ -alumina, it is desirable to use an aluminum ammonium salt and aluminum or aluminum alkoxide as the ceramic precursor. If these are used as precursors, polycrystalline particles with high purity ⁇ -alumina can be obtained, so that unnecessary side reactions hardly occur in the battery.
  • amorphous polycrystalline particles can be easily obtained.
  • the poly-crystalline particles thus obtained, ⁇ -alumina particles, give a porous film with a high porosity which is densely packed and difficult to carry.
  • the step of obtaining a slurry containing ceramic particles and a binder it is preferable to perform medialess dispersion.
  • the medialess dispersion it is possible to obtain a slurry by dispersing polycrystalline particles in a liquid component that do not destroy an irregular three-dimensional structure such as a dendritic shape. That is, according to the medialess dispersion, it is possible to obtain a slurry without impairing the properties of the ceramic particles, which are difficult to fill at high density.
  • a secondary battery in which a porous film for improving battery safety is adhered to an electrode plate, it is possible to improve discharge characteristics particularly at a low temperature and a large current. According to the present invention, such a secondary battery can be manufactured at low cost.
  • FIG. 1 is a schematic diagram of polycrystalline particles.
  • FIG. 2 is an SEM photograph of a surface of a porous membrane according to one example of the present invention.
  • FIG. 3 is a schematic view of a conventional aggregated particle having a primary particle force.
  • FIG. 4 is an SEM photograph of the surface of a conventional porous film according to a comparative example.
  • the secondary battery of the present invention includes a positive electrode, a negative electrode, and a porous film adhered to the surface of at least one electrode selected from the positive electrode and the negative electrode.
  • the present invention is preferably applied to a lithium ion secondary battery, but can also be applied to other various secondary batteries, for example, an alkaline storage battery.
  • the present invention includes all cases where the porous membrane is disposed so as to be interposed between the positive electrode and the negative electrode. That is, the present invention relates to a case where the porous film is bonded only to the positive electrode surface, a case where the porous film is bonded only to the negative electrode surface, and a case where the porous film is bonded to both the positive electrode surface and the negative electrode surface. Including. In addition, the present invention provides a case where the porous membrane is bonded to only one side of the positive electrode, a case where the porous membrane is bonded to both sides of the positive electrode, a case where it is bonded only to one side of the negative electrode, and a case where both sides of the negative electrode are bonded. Glued! Including the case.
  • the porous film contains ceramic particles and a binder. Even when the secondary battery has a sheet-like separator, the porous film needs to be attached to at least one surface of the positive electrode and the negative electrode. This is because a sheet-shaped separator generally has low heat resistance. This is because, even if the porous film is adhered to the sheet-like separator, if the heat is generated due to the internal short circuit, the porous film shrinks together with the sheet-like separator.
  • the polycrystalline particles according to the present invention include single crystals that have grown to the same degree as conventional primary particles (for example, an average particle diameter of 0.05 m to 1 m).
  • FIG. 1 shows a schematic diagram of the polycrystalline particles 12.
  • the polycrystalline particles 12 do not have such a connecting portion in that they have a connecting portion that connects single crystal nuclei, and thus are largely different from conventional fillers in which primary particles are aggregated by Van der Waalska. Since the nuclei of the grown single crystals are in a connected state, the polycrystalline particles usually have nodules, bumps or bulges, and preferably have dendritic, coral or tufted shapes. It is preferable that a so-called neck 13 is formed in the connecting portion as shown in FIG. 1. However, even if the neck cannot be clearly distinguished, particles can be used.
  • Ceramic particles including the polycrystalline particles as described above can be easily obtained, for example, by appropriately and mechanically pulverizing a ceramic fired body. It is preferable that all the ceramic particles have a polycrystalline particle force, but if they are less than 30% by weight, for example, they may contain other particles, for example, spherical or almost spherical primary particles or aggregated particles thereof. As other particles, it is preferable to use particles of alumina, magnesia, silica, zirconia, and the like. These may be used alone or in combination of two or more.
  • the polycrystalline particles desirably contain an average of 3 or more, more preferably 5 or more and 30 or less single crystal nuclei.
  • the number of single crystal nuclei contained in each polycrystalline particle is determined from a scanning microscope (SEM) photograph, etc., and the average of them is 3 or more, and furthermore 5 It is desirable that the number be 30 or more.
  • the bulk density of the ceramic particles is 0. 1-0. 8g / cm 3, more 0. 3-0. 6g / cm 3 Dearuko and are preferred.
  • the bulk density is less than 0.1 lg / cm 3 , the porosity of the porous film is improved, but the amount of the binder is relatively small with respect to the specific surface area of the ceramic particles.
  • the bulk density exceeds 0.8 g / cm 3 , the amount of the binder becomes relatively large, and the porosity of the porous film may not be sufficiently improved.
  • the bulk density of the ceramic particles is measured by a static method. The static method is performed, for example, in accordance with JIS R9301-2-3 (1999).
  • the BET specific surface area of the ceramic particles is preferably 5-20 m 2 / g.
  • the BET specific surface area decreases as the pulverization proceeds. If the crushing of the fired body proceeds too much and the BET specific surface area is less than 5 m 2 Zg, the porosity of the porous film may not be sufficiently improved. Conversely, when the BET specific surface area exceeds 20 m 2 / g, the specific surface area of the ceramic particles becomes large with respect to the binder amount.
  • a manufacturing problem may occur, such as a gelling of the slurry and an increased tendency of the particles to aggregate.
  • the porosity of the porous membrane is preferably from 40 to 80%, more preferably from 45 to 80%, and particularly preferably from 50 to 70%. If the porous film has a high porosity of 40% or more, especially 45% or more, the charge / discharge characteristics of the battery at a large current and the charge / discharge characteristics in a low temperature environment are not significantly impaired. However, if the porosity exceeds 80%, the mechanical strength of the porous membrane becomes weak.
  • the porosity of the porous film is measured, for example, as follows.
  • a slurry in which the raw material of the porous film is dispersed is prepared. That is, ceramic particles and a binder are mixed with a liquid component, and medialess dispersion is performed to prepare a slurry. The obtained slurry is passed through an appropriate filter and then applied to a predetermined thickness on a metal foil by a doctor blade. Then, if the coating film is dried, a test piece of the porous film is completed. Using this, the porosity of the test piece is calculated as follows.
  • the true volume VI including no voids of the test piece of the porous membrane and the apparent volume V2 including voids are measured.
  • the true volume VI is obtained by calculating the weight of the test piece of the porous membrane, the true density of the ceramic particles, the true density of the binder, and the mixing ratio between the ceramic particles and the binder.
  • the apparent volume V2 is obtained from the outer dimensions (thickness and area) of the test piece of the porous membrane.
  • the porosity P is given by the following formula:
  • the material (the type of ceramics) of the polycrystalline particles is not particularly limited, and oxides, nitrides, carbides, and the like can be used alone or in combination. Of these Is preferred from the viewpoint of easy availability.
  • oxidized products include alumina (aluminized aluminum), titanium (titanium oxide), zirconium (zirconium oxide), magnesia (magnesium oxidized), zinc oxidized, and silica (oxidized silicate). Element) can be used. Of these, ⁇ -alumina, which is preferred for alumina, is particularly preferred.
  • ⁇ -alumina is chemically stable, and high-purity one is particularly stable.
  • the battery is not affected by the electrolyte or the oxidation-reduction potential inside the battery, and does not cause side reactions that adversely affect battery characteristics.
  • the ceramic particles according to the present invention can be easily obtained by, for example, a method including a step of firing a ceramic precursor to obtain a fired ceramic body and a step of mechanically crushing the fired ceramic body.
  • the ceramic fired body has a structure in which the nuclei of the grown single crystal are three-dimensionally connected. If such a fired body is appropriately crushed mechanically, ceramic particles containing polycrystalline particles having a shape that is difficult to be packed at high density can be obtained.
  • an aluminum ammonium salt and Z or aluminum alkoxide as a ceramic precursor or a raw material thereof.
  • the aluminum alkoxide for example, aluminum tributoxide or the like can be used.
  • the aluminum ammonium salt for example, ammonium-dumsonite, ammonium alum, etc. can be used.
  • the aluminum ammonium salt and / or aluminum alkoxide can be calcined as it is, but the aluminum alkoxide is usually calcined through a treatment such as hydrolysis. It is preferable to directly bake the aluminum ammonium salt after dehydration or drying. For example, an aluminum salt such as aluminum sulfate is reacted with NHHCO,
  • Num-Dumdosonite is synthesized, dehydrated, fired, and grown to obtain ceramic particles.
  • a dry pulverizing means such as a jet mill.
  • the desired bulk density, BET specific surface area or average It is possible to obtain ceramic particles having a small diameter.
  • a slurry containing the obtained ceramic particles and a binder is prepared, applied to the electrode surface, and dried to obtain a high porosity of 40% to 50% or more adhered to the electrode surface.
  • a porous membrane can be obtained.
  • the structure of polycrystalline particles in the slurry is easily broken by a dispersion method using a medium such as force beads or balls using a bead mill or the like.
  • a medium such as force beads or balls using a bead mill or the like.
  • the ceramic particles come closer to a conventional spherical or almost spherical filler having a primary particle force.
  • a binder having heat resistance and electrolytic solution resistance is used.
  • fluorine resin can be used as the binder.
  • PVDF Polyfluoridene fluoride
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • the binder a polyacrylic acid derivative, a polyacrylonitrile derivative or the like can be used.
  • Polyacrylic acid derivatives and polyacrylonitrile derivatives include, in addition to acrylic acid units or Z and acrylo-tolyl units, methyl acrylate units, ethyl acrylate units, methyl methacrylate units, and methyl methacrylate units. It is preferable to include at least one selected from them.
  • polyethylene, styrene-butadiene rubber, and the like can also be used. These may be used alone or in combination of two or more.
  • a polymer containing an acrylonitrile unit, that is, a polyacrylonitrile derivative is particularly preferable.
  • the porous film provides more flexibility. Since it is provided, cracking and peeling occur in the porous film.
  • the present invention is applicable to secondary batteries in general, and can be applied to, for example, lithium ion secondary batteries, alkaline storage batteries, and the like.
  • the high-current charge / discharge behavior of the battery at low temperatures for example, the discharge characteristics at 0 ° C and 2C rate, generally increases the porosity of the porous film.
  • the discharge characteristics at 0 ° C and 2C rate generally increases the porosity of the porous film.
  • the electrode plate to which the porous membrane is adhered is particularly effective to be used in a lithium ion secondary battery. Since a lithium ion secondary battery contains an electrolytic solution composed of a flammable organic non-aqueous solvent, it is a power that requires particularly high safety. By using an electrode plate to which a porous film is bonded, a high level of safety can be imparted to a lithium ion secondary battery.
  • the electrolytic solution of the lithium ion secondary battery a solution in which a lithium salt is dissolved in an organic nonaqueous solvent as described above is used.
  • the concentration of the lithium salt dissolved in the non-aqueous solvent is generally 0.5 to 2 mol ZL.
  • the lithium salt is not particularly limited.
  • lithium borohydride LiCIO
  • LiBF lithium borofluoride
  • the non-aqueous solvent is not particularly limited.
  • the non-aqueous solvent include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethinolecarbonate (DMC), ethynolecarbonate (DEC), and ethyl methyl carbonate (EMC).
  • Esters; carboxylate esters such as ⁇ -butyrolataton, ⁇ -bale-mouth ratatone, methyl formate, methyl acetate, methyl propionate; ethers such as dimethyl ether, getyl ether and tetrahydrofuran are used.
  • the non-aqueous solvent may be used alone or in a combination of two or more. Of these, carbonates are particularly preferably used.
  • bene carbonate VC
  • CHB cyclohexylbenzene
  • modified VC or CHB etc.
  • the negative electrode of the lithium ion secondary battery is a mixture layer containing at least a negative electrode active material made of a material capable of inserting and extracting lithium ions, a negative electrode binder, and a thickener. Is formed on the negative electrode current collector.
  • a negative electrode active material made of a material capable of inserting and extracting lithium ions, a negative electrode binder, and a thickener. Is formed on the negative electrode current collector.
  • Examples of the negative electrode active material include various natural graphites, various artificial graphites, carbon materials such as petroleum coats, carbon fibers, organic polymer fired products, oxides, silicon such as silicide, tin-containing composite materials, various metals and An alloy material or the like can be used.
  • the negative electrode binder is not particularly limited !, but from the viewpoint of exhibiting the binding property with a small amount, those containing a styrene unit and a butadiene unit, which are preferred by rubber particles, are particularly preferable.
  • a styrene-butadiene copolymer (SBR), a modified SBR, or the like can be used.
  • the negative electrode binder When rubber particles are used as the negative electrode binder, it is desirable to use a thickener that also has a water-soluble high molecular force.
  • a thickener that also has a water-soluble high molecular force.
  • CMC is particularly preferable because cellulosic resin is preferred.
  • PVDF a modified form of PVDF, or the like can also be used.
  • the amounts of the rubber binder-based negative electrode binder and the water-soluble polymer-based thickener included in the negative electrode are preferably 0.1 to 5 parts by weight per 100 parts by weight of the negative electrode active material. Better.
  • the negative electrode current collector a metal foil stable at a negative electrode potential such as a copper foil, a film in which a metal such as copper is disposed on a surface layer, or the like can be used.
  • the negative electrode current collector can have irregularities on its surface or can be perforated.
  • the positive electrode of the lithium ion secondary battery has a mixture layer containing at least a positive electrode active material having a lithium composite oxide property, a positive electrode binder, and a conductive agent on a positive electrode current collector. It is arranged and formed.
  • lithium composite oxide examples include lithium cobalt oxide (LiCoO) and lithium cobalt oxide.
  • lithium nickelate LiNiO
  • lithium nickelate lithium nickelate
  • lithium manganate lithium nickelate
  • LiMn O modified lithium manganate, Co, Ni or Mn of these oxides
  • transition metal elements are preferably substituted by other transition metal elements or typical metals such as aluminum and magnesium, or compounds mainly containing iron, which is widely called olivic acid, and the like.
  • the positive electrode binder is not particularly limited, and may be polytetrafluoroethylene (PTFE), a modified PTFE, PVDF, a modified PVDF, modified acrylonitrile rubber particles (manufactured by Nippon Zeon Co., Ltd.).
  • BM-500B (trade name) ”).
  • PTFE and BM-500B are CMC, polyethylene oxide (PEO), and modified acrylonitrile rubber (Nippon Zeon Co., Ltd.) U, which is preferably used in combination with “BM-720H (trade name)” manufactured by U.S.A.
  • acetylene black, Ketjen black, various graphites and the like can be used. These may be used alone or in combination of two or more.
  • the positive electrode current collector a metal foil that is stable at a positive electrode potential such as an aluminum foil, a film in which a metal such as aluminum is disposed on a surface layer, or the like can be used.
  • the positive electrode current collector can have irregularities on its surface or can be perforated.
  • the present invention can also be applied to a secondary battery that does not use a conventional sheet-shaped (cloth-shaped) separator (hereinafter, simply referred to as a separator).
  • a conventional sheet-like separator is not required, so that a low-cost battery can be realized.
  • the sheet separator it is necessary to pay a high degree of attention to the entry of foreign matter during the battery manufacturing process and to sufficiently prevent short circuit failure.
  • the present invention can naturally be applied to a secondary battery using a sheet separator.
  • a sheet-like separator between the positive electrode and the negative electrode, the short-circuit prevention ability of the battery is further improved, and the safety and reliability of the battery are further improved.
  • the sheet-like separator is not particularly limited as long as it has a material strength that can withstand the use environment of the lithium ion secondary battery, but a microporous sheet made of polyolefin resin is generally used.
  • a microporous sheet made of polyolefin resin As the polyolefin resin, polyethylene, polypropylene and the like are used.
  • the microporous sheet may be a single layer film composed of one kind of polyolefin resin, or a multilayer film composed of two or more kinds of polyolefin resin.
  • the thickness of the sheet separator is not particularly limited, but is preferably 8 to 30 ⁇ m from the viewpoint of maintaining the design capacity of the battery!
  • an aluminum alkoxide, aluminum tributoxide was prepared. Pure water is added to aluminum-trimbutoxide and hydrolyzed to form an alumina gel, which is dried. Let dry. The thus obtained dried gel was used as a ceramic precursor.
  • the dried gel as a ceramic precursor was fired at 1200 ° C. for 3 hours to obtain a fired body of ⁇ -alumina.
  • the average particle size of the nucleus composed of a single crystal of alumina was determined from an SEM photograph, and was about 0.2 ⁇ .
  • the obtained fired body was crushed by a jet mill.
  • the bulk density of the ceramic particles is 0.05-1.
  • the crushing conditions were controlled so that the BET specific surface area was 3 to 22 m 2 / g, and particles having the bulk density and the BET specific surface area shown in Table 1 were obtained.
  • the bulk density was measured by a static test method using "Boda Tester (product surface)" manufactured by Hosokawa Micron Corporation. Observation of the obtained particles with a SEM photograph confirmed that the V and deviation were also branched polycrystalline particles.
  • NMP N-methyl-2-pyrrolidone
  • the mixture of the polycrystalline alumina particles, the binder, and the dispersion medium was stirred by a medialess dispersing machine “CLEARMIX (trade name)” manufactured by Emtechnik Co., Ltd. And the binder were dispersed in NMP until uniform, to obtain slurries A1 to A5.
  • FIG. 2 shows a 30,000-fold enlarged photograph (SEM photograph).
  • SEM photograph shows that the polycrystalline alumina particles are dendritic. Further, since relatively large voids are formed between the particles, it is understood that the porosity of the porous film is large.
  • the thickness of the aluminum foil and the electrode plate which also provided the layer strength of the positive electrode mixture, was controlled to 160 m. Then, the electrode plate was slit into a width that could be inserted into the battery can of a cylindrical battery (product number 18650), and a positive electrode hoop was obtained.
  • a negative electrode mixture layer having a Z mixture layer volume of 1.4 gZcm 3 was formed. At this time, the thickness of the electrode plate composed of the copper foil and the negative electrode mixture layer was controlled to 180 m. Then, the electrode plate was slit to a width that could be inserted into the battery can of a cylindrical battery (product number 18650), and a negative electrode hoop was obtained.
  • the specified slurry is applied to both sides of the negative electrode hoop by the gravure roll method at a rate of 0.5 mZ, and dried by applying hot air at 120 ° C for 0.5 mZ second and drying.
  • a porous film having a thickness of 5 ⁇ m per side was formed.
  • a non-aqueous electrolyte was prepared by dissolving at a concentration of ZL. Further, 3 parts by weight of VC was added to 100 parts by weight of the nonaqueous electrolyte.
  • a cylindrical battery of No. 18650 was manufactured in the following manner. First, each of the positive electrode and the negative electrode was cut into a predetermined length. One end of the positive electrode lead was connected to the positive electrode lead connection, and one end of the negative electrode lead was connected to the negative electrode lead connection. Thereafter, the positive electrode and the negative electrode were wound through a separator made of a microporous sheet made of polyethylene resin having a thickness of 15 / zm to form a columnar electrode plate group. The outer surface of the electrode group was interposed with a separator.
  • This electrode group was housed in a battery can with being sandwiched between an upper insulating ring and a lower insulating ring. Next, 5 g of the above non-aqueous electrolyte was weighed and injected into a battery can, and the pressure was reduced to 133 Pa to impregnate the electrode assembly.
  • Table 1 shows the discharge capacities obtained by discharging at 0 ° C and 2C rate.
  • ammonium-aluminum salt which is an ammonium aluminum salt
  • ammonium-aluminum salt was prepared as an alumina precursor. This was fired at 1200 ° C for 3 hours to obtain a fired body of ⁇ -alumina.
  • the obtained fired body was crushed by a jet mill.
  • the crushing conditions were controlled so that the bulk density of the ceramic particles was 0.05 to 1.2 g / cm 3 and the BET specific surface area was 3.5 to 25 m 2 / g.
  • Particles each having a BET specific surface area were obtained.
  • the bulk density was measured by a static test method using a “powder tester (product surface)” manufactured by Hosokawa Micron Corporation. It was. Observation of the obtained particles with a SEM photograph confirmed that each of the particles was a branched polycrystalline particle.
  • Slurries B1-B5 were obtained in the same manner as in Example 1, except that the polycrystalline alumina particles thus obtained were used. Further, in the same manner as in Example 1, the porosity of the porous film produced using the slurries B1-B5 was measured. Furthermore, lithium ion secondary batteries (prototype batteries) were fabricated in the same manner as in Example 1, and their low-temperature discharge characteristics were evaluated and nail penetration tests were performed. Table 2 shows the results.
  • the slurry C1 was prepared in the same manner as in Example 1 except that spherical or nearly spherical alumina particles having an average particle diameter of 0.3 / zm were used instead of dendritic polycrystalline particles.
  • the porosity of the porous film produced using the slurry C1 was measured.
  • lithium ion secondary batteries prototype batteries
  • a slurry C2 was prepared using the same raw materials and formulation as the slurry A3 of Example 1, except that a bead mill disperser was used instead of the medialess disperser. Further, in the same manner as in Example 1, the porosity of the porous film produced using the slurry C2 was measured. Furthermore, lithium ion secondary batteries (prototype batteries) were fabricated in the same manner as in Example 1, and their low-temperature discharge characteristics were evaluated and nail penetration tests were performed. Table 3 shows the results.
  • a slurry C3 was prepared using the same raw materials and formulation as the slurry B3 of Example 1, except that a bead mill disperser was used instead of the medialess disperser. Further, in the same manner as in Example 1, the porosity of the porous film produced using the slurry C3 was measured. Further, in the same manner as in Example 1, lithium ion secondary batteries (prototype batteries) were produced, and their low-temperature discharge characteristics were evaluated and nail penetration tests were performed. Table 3 shows the results.
  • the porosity of the porous film exceeded 45% when using a slurry prepared by performing medialess dispersion using dendritic polycrystalline particles.
  • a porosity of 45% or more was achieved when the bulk density of the ceramic particles was 0.8 g / cm 3 or less and the BET specific surface area was 5 m 2 / g or more. That is, when the bulk density of the ceramic particles is larger than 0.8 g / cm 3, when the BET specific surface area is smaller than 5 m 2 / g (slurry A5 B5), the porosity of the porous film was higher than 40%, but lower than 45%, and the low-temperature discharge characteristics were poor. Furthermore, when alumina particles having a spherical or almost spherical primary particle force were used (slurry C1), the porosity of the porous film was lower than 40% and the low-temperature discharge characteristics were poor.
  • the bulk density of the ceramic particles is 0.1 to 0.8 gZcm 3 and the BET specific surface area is 5 to 20 m 2 / g in terms of battery performance and manufacturing process.
  • a lithium ion secondary battery was fabricated without using a sheet separator.
  • the obtained prototype battery exhibited a discharge capacity of 1830 mAh at a low-temperature 2C rate discharge, similarly to the battery produced using the slurry A3 in Example 1.
  • the conventional sheet-shaped separator is expensive, but in this embodiment, it was not necessary to use it, and the battery could be manufactured at low cost.
  • Slurries D1-D10 were obtained in the same manner as in Example 1, except that a mixture of the same polycrystalline particles and other particles as used in slurry A4 of Example 1 was used as the ceramic particles. .
  • Other particles having a bulk density and a BET specific surface area shown in Table 4 were used. Table 4 shows the ratio of other particles to the total amount of the ceramic particles.
  • Particle V Alumina spherical particle
  • Particle W Alumina massive particle
  • Particle X magnesia (magnesium oxide)
  • Particle Y Zinorekonia (Zinolecon oxide)
  • Particle Z Silica (diacid-dialide)
  • Particle V is a single crystal particle, and was synthesized by a CVD method in which aluminum alkoxide is reacted in a gas phase.
  • the particles W are angular block-shaped particles, in which bauxite is dissolved with caustic soda to precipitate aluminum hydroxide. Obtained by the Bayer method of firing after dehydration.
  • Example 2 the porosity of the porous film produced using the slurries D1 to D10 was measured. Further, in the same manner as in Example 1, lithium ion secondary batteries (prototype batteries) were manufactured using the slurries D1-D10, and their low-temperature discharge characteristics were evaluated and nail penetration tests were performed. Table 4 shows the results.
  • the present invention is particularly applicable to a secondary battery in which a porous film for improving battery safety is provided on an electrode plate, particularly a portable power source, etc., from the viewpoint of improving discharge characteristics at a large current at a low temperature.
  • a porous film for improving battery safety is provided on an electrode plate, particularly a portable power source, etc.
  • the present invention is applicable to secondary batteries in general, but is particularly effective for lithium ion secondary batteries that include an electrolyte composed of a flammable organic non-aqueous solvent and require a high level of safety. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

 正極と、負極と、正極および負極の少なくとも一方の表面に接着された多孔膜とを具備する二次電池において、多孔膜は、セラミックス粒子および結着剤を含み、セラミックス粒子は、セラミックス前駆体から直接合成したセラミックス焼成体を機械的に解砕した多結晶粒子を含む。多孔膜の空隙率は、例えば40~80%である。多孔膜は、セラミックス前駆体からセラミックス焼成体を得る工程と、セラミックス焼成体を機械的に解砕して、セラミックス粒子を得る工程と、セラミックス粒子と結着剤とを含むスラリーを得る工程と、スラリーを電極の表面に塗布し、乾燥させる工程とを含む方法により形成することができる。                                                                         

Description

明 細 書
二次電池およびその製造方法
技術分野
[0001] 本発明は、放電特性に優れた二次電池に関し、詳しくは、極板に電池の安全性を 向上させるための多孔膜が設けられた二次電池に関する。
背景技術
[0002] リチウムイオン二次電池等の二次電池は、一般に正極、負極およびこれらの間に介 在するセパレータカもなる極板群を具備する。セパレータは、両極を電気的に絶縁し 、さらに電解液を保持する役目をもつ。近年は製造品質の向上のために、微粒子と 榭脂結着剤とを含むスラリーを極板表面に塗布し、塗膜を熱風で乾燥して多孔膜を 形成することにより、極板と多孔膜とを一体化する提案がなされている(特許文献 1参 照)。また、ポリオレフインカもなる榭脂と無機微粒子とからなるセパレータも提案され ている (特許文献 2参照)。
[0003] 多孔膜を形成する場合、一般に多孔膜の原料を分散機で液状成分中に分散させ たスラリーが用いられる。多孔膜の原料には、多孔膜のフィラーとなる微粒子と、微粒 子の結着剤となる榭脂とが含まれる。フイラ一となる微粒子は、粉末状態で分散機に 供給される。
[0004] 従来の微粒子は、球状もしくはほぼ球状の一次粒子からなり、その一次粒子は弱 いファンデアワールスカ(凝集力)により集合して、凝集粒子を形成している。図 3に 従来の一次粒子 31からなる凝集粒子 32の模式図を示す。
[0005] そこで、多孔膜の厚さや空隙率が安定するように、スラリーを調製する際には、ビー ズミル等の分散機を用いて、可能な限り凝集粒子を一次粒子に分離させることが行 なわれて!ヽる (特許文献 3参照)。
特許文献 1 :特許第 3371301号明細書
特許文献 2:特開平 10- 50287号公報
特許文献 3:特開平 10-106530号公報(図 2)
発明の開示 発明が解決しょうとする課題
[0006] 互いに分離した球状もしくはほぼ球状の一次粒子が分散したスラリーを用いて多孔 膜を形成し、多孔膜と一体化された極板を用いる場合、極板群を構成する際の短絡 不良等は発生しに《なる。しかし、スラリー中に凝集を解かれた球状もしくはほぼ球 状の一次粒子が分散しているため、一次粒子が多孔膜に高密度に充填されやすい 。その結果、多孔膜に占める空隙体積の割合 (空隙率)が低くなり、二次電池の高率 充放電特性や低温環境での充放電特性が不十分になりやすい。
[0007] 一次粒子が高密度に充填された多孔膜を具備する二次電池の場合、例えば携帯 電話やノートパソコン等の電源としては十分な特性が得られない場合がある。特に 0 °C以下の温度環境下で使用される場合には、二次電池の充放電特性が著しく低下 し、実用上問題となることがある。
[0008] 上記を鑑み、本発明は、極板に電池の安全性を向上させるための多孔膜が設けら れた二次電池において、特に低温における大電流での放電特性を向上させることを 目的とする。
課題を解決するための手段
[0009] 本発明は、正極と、負極と、正極および負極の少なくとも一方の表面に接着された 多孔膜とを具備する二次電池であって、多孔膜は、セラミックス粒子および結着剤を 含み、セラミックス粒子は、セラミックス焼成体を機械的に解砕した多結晶粒子を含む 二次電池に関する。
なお、セラミックス前駆体力 直接合成されたセラミックス焼成体を用いることが好ま しい。セラミックス前駆体から直接合成したセラミックス焼成体とは、セラミックス前駆体 から、独立した一次粒子の生成を経ることなく合成される焼成体を言う。
[0010] セラミックス焼成体を機械的に解砕する場合、適度な解砕を行うことにより、複数の 単結晶からなる領域を含む多結晶粒子が多く生成する。このような多結晶粒子は、瘤 、隆起もしくは膨らみを有し、樹枝状、珊瑚状、もしくは房 (ふさ)状などの不定形な立 体構造を有する。そのため、セラミックス焼成体を機械的に解砕して得られる多結晶 粒子は、多孔膜中に高密度充填されに《なるものと考えられる。特に、多結晶粒子 の形状が樹枝状もしくは珊瑚状である場合には、粒子間に空隙が形成されやすぐ 高い空隙率を容易に実現できる。よって、上記構成によれば、従来よりも格段に高い 空隙率を有する多孔膜の形成が可能になる。
[0011] セラミックス粒子の嵩密度が小さい方が、得られる多孔膜の空隙率を高くすることが できる。ただし、嵩密度が小さすぎると、セラミックス粒子と結着剤とを含むスラリーの 調製工程において、セラミックス粒子の取扱いが困難になる。多孔膜の高空隙率と多 孔膜の製造の容易さとを両立させる観点から、セラミックス粒子の嵩密度は 0. 1-0.
8g/cm3であることが望まし 、。
[0012] セラミックス粒子の BET比表面積は、 5— 20m2Zgであることが望ましい。このような
BET比表面積を有するセラミックス粒子は、少量の結着剤と組み合わせて高 、空隙 率の多孔膜を形成するの適して!/、る。
[0013] セラミックス粒子の全てがセラミックス焼成体を機械的に解砕した多結晶粒子である 必要はなぐ例えば 70重量%以上が多結晶粒子であり、 30重量%未満が他の粒子 であってもよい。他の粒子の少なくとも一部は、アルミナ、マグネシア、シリカおよびジ ルコユアよりなる群力 選択される少なくとも 1種力 なることが好ましい。
[0014] 多孔膜の空隙率は、電池の充放電特性と多孔膜の機械的強度とを両立する観点 から、 40— 80%であることが望ましい。このような高い空隙率を有する多孔膜であれ ば、電池の大電流での充放電特性や低温環境下での充放電特性が大きく損なわれ ることがない。ただし、空隙率があまりに高すぎると、多孔膜の機械的強度が弱くなり 、割れや剥がれが発生しやすくなる。
[0015] 本発明の二次電池においては、多孔膜がセパレータとしての機能を兼ねることもで きるが、本発明は正極と負極との間に介在するシート状 (布状)のセパレータを備える 二次電池に特に適している。シート状セパレータには、ポリオレフイン製の微多孔シ ートを始め、従来のシート状セパレータを特に限定なく用いることができる。
多孔膜は、従来のシート状セパレータと類似の作用も有するが、その構造は従来の シート状セパレータと大きく異なる。多孔膜は、榭脂シートを延伸して得られる微多孔 シート等とは異なり、セラミックス粒子同士を結着剤で結合した構造を有する。よって 、多孔膜の面方向における引張強度は、シート状セパレータよりも低くなる。ただし、 多孔膜は、高温に曝されても、シート状セパレータのように熱収縮しない点で優れて いる。多孔膜は、内部短絡の発生時や電池が高温に曝された時に、短絡の拡大を防 ぎ、異常加熱を防止し、二次電池の安全性を高める作用を有する。
[0016] 本発明は、また、セラミックス前駆体力もセラミックス焼成体を得る工程と、セラミック ス焼成体を機械的に解砕して、多結晶粒子を含むセラミックス粒子を得る工程と、セ ラミックス粒子と結着剤とを含むスラリーを得る工程と、スラリーを電極の表面に塗布し 、乾燥させて、電極表面に接着した多孔膜を得る工程と、を含む二次電池の製造方 法に関する。
[0017] 上記方法によれば、多結晶粒子を含むセラミックス粒子を含み、高い空隙率を有す る多孔膜を、合理的に形成することができる。すなわち、上記方法のうちセラミックス 粒子を得る工程は、高密度充填されにくい不定形の立体構造を有する多結晶粒子 を得るのに適する。
[0018] セラミックス粒子は、 α—アルミナを含むことが好ましい。 α—アルミナを含むセラミツ タス粒子を得る場合、セラミックス前駆体には、アルミニウムアンモ-ゥム塩および Ζ またはアルミニウムアルコキシドを用いることが望ま 、。これらを前駆体とする場合、 高純度な α—アルミナ力 なる多結晶粒子が得られるため、電池内で余計な副反応 が起こりにくいからである。
[0019] 上記構造を有する焼成体を解砕すれば、不定形の多結晶粒子を得やす 、。こうし て得られた多結晶粒子である α—アルミナ粒子は、高密度に充填されにくぐ高い空 隙率の多孔膜を与える。
[0020] セラミックス粒子と結着剤とを含むスラリーを得る工程においては、メディアレス分散 を行うことが好ましい。メディアレス分散によれば、樹枝状等の不定形な立体構造を 破壊することなぐ多結晶粒子を液状成分中に分散させてスラリーを得ることができる 。すなわち、メディアレス分散によれば、高密度充填されにくい、というセラミックス粒 子の性質を損なわずに、スラリーを得ることが可能である。
発明の効果
[0021] 本発明によれば、極板に電池の安全性を向上させるための多孔膜を接着した二次 電池において、特に低温における大電流での放電特性を向上させることが可能であ る。また、本発明によれば、そのような二次電池を低コストで製造することができる。 図面の簡単な説明
[0022] [図 1]多結晶粒子の模式図である。
[図 2]本発明の一実施例に係る多孔膜の表面の SEM写真である。
[図 3]従来の一次粒子力もなる凝集粒子の模式図である。
[図 4]比較例に係る従来の多孔膜の表面の SEM写真である。
発明を実施するための最良の形態
[0023] 本発明の二次電池は、正極と、負極と、正極および負極より選択される少なくとも一 方の電極の表面に接着された多孔膜とを具備する。本発明は、リチウムイオン二次電 池に適用することが好ましいが、他の様々な二次電池、例えばアルカリ蓄電池にも適 用可能である。
[0024] 本発明は、多孔膜が、正極と負極との間に介在するように配置される場合を全て含 む。すなわち、本発明は、多孔膜が、正極表面だけに接着されている場合と、負極表 面だけに接着されて ヽる場合と、正極表面と負極表面の両方に接着されて ヽる場合 とを含む。また、本発明は、多孔膜が、正極の片面だけに接着されている場合と、正 極の両面に接着されている場合と、負極の片面だけに接着されている場合と、負極 の両面に接着されて!ヽる場合とを含む。
[0025] 多孔膜は、セラミックス粒子および結着剤を含む。二次電池がシート状のセパレー タを有する場合であっても、多孔膜は正極および負極の少なくとも一方の表面に接 着する必要がある。シート状のセパレータは、一般に耐熱性が低いからである。多孔 膜をシート状のセパレータ上に接着しても、内部短絡に伴う発熱があると、多孔膜が シート状のセパレータとともに収縮してしまうからである。
[0026] 多孔膜単独力もなるシートを形成し、これを正極と負極との間に介在させることも実 用的ではない。多孔膜単独力もなるシートを形成する場合、シートの強度を保持する 観点から、シートの厚みを相当に大きくする必要があるためである。その上、多量の 結着剤を必要とする。このような多孔膜を用いると、電池特性や設計容量を維持する ことが困難になる。
[0027] 本発明に係る多結晶粒子は、従来の一次粒子と同程度 (例えば平均粒子径 0. 05 m— 1 m)に成長した単結晶を含む。図 1に多結晶粒子 12の模式図を示す。単 結晶を含む領域 11は、連結した状態を呈している。多結晶粒子 12は、単結晶の核 同士を結合する連結部を有する点で、そのような連結部を有さず、一次粒子がファン デアワールスカで凝集して 、る従来のフィラーとは大きく異なる。成長した単結晶の 核が連結した状態であるため、多結晶粒子は、球状ではなぐ通常、瘤、隆起もしく は膨らみを有し、好ましくは樹枝状、珊瑚状もしくは房状を呈する。連結部には、図 1 のように、いわゆるネック 13が形成されていることが好ましいが、ネックが明確に判別 できな 、粒子であっても用いることができる。
[0028] 上記のような多結晶粒子を含むセラミックス粒子は、例えばセラミックス焼成体を、 適度に、機械的に解砕することにより、容易に得ることができる。なお、セラミックス粒 子は、全てが多結晶粒子力 なることが好ましいが、例えば 30重量%未満であれば 、他の粒子、例えば球状もしくはほぼ球状の一次粒子やその凝集粒子を含んでも良 い。他の粒子としては、アルミナ、マグネシア、シリカ、ジルコユアなどの粒子を用いる ことが好ましい。これらは単独で用いてもよぐ 2種以上を組み合わせてもよい。
[0029] 多結晶粒子は、平均で 3個以上、さらには 5個以上 30個以下の単結晶の核を含む ことが望ましい。例えば 5個の多結晶粒子について、 1つのあたりの多結晶粒子に含 まれる単結晶の核の数を走査型顕微鏡 (SEM)写真等から求め、それらの平均が 3 個以上、さらには 5個以上 30個以下であることが望まれる。
[0030] セラミックス粒子の嵩密度は 0. 1-0. 8g/cm3、さらには 0. 3-0. 6g/cm3であるこ とが好ましい。嵩密度が 0. lg/cm3未満では、多孔膜の空隙率は向上するものの、 セラミックス粒子の比表面積に対して相対的に結着剤量が少なくなる。また、嵩密度 が 0. 8g/cm3を超える場合、相対的に結着剤量が多くなり、多孔膜の空隙率が十分 に向上しない場合がある。なお、セラミックス粒子の嵩密度は静置法により測定される 。静置法は、例え «JIS R9301-2-3 (1999)に準拠して行う。
[0031] セラミックス粒子の BET比表面積は、 5— 20m2/gであることが好ましい。セラミック ス焼成体を機械的に解砕してセラミックス粒子を得る場合、解砕が進むにつれて、 B ET比表面積は小さくなる。焼成体の解砕が進みすぎ、 BET比表面積が 5m2Zg未 満になると、多孔膜の空隙率が十分に向上しない場合がある。逆に、 BET比表面積 が 20m2/gを超えると、結着剤量に対してセラミックス粒子の比表面積が大きくなりす ぎ、これを液状成分に分散させる際にスラリーがゲルィ匕したり、粒子が凝集する傾向 が大きくなるなど、製造上の問題が発生することがある。
[0032] 多孔膜の空隙率は、 40— 80%が好ましぐ 45— 80%が更に好ましぐ 50— 70% が特に好ましい。 40%以上、特に 45%以上の高い空隙率を有する多孔膜であれば 、電池の大電流での充放電特性や低温環境下での充放電特性が大きく損なわれる ことがない。ただし、空隙率が 80%を超えると、多孔膜の機械的強度が弱くなる。
[0033] 図 3に示すような凝集粒子 32を含むフィラーを用い、互いに分離した球状もしくは ほぼ球状の一次粒子が分散したスラリーを調製し、これを用いて多孔膜を形成する 場合、多孔膜の空隙率は 40%未満の低い値になる。この場合、 40%以上の空隙率 の達成は困難である。また、このような多孔膜を極板に接着すると、例えばリチウムィ オン二次電池の場合、 0°C、 2Cレートでの放電特性は満足なレベルには達しない。
[0034] 一方、図 1に示すような多結晶粒子 12を含むフィラーを用いる場合には、容易に 40 %以上、更には 45%以上の空隙率を達成することができる。
[0035] 多孔膜の空隙率の測定は、例えば以下のように行われる。
まず、多孔膜の原料を分散させたスラリーを調製する。すなわち、セラミックス粒子と 結着剤とを液状成分と混合し、メディアレス分散を行い、スラリーを調製する。得られ たスラリーは、適当なフィルタに通した後、ドクターブレードにより、金属箔上に所定の 厚さに塗布する。次いで、塗膜を乾燥すれば、多孔膜の試験片が完成する。これを 用いて試験片の空隙率を以下の要領で計算する。
[0036] 空隙率を計算する場合、まず、多孔膜の試験片の空隙を含まない真体積 VIと空 隙を含む見かけ体積 V2とを測定する。真体積 VIは、多孔膜の試験片の重量、セラ ミックス粒子の真密度、結着剤の真密度およびセラミックス粒子と結着剤との配合比 力も計算により求められる。また、見かけ体積 V2は、多孔膜の試験片の外寸 (厚さと 面積)から求められる。空隙率 Pは、次式:
P (%) = { (V2-V1) /V2} X 100
により求められる。
[0037] 多結晶粒子の材質 (セラミックスの種類)は特に限定されないが、酸化物、窒化物、 炭化物等を単独で、もしくは複数を組み合わせて用いることができる。これらのうちで は、入手が容易である等の点で酸ィ匕物が好ましい。酸ィ匕物としては、アルミナ(酸ィ匕 アルミニウム)、チタ-ァ(酸化チタン)、ジルコ-ァ(酸化ジルコニウム)、マグネシア( 酸ィ匕マグネシウム)、酸ィ匕亜鉛、シリカ(酸ィ匕ケィ素)等を用いることができる。これらの うちでは、アルミナが好ましぐ α アルミナが特に好ましい。
[0038] α アルミナは化学的に安定であり、高純度のものは特に安定である。また、電池 の内部で電解液や酸化還元電位に侵されることがなく、電池特性に悪影響を及ぼす ような副反応を起こすこともな 、。
[0039] 本発明に係るセラミックス粒子は、例えばセラミックス前駆体を焼成してセラミックス 焼成体を得る工程と、セラミックス焼成体を機械的に解砕する工程を含む方法により 、容易に得ることができる。セラミックス焼成体は、成長した単結晶の核が 3次元状に 連結した構造を有する。このような焼成体を、適度に、機械的に解砕すれば、高密度 充填されにくい形状の多結晶粒子を含むセラミックス粒子が得られる。
[0040] 高純度の a アルミナを含むセラミックス粒子を得る場合には、セラミックス前駆体も しくはその原料として、アルミニウムアンモ-ゥム塩および Zまたはアルミニウムアルコ キシドを用いることが好ましい。アルミニウムアルコキシドには、例えばアルミニウムトリ ブトキシド等を用いることができる。また、アルミニウムアンモ-ゥム塩には、例えばァ ンモ -ゥムドーソナイトやアンモ-ゥムミヨウバン等を用いることができる。アルミニウム アンモ-ゥム塩および/またはアルミニウムアルコキシドは、そのまま焼成することも できるが、アルミニウムアルコキシドは、通常は加水分解等の処理を介して力 焼成 する。アルミニウムアンモ-ゥム塩は、脱水や乾燥を行った後、直接焼成することが好 ましい。例えば、硫酸アルミニウムなどのアルミニウム塩と NH HCOとを反応させ、ァ
4 3
ンモ -ゥムドーソナイトを合成し、これを脱水後、焼成し、粒子を成長させてセラミック ス粒子を得ることができる。
[0041] アルミニウムアンモ-ゥム塩ゃアルミニウムアルコキシドは、高純度であることから、 それらの焼成の際に不純物によってアルミナの結晶成長が妨げられることがほとんど なぐ単結晶力 なる核の粒子径がよく揃った α アルミナ焼成体が生成しやすい。
[0042] 焼成体を機械的に解砕する際には、ジェットミルなどの乾式粉砕手段を用いること が望ましい。解砕条件の制御により、所望の嵩密度、 BET比表面積もしくは平均粒 子径のセラミックス粒子を得ることが可能である。
[0043] 得られたセラミックス粒子と結着剤とを含むスラリーを調製し、これを電極表面に塗 布し、乾燥させれば、電極表面に接着した 40%— 50%以上の高い空隙率を有する 多孔膜を得ることができる。
[0044] 通常、スラリーの調製工程では、ビーズミル等が用いられる力 ビーズやボールのよ うなメディアを用いた分散方法では、スラリー中の多結晶粒子の構造が破壊されやす い。多結晶粒子の構造が破壊されると、セラミックス粒子は、従来の球状もしくはほぼ 球状の一次粒子力もなるフィラーに近づくことになる。
[0045] しかし、高い空隙率の多孔膜を得るためには、上述のようなセラミックス粒子の立体 構造を保持したままで、セラミックス粒子の分散を行うことが求められる。そのため、セ ラミックス粒子と結着剤とを液状成分に分散させてスラリーを得る工程では、メディア レス分散を行なうことが望ましい。メディアレス分散では、セラミックス粒子とメディアと の衝突が生じな 、。例えばジェット流と回転翼による高速せん断とを組み合わせて分 散を行なう。そうすると、多結晶粒子の構造はほとんど破壊されず、空隙率 40%以上 の多孔膜を得やすくなる。メディアレス分散を行う分散装置としては、例えば高速回 転剪断型装置、遠心場利用高速回転型装置等が知られている。
[0046] 多孔膜を構成する結着剤には、耐熱性および耐電解液性を有するものが用いられ る。結着剤には、例えばフッ素榭脂を用いることができる。フッ素榭脂としては、ポリフ ッ化ビ-リデン(PVDF)、ポリテトラフルォロエチレン(PTFE)、テトラフルォロェチレ ン一へキサフルォロプロピレン共重合体 (FEP)等を用いることができる。また、結着剤 には、ポリアクリル酸誘導体やポリアクリロニトリル誘導体などを用いることもできる。ポ リアクリル酸誘導体やポリアクリロニトリル誘導体は、アクリル酸単位または Zおよびァ クリロ-トリル単位の他に、アクリル酸メチル単位、アクリル酸ェチル単位、メタクリル酸 メチル単位およびメタクリル酸ェチル単位よりなる群カゝら選ばれる少なくとも 1種を含 むことが好ましい。また、ポリエチレン、スチレン ブタジエンゴムなども用いることがで きる。これらは単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。これらのう ちでは、特に、アクリロニトリル単位を含む高分子、すなわちポリアクリロニトリル誘導 体が好ましい。このような材料を結着剤として用いると、多孔膜により一層の柔軟性が 付与されるため、多孔膜にひび割れや剥がれが発生しに《なる。
[0047] 本発明は、二次電池一般に適用可能であり、例えばリチウムイオン二次電池、アル カリ蓄電池等に適用することができる。これらの二次電池に多孔膜を接着した極板を 用いる場合、電池の低温での大電流充放電挙動、例えば 0°C、 2Cレートでの放電特 性は、一般に多孔膜の空隙率の大きさに依存する。
[0048] 多孔膜を接着した極板は、特にリチウムイオン二次電池において実施することが有 効である。リチウムイオン二次電池は、可燃性の有機系非水溶媒カゝらなる電解液を含 むため、特に高度な安全性が要求される力もである。多孔膜を接着した極板を用い ることにより、リチウムイオン二次電池に高度な安全性を付与することができる。
[0049] リチウムイオン二次電池の電解液には、上述のように有機系非水溶媒にリチウム塩 を溶解させたものが用いられる。非水溶媒に溶解させるリチウム塩の濃度は、一般に 0. 5— 2molZLである。
[0050] リチウム塩は、特に限定されないが、例えば、 6フッ化燐酸リチウム (LiPF )、過塩
6 素酸リチウム (LiCIO )、ホウフッ化リチウム(LiBF )等を用いることが好ましい。これら
4 4
は単独で用いてもよぐ 2種以上を組み合わせて用いてもょ 、。
非水溶媒は、特に限定されないが、例えば、エチレンカーボネート (EC)、プロピレ ンカーボネート (PC)、ジメチノレカーボネート (DMC)、ジェチノレカーボネート (DEC) 、ェチルメチルカーボネート(EMC)等の炭酸エステル; γ—ブチロラタトン、 γ—バレ 口ラタトン、蟻酸メチル、酢酸メチル、プロピオン酸メチル等のカルボン酸エステル;ジ メチルエーテル、ジェチルエーテル、テトラヒドロフラン等のエーテル等が用いられる
。非水溶媒は、 1種を単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。こ れらのうちでは、特に炭酸エステルが好ましく用いられる。
[0051] 電極上に良好な皮膜を形成させ、過充電時の安定性等を確保するために、ビ-レ ンカーボネート(VC)、シクロへキシルベンゼン(CHB)、 VCもしくは CHBの変性体 等を非水電解液に添加することが好まし 、。
[0052] なお、リチウムイオン二次電池の負極は、少なくともリチウムイオンの吸蔵および放 出が可能な材料カゝらなる負極活物質と、負極結着剤と、増粘剤とを含む合剤層を、 負極集電体上に配置して形成される。 [0053] 負極活物質としては、各種天然黒鉛、各種人造黒鉛、石油コータス、炭素繊維、有 機高分子焼成物等の炭素材料、酸化物、シリサイド等のシリコン、スズ含有複合材料 、各種金属もしくは合金材料等を用いることができる。
[0054] 負極結着剤は、特に限定されな!、が、少量で結着性を発揮できる観点からゴム粒 子が好ましぐ特にスチレン単位およびブタジエン単位を含むものが好ましい。例え ばスチレン ブタジエン共重合体(SBR)、 SBRの変性体などを用いることができる。
[0055] 負極結着剤としてゴム粒子を用いる場合には、水溶性高分子力もなる増粘剤を併 用することが望ましい。水溶性高分子としては、セルロース系榭脂が好ましぐ特に C MCが好ましい。負極結着剤には、他に PVDF、 PVDFの変性体などを用いることも できる。
[0056] 負極に含まれるゴム粒子力 なる負極結着剤および水溶性高分子力 なる増粘剤 の量は、負極活物質 100重量部あたり、それぞれ 0. 1— 5重量部であることが好まし い。
[0057] 負極集電体としては、銅箔等の負極電位下で安定な金属箔、銅等の金属を表層に 配置したフィルム等を用いることができる。負極集電体は、表面に凹凸を設けたり、穿 孔したりすることができる。
[0058] また、リチウムイオン二次電池の正極は、少なくともリチウム複合酸ィ匕物力 なる正 極活物質と、正極結着剤と、導電剤とを含む合剤層を、正極集電体上に配置して形 成される。
[0059] リチウム複合酸化物としては、コバルト酸リチウム(LiCoO )、コバルト酸リチウムの
2
変性体、ニッケル酸リチウム(LiNiO )、ニッケル酸リチウムの変性体、マンガン酸リチ
2
ゥム(LiMn O )、マンガン酸リチウムの変性体、これら酸化物の Co、 Niもしくは Mn
2 2
の一部を他の遷移金属元素やアルミニウム、マグネシウム等の典型金属で置換した もの、あるいは広くオリビン酸と称される鉄を主構成元素とする化合物等が好ましい。
[0060] 正極結着剤は、特に限定されず、ポリテトラフルォロエチレン(PTFE)、 PTFEの変 性体、 PVDF、 PVDFの変性体、変性アクリロニトリルゴム粒子(日本ゼオン (株)製の 「BM— 500B (商品名)」等)を用いることができる。 PTFEや BM— 500Bは、増粘剤と して CMC、ポリエチレンォキシド(PEO)、変性アクリロニトリルゴム(日本ゼオン (株) 製の「BM— 720H (商品名)」等)と併用することが好ま U、。
[0061] 導電剤としては、アセチレンブラック、ケッチェンブラック、各種黒鉛などを用いること ができる。これらは単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。
[0062] 正極集電体としては、アルミニウム箔等の正極電位下で安定な金属箔、アルミニゥ ム等の金属を表層に配置したフィルム等を用いることができる。正極集電体は、表面 に凹凸を設けたり、穿孔したりすることができる。
[0063] 本発明は、従来のシート状 (布状)のセパレータ(以下、単にセパレータと、う)を使 用しない二次電池にも適用できる。その場合、従来のシート状セパレータが不要にな ることから、低コストの電池を実現できる。しかし、シート状セパレータを用いない場合 、電池の製造工程中は、異物の混入に対して高度な注意を払い、短絡不良を十分 に防止することが必要である。
[0064] 本発明は、シート状セパレータを使用する二次電池にも当然に適用できる。シート 状セパレータを正極と負極との間に介在させることにより、電池の短絡防止能力が一 層向上し、電池の安全性および信頼性が一層向上する。
[0065] シート状セパレータは、リチウムイオン二次電池の使用環境に耐え得る材料力 な るものであれば、特に限定されないが、ポリオレフイン榭脂からなる微多孔性シートを 用いることが一般的である。ポリオレフイン榭脂としては、ポリエチレン、ポリプロピレン などが用いられる。微多孔性シートは、 1種のポリオレフイン榭脂からなる単層膜であ つてもよく、 2種以上のポリオレフイン榭脂からなる多層膜であってもよい。シート状セ パレータの厚みは、特に限定されないが、電池の設計容量を維持する観点から 8— 3 0 μ mであることが好まし!/、。
[0066] 以下、本発明を実施例に基づいて具体的に説明するが、ここで述べる内容は本発 明の例示に過ぎず、本発明はこれらに限定されるものではない。
実施例 1
[0067] (I)多結晶粒子を含むセラミックス粒子の調製
ここでは、 a アルミナを含むセラミックス粒子を調製した。
まず、アルミニウムアルコキシドであるアルミニウムトリブトキシドを用意した。アルミ- ゥムトリブトキシドに純水を加え、加水分解させて、アルミナゲルを生成させ、これを乾 燥させた。こうして得られた乾燥ゲルを、セラミックス前駆体として用いた。
[0068] 次いで、セラミックス前駆体である乾燥ゲルを 1200°Cで 3時間焼成し、 α アルミナ の焼成体を得た。得られた焼成体において、ひ アルミナの単結晶からなる核の平均 粒子径を SEM写真から求めたところ、約 0. 2 μ πιであった。
[0069] 得られた焼成体はジェットミルで解砕した。ここでは、セラミックス粒子の嵩密度が 0 . 05- 1.
Figure imgf000015_0001
BET比表面積が 3— 22m2/gになるように解砕条件を制御し、 表 1に示す嵩密度および BET比表面積をそれぞれ有する粒子を得た。なお、嵩密 度は、ホソカワミクロン (株)製の「バウダテスタ(商品面)」により静置法で測定した。得 られた粒子を SEM写真で観察したところ、 V、ずれも榭枝状の多結晶粒子であること が確認された。
[0070] [表 1]
Figure imgf000015_0002
[0071] (II)多孔膜の原料を含むスラリーの調製
所定の多結晶アルミナ粒子 100重量部に対し、 4重量部のポリアクリル酸誘導体か らなる結着剤(日本ゼオン (株)製の「BM— 720H (商品名)」)と、分散媒である適量 の N—メチルー 2 ピロリドン(以下、 NMP)とを混合し、不揮発分 60重量%のスラリー を調製した。
[0072] ここでは、多結晶アルミナ粒子と結着剤と分散媒との混合物を、ェムテクニック (株) 製のメディアレス分散機「クレアミックス (商品名)」で攪拌し、多結晶アルミナ粒子と結 着剤とを NMPに均一になるまで分散させ、スラリー A1— A5を得た。
[0073] (III)多孔膜の空隙率の測定 スラリー Al— A5を、ドクターブレードにより、金属箔上に塗布し、次いで、塗膜を 1 20°Cで 1時間乾燥させて、厚さ約 20 mの多孔膜の試験片を得た。
[0074] 次いで、多孔膜の試験片の空隙を含まない真体積 VIと空隙を含む見力 4ナ体積 V2 とを測定し、空隙率 Pを次式:
P (%) = { (V2-V1) /V2} X 100
により求めた。結果を表 1に示す。
[0075] (IV)多孔膜の観察
スラリー A3から作製した試験片の表面を、走査型顕微鏡 (SEM)で観察した。 3万 倍の拡大写真 (SEM写真)を図 2に示す。図 2より、多結晶アルミナ粒子が樹枝状を 呈していることがわかる。また、粒子間には比較的大きな空隙が形成されているので 、多孔膜の空隙率が大きいことがわかる。
[0076] (V)リチウムイオン二次電池の作製
スラリー A1— A5を用い、負極上に接着した多孔膜を具備する試作電池を作製し、 それらの充放電特性を評価して、本発明の有効性を確認した。
以下に電池の製造工程について説明する。
[0077] 〈a〉正極の作製
正極活物質としてコバルト酸リチウム 3kgと、正極結着剤として呉羽化学 (株)製の「 # 1320 (商品名)」(PVDFを 12重量%含む NMP溶液) 1kgと、導電剤としてァセチ レンブラック 90gと、適量の NMPとを、双腕式練合機にて攪拌し、正極合剤塗料を調 製した。この塗料を正極集電体である厚み 15 μ mのアルミニウム箔の両面に、正極リ ードの接続部を除いて塗布し、乾燥後の塗膜をローラで圧延して、活物質層密度 (活 物質重量/合剤層体積)が 3. 3g/cm3の正極合剤層を形成した。この際、アルミ- ゥム箔および正極合剤層力もなる極板の厚みを 160 mに制御した。その後、円筒 型電池(品番 18650)の電池缶に挿入可能な幅に極板をスリットし、正極のフープを 得た。
[0078] 〈b〉負極の作製
負極活物質として人造黒鉛 3kgと、負極結着剤として日本ゼオン (株)製の「BM - 4 OOB (商品名)」(スチレン-ブタジエン共重合体の変性体を 40重量%含む水性分散 液) 75gと、増粘剤として CMCを 30gと、適量の水とを、双腕式練合機にて攪拌し、 負極合剤塗料を調製した。この塗料を負極集電体である厚さ 10 mの銅箔の両面 に、負極リード接続部を除いて塗布し、乾燥後の塗膜をローラで圧延して、活物質層 密度 (活物質重量 Z合剤層体積)が 1. 4gZcm3の負極合剤層を形成した。この際、 銅箔および負極合剤層からなる極板の厚みを 180 mに制御した。その後、円筒型 電池(品番 18650)の電池缶に挿入可能な幅に極板をスリットし、負極のフープを得 た。
[0079] 〈c〉多孔膜の形成
所定のスラリーを、上記負極フープの両面に、グラビアロール法で、 0. 5mZ分の 速度で塗布し、 120°Cの熱風を 0. 5mZ秒の風量で当てて乾燥させ、負極表面に接 着された片面あたりの厚みが 5 μ mの多孔膜を形成した。
[0080] 〈d〉非水電解液の調製
ECと DMCと EMCとを体積比 2 : 3 : 3で含む非水溶媒の混合物に、 LiPFを lmol
6
ZLの濃度で溶解して非水電解液を調製した。また、非水電解液 100重量部あたり、 VCを 3重量部添カ卩した。
[0081] 〈e〉電池の作製
上述の正極、負極および非水電解液を用いて、以下の要領で品番 18650の円筒 型電池を作製した。まず、正極と負極とをそれぞれ所定の長さに切断した。正極リー ド接続部には正極リードの一端を、負極リード接続部には負極リードの一端をそれぞ れ接続した。その後、正極と負極とを、厚み 15 /z mのポリエチレン榭脂製の微多孔性 シートからなるセパレータを介して捲回し、柱状の極板群を構成した。極板群の外面 はセパレータで介装した。この極板群を、上部絶縁リングと下部絶縁リングで挟まれ た状態で、電池缶に収容した。次いで、上記の非水電解液を 5g秤量し、電池缶内に 注入し、 133Paに減圧することで極板群に含浸させた。
[0082] 正極リードの他端は電池蓋の裏面に、負極リードの他端は電池缶の内底面に、そ れぞれ溶接した。最後に電池缶の開口部を、周縁に絶縁パッキンが配された電池蓋 で塞 、だ。こうして理論容量 2Ahの円筒型リチウムイオン二次電池を完成した。
[0083] (VI)低温放電特性の評価 各電池に対し、 2度の予備充放電を行い、充電状態で 45°C環境下で 7日間保存し た。その後、 20°C環境下で、以下の充放電を行った。
[0084] (1)定電流放電: 400mA (終止電圧 3V)
(2)定電流充電: 1400mA (終止電圧 4. 2V)
(3)定電圧充電: 4. 2V (終止電流 100mA)
(4)定電流放電: 400mA (終止電圧 3V)
(5)定電流充電: 1400mA (終止電圧 4. 2V)
(6)定電圧充電: 4. 2V (終止電流 100mA)
[0085] 次に、 3時間静置後、 0°C環境下で、以下の放電を行った。
(7)定電流放電: 4000mA (終止電圧 3V)。
このときの 0°C、 2Cレートでの放電で得られた放電容量を表 1に示す。
[0086] (VII)釘刺し試験
各電池に対して以下の充電を行った。
定電流充電: 1400mA (終止電圧 4. 25V)
定電圧充電: 4. 25V (終止電流 100mA)
充電後の電池に対して、その側面から、 2. 7mm径の鉄製丸釘を、 20°C環境下で 、 5mmZ秒の速度で貫通させ、そのときの発熱状態を観測した。電池の貫通箇所に おける 90秒後の到達温度を測定した。結果を表 1に示す。
実施例 2
[0087] ここでも、 α—アルミナを含むセラミックス粒子を調製した。
まず、アルミナ前駆体として、アンモ-ゥムアルミニウム塩であるアンモ-ゥムドーソ ナイトを用意した。これを 1200°Cで 3時間焼成し、 α—アルミナの焼成体を得た。得ら れた焼成体にぉ 、て、 α—アルミナの単結晶力 なる核の平均粒子径を SEM写真 力 求めたところ、約 0. 1 μ mであった。
[0088] 得られた焼成体はジェットミルで解砕した。ここでは、セラミックス粒子の嵩密度が 0 . 05-1. 2g/cm3、 BET比表面積が 3. 5— 25m2/gになるように解砕条件を制御 し、表 2に示す嵩密度および BET比表面積をそれぞれ有する粒子を得た。ここでも、 嵩密度は、ホソカワミクロン (株)製の「パウダテスタ(商品面)」により静置法で測定し た。得られた粒子を SEM写真で観察したところ、いずれも榭枝状の多結晶粒子であ ることが確認された。
[表 2]
Figure imgf000019_0001
[0090] こうして得られた多結晶アルミナ粒子を用いたこと以外、実施例 1と同様にして、スラ リー B1— B5を得た。また、実施例 1と同様にして、スラリー B1— B5を用いて作製し た多孔膜の空隙率の測定を行った。さらに、実施例 1と同様にして、リチウムイオン二 次電池 (試作電池)を作製し、それらの低温放電特性の評価および釘刺し試験を行 つた。結果を表 2に示す。
[0091] 《比較例 1》
ここでは、樹枝状の多結晶粒子の代わりに、平均粒子径 0. 3 /z mの球状もしくはほ ぼ球状の一次粒子力 なるアルミナ粒子を用いたこと以外、実施例 1と同様にして、 スラリー C1を得た。また、実施例 1と同様にして、スラリー C1を用いた作製した多孔 膜の空隙率の測定を行った。さらに、実施例 1と同様にして、リチウムイオン二次電池 (試作電池)を作製し、それらの低温放電特性の評価および釘刺し試験を行った。結 果を表 3に示す。
[0092] [表 3] BET 多孔膜 釘刺し試験 0。C
嵩密度 、 2Cレート スラリー フイラ- 分散法 比表面積 空隙率 到達温度 放電容量
(g/cm3)
(m2/g) (%) (。c) (mAh)
C1 アルミナ球状粒子 メディアレス 1.1 3 39 92 1480 アンモニゥムアルコキシド由来 ヒ'一ス'ミル
C2 0.4 9 43 95 1590 アルミナ樹枝状粒子 分散
アンモニゥムド-ソナ仆由来 ビース.ミル
C3 0.4 12 44 93 1600 アルミナ樹枝状粒子 分散
[0093] 実施例 1と同様の方法でスラリー C1から作製した多孔膜の試験片の表面を、走査 型顕微鏡 (SEM)で観察した。 3万倍の拡大写真 (SEM写真)を図 4に示す。図 4で は、球状アルミナ粒子が、粒子間に大きな空隙を形成することなく緻密に充填されて おり、多孔膜の空隙率が小さいことがわかる。
[0094] 《比較例 2》
ここでは、メディアレス分散機に代えて、ビーズミル分散機を用いたこと以外、実施 例 1のスラリー A3と同様の原料と配合でスラリー C2を調製した。また、実施例 1と同 様にして、スラリー C2を用いた作製した多孔膜の空隙率の測定を行った。さらに、実 施例 1と同様にして、リチウムイオン二次電池 (試作電池)を作製し、それらの低温放 電特性の評価および釘刺し試験を行った。結果を表 3に示す。
[0095] 《比較例 3》
ここでは、メディアレス分散機に代えて、ビーズミル分散機を用いたこと以外、実施 例 1のスラリー B3と同様の原料と配合でスラリー C3を調製した。また、実施例 1と同様 にして、スラリー C3を用いた作製した多孔膜の空隙率の測定を行った。さらに、実施 例 1と同様にして、リチウムイオン二次電池 (試作電池)を作製し、それらの低温放電 特性の評価および釘刺し試験を行った。結果を表 3に示す。
[0096] [考察]
表 1一 3より、多孔膜の空孔率は、樹枝状の多結晶粒子を用い、メディアレス分散を 行って調製したスラリーを用いた場合に、 45%を超えることが確認できた。また、 45 %以上の空隙率が達成されるのは、セラミックス粒子の嵩密度が 0. 8g/cm3以下、 BET比表面積が 5m2/g以上の場合であった。すなわち、セラミックス粒子の嵩密度 が 0. 8g/cm3より大きい場合、 BET比表面積が 5m2/gより小さい場合 (スラリー A5 、 B5)、多孔膜の空隙率は 40%より高いが、 45%よりも低ぐ低温放電特性も劣って いた。さらに、球状もしくはほぼ球状の一次粒子力もなるアルミナ粒子を用いた場合( スラリー C1)には、多孔膜の空隙率は 40%より低ぐ低温放電特性も劣っていた。
[0097] 空隙率が 45%を超える場合には、 ヽずれも低温放電特性にお!、て高 ヽ放電容量 が得られた。ただし、スラリー A1および B1は、低せん断状態での粘度が高ぐゲルに やや近い性状であった。そのため、スラリーの分散工程では、分散装置の負荷が大 きくなりすぎて適切な分散が困難になったり、分散装置の配管中にスラリーが詰まつ たりすることがあった。さらに、スラリー A1および B1のグラビア塗布を行ったところ、塗 膜の厚さが不均一になりやす力つた。
[0098] 以上のことから、セラミックス粒子の嵩密度は 0. 1-0. 8gZcm3であり、 BET比表 面積は 5— 20m2/gであることが電池性能および製造プロセス上も好ましいと言える
[0099] 表 3からは、スラリーの分散工程でビーズミル等を用いると、榭枝状の多結晶粒子を 用いたとしても、多孔膜の空隙率が低くなり、低温放電特性も劣ることが確認できた。 なお、スラリー C2、 C3のフイラ一を SEMで観察したところ、セラミックス粒子が一次粒 子に近い状態にまで破壊されており、多結晶粒子がほとんど存在しないことが確認さ れた。
[0100] ビーズミルのような分散機内では、ビーズとセラミックス粒子との衝突が繰り返される ため、多結晶粒子は単結晶の核に近い状態にまで乖離してしまうものと考えられる。 これに対し、メディアレス分散によってスラリーを調製した場合には、多結晶粒子が破 壊されることがなぐ榭枝状の形状を保持できたものと考えられる。
[0101] 次に、表 1一 3の釘刺し試験の結果は、多孔膜のフイラ一として嵩密度の小さい榭 枝状のセラミックス粒子を用い、多孔膜にセラミックス粒子が高密度充填されない場 合でも、従来と同等以上の釘刺し安全性が得られることを示している。
実施例 3
[0102] シート状セパレータを用いずにリチウムイオン二次電池を作製した。
ここでは、厚み 15 mのポリエチレン榭脂製の微多孔性シートからなるセパレータ を用いない代わりに、実施例 1のスラリー A3を用いて、負極上に多孔膜を厚く形成し た。多孔膜の乾燥後の厚さは 20 /z mとした。
[0103] 得られた試作電池は、実施例 1でスラリー A3を用いて作製した電池と同様に、低温 での 2Cレート放電で 1830mAhの放電容量を示した。従来のシート状セパレータは 高価であるが、本実施例では、それを使用する必要が無力つたため、低コストで電池 を作製することができた。
実施例 4
[0104] セラミックス粒子として、実施例 1のスラリー A4で用いたのと同じ多結晶粒子と他の 粒子との混合物を用いたこと以外、実施例 1と同様にして、スラリー D1— D10を得た 。他の粒子には、表 4に示す嵩密度と BET比表面積を有するものを用いた。セラミツ タス粒子全体に占める他の粒子の割合は表 4に示す通りである。
[0105] [表 4]
Figure imgf000022_0001
[0106] 粒子 V:アルミナ球状粒子
粒子 W:アルミナ塊状粒子
粒子 X:マグネシア(酸ィ匕マグネシウム)
粒子 Y:ジノレコニァ(酸化ジノレコ-ゥム)
粒子 Z:シリカ(二酸ィ匕ケィ素)
[0107] なお、粒子 Vは、単結晶粒子であり、アルミニウムアルコキシドを気相で反応させる CVD法により合成した。粒子 Wは、角張ったブロック状の粒子であり、ボーキサイトを 苛性ソーダで溶解し、水酸ィ匕アルミニウムを析出させ、析出した水酸ィ匕アルミニウムを 脱水後に焼成するバイヤー法により得た。
[0108] 次に、実施例 1と同様にして、スラリー D1— D10を用いて作製した多孔膜の空隙率 の測定を行った。さらに、実施例 1と同様にして、スラリー D1— D10を用いてリチウム イオン二次電池 (試作電池)を作製し、それらの低温放電特性の評価および釘刺し 試験を行った。結果を表 4に示す。
産業上の利用可能性
[0109] 本発明は、特に低温における大電流での放電特性を向上させる観点から、極板に 電池の安全性を向上させるための多孔膜が設けられた二次電池、特にポータブル用 電源等に適用される。本発明は、二次電池一般に適用可能であるが、特に可燃性の 有機系非水溶媒からなる電解液を含み、高度な安全性が要求されるリチウムイオン 二次電池にお!、て有効である。

Claims

請求の範囲
[I] 正極と、負極と、前記正極および前記負極より選択される少なくとも一方の電極の 表面に接着された多孔膜とを具備する二次電池であって、
前記多孔膜は、セラミックス粒子および結着剤を含み、
前記セラミックス粒子は、セラミックス焼成体を機械的に解砕した多結晶粒子を含む 二次電池。
[2] 前記多結晶粒子の形状が、樹枝状である請求項 1記載の二次電池。
[3] 前記多結晶粒子が、アルミナからなる請求項 1記載の二次電池。
[4] 前記セラミックス粒子の嵩密度が、 0. 1-0. 8gZcm3である請求項 1記載の二次 電池。
[5] 前記セラミックス粒子の BET比表面積力 5— 20m2Zgである請求項 1記載の二次 電池。
[6] 前記セラミックス粒子の 70重量%以上が前記多結晶粒子であり、 30重量%未満が 他の粒子である請求項 1記載の二次電池。
[7] 前記他の粒子の少なくとも一部力 アルミナ、マグネシア、シリカおよびジルコユアよ りなる群力 選択される少なくとも 1種力 なる請求項 6記載の二次電池。
[8] 前記多孔膜の空隙率が、 40— 80%である請求項 1記載の二次電池。
[9] 前記正極と前記負極との間に介在するシート状のセパレータを備える請求項 1記載 の二次電池。
[10] セラミックス前駆体力 セラミックス焼成体を得る工程と、
前記セラミックス焼成体を機械的に解砕して、セラミックス粒子を得る工程と、 前記セラミックス粒子と結着剤とを含むスラリーを得る工程と、
前記スラリーを電極の表面に塗布し、乾燥させて、前記電極表面に接着した多孔 膜を得る工程と、を含む二次電池の製造方法。
[II] 前記セラミックスが、 α -アルミナを含む請求項 10記載の二次電池の製造方法。
[12] 前記セラミックス前駆体もしくはその原料力 アルミニウムアンモニゥム塩およびアル ミニゥムアルコキシドよりなる群力も選ばれる少なくとも 1種を含む請求項 10記載の二 次電池の製造方法。 前記アルミニウムアンモニゥム塩力 アンモニゥムドーソナイトを含む請求項 12記載 の二次電池の製造方法。
前記スラリーを得る工程が、メディアレス分散を行なう工程を含む請求項 10記載の 二次電池の製造方法。
PCT/JP2005/004120 2004-06-22 2005-03-09 二次電池およびその製造方法 WO2005124899A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05720391A EP1657767B1 (en) 2004-06-22 2005-03-09 Secondary battery and method for producing same
DE602005018591T DE602005018591D1 (de) 2004-06-22 2005-03-09 Sekundärbatterie und herstellungsverfahren dafür
JP2006514659A JP4781263B2 (ja) 2004-06-22 2005-03-09 二次電池およびその製造方法
US11/314,008 US7560193B2 (en) 2004-06-22 2005-12-22 Secondary battery and method for producing the same
US11/655,164 US7402184B2 (en) 2004-06-22 2007-01-19 Secondary battery and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004183949 2004-06-22
JP2004-183949 2004-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/314,008 Continuation-In-Part US7560193B2 (en) 2004-06-22 2005-12-22 Secondary battery and method for producing the same

Publications (1)

Publication Number Publication Date
WO2005124899A1 true WO2005124899A1 (ja) 2005-12-29

Family

ID=35510020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004120 WO2005124899A1 (ja) 2004-06-22 2005-03-09 二次電池およびその製造方法

Country Status (7)

Country Link
US (2) US7560193B2 (ja)
EP (1) EP1657767B1 (ja)
JP (1) JP4781263B2 (ja)
KR (1) KR100737663B1 (ja)
CN (1) CN100452487C (ja)
DE (1) DE602005018591D1 (ja)
WO (1) WO2005124899A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012598A (ja) * 2005-05-31 2007-01-18 Matsushita Electric Ind Co Ltd 非水電解質二次電池および電池モジュール
JP2007258160A (ja) * 2006-02-21 2007-10-04 Nissan Motor Co Ltd リチウムイオン二次電池およびこれを用いた組電池
JP2007287677A (ja) * 2006-03-24 2007-11-01 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2008198506A (ja) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2008226605A (ja) * 2007-03-12 2008-09-25 Sanyo Electric Co Ltd 非水電解質二次電池
WO2008114727A1 (ja) * 2007-03-15 2008-09-25 Hitachi Maxell, Ltd. 電気化学素子用セパレータ、電気化学素子用電極および電気化学素子
JP2009043715A (ja) * 2007-07-18 2009-02-26 Panasonic Corp 非水電解質二次電池
JP2009231281A (ja) * 2008-02-28 2009-10-08 Teijin Ltd 非水電解質電池セパレータ及び非水電解質二次電池
WO2010024328A1 (ja) * 2008-08-29 2010-03-04 日本ゼオン株式会社 多孔膜、二次電池電極及びリチウムイオン二次電池
JP2010095399A (ja) * 2008-10-15 2010-04-30 Sumitomo Osaka Cement Co Ltd 多孔質膜形成用塗料及び多孔質膜、セラミックフィルタ、排ガス浄化フィルタ並びにセラミックフィルタの製造方法
WO2010052786A1 (ja) * 2008-11-07 2010-05-14 トヨタ自動車株式会社 電池、車両及び電池搭載機器
WO2011036797A1 (ja) * 2009-09-28 2011-03-31 トヨタ自動車株式会社 リチウム二次電池及びその製造方法
DE102011012272A1 (de) 2010-02-25 2011-10-27 Sumitomo Chemical Company, Ltd. Anorganisches Oxidpulver und anorganisches Oxid enthaltende Aufschlämmung und Lithiumionensekundärbatterie, das die Aufschlämmung verwendet, und Verfahren zu deren Herstellung
JP2012531010A (ja) * 2009-06-30 2012-12-06 エルジー・ケム・リミテッド 多孔性コーティング層を備える電極の製造方法、その方法によって形成された電極、及びそれを備える電気化学素子
WO2013108510A1 (ja) * 2012-01-18 2013-07-25 ソニー株式会社 セパレータ、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2013187458A1 (ja) * 2012-06-12 2013-12-19 三菱製紙株式会社 リチウムイオン電池用セパレータ
US8999585B2 (en) 2007-07-18 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
JP2015162313A (ja) * 2014-02-26 2015-09-07 日本ゼオン株式会社 非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜、及び二次電池
JP2016006781A (ja) * 2004-09-02 2016-01-14 エルジー・ケム・リミテッド 有機無機複合多孔性フィルム及びこれを用いる電気化学素子
WO2016098579A1 (ja) * 2014-12-17 2016-06-23 住友化学株式会社 無機酸化物粉末、およびこれを含有するスラリー、ならびに非水電解液二次電池およびその製造方法
US9490463B2 (en) 2004-09-02 2016-11-08 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
US10522809B2 (en) 2012-07-18 2019-12-31 Sumitomo Chemical Company, Limited Adhesive layer, layer, and composition

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883354B2 (en) 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells
WO2007135973A1 (ja) * 2006-05-19 2007-11-29 Panasonic Corporation 非水電解質二次電池
US7931838B2 (en) * 2006-08-31 2011-04-26 Virginia Tech Intellectual Properties, Inc. Method for making oriented single-walled carbon nanotube/polymer nano-composite membranes
KR20080105853A (ko) * 2007-06-01 2008-12-04 삼성에스디아이 주식회사 세라믹층이 코팅된 양극 또는 음극을 포함하는리튬이차전지
JP5426551B2 (ja) * 2007-08-21 2014-02-26 エー123 システムズ, インコーポレイテッド 電気化学セル用セパレータおよびその製造方法
JP5591704B2 (ja) * 2007-09-28 2014-09-17 エー123 システムズ, インコーポレイテッド 無機/有機多孔質膜を有する電池
DE112010000853T5 (de) * 2009-01-12 2012-12-06 A123 Systems, Inc. Laminierte Batteriezelle und Verfahren zu deren Herstellung
KR101943647B1 (ko) * 2009-02-23 2019-01-29 가부시키가이샤 무라타 세이사쿠쇼 비수 전해질 조성물, 비수 전해질 이차 전지 및 비수 전해질 이차 전지의 제조 방법
KR20120025518A (ko) 2009-05-26 2012-03-15 옵토도트 코포레이션 나노다공성 세퍼레이터 상의 애노드 직접 코팅을 이용한 배터리
CN102190323B (zh) * 2010-02-25 2014-08-06 住友化学株式会社 无机氧化物粉末和含无机氧化物的淤浆、以及使用该於浆的锂离子二次电池和制备其的方法
CN106784556A (zh) 2010-07-19 2017-05-31 奥普图多特公司 用于电化学电池的隔膜
US8773072B2 (en) * 2011-08-29 2014-07-08 Aygis Ag Refuelable storage battery
JP5812364B2 (ja) * 2011-11-15 2015-11-11 トヨタ自動車株式会社 非水電解液型二次電池
JP5362132B2 (ja) * 2012-01-20 2013-12-11 住友化学株式会社 無機酸化物粉末および無機酸化物含有スラリーならびに該スラリーを使用したリチウムイオン二次電池およびその製造方法
JP6005363B2 (ja) * 2012-01-27 2016-10-12 三洋電機株式会社 リチウムイオン二次電池の製造方法
JP5344107B1 (ja) * 2012-03-26 2013-11-20 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
FR2999019A1 (fr) * 2012-11-30 2014-06-06 Saint Gobain Ct Recherches Utilisation d'une poudre a base de silice pour la fabrication d'un element de separation d'une batterie lithium-ion
KR102256769B1 (ko) 2013-02-01 2021-05-26 가부시키가이샤 닛폰 쇼쿠바이 전극 전구체, 전극 및 전지
KR102236436B1 (ko) 2013-04-29 2021-04-06 옵토도트 코포레이션 증가된 열 전도율을 갖는 나노기공성 복합체 분리기들
DE102013216302A1 (de) 2013-08-16 2015-02-19 Robert Bosch Gmbh Lithium-Zelle mit Erdalkalimetallcarboxylat-Separator
JP6289625B2 (ja) 2013-10-31 2018-03-07 エルジー・ケム・リミテッド 有機−無機複合多孔性膜、これを含むセパレーター及び電極構造体
US9444125B2 (en) * 2014-07-15 2016-09-13 Atieva, Inc. Battery pack with non-conductive structural support
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
US12040506B2 (en) 2015-04-15 2024-07-16 Lg Energy Solution, Ltd. Nanoporous separators for batteries and related manufacturing methods
US10615412B2 (en) * 2018-01-30 2020-04-07 Octopus Technologies Inc. Manganese oxide composition and method for preparing manganese oxide composition
US11315742B2 (en) 2018-07-02 2022-04-26 Korea Institute Of Energy Research Freely detachable sticker-type electronic device, method of manufacturing the same, and method of forming electrode for the same
CN109728277A (zh) * 2018-12-29 2019-05-07 桂林电器科学研究院有限公司 对高镍三元正极材料进行表面处理的方法及产品和电池
CN111584827A (zh) * 2020-05-29 2020-08-25 昆山宝创新能源科技有限公司 锂电池负极极片及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196199A (ja) * 1992-12-24 1994-07-15 Canon Inc 二次電池
JPH06283157A (ja) * 1992-09-14 1994-10-07 Canon Inc 二次電池
JPH08236114A (ja) * 1995-02-27 1996-09-13 Sanyo Electric Co Ltd リチウム二次電池
JPH10214640A (ja) * 1997-01-30 1998-08-11 Asahi Chem Ind Co Ltd 電 池

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363856A (en) 1980-06-30 1982-12-14 Texon Inc. Battery separator material
US5302368A (en) 1987-01-29 1994-04-12 Sumitomo Chemical Company, Limited Process for preparation of alumina
US5208121A (en) * 1991-06-18 1993-05-04 Wisconsin Alumni Research Foundation Battery utilizing ceramic membranes
CA2110097C (en) * 1992-11-30 2002-07-09 Soichiro Kawakami Secondary battery
JP3517913B2 (ja) * 1993-10-15 2004-04-12 日産化学工業株式会社 細長い形状のシリカゾルの製造法
JP3371301B2 (ja) * 1994-01-31 2003-01-27 ソニー株式会社 非水電解液二次電池
CA2226366C (en) * 1995-08-28 2002-05-21 Asahi Kasei Kogyo Kabushiki Kaisha Novel battery and method for producing the same
US5948464A (en) 1996-06-19 1999-09-07 Imra America, Inc. Process of manufacturing porous separator for electrochemical power supply
JP3831017B2 (ja) * 1996-07-31 2006-10-11 ソニー株式会社 非水電解液電池並びに非水電解液電池用セパレータ
US6053953A (en) 1997-02-14 2000-04-25 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery and process for preparation thereof
JPH10241655A (ja) 1997-02-27 1998-09-11 Asahi Chem Ind Co Ltd 電 池
US5882721A (en) 1997-05-01 1999-03-16 Imra America Inc Process of manufacturing porous separator for electrochemical power supply
US5965299A (en) * 1997-06-23 1999-10-12 North Carolina State University Composite electrolyte containing surface modified fumed silica
JPH11102730A (ja) 1997-09-29 1999-04-13 Hitachi Ltd リチウム二次電池
US6110619A (en) 1997-12-19 2000-08-29 Moltech Corporation Electrochemical cells with cationic polymers and electroactive sulfur compounds
US6811928B2 (en) * 1998-01-22 2004-11-02 Mitsubishi Denki Kabushiki Kaisha Battery with adhesion resin layer including filler
JPH11283603A (ja) * 1998-03-30 1999-10-15 Noritake Co Ltd 電池用セパレーター及びその製造方法
US6235427B1 (en) * 1998-05-13 2001-05-22 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery containing silicic material
US6084767A (en) * 1998-09-29 2000-07-04 General Electric Company Ultracapacitor separator
JP4303355B2 (ja) 1999-04-26 2009-07-29 株式会社クレハ ポリふっ化ビニリデン系樹脂、それからなる多孔膜およびその多孔膜を用いた電池
CN1179830C (zh) * 1999-08-30 2004-12-15 日本碍子株式会社 波纹壁蜂窝构件及其制造方法
US20020102456A1 (en) * 1999-09-20 2002-08-01 Mitsubishi Denki Kabushiki Kaisha Battery
US20030170536A1 (en) 1999-09-22 2003-09-11 Mitsubishi Denki Kabushiki Kaisha Bttery with adhesion resin layer including filler
KR20010055897A (ko) 1999-12-13 2001-07-04 이 병 길 미세 다공성 고체 전해질 및 그의 제조방법
JP5070660B2 (ja) 2000-10-30 2012-11-14 住友化学株式会社 多孔性フィルム、電池用セパレータおよび電池
JP4415241B2 (ja) 2001-07-31 2010-02-17 日本電気株式会社 二次電池用負極およびそれを用いた二次電池、および負極の製造方法
JP2003223896A (ja) * 2002-01-31 2003-08-08 Hitachi Ltd 非水電解液二次電池とその製法
JP2003257427A (ja) 2002-02-28 2003-09-12 Sumitomo Chem Co Ltd 非水二次電池用電極材料
JP2003346359A (ja) * 2002-05-27 2003-12-05 Pioneer Electronic Corp レンズ駆動装置用コイル基板及びレンズ駆動装置
JP2004067904A (ja) 2002-08-07 2004-03-04 Seiko Epson Corp インクジェット記録用インク、インクセット及びその製造方法、並びにインクジェット記録装置
DE10304735A1 (de) 2002-12-18 2004-07-08 Creavis Gesellschaft Für Technologie Und Innovation Mbh Polymerseparator, Verfahren zu dessen Herstellung und Verwendung in Lithium-Batterien
US7115339B2 (en) 2003-02-21 2006-10-03 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
EP1643583A4 (en) 2003-07-29 2010-01-20 Panasonic Corp LITHIUM ION SECONDARY BATTERY
CN100544078C (zh) * 2004-02-18 2009-09-23 松下电器产业株式会社 二次电池
JP2005285385A (ja) 2004-03-29 2005-10-13 Sanyo Electric Co Ltd セパレータ及びこのセパレータを用いた非水電解質電池
KR100790280B1 (ko) * 2004-03-30 2008-01-02 마쯔시다덴기산교 가부시키가이샤 비수전해액 2차 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283157A (ja) * 1992-09-14 1994-10-07 Canon Inc 二次電池
JPH06196199A (ja) * 1992-12-24 1994-07-15 Canon Inc 二次電池
JPH08236114A (ja) * 1995-02-27 1996-09-13 Sanyo Electric Co Ltd リチウム二次電池
JPH10214640A (ja) * 1997-01-30 1998-08-11 Asahi Chem Ind Co Ltd 電 池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1657767A4 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006781A (ja) * 2004-09-02 2016-01-14 エルジー・ケム・リミテッド 有機無機複合多孔性フィルム及びこれを用いる電気化学素子
US9490463B2 (en) 2004-09-02 2016-11-08 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
JP2007012598A (ja) * 2005-05-31 2007-01-18 Matsushita Electric Ind Co Ltd 非水電解質二次電池および電池モジュール
JP2007258160A (ja) * 2006-02-21 2007-10-04 Nissan Motor Co Ltd リチウムイオン二次電池およびこれを用いた組電池
JP2007287677A (ja) * 2006-03-24 2007-11-01 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2008198506A (ja) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2008226605A (ja) * 2007-03-12 2008-09-25 Sanyo Electric Co Ltd 非水電解質二次電池
JPWO2008114727A1 (ja) * 2007-03-15 2010-07-01 日立マクセル株式会社 電気化学素子用セパレータ、電気化学素子用電極および電気化学素子
WO2008114727A1 (ja) * 2007-03-15 2008-09-25 Hitachi Maxell, Ltd. 電気化学素子用セパレータ、電気化学素子用電極および電気化学素子
JP5193998B2 (ja) * 2007-03-15 2013-05-08 日立マクセル株式会社 電気化学素子用セパレータ、電気化学素子用電極および電気化学素子
US8822082B2 (en) 2007-03-15 2014-09-02 Hitachi Maxwell, Ltd. Separator for electrochemical device, electrode for electrochemical device, and electrochemical device
JP2009043715A (ja) * 2007-07-18 2009-02-26 Panasonic Corp 非水電解質二次電池
JP4712837B2 (ja) * 2007-07-18 2011-06-29 パナソニック株式会社 非水電解質二次電池
US8999585B2 (en) 2007-07-18 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
JP2009231281A (ja) * 2008-02-28 2009-10-08 Teijin Ltd 非水電解質電池セパレータ及び非水電解質二次電池
WO2010024328A1 (ja) * 2008-08-29 2010-03-04 日本ゼオン株式会社 多孔膜、二次電池電極及びリチウムイオン二次電池
US8895184B2 (en) 2008-08-29 2014-11-25 Zeon Corporation Porous film, secondary battery electrodes, and lithium ion secondary battery
JP5601472B2 (ja) * 2008-08-29 2014-10-08 日本ゼオン株式会社 多孔膜、二次電池電極及びリチウムイオン二次電池
JP2010095399A (ja) * 2008-10-15 2010-04-30 Sumitomo Osaka Cement Co Ltd 多孔質膜形成用塗料及び多孔質膜、セラミックフィルタ、排ガス浄化フィルタ並びにセラミックフィルタの製造方法
WO2010052786A1 (ja) * 2008-11-07 2010-05-14 トヨタ自動車株式会社 電池、車両及び電池搭載機器
KR101202081B1 (ko) 2008-11-07 2012-11-15 도요타지도샤가부시키가이샤 전지, 차량 및 전지 탑재 기기
CN102210040A (zh) * 2008-11-07 2011-10-05 丰田自动车株式会社 电池、车辆以及电池搭载设备
JP2012531010A (ja) * 2009-06-30 2012-12-06 エルジー・ケム・リミテッド 多孔性コーティング層を備える電極の製造方法、その方法によって形成された電極、及びそれを備える電気化学素子
WO2011036797A1 (ja) * 2009-09-28 2011-03-31 トヨタ自動車株式会社 リチウム二次電池及びその製造方法
JP5035650B2 (ja) * 2009-09-28 2012-09-26 トヨタ自動車株式会社 リチウム二次電池及びその製造方法
JPWO2011036797A1 (ja) * 2009-09-28 2013-02-14 トヨタ自動車株式会社 リチウム二次電池及びその製造方法
DE102011012272A1 (de) 2010-02-25 2011-10-27 Sumitomo Chemical Company, Ltd. Anorganisches Oxidpulver und anorganisches Oxid enthaltende Aufschlämmung und Lithiumionensekundärbatterie, das die Aufschlämmung verwendet, und Verfahren zu deren Herstellung
WO2013108510A1 (ja) * 2012-01-18 2013-07-25 ソニー株式会社 セパレータ、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US10014504B2 (en) 2012-01-18 2018-07-03 Murata Manufacturing Co., Ltd. Separator, battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JPWO2013108510A1 (ja) * 2012-01-18 2015-05-11 ソニー株式会社 セパレータ、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2016225303A (ja) * 2012-01-18 2016-12-28 ソニー株式会社 セパレータ、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JPWO2013187458A1 (ja) * 2012-06-12 2016-02-08 三菱製紙株式会社 リチウムイオン電池用セパレータ
CN107834009A (zh) * 2012-06-12 2018-03-23 三菱制纸株式会社 锂离子电池用隔板
JP2018073842A (ja) * 2012-06-12 2018-05-10 三菱製紙株式会社 リチウムイオン電池用セパレータ
WO2013187458A1 (ja) * 2012-06-12 2013-12-19 三菱製紙株式会社 リチウムイオン電池用セパレータ
US10522809B2 (en) 2012-07-18 2019-12-31 Sumitomo Chemical Company, Limited Adhesive layer, layer, and composition
JP2015162313A (ja) * 2014-02-26 2015-09-07 日本ゼオン株式会社 非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜、及び二次電池
WO2016098579A1 (ja) * 2014-12-17 2016-06-23 住友化学株式会社 無機酸化物粉末、およびこれを含有するスラリー、ならびに非水電解液二次電池およびその製造方法
JPWO2016098579A1 (ja) * 2014-12-17 2017-04-27 住友化学株式会社 無機酸化物粉末、およびこれを含有するスラリー、ならびに非水電解液二次電池およびその製造方法
KR101749883B1 (ko) 2014-12-17 2017-06-21 스미또모 가가꾸 가부시끼가이샤 무기 산화물 분말, 및 이것을 함유하는 슬러리, 그리고 비수 전해액 이차 전지 및 그 제조 방법
US10014502B2 (en) 2014-12-17 2018-07-03 Sumitomo Chemical Company, Limited Inorganic oxide powder, slurry containing same, nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
CN1806351A (zh) 2006-07-19
CN100452487C (zh) 2009-01-14
JPWO2005124899A1 (ja) 2008-04-17
EP1657767A1 (en) 2006-05-17
US7402184B2 (en) 2008-07-22
KR20060030897A (ko) 2006-04-11
EP1657767B1 (en) 2009-12-30
US7560193B2 (en) 2009-07-14
JP4781263B2 (ja) 2011-09-28
US20060105245A1 (en) 2006-05-18
DE602005018591D1 (de) 2010-02-11
US20070117025A1 (en) 2007-05-24
EP1657767A4 (en) 2007-04-18
KR100737663B1 (ko) 2007-07-09

Similar Documents

Publication Publication Date Title
JP4781263B2 (ja) 二次電池およびその製造方法
US8163425B2 (en) Secondary battery
JP4933270B2 (ja) セパレータおよびそれを用いた非水電解液二次電池
JP4763253B2 (ja) リチウムイオン二次電池
JP4847861B2 (ja) 非水電解液二次電池
JP5219387B2 (ja) 非水電解質二次電池
JP5235109B2 (ja) 非水電解質電池用セパレータおよび非水電解質電池
KR100770518B1 (ko) 리튬이온 이차전지
JP2017216233A (ja) 負極活物質、それを含むリチウム二次電池、及び該負極活物質の製造方法
JP6475064B2 (ja) 正極活物質、その製造方法、正極活物質を用いた正極合材、非水電解質二次電池用正極及び非水電解質二次電池
WO2019064538A1 (ja) リチウムイオン電池用バインダおよびこれを用いた電極並びにセパレータ
CN105164836A (zh) 锂二次电池用复合活性物质及其制造方法
JP5799500B2 (ja) リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP7571304B2 (ja) 負極及びこれを含む二次電池
JP6070243B2 (ja) 電気化学素子正極用複合粒子の製造方法
JP2012124116A (ja) リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP3709446B2 (ja) リチウム二次電池用正極活物質及びその製造方法
CN115836437A (zh) 一种电化学装置及包含该电化学装置的电子装置
JP2002117834A (ja) 非水系二次電池用正極および非水系二次電池
JP2017103137A (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
KR100733193B1 (ko) 2차전지의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11314008

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 20058004622

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005720391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067000373

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020067000373

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006514659

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2005720391

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11314008

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE