Plaque bipolaire pour pile à combustible Bipolar plate for fuel cell
La présente invention concerne les plaques bipolaires pour pile à combustible, notamment une plaque bipolaire pour pile à combustible du type à membrane échangeuse d'ions. Les piles à combustible à membrane échangeuse d'ions comprennent généralement un empilement de plaques bipolaires et de membranes formées par un électrolyte solide, réalisé par exemple à partir de matériau polymère. Les plaques bipolaires sont munies de rainures formant des canaux de circulation de gaz dont une paroi est constituée par une membrane. Des gaz anodiques et cathodiques circulent dans les canaux de circulation de part et d'autre de chaque membrane. Des échanges d'ions à travers les membranes conduisent du côté anodique à une oxydation, par exemple une oxydation d'hydrogène, et du côté cathodique à une réduction d'un oxydant tel que l'oxygène, avec production d'électrons. La réaction d'oxydorédυction, dans le cas notamment d'oxygène et d'hydrogène, entraîne la production d'eau. L'eau ainsi produite se propage vers les canaux de circulation par électro-osmose ou par diffusion. Par conséquent, on retrouve dans les canaux de circulation anodique et cathodique les gaz anodiques et cathodiques ainsi que du liquide tel que de l'eau. La présence d'eau dans les canaux de circulation peut, par un recouvrement partiel de la paroi des canaux de circulation constituée par les membranes, limiter l'efficacité de la pile à combustible en entravant les échanges à travers les membranes. Par ailleurs, pour obtenir de bonnes performances, if est important de pouvoir évacuer l'eau produite par les réactions d'oxydoréduction, afin d'éviter un engorgement des canaux de
distribution. Néanmoins, afin d'obtenir une bonne conduction des ions et/ou des électrons à travers la membrane, il est nécessaire que celle-ci soit suffisamment humidifiée. Ainsi, dans le but d'obtenir de meilleures performances et une meilleure fiabilité de la pile à combustible, il est souhaitable, d'une part, d'assurer une distribution homogène des réactifs anodique et cathodique sur la zone active des membranes et, d'autre part, d'évacuer l'eau produite par les réactions d'oxydoréduction, tout en conservant une humidification suffisante de la membrane. De plus, dans le but supplémentaire d'améliorer l'écoulement diphasique dans les canaux de distribution interne de la pile à combustible et de faciliter la remontée d'eau liquide dans les canaux où l'écoulement est ascendant, il est souhaitable de bien dimensionner les canaux de telles plaques bipolaires. Bien qu'une structure en serpentin avec des plaques en position verticale, traditionnellement utilisée pour les membranes échangeuses d'ions, ne présente aucun écoulement ascendant, cette structure n'est pas optimale du point de vue des performances de la pile. Pour cette raison, de nouvelles architectures de canaux sont régulièrement proposées afin d'y remédier. Dans le cas de géométrie plus complexes, des écoulements ascendants peuvent apparaître. H est alors important d'éviter l'engorgement en eau des canaux, et donc des électrodes, pour améliorer les performances du stack. Ce phénomène, qui est présent dans les parties finales des canaux, s'accentue aussi dès l'entrée des canaux si le diamètre et l'orientation du canal sont mal dimensionnés. Les documents US-6099984 et EP-1109241 proposent des plaques bipolaires pour pile à combustible avec des canaux de distribution en serpentin plus complexes présentant des écoulements ascendants. De telles structures génèrent des engorgements de canaux et détériorent les performances de la pile à combustible.
La présente invention a pour objet de proposer des plaques bipolaires pour pile à combustible présentant un écoulement de l'eau amélioré. La présente invention fournie une plaque bipolaire pour pile à combustible comprenant sur au moins l'une de ses faces au moins une cannelure susceptible de former avec la surface d'une électrode adjacente au moins un canal de distribution de fluide, ladite plaque bipolaire positionnée sensiblement verticalement comprenant des canaux sensiblement verticaux dans lesquels l'écoulement des fluides est ascendant, caractérisée en ce que le diamètre dudit canal ascendant est légèrement inférieur par rapport aux canaux ou l'écoulement est sensiblement descendant ou horizontal. De préférence, les plaques bipolaires selon l'invention présente encore les caractéristiques suivantes : - les deux faces de ladite plaque bipolaire (1 ) comprennent au moins une cannelure ; - les plaques bipolaires comprennent des moyens d'extraction des fluides ; - les moyens d'extraction des fluides comprennent au moins un élément poreux ; - les plaques bipolaires comprennent des moyens d'amenée des fluides ; et - les moyens d'amenée des fluides comprennent au moins un élément poreux. La présente invention sera mieux comprise à l'étude d'un mode de réalisation pris à titre d'exemple nullement limitatif et illustré par les dessins annexés, sur lesquels : - la figure 1 représente schématiquement des plaques bipolaires en position verticale avec une structure en serpentin ; et - la figure 2 représente une structure à spirale présentant des canaux verticaux avec des écoulement ascendant.
Bien que pouvant s'appliquer de façon générale à tous types de dispositifs à piles à combustible, l'invention sera plus particulièrement illustrée à titre d'exemple dans le cadre d'un véhicule automobile fonctionnant avec un système de traction à pile à combustible. Tel qu'il est représenté sur la figure 1 , le dispositif à pile à combustible est classiquement équipé de plaques bipolaires 1 . Ces plaques constituent un empilement dans lequel se produisent des réactions chimiques produisant des électrons et de l'eau qui doit être évacuée efficacement pour préserver le rendement de la pile à combustible. Pour améliorer les performances d'une pile à combustible, de nouvelles structures de plaques bipolaires 1 sont nécessaires et sont différentes de la structure classique en serpentin 2. Cependant, de telles structures améliorant l'homogénéité des réactifs sur la membrane peuvent présenter des canaux avec des écoulements ascendants 4. Le type d'écoulement dans les canaux ascendants 4 est différent de celui des canaux horizontaux 3 ou descendants 5. En effet, l'écoulement stratifié, favorable aux performances de la pile, s'y produit rarement. De plus, l'écoulement de l'eau liquide est parfois problématique : dans le cas, par exemple, de diamètres ou vitesses trop faibles, l'eau ne peut pas remonter les canaux. L'écoulement ascendant dans les canaux verticaux est de type annulaire pour des vitesses superficielles du gaz VSG relativement importantes, ce qui correspond sensiblement à des vitesses VSG supérieures à ~10m/s. Ce type d'écoulement, combiné à un écoulement stratifié dans les canaux horizontaux 3 et descendants 5, peut être satisfaisant pour la pile, dans des parties limitées de canaux. Pour obtenir ce résultat, il est possible de diminuer le diamètre des canaux des écoulements ascendants. A même débit, la vitesse des fluides augmente, ce qui permet de déplacer le type d'écoulement vers des zones à vitesse de gaz plus élevée dans la carte d'écoulement. Cette diminution du diamètre des canaux
ascendants permet de passer de la zone à écoulement « poches- bouchons » ou régime « bouillonnant » vers l'écoulement annulaire. En effet, l'écoulement annulaire dans ies canaux ascendants 4 est celui qui crée le moins de perturbations sur les performances de la pile, si il y a un écoulement stratifié dans les canaux horizontaux 3 ou descendants 5. Tel qu'il est représenté sur la figure 2, l'architecture des canaux d'une plaque bipolaire selon l'invention concerne plus particulièrement des plaques bipolaires 1 comportant une distribution des fluides par canaux contenant des parties de canaux avec des écoulements ascendants 4, c'est à dire sensiblement verticaux ou légèrement inclinés. Les canaux ascendants 4 ont une section inférieure à celles des canaux où l'écoulement est horizontal 3 ou descendant 5. Une telle structure permet d'éviter l'accumulation d'eau ou de bouchons crées par la difficulté de l'eau liquide à remonter dans de tels canaux ou l'écoulements ascendants. Les canaux de distribution sur la plaque bipolaire 1 sont tels que la section de passage du canal est plus petite là où l'écoulement est ascendant. Ceci implique une accélération du fluide lorsque cette section diminue. L'eau liquide pourra remonter les canaux verticaux 4. Lorsque les canaux redeviennent horizontaux 3 ou descendant 5, l'élargissement de la section fait ralentir le fluide qui retrouvera l'écoulement initial. Dans une variante de l'invention, le dessin de la plaque bipolaire 1 peut être effectué plus finement en étudiant les dimensions des canaux où les écoulements sont ascendant et descendant. La taille de la section des canaux pourra donc être différente selon la position et l'orientation de la plaque. Ainsi, la variation de la section pourra être graduelle le long du canal ou aux coudes, c'est à dire au passage d'un écoulement sensiblement ascendant à un écoulement horizontal. En diminuant la section des canaux, la vitesse d'écoulement des fluide est augmentée à même débit. La
présente invention favorise donc la remontée d'eau liquide dans les canaux par un écoulement annulaire, en évitant ainsi une accumulation d'eau dans le bas du canal, ou une remontée d'eau par un écoulement de type à poches ou à bulles. Enfin, la présente invention présente une structure à canaux verticaux plus étroits, ce qui permet d'occuper moins d'espace dans le sens vertical et d'obtenir des canaux horizontaux plus longs dans lesquels l'écoulement est de type stratifié, optimisant ainsi les performances de la plie.
The present invention relates to bipolar plates for fuel cells, in particular a bipolar plate for fuel cells of the ion exchange membrane type. Ion exchange membrane fuel cells generally comprise a stack of bipolar plates and membranes formed by a solid electrolyte, produced for example from polymeric material. The bipolar plates are provided with grooves forming gas circulation channels, one wall of which is formed by a membrane. Anodic and cathodic gases circulate in the circulation channels on either side of each membrane. Ion exchanges through the membranes lead on the anode side to an oxidation, for example an oxidation of hydrogen, and on the cathode side to a reduction of an oxidant such as oxygen, with production of electrons. The redox reaction, particularly in the case of oxygen and hydrogen, results in the production of water. The water thus produced propagates towards the circulation channels by electro-osmosis or by diffusion. Consequently, anodic and cathodic gases as well as liquid such as water are found in the anodic and cathodic circulation channels. The presence of water in the circulation channels can, by partially covering the wall of the circulation channels formed by the membranes, limit the efficiency of the fuel cell by hampering exchanges through the membranes. Furthermore, to obtain good performance, it is important to be able to evacuate the water produced by the redox reactions, in order to avoid blockage of the distribution. However, in order to obtain good conduction of ions and / or electrons through the membrane, it is necessary that the latter is sufficiently humidified. Thus, in order to obtain better performance and better reliability of the fuel cell, it is desirable, on the one hand, to ensure a homogeneous distribution of the anode and cathode reagents over the active area of the membranes and, d on the other hand, to evacuate the water produced by the redox reactions, while maintaining sufficient humidification of the membrane. In addition, with the additional aim of improving the two-phase flow in the internal distribution channels of the fuel cell and of facilitating the ascent of liquid water in the channels where the flow is ascending, it is desirable to properly size the channels of such bipolar plates. Although a serpentine structure with plates in an upright position, traditionally used for ion exchange membranes, has no upward flow, this structure is not optimal from the point of view of the performance of the cell. For this reason, new canal architectures are regularly proposed to remedy this. In the case of more complex geometry, ascending flows may appear. It is therefore important to avoid waterlogging of the channels, and therefore of the electrodes, to improve the performance of the stack. This phenomenon, which is present in the final parts of the channels, is also accentuated from the entry of the channels if the diameter and orientation of the channel are poorly dimensioned. Documents US-6099984 and EP-1109241 propose bipolar plates for fuel cells with more complex serpentine distribution channels having upward flows. Such structures generate blockages in the channels and deteriorate the performance of the fuel cell. The object of the present invention is to provide bipolar plates for a fuel cell having improved water flow. The present invention provides a bipolar plate for a fuel cell comprising on at least one of its faces at least one groove capable of forming with the surface of an adjacent electrode at least one fluid distribution channel, said bipolar plate positioned substantially vertically comprising substantially vertical channels in which the flow of fluids is ascending, characterized in that the diameter of said ascending channel is slightly smaller compared to the channels where the flow is substantially descending or horizontal. Preferably, the bipolar plates according to the invention also have the following characteristics: - the two faces of said bipolar plate (1) comprise at least one groove; - The bipolar plates include means for extracting fluids; - The means for extracting fluids comprise at least one porous element; - The bipolar plates include means for supplying fluids; and - the means for supplying fluids comprise at least one porous element. The present invention will be better understood from the study of an embodiment taken by way of nonlimiting example and illustrated by the appended drawings, in which: - Figure 1 schematically represents bipolar plates in vertical position with a structure in serpentine; and - Figure 2 shows a spiral structure having vertical channels with upward flow. Although generally applicable to all types of fuel cell devices, the invention will be more particularly illustrated by way of example in the context of a motor vehicle operating with a fuel cell traction system. As shown in FIG. 1, the fuel cell device is conventionally equipped with bipolar plates 1. These plates constitute a stack in which chemical reactions take place, producing electrons and water which must be removed efficiently to preserve the performance of the fuel cell. To improve the performance of a fuel cell, new bipolar plate structures 1 are necessary and are different from the conventional serpentine structure 2. However, such structures improving the homogeneity of the reagents on the membrane may have channels with ascending flows 4. The type of flow in the ascending channels 4 is different from that of the horizontal channels 3 or descending 5. In fact, the stratified flow, favorable to the performance of the stack, rarely occurs there. In addition, the flow of liquid water is sometimes problematic: in the case, for example, of too small diameters or speeds, the water cannot go back up the channels. The upward flow in the vertical channels is of annular type for relatively high surface velocities of the gas V S G, which corresponds substantially to VSG velocities greater than ~ 10 m / s. This type of flow, combined with a stratified flow in the horizontal 3 and downward 5 channels, can be satisfactory for the stack, in limited parts of channels. To obtain this result, it is possible to reduce the diameter of the channels of the upward flows. At the same flow rate, the speed of the fluids increases, which makes it possible to move the type of flow towards zones with higher gas speed in the flow map. This reduction in the diameter of the channels ascending allows you to pass from the flow zone "cork pockets" or "bubbling" regime towards the annular flow. Indeed, the annular flow in the ascending channels 4 is the one which creates the least disturbance on the performance of the stack, if there is a stratified flow in the horizontal channels 3 or descending 5. As shown in FIG. 2, the architecture of the channels of a bipolar plate according to the invention relates more particularly to bipolar plates 1 comprising a distribution of the fluids by channels containing parts of channels with upward flows 4, that is to say substantially vertical or slightly tilted. The ascending channels 4 have a smaller section than those of the channels where the flow is horizontal 3 or descending 5. Such a structure makes it possible to avoid the accumulation of water or of plugs created by the difficulty of the liquid water to rise. in such channels or upward flows. The distribution channels on the bipolar plate 1 are such that the passage section of the channel is smaller where the flow is upward. This implies an acceleration of the fluid when this section decreases. The liquid water can go up the vertical channels 4. When the channels become horizontal 3 or down 5 again, the widening of the section slows down the fluid which will regain the initial flow. In a variant of the invention, the design of the bipolar plate 1 can be carried out more finely by studying the dimensions of the channels where the flows are ascending and descending. The size of the channel section may therefore be different depending on the position and orientation of the plate. Thus, the variation of the section may be gradual along the channel or at the elbows, that is to say at the transition from a substantially ascending flow to a horizontal flow. By reducing the cross-section of the channels, the flow speed of the fluids is increased at the same flow rate. The The present invention therefore promotes the ascent of liquid water in the channels by an annular flow, thereby avoiding an accumulation of water at the bottom of the channel, or a rise of water by a flow of the bag or bubble type. Finally, the present invention presents a structure with narrower vertical channels, which makes it possible to occupy less space in the vertical direction and to obtain longer horizontal channels in which the flow is of the laminated type, thus optimizing the plaice performance.