[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005121638A1 - 導光板、これを用いる面状照明装置および液晶表示装置 - Google Patents

導光板、これを用いる面状照明装置および液晶表示装置 Download PDF

Info

Publication number
WO2005121638A1
WO2005121638A1 PCT/JP2005/010359 JP2005010359W WO2005121638A1 WO 2005121638 A1 WO2005121638 A1 WO 2005121638A1 JP 2005010359 W JP2005010359 W JP 2005010359W WO 2005121638 A1 WO2005121638 A1 WO 2005121638A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
light guide
light
parallel groove
plate unit
Prior art date
Application number
PCT/JP2005/010359
Other languages
English (en)
French (fr)
Inventor
Motohiko Matsushita
Original Assignee
Fuji Photo Film Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co., Ltd. filed Critical Fuji Photo Film Co., Ltd.
Publication of WO2005121638A1 publication Critical patent/WO2005121638A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0078Side-by-side arrangements, e.g. for large area displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • G02B6/0021Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces for housing at least a part of the light source, e.g. by forming holes or recesses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide

Definitions

  • the present invention relates to a transparent light guide plate that diffuses light incident from a rod-shaped light source in the plane direction and emits uniform illumination light with a light exit surface force even in a high humidity environment, and a planar illumination using the same.
  • the present invention relates to a device and a liquid crystal display device.
  • a backlight unit that illuminates a liquid crystal panel (LCD) with light from the rear side thereof to illuminate the liquid crystal panel is used in the liquid crystal display device.
  • the backlight unit includes components such as a light source for illumination, a light guide plate for diffusing the emitted light and illuminating the liquid crystal panel, a prism sheet for uniformizing the light emitted from the light guide plate, and a diffusion sheet. It is configured using
  • FIG. 27 is an exploded perspective view showing a surface light source device having a light guide plate disclosed in Japanese Patent Application Laid-Open No. 9 304623.
  • a reflection sheet 204 is disposed on the back of the light guide plate 200, and a transmitted light amount correction sheet is provided on an emission surface of the light guide plate 200. It is formed by laminating 206, light diffusion plate 208, and prism sheet 210.
  • the light guide plate 200 has a substantially rectangular shape, and is formed using a resin into which fine particles that diffuse illumination light are dispersed and mixed.
  • the upper surface of the light guide plate 200 is flat, and is allocated to the emission surface.
  • a U-shaped groove 200a having a cross section for embedding the fluorescent lamp 202 is formed on the back surface (the surface opposite to the emission surface) of the light guide plate 200, and the emission surface of the light guide plate 200 is formed just above the fluorescent lamp 202. Avoid the light intensity correction surface 200b that promotes the emission of illumination light.
  • Japanese Patent Application Laid-Open No. 9-304623 discloses that a light guide plate 200 is formed by mixing fine particles, and a light amount correction surface formed on a part or all of an emission surface except a portion right above the fluorescent lamp 202. It is described that by promoting the emission of the illumination light by 200b, the overall thickness can be reduced and unnatural luminance unevenness of the emitted light can be reduced.
  • Japanese Patent Application Laid-Open No. 8-62426 discloses that a liquid crystal display device can be reduced in size and weight without reducing the irradiation amount of a knock light, and can be reduced in thickness and cost and power consumption can be reduced.
  • a rectangular irradiation surface, and a groove having a rectangular cross section for inserting a light source which is cut out in the center of the short side in parallel with the long side, and sandwiches this groove
  • a light guide plate having a back surface formed so that the plate thickness is gradually reduced in the direction of both side surfaces of the long side.
  • Japanese Patent Application Laid-Open No. Hei 10-133027 discloses that a light source is arranged in order to obtain a bright backlight unit that can make the frame of a liquid crystal display device narrower and thinner, and has good light use efficiency.
  • a light guide (light guide plate) having a parabolic shape in which the cross section parallel to the width direction of the concave portion is parallel to the depth direction is disclosed.
  • Japanese Patent Application Laid-Open No. 5-249320 discloses that in order to keep the in-plane brightness of the display panel uniform and to provide high-luminance illumination, the light is sequentially refracted on a C-shaped high reflection layer.
  • a light guide plate in which a plurality of plate-shaped optical waveguide layers are stacked so as to increase the efficiency, and the light diffusion layer is brightened by light emitted from each light emitting end face.
  • the concave portion for arranging the light source has a triangular shape.
  • the light guide plates disclosed in JP-A-9 304623, JP-A-8-62426, JP-A-10-133027 and JP-A-5-249320 disclose a liquid crystal display device that is thinner, smaller and lighter.
  • one or more grooves are provided in the center of each of the grooves, and the rod-shaped light sources are housed in the grooves.
  • the groove force is also formed so that the plate thickness becomes gradually thinner toward the end face, thereby achieving a reduction in thickness.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 9 304623
  • Patent Document 2 JP-A-8-62426
  • Patent Document 3 JP-A-10-133027
  • Patent Document 4 JP-A-5-249320
  • the light guide plate in a high humidity environment is disclosed. No deformation is taken into account.
  • the light guide plate is assembled with a cold cathode tube and shipped to the market as a knock light unit.
  • the temperature is maintained at a high humidity of 60 ° C. and a relative humidity of 95% for a predetermined time. Under such a high humidity environment, there is a problem that the light guide plate is deformed into a concave or convex shape regardless of whether the light source is turned off or turned on.
  • FIG. 28A is a schematic diagram for explaining a deformation when the knock light unit is turned off in a high humidity environment
  • FIG. 28B is a schematic diagram for explaining a deformation when the backlight unit is turned on.
  • the light guide plate 220 has a shape cut out in a rectangular shape from a top angle of a substantially pentagonal side view to a bottom side in a side view.
  • the plan view of the bottom side of the light guide plate 220 has a substantially rectangular shape.
  • the cut-out portion becomes the parallel groove 222 in a side view, and the bottom of the parallel groove 222 is a plane.
  • the surface on the bottom side of the substantially pentagonal side view is the front surface 220a, and the two inclined surfaces form the rear surface 220b.
  • a cold cathode tube 224 is disposed in the parallel groove 222 as a light source.
  • the light emission correction surface such as a rough surface or a microprism surface is avoided so as not to be directly above the light source (fluorescent lamp) 202.
  • the luminance N2 of the illumination light from the light guide plate 200 having the light amount correction surface 200b indicated by the solid line shown by the dotted line has a small effect on the luminance N1 of the illumination light
  • the luminance improvement effect by the light amount correction surface 200b is small.
  • the efficiency of use of the light is large and the light source efficiency is low. Since the light source light is insufficiently diffused, uniform and high-intensity light cannot be emitted from the emission surface.
  • a light source (fluorescent lamp) 202 is embedded in a groove 200a having a circular cross section, and as shown in FIG. Since the luminance peak due to the light remains as it is, in order to use it as a surface light source device, the transmitted light amount correction sheet 206, the light diffusion plate 208, and the prism It is necessary to remove unnatural luminance unevenness on the light exit surface by using a light guide 210 or the like, and there is a problem that the cost of the device increases.
  • the cross-sectional shape of the groove-shaped recess provided in the light guide is made parabolic, so that the light guide is formed. Light is incident on the light guide where the diffusion of light in the light body is almost uniform, and it is said that the efficiency of light utilization can be improved.
  • the light guide plate disclosed in Japanese Patent Application Laid-Open No. 5-249320 has a complicated structure in which a plurality of plate-like optical waveguide plates are stacked, so that the brightness attenuation is reduced and uniform brightness is reduced as compared with the related art. It has the problem that the manufacturing cost is high.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, to provide a thin, lightweight, even, less uneven, and brighter illumination from a light exit surface even in a high humidity environment.
  • An object of the present invention is to provide a light guide plate capable of emitting bright light, a planar illumination device and a liquid crystal display device using the light guide plate.
  • Another object of the present invention is to provide a light guide plate capable of providing a light emitting surface of a larger size.
  • Another object of the present invention is to be thin and lightweight, to be able to be manufactured at lower cost, to emit more uniform, less uneven, and higher-intensity illumination light.
  • An object of the present invention is to provide a planar lighting device which can be used as a lighting surface of a size or can be applied to a liquid crystal display device such as a wall-mounted television.
  • Another object of the present invention is to provide a thin, lightweight, low-cost manufacturing, more uniform, less uneven, and higher-luminance display, and a large-size display. It is an object of the present invention to provide a liquid crystal display device which can be a display screen or a wall-mounted type such as a wall-mounted television.
  • the present inventors set at least two light guide plate units each having a rectangular light exit surface and a back surface facing the light exit surface, and made the light exit surfaces coplanar.
  • the length of the longest side of the rectangular total light emitting surface obtained by connecting the light emitting surfaces of the light guide plate unit is L (mm), and the light output per unit length of the light guide plate unit is determined.
  • the deformation amount is y (mm)
  • the coefficient K 3. 3 X 10 _4 ( lZ (mm X mass 0/0))
  • the coefficient b l. 9 X 10 _2 ( mass 0/0).
  • the water absorption w (mass%) of the transparent resin constituting the light guide plate unit satisfies the following expression (1), whereby the deformation of the light guide plate can be suppressed even in a high humidity environment. I found that.
  • a thin and light-weight, more uniform, less uneven and higher-brightness illumination light can be emitted from the light emission surface, and a larger-sized illumination light can be emitted.
  • the present inventors have conducted intensive experimental research and found that a rectangular light emitting surface, a thick portion parallel to one side thereof, A thin end formed parallel to both sides of the thick part, and a thin part that is thinner toward the thin ends on both sides of the thick part, and a slanted back part that forms a slanted back, and parallel to the thick part
  • a peak of illuminance or brightness is formed by the emission light of the rod-shaped light source housed in the parallel groove, thereby causing illumination unevenness or uneven brightness.
  • the peak of illuminance or luminance can be reduced by narrowing the cross-sectional shape of the parallel groove toward the front end portion facing the light emission surface, and the illuminance or brightness can be reduced by sharpening the top of the front end portion.
  • the inventors of the present invention have found that it can be reduced by chamfering or rounding, and that the degree of reduction in the illuminance or luminance peak depends on the degree to which the tip of the parallel groove is made thinner.
  • At least two light guide plate units each having a rectangular light emitting surface and a back surface opposed to the light emitting surface are connected by making the light emitting surfaces coplanar.
  • a light guide plate wherein the length of the longest side of the total light exit surface of the rectangular shape obtained by connecting the light exit surfaces of the light guide plate unit is L (mm);
  • the light guide plate unit is formed so as to have a rectangular light exit surface, a thick portion parallel to one side thereof and located substantially at the center of the light exit surface, and parallel to the thick portion.
  • the thickness is symmetrical with respect to a plane perpendicular to the light emitting surface, and the thickness becomes thinner toward the thin end portions on both sides in a direction perpendicular to the one side, thereby forming an inclined back surface.
  • the thin end portions of adjacent light guide plate units are connected, and the light exit surfaces of the connected light guide plate units are arranged on the same plane.
  • Light guide adjoining from a plane passing through the center of the rod-shaped light source and perpendicular to the light emitting surface is L (mm)
  • the maximum thickness of the thick part is Dmax (mm)
  • the minimum thickness of the thin end is Dmin (mm).
  • the value of y is preferably 1 or less.
  • a second aspect of the present invention provides the light guide plate of the first aspect of the present invention, a rod-shaped light source housed in the parallel groove of the light guide plate, and the light guide plate so as to cover the parallel groove.
  • a reflector provided behind the rod-shaped light source, a reflection sheet attached to the inclined rear surface of the inclined rear portion on both sides of the thick portion of the light guide plate, and disposed on the total light emitting surface of the light guide plate.
  • a spread illuminating device having a diffusion sheet.
  • a prism sheet is further provided between the total light emitting surface of the light guide plate and the diffusion sheet or above the diffusion sheet.
  • a third aspect of the present invention is a knock light unit that also has the power of the planar lighting device according to the second aspect of the present invention, and a liquid crystal display arranged on the light emitting surface side of the backlight unit.
  • An object of the present invention is to provide a liquid crystal display device comprising a panel, and a drive kit for driving the backlight unit and the liquid crystal display panel.
  • the light guide plate of the present invention for a light guide plate unit having a rectangular light exit surface and a back surface opposed to the light exit surface, at least two of the light guide plate units and the light exit surface are on the same plane.
  • the length of the longest side is L (mm) of the rectangular total light emitting surface obtained by connecting the light emitting surfaces of the light guide plate unit, and the unit length of the light guide plate unit is
  • the light guide plate of the present invention can be made thinner and lighter, and more uniform, less uneven and higher brightness illumination light is emitted from the light emitting surface. be able to.
  • the light guide plate unit includes, for example, a rectangular light exit surface, a thick portion parallel to one side thereof and located at a substantially central portion of the light exit surface, and a thick portion.
  • Light emission including a thin-walled end formed in parallel, a parallel groove formed substantially in the center of the thick-walled part in parallel with the one side, for accommodating a rod-shaped light source, and axes of the rod-shaped light source on both sides of the parallel groove.
  • the use of the light guide plate of the present invention can suppress deformation of the light guide plate even in a high humidity environment. Even in this case, it is possible to suppress luminance unevenness on the light emitting surface and prevent a decrease in average luminance on the light emitting surface.
  • the spread illuminating apparatus of the present invention by using the light guide plate of the present invention, it is thin and lightweight, can be manufactured at lower cost, and is more uniform, less uneven, and has higher brightness.
  • the present invention can provide a planar illumination device which can emit a large amount of illumination light, can have a large illumination surface, and can be applied to a liquid crystal display device such as a wall-mounted television.
  • the use of the planar lighting device of the present invention can suppress the deformation of the light guide plate even in a high humidity environment.
  • part of the knock light unit does not come into contact with the liquid crystal display panel. Thereby, display unevenness does not occur. Furthermore, it is possible to suppress luminance unevenness and prevent a decrease in average luminance on the light emitting surface.
  • the liquid crystal display device of the present invention by using the planar illumination device of the present invention, the liquid crystal display device can be manufactured to be thinner and lighter, can be manufactured at a lower cost, and have a more uniform and less uneven power.
  • a display with higher brightness can be performed, the display screen can be made larger, and a wall-mounted television or the like can be used.
  • FIG. 1A is a schematic view showing a liquid crystal display device according to an embodiment of the present invention using a planar lighting device according to an embodiment of the present invention having a light guide plate according to the embodiment of the present invention as a backlight unit.
  • FIG. 1B is a schematic partial cross-sectional perspective view taken along line AA of FIG. 1A.
  • FIG. 2 is a schematic perspective view showing a light guide plate according to an example of the present invention.
  • FIG. 3A to FIG. 3C are schematic perspective views showing modifications of the light guide plate.
  • FIG. 4 is a schematic side view showing a main part of a backlight unit according to an embodiment of the present invention.
  • FIG. 5 is a schematic perspective view illustrating the size of each part of the light guide plate unit of the present invention.
  • FIG. 6A and FIG. 6B are schematic side views illustrating a method for measuring the amount of warpage.
  • FIG. 7 is a graph showing the relationship between the amount of warpage and the length of the side of the light guide plate, with the vertical axis representing the amount of warpage and the horizontal axis representing the length of the second side.
  • FIG. 8 is a graph showing the relationship between the amount of warpage and the length of the side of the light guide plate, with the amount of warpage taken along the vertical axis and the length of the first side taken along the horizontal axis.
  • FIG. 9 is a graph showing the relationship between the amount of warpage and the water absorption by taking the amount of warpage on the vertical axis and the water absorption on the horizontal axis.
  • FIG. 10 is a graph showing the relationship between the amount of deformation and the water absorption by taking the amount of deformation on the vertical axis and the length of one side on the horizontal axis.
  • FIG. 11A is a schematic side view showing a light guide plate unit in which a prism sheet is disposed between a reflection sheet and an inclined surface of the light guide plate unit
  • FIG. FIG. 11C is a schematic plan view of the light exit surface side force
  • FIG. 11C is a cross-sectional view taken along line BB of FIG. 11B.
  • FIG. 12 is a schematic side view showing the light guide plate unit when the cross-sectional shape perpendicular to the length direction of the parallel groove is hyperbolic.
  • FIG. 13 is a schematic side view showing a light guide plate unit when the cross-sectional shape perpendicular to the length direction of the parallel groove is elliptical.
  • FIG. 14 shows two arc curves in which the cross-sectional shape perpendicular to the length direction of the parallel groove is symmetrical with respect to the center line passing through the center of the parallel groove and perpendicular to the light exit surface of the light guide plate unit.
  • FIG. 3 is a schematic side view showing a light guide plate unit partially formed.
  • FIG. 15 shows one of two parabolas whose cross section perpendicular to the length direction of the parallel groove is symmetric with respect to a center line passing through the center of the parallel groove and perpendicular to the light exit surface of the light guide plate unit.
  • FIG. 4 is a schematic side view showing a light guide plate unit in which a partial force is formed.
  • FIG. 16 is a schematic side view showing a light guide plate unit in which a cross-sectional shape perpendicular to the length direction of the parallel groove is formed with two convex curved forces directed toward the center of the parallel groove. .
  • FIG. 17 shows a light guide plate unit in which a cross-sectional shape perpendicular to the length direction of the parallel groove is formed into a curved force that combines a convex curve and a concave curve toward the center of the parallel groove. It is a typical side view shown.
  • FIG. 18 is a plan view showing a light guide plate unit in which a halftone dot pattern is formed on a light emitting surface.
  • FIG. 19 is a graph showing the illuminance distribution of light emitted from the light exit surface of the light guide plate when the cross-sectional shape of the parallel groove of the light guide plate is changed to various shapes.
  • FIG. 20 is a graph showing the illuminance distribution of light emitted from the light exit surface of the light guide plate when the deepest part of the parallel groove is flattened and the length of the flat part is changed to various values. It is.
  • FIGS. 21A to 21D are schematic diagrams showing light guide plate units when the flat portions at the deepest portions of the parallel grooves are 1.5 mm, 1. Omm, 0.5 mm, and 0.25 mm, respectively.
  • FIG. 21A to 21D are schematic diagrams showing light guide plate units when the flat portions at the deepest portions of the parallel grooves are 1.5 mm, 1. Omm, 0.5 mm, and 0.25 mm, respectively.
  • FIG. 22 shows that the shape of the deepest portion of the parallel groove is a curved surface having a radius of curvature R, and the light exit surface force of the light guide plate when the radius of curvature of the curved surface is changed to various values. It is a graph which shows illuminance distribution.
  • FIGS. 23A to 23D show light guide plate units when the radii of curvature at the apexes of parallel grooves having a triangular cross section are 1.5 mm, 1.0 mm, 0.5 mm, and 0.25 mm, respectively. It is a typical side view shown.
  • FIG. 24 is a schematic side view showing another example of the light guide plate of the present invention.
  • FIG. 25 is a schematic side view showing a configuration example in which a reflection plate is arranged on the side surface of the light guide plate of the present invention.
  • FIG. 26A is a schematic perspective view showing a light guide plate according to another embodiment of the present invention
  • FIG. 26B is a side view showing a light guide plate according to another embodiment of the present invention.
  • FIG. 27 is an exploded perspective view showing a surface light source device having a light guide plate disclosed in Japanese Patent Application Laid-Open No. 9-304623.
  • FIG. 28A is a schematic diagram illustrating a deformation when the backlight unit is turned off in a high humidity environment
  • FIG. 28B is a schematic diagram illustrating a deformation when the backlight unit is turned on.
  • FIG. 29 is a graph showing a luminance distribution on an emission surface of a light guide plate of the surface light source device of FIG. 27.
  • the light guide plate of the present invention a planar illumination device and a liquid crystal display device using the same will be described.
  • FIG. 1A is a schematic view showing a liquid crystal display device according to an embodiment of the present invention using a planar lighting device according to an embodiment of the present invention having a light guide plate according to an embodiment of the present invention as a backlight unit.
  • FIG. 1B is a side view, and FIG. 1B is a schematic partial cross-sectional perspective view taken along line AA of FIG. 1A.
  • the liquid crystal display device 10 basically includes a knock light unit 2, a liquid crystal display panel 4 arranged on the light emission surface side of the backlight unit 2, and And a drive unit 6 for driving.
  • Knock light unit 2 and liquid crystal display panel 4 are arranged with an interval (clearance) g. This interval g is generally about lmm.
  • the backlight unit 2 is a planar lighting device for irradiating the entire surface of the liquid crystal display panel 4 with uniform light from behind the liquid crystal display panel 4, and is substantially the same as the image display surface of the liquid crystal display panel 4.
  • Light emitting surface light emitting surface
  • the knock light unit 2 basically includes a plurality of rod-like light sources 12, a diffusion sheet 14, two prism sheets 16 and 17, and a plurality of light guide plate units 19.
  • the rod-shaped light source 12 is, for example, a small-diameter rod-shaped cold-cathode tube, and is used to illuminate the liquid crystal display panel 4. As shown in FIG. 1A, the rod-shaped light source 12 is disposed in a parallel groove 19f formed in the light guide plate unit 19, and is connected to the drive unit 6 via wiring (not shown).
  • a cold cathode tube is used as the rod-shaped light source 12, but the present invention is not limited to this, and any rod-shaped light source may be used.
  • a normal fluorescent tube (hot cathode tube) or an LED (light emitting diode) can also be used.
  • the diffusion sheet 14 is for diffusing and equalizing the light emitted from the light exit surface 19a of the light guide plate unit 19, for example, PET (polyethylene terephthalate), PP (polypropylene), PC (Polycarbonate), PMMA (Polymethinolemethacrylate), Benzinolemethacrylate, MS (methacrylstyrene) resin, or other acrylic resins, or optical such as COP (cycloolefin polymer) It is formed by imparting light diffusivity to a flat member made of transparent resin.
  • the method is not particularly limited, for example, a surface roughened by fine unevenness or polishing (hereinafter referred to as a “sand rubbing surface” ”)
  • a surface roughened by fine unevenness or polishing hereinafter referred to as a “sand rubbing surface”
  • a material such as silica, titanium oxide or zinc oxide, or a material that scatters light such as beads such as resin, glass or zirconia together with a binder together with a binder.
  • a mat type or coating type diffusion sheet can be used as the diffusion sheet 14.
  • the diffusion sheet 14 it is also preferable to use a film-like member having a thickness of 500 ⁇ m or less, which is made of the above-mentioned material and has light diffusing properties.
  • the diffusion sheet 14 is preferably disposed at a predetermined distance from the light exit surface 19 a of the light guide plate unit 19, and the distance is preferably equal to the light amount distribution from the light exit surface 19 a of the light guide plate unit 19. Can be changed as appropriate.
  • the diffusion sheet 14 By separating the diffusion sheet 14 from the light exit surface 19a of the light guide plate unit 19 by a predetermined distance in this manner, light exiting from the light exit surface 19a of the light guide plate unit 19 can be transmitted between the light exit surface 19a and the diffusion sheet 14. Is further mixed (mixed). As a result, the illuminance of light passing through the diffusion sheet 14 and illuminating the liquid crystal display panel 4 is further increased. It can be made uniform.
  • a method of separating the diffusion sheet 14 from the light emitting surface 19a of the light guide plate unit 19 by a predetermined distance for example, a method of providing a spacer between the diffusion sheet 14 and the light guide plate 18 can be used.
  • the light emission of the light guide plate unit 19 corresponding to the parallel groove 19 f depends on the cross-sectional shape of the parallel groove 19 f of the light guide plate unit 19. It is not necessary to sufficiently reduce the peak value of the illuminance on the surface 19a, and the light is emitted from the diffusion sheet 14 by providing a gap between the diffusion sheet 14 and the light exit surface 19a of the light guide plate unit 19.
  • the illumination distribution of the illumination light may be uniform.
  • the illuminance of the light exit surface 19a of the light guide plate unit 19 corresponding to the parallel groove 19f is limited. Even when the peak value cannot be reduced completely or cannot be reduced sufficiently, a gap is provided between the diffusion sheet 14 and the light exit surface 19a of the light guide plate unit 19, and the illumination light emitted from the diffusion sheet 14 is The illuminance distribution may be uniform.
  • the prism sheets 16 and 17 are transparent sheets formed by arranging a plurality of prisms in parallel.
  • the prism sheets 16 and 17 enhance the light-collecting property of light emitted from the light exit surface 19 a of the light guide plate unit 19. Brightness can be improved.
  • One of the prism sheets 16 and 17 is arranged such that the direction in which the prism rows extend is parallel to the parallel groove 19f of the light guide plate unit 19, and the other is arranged so as to be vertical. That is, the prism sheets 16 and 17 are arranged such that the directions in which the prism rows extend are perpendicular to each other.
  • the prism sheet 16 is arranged such that the apex angle of the prism faces the light exit surface 19a of the light guide plate unit 19.
  • the arrangement order of the prism sheets 16 and 17 is such that a prism sheet 16 having a prism extending in a direction parallel to the parallel groove of the light guide plate is arranged immediately above the light guide plate, and on the prism sheet 16, A prism sheet having a prism extending in a direction perpendicular to the parallel groove 19f of the light guide plate unit 19 may be provided, or vice versa.
  • the prism sheets 16 and 17 are provided with a force provided between the total light exit surface 18a of the light guide plate 18 (see FIG. 2) and the diffusion sheet 14.
  • the present invention is not limited to this.
  • These prism sheets 16 and 17 may be arranged above the diffusion sheet 14.
  • a prism sheet is used in the illustrated example, a prism sheet is used instead of the prism sheet.
  • a sheet in which optical elements similar to the above are regularly arranged may be used.
  • a sheet regularly provided with an element having a lens effect for example, an optical element such as a lenticular lens, a concave lens, a convex lens, or a pyramid type can be used instead of the prism sheet.
  • the light guide plate unit 19 includes a rectangular light exit surface 19a, a thick portion 19b parallel to one side thereof, and a thick portion 19b parallel to the one side on both sides of the thick portion 19b.
  • the thick portion 19b has a parallel groove 19f formed in parallel with the one side to accommodate the rod-shaped light source 12.
  • the light guide plate unit 19 is a flat plate having a light emitting surface 19a having a rectangular external shape, and is formed of a transparent resin.
  • the light guide plate unit 19 has one surface (light emission surface 19a) that is flat, and the other surface (inclined back surface 19e) has one side so that the plate thickness becomes thinner toward one side. It is inclined with respect to the plane.
  • a force curved surface in which the inclined surface 19d is formed as a flat surface may be used.
  • the light guide plate 18 is formed by connecting the light guide plate units 19, and the respective light exit surfaces 19a of the connected light guide plate units 19 are gathered to form the total light. It becomes the emission surface 18a.
  • This total light emitting surface 18a also has a rectangular shape.
  • the length of the first side 18b of the total emission surface 18a is
  • the length of the second side 18c is ⁇ .
  • the length of the longest side (hereinafter, referred to as a long side) of the first side 18b and the second side 18c is represented by L.
  • the length ⁇ of the first side 18b is the same as the length of the light guide plate unit 19 in the connection direction.
  • the length ⁇ of the second side 18c is the same as the length in the direction in which the parallel groove 19f (see FIG. 1B) of the light guide plate unit 19 extends.
  • the light guide plate 18 may be deformed in three different forms as shown in Figs. 3A to 3C. 3A to 3C, the light guide plate 18 is schematically illustrated.
  • the first side 18b of the light guide plate 18 is deformed.
  • the second side 18c of the light guide plate 18 is deformed.
  • the first side 18b and the second side 18c of the light guide plate 18 are deformed.
  • the modification shown in FIGS. 3A to 3C depends on the shape of the light guide plate 18 without depending on the length ⁇ of the first side 18b and the length ⁇ of the second side 18c. Even if the amount of deformation is small, if the length of the side is long, the amount of deformation will be amplified. Therefore, as a result, the amount of warpage on the side having a longer side is the amount of deformation of the light guide plate 18.
  • FIG. 4 is a schematic side view showing a main part of the knock light unit according to the embodiment of the present invention.
  • the light guide plate unit 19 has, for example, a shape symmetrical with respect to a center line X passing through the center of the parallel groove 18f and perpendicular to the light emitting surface 19a of the light guide plate unit 19.
  • the light guide plate 18 is formed by connecting at least two, that is, a plurality of the light guide plate units 19 with the thin portion of each light guide plate unit 19 as a joint.
  • the backlight unit 2 shown in FIG. 1A for example, five light guide plate units 19 are connected.
  • the thickness of the thick portion 19b of the light guide plate unit 19 is Dmax, and the thickness of the thin end portion 19c is Dmin.
  • a parallel groove 19f for accommodating the rod-shaped light source 12 extends in the longitudinal direction (one side direction) on the surface of the thick portion 19b of the light guide plate unit 19 opposite to the light emitting surface 19a. It is formed as That is, the parallel groove 19f is formed in a direction parallel to the longitudinal direction of the light emitting surface 19a.
  • the parallel groove 19f has a triangular shape such that two side walls 19g intersect on the center line X to form a bottom 98 in a cross-sectional shape perpendicular to the length direction of the parallel groove 19f (hereinafter, simply referred to as a cross-sectional shape of the parallel groove). It is formed in a shape.
  • the distance between the bottom 98 on the center line X and the light exit surface 19a is ⁇ (mm).
  • the form of the bottom 98 of the parallel groove 19f is not particularly limited.
  • the bottom 98 may, for example, intersect at a point and have substantially no width in the transverse direction, or may have a width in the transverse direction.
  • the depth of the parallel groove 19f is preferably determined so that part of the rod-shaped light source 12 does not protrude from the lower surface of the light guide plate unit 19, or the size of the rod-shaped light source 12 or the mechanical length of the light guide plate unit 19. It is preferable to determine in consideration of the target strength and the change with time.
  • the present inventor conducted intensive experimental research to solve the above-described problems as described above. As a result, the water absorption w (mass%) of the transparent resin constituting the light guide plate unit 19 in the light guide plate 18 was determined. ) And the shape of the light guide plate unit.
  • the relationship between the water absorption w (mass%) of the transparent resin constituting the light guide plate unit 19 and the shape of the light guide plate unit will be described in detail.
  • FIG. 5 is a schematic perspective view illustrating the size of each part of the light guide plate unit of the present invention.
  • FIG. 5 only the light guide plate unit 19 is shown, and other components are omitted.
  • the length of the light guide plate unit 19 of the present invention in the longitudinal direction is L.
  • the angle between the average plane (not shown) of the side wall 19g and the center line X is ⁇ .
  • the average plane is a direction in which the rod-shaped light source 12 extends, passing through a bottom 98 where two side walls 19g of the parallel groove 12 intersect on the center line X and a point where the thickness Dmax of the thick part 19b becomes the maximum value. It is a plane parallel to. That is, the light guide plate unit shown in FIGS.
  • the side wall 19g is an average plane.
  • the present inventor first examined the influence of the length of the side on the deformation (the amount of warpage) in the light guide plate 18 shown in FIG.
  • the warpage was measured using a surface plate P as shown in Figs. 6A and 6B.
  • a light guide plate exposed to a high-temperature and high-humidity environment is placed on a surface plate with the light-emitting surface side and the opposite side facing each other, and The change from the original height of the four corners on the front and back was measured. Of these measured values, the maximum value was taken as the amount of warpage.
  • a plurality of light guide plates were manufactured in which the length ⁇ of the first side 18b was 330 mm and the length ⁇ of the second side 18c was changed.
  • the light guide plate is formed by connecting a plurality of light guide plate units of the same type.
  • Each of the produced light guide plates was left for 100 hours in a high humidity environment (temperature 60 ° C, relative humidity 95%), and the amount of warpage was examined.
  • a plurality of light guide plates were manufactured in which the length ⁇ of the second side 18c was 500 mm and the length of the first side 18b was changed.
  • the light guide plate is formed by connecting a plurality of light guide plate units of the same type.
  • Each of the produced light guide plates was left for 100 hours in a high humidity environment (temperature 60 ° C, relative humidity 95%), and the amount of warpage was examined.
  • the transparent resin used for the light guide plate unit is the same as that shown in FIG. 7, and is of three types: PMMA, PC and ZEONOR (registered trademark).
  • the length E of the side wall 19g is expressed by the following equation (3).
  • the length S of the slope 19d is represented by the following equation (4).
  • the surface area difference a is represented by the following equation (2).
  • the light guide plate was left in a high humidity environment (temperature: 60 ° C., relative humidity: 95%) for 100 hours, and the amount of warpage was examined.
  • the amount of warpage is measured using a surface plate P as shown in Figs. 6A and 6B as described above.
  • the light guide plate (light guide plate unit) exposed to high temperature and high humidity environment
  • the light-emitting surface side and the opposite side were placed on a surface plate, respectively, and the change from the original height of the four corners on the front and back of the light guide plate was measured.
  • the maximum value was taken as the amount of warpage. The results are shown in FIG.
  • FIG. 9 is a graph showing the relationship between the amount of warpage and the water absorption by plotting the amount of warpage on the vertical axis and the water absorption on the horizontal axis.
  • the water absorption in the present invention was measured based on the method specified in JIS K7209-2000.
  • the mass was measured, and the mass was calculated from the mass increase ratio with respect to the mass before immersion.
  • FIGS. 6A and 6B the measuring method of the amount of deformation uses the platen P in the same manner as the amount of warpage.
  • Figure 10 shows the measurement results of the amount of deformation.
  • FIG. 10 is a graph showing the relationship between the amount of deformation and the water absorption by taking the amount of deformation on the vertical axis and the length of one side on the horizontal axis.
  • y is a deformation amount.
  • the value of y is 3 or less, and more preferably, the value of y is 1 or less.
  • the distance (clearance) g (see FIG. 1) between the liquid crystal display panel 4 and the backlight unit 2 is about lmm.
  • the light guide plate unit 19 when the light guide plate unit 19 satisfies the above formula (1), for example, even in a high humidity environment where the temperature is 60 ° C. and the relative humidity is 95%,
  • the amount of deformation of the knit 19 can be, for example, 1 mm or less.
  • a backlight unit planar lighting device
  • a liquid crystal display device it is possible to suppress the occurrence of display unevenness, the occurrence of luminance unevenness, and the decrease in average luminance.
  • the light guide plate unit 19 when the light guide plate unit 19 does not satisfy the above mathematical expression (1), in a high humidity environment (temperature 60 ° C., relative humidity 95%), the light guide plate unit 19 The amount may exceed lmm.
  • the opening force S of the parallel groove 19f of the light guide plate unit 19 when the opening force S of the parallel groove 19f of the light guide plate unit 19 is further expanded, the light from the rod-shaped light source 12 is effectively applied to the light guide plate unit 19. It cannot be made incident. As a result, the average luminance decreases.
  • the light exit surface 19a is not flat due to the deformation, luminance unevenness also occurs. Further, the thickness of the light guide plate unit 19 increases due to the deformation.
  • the water absorption w (mass%) of the transparent resin constituting the light guide plate unit 19 satisfies the above equation (1).
  • the thickness Dmax of the thick portion 19b is preferably 10 mm or less in order to reduce the weight of the light guide plate unit 19.
  • the parallel groove 19f of the light guide plate unit 19 may be formed in a direction perpendicular to the longitudinal direction of the light guide plate unit 19, but the light utilization efficiency from the rod-shaped light source 12 housed in the parallel groove 19f may be provided. It is preferable to form it in the longitudinal direction in order to increase the length.
  • the amount of deformation can be limited by selecting a transparent resin that satisfies the above formula (1) according to the shape and size of the light guide plate unit.
  • a thin film for adjusting the water absorption may be formed on the surface of the light guide plate unit.
  • the amount of deformation of the light guide plate unit can be further controlled.
  • This thin film is preferably transparent, for example, SiO, SiO or Al O is deposited
  • a prism sheet 21 may be further provided between the reflection sheet 22 and the inclined surface 19d on the opposite side of the light exit surface 19a of the light guide plate unit 19. preferable.
  • FIG. 11A is a schematic side view showing a light guide plate unit in which a prism sheet is disposed between the reflection sheet and the inclined surface of the light guide plate unit
  • FIG. FIG. 11C is a schematic plan view also showing the exit surface side force
  • FIG. 11C is a cross-sectional view taken along line BB of FIG. 11B.
  • the prism sheet 21 provided between the reflection sheet 22 and the inclined surface 19d of the light guide plate unit 19 is arranged such that the direction in which the prism 21a extends is perpendicular to the parallel groove 19f of the light guide plate unit 19.
  • the prism 21a be disposed so that the apex angle 21b of the prism 21a faces the inclined surface 19b of the light guide plate unit 19.
  • an optical element having a lens effect that can be obtained by using an optical element having the same effect as the force prism sheet using the prism sheet 21, for example, a lenticular lens, a concave lens, a convex lens, or A sheet in which optical elements such as a pyramid are regularly arranged may be provided.
  • the prism sheets 16 and 17 and more preferably the prism sheet 21 are used.
  • the prism sheet 21 is of course unnecessary, and one or both of the prism sheets 16 and 17 may not be used. The installation cost can be reduced by reducing the number of expensive prism sheets used or by omitting the use of prism sheets.
  • the reflector 20 is provided so as to close the opening of the parallel groove 19f extending in the longitudinal direction of the light guide plate unit 19, and has a substantially rectangular shape.
  • the reflector 20 reflects, out of the light emitted from the rod-shaped light source 12, the light that also leaks the surface force on the side opposite to the light emitting surface 19 a, and transmits the light from the side wall 19 g of the parallel groove 19 f of the light guide plate unit 19. Can be incident.
  • the reflection sheet 22 reflects the light leaking from the inclined surface 19d (back surface) of the light guide plate unit 19 and makes the light enter the light guide plate unit 19 again.
  • the light use efficiency of the light source 12 can be improved.
  • the reflection sheet 22 is provided so as to cover the inclined surface 19d of the light guide plate unit 19.
  • the reflection sheet 22 may be made of any material as long as it can reflect light leaking from the inclined surface 19d (back surface) of the light guide plate unit 19, for example, PET or PP. (Polypropylene), etc. kneaded with fillers and then stretched to form voids to increase the reflectivity by forming voids, a transparent or white resin sheet with a mirror surface formed by aluminum deposition, etc., aluminum, etc.
  • Metal foil, resin sheet carrying metal foil, Can be formed of a thin metal plate having sufficient reflectivity on the surface.
  • the reflector 20 can be formed of, for example, the same material as the above-mentioned reflective sheet 22, that is, a resin sheet, a metal foil or a metal plate having a surface with sufficient reflectivity.
  • the light guide plate unit 19 having the structure shown in Fig. 1B, of the light emitted from the rod-shaped light source 12 disposed in the parallel groove 19f, the light guide plate unit 19 extends from the side wall 19g forming the parallel groove 19f. Is reflected by the inclined surface 19d of the light guide plate unit 19, and then exits from the light exit surface 19a. At this time, part of the light leaks from the lower surface of the light guide plate unit 19, and the leaked light is reflected by the reflection sheet 22 formed on the inclined surface 19b side of the light guide plate unit 19, and is returned again. The light enters the unit 19 and exits from the light exit surface 19a. Thus, uniform light is emitted from the light exit surface 19a of the light guide plate unit 19.
  • the light guide plate unit 19 is manufactured by, for example, a method of molding a heated raw resin by extrusion molding or injection molding, or a casting polymerization method of polymerizing and polymerizing monomers, oligomers and the like in a mold. be able to.
  • a material of the light guide plate unit 19 for example, PET (polyethylene terephthalate), PP (polypropylene), PC (polycarbonate), MS resin, benzyl methacrylate, isopropyl methacrylate (abbreviation: IBXMA, water absorption rate 0) .
  • TCDMA Torishikurode force - Rume Tatari rate
  • COP A cycloresin polymer, for example, ZEONOR (registered trademark, manufactured by Nippon Zeon Co., Ltd.)
  • COP, IBXMA, TCDMA, etc. which have a small water absorption, can be preferably used in the present invention.
  • the light guide plate produced by these is also preferable in that it can be used in a higher temperature environment.
  • fine particles for scattering light may be mixed in the transparent resin, whereby the light emitting efficiency of the light from the light emitting surface 19a can be further increased.
  • the parallel groove 19f of the light guide plate unit 19 is formed such that the cross-sectional shape of the parallel groove 19f is triangular.
  • a light guide plate unit is configured.
  • the cross-sectional shape of the parallel groove is not particularly limited as long as the water absorption w (mass%) of the transparent resin to be satisfied satisfies the expression (1).
  • the cross-sectional shape of the parallel groove is not particularly limited, and the surface area difference ⁇ and the long side length L
  • the cross-sectional shape of the parallel groove 19f is symmetric with respect to the center line of the light guide plate 19f passing through the deepest portion or the center of the parallel groove 19f and perpendicular to the light emitting surface, and A shape that becomes thinner toward the surface 19a may be used.
  • the cross-sectional shapes of the parallel grooves 19h and 19j can be hyperbolic or elliptical. Furthermore, the cross-sectional shape of the parallel groove of the light guide plate unit 19 may be a catenary line.
  • FIG. 12 is a schematic side view showing a light guide plate unit when the cross-sectional shape perpendicular to the length direction of the parallel groove is a hyperbola
  • FIG. 13 is a cross-sectional shape perpendicular to the length direction of the parallel groove. It is a typical side view which shows the light-guide plate unit when is elliptical.
  • the same components as those in the light guide plate unit 19 shown in FIGS. 4 and 5 are denoted by the same reference numerals, and detailed description thereof will be omitted. .
  • the cross-sectional shape of the parallel groove is the deepest part of the parallel groove (the side wall 19g forming the parallel groove).
  • the connecting part of the head can be formed into a point.
  • the two cross-sectional shapes of the tip portions of the parallel grooves are symmetric with respect to a center line perpendicular to the light exit surface of the light guide plate unit, passing through the center of the parallel grooves and having one sharp intersection point intersecting with each other.
  • it can be formed from a part of a straight line.
  • the cross-sectional shape of the parallel groove of the light guide plate unit is any of the shapes described above, it is possible to emit light with a uniform light exit surface force of the light guide plate unit.
  • FIG. 14 is a cross-sectional view of the cross-sectional shape of the leading end of the parallel groove.
  • the cross-sectional shape has a sharp point of intersection with the center of the parallel groove and is perpendicular to the light exit surface of the light guide plate unit.
  • FIG. 9 is a schematic side view showing a light guide plate unit in which a partial force of two nominal curves is also formed.
  • the same components as those in the light guide plate unit 19 shown in FIGS. 4 and 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 15 shows two parabolas whose cross sections perpendicular to the length direction of the parallel groove are symmetrical with respect to a center line passing through the center of the parallel groove and perpendicular to the light exit surface of the light guide plate unit.
  • FIG. 9 is a schematic side view showing another example of the light guide plate unit partially formed.
  • the same components as those in the light guide plate unit 19 shown in FIG. 13 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the light guide plate unit 60 shown in FIG. 15 is a case where two curves 64a and 64b symmetric with respect to a center line X perpendicular to the light exit surface 60a of the light guide plate unit 60 through the center of the parallel groove 19m are parabolic.
  • the side wall 19g of the parallel groove 19m is formed such that the focus of the parabola 64a corresponding to one side wall 19g of the parallel groove 19m and the focus of the parabola 64b corresponding to the other side wall 19g are different from each other. .
  • the angle 0 (not shown) is the same as that shown in FIG.
  • the average plane is a hyperbolic shape or an ellipse constituting the parallel grooves 19h and 19j in the case of the parallel grooves 19h and 19j (see FIGS. 12 and 13). This is a plane parallel to the direction in which the rod-shaped light source 12 extends, passing through a bottom (not shown) where the side wall 19g of the shape intersects on the center line X and a point where the thickness Dmax of the thick part 19b has the maximum value.
  • FIG. 16 is a schematic side view showing a light guide plate unit in which a cross-sectional shape perpendicular to the length direction of the parallel groove is also formed with two curved forces that are convex toward the center of the parallel groove.
  • FIG. 17 is a schematic side view showing a light guide plate unit in which a cross-sectional shape perpendicular to the length direction of the parallel groove has a curved force formed by combining a convex curve and a concave curve toward the center of the parallel groove.
  • the light guide plate unit 70 shown in Fig. 16 is an example of the light guide plate unit 70 in which two curves 72a and 72b that are convex toward the center of the parallel groove 19p are also formed.
  • the cross-sectional shape of the parallel groove 19q is formed such that the convex curves 82a and 82b and the concave curves 84a and 84b are combined toward the center of the parallel groove 19q. This is an example of the light guide plate unit 80.
  • the light guide plates 70 and 80 having the parallel grooves 19p and 19q having the cross-sectional shapes as shown in FIGS. 16 and 17 also emit light with sufficient light emission surface power while suppressing generation of bright lines. be able to.
  • the light guide plate units 70 and 80 shown in FIGS. 16 and 17 also have an angle of 0 (not shown). ) Are the same as those shown in FIG.
  • the average plane is the bottom (not shown) where the two convex curves 72a and 72b constituting the parallel groove 19p intersect on the center line X, and the thickness Dmax of the thick portion 19b. Is a plane parallel to the direction in which the rod-shaped light source 12 extends, passing through the point at which the maximum value is obtained.
  • the portion corresponding to the parallel groove is convex or concave toward the center of the parallel groove.
  • These curves may be any part of a curve such as an ellipse, a parabola, or a hyperbola that is convex or concave toward the center of the parallel groove, which is not limited to the arc in the illustrated example.
  • the curve constituting the parallel groove will have a convex, concave, circular, It is preferable that the curve be a part of a curve such as an ellipse, a parabola, or a hyperbola, and it is particularly preferable that the curve be a curve that can be approximated by a 10-order function.
  • V may be formed on the light emitting surface 19a of the light guide plate unit 19 by, for example, printing.
  • a halftone dot pattern V is formed on the light exit surface 19a of the light guide plate unit 19 such that the center line X of the halftone dot pattern V coincides with the position corresponding to the center line of the parallel groove of the light guide plate unit 19. By doing so, it is possible to suppress the generation of bright lines on the light exit surface 19a of the light guide plate unit 19 and to suppress the luminance unevenness.
  • a thin sheet on which the halftone dot pattern is formed may be laminated on the light emitting surface.
  • Halftone The shape can be an arbitrary shape such as a rectangle, a circle, and an ellipse, and the density of halftone dots can be appropriately selected according to the intensity or spread of the bright line.
  • a portion corresponding to the halftone pattern may be roughened as a sand rubbing surface.
  • Such a sand rubbing surface may be formed on the deepest portion or the side wall of the parallel groove of the light guide plate unit.
  • the cross-sectional shape of the parallel groove of the light guide plate is changed to various shapes, the illuminance distribution of light emitted from the light exit surface 19a of the light guide plate including one light guide plate unit 19 is examined.
  • the cross-sectional shape of the parallel groove 19f is triangular and hyperbolic as shown in FIGS. 1 and 12, respectively, and the cross-sectional shape is an example of the conventional light guide plate. Parabolic and semicircular (kamaboko) cases were investigated.
  • FIG. 19 shows the relative illuminance distribution on the light exit side surface of the light guide plates.
  • the vertical axis indicates the relative illuminance
  • the horizontal axis indicates the distance from the center of the light guide plate unit (the center of the parallel groove).
  • a light source was incorporated in the light guide plate unit of the present invention, and light was made to enter the light guide plate unit and emitted from the light exit surface.
  • the illuminometer is fixed to the XY stage, and the illuminometer is fixed to be perpendicular to the light emission surface of the light guide plate unit. Then, the illuminance is measured at the position of the light exit surface by the illuminometer to obtain illuminance information regarding the specific position of the light exit surface of the light guide plate.
  • the relationship between the position on the light emitting surface and the illuminance is determined, and the average value of the entire surface is calculated.
  • the ratio of the illuminance at each position divided by the average value of the illuminance, respectively, is the relative illuminance at that position.
  • a luminance meter may be used instead of the illuminometer, whereby the relative luminance distribution on the light emission side surface of the light guide plate can be obtained.
  • the peak value of relative illuminance at the portion corresponding to the parallel groove is the output light of the inclined back surface force. Is less than or equal to 10 times the average value of the relative illuminance formed, indicating that the illuminance from the light emitting surface is substantially uniform.
  • the relative illuminance at the center is low.
  • the cross-sectional shape of such a parallel groove is triangular, as shown below, the illuminance on the light exit surface is obtained by flattening the apex with a predetermined width or making it a curved surface with a relatively small radius of curvature. Can be made uniform.
  • Fig. 20 shows that, when the cross-sectional shape of the parallel groove of the light guide plate is triangular, the deepest part of the parallel groove (the vertex of the triangular parallel groove) is flattened, and the length of the flat part is varied.
  • the vertical axis represents relative illuminance
  • the horizontal axis represents the distance from the center of the parallel groove formed in the light guide plate.
  • the diameter of the cold-cathode tube (light source) was set to 3 mm, and the lengths of the flat portions were set to 1.5 mm, 1.0 mm, 0.5 mm, and 0.25 mm.
  • Figures 21A to 21D show that when the cross-sectional shape of the parallel groove 19f is triangular, the depth of the flat part 90 at the deepest part of the parallel groove 19f is 1.5mm, 1.Omm, 0.5mm, 0.25mm.
  • the schematic side views showing the light plate cut are respectively shown.
  • the same components as those in the light guide plate unit 19 shown in FIGS. 4 and 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the angle 0 (not shown) is the same as that shown in FIG. At this time, in the water absorption, the length of the flat portion 90 is sufficiently negligible.
  • the average plane is the side wall 19g, and the angle ⁇ is the inclination of the side wall 19g with respect to the center line X. In this case, it is needless to say that the same effect can be obtained if the above equation (1) is satisfied.
  • the relative illuminance at the portion corresponding to the parallel groove 19f of the light guide plate unit changes according to the length of the flat portion 90.
  • the illuminance can be increased by lengthening the flat end portion 90 at the deepest portion of the parallel groove 19f.
  • an emission line may be formed.
  • the thickness is preferably 20% or less of the diameter of the cold cathode tube (light source), more preferably 10% or less.
  • Fig. 22 shows that, in a light guide plate in which the cross-sectional shape of the parallel groove of the light guide plate is triangular, the shape of the deepest portion of the parallel groove is changed to a curved shape with a radius of curvature R, and the radius of curvature of the curved surface is changed to various values.
  • 9 is a graph showing the illuminance distribution of light emitted from the light exit surface 19a of the light guide plate unit 19 when the light guide plate unit 19 is turned on.
  • the radius of the cold-cathode tube (light source) was 3 mm, and the light guide plate units with the radii of curvature at the apexes of 1.5 mm, 1.0 mm, 0.5 mm, and 0.25 mm were measured.
  • FIGS.23A to 23D are schematic diagrams showing light guide plate units in which the apex portion 92 has a radius of curvature of 1.5 mm, 1.0 mm, 0.5 mm, and 0.25 mm when the cross-sectional shape of the parallel groove 19 f is a triangle. The side views are respectively shown.
  • the same components as those in the light guide plate unit 19 shown in FIGS. 4 and 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the angle 0 (not shown) is the same as that shown in FIG. In terms of water absorption, the size of the peak portion 92 is sufficiently negligible.
  • the average plane is a rod-shaped light source 12 passing through a vertex portion 92 where the side wall 19g intersects on the center line X and a point where the thickness Dmax of the thick portion 19b becomes the maximum value. Is a plane parallel to the extending direction. In this case, it is needless to say that the same effect can be obtained if the above expression (1) is satisfied.
  • the relative illuminance at the portion corresponding to the parallel groove 19f of the light guide plate unit 19 changes according to the radius of curvature of the vertex 92 of the parallel groove 19f, and the vertex 9 2 It can be seen that the relative illuminance on the light exit surface 19a of the light guide plate unit 19 is substantially uniform when the radius of curvature R of the light guide plate unit is 0.25 mm.
  • the shape of the tip portion of the parallel groove of the light guide plate unit largely depends on the illuminance of the light emitting surface force. That is, the shape of the parallel groove of the light guide plate is the shape shown in the present invention. It can be seen that the illuminance on the light exit surface 19a of the light guide plate unit 19 can be optimally adjusted and made uniform only by designing so that
  • the illuminance and the luminance can be handled in substantially the same manner. For this reason, from the relative illuminance graphs of FIG. 20 and FIG. 21, it is inferred that the present invention has the same tendency in luminance. Therefore, by designing the shape of the parallel grooves of the light guide plate so as to have the shape shown in the present invention, it is considered that the brightness on the light emitting surface 19a of the light guide plate unit 19 can be made uniform.
  • the cross-sectional shape of the top part (deepest part) of the tip of the parallel groove is not only a single point that is sharply symmetrical with respect to the center line of the parallel groove, but also has a chamfered flat shape or a rounded circular shape. Of course, it may be elliptical, parabolic, or hyperbolic.
  • the peak (the deepest part) of the tip of the parallel groove may be a sand rubbing surface to reduce the illuminance or luminance peak value.
  • the light guide plate of the present invention with respect to the average value of the illuminance formed in the portion other than the parallel groove 19f on the light exit surface 19a of the light guide plate unit 19, ie, the portion corresponding to the inclined back surface 19d.
  • the tip of the parallel groove 19f of the light guide plate unit 19 is tapered in accordance with the ratio of the peak value (peak value of illuminance) of the bright line formed in the portion corresponding to the parallel groove 19f on the light exit surface 19a of the light plate unit 19. Perform That is, the degree of tapering of the tip of the parallel groove 19f of the light guide plate unit 19 is controlled in accordance with the value of this ratio.
  • the ratio is preferably 3 or less, more preferably 2 or less.
  • This ratio is determined by the thickness of the knock light unit 2 (the distance between the light exit surface 19a of the light guide plate unit 19 and the diffusion sheet 14) or the diffusion sheet used in the backlight unit 2. It is preferable to set according to the diffusion efficiency or the number of sheets of 14, the diffusion efficiency of the prism sheets 16, 17 and 21, or the number of sheets to be used. That is, when the thickness of the knock light unit 2 (the distance between the light exit surface 19a of the light guide plate unit 19 and the diffusion sheet 14) is somewhat thick or large, or when the diffusion sheet used in the backlight unit 2 is used.
  • the light emitting surface 19a of the light guide plate unit 19 can be used.
  • the emitted illumination light can be sufficiently diffused (mixing, etc.) Therefore, although the cost is high, the parallel groove 19f of the light exit surface 19a of the light guide plate unit 19 with respect to the average value of the illuminance of the second portion corresponding to the inclined back surface portion 19e on the light exit surface 19a of the light guide plate unit 19.
  • the ratio of the peak value of the illuminance of the first portion corresponding to the ratio can be set to a relatively large value. However, if this is not the case, it is necessary to set the value of this ratio to a low value to reduce the cost.
  • the peak value of the illuminance of the first portion corresponding to the parallel groove 19f of the light exit surface 19a of the light guide plate unit 19 has an inclined rear surface portion 19e of the light exit surface 19a of the light guide plate unit 19.
  • the tip shape of the parallel groove 19f of the light guide plate unit 19 is tapered so as to be three times or less, more preferably, two times or less the average value of the illuminance of the second portion corresponding to the following.
  • the peak value of the illuminance of the first portion of the light exit surface 19a of the light guide plate unit 19 is 3% of the average value of the illuminance of the second portion corresponding to the inclined back surface portion 19e of the light exit surface 19a of the light guide plate unit 19.
  • the reason why the light guide plate unit 19 is not more than doubled is that the illuminance distribution of the illuminating light emitted from the light exit surface 19a of the light guide plate unit 19 is more uniform than before, and as a result, the light guide plate unit 19 It is possible to use a low-cost diffusion sheet 14 with low diffusion efficiency, which does not need to sufficiently diffuse (mixing, etc.) the illumination light emitted from the light exit surface 19a, and can reduce the number of sheets used.
  • the use of expensive prism sheets 16, 17 and 21 themselves, or the use of low-cost prism sheets 16, 17 and 21 with low diffusion efficiency, or the number of sheets used To It is a force that can lath.
  • the leading end portion where the parallel groove is tapered has a perpendicular force (X) from the center of the rod-shaped light source to the light emitting surface. It is preferred that the angle force be within 90 ° on both sides, more preferably within 60 °. That is, in the present invention, in order to reduce the peak value of the illuminance of the first portion corresponding to the parallel groove on the light exit surface of the light guide plate unit, the portion where the parallel groove is tapered may be the entire parallel groove. However, if the peak value can be reduced, a predetermined tip portion may be used.
  • the light guide plate of the present invention As described above, the light guide plate of the present invention, the backlight unit including the same, and the liquid crystal display device have been described in detail.
  • the present invention is not limited to the above embodiments, and the present invention is not limited thereto.
  • various improvements and changes may be made without departing from the gist of the invention.
  • a plurality of light guide plate units 94 and 96 are arranged in parallel so that the light exit surfaces 94a and 96a of the light guide plate units 94 and 96 all form the same plane.
  • the light guide plate can be arranged to form a large light guide plate.
  • the inclination angles of the inclined surfaces 94d and 96d of the light guide plate units 94 and 96 can be adjusted so that a smooth flat surface or a curved surface is formed at the connecting portion of the inclined surfaces.
  • the surfaces formed by the inclined surfaces 94d and 96d of the light guide plate units 94 and 96 are formed so as to have an arch shape.
  • the light guide plate units 94 and 96 shown in FIG. 24 have basically the same configuration as the light guide plate unit 19 shown in FIG. 4, and a detailed description thereof will be omitted.
  • the present invention is applied to a liquid crystal display device having a large display screen.
  • the present invention can be applied to a wall-mounted type liquid crystal display device such as a wall-mounted television.
  • the light guide plate according to the present invention is formed by connecting the thin portions of separately formed light guide plate units to form a large light guide plate by connecting a plurality of light guide plate units. .
  • the reflector 24 may be arranged on the side surface of the outermost light guide plate unit 19. By arranging such a reflection plate 24 on the side surface, leakage of light from the side surface of the light guide plate unit 19 can be prevented, and the light use efficiency can be further enhanced.
  • the reflection plate 24 can be formed using the same material as the reflection sheet or the reflector described above.
  • any of the light guide plate units has a shape symmetrical with respect to the center line, but the present invention is not limited to this. In the present invention May be asymmetrical with respect to the center line, as shown in FIGS. 26A and 26B.
  • FIG. 26A is a schematic perspective view showing a light guide plate according to another embodiment of the present invention
  • FIG. 26B is a side view showing a light guide plate according to another embodiment of the present invention.
  • the same components as those in the light guide plate 18 and the light guide plate unit 19 shown in FIGS. 4 and 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the light guide plate 100 of the present invention has a saw blade shape in a side view.
  • the light guide plate 100 has a light exit surface 102a on the front surface side. Opposite to the light exit surface 102a, an inclined back surface 102e forming an inclined surface 102d is provided.
  • the slope 102d is inclined so as to become narrower in one direction. Each slope 102d is connected by a vertical surface 102g.
  • the rod-shaped light source 12 is provided in a region 102f where the inclined surface 102d and the vertical surface 102g are connected.
  • the area surrounded by the light emitting surface 102a, one inclined surface 102d, and one vertical surface 102g is the light guide plate unit 102.
  • the water absorption of the transparent resin constituting the light guide plate unit 102 of the light guide plate 100 can be calculated by the above equation (1). Also in this case, the length of the longer side of the light guide plate 100 is L.
  • the vertical surface 102g is an average plane.
  • the light guide plate 100 of the present embodiment it is preferable to use a light source having high directivity such as an LED array instead of the rod-shaped light source 12.
  • the light guide plate of the present invention is thin and lightweight, can suppress deformation even in a high-humidity environment, and can emit more uniform, less uneven, and higher-luminance light. it can . Therefore, it can be used for a light guide plate for a backlight used in a liquid crystal display device, particularly for a large light guide plate.
  • the spread illuminating apparatus of the present invention is thin and lightweight, can suppress uneven brightness even in a high humidity environment, can prevent a decrease in average brightness, and can be manufactured at lower cost. Therefore, the surface illumination device of the present invention can be applied to a liquid crystal display device such as a liquid crystal monitor or a wall-mounted television.
  • the liquid crystal display device of the present invention is thin and lightweight, and can be displayed even in a high humidity environment. The occurrence of uneven display can be prevented.
  • the liquid crystal display device of the present invention can be used for a large-screen liquid crystal monitor, a large-screen wall-mounted television, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Planar Illumination Modules (AREA)

Description

明 細 書
導光板、これを用いる面状照明装置および液晶表示装置
技術分野
[0001] 本発明は、高湿度環境下においても、棒状光源から入射した光を面方向に拡散し て光出射面力 より均一な照明光を出射する透明な導光板、これを用いる面状照明 装置および液晶表示装置に関する。
背景技術
[0002] 液晶表示装置には、液晶パネル (LCD)の裏面側力 光を照射し、液晶パネルを 照明するバックライトユニットが用いられている。バックライトユニットは、照明用の光源 、この光源力 出射した光を拡散して液晶パネルを照射する導光板、導光板から放 射される光を均一化するプリズムシート、および拡散シートなどの部品を用いて構成 される。
近年、液晶表示装置の薄型化、低消費電力化が要望されており、それを実現する ために種々の形状の導光板が提案されている(特開平 9— 304623号公報、特開平 8— 62426号公報、特開平 10— 133027号公報および特開平 5— 249320号公報 参照)。
[0003] 図 27は、特開平 9 304623号公報に開示された導光板を有する面光源装置を 示す分解斜視図である。
同図に示す面光源装置 (バックライトユニット)は、導光板 200に蛍光ランプ 202を 埋め込んだ後、導光板 200の背面に反射シート 204を配置し、導光板 200の出射面 に透過光量補正シート 206、光拡散板 208、プリズムシート 210を積層することで形 成される。
[0004] 導光板 200は、略長方形形状を有し、照明光を拡散する微粒子が分散混入された 榭脂を用いて形成されている。また、導光板 200の上面は平坦になっており、出射面 に割り当てられる。さらに、導光板 200の背面(出射面と反対側の面)には蛍光ランプ 202を埋め込む断面 U字状の溝 200aが形成され、導光板 200の出射面には、蛍光 ランプ 202の真上を避けて、照明光の出射を促す光量補正面 200bが形成されてい る。
このように、特開平 9— 304623号公報には、微粒子を混入して導光板 200を形成 すると共に、蛍光ランプ 202の真上を除いた出射面の一部または全部に形成した光 量補正面 200bにより照明光の出射を促すことにより、全体の厚さを薄型化し、かつ 出射光の不自然な輝度ムラを低減できることが記載されて 、る。
[0005] また、特開平 8— 62426号公報には、ノ ックライトの照射量を減らすことなぐ液晶 表示装置の小型および軽量化、ならびに薄型化およびコスト'消費電力の低減化を 実現することができる液晶表示装置のバックライトを得るために、長方形の照射面と、 短辺の中央部に長辺と平行にくり抜かれた、光源を嵌挿するための矩形断面の溝と 、この溝を挟んで長辺の両側面方向に向力つて板厚が次第に薄くなるように形成さ れた背面とを有する導光板が開示されている。
[0006] また、特開平 10— 133027号公報には、液晶表示装置の額縁を狭くし、厚みを薄 くすることができ、光利用効率がよく明るいバックライトユニットを得るために、光源を 配置するための凹部の幅方向に平行な断面の形状が、深さ方向を主軸とする放物 線形状である導光体 (導光板)が開示されて!、る。
[0007] さらに、特開平 5— 249320号公報には、表示パネルの面内の明るさを均一に保ち 、高輝度な照明をするために、ハの字状の高反射層上に、順次屈折率が高くなるよう に複数の板状光導波層を積層し、その各光出射端面から出射する光で光拡散層を 明るくする導光板が開示されている。ここで、光源を配置するための凹部は、三角形 形状である。
上記特開平 9 304623号公報、特開平 8— 62426号公報、特開平 10— 13302 7号公報および特開平 5— 249320号公報に開示された導光板は、液晶表示装置の 薄型化、小型軽量化、低消費電力化、低コストィ匕などのいくつかを図るためのもので あるが、いずれもその中央部に 1つまたは複数の溝が設けられ、その溝に棒状光源 を収納する構成とされ、好ましくは、溝部力も端面に向力つて板厚が次第に薄くなる ように形成されており、薄型化を達成している。
[0008] 特許文献 1 :特開平 9 304623号公報
特許文献 2:特開平 8— 62426号公報 特許文献 3 :特開平 10— 133027号公報
特許文献 4:特開平 5 - 249320号公報
発明の開示
発明が解決しょうとする課題
[0009] 上記特開平 9 304623号公報、特開平 8— 62426号公報、特開平 10— 13302 7号公報および特開平 5— 249320号公報においては、いずれも高湿度環境下にお ける導光板の変形が考慮されていない。例えば、導光板は、冷陰極管が組み込まれ て、ノ ックライトユニットとして市場に出荷される。この場合、ノ ックライトユニットの検査 工程において、例えば、温度が 60°C、相対湿度が 95%の高湿度環境下に所定時 間保持される。このような高湿度環境下においては、導光板は、光源の消灯または点 灯に拘らず凹状または凸状に変形してしまうという問題点がある。
[0010] このような高湿度環境下における吸湿による導光板の変形は、輝度ムラを引き起こ し、ノ ックライトユニットとする場合に、悪影響を及ぼすという問題点がある。加えて、 変形の分だけ見かけ上バックライトユニットの厚さが厚くなり、小型化が妨げられる。 さらに、ノ ックライトユニットを液晶表示装置に適用した場合、ノ ックライトユニットの 表面の上方に、数 mmの間隔をあけて配置される液晶表示パネルを押してしまい、 結果として、表示ムラを引き起こしてしまう。
[0011] 以下、図 28Aおよび Bを参照して詳細に説明する。
ここで、図 28Aは、高湿度環境下におけるノ ックライトユニットの消灯時の変形を説 明する模式図であり、図 28Bは、バックライトユニットの点灯時の変形を説明する模式 図である。
[0012] 図 28Aおよび Bに示すように、導光板 220は、側面視略五角形の頂角から底辺に 向けて、矩形状に切り取られた形状を呈している。導光板 220の底辺側の平面視は 、略長方形状を呈している。また、導光板 220においては、側面視で、切り取られた 部分が平行溝 222となり、平行溝 222の底部は平面である。また、側面視略五角形 の底辺側の面が表面 220aであり、 2辺の斜面が裏面 220bを構成する。この平行溝 2 22には、光源として、冷陰極管 224が配置されている。図 28Aおよび Bに示す導光 板 220にお!/、ては、表面 220aの方が裏面 220bよりも表面積が広!、。 [0013] 高湿度環境下において、消灯時には、図 28Aに示すように、裏面 220bの表面積 に比して表面 220aの表面積の方が大き!/、ため、裏面 220b力ら表面 220a向きの曲 げモーメント Moが作用する。この曲げモーメント Moにより、導光板 230に示すように 、両端部が表面 220a側に変形してしまう。この場合、平行溝 222の開口がさらに開き 、平行溝 222に入射される光が開口力 漏れて有効に利用できなくなる。これにより、 ノ ックライトユニットの平均輝度が低下する。
また、バックライトユニットの変形の原因である膨張は、吸水だけではなく熱によって も起こることが知られている。し力しながら、ノ ックライトユニットの使用環境において は、熱による膨張は、吸水による膨張と比較して極めて小さい。このため、吸水による 膨張を変形の原因として扱う。
[0014] 一方、高湿度環境下において、点灯時には、図 28Bに示すように、冷陰極管 224 の熱により裏面 220bの吸湿量力 表面 220aの吸湿量よりも少なくなる。このため、 表面 220a力ら裏面 220b向きの曲げモーメント Mfが作用する。この曲げモーメント M こより、導光板 230に示すように、両端部が裏面 220b側に変形してしまう。これによ り、表面 220aが湾曲し輝度ムラが生じる。
[0015] また、特開平 9— 304623号公報に開示の導光板 200では、光源 (蛍光ランプ) 20 2の真上を避けてその出射面表面に粗面、またはマイクロプリズム面などの光量補正 面 200bを形成して、出射面に対して臨界角以上の角度で入射する照明光の出射を 促しているが、図 29に示されるように、点線で示される光量補正面を持たない導光板 力もの照明光の輝度 N1に対する、点線で示される実線で示される光量補正面 200b を持つ導光板 200からの照明光の輝度 N2の向上効果は少しであるので、光量補正 面 200bによる輝度の向上効果は大きくはなぐ光源光の利用効率が低ぐ光源光の 拡散が不十分なため、均一かつ高輝度な光を出射面から出射することができないと いう問題点がある。
[0016] また、特開平 9— 304623号公報に開示の導光板 200では、断面形状が円形であ る溝 200aに光源(蛍光ランプ) 202を埋め込んでおり、図 29に示すように、光源 202 による輝度ピークはそのまま残存するので、面光源装置として用いるためには、導光 板の出射側に配置される透過光量補正シート 206、光拡散板 208およびプリズムシ ート 210などを用いて、出射面での不自然な輝度むらを除く必要があり、装置のコスト が嵩むという問題点がある。
[0017] また、特開平 8— 62426号公報に開示の液晶表示装置のバックライトでは、導光板 の背面を傾斜させることにより生じた隙間に電子回路基板上の部品を配置することに より、安価で消費電力が低ぐ液晶表示装置の小型軽量化および薄型化を達成する ことができるが、導光板の出射面から出射される照明光のむらについては全く考慮さ れていない。
[0018] また、特開平 10— 133027号公報に開示の液晶表示装置のバックライトユニットで は、導光体 (導光板)に設けられる溝状の凹部の断面形状を放物線とすることにより、 導光体での光の拡散がほぼ均一になる導光体への光の入射が行われ、光の利用効 率を高めることができるとしている力 導光体の出射面から出射される光のむらにつ V、ては全く考慮されて 、な!/、。
[0019] また、特開平 5— 249320号公報に開示の導光板では、複数の板状光導波板を積 層する複雑な構造であるため、従来に比し輝度の減衰を少なくし均一な輝度を得る ことが可能となり照明効果に優れるものとなるとしている力 製造コストが高くなるとい う問題点がある。
[0020] 本発明の目的は、前記従来技術に基づく問題点を解消し、薄型で軽量であり、高 湿度環境下においても、光出射面からより均一でむらの少ない、かつより高輝度な照 明光を出射することができる導光板、これを用いる面状照明装置および液晶表示装 置を提供することにある。
[0021] また、本発明の他の目的は、より大サイズの光出射面とすることができる導光板を提 供することにある。
また、本発明の他の目的は、薄型で軽量であり、より低コストで製造することができ、 より均一でむらの少ない、かつより高輝度な照明光を出射することができ、また、大サ ィズの照明表面とすることができ、または、壁掛けテレビなどの液晶表示装置に適用 することができる面状照明装置を提供することにある。
また、本発明の他の目的は、薄型で軽量であり、より低コストで製造することができ、 より均一でむらの少ない、かつより高輝度な表示を行うことができ、また、大サイズの 表示画面とすることができ、あるいは、壁掛けテレビなどの壁掛け型とすることができ る液晶表示装置を提供することにある。
課題を解決するための手段
[0022] 上記目的を達成するために、本発明者等は、矩形状の光出射面および光出射面 に対向する裏面を備える導光板ユニットを少なくとも 2つ、光出射面を同一平面上に して連結して形成された導光板にっ ヽて、鋭意実験研究を行なった。
この結果、導光板ユニットの光出射面が連結されて得られる矩形状の合計光出射 面のうち、最も長い辺の長さを L (mm)とし、導光板ユニットの単位長さあたりの光出
D
射面と裏面との表面積差を aとし、変形量を y (mm)とし、 Kおよび bを係数とするとき 、係数 K= 3. 3 X 10_4 (lZ (mm X質量0 /0) )、係数 b = l. 9 X 10_2 (質量0 /0)である 。このとき、導光板ユ ットを構成する透明樹脂の吸水率 w (質量%)は、下記数式 (1 )を満足するものとすることにより、高湿度環境下においても導光板の変形を抑制でき ることを見出した。
[0023] また、上記他の目的を達成するために、薄型で軽量であり、光出射面からより均一 でむらの少ない、かつより高輝度な照明光を出射することができ、より大サイズの光出 射面とすることが可能な導光板を実現するために、本発明者らは、鋭意実験研究を 行った結果、矩形状光出射面と、その一辺に平行な厚肉部と、この厚肉部の両側に 平行に形成される薄肉端部と、厚肉部力 両側の薄肉端部に向かって肉厚が薄くな り、傾斜背面を形成する傾斜背面部と、厚肉部に平行に形成される、棒状光源を収 納するための平行溝とを有する透明な導光板とすることにより、薄型化、軽量化でき ること、また、このような導光板を、その薄肉端部を連結することにより、光出射面を大 サイズィ匕できること、また、このような導光板を用いると、平行溝に相当する光出射面 の第 1部分において平行溝内に収納された棒状光源力 の射出光による照度または 輝度のピークが形成され、照明むらまたは輝度むらを発生すること、また、この照度ま たは輝度のピークは、平行溝の断面形状を、光出射面に向力う先端部分に向かって 細くしていくことにより低減でき、先端部分の頂部を先鋭ィ匕することにより、照度または 輝度の逆方向(マイナス側の)ピークとすることができ、この照度または輝度の逆方向 (マイナス側の)ピークは、平行溝の先端部分の頂部の先鋭ィ匕を鈍らせる、すなわち 面取りまたは丸めることにより低減できること、および照度または輝度のピークの低減 度は平行溝の先端部分を細くする程度によることを知見し、本発明に到ったものであ る。
[0024] すなわち、本発明の第 1の態様は、矩形状の光出射面および前記光出射面に対向 する裏面を備える導光板ユニットが少なくとも 2つ、前記光出射面を同一平面上にし て連結される導光板であって、前記導光板ユニットの前記光出射面が連結されて得 られる矩形状の合計光出射面のうち、最も長い辺の長さを L (mm)とし、前記導光板
D
ユニットの単位長さあたりの前記光出射面と前記裏面との表面積差を αとし、 κおよ び bを係数とするとき、前記導光板ユニットを構成する前記透明樹脂の吸水率 w (質 量0 /0)は、下記数式(1)を満足するものであり、 yの値は 3以下、 K= 3. 3 Χ 10"4 (1 / (mm X質量%) )、b = 1. 9 X 10_2 (質量%)であることを特徴とする導光板。
[0025] [数 1]
w≤ ~ b ' ' ' ( 1 )
Κ α L D
[0026] 本発明において、前記導光板ユニットは、矩形状の光出射面と、その一辺に平行 で前記光出射面の略中央部に位置する厚肉部と、前記厚肉部に平行に形成される 薄肉端部と、前記厚肉部の略中央に前記一辺と平行に形成される、棒状光源を収 納するための平行溝と、前記平行溝の両側に前記棒状光源の軸を含み前記光出射 面に対して垂直な面に対して対称であり、前記厚肉部力 前記一辺に直交する方向 に両側の前記薄肉端部に向力つて肉厚が薄くなり、傾斜背面を形成する傾斜背面 部とで構成される透明樹脂からなるものであり、隣接する導光板ユニットの前記薄肉 端部は連結され、連結された導光板ユニットの光出射面は同一平面上に配置されて おり、前記棒状光源の中心を通り前記光出射面に対して垂直な面から隣接する導光 板ユニットとの接合部である前記薄肉端部の端面までの距離を L (mm)とし、前記厚 肉部の最大厚みを Dmax (mm)とし、前記薄肉端部の最小厚みを Dmin (mm)とし、 前記平行溝の底部と前記光出射面との距離を δ (mm)とし、前記棒状光源の中心を 通り前記光出射面に対して垂直な線と前記平行溝の断面形状における片側の側壁 の平均平面とのなす角を 0 (° )とするとき、前記表面積差 αは、下記数式(2)により 表すことができる。 [0027] [数 2]
「 ヽ
Dmax— d , f τ Uma — 0 1 , „ π . , 2
+ L― 十 (umax— JJmin) — L
― cos β \l tan6 ) , r ,
a = · · · ( 2 J
L
[0028] 本発明において、 yの値は、 1以下であることが好ましい。
[0029] また、本発明の第 2の態様は、上記本発明の第 1の態様の導光板と、前記導光板 の前記平行溝に収納される棒状光源と、前記平行溝を塞ぐように前記棒状光源の背 後に設けられるリフレクタと、前記導光板の前記厚肉部の両側の前記傾斜背面部の 前記傾斜背面に取り付けられる反射シートと、前記導光板の前記合計光出射面上に 配置される拡散シートとを有することを特徴とする面状照明装置を提供するものであ る。
[0030] 本発明においては、さらに、前記導光板の前記合計光出射面と前記拡散シートと の間、もしくは拡散シートの上側に配置されるプリズムシートを有することが好ましい。
[0031] また、本発明の第 3の態様は、上記本発明の第 2の態様の面状照明装置力もなる ノ ックライトユニットと、このバックライトユニットの光出射面側に配置される液晶表示 パネルと、前記バックライトユニットおよび前記液晶表示パネルを駆動する駆動ュ-ッ トとを有することを特徴とする液晶表示装置を提供するものである。
発明の効果
[0032] 本発明の導光板によれば、矩形状の光出射面および光出射面に対向する裏面を 備える導光板ユニットについて、この導光板ユニットを少なくとも 2つ、光出射面を同 一平面上にして連結し、導光板ユニットの光出射面が連結されて得られる矩形状の 合計光出射面のうち、最も長い辺の長さを L (mm)とし、導光板ユニットの単位長さ
D
あたりの光出射面と裏面との表面積差を oとし、 Kおよび bを係数とするとき、係数 K = 3. 3 X 10_4(lZ (mm X質量0 /0) )、係数 b = l. 9 X 10_2 (質量0 /0)である。このと き、導光板ユニットを構成する透明樹脂の吸水率 w (質量%)は、下記数式 ( 1)を満 足するものとすることにより、高湿度環境下においても導光板の変形を抑制すること ができる。これにより、高湿度環境下であっても光出射面における輝度ムラを抑制し、 光出射面における平均輝度の低下を防止することができる。但し、 yの値は 3以下で ある。 [0033] [数 3]
w≤ ^ b
Κ α L D … (1 )
[0034] また、本発明の導光板によれば、導光板を薄型化でき、かつ軽量ィ匕でき、その光出 射面からより均一でむらの少ない、かつより高輝度な照明光を出射することができる。 さらに、本発明の導光板によれば、導光板ユニットは、例えば、矩形状の光出射面 と、その一辺に平行で光出射面の略中央部に位置する厚肉部と、厚肉部に平行に 形成される薄肉端部と、厚肉部の略中央に前記一辺と平行に形成される、棒状光源 を収納するための平行溝と、平行溝の両側に棒状光源の軸を含み光出射面に対し て垂直な面に対して対称であり、厚肉部力 一辺に直交する方向に両側の薄肉端部 に向力つて肉厚が薄くなり、傾斜背面を形成する傾斜背面部とで構成されるものにで きる。この導光板ユニットの薄肉端部を互いに連結することにより、導光板の合計光 出射面のサイズを、より大サイズとすることができる。
[0035] 本発明の面状照明装置によれば、本発明の導光板を用いることにより、高湿度環 境下にお 、ても導光板の変形を抑制することができるため、高湿度環境下であっても 光出射面における輝度ムラを抑制し、光出射面における平均輝度の低下を防止する ことができる。
また、本発明の面状照明装置によれば、本発明の導光板を用いることにより、薄型 で軽量であり、より低コストで製造することができ、より均一でむらの少ない、かつより 高輝度な照明光を出射することができ、また、照明表面を大サイズとすることができ、 また、壁掛けテレビなどの液晶表示装置に適用することができる面状照明装置を提 供することができる。
[0036] 本発明の液晶表示装置によれば、本発明の面状照明装置を用いることにより、高 湿度環境下にお 、ても導光板の変形を抑制することができるため、高湿度環境下で あっても、ノ ックライトユニットの一部が液晶表示パネルに接触することがない。これに より、表示ムラが生じることない。さらには、輝度ムラを抑制し、光出射面における平均 輝度の低下を防止することができる。
また、本発明の液晶表示装置によれば、本発明の面状照明装置を用いることにより 、薄型で軽量であり、より低コストで製造することができ、より均一でむらの少ない、力 つより高輝度な表示を行うことができ、また、その表示画面を大サイズとすることがで き、また、壁掛けテレビなどの壁掛け型とすることができる。
図面の簡単な説明
[図 1]図 1Aは、本発明の実施例に係る導光板を有する本発明の実施例に係る面状 照明装置をバックライトユニットとして用いた本発明の実施例に係る液晶表示装置を 示す模式的側面図であり、図 1Bは、図 1 Aの A— A線による模式的部分断面斜視図 である。
[図 2]図 2は、本発明の実施例に係る導光板を示す模式的斜視図である。
[図 3]図 3A〜図 3Cは、導光板の変形形態を示す模式的斜視図である。
[図 4]図 4は、本発明の実施例に係るバックライトユニットの要部を示す模式的側面図 である。
[図 5]図 5は、本発明の導光板ユニットの各部の大きさを説明する模式的斜視図であ る。
[図 6]図 6Aおよび図 6Bは、そり量の測定方法を説明する模式的側面図である。
[図 7]図 7は、縦軸にそり量をとり、横軸に第 2の辺の長さをとつて、そり量と導光板の 辺の長さとの関係を示すグラフである。
[図 8]図 8は、縦軸にそり量をとり、横軸に第 1の辺の長さをとつて、そり量と導光板の 辺の長さとの関係を示すグラフである。
[図 9]図 9は、縦軸にそり量をとり、横軸に吸水率をとつて、そり量と吸水率との関係を 示すグラフである。
[図 10]図 10は、縦軸に変形量をとり、横軸に一辺の長さをとつて、変形量と吸水率と の関係を示すグラフである。
[図 11]図 11Aは、反射シートと導光板ユニットの傾斜面の間にプリズムシートが配置 された導光板ユニットを示す模式的側面図であり、図 11Bは、プリズムシートを導光 板ユニットの光出射面側力 見た模式的平面図であり、図 11Cは、図 11Bの B— B線 による断面図である。
[図 12]図 12は、平行溝の長さ方向に垂直な断面形状が双曲線の場合の導光板ュニ ットを示す模式的側面図である。 [図 13]図 13は、平行溝の長さ方向に垂直な断面形状が楕円形の場合の導光板ュニ ットを示す模式的側面図である。
[図 14]図 14は、平行溝の長さ方向に垂直な断面形状が、平行溝の中心を通り導光 板ユニットの光出射面に垂直な中心線に対して対称な 2つの円弧曲線の一部力 形 成されている導光板ユニットを示す模式的側面図である。
[図 15]図 15は、平行溝の長さ方向に垂直な断面形状が、平行溝の中心を通り導光 板ユニットの光出射面に垂直な中心線に対して対称な 2つの放物線の一部力 形成 されている導光板ユ ットを示す模式的側面図である。
[図 16]図 16は、平行溝の長さ方向に垂直な断面形状が、平行溝の中心に向力つて 凸の 2つの曲線力も形成されている導光板ユニットを示す模式的側面図である。
[図 17]図 17は、平行溝の長さ方向に垂直な断面形状が、平行溝の中心に向力つて 凸の曲線と凹の曲線を組み合わせた曲線力 形成されて 、る導光板ユニットを示す 模式的側面図である。
[図 18]図 18は、網点パターンが光出射面に形成された導光板ユニットを示す平面図 である。
[図 19]図 19は、導光板の平行溝の断面形状を種々の形状に変更したときの、導光 板の光出射面から出射する光の照度分布を示すグラフである。
[図 20]図 20は、平行溝の最深部を平坦し、その平坦部分の長さを種々の値に変化さ せたときに導光板の光出射面から出射する光の照度分布を示すグラフである。
[図 21]図 21A〜図 21Dは、それぞれ、平行溝の最深部の平坦部分の長さが 1. 5m m、 1. Omm、 0. 5mm、 0. 25mmの場合の導光板ユニットを示す模式的側面図で ある。
[図 22]図 22は、平行溝の最深部の形状を曲率半径 Rの曲面形状にし、その曲面の 曲率半径を種々の値に変化させたときに導光板の光出射面力 出射する光の照度 分布を示すグラフである。
[図 23]図 23A〜図 23Dは、それぞれ、断面形状が三角形の平行溝の頂点部分の曲 率半径が 1. 5mm、 1. Omm、 0. 5mm、 0. 25mmの場合の導光板ユニットを示す 模式的側面図である。 [図 24]図 24は、本発明の導光板の他の例を示す模式的側面図である。
[図 25]図 25は、本発明の導光板の側面に反射板を配置した構成例を示す模式的側 面図である。
[図 26]図 26Aは、本発明の他の実施例に係る導光板を示す模式的斜視図であり、 図 26Bは、本発明の他の実施例に係る導光板を示す側面図である。
圆 27]図 27は、特開平 9— 304623号公報に開示された導光板を有する面光源装 置を示す分解斜視図である。
[図 28]図 28Aは、高湿度環境下におけるバックライトユニットの消灯時の変形を説明 する模式図であり、図 28Bは、バックライトユニットの点灯時の変形を説明する模式図 である。
[図 29]図 29は、図 27の面光源装置の導光板の出射面における輝度分布を示すダラ フである。
符号の説明
2 ノ ックライトユニット
4 液晶表示パネル
6 駆動ユニット
10 液晶表示装置
12 棒状光源
14 拡散シート
16、 17、 21 プリズムシート
18 導光板
18a 合計光出射面
19、 50、 60、 70、 80、 100 導光板ュ-ッ卜
19a, 52 光出射面
19b 厚肉部
19c 薄肉端部
19d 傾斜面
19e 傾斜背面部 19f 平行溝
19g 側壁
20 リフレクタ
22 反射シート
24 反射板
54a、 54b 円弧曲線
56 交点
64a, 64b 放物線
72a, 72b, 82a, 82b、 84a、 84b 曲線
V 網点パターン
発明を実施するための最良の形態
[0039] 以下、本発明の導光板、これを用いる面状照明装置および液晶表示装置について
、添付の図面に示される好適な態様を基に詳細に説明する。
[0040] 図 1Aは、本発明の実施例に係る導光板を有する本発明の実施例に係る面状照明 装置をバックライトユニットとして用いた本発明の実施例に係る液晶表示装置を示す 模式的側面図であり、図 1Bは、図 1 Aの A— A線による模式的部分断面斜視図であ る。
[0041] 図 1Aおよび Bに示すように、液晶表示装置 10は、基本的に、ノ ックライトユニット 2 と、バックライトユニット 2の光出射面側に配置される液晶表示パネル 4と、それらを駆 動するための駆動ユニット 6とを有する。ノ ックライトユニット 2と、液晶表示パネル 4と は、間隔 (クリアランス) gをあけて配置されている。この間隔 gは、一般的に lmm程度 である。
[0042] バックライトユニット 2は、液晶表示パネル 4の背後から、液晶表示パネル 4の全面に 均一な光を照射するための面状照明装置であり、液晶表示パネル 4の画像表示面と 略同一の光出射面 (発光面)を有する。
図 1Aに示すように、ノ ックライトユニット 2は、基本的には、複数の棒状光源 12と、 拡散シート 14と、 2枚のプリズムシート 16および 17と、複数の導光板ユニット 19により 構成される導光板 18と、各導光板ユニット 19の下面に設けられるリフレクタ 20と、棒 状光源 12ごとに設けられる反射シート 22とを有する。
[0043] 棒状光源 12は、例えば、細径の棒状の冷陰極管であり、液晶表示パネル 4を照明 するために用いられる。図 1Aに示すように、棒状光源 12は、導光板ユニット 19に形 成された平行溝 19f内に配置され、配線(図示せず)を介して駆動ユニット 6と接続さ れている。ここでは、棒状光源 12として冷陰極管を用いたが、本発明はこれに限定さ れず、棒状光源であれば、どのようなものでもよい。棒状光源 12としては、例えば、通 常の蛍光管 (熱陰極管)、または LED (発光ダイオード)なども用いることもできる。
[0044] 拡散シート 14は、導光板ユニット 19の光出射面 19aから出射する光を拡散して均 一化するためのものであり、例えば、 PET (ポリエチレンテレフタレート)、 PP (ポリプロ ピレン)、 PC (ポリカーボネート)、 PMMA (ポリメチノレメタタリレート)、ベンジノレメタタリ レート、 MS (メタクリルスチレン)榭脂、またはその他のアクリル系榭脂、または COP ( シクロォレフインポリマー)のような光学的に透明榭脂からなる平板状部材に光拡散 性を付与して形成される。その方法は特に限定されないが、例えば、上記平板状部 材の表面に微細凹凸加工または研磨による表面粗ィ匕(以下、微細凹凸加工または 研磨による表面粗ィ匕を施した面を「砂擦り面」という)を施して拡散性を付与したり、シ リカ、酸化チタンもしくは酸化亜鉛等の顔料、または、榭脂、ガラスもしくはジルコユア 等のビーズ類などの光を散乱させるための材料をバインダとともに表面に塗工したり 、上記の透明榭脂中に光を散乱させる前述の顔料またはビーズ類を混練することで 形成される。本発明において、拡散シート 14としては、マットタイプ、またはコーティン グタイプの拡散シートを用いることができる。
本発明において、拡散シート 14としては、上記の素材を用い、かつ、光拡散性を付 与した厚み 500 μ m以下のフィルム状部材を用いることも好まし 、。
[0045] 拡散シート 14は、導光板ユニット 19の光出射面 19aから所定の距離だけ離して配 置されることが好ましぐその距離は導光板ユニット 19の光出射面 19aからの光量分 布に応じて適宜変更し得る。このように拡散シート 14を導光板ユニット 19の光出射面 19aから所定の間隔だけ離すことにより、導光板ユニット 19の光出射面 19aから射出 する光が、光出射面 19aと拡散シート 14の間でさらにミキシング (混合)される。これ により、拡散シート 14を透過して液晶表示パネル 4を照明する光の照度を、より一層 均一化することができる。拡散シート 14を導光板ユニット 19の光出射面 19aから所定 の間隔だけ離す方法としては、例えば、拡散シート 14と導光板 18との間にスぺーサ を設ける方法を用いることができる。
[0046] 特に、ノ ックライトユニット 2の厚みを少し厚くしてもよい場合には、導光板ユニット 1 9の平行溝 19fの断面形状によって、平行溝 19fに相当する導光板ユニット 19の光 出射面 19aにおける照度のピーク値を十分に低減する必要はなぐ部分的に低減す るとともに拡散シート 14と導光板ユニット 19の光出射面 19aとの間に間隙を設けて、 拡散シート 14から射出される照明光の照度分布を均一にしてもよい。また、導光板ュ ニット 19の平行溝 19fの断面形状の改良(平行溝の先端部分の先細化)に限界があ り、平行溝 19fに相当する導光板ユニット 19の光出射面 19aにおける照度のピーク 値を完全に低減できない場合、または十分に低減できない場合にも、拡散シート 14 と導光板ユニット 19の光出射面 19aとの間に間隙を設けて、拡散シート 14から射出 される照明光の照度分布を均一にしてもよい。
[0047] プリズムシート 16および 17は、複数のプリズムを平行に配列させることにより形成さ れた透明なシートであり、導光板ユニット 19の光出射面 19aから出射する光の集光 性を高めて輝度を改善することができる。プリズムシート 16および 17の一方は、その プリズム列の延在する方向が導光板ユニット 19の平行溝 19fと平行になるように配置 され、他方は垂直になるように配置されている。すなわち、プリズムシート 16および 17 は、プリズム列の延在する方向が互いに垂直になるように配置されている。また、プリ ズムシート 16は、プリズムの頂角が導光板ユニット 19の光出射面 19aと対向するよう に配置される。ここで、プリズムシート 16および 17の配置順序は、導光板の直上に、 導光板の平行溝と平行な方向に延在するプリズムを有するプリズムシート 16を配置し 、そのプリズムシート 16の上に、導光板ユニット 19の平行溝 19fと垂直な方向に延在 するプリズムを有するプリズムシートを配置しても良ぐまた、その逆でもよい。
また、プリズムシート 16、 17は、導光板 18の合計光出射面 18a (図 2参照)と、拡散 シート 14との間に設ける構成とした力 本発明は、これに限定されるものではない。こ のプリズムシート 16、 17は、拡散シート 14の上側に配置してもよい。
[0048] また、図示例では、プリズムシートを用いたが、プリズムシートの代わりに、プリズム に類する光学素子が規則的に配置されたシートを用いてもよい。また、レンズ効果を 有する素子、例えば、レンチキュラーレンズ、凹レンズ、凸レンズ、またはピラミッド型 などの光学素子を規則的に備えるシートをプリズムシートの代わりに用いることもでき る。
[0049] 図 1Bに示すように、導光板ユニット 19は、矩形状の光出射面 19aと、その一辺に平 行な厚肉部 19bと、この厚肉部 19bの両側に前記一辺に平行に形成される薄肉端部 19cと、厚肉部 19bから前記一辺に直交する方向に両側の薄肉端部 19cに向力つて 肉厚が薄くなり、傾斜面 19dを形成する傾斜背面部 19eと、肉厚部 19bに前記一辺 に平行に形成される、棒状光源 12を収納するための平行溝 19fとを有する。すなわ ち、導光板ユニット 19は、光出射面 19aの外形形状が矩形状の平板であり、透明榭 脂により形成されている。導光板ユニット 19は、一方の面 (光出射面 19a)が平坦とな つており、他方の面 (傾斜背面部 19e)力 一方の辺に向力うにしたがって板厚が薄く なるように、一方の面に対して傾斜している。ここでは、傾斜面 19dを平面として形成 している力 曲面としてもよい。
[0050] ここで、図 2に示すように、導光板 18は、導光板ユニット 19が連結されてなるもので あり、連結された導光板ユニット 19の各光出射面 19aが集まって、合計光出射面 18a となる。この合計光出射面 18aも、矩形状を呈するものである。この合計出射面 18a における第 1の辺 18bの長さを |8とし、第 2の辺 18cの長さを γとする。なお、本発明 においては、第 1の辺 18b、および第 2の辺 18cのうち、長さが最も長い辺(以下、長 辺という)の長さを Lで表す。
D
本実施例において、この第 1の辺 18bの長さ βは、導光板ユニット 19の連結方向の 長さと同じである。また、第 2の辺 18cの長さ γは、導光板ユニット 19の平行溝 19f ( 図 1 B)参照)が延びる方向の長さと同じである。
[0051] また、導光板 18の変形には、図 3A〜図 3Cに示す 3つ変形形態がある。図 3A〜図 3Cにお 、ては、導光板 18を模式的に表して 、る。
先ず、図 3Aに示すように、導光板 18の第 1の辺 18bが変形する形態である。次に、 図 3Bに示すように、導光板 18の第 2の辺 18cが変形する形態である。また、図 3Cに 示すように、導光板 18の第 1の辺 18bおよび第 2の辺 18cが変形する形態である。 [0052] 図 3A〜図 3Cに示す変形形態は、第 1の辺 18bの長さ β、および第 2の辺 18cの長 さ γに依存することなぐ導光板 18の形状などに依存する。し力しながら、変形量が 小さい場合でも、辺の長さが長いと、変形量が増幅されることになる。このため、結果 としては、辺の長さが長い辺におけるそり量が導光板 18の変形量となる。
また、導光板 18の変形は、吸水だけではなぐ熱によっても起こることが知られてい る。し力しながら、本発明の導光板の使用環境では、熱による膨張は、吸水による膨 張と比較して極めて小さい。このため、本発明においては、吸水による膨張を変形の 原因として扱う。
[0053] ここで、図 4は、本発明の実施例に係るノ ックライトユニットの要部を示す模式的側 面図である。
また、図 4に示すように、導光板ユニット 19は、例えば、平行溝 18fの中心を通って 導光板ュニット 19の光出射面 19aに垂直な中心線 Xに対して対称な形状である。導 光板 18は、各導光板ユニット 19の薄肉部を接合部として、少なくとも 2つ、すなわち、 複数連結されて形成されている。図 1Aに示すバックライトユニット 2においては、導光 板ユニット 19は、例えば、 5個連結されている。
[0054] この導光板ユニット 19において、図 4に示すように、中心線 Xから薄肉端部 19cまで の距離を Lとすると、導光板ユニット 19の短手方向における長さは C ( = 2L)である。 すなわち、導光板ユニット 19の幅は Cであり、この幅 Cがバックライトユニット 2におけ る繰返し単位となる。
また、本発明においては、導光板ユニット 19の肉厚部 19bの厚みを Dmaxとし、薄 肉端部 19cの厚みを Dminとする。
[0055] なお、導光板ユニット 19の厚肉部 19bの光出射面 19aと反対側の面には、棒状光 源 12を収容するための平行溝 19fが長手方向(一辺の方向)に延在して形成されて いる。つまり、平行溝 19fは、光出射面 19aの長手方向と平行な方向に形成されてい る。
この平行溝 19fは、平行溝 19fの長さ方向に垂直な断面形状 (以下、単に平行溝の 断面形状という)において、 2つの側壁 19gが中心線 X上で交わり底部 98を形成する ような三角形状に形成されている。 また、中心線 X上における底部 98と、光出射面 19aとの距離を δ (mm)とする。本 発明においては、平行溝 19fの底部 98の形態は、特に限定されるものではない。底 部 98は、例えば、点で交わり実質的に短手方向に幅がないものでも、短手方向に幅 があるものであってもよい。
なお、平行溝 19fの深さは、棒状光源 12の一部が導光板ユニット 19の下面からは み出さないように決定されることが好ましぐ棒状光源 12の寸法または導光板ユニット 19の機械的強度、経時変化を考慮して決定することが好ましい。
[0056] 本発明者は、上述の如ぐ上記問題点を解決するために、鋭意実験研究を行なつ た結果、導光板 18における導光板ユニット 19を構成する透明樹脂の吸水率 w (質量 %)と、導光板ユニットの形状との関係を明らかにした。以下、導光板ユニット 19を構 成する透明樹脂の吸水率 w (質量%)と、導光板ユニットの形状との関係について詳 細に説明する。
ここで、図 5は、本発明の導光板ユニットの各部の大きさを説明する模式的斜視図 である。なお、図 5においては、導光板ユニット 19だけを図示し、それ以外の構成要 素の図示は省略する。
図 5に示すように、本発明の導光板ユニット 19の長手方向における長さは、 L であ
W
る。側壁 19gの平均平面(図示せず)と、中心線 Xとのなす角度を Θとする。
本発明において、平均平面とは、平行溝 12における 2つの側壁 19gが中心線 X上 で交わる底部 98と、肉厚部 19bの厚み Dmaxが最大値となる点を通る、棒状光源 12 が延びる方向に平行な面である。すなわち、図 4および図 5に示す導光板ユニットに
19においては、側壁 19gが平均平面である。
[0057] 本発明者は、先ず、図 2に示す導光板 18において、その変形 (そり量)に与える辺 の長さの影響にっ 、て調べた。
なお、そり量は、図 6Aおよび Bに示すように、定盤 Pを用いて測定されたものである
。この場合、図 6Aおよび Bにおいては、説明を簡単にするために、導光板に変えて、 導光板ュ-ット 19を用いて説明して 、る。
本発明におけるそり量の測定方法にぉ 、ては、高温高湿度環境下に曝した導光板 について、光出射面側、およびその反対側を向けてそれぞれ定盤に載置し、導光板 表裏の四隅の元の高さからの変化を測定した。これらの測定値のうち、最大値をそり 量とした。
[0058] 先ず、図 2に示す導光板 18について、第 1の辺 18bの長さ βを 330mmとして、第 2 の辺 18cの長さ γを変えた導光板を複数作製した。導光板は、同じ種類の導光板ュ ニットを複数連結したものである。この導光板ユニットは、平行溝の断面形状が 3角形 状であり、各部の大きさが、 Dmax= 5mm、 Dmin= δ = 1. 5mm、 L = 15mm、 Θ = 30° である。
作製された各導光板について、高湿度環境 (温度 60°C、相対湿度 95%)下に 100 時間放置し、そり量を調べた。
なお、導光板ユニットに用いた透明榭脂は、 PMMA (三菱レーヨン社製、吸水率 = 0. 3質量0 /0)、 PC (三菱エンジニアリングプラスチック社製、吸水率 = 0. 15質量0 /0) および ZEONOR (登録商標、日本ゼオン社製、吸水率≤0. 01質量%)の 3種類で ある。
この結果を図 7に示す。図 7に示すように、そり量は、第 2の辺の長さが長くなると、 大きくなる。
[0059] また、図 2に示す導光板 18について、第 2の辺 18cの長さ γを 500mmとして、第 1 の辺 18bの長さ を変えた導光板を複数作製した。導光板は、同じ種類の導光板ュ ニットを複数連結したものである。この導光板ユニットは、平行溝の断面形状が 3角形 状であり、各部の大きさが、 Dmax= 5mm、 Dmin= δ = 1. 5mm、 L = 15mm、 Θ = 30° である。
作製された各導光板について、高湿度環境 (温度 60°C、相対湿度 95%)下に 100 時間放置し、そり量を調べた。
なお、導光板ユニットに用いた透明榭脂は、図 7に示すものと同じであり、 PMMA、 PCおよび ZEONOR (登録商標)の 3種類である。
この結果を図 8に示す。図 8に示すように、そり量は、第 1の辺の長さが長くなると、 大きくなる。
[0060] 上述の如ぐ導光板においては、辺の長さが長くなると、そり量が大きくなる。このた め、本願発明者は、導光板の長辺について、そり量を考慮することにより、変形量に 応じた吸水率を規定できることを見出した。
[0061] 次に、図 4および図 5に示す導光板 18および導光板ユニット 19に基づいて、吸水 率と、表面積差 αとの関係について説明する。
ここで、図 5に示す側壁 19gの長さ Εとすると、この側壁 19gの長さ Eは下記数式(3) により表される。また、斜面 19dの長さを Sとすると、この傾斜面 19dの長さ Sは下記数 式 (4)により表される。
[0062] [数 4]
E = DmaX6, . . (3)
cos Θ
[0063] [数 5]
S= iL-DmaX~0l + (Dmax-Dmin)2 . . . (4)
[0064] 平行溝 19fにおける側壁 19gの角度が Θであるとき、長手方向における単位長さ( L =1)あたりの光出射面 19aと、光出射面 19aの反対側の面との表面積差を αとす
W
るとき、この表面積差 aは下記数式(2)のように表される。
[0065] [数 6]
Dmax— d , If T umax— o ] , „ π . ,2
+ L― 十 (Umax— JJmin) — L
― cos β \l tan6 ) , r ,
a = · · · ( 2 J
L
[0066] 次に、吸水率が異なる種々の材質を用いて、平行溝の断面形状が、 3角形状であり 、各部の大きさが、 Dmax = 5mm, Dmin= δ =1. 5mm、 L=15mm、 θ =30° で ある導光板ユニットを作製した。同じ種類の導光板を複数連結し、大きさが 500mm X 500mmの導光板を作製した。
この導光板を、高湿度環境 (温度 60°C、相対湿度 95%)下に 100時間放置し、そり 量を調べた。なお、導光板ユニットに用いた透明榭脂は、 PMMA (三菱レーヨン社 製、吸水率 =0. 3質量%)、 MS榭脂 (新日鐡化学社製、吸水率 =0. 15質量%)、 P C (三菱エンジニアリングプラスチック社製、吸水率 =0. 15質量0 /0)、および ZEON OR (登録商標、 日本ゼオン社製、吸水率≤0. 01質量%)の 4種類である。
[0067] なお、そり量は、上述の如ぐ図 6Aおよび Bに示すように、定盤 Pを用いて測定され たものである。この場合、高温高湿度環境下に曝した導光板 (導光板ユニット)につ いて、光出射面側、およびその反対側を向けてそれぞれ定盤に載置し、導光板表裏 の四隅の元の高さからの変化を測定した。これらの測定値のうち、最大値をそり量とし た。この結果を図 9に示す。
図 9は、縦軸にそり量をとり、横軸に吸水率をとつて、そり量と吸水率との関係を示 すグラフである。
[0068] なお、本発明における吸水率は、 JIS K7209— 2000に規定された方法に基づい て測定したものである。本発明においては、測定する導光板ユニットを温度 23°Cの 水中に 24時間浸潰した後、質量を測定し、浸漬前の質量に対する質量増加率により 算出した。
図 9から得られた結果、そり量 ε (mm)と、吸水率 w (質量%)とは、下記数式(5)に 示す関係にあることが分力つた。なお、下記数式(5)における kおよび bは係数である 。 k=83(mmZ質量0/ o)、 b = l.9X 10_2 (質量0 /0)である。また、 αは、上記数式( 2)により規定されるものである。
[0069] [数 7] a = k a (w+ b) · · . ( 5)
[0070] 次に、各材質を用いて、大きさが 90mm X 90mm (L =90mm(=L ))、 170mm
D W
XI 70mm (L =170mm(=L ))、 240mm X 240mm (L = 240mm (=L ))、3
D W D W
30mm X 330mm (L = 330mm (=L ;))、および 500mm X 500mm (L =500m
D W D
m(=L ))の導光板を作製した。なお、いずれの導光板においても、平行溝の断面
W
形状が 3角形状であり、 Dmax=5mm、 Dmin= δ =1.5mm、 L=15mm、 Θ =30
° である。
各導光板を高湿度環境 (温度 60°C、相対湿度 95%)下に 100時間放置し、各導光 板について変形量を調べた。この変形量の測定方法は、図 6Aおよび Bに示すように 、そり量と同様に定盤 Pを用いたものである。変形量の測定結果を図 10に示す。 ここで、図 10は、縦軸に変形量をとり、横軸に一辺の長さをとつて、変形量と吸水率 との関係を示すグラフである。
図 10に示すように、変形量 (y)と、一辺の長さ(L )との関係は、 2次関数で近似す
W
ることができる。そこで、上記数式(5)において、 k=K XL 2とし、 Lを L と置き換え て、そり量 εを変形量 yに置き換えると、変形量 yは、下記数式 (6)に示すように表す ことができる。下記数式(6)における Kは係数であり、 K= 3. 3 X 10"4 (l/ (mmX 質量%) )である。
[0071] [数 8] y = K a (w + b ) X L D 2 · · · ( 6 )
[0072] 上記数式 (6)を変形して、下記数式(1)が得られる。
[0073] [数 9]
w≤ ^ (1 )
K a L D
[0074] 上記数式(1)に示すように、 yは変形量である。本発明にお 、ては、変形量を所定 の値に設定した場合における吸水率を算出することができる。この数式(1)に基づい て、吸水率を調整することにより、導光板ユニットの変形量を抑制できる。
なお、 yの値は 3以下であり、更に好ましくは、 yの値は 1以下である。一般的には、 液晶表示パネル 4とバックライトユニット 2との間隔 (クリアランス) g (図 1参照)は lmm 程度である。このため、 yの値を 1以下にし、数式(1)を満たす吸水性を有する透明榭 脂を選定することにより、ノ ックライトユニット 2の変形量を lmm以下にできる。これに より、液晶表示パネル 4に外力が加わることをなくすことができる。
[0075] また、本発明において、導光板ユニット 19が上記数式(1)を満足する場合、例えば 、温度が 60°C、および相対湿度が 95%である高湿度環境下においても、導光板ュ ニット 19の変形量を、例えば、 lmm以下にできる。これにより、輝度ムラの発生、およ び平均輝度の低下が抑制できる。また、バックライトユニット(面状照明装置)に適用 した場合にも、同様に輝度ムラの発生、および平均輝度の低下が抑制できる。さらに 、液晶表示装置に適用した場合、表示ムラの発生、輝度ムラの発生および平均輝度 の低下が抑制できる。
[0076] 一方、本発明において、導光板ユニット 19が上記数式(1)を満足しない場合、高湿 環境 (温度 60°C、相対湿度 95%)下において、導光板ユニット 19は、例えば、変形 量が lmmを超えてしまうことがある。このとき、導光板ユニット 19の平行溝 19fの開口 力 Sさらに広がるように変形すると、棒状光源 12からの光を導光板ユニット 19に有効に 入射させることができなくなる。これにより、平均輝度が低下する。また、変形により、 光出射面 19aが平面ではなくなるため、輝度ムラも生じる。さらに、変形により、導光 板ユニット 19の厚みも厚くなる。
また、ノ ックライトユニット(面状照明装置)に適用した場合には、同様に輝度ムラが 発生し、平均輝度も低下する。さらに、液晶表示装置に適用した場合、表示ムラおよ び輝度ムラが発生し、加えて平均輝度も低下する。
このため、本発明においては、導光板ユニット 19を構成する透明樹脂の吸水率 w( 質量%)は、上記数式(1)を満足するものとする。
[0077] また、本発明においては、厚肉部 19bの厚み Dmaxは、導光板ユニット 19を軽量ィ匕 するため、 10mm以下であることが好ましい。
また、導光板ユニット 19の平行溝 19fは、導光板ユニット 19の長手方向に対して垂 直な方向に形成してもよいが、平行溝 19fに収容される棒状光源 12からの光利用効 率を高めるためには長手方向に形成することが好ま 、。
[0078] なお、本発明においては、導光板ユニットの形状および大きさにより、上記数式(1) を満足する透明樹脂の選択することにより、変形量を制限することができる。しかしな がら、本発明においては、変形量を抑制するために、例えば、導光板ユニットの表面 に吸水率を調整する薄膜を形成してもよい。このように、吸水率を調整する薄膜を形 成することにより、導光板ユニットの変形量を更に一層制御することができる。
この薄膜は、透明なものが好ましぐ例えば、 SiO、 SiOまたは Al Oを蒸着させる
2 2 3
こと〖こより形成される。
[0079] 本発明においては、さらに、図 11Aに示すように、反射シート 22と導光板ユニット 1 9の光出射面 19aと反対側の傾斜面 19dとの間にもプリズムシート 21を設けることが 好ましい。
ここで、図 11Aは、反射シートと導光板ユニットの傾斜面の間にプリズムシートが配 置された導光板ユニットを示す模式的側面図であり、図 11Bは、プリズムシートを導 光板ユニットの光出射面側力も見た模式的平面図であり、図 11Cは、図 11Bの B— B 線による断面図である。なお、図 11Aおよび Bにおいては、図 5に付した符号は省略 している。 [0080] 反射シート 22と導光板ユニット 19の傾斜面 19dとの間に設けられるプリズムシート 2 1は、プリズム 21aの延在する方向が導光板ユニット 19の平行溝 19fと垂直になるよう に配置されるとともに、プリズム 21aの頂角 21bが導光板ユニット 19の傾斜面 19bと対 向するように配置することが好ま 、。
[0081] 本発明においては、プリズムシート 21を用いた力 プリズムシートと同様の効果を有 する光学素子を用いても良ぐレンズ効果を有する光学素子、例えば、レンチキユラ 一レンズ、凹レンズ、凸レンズ、またはピラミッド型などの光学素子が規則的に配置さ れたシートを設けてもよい。
なお、図示例においては、プリズムシート 16および 17、さらに好ましくはプリズムシ ート 21を用いているが、導光板ユニット 19の平行溝 19fによる光出射面 19aにおける 照度がより均一化されている場合には、プリズムシート 21はもちろん不要であり、プリ ズムシート 16および 17のどちらか一方、または両方を用いなくてもよい。高価なプリ ズムシートの使用枚数を減すか、または、プリズムシートの使用をやめることにより、装 置コストを低減させることができる。
[0082] 本実施例において、リフレクタ 20は、導光板ユニット 19の長手方向に延びる平行溝 19fの開口を塞ぐように設けられるものであり、略長方形状を呈している。このリフレタ タ 20は、棒状光源 12から出射される光のうち、光出射面 19aと対向する反対側の面 力も漏洩する光を反射して、導光板ユニット 19の平行溝 19fの側壁 19gから光を入 射させることができる。
[0083] また、本実施例において、反射シート 22は、導光板ユニット 19の傾斜面 19d (背面 )から漏洩する光を反射して、再び導光板ユニット 19に入射させるためのものであり、 棒状光源 12の光の利用効率を向上させることができる。この反射シート 22は、導光 板ユニット 19の傾斜面 19dを覆うように設けられている。
[0084] 反射シート 22は、導光板ユニット 19の傾斜面 19d (背面)から漏洩する光を反射す ることができるのであれば、どのような材料で形成されてもよぐ例えば、 PETまたは P P (ポリプロピレン)等にフィラーを混練後延伸することによりボイドを形成して反射率 を高めた榭脂シート、透明もしくは白色の榭脂シート表面にアルミ蒸着などで鏡面を 形成したシート、アルミニウム等力もなる金属箔、金属箔を担持した榭脂シート、また は表面に十分な反射性を有する金属薄板により形成することができる。 また、リフレクタ 20は、例えば、上記反射シート 22と同じ素材、すなわち、表面に十 分な反射性を付与した榭脂シート、金属箔または金属板により形成することができる
[0085] 図 1Bに示す構造を有する導光板ユニット 19において、その平行溝 19fに配置され た棒状光源 12から放射される光のうち、平行溝 19fを形成する側壁 19gから導光板 ユニット 19の内部に入射した光は、導光板ユニット 19の傾斜面 19dで反射した後、 光出射面 19aから出射する。このとき、導光板ユニット 19の下面から一部の光が漏洩 するが、その漏洩した光は、導光板ユニット 19の傾斜面 19b側に形成された反射シ ート 22により反射して再び導光板ユニット 19の内部に入射して光出射面 19aから出 射する。こうして、導光板ユニット 19の光出射面 19aから均一な光が放射される。
[0086] 導光板ユニット 19は、例えば、加熱した原料榭脂を押し出し成形または射出成形 によって成形する方法、型中でモノマー、オリゴマー等を重合させて成形する注形重 合法等を用いて製造することができる。導光板ユニット 19の材料としては、例えば、 P ET (ポリエチレンテレフタレート)、 PP (ポリプロピレン)、 PC (ポリカーボネート)、 MS 榭脂、ベンジルメタタリレート、イソボル-ルメタタリレート(略称: IBXMA、吸水率 0. 02質量0 /0)もしくはトリシクロデ力-ルメタタリレート(略称: TCDMA、吸水率 0. 023 質量%)などの側鎖嵩高脂環式アタリレートなどを含むその他のアクリル系榭脂、また は COP (シクロォレフィンポリマー、例: ZEONOR (登録商標、日本ゼオン社製) )な どの透明榭脂を用いることができる。この中でも、 COP、 IBXMA、または TCDMAな どは吸水率が小さいため、本発明において、好ましく用いることができる。さらに、これ ら COP、 IBXMA、または TCDMAは他のポリマーのガラス転移温度が高いため、こ れらによって作成される導光板はより高温環境においても使用できる点でも好適であ る。
なお、本発明においては、透明樹脂には、光を散乱させるための微粒子を混入さ せても良ぐこれにより光出射面 19aからの光の出射効率を一層高めることができる。
[0087] 図 4に示すように、導光板ユニット 19の平行溝 19fは、この平行溝 19fの断面形状 が三角形状になるように形成されている。本発明においては、導光板ユニットを構成 する透明樹脂の吸水率 w (質量%)が上記数式(1)を満足するものであれば、平行溝 の断面形状は、特に限定されるものではない。また、上記数式(1)の適用において、 平行溝の断面形状は、特に限定されるものではなぐ表面積差 αと、長辺の長さ Lと
D
が分かれば、断面形状によらず適用できる。
例えば、本発明においては、平行溝 19fの断面形状は、平行溝 19fの最深部また は中心を通って導光板 19fの、光出射面に垂直な中心線に対して対称であって、光 出射面 19aに向力つて細くなるような形状でもよい。
[0088] 本発明においては、例えば、図 12および図 13に示すように、平行溝 19h、 19jの断 面形状は、双曲線形状、楕円形状することができる。さらには、導光板ユニット 19の 平行溝の断面形状は懸垂線形状でもよ ヽ。
ここで、図 12は、平行溝の長さ方向に垂直な断面形状が双曲線の場合の導光板 ユニットを示す模式的側面図であり、図 13は、平行溝の長さ方向に垂直な断面形状 が楕円形の場合の導光板ユニットを示す模式的側面図である。なお、図 12および図 13に示す導光板ユニット 19にお 、ては、図 4および図 5に示す導光板ユニット 19と 同一構成物には、同一符号を付してその詳細な説明は省略する。
[0089] また、本発明においては、図 12および図 13に示す平行溝 19h、 19jの断面形状以 外にも、平行溝の断面形状は、平行溝の最深部 (平行溝を形成する側壁 19gの接続 部)が尖点となるような形状にすることもできる。すなわち、平行溝の先端部分の断面 形状が、互いに交わる先鋭な 1つの交点を有する、平行溝の中心を通って導光板ュ ニットの光出射面に垂直な中心線に対して対称な 2つの曲線または直線の一部から 形成することができる。本発明においては、導光板ユニットの平行溝の断面形状が、 上記いずれの形状であっても、導光板ユニットの光出射面力 均一な光を出射させ ることがでさる。
[0090] 図 14は、平行溝の先端部分の断面形状力 互いに交わる先鋭な 1つの交点を有 する、平行溝の中心を通って導光板ユニットの光出射面に垂直な中心線に対して対 称な 2つの曲線の一部力も形成されている導光板ユニットを示す模式的側面図であ る。なお、図 14に示す導光板ユニット 50においては、図 4および図 5に示す導光板 ユニット 19と同一構成物には、同一符号を付してその詳細な説明は省略する。 図 14に示す導光板ユニット 50は、平行溝 19kの中心を通って導光板ユニット 50の 光出射面 52に垂直な中心線 Xに対して対称な 2つの曲線 54aおよび 54bが円弧の 場合である。この場合は、図 14に示すように、平行溝 19kを形成する一方の側壁 19 gに対応する円弧 54aの中心の位置と他方の側壁 19gに対応する円弧 54bの中心の 位置が異なるように形成される。これにより円弧状の両側壁 19gが交わる部分 56は、 図 14に示すように尖った形状となる。
[0091] また、図 15は、平行溝の長さ方向に垂直な断面形状が、平行溝の中心を通り導光 板ユニットの光出射面に垂直な中心線に対して対称な 2つの放物線の一部力 形成 されている導光板ユ ットの別の例を示す模式的側面図である。なお、図 15に示す 導光板ユニット 60においては、図 13に示す導光板ユニット 19と同一構成物には、同 一符号を付してその詳細な説明は省略する。
図 15に示す導光板ユニット 60は、平行溝 19mの中心を通って導光板ユニット 60の 光出射面 60aに垂直な中心線 Xに対して対称な 2つの曲線 64aおよび 64bが放物線 の場合である。図 15においては、平行溝 19mの一方の側壁 19gに対応する放物線 64aの焦点と、他方の側壁 19gに対応する放物線 64bの焦点とが互いに異なるように 、平行溝 19mの側壁 19gが形成される。
[0092] 図 15に示すように、平行溝の先端部分の断面形状が、交点 64で交わる 2つの曲線 64aおよび 64bから形成される場合において、平行溝 19mの一方の側壁 19gに対応 する曲線 64aの、交点(尖点) 66における接線と、他方の側壁 19gに対応する曲線 6 4bの、交点 66における接線が互いになす角 7?は、 90° 以下が好ましぐ 60° 以下 力 り一層好ましい。
[0093] 図 4、および図 12〜図 15では、平行溝 19f、 19h、 19j、 19k、 19mの断面形状に おいて、平行溝 19f、 19h、 19j、 19k、 19mの側壁 19gを形成する曲線力 平行溝 の中心に向かって凹状の導光板ユニットの例を示した力 本発明は、これらに限定さ れるものではない。
また、図 12〜図 15に示す導光板ユニット 19、 50、 60においても角度 0 (図示せず )は、図 5に示されるものと同様である。このとき、平均平面とは、平行溝 19h、 19j (図 12および図 13参照)の場合、平行溝 19h、 19jを構成する双曲線形状、または楕円 形状の側壁 19gが中心線 X上で交わる底部(図示せず)と、肉厚部 19bの厚み Dmax が最大値となる点を通る、棒状光源 12が延びる方向に平行な面である。
また、平行溝 19k (図 14参照)の場合、平行溝 19kを構成する円弧状の両側壁が 中心線 X上で交わる部分 56と、肉厚部 19bの厚み Dmaxが最大値となる点を通る、棒 状光源 12が延びる方向に平行な面である。
また、平行溝 19m (図 15参照)の場合、平行溝 19mを構成する一方の側壁 19gに 対応する曲線 64aおよび他方の側壁 19gに対応する曲線 64bの交点 66と、肉厚部 1 9bの厚み Dmaxが最大値となる点を通る、棒状光源 12が延びる方向に平行な面であ る。
平行溝 19f、 19h、 19j、 19k、 19m力 Sこのような形状であっても、上記数式(1)を満 足すれば、同じ効果が得られることは言うまでもな 、。
[0094] ここで、図 16は、平行溝の長さ方向に垂直な断面形状が、平行溝の中心に向かつ て凸の 2つの曲線力も形成されている導光板ユニットを示す模式的側面図である。図 17は、平行溝の長さ方向に垂直な断面形状が、平行溝の中心に向力つて凸の曲線 と凹の曲線を組み合わせた曲線力 形成されている導光板ユニットを示す模式的側 面図である。なお、図 16および図 17に示す導光板ユニット 70、 80においては、図 4 および図 5に示す導光板ユニット 19と同一構成物には、同一符号を付してその詳細 な説明は省略する。
[0095] 図 16に示す導光板ユニット 70は、平行溝 19pの断面形状力 平行溝 19pの中心 に向かって凸の 2つの曲線 72aおよび 72b力も形成される導光板ユニット 70の例で ある。
また、図 17に示す導光板ユニット 80は、平行溝 19qの断面形状が、平行溝 19qの 中心に向力つて凸の曲線 82aおよび 82bと凹の曲線 84aおよび 84bを組み合わせた 曲線力 形成される導光板ユニット 80の例である。
図 16および図 17に示したような断面形状の平行溝 19p、 19qを有する導光板ュ- ット 70および 80も、輝線の発生を抑制しつつ光出射面力も十分な照度の光を出射 することができる。
なお、図 16および図 17に示す導光板ユニット 70、 80においても角度 0 (図示せず )は、図 5に示されるものと同様である。このとき、平均平面とは、平行溝 19pの場合、 平行溝 19pを構成する凸の 2つの曲線 72aおよび 72bが中心線 X上で交わる底部( 図示せず)と、肉厚部 19bの厚み Dmaxが最大値となる点を通る、棒状光源 12が延び る方向に平行な面である。
また、平行溝 19qの場合、平行溝 19qを構成する凸の曲線 82aおよび 82bと凹の曲 線 84aおよび 84bを組み合わせた曲線が中心線 X上で交わる底部(図示せず)と、肉 厚部 19bの厚み Dmaxが最大値となる点を通る、棒状光源 12が延びる方向に平行な 面である。
平行溝 19p、 19qがこのような形状であっても、上記数式(1)を満足すれば、同じ効 果が得られることは言うまでもな 、。
[0096] このように、本発明にお 、ては、導光板ユニットの平行溝の断面形状にお!、て、平 行溝に相当する部分は、平行溝の中心に向力つて凸もしくは凹の曲線状、または直 線状にすることができ、また、それらの組み合わせであってもよい。これらの曲線は、 図示例の円弧に限定されるものではなぐ平行溝の中心に向かって凸または凹の、 楕円、放物線、または双曲線などの曲線の一部であればよい。
また、本発明においては、平行溝の先端部分の断面形状が、後述するように先細 化されていれば、平行溝を構成する曲線は、平行溝の中心に向かって凸または凹の 、円、楕円、放物線、または双曲線などの曲線の一部であればよぐ特に、 10次の関 数によって近似できる曲線であることが好ましい。
[0097] 本発明の導光板の構成要素である導光板ユニット 19においては、図 18に示すよう に、ある中心線 Xにおいて網点の密度が高ぐその中心線 Xから両側(中心線に対し て垂直方向)に向力うにしたがって次第に網点の密度が低くなるような網点パターン
Vを導光板ユニット 19の光出射面 19aに、例えば、印刷により形成してもよい。このよ うな網点パターン Vを、網点パターン Vの中心線 Xが導光板ユニット 19の平行溝の中 心線に対応する位置と一致するように、導光板ユニット 19の光出射面 19aに形成す ることにより、導光板ユニット 19の光出射面 19aにおける輝線の発生、および輝度ム ラを抑制することができる。また、網点パターン Vを導光板ユニット 19に印刷する代わ りに、網点パターンが形成された薄いシートを光出射面上に積層してもよい。網点の 形状は、矩形、円形、楕円形などを任意の形状にすることができ、網点の密度は、輝 線の強さまたは広がりに応じて適宜選択することができる。また、このような網点バタ ーンを印刷により形成する代わりに、網点パターンに対応する部分を砂擦り面として 荒らしてもよい。このような砂擦り面は、導光板ユニットの平行溝の最深部または側壁 に形成してもよい。
[0098] 次に、導光板の平行溝の断面形状を種々の形状に変更したときに、 1つの導光板 ユ ット 19からなる導光板の光出射面 19aから出射する光の照度分布について調べ た。まず、本発明の導光板 18の導光板ユニットの例として、平行溝 19fの断面形状が 図 1および図 12にそれぞれ示すような三角形および双曲線の場合と、従来の導光板 の例として断面形状が放物線、半円形 (かまぼこ形)の場合について調べた。図 19に 、それらの導光板の光出射側の面における相対照度分布を示す。図 19において、 縦軸は相対照度を示し、横軸は導光板ユニットの中心位置 (平行溝の中心部分)か らの距離を示す。
[0099] ここで、相対照度は、次のようにして測定した。
先ず、本発明の導光板ユニットに光源を組み込み、導光板ユニット内に光を入射し て光出射面より光が出射するようにした。
次に、この状態で、 XYステージに固定し、導光板ユニットの光出射面に垂直になる ように照度計を固定する。そして照度計によって光出射面の位置における照度を測 定して導光板の光出射面の特定位置に関する、照度の情報を得る。
その後、 XYステージを移動させることにより、光出射面上の位置と照度の関係を求 めて、その全面の平均値を算出する。各位置における照度をこの照度の平均値をそ れぞれ割り返した比率力 その位置における相対照度となる。
なお、平行溝の軸方向に垂直な方向 1軸を測定してその値を代表させることで、断 面形状の比較等を簡便に行うこともできる。
なお、相対輝度を測定する場合には、照度計の代わりに輝度計を用いればよぐこ れにより、導光板の光出射側の面における相対輝度分布を得ることができる。
[0100] 図 19に示すように、導光板ユニットの平行溝の断面形状を双曲線にした場合に、 平行溝に対応する部分における相対照度のピーク値が、傾斜背面部力 の出射光 によって形成される相対照度の平均値の 10倍以下となっており、光出射面からの照 度が略均一になっていることがわかる。
[0101] 一方、平行溝の断面形状が半円形または放物線形の従来の導光板ユニットにおい ては、図 19に示すように、平行溝の中心部分、すなわち、光源の直上の位置におい て相対照度が高くなつており、輝線が発生していることがわかる。すなわち、従来の平 行溝の断面形状が半円形状または放物線形状の導光板においては、光照射面にお ける照度が均一ではない。
[0102] また、平行溝の断面形状が三角形状の導光板にユニットおいては、中心部分の相 対照度は低くなつている。このような平行溝の断面形状が三角形状の場合は、以下 に示すように、頂点を所定の幅で平坦にするか、比較的曲率半径の小さな曲面にす ることによって、光出射面における照度を均一化することができる。
[0103] 図 20に、導光板の平行溝の断面形状が三角形状の場合において、平行溝の最深 部(三角形状の平行溝の頂点部分)を平坦化し、その平坦部分の長さを種々の値に 変化させたときに導光板の光出射面力 出射する光の照度分布を示す。図 20にお いて、縦軸は相対照度を示し、横軸は導光板に形成された平行溝の中心部からの距 離を示す。ここでは、計算を簡単化するために、冷陰極管 (光源)の直径を 3mmとし 、平坦部分の長さを 1. 5mm、 1. Omm、 0. 5mm、 0. 25mmとした。
図 21A〜図 21Dに、平行溝 19fの断面形状が三角形の場合に、平行溝 19fの最 深部の平坦部分 90の長さが 1. 5mm、 1. Omm、 0. 5mm、 0. 25mmの導光板ュ- ットを示す模式的側面図をそれぞれ示す。
なお、図 21A〜図 21Dに示す導光板ユニット 19においては、図 4および図 5に示 す導光板ユニット 19と同一構成物には、同一符号を付してその詳細な説明は省略 する。また、図 21A〜図 21Dに示す導光板ユニット 19においても角度 0 (図示せず) は、図 5に示されるものと同様である。このとき、吸水性においては、平坦部分 90の長 さは十分無視できるものである。図 21 A〜図 21 Dに示す導光板ュ-ット 19において 、平均平面は、側壁 19gとなり、角度 Θは、側壁 19gの中心線 Xに対する傾きである。 この場合においても、上記数式(1)を満足すれば、同じ効果が得られることは言うま でもない。 [0104] 図 20のグラフに示すように、平坦部分 90の長さに応じて、導光板ユニットの平行溝 19fに対応する部分における相対照度が変化することがわかる。ここで、本発明にお いては、平行溝 19fの最深部の平端部分 90を長くすることで照度を高めることができ るが、長すぎると輝線となる恐れがあるため、平坦部分 90の長さは、冷陰極管 (光源) の直径の 20%以下とすることが好ましぐ 10%以下とすることがより好ましい。
[0105] 図 22は、導光板の平行溝の断面形状が三角形状の導光板において、平行溝の最 深部の形状を曲率半径 Rの曲面形状にし、その曲面の曲率半径を種々の値に変化 させたときに導光板ユニット 19の光出射面 19aから出射する光の照度分布を示すグ ラフである。
ここでは、冷陰極管(光源)の半径を 3mmとし、頂点部分の曲率半径が 1. 5mm, 1 . Omm, 0. 5mm, 0. 25mmの導光板ユニットについて測定した。
図 23A〜図 23Dに、平行溝 19fの断面形状が三角形の場合に、頂点部分 92の曲 率半径が 1. 5mm、 1. Omm、 0. 5mm、 0. 25mmの導光板ユニットを示す模式的 側面図をそれぞれ示す。
なお、図 23A〜図 23Dに示す導光板ユニット 19においては、図 4および図 5に示 す導光板ユニット 19と同一構成物には、同一符号を付してその詳細な説明は省略 する。また、図 23A〜図 23Dに示す導光板ユニット 19においても角度 0 (図示せず) は、図 5に示されるものと同様である。吸水性においては、頂点部分 92の大きさは十 分無視できるものである。図 23A〜図 23Dに示す導光板ユニット 19において、平均 平面は、側壁 19gが中心線 X上で交わる頂点部分 92と、肉厚部 19bの厚み Dmaxが 最大値となる点を通る、棒状光源 12が延びる方向に平行な面である。この場合にお いても、上記数式(1)を満足すれば、同じ効果が得られることは言うまでもない。
[0106] 図 22のグラフに示すように、平行溝 19fの頂点部分 92の曲率半径に応じて、導光 板ユニット 19の平行溝 19fに対応する部分における相対照度が変化し、頂点部分 9 2の曲率半径 Rが 0. 25mmにおいて導光板ユニット 19の光出射面 19aにおける相 対照度が略均一化されて 、るのがわかる。
[0107] 以上から、導光板ユニットの平行溝の先端部分の形状が光出射面力 の照度に大 きく依存することがわかる。すなわち、導光板の平行溝の形状を本発明で示した形状 になるように設計するだけで、導光板ユニット 19の光出射面 19aにおける照度を最適 に調整して均一化することができることがわかる。
導光板ユニットの表面において、照度と輝度は略同様に扱うことができる。このため 、図 20および図 21の相対照度のグラフから、本発明においては、輝度においても同 様の傾向があると推測される。したがって、導光板の平行溝の形状を本発明で示した 形状になるように設計することで、導光板ユニット 19の光出射面 19aにおける輝度に つ!ヽても均一化できると考えられる。
なお、平行溝の先端部分の頂部 (最深部)の断面形状が、平行溝の中心線に対し て対称に先鋭な 1つの交点が、面取りされた平坦状、または丸められた円形状のみ ならず、楕円形状、放物線状、または双曲線状であってもよいのはもちろんである。さ らに、これに加え、上述したように、平行溝の先端部分の頂部 (最深部)を砂擦り面と することにより、照度または輝度のピーク値を低減するようにしてもよい。
[0108] 以上から、本発明の導光板においては、導光板ユニット 19の光出射面 19aにおけ る平行溝 19f以外、すなわち傾斜背面 19dに相当する部分に形成される照度の平均 値に対する、導光板ユニット 19の光出射面 19aにおける平行溝 19fに相当する部分 に形成される輝線のピーク値 (照度のピーク値)の比に応じて、導光板ユニット 19の 平行溝 19fの先端形状の先細化を行なう。すなわち、この比の値に応じて、導光板ュ ニット 19の平行溝 19fの先端形状の先細化の程度を制御する。なお、この比は、 3以 下が好ましぐ 2以下とするのがより好ましい。
[0109] なお、この比は、ノ ックライトユニット 2の厚み(導光板ユニット 19の光出射面 19aと 拡散シート 14との間の距離)、またはバックライトユニット 2において使用される拡散シ ート 14の拡散効率、または枚数、プリズムシート 16、 17および 21の拡散効率または 使用枚数等に応じて、設定することが好ましい。すなわち、ノ ックライトユニット 2の厚 み (導光板ユニット 19の光出射面 19aと拡散シート 14との間の距離)がある程度厚 または大きく)できる場合、またはバックライトユニット 2において使用される拡散シート 14の拡散効率が高ぐ使用枚数を多くできる場合、またはプリズムシート 16、 17およ び 21の拡散効率が高ぐ使用枚数を多くできる場合には、導光板ユニット 19の光出 射面 19aから射出された照明光の拡散 (ミキシングなど)を十分に行なうことができる ので、高コストとはなるが、導光板ユニット 19の光出射面 19aにおける傾斜背面部 19 eに相当する第 2部分の照度の平均値に対する、導光板ユニット 19の光出射面 19a の平行溝 19fに相当する第 1部分の照度のピーク値の比を、ある程度大きく設定する ことができる。しかし、そうでない場合には、低コストィ匕できる力 この比の値を小さく設 定する必要がある。
[0110] 一方、本発明においては、導光板ユニット 19の光出射面 19aの平行溝 19fに相当 する第 1部分の照度のピーク値が、導光板ユニット 19の光出射面 19aにおける傾斜 背面部 19eに相当する第 2部分の照度の平均値の 3倍以下、より好ましくは、 2倍以 下となるように、導光板ユニット 19の平行溝 19fの先端形状の先細化を行なう。ここで 、導光板ユニット 19の光出射面 19aの第 1部分の照度のピーク値が、導光板ユニット 19の光出射面 19aにおける傾斜背面部 19eに相当する第 2部分の照度の平均値の 3倍以下となるようにするのは、導光板ユニット 19の光出射面 19aから射出された照 明光の照度分布が、従来よりも均一化されるからであり、その結果、導光板ユニット 1 9の光出射面 19aから射出された照明光の拡散 (ミキシングなど)をそれほど十分に 行なう必要がなぐ拡散効率のあまり高くない低コストの拡散シート 14の使用が可能と なり、また使用枚数を減らすことができ、また、高価なプリズムシート 16、 17および 21 自体の使用を止めることができ、あるいは、拡散効率のあまり高くない低コストのプリ ズムシート 16、 17および 21の使用が可能となったり、使用枚数を減らすことができる 力 である。
[0111] なお、本発明の導光板においては、導光板ユニットの平行溝の断面形状において 、平行溝の先細化を行なう先端部分は、棒状光源の中心から光出射面に向力 垂線 (X)に対する角度力 両側で 90° 以内となる部分、より好ましくは、 60° 以内となる 部分とするのが好ましい。すなわち、本発明において、導光板ユニットの光出射面の 平行溝に相当する第 1部分の照度のピーク値を低減するために、平行溝の先細化を 行なう部分は、平行溝の全体でもよいが、ピーク値の低減ィ匕が可能であれば、所定 の先端部分でよい。
[0112] 以上、本発明の導光板およびそれを備えるバックライトユニット並びに液晶表示装 置について詳細に説明したが、本発明は上記実施態様に限定はされず、本発明の 主旨を逸脱しな 、範囲にぉ 、て、各種の改良および変更をしてもょ 、のはもちろん である。
[0113] 例えば、本発明においては、図 24に示すように、導光板ユニット 94、 96の光出射 面 94a、 96aが全て同一平面を形成するように導光板ユニット 94、 96を複数並列して 配置して大型の導光板を構成することもできる。このように導光板ユニット 94、 96を並 列して配置したときには、一方の導光板ユニット 94の傾斜面 94dと、それと接続する 他方の導光板ユニット 96の傾斜面 96dとが交差しないように、すなわち、それら傾斜 面の連結部分において滑らかな平面または曲面が形成されるように、導光板ユニット 94、 96の傾斜面 94d、 96dの傾斜角度を調整することができる。図 24に示す導光板 においては、導光板ユニット 94、 96のそれぞれの傾斜面 94d、 96dによって形成さ れる面がアーチ型になるように形成されている。なお、図 24に示す導光板ユニット 94 、 96は、基本的に図 4に示す導光板ユニット 19と同一構成であり、その詳細な説明 は省略する。
このような大サイズの光出射面を持つ導光板を用いることにより、大サイズの光照射 面を持つバックライトユニットとすることができるので、大サイズの表示画面を持つ液 晶表示装置に適用することができ、特に、壁掛けテレビなどの壁掛けタイプの液晶表 示装置に適用することができる。
[0114] 上述のように本発明による導光板は、複数の導光板ユニットを連結して大型の導光 板を形成するには、別々に成形した導光板ユニットの薄肉部を連結して形成する。こ れ以外にも、製造効率の観点からは、必要な画面サイズに相当する導光板を形成す るのに必要な数の導光板ユニットを一体で成形することが好ましい。
[0115] また、本発明の導光板において、図 25に示すように、最も外側に配置される導光板 ユニット 19の側面に反射板 24を配置してもよい。このような反射板 24を側面に配置 することで導光板ユニット 19の側面からの光の漏出を防止することができ、光利用効 率を一層高めることができる。なお、反射板 24は、前述した反射シート、またはリフレ クタと同様な材料を用いて形成することができる。
[0116] さらに、本発明の導光板ユニットにおいては、いずれのものについても中心線に対 して対称な形状としたが、本発明はこれに限定されるものではない。本発明において は、図 26Aおよび Bに示すように、中心線に対して非対称な形状であってもよい。
[0117] 図 26Aは、本発明の他の実施例に係る導光板を示す模式的斜視図であり、図 26B は、本発明の他の実施例に係る導光板を示す側面図である。なお、図 26Aおよび B に示す導光板 100において、図 4および図 5に導光板 18および導光板ユニット 19と 同一構成物には、同一符号を付して、その詳細な説明は省略する。
本発明の導光板 100においては、側面視、鋸刃状を呈している。導光板 100は、 表面側が光出射面 102aである。この光出射面 102aに対向して、斜面 102dを形成 する傾斜背面部 102eが設けられている。斜面 102dは、一の方向に対して狭くなるよ うに傾斜されている。各斜面 102dは、垂直面 102gにより連結されている。これらの 斜面 102dと、垂直面 102gとが連結される領域 102fに、棒状光源 12が設けられて いる。光出射面 102aと、 1つの斜面 102dと、 1つの垂直面 102gとにより囲まれる領 域が導光板ユニット 102となる。
[0118] 本実施例の導光板 100においても、上記数式(1)により、導光板 100の導光板ュ ニット 102を構成する透明樹脂の吸水率を算出することができる。この場合において も、導光板 100の長い方の辺の長さを Lとする。
D
なお、本実施例の導光板 100においては、垂直面 102gが平均平面となる。
また、本実施例の導光板 100においては、棒状光源 12に変えて、 LEDアレイなど の指向性が高 、光源を用いることが好まし 、。
産業上の利用可能性
[0119] 本発明の導光板は、薄型で軽量であり、高湿度環境下においても、変形を抑制す ることができ、より均一でむらの少ない、かつより高輝度な光を射出させることができる 。それゆえ、液晶表示装置に用いられるバックライト用の導光板、特に大型の導光板 に利用することができる。
また、本発明の面状照明装置は、薄型で軽量であり、高湿度環境下でも輝度むら を抑制でき、平均輝度の低下も防止でき、より低コストで製造することができる。それ ゆえ、本発明の面状照明装置は、液晶モニタまたは壁掛けテレビなどの液晶表示装 置に適用することができる。
また、本発明の液晶表示装置は、薄型で軽量であり、高湿度環境下においても、表 示むらが生じることを防止できる。本発明の液晶表示装置は、大画面の液晶モニタや 大画面の壁掛けテレビなどに利用することができる。

Claims

請求の範囲
[1] 矩形状の光出射面および前記光出射面に対向する裏面を備える導光板ユニットが 少なくとも 2つ、前記光出射面を同一平面上にして連結される導光板であって、 前記導光板ユニットの前記光出射面が連結されて得られる矩形状の合計光出射面 のうち、最も長い辺の長さを L (mm)とし、前記導光板ユニットの単位長さあたりの前
D
記光出射面と前記裏面との表面積差を αとし、 Κおよび bを係数とするとき、前記導 光板ユニットを構成する前記透明樹脂の吸水率 w (質量%)は、下記数式(1)を満足 するものであり、 yの値は 3以下、 K= 3. 3 X 10_4 (lZ (mm X質量0 /0) )、 b= l . 9 X 10"2 (質量%)であることを特徴とする導光板。
[数 10]
w≤ ^ - b ' ' ' ( 1 )
Κ α L D
[2] 前記導光板ユニットは、矩形状の光出射面と、
その一辺に平行で前記光出射面の略中央部に位置する厚肉部と、
前記厚肉部に平行に形成される薄肉端部と、
前記厚肉部の略中央に前記一辺と平行に形成される、棒状光源を収納するための 平行溝と、前記平行溝の両側に前記棒状光源の軸を含み前記光出射面に対して垂 直な面に対して対称であり、前記厚肉部から前記一辺に直交する方向に両側の前 記薄肉端部に向力つて肉厚が薄くなり、傾斜背面を形成する傾斜背面部とで構成さ れる透明樹脂からなるものであり、
隣接する導光板ユニットの前記薄肉端部は連結され、連結された導光板ユニットの 光出射面は同一平面上に配置されており、
前記棒状光源の中心を通り前記光出射面に対して垂直な面から隣接する導光板 ユニットとの接合部である前記薄肉端部の端面までの距離を L (mm)とし、前記厚肉 部の最大厚みを Dmax (mm)とし、前記薄肉端部の最小厚みを Dmin (mm)とし、前 記平行溝の底部と前記光出射面との距離を δ (mm)とし、前記棒状光源の中心を通 り前記光出射面に対して垂直な線と前記平行溝の断面形状における片側の側壁の 平均平面とのなす角を Θ (° )とするとき、前記表面積差 αは、下記数式(2)により表 される請求項 1に記載の導光板。 [数 11]
「 ヽ
Dmax— d , f τ Uma — 0 1 , „ π . , 2
+ L― 十 (umax— JJmin) — L
― cos β \l tan6 ) , r ,
a = · · · ( 2 J
L
[3] 前記 yの値は、 1以下である請求項 1または 2に記載の導光板。
[4] 請求項 1〜3のいずれか 1項に記載の導光板と、
前記導光板の前記平行溝に収納される棒状光源と、
前記平行溝を塞ぐように前記棒状光源の背後に設けられるリフレクタと、 前記導光板の前記厚肉部の両側の前記傾斜背面部の前記傾斜背面に取り付けら れる反射シートと、
前記導光板の前記合計光出射面上に配置される拡散シートとを有することを特徴と する面状照明装置。
[5] さらに、前記導光板の前記合計光出射面と前記拡散シートとの間、もしくは拡散シ ートの上側に配置されるプリズムシートを有することを特徴とする請求項 4に記載の面 状照明装置。
[6] 請求項 4または 5に記載の面状照明装置力もなるバックライトユニットと、
このノ ックライトユニットの光出射面側に配置される液晶表示パネルと、前記バック ライトユニットおよび前記液晶表示パネルを駆動する駆動ユニットとを有することを特 徴とする液晶表示装置。
PCT/JP2005/010359 2004-06-08 2005-06-06 導光板、これを用いる面状照明装置および液晶表示装置 WO2005121638A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-170417 2004-06-08
JP2004170417 2004-06-08

Publications (1)

Publication Number Publication Date
WO2005121638A1 true WO2005121638A1 (ja) 2005-12-22

Family

ID=35503152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010359 WO2005121638A1 (ja) 2004-06-08 2005-06-06 導光板、これを用いる面状照明装置および液晶表示装置

Country Status (1)

Country Link
WO (1) WO2005121638A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200875A (ja) * 2005-12-27 2007-08-09 Fujifilm Corp 導光板、及び、これを用いる面状照明装置
FR2960069A1 (fr) * 2010-05-12 2011-11-18 Gb Dev Procede de fabrication d'un guide de lumiere, et guide de lumiere obtenu par ce procede.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249320A (ja) * 1992-03-04 1993-09-28 Nisshin Hightech Kk 面照明用光導波装置
JPH10133027A (ja) * 1996-11-05 1998-05-22 Mitsubishi Electric Corp バックライトユニット及びこれを用いた液晶表示装置
JP2001210123A (ja) * 2000-01-31 2001-08-03 Mitsubishi Electric Corp 面光源装置およびその製造方法
JP2002075034A (ja) * 2000-08-31 2002-03-15 Sanyo Electric Co Ltd 面光源装置
JP2004045645A (ja) * 2002-07-10 2004-02-12 Yuka Denshi Co Ltd 面光源装置並びに液晶ディスプレイ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249320A (ja) * 1992-03-04 1993-09-28 Nisshin Hightech Kk 面照明用光導波装置
JPH10133027A (ja) * 1996-11-05 1998-05-22 Mitsubishi Electric Corp バックライトユニット及びこれを用いた液晶表示装置
JP2001210123A (ja) * 2000-01-31 2001-08-03 Mitsubishi Electric Corp 面光源装置およびその製造方法
JP2002075034A (ja) * 2000-08-31 2002-03-15 Sanyo Electric Co Ltd 面光源装置
JP2004045645A (ja) * 2002-07-10 2004-02-12 Yuka Denshi Co Ltd 面光源装置並びに液晶ディスプレイ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200875A (ja) * 2005-12-27 2007-08-09 Fujifilm Corp 導光板、及び、これを用いる面状照明装置
JP4680883B2 (ja) * 2005-12-27 2011-05-11 富士フイルム株式会社 導光板、及び、これを用いる面状照明装置
FR2960069A1 (fr) * 2010-05-12 2011-11-18 Gb Dev Procede de fabrication d'un guide de lumiere, et guide de lumiere obtenu par ce procede.

Similar Documents

Publication Publication Date Title
JP4264013B2 (ja) 導光板、これを用いる面状照明装置および液晶表示装置
JP3778186B2 (ja) 導光板
JP4855944B2 (ja) 連結導光板、これを用いる面状照明装置および液晶表示装置
US7556391B2 (en) Transmittance adjuster unit, a planar illumination device, a liquid crystal display device using the same, and a method of arranging transmittance adjusters
US20140198531A1 (en) Light guide plate
JP4607648B2 (ja) 導光板、これを備える面状照明装置および液晶表示装置
JP2006040710A (ja) 導光板および該導光板を用いた面型照明装置
WO2006004160A1 (ja) 導光部材及びそれを用いた面状照明装置並びに棒状照明装置
JP2005085671A (ja) 導光板及び面光源装置
JP3558321B2 (ja) サイドライト型面光源装置及び導光板
JP4750679B2 (ja) 面状照明装置及び液晶表示装置
JP4555250B2 (ja) 導光板及びこれを用いる面状照明装置
WO1996016348A1 (fr) Dispositif d'affichage a cristaux liquides
JP3311822B2 (ja) 中空導光板本体及びそれを用いた中空導光板
JP4963726B2 (ja) 面状照明装置および液晶表示装置
WO2005121638A1 (ja) 導光板、これを用いる面状照明装置および液晶表示装置
JP4546360B2 (ja) 透過率調整体ユニット、これを用いる面状照明装置及び液晶表示装置
JP2007027044A (ja) 導光板、これを備える面状照明装置および液晶表示装置
WO2005121639A1 (ja) 導光板、これを用いる面状照明装置及び液晶表示装置
JP4684791B2 (ja) 照明装置、これに使用する光制御部材およびこれらを用いた画像表示装置
JP3313577B2 (ja) 導光板及びサイドライト型面光源装置
JP2006318754A (ja) 透過率調整体ユニット、面状照明装置、およびそれを用いる液晶表示装置
JP2005056859A (ja) サイドライト型面光源装置及び導光板
JP2006339043A (ja) 面状照明装置及びそれを備える液晶表示装置
WO2005114046A1 (ja) 導光板、これを用いる面状照明装置および液晶表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP