[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005104094A1 - 符号化装置 - Google Patents

符号化装置 Download PDF

Info

Publication number
WO2005104094A1
WO2005104094A1 PCT/JP2005/007498 JP2005007498W WO2005104094A1 WO 2005104094 A1 WO2005104094 A1 WO 2005104094A1 JP 2005007498 W JP2005007498 W JP 2005007498W WO 2005104094 A1 WO2005104094 A1 WO 2005104094A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
tone
frequency region
component
band
Prior art date
Application number
PCT/JP2005/007498
Other languages
English (en)
French (fr)
Inventor
Kok Seng Chong
Sua Hong Neo
Naoya Tanaka
Takeshi Norimatsu
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/575,452 priority Critical patent/US7668711B2/en
Priority to JP2006512555A priority patent/JP4741476B2/ja
Publication of WO2005104094A1 publication Critical patent/WO2005104094A1/ja

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components

Definitions

  • the present invention relates to an encoding device that efficiently compresses and encodes the spectrum of an audio signal and decodes the compressed and encoded signal to generate a high-quality audio signal.
  • FIG. 1 is a diagram showing the configuration of a conventional encoder 200 and decoder 210 that perform general compression encoding and decoding processing of an audio signal.
  • Fig. 1 shows the most common compression method for audio signals.
  • the conventional encoder 200 includes a frame division unit 201, a spectrum conversion unit 202, and a statutory encoding unit 203.
  • the frame dividing unit 201 divides an input audio signal into a continuous number of frames having a constant sampling power in the time domain.
  • the vector converter 202 converts the sample of the input audio signal of each frame into a spectrum signal in the frequency domain.
  • the spectrum coding unit 203 quantizes a spectrum signal up to a certain frequency band, which is generally called a bandwidth, and outputs the result as code information (bit stream).
  • the output bit stream is sent to the decoder 210 via a transmission path or via a recording medium, for example.
  • the decoder 210 that has acquired the code information from the encoder 200 as an input bit stream includes a spectrum decoding unit 204, a spectrum inverse transform unit 205, and a frame combining unit 206.
  • the spectrum decoding unit 204 obtains a star signal by dequantizing the code information of the input bit stream.
  • FIG. 2 is a diagram illustrating an example of an audio signal in which a high-frequency signal is lost due to a conventional low-bit-rate encoding.
  • bit rate which is the code amount per unit time that can be used to represent an audio signal
  • the bandwidth 301 of the audio signal to be encoded also decreases.
  • the high-frequency component is less perceptually important than the low-frequency component (low-frequency signal). Will be reduced.
  • a high-frequency tone signal 303 and a high-frequency component 304 existing as a low-frequency component harmonic structure (her monitor) are missing.
  • the range 302 decoded by the conventional decoder is equal to the bandwidth 301 of the signal to be coded, and the audible sound quality is also reduced.
  • Band width extension technology (Band Width Extension) is a technology for compensating for the high frequency components lost due to the above-mentioned reasons in low bit rate coding.
  • ISOZIEC 14496-3 MPEG-4 There is an SBR (Spectral Band Replication) method defined as a standard method for Audio. This technology is also described in Patent Document 1.
  • FIG. 3 is a block diagram showing a configuration of a decoder 400 that decodes an encoded bit stream according to the SBR method.
  • the decoder 400 is a decoder having a function of extending a band by the SBR method, and includes a bit stream separation unit 401, a core audio decoding unit 402, an analysis sub-band filter unit 403, a band extension unit 404, and a synthesis sub-band filter unit. 405.
  • an input bit stream is converted by a bit stream separation section 401 into a bit stream of a core audio section, which is obtained by encoding a low-band audio stereo signal, and a low-order stream encoded by the core audio section. It is separated into a bit stream of a band extension unit obtained by encoding band extension information for generating a signal of a high band using the signal of the band unit.
  • the core audio decoding unit 402 decodes the bit stream of the core audio unit and generates a low-frequency component time signal.
  • any existing decoding unit may be used. For example, in the case of MPEG-4 Audio, the AAC system which is also the MPEG-4 standard is used.
  • the decoded low-band component signal is divided into M-channel sub-band signals in the analysis sub-band filter unit 403. Subsequent bandwidth extension processing This is performed on a sub-band signal (low-frequency sub-band signal).
  • the band extension unit 404 processes the low band sub-band signal using the band extension information included in the band extension unit in the bit stream, and generates a new high band sub-band signal representing the signal of the high band component. .
  • the generated high-band sub-band signal is input to the synthesis sub-band filter unit 405 as an N-channel sub-band signal together with the low-frequency sub-band signal, and becomes an output audio signal through a synthesis process.
  • the output audio signal of the synthesis filter M to the synthesis filter N-1 is a signal whose band has been extended.
  • the subband signal used here can be regarded as a representation of the audio signal, which is a time signal, by dividing the subband in the frequency direction and the two-dimensional arrangement of time samples included in each subband.
  • FIG. 4 is a diagram showing a process in which the band extending section 404 shown in FIG. 3 processes the low-band sub-band signal to generate the high-band sub-band signal.
  • the copied high band sub-band signal 501 is generated by copying the low band sub-band signal 502 to the high band side.
  • the inverse filtering process 503 suppresses the tone characteristics of the low-frequency sub-band signal.
  • the degree of suppression of the tone property is controlled by a value called a chirp factor 504 (corresponding to the “adjustment coefficient” in the claims).
  • a group consisting of a plurality of consecutive subbands and the ability to apply the same chirp factor to the group is referred to as a chirp factor band hereinafter.
  • a typical D-order inverse filter is shown in the following equation.
  • X high (t, k) X low (t, p (k)) + Bja, X low (t- i, p (k))
  • Xhigh (t, k) is a generated high band subband signal
  • Xlow (t, k) is a low band subband signal
  • t is a time sample position
  • k is a subband number
  • ai is The Xlow (t, k) force is also a linear prediction coefficient calculated by linear prediction
  • p (k) is a mapping function for providing a low-band subband signal corresponding to the kth high-band subband signal
  • Bj Is the chirp factor corresponding to the chirp factor band bj set for the high band subband signal Xhigh (t, k).
  • the technical details of the inverse filtering and the method of determining the mapping function p (k) are not included in the content disclosed in the present invention, and therefore, description thereof will be omitted.
  • the grouping information of the chirp factor bands and the chirp factor for each chirp factor band are encoded, transmitted in a bit stream.
  • the envelope shape (roughly represented signal energy distribution) of the generated high-frequency sub-band signal is adjusted so as to have frequency characteristics similar to the high-frequency sub-band signal of the original sound.
  • Patent Document 2 is an example showing such an envelope shape adjustment method.
  • the high band sub-band signal which is a two-dimensional representation of the time Z frequency, is first divided into “time segments” in the time direction, and then into “frequency bands” in the frequency direction.
  • FIG. 5 shows this high frequency sub-band signal division processing.
  • FIG. 5 is a diagram showing an example of a dividing method for dividing a high-frequency sub-band signal into a time segment and a frequency band.
  • Arrow 601 indicates the division of the high band subband signal in the time direction
  • arrow 602 indicates the division in the frequency direction.
  • the high band sub-band signals in each region (referred to as "energy band") divided in the time and frequency directions are scaled to correspond to the energy value given for each region.
  • the time used for the envelope shape adjustment The division information in the Z frequency direction and the energy value for each of the divided areas are encoded in the encoder 200, incorporated into a bit stream, and transmitted.
  • the tone Z noise ratio of the generated high band sub-band signal also enhances the expressiveness of the generated signal, realizing sound quality closer to the input signal. It is an important factor to do. If the generated high frequency sub-band signal partially lacks noise components, it is necessary to add artificial noise components to compensate for this. Similarly, when the tone component is partially insufficient, an artificial tone component (sine wave) is added. The addition of noise components is performed on an area called “noise band”, and the addition of sine signals is performed on an area called “tone band”.
  • FIGS. 6 (a) to 6 (c) show an example of division of a high-frequency sub-band signal obtained when the high-frequency area divided as shown in FIG.
  • FIG. 5 is grouped according to energy, noise and tone.
  • FIG. FIGS. 6A to 6C show the relationship between the energy band, the noise band, and the tone band.
  • the division of the time-frequency space in Fig. 6 (a) It shows a region where the same energy value is given for adjusting the envelope shape of the subband signal.
  • the classification of noise band and the classification of chirp factor band are common.
  • the sub-band 704 to which the sine-wave tone signal is added in FIG. For the subband at The division information of the noise band and the tone band, the amount of noise added to each noise band, and the presence / absence of the power-generating signal in each tone band are encoded by the encoder, and are incorporated into the bit stream and transmitted. .
  • B (t, k), E (t, k), Q (t, k) and H (t, k) are the time in the time Z A flag indicating the chirp factor, the energy value, the ratio of the noise component in the signal, and the presence or absence of the power gain signal with respect to the signal represented by the sample t and the frequency band k.
  • E (t, k) Ei for all signal points (samples) indicated by (t, k) included in a certain energy band ei.
  • FIG. 7 is a table showing, in the same energy band, an energy ratio between a high-frequency sub-band signal whose low-frequency sub-band signal power is also duplicated and a noise component or a tone component artificially added. The energy value for each of the high-frequency sub-band signal copied from the low-frequency sub-band signal, the artificially added noise component, and the artificially-added tone component is calculated as shown in FIG.
  • the important points in this energy value calculation are the three components of the high-frequency sub-band signal copied from the low-frequency sub-band signal, an artificially added noise component, and an artificially added tone component.
  • the sum of the energy values is always equal to E (t, k).
  • noise The component ratio Q (t, k) is responsible for separating the total signal energy E (t, k) into two components: a duplicated high-band subband signal and an artificially added noise or tone component. Play, will be.
  • the parameters necessary for the band extension processing described above must be appropriately set in the encoder in order to generate a grammatically correct bit stream with high sound quality.
  • a method of analyzing the input signal expressed in time-Z frequency is required. If these information are not calculated correctly, for example, if the proportion of the noise component is too high, the reproduced sound will be noisy, and if the addition of inappropriate tone components or inverse filtering will result in a muffled sound quality, In the worst case, the sound will be distorted.
  • Patent Document 3 discloses an example of a method of calculating a chirp factor. According to this method, the tone Z noise ratio of the high frequency signal of the input signal is compared with the tone Z noise ratio of the signal generated by duplicating the low frequency signal in the high frequency range, and a simple mathematical expression is obtained. By fitting, the chirp factor can be calculated.
  • Patent Document 4 discloses an example of a method of calculating the ratio of noise components. According to this method, an input signal, which is a time signal, is divided into time frames and converted into spectral coefficients by Fourier transform.
  • a pointer called a “peak follower” or “dip follower” is set to represent the peaks and valleys of the spectral coefficients, respectively.
  • the ratio of the noise component is determined from the spectral energy value of the noise component that is derived.
  • Patent Document 1 International Patent Publication No. W098Z57436
  • Patent Document 2 International Patent Publication WO01Z26095
  • Patent Document 3 U.S. Patent Publication US2002Z0087304
  • Patent Document 4 International Patent Publication WO00Z45379
  • the tone Z noise ratio of the high band signal and the low band signal When the chirp factor is calculated by applying the tone-z noise ratio of the duplicated high-frequency signal to a simple mathematical formula, the tone-Z noise ratio of the high-frequency signal of the original sound is extremely low in the calculation of the chirp factor.
  • the tone / noise ratio of the high-frequency signal duplicated from the low-frequency signal is very low, an appropriate chirp factor may not be calculated. As a result, there is a problem that sound quality is reduced as a result of using an inappropriate chirp factor.
  • an object of the present invention is to provide a coding device capable of obtaining an appropriate chirp factor without using a process having a high calculation load such as a Fourier transform. .
  • an encoding device provides information for generating a signal belonging to a high frequency domain by copying a signal belonging to a low frequency domain in a divided time frequency domain.
  • Tone z noise ratio calculating means for calculating a tone z noise ratio and a tone z noise ratio of the signal in the low frequency region replicated in the high frequency region using a linear prediction process; and An adjustment coefficient calculation for calculating an adjustment coefficient for adjusting the tone property of the signal in the low frequency region to be replicated in the high frequency region, based on the tone Z noise ratio calculated for the signals in the region and the region And encoding means for generating an encoded signal including the calculated adjustment coefficient.
  • a more appropriate chirp factor can be calculated and applied by multidimensionally evaluating the tone Z noise ratio of the input signal and the duplicated signal and the appropriate chirp factor. . Therefore, the quality of the reproduced sound can be improved.
  • appropriate information can be obtained with a smaller processing amount. .
  • FIG. 1 is a diagram showing a configuration of a conventional encoder and decoder that perform general compression encoding and decoding processing of an audio signal.
  • FIG. 2 is a diagram showing an example of an audio signal in which a high-frequency signal has been lost due to a conventional low bit rate encoding.
  • FIG. 3 is a block diagram showing a configuration of a conventional decoder that decodes an encoded bit stream according to the SBR method.
  • FIG. 4 is a diagram showing a process in which the band extending section shown in FIG. 3 processes a low-band sub-band signal to generate a high-band sub-band signal.
  • FIG. 5 is a diagram showing an example of a dividing method for dividing a high-frequency sub-band signal into a time segment and a frequency band.
  • FIGS. 6 (a) to 6 (c) show high-frequency sub-bands obtained when the high-frequency region divided as shown in FIG. 5 is grouped according to energy, noise and tone.
  • FIG. 3 is a diagram illustrating an example of signal division.
  • FIG. 7 is a table showing an energy ratio between a high-frequency sub-band signal copied from a low-frequency sub-band signal and an artificially added noise component or tone component in the same energy band.
  • FIG. 8 is a block diagram showing a configuration of an encoder according to the present embodiment.
  • FIG. 9 is a block diagram showing a configuration of a band extension information encoding unit shown in FIG. 8.
  • FIG. 10 shows the necessity of suppressing the tone characteristic of the low band sub-band signal based on the tone Z noise ratio of the input high band sub-band signal and the tone Z noise ratio of the low band sub-band signal.
  • FIG. 11 illustrates the relationship between the calculated chirp factor Bi and the two-tone Z noise ratio of the low-frequency sub-band signal and the input high-frequency sub-band signal.
  • FIGS. 12 (a) to 12 (c) compare the energy of adjacent subband signals
  • FIG. 9 is a diagram showing an example of determining the position of a tone component in a command.
  • FIG. 13 is a table for determining whether or not there is a tone component in a subband by comparing the energy of adjacent subbands.
  • FIG. 14 is a flowchart showing an operation of a chirp factor calculation unit shown in FIG.
  • FIG. 15 is a flowchart showing an operation of a tone signal addition determining section shown in FIG.
  • the low-frequency sub-band signal is copied to the high-frequency sub-band, and A case where a high-frequency sub-band signal is generated by superimposing a signal or noise will be described.
  • FIG. 8 is a block diagram showing a configuration of encoder 100 according to the present embodiment.
  • the encoder according to the present embodiment analyzes the input high-frequency sub-band signal by a simple method without using a calculation method with a high load such as Fourier transform, and outputs the low-frequency sub-band signal and the high-frequency sub-band signal.
  • This is an encoder that encodes band extension information for generating RBs, and includes a core audio encoding unit 901, an analysis subband filter 902, a band extension information encoding unit 903, and a bit stream multiplexing unit 904.
  • the analysis subband filter 902 includes N sets of an analysis filter and a 1 / N downsampling unit, and divides an input audio signal into N-channel subband signals.
  • band extension information encoding section 903 extracts and encodes information necessary for subband signal power band extension processing. The configuration and operation of the band extension information coding unit 903 will be described later in detail.
  • core audio encoding section 901 extracts and encodes only a signal representing a low-frequency component of the input signal.
  • the coding result of the low-frequency component and the coding result of the band extension information are multiplexed in a bitstream multiplexing unit 904 to generate an output bitstream.
  • FIG. 9 is a block diagram showing a configuration of band extension information coding section 903 shown in FIG.
  • Band extension information encoding section 903 of the present embodiment uses a calculation with a high processing load such as Fourier transform for band extension information for generating a high band sub-band signal by duplicating a low band sub-band signal.
  • the processing unit includes a region dividing unit 101, an energy calculating unit 103, a chirp factor calculating unit 104, a tone signal addition determining unit 105, and a noise component calculating unit 106.
  • the chirp factor calculator 104 includes a signal component calculator 111 and a component energy calculator 112. Further, the noise component calculation unit 106 includes a component energy calculation unit 113.
  • the sub-band signal input to the band extension information coding unit 903 is In the dividing unit 101, the high frequency part is divided into a plurality of areas.
  • the space representing the subband signal is divided into the time direction and the frequency direction, and the energy value calculation, the chirp factor calculation, the noise component calculation, and the tone component calculation are performed. Group doodle for each of the.
  • the area division information ei, bi, qi, hi determined for each of the energy value calculation, the chirp factor calculation, the noise component calculation, and the tone component calculation are output to the bit stream multiplexing unit 904.
  • a method of dividing the area a predetermined fixed dividing method may be used, or the input subband signals may be divided and adaptively divided so that similar signals fall in the same area.
  • the determined area division information is also coded and transmitted by the decoder in order to perform the same area division on the sub-band signal represented by the time Z frequency.
  • the subsequent processes of energy calculation, chirp factor calculation, tone component calculation, and noise component calculation are performed in this order on the corresponding areas.
  • the energy value Ei in the energy band ei may be calculated by the energy calculation unit 103 for the average energy of the input high frequency sub-band signal for each energy band ei.
  • FIG. 14 is a flowchart showing the operation of the chirp factor calculation unit 104.
  • the strength of the inverse filtering process for the low-band subband signal is duplicated so that the tone / noise ratio q_lo (i) of the duplicate signal approaches the tone-Z noise ratio q_hi (i) of the high-frequency signal of the input signal. It depends on the degree to which the tone characteristics of the low-frequency signal should be suppressed. The extent to which the tone of the low-frequency signal should be suppressed is controlled by the chirp factor calculated by the chirp factor calculating unit 104.
  • the basis of the method disclosed in the present invention is that despite the low tone Z noise ratio q_hi (i) of the input high band subband signal, the tone Z noise ratio q_lo ( When i) is high, the tone characteristic of the low band sub-band signal is suppressed.
  • FIG. 10 shows the necessity of suppressing the tone characteristic of the low band sub-band signal based on the tone Z noise ratio of the input high band sub-band signal and the tone Z noise ratio of the low band sub-band signal.
  • the tone Z noise ratio qjo (i) or q_hi (i) When the tone Z noise ratio qjo (i) or q_hi (i) is large in both the low band subband signal and the high band subband signal, the tone / noise ratio q_lo (i) or q_hi (i) becomes This indicates that the subband signal has high tone characteristics. Conversely, if the tone / noise ratio qjo (i) or q_hi (i) is small, then the tone Z noise ratio qJo (i) or q_hi (i) will result in a subband signal with poor tonality (i.e., High noise).
  • the low-frequency sub-band signal having a high tone characteristic (q_lo is large) is converted into the high-frequency sub-band signal of the original high-frequency sub-band signal having a low tone characteristic (q_hi is small). It can be seen that it is necessary to suppress the tone characteristics of the low-frequency sub-band signal when replicating the data in the subband.
  • the tone Z noise ratio of the input high band sub-band signal can be calculated by using a linear prediction process. Assuming that the high-frequency subband signal is represented by S (t, k), this signal can be separated into tone components St (t, k) and noise components Sn (t, k) by using linear prediction. .
  • the signal component calculation unit 111 applies the linear prediction to all the high frequency sub-bands k included in the chirp factor band bi, thereby converting the high frequency sub-band signal S (t, k) into the tone component St. (t, k) and the noise component Sn (t, k).
  • the total energy of the tone components is included in this chirp factor band.
  • T (i) is the number of samples in the time direction of the target chirp factor band bi.
  • the chirp factor calculation unit 104 calculates the tone Z noise ratio q_hi (i) of the input high-frequency subband signal in the chirp factor band bi by: Calculate using the formula (S1401)
  • the total energy of the tone component Sn 2 (t, k) and the total energy of the noise component Sn, k) can be calculated as follows using the linear prediction processing.
  • the component energy calculation unit 112 calculates the total energy of the tone component St 2 (t, k) of the high frequency sub-band signal in the chirp factor band bi and the energy of the noise component Sn 2 (t, k). Calculate the sum.
  • the subband signal power of the highband subband k, the lowband subband signal power represented by the mapping function P (k) is generated.
  • the data calculation unit 104 calculates the tone Z noise ratio qJoG) of the copied low-frequency sub-band signal from the following equation ( 2 ) (S1402).
  • the total energy of the tone component St 2 (t, p (k)) of the low-band sub-band signal copied to the high-frequency sub-band k, and the noise components Sn, p (k )) Is calculated as the sum of the energy of the tone component St 2 (t, k) of the input high frequency sub-band signal in the high frequency sub-band k and the noise component Sn, k) of the input high frequency sub-band signal. It is self-evident that it can be calculated using linear prediction processing in the same way as the energy total.
  • the tone Z noise ratio of the input high-frequency sub-band signal and the low-frequency sub-band signal copied to the high-frequency sub-band calculated as described above is evaluated by evaluating the magnitude relationship between the two. , The necessary degree of tone suppression can be determined.
  • the tone Z noise ratio q_hi (i) of the input high-frequency sub-band signal is smaller than the first threshold Tr (Yes in S1403), and the low-frequency sub-band signal to be copied is If the tone / noise ratio q_lo (i) is larger than the second threshold value Tr2 (Yes in S1404), the chirp factor calculation unit 104 determines that tone property suppression processing is necessary (S1405). Also, the degree of suppression of tone characteristics, that is, the chirp factor Bi is obtained as in the following equation (S1406).
  • Bi min (Bi, 1), which is the second equation of Equation 7, indicates that the smaller of Bi and “1”, which also obtained the first equation force of Equation 7, is selected.
  • FIG. 11 illustrates the relationship between the calculated chirp factor Bi and the two-tone Z-noise ratio of the low-frequency sub-band signal and the input high-frequency sub-band signal.
  • the chirp factor Bi increases as q_lo (i) increases, and conversely, decreases as q_hi (i) increases. That is, the chirp factor Bi increases as the tone of the low-band sub-band signal increases, and conversely, decreases as the tone of the high-band sub-band signal increases.
  • the chirp factor calculation unit 104 determines that the tone suppression processing is not necessary, and thus the chirp factor is set to “0”. Become. As described above, the calculated capture factor Bi is mapped to the high frequency sub-band included in the relevant capture factor band, and is represented as B (t, k). The process of calculating the chirp factor is repeated until the chirp factor is calculated for all the chirp factor bands. Each calculated chirp factor is encoded, and encoded information is sent to the bitstream multiplexing unit 107.
  • Equation 7 shown in the above embodiment is an empirical equation, and shows one of the most preferable examples for calculating the chirp factor. Therefore, the formula for calculating the chirp factor is not limited to this.
  • FIG. 15 is a flowchart showing the operation of tone signal addition determining section 105 shown in FIG.
  • Whether or not it is necessary to add an artificial tone signal to each of the tone bands hi described above is determined by duplicating the tone Z noise ratio q_hi of the high band sub-band signal corresponding to the target tone band. Can be determined based on whether or not the tone Z noise ratio qJo of the low-frequency sub-band signal exceeds a predetermined value.
  • two additional conditions are required for adding a tone signal.
  • One is that the tone Z noise ratio of the high band sub-band signal is an absolutely large value.
  • the tone Z noise ratio of the duplicated low-band subband signal is not absolutely large (rather than relatively high compared to the high-band subband signal). If the tone Z noise ratio of the low-band sub-band signal is very large, that is, if the signal has a very strong tone, the tone of the high-band sub-band signal will It is considered that there is no need to add a new artificial tone signal because it is maintained by the included tone signal components. Note that the tone Z noise ratio of the low-frequency sub-band signal to be copied is affected by the tone suppression processing described above, and it is necessary to consider the influence.
  • tone signal addition determination section 105 calculates the tone Z noise ratio of the high band sub-band signal and the copied low band sub-band signal (S1501). At this time, the tone component St (t, k) and the noise component Sn (t, k) calculated by the chirp factor calculation unit 104 can be used for the tone / noise ratio of the high band sub-band signal.
  • the processing is different for the tone Z noise ratio of the copied low band sub-band signal because the effect of the tone suppression processing needs to be considered. Since the energy reduction of the tone component due to the tone suppression process can be approximated by multiplying by approximately (1 ⁇ B (t, k)), the tone Z noise ratio of the low-frequency subband signal is calculated as follows: Yes (S1502 [0048] [Equation 9] (t, k))
  • tone signal addition determining section 105 determines that it is necessary to add an artificial tone signal to the tone band. (S1503-S1505). That is,
  • Tr4, Tr5, Tr6 are predetermined thresholds.
  • Tone signal addition determining section 105 makes this determination for all tone bands hi, and sends the information to bit stream multiplexing section 107 as to whether or not a tone signal has been added in each tone band.
  • bit stream multiplexing section 107 Only “information on whether or not a tone signal is added” is sent to bit stream multiplexing section 107, but “information indicating a frequency position in a tone band to which a tone signal is added” is also included. May be sent to
  • the tone signal addition determining unit 105 another configuration can be used.
  • an artificial tone signal is added only when there is a clear tone component in the input high-band subband signal, regardless of the shape of the low-band subband signal.
  • the detection of apparent tone components is performed by judging whether or not there is a prominently high energy subband signal among a plurality of relatively low energy subband signals.
  • FIGS. 12 (a) to 12 (c) are diagrams showing an example in which the energy of adjacent subband signals is compared to determine the position of a tone component in a tone band. That is, FIGS. 12 (a) to 12 (c) It represents three patterns that serve as criteria for tone component determination. The three patterns are when the tone component is (1) near the center of the subband frequency, (2) when it is near the upper frequency limit of the subband, and (3) when it is near the lower frequency limit of the subband. is there.
  • each force indicates that a tone component exists in a certain subband k.
  • the tone component of the subband energy 1101 is the center frequency of the subband k. This shows a case in which it exists in the vicinity.
  • FIG. 12B shows a case where the tone component of the sub-band energy 1102 exists near the upper limit frequency of the sub-band k. In this case, a part of the signal energy leaks to the adjacent sub-band due to the characteristics of the general sub-band filter, so that the energy of the sub-band (k + 1) also increases.
  • FIG. 12 (c) shows a case where the tone component of the subband energy 1103 exists near the lower limit frequency of the subband k. In this case, the energy of the subband (k-1) increases.
  • FIG. 13 is a table for determining whether or not there is a tone component in the subband by comparing the energy of adjacent subbands. Based on such a phenomenon, whether or not an obvious tone component exists in subband k can be determined by the relational expression shown in the table of FIG.
  • Ethres and Qthres indicate predetermined energy and tone Z noise ratio thresholds
  • E (k) is an energy value calculated by the following equation.
  • Tone signal addition determination section 105 makes a determination based on the three conditions shown in Fig. 13 for all high band subbands k included in tone band hi, and determines at least one high band subband in at least one high band subband. If the two conditions are satisfied, the tone band is determined to be a signal having a clear tone characteristic, and a flag for adding an artificial tone signal is set ( (SI 506 in Figure 15). This determination is made for all tone bands hi, and the flag information indicating whether or not the determined ability to add an artificial tone signal is sent to bit stream multiplexing section 107. In this example, the same value is used as the determination threshold value for the target subband k and its adjacent subbands, but different threshold values may be used for each subband. good.
  • the logical operation of “AND” and “OR” for integrating the determination results in each subband can be selected and used based on the correlation with the set threshold. Also, in the evaluation of tone characteristics, consider the case where tone components are spread over a relatively wide range, and evaluate the tone Z noise ratio of several subbands above and below the target subband k. May be.
  • the noise component calculation unit 106 will be described. If the sum of the noise components contained in the duplicated signal is almost equal to the sum of the noise components contained in the input signal, the sound texture expressed by the noise components of the input signal and the duplicated signal will be close. . Further, since the noise component is generally a signal having a wide band in frequency, it should be considered in a band covering a wider band (referred to as a noise band) than the tone band described above. Good. Therefore, since a certain noise band includes a plurality of tone bands, to calculate a correct noise component, the noise component in the tone band to which the tone signal is added and the noise component in the tone band to which the tone signal is not added are calculated. Both noise components must be considered.
  • the noise component such that the total value of the noise components composed of these two components is equal to the total value of the noise components in the high-frequency sub-band of the input signal The amount is determined. In this process, it is necessary to consider the influence of the tone suppression process described above.
  • the sum of the noise components of the input high-frequency sub-band signal is calculated by the following equation.
  • a subband signal to be copied is represented as Qi, where the noise component amount in noise band qi is Qi.
  • a noise component derived from a tone band signal to which a tone signal is added is represented by the following equation.
  • TB (i) represents a set of tone bands to which a tone is added, which is included in the noise band qi.
  • r (t, k) is the ratio of the noise component contained in the copied high-frequency subband signal, and takes into account the effect of the tone suppression processing performed on St (t, p (k), and expressed.
  • the amount of noise component caused by the tone band signal to which the tone signal is not added is represented by the following equation.
  • NTB (i) represents a set of tone bands to which no tone signal is added, which is included in noise band qi.
  • TB (i) U NTB) is all tone bands included in the noise band qi.
  • the noise band qi In order for the sum of all noise components included in the copied subband signal to be equal to the noise component of the corresponding input high-frequency subband signal, the following equation must be satisfied.
  • the noise component amount QU can be calculated as in the following equation.
  • the process of calculating the noise component amount is performed for all the noise bands, and the calculated noise component amount QU is encoded and sent to the bit stream multiplexing unit 107.
  • the component energy calculator 113 like the component energy calculator 112 in the chirp factor calculator 104, calculates the energy sum of the tone component St 2 (t, k) of the high-frequency sub-band signal in the noise band qi. , And the total energy of the noise components Sn, k) are calculated.
  • the component energy calculation unit 113 of the noise component calculation unit 106 performs processing by the component energy calculation unit 112 of the chirp factor calculation unit 104 as well as addition of the chirp noise and the tone signal in the same noise band. Since the noise component is corrected in consideration of the increase / decrease of the tone component, a noise component closer to the original sound can be calculated.
  • the noise component amount Qi In the calculation of the noise component amount Qi., It is possible to omit the noise component derived from the tone band to which the tone signal is added, and to reduce the amount of calculation required for the calculation. This is because, in the tone band to which the tone signal is added, the proportion of the tone component in the signal is very large, so even if a relatively small noise component is set to “0”, the effect on the calculation result is small. .
  • the formula for calculating Qi. In this case is expressed by the following formula.
  • the present invention is a means useful for improving the quality of a reproduced audio signal in an apparatus for efficiently encoding and decoding an audio signal by separating the spectrum of the audio signal into a tone component and a noise component. That is, the present invention is useful as an encoder that calculates information for extending the bandwidth of an audio signal in a decoder with a method that requires less calculation load, more accurately, and encodes the information together with the low-frequency signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

 適切なチャープファクタおよびノイズ成分量を、少ない処理量で算出する。  入力されたサブバンド信号は、領域分割部101において、複数の領域に分割される。領域の分割は、エネルギ値算出、チャープファクタ算出、ノイズ成分算出およびトーン成分算出のそれぞれに対して行い、決定された領域分割情報ei、bi、qi、hiが出力される。エネルギ算出、チャープファクタ算出、トーン成分算出およびノイズ成分算出の各処理は、それぞれに対応する領域に対して順次行なわれる。線形予測処理を用いることにより、少ない演算量で精度の高いパラメータを得ることができる。                                                                                 

Description

符号化装置
技術分野
[0001] 本発明は、オーディオ信号のスペクトルを効率的に圧縮符号ィ匕し、圧縮符号化され た信号を復号化して高音質のオーディオ信号を生成するための符号化装置に関す る。
背景技術
[0002] オーディオ符号化の目的は、ディジタルィ匕されたオーディオ信号をできるだけ効率 的に圧縮、伝送し、デコーダにおける復号ィ匕処理によって、できるだけ高い品質のォ 一ディォ信号を再生することにある。図 1は、オーディオ信号の一般的な圧縮符号ィ匕 処理及び復号ィ匕処理を行なう従来のエンコーダ 200とデコーダ 210の構成を示す図 である。上記の一例として、オーディオ信号のもっとも一般的な圧縮方法を図 1に示 す。従来のエンコーダ 200は、フレーム分割部 201、スペクトル変換部 202及びスぺ タトル符号ィ匕部 203を備える。フレーム分割部 201は、時間領域において、入力され たオーディオ信号を、連続する一定個数のサンプル力もなるフレームに分割する。ス ベクトル変換部 202は、それぞれのフレームの入力オーディオ信号のサンプルを周 波数領域のスペクトル信号に変換する。スペクトル符号ィ匕部 203は、一般的に帯域 幅と呼ばれる、ある周波数帯域までのスペクトル信号を量子化し、その結果を符号情 報 (ビットストリーム)として出力する。出力されたビットストリームは、例えば、伝送路を 介して、又は、記録媒体を介してデコーダ 210に送られる。一方、エンコーダ 200か らの符号情報を入力ビットストリームとして取得したデコーダ 210は、スペクトル復号 化部 204、スペクトル逆変換部 205及びフレーム結合部 206を備える。スペクトル復 号ィ匕部 204は、入力ビットストリームの符号情報を逆量子化することによって、スぺタト ル信号を得る。得られたスペクトル信号は、スペクトル逆変換部 205において時間信 号に変換される。これにより、フレーム単位のオーディオ信号が生成される。各フレー ムのオーディオ信号は、フレーム結合部 206において結合され、出力オーディオ信 号となる。 [0003] 図 2は、従来の低ビットレートの符号ィ匕により、高い周波数の信号が欠落したオーデ ィォ信号の一例を示す図である。ここで、オーディオ信号を表すために使用できる単 位時間当たりの符号量であるビットレートが低下すると、符号化されるオーディオ信号 の帯域幅 301も減少する。この時、高域成分 (高い周波数の信号)は、低域成分 (低 い周波数の信号)と比較して聴覚的な重要度が低いため、高域成分から先に、符号 化される帯域が削減されることになる。結果として、低ビットレートにおいては、図 2に 示すように、高い周波数のトーン信号 303や、低域成分の調波構造 (ハーモニタス)と して存在していた高域成分 304が欠落する。通常、従来のデコーダで復号される範 囲 302は、符号化される信号の帯域幅 301に等しぐそれに伴い、聴感的な音質も 低下する。 帯域拡張技術 (Band Width Extension)は、低ビットレートの符号 化において、上記のような理由で失われた高域成分を補償する技術であり、その代 表例として、 ISOZIEC 14496- 3 MPEG— 4 Audioとして標準方式として定め られた SBR (Spectral Band Replication)方式がある。当該技術については、特 許文献 1にもその記載がある。
[0004] 本発明の従来技術の一例として SBR方式を適用する場合を用いる。図 3は、 SBR 方式による符号化ビットストリームを復号化するデコーダ 400の構成を示すブロック図 である。デコーダ 400は、 SBR方式により帯域を拡張する機能を備えたデコーダであ つて、ビットストリーム分離部 401、コアオーディオ復号部 402、分析サブバンドフィル タ部 403、帯域拡張部 404及び合成サブバンドフィルタ部 405を備える。まず、入力 ビットストリームは、ビットストリーム分離部 401において、低域部のオーディオスぺタト ル信号を符号ィ匕したものであるコアオーディオ部のビットストリームと、コアオーディオ 部に符号化されている低域部の信号を用いて高域部の信号を生成するための帯域 拡張情報を符号ィ匕したものである帯域拡張部のビットストリームとに分離される。コア オーディオ復号部 402は、コアオーディオ部のビットストリームを復号し、低域成分の 時間信号を生成する。コアオーディオ復号部 402としては、既存のいかなる復号ィ匕部 を用いても良いが、例えば MPEG— 4 Audioの場合、同じく MPEG— 4規格である AAC方式を用いる。復号された低域成分の信号は、分析サブバンドフィルタ部 403 において、 Mチャネルのサブバンド信号に分割される。以降の帯域拡張処理は、この サブバンド信号 (低域サブバンド信号)に対して行なわれる。帯域拡張部 404は、ビッ トストリーム中の帯域拡張部に含まれる帯域拡張情報を用いて、低域サブバンド信号 を加工し、新たに高域成分の信号を表す高域サブバンド信号を生成する。生成され た高域サブバンド信号は、低域サブバンド信号と合わせて Nチャネルのサブバンド信 号として、合成サブバンドフィルタ部 405に入力され、合成処理を経て出力オーディ ォ信号となる。同図では、合成フィルタ M〜合成フィルタ N-1の出力オーディオ信号 が帯域拡張された信号を示している。なお、ここで用いられるサブバンド信号は、時 間信号であるオーディオ信号を、周波数方向へのサブバンド分割と各サブバンドに 含まれる時間サンプルの 2次元配置により表現したものと見なせる。
[0005] 図 4は、図 3に示した帯域拡張部 404が低域サブバンド信号を加工して高域サブバ ンド信号を生成する処理を示す図である。複製された高域サブバンド信号 501は、低 域サブバンド信号 502を高域側に複製することによって生成される。この複製処理の 過程においては、逆フィルタリング処理 503により、低域サブバンド信号のトーン性が 抑制される。トーン性の抑制度合いは、チヤープファクタ 504と呼ばれる値 (請求項で いう「調整係数」に相当)によって制御される。複数の連続するサブバンドをグループ 化し、そのグループに対して、同一のチヤープファクタを適用する力 以降そのダル ープをチヤープファクタバンドと呼ぶ。ここで、典型的な D次の逆フィルタを次式に示 す。
[0006] [数 1]
Xhigh(t,k) = Xlow(t,p(k))+ Bj a , Xlow(t- i,p(k))
[0007] ここで、 Xhigh(t,k)は、生成される高域サブバンド信号、 Xlow(t,k)は低域サブバンド 信号、 tは時間サンプル位置、 kはサブバンド番号、 aiは Xlow(t,k)力も線形予測によつ て算出される線形予測係数、 p(k)は、 k番目の高域サブバンド信号に対応する低域サ ブバンド信号を与えるためのマッピング関数、 Bjは高域サブバンド信号 Xhigh(t,k)に 対して設定されるチヤープファクタバンド bjに対応するチヤープファクタである。
[0008] 逆フィルタリングの技術的な詳細および、マッピング関数 p(k)を決定する方法につ いては、本発明で開示する内容には含まれないので、その説明を省略する。また、チ ヤープファクタ Bjについては、 0以上 1以下の値を取り、トーン性抑制効果は Bj = 1に おいて最大となり、 Bj =0において最小となる。チヤープファクタバンドのグループ化 情報と、それぞれのチヤープファクタバンドに対するチヤープファクタは、符号化され 、ビットストリームに組み込まれて伝送される。
[0009] 続 、て、生成された高域サブバンド信号は、原音の高域サブバンド信号に類似す る周波数特性となるように、そのエンベロープ形状 (おおまかに表した信号エネルギ 分布)が調整される。このようなエンベロープ形状の調整方法を示す例としては、特 許文献 2が挙げられる。時間 Z周波数の二次元表現である高域サブバンド信号は、 まず時間方向への「時間セグメント」に分割され、続いて周波数方向への「周波数バ ンド」に分割される。図 5に、この高域サブバンド信号分割処理を示す。図 5は、高域 サブバンド信号を時間セグメントと周波数バンドとに分割する分割方法の一例を示す 図である。矢印 601は高域サブバンド信号の時間方向への分割を示し、矢印 602は 周波数方向への分割を示して ヽる。時間および周波数方向に分割された各領域(「 エネルギバンド」と呼ぶ)内の高域サブバンド信号は、各領域に対して与えられたェ ネルギ値に対応する様にスケーリングされる。エンベロープ形状調整に用いられる時 間 Z周波数方向への分割情報と、分割された各領域に対するエネルギ値は、ェンコ ーダ 200において符号ィ匕され、ビットストリームに組み込まれて伝送される。
[0010] さらに、前記のエネルギのエンベロープ形状調整に加えて、生成される高域サブバ ンド信号のトーン Zノイズ比も、生成される信号の表現力を高め、より入力信号に近 い音質を実現するために重要な要素である。もし、生成される高域サブバンド信号に おいて、部分的にノイズ性の成分が不足している場合には、人工的なノイズ成分を付 加し、これを補う必要がある。同様に、部分的にトーン性の成分が不足している場合 には、人工的なトーン成分 (サイン波)を付加する。ノイズ成分の付カ卩は、「ノイズバン ド」と呼ばれる領域に対して行なわれ、また、サイン信号の付カ卩は、「トーンバンド」と 呼ばれる領域に対して行なわれる。図 6 (a)〜(c)は、図 5のように分割された高域の 領域を、エネルギ、ノイズ及びトーンの別にグループィ匕した場合に得られる高域サブ バンド信号の分割の一例を示す図である。前記エネルギバンドとノイズバンド、トーン バンドの関係を図 6 (a)〜(c)に示す。図 6 (a)の時間 周波数空間の区分は、高域 サブバンド信号のエンベロープ形状調整のために同じエネルギ値が与えられる領域 を示している。同図において、時間—周波数空間の分割方法 701では ei(i=0,l, ... ,23)で示される領域がエネルギバンドを示して 、る。図 6 (b)の時間一周波数空間の 分割方法 702では qi(i=0,l, ... ,5)で示される領域がノイズバンドを示している。また、 ノイズバンドの区分とチヤープファクタバンドの区分とは共通である。さらに、図 6 (c) の時間—周波数空間の分割方法 703では、 hi(i=0,l, ... ,17)で示される領域がトーン バンドを示している。人工的なサイン波の付カ卩は、図 6 (c)のサイン波のトーン信号が 付加されるサブバンド 704に示される様に、トーンバンド W6に含まれる高域サブバン ド信号において、その中央にあるサブバンドに対して行なわれる。ノイズバンドおよび トーンバンドの分割情報と、各ノイズバンドに対するノイズ付加量と、各トーンバンドに おける付力卟ーン信号の有無は、エンコーダにおいて符号ィ匕され、ビットストリームに 組み込まれて伝送される。
[0011] ここで、前記エネルギバンド、ノイズバンド(チヤープファクタバンド)およびトーンバ ンドにおける各信号エネルギの算出方法にっ 、て説明する。以降の説明にお 、て、 B(t,k)、 E(t,k)、 Q(t,k)、 H(t,k)を、それぞれ高域サブバンド信号の時間 Z周波数表現 における時間サンプル t、周波数バンド kで示される信号に対するチヤープファクタ、 エネルギ値、信号内のノイズ成分の比率、付力卟ーン信号の有無を表すフラグとする 。また表記上の規則として、例えば、あるエネルギバンド eiに含まれるすべての (t,k)で 示される信号点(サンプル)について、 E(t,k) = Eiとする。チヤープファクタバンド bi、ノ ィズバンド qi、トーンバンド hiにおいても、それぞれ B(t,k)、 Q(t,k)、 H(t,k)に対して同 様のマッピングが行なわれる。図 7は、同一エネルギバンドにおいて、低域サブバンド 信号力も複製される高域サブバンド信号と、人工的に付加されるノイズ成分またはト ーン成分とのエネルギ比を示す表である。低域サブバンド信号から複製された高域 サブバンド信号、人工的に付加されるノイズ成分、人工的に付加されるトーン成分の それぞれに対するエネルギ値は、図 7に示される様に算出される。
[0012] このエネルギ値算出において重要な点は、低域サブバンド信号から複製された高 域サブバンド信号、人工的に付加されるノイズ成分および、人工的に付加されるトー ン成分の 3つのエネルギ値の合計は、常に E(t,k)に等しくなることである。また、ノイズ 成分の比率 Q(t,k)は、全信号エネルギ E(t,k)を、複製された高域サブバンド信号と、 人工的に付加されるノイズ成分もしくはトーン成分の 2つに分離する役割を果たして 、ることになる。
[0013] 以上で説明した帯域拡張処理に必要なパラメータは、高音質かつ文法的に正しい ビットストリームを生成するために、エンコーダにおいて適切に設定されなければなら ない。とくに、高域サブバンド信号のエネルギ値、チヤープファクタ、トーン性信号の 有無およびノイズ成分の割合を正しく算出するためには、時間 Z周波数表現された 入力信号を分析する手法が必要とされる。これらの情報が正しく算出されなければ、 例えば、ノイズ成分の割合が高すぎれば再生音もノイジ一となり、また、不適切なトー ン成分の付加や逆フィルタリングによっては、こもった音質となったり、最悪の場合、 音が歪んでしまうことになる。これらの情報のうち、チヤープファクタの算出方法につ いては、特許文献 3において、その例が開示されている。この方法によれば、入力信 号の高域信号のトーン Zノイズ比と、低域信号を高域に複製して生成された信号のト ーン Zノイズ比とを比較し、簡単な数式に当てはめることによって、チヤープファクタ を算出することができる。また、ノイズ成分の割合を算出する方法については、特許 文献 4において、その例が示されている。この方法によれば、時間信号である入力信 号は、時間フレームに分割され、フーリエ変換によりスペクトル係数に変換される。算 出したスペクトル係数に対して、「ピークフォロア」、「ディップフォロア」と呼ばれる、そ れぞれスペクトル係数の山の部分と谷の部分を代表する指針を設定し、これらの 2つ の指針カゝら導き出されるノイズ成分のスペクトルエネルギ値から、ノイズ成分の割合を 決定する。
特許文献 1:国際公開特許 W098Z57436号公報
特許文献 2:国際公開特許 WO01Z26095号公報
特許文献 3:米国公開特許 US2002Z0087304号公報
特許文献 4:国際公開特許 WO00Z45379号公報
発明の開示
発明が解決しょうとする課題
[0014] し力しながら、従来の方法では、例えば高域信号のトーン Zノイズ比と低域信号か ら複製された高域信号のトーン zノイズ比とを簡単な数式に当てはめることによって チヤープファクタを算出する場合では、チヤープファクタの算出において、原音の高 域信号のトーン Zノイズ比が非常に大きカゝつたり、低域信号カゝら複製された高域信号 のトーン/ノイズ比が非常に低力つたりする場合などに、適切なチヤープファクタを算 出できない場合がある。その結果、不適切なチヤープファクタ用いた結果として音質 が低下するという問題があった。また、原音の高域信号をフーリエ変換することによつ て高域信号のスペクトル係数の山と谷とを正確に解析する場合、チヤープファクタもし くはノイズ成分の割合を算出するにあたって、フーリエ変換されたスペクトル係数にお いてエネルギ値算出を行なう必要があり、処理演算量の増加に繋がっていた。
[0015] この問題を解決するために、本発明は、フーリエ変換等の計算負荷の高い処理を 用いることなぐ適切なチヤープファクタを求めることができる符号ィ匕装置を提供する ことを目的とする。
課題を解決するための手段
[0016] 上記課題を解決するために、本発明の符号化装置は、区分された時間 周波数 領域において、低周波領域に属する信号を複製して、高周波領域に属する信号を 生成するための情報を含んだ符号化信号を生成する符号化装置であって、特定の 周波数に信号成分が偏在するトーンと、周波数に関係なく信号成分が存在するノィ ズとについて、区分された前記高周波領域の信号のトーン Zノイズ比と、前記高周波 領域に複製される前記低周波領域の信号のトーン Zノイズ比とを、線形予測処理を 用いて算出するトーン zノイズ比算出手段と、前記低周波領域と前記高周波領域と の信号について算出されたトーン Zノイズ比に基づいて、前記高周波領域に複製さ れる前記低周波領域の信号のトーン性を調整する調整係数を算出する調整係数算 出手段と、算出された前記調整係数を含む符号化信号を生成する符号化手段とを 備える。
発明の効果
[0017] 本発明によれば、入力信号および複製信号のトーン Zノイズ比と、適切なチヤープ ファクタとを多元的に評価することにより、より適切なチヤープファクタを算出し、適用 することができる。従って、再生音の品質を向上させることができる。 [0018] また、サブバンド信号に対する処理により、チヤープファクタ、ノイズ成分の割合およ びトーン成分の有無を系統的に決定することによって、より少ない処理量で、適切な 情報を得ることができる。
図面の簡単な説明
[0019] [図 1]図 1は、オーディオ信号の一般的な圧縮符号ィ匕処理及び復号ィ匕処理を行なう 従来のエンコーダとデコーダの構成を示す図である。
[図 2]図 2は、従来の低ビットレートの符号ィ匕により、高い周波数の信号が欠落したォ 一ディォ信号の一例を示す図である。
[図 3]図 3は、 SBR方式による符号ィ匕ビットストリームを復号ィ匕する従来のデコーダの 構成を示すブロック図である。
[図 4]図 4は、図 3に示した帯域拡張部が低域サブバンド信号を加工して高域サブバ ンド信号を生成する処理を示す図である。
[図 5]図 5は、高域サブバンド信号を時間セグメントと周波数バンドとに分割する分割 方法の一例を示す図である。
[図 6]図 6 (a)〜(c)は、図 5のように分割された高域の領域を、エネルギ、ノイズ及びト ーンの別にグループィ匕した場合に得られる高域サブバンド信号の分割の一例を示す 図である。
[図 7]図 7は、同一エネルギバンドにおいて、低域サブバンド信号から複製される高域 サブバンド信号と、人工的に付加されるノイズ成分またはトーン成分とのエネルギ比 を示す表である。
[図 8]図 8は、本実施の形態のエンコーダの構成を示すブロック図である。
[図 9]図 9は、図 8に示した帯域拡張情報符号ィ匕部の構成を示すブロック図である。
[図 10]図 10は、入力高域サブバンド信号のトーン Zノイズ比と、低域サブバンド信号 のトーン Zノイズ比とに基づいて、低域サブバンド信号のトーン性抑制の要否を示す 図である。
[図 11]図 11は、算出されるチヤープファクタ Biと、低域サブバンド信号と入力高域サ ブバンド信号との 2つのトーン Zノイズ比の関係を図示したものである。
[図 12]図 12 (a)〜(c)は、隣接しあうサブバンド信号のエネルギを比較して、トーンバ ンド中のトーン成分の位置を判定する例を示す図である。
[図 13]図 13は、隣接しあうサブバンドのエネルギを比較することによって、当該サブ バンドにトーン成分があるか否かを判定するための表である。
[図 14]図 14は、図 9に示したチヤープファクタ算出部の動作を示すフローチャートで ある。
[図 15]図 15は、図 9に示したトーン信号付加決定部の動作を示すフローチャートであ る。
符号の説明
100 エンコーダ
101 領域分割部
102 領域分割情報
103 エネノレギ算出部
104 チヤープファクタ算出部
105 トーン信号付加決定部
106 ノイズ成分量算出部
107 ビットストリーム算出部
200 エンコーダ
201 フレーム分割部
202 スペクトル変換部
203 スペクトル符号化部
204 スペクトル復号化部
205 スペクトル逆変換部
206 フレーム結合部
210 デコーダ
301 符号化される信号の帯域幅
302 デコーダで復号される範囲
303 高い周波数のトーン信号
304 調波構造 400 デコーダ
401 ビットストリーム分離部
402 コアオーディオ復号部
403 分析サブバンドフィルタ
404 帯域拡張部
405 合成サブバンドフィルタ
501 複製された高域サブバンド信号
502 低域サブバンド信号
503 逆フィルタリング処理
504 チヤープファクタ
601 時間方向への分割
602 周波数方向への分割
701 エネノレギバンド
702 ノイズバンド
703 トーンバンド
704 サイン波のトーン信号が付加されるサブバンド
901 コアオーディオ符号化部
902 分析サブバンドフィルタ
903 帯域拡張情報符号化部
904 ビットストリーム多重化部
1001 チヤープファクタが「0」となる領域
1101 サブバンドエネノレギ
1102 サブバンドエネノレギ
1103 サブバンドエネノレギ
発明を実施するための最良の形態
[0021] (実施の形態)
[0022] 以下では、本発明の実施の形態を、図面を参照しながら説明する。本実施の形態 では、低域のサブバンド信号を高域のサブバンドに複製し、複製された信号にトーン 信号又はノイズを重畳することにより高域のサブバンド信号を生成する場合について 説明する。
[0023] 図 8は、本実施の形態のエンコーダ 100の構成を示すブロック図である。本実施の 形態のエンコーダは、フーリエ変換などの負荷の高い計算方法を用いずに、簡単な 方法で入力高域サブバンド信号を解析して、低域サブバンド信号力ゝら高域サブバン ド信号を生成するための帯域拡張情報を符号ィ匕するエンコーダであって、コアォー ディォ符号ィ匕部 901、分析サブバンドフィルタ 902、帯域拡張情報符号化部 903お よびビットストリーム多重化部 904を備える。さらに、分析サブバンドフィルタ 902は、 分析フィルタと 1/Nダウンサンプリング部との N個の組を備え、入力オーディオ信号を 、 Nチャネルのサブバンド信号に帯域分割する。ここで、分析フィルタ 0〜(N— 1)は 、バンドパスフィルタであって、入力されたサンプルと同数のサンプルを出力するので 、この Nチャネルの各帯域の信号は、冗長性を取り除くために、 1/Nダウンサンプリン グ部により、 N: lの比率でダウンサンプリングされる。帯域拡張情報符号化部 903は 、サブバンド信号力 帯域拡張処理に必要な情報を抽出し、符号化する。帯域拡張 情報符号ィ匕部 903の構成および動作については、後で詳しく説明する。一方、コア オーディオ符号化部 901は、入力信号の低域成分を表す信号のみを取り出し符号 化する。低域成分の符号化方法については、本発明の範囲に含まれないので説明 を省略するが、例えば MPEG AAC方式など、既存のどのような符号ィ匕方式を用い ても良い。低域成分の符号化結果と、帯域拡張情報の符号化結果は、ビットストリー ム多重化部 904において多重化され、出力ビットストリームが生成される。
[0024] 図 9は、図 8に示した帯域拡張情報符号ィ匕部 903の構成を示すブロック図である。
本実施の形態の帯域拡張情報符号化部 903は、低域サブバンド信号を複製して高 域サブバンド信号を生成するための帯域拡張情報を、フーリエ変換等の処理負荷の 高い計算を用いることなく生成する処理部であって、領域分割部 101、エネルギ算出 部 103、チヤープファクタ算出部 104、トーン信号付加決定部 105及びノイズ成分算 出部 106を備える。チヤープファクタ算出部 104は、信号成分算出部 111及び成分 エネルギ算出部 112を備える。また、ノイズ成分算出部 106は、成分エネルギ算出部 113を備える。帯域拡張情報符号ィ匕部 903に入力されたサブバンド信号は、領域分 割部 101において、高域部を複数の領域に分割される。領域の分割は、まず、図 5に 示したようにサブバンド信号を表す空間を時間方向と周波数方向とに分割しておい て、エネルギ値算出、チヤープファクタ算出、ノイズ成分算出およびトーン成分算出 のそれぞれに対してグループィ匕する。これにより、エネルギ値算出、チヤープファクタ 算出、ノイズ成分算出およびトーン成分算出ごとに決定された領域分割情報 ei、 bi、 qi、 hiがビットストリーム多重化部 904に出力される。なお、領域の分割方法としては 、あらかじめ定められた固定の分割方法を用いても良いし、入力サブバンド信号を分 祈して、類似する信号が同一の領域に入るように、適応的に分割するように構成して も良い。決定された領域分割情報は、デコーダにおいても、時間 Z周波数表現され たサブバンド信号に対して同一の領域分割を行なうために、符号化され伝送される。 以降のエネルギ算出、チヤープファクタ算出、トーン成分算出、およびノイズ成分算 出の各処理は、それぞれに対応する領域に対してこの順で行なわれる。
[0025] 先に説明したように、低域サブバンド信号力 複製された高域サブバンド信号、付 加ノイズ成分および、付力卟ーン信号の 3つのエネルギの合計は E(t,k)に等しい。従 つて、エネルギバンド eiにおけるエネルギ値 Eiは、エネルギ算出部 103において、入 力高域サブバンド信号の平均エネルギを、各エネルギバンド eiにつ 、て算出すれば よい。
[0026] 続いて、チヤープファクタ算出部 104の動作を説明する。図 14は、チヤープファクタ 算出部 104の動作を示すフローチャートである。低域サブバンド信号に対する逆フィ ルタリング処理の強度は、複製信号のトーン/ノイズ比 q_lo(i)を、入力信号の高域信 号のトーン Zノイズ比 q_hi(i)に近づけるために、複製された低域信号のトーン性をど の程度抑制すべきかによつて決定される。低域信号のトーン性をどの程度抑制すベ きかは、チヤープファクタ算出部 104で算出されるチヤープファクタによって制御され る。本発明において開示される方法の基本は、入力高域サブバンド信号のトーン Zノ ィズ比 q_hi(i)が低いにも関わらず、複製される低域サブバンド信号のトーン Zノイズ比 q_lo(i)が高い場合に、低域サブバンド信号のトーン性を抑制することである。高域サ ブバンド信号のトーン Zノイズ比に対して、低域サブバンド信号のトーン Zノイズ比が 高ければ高いほど、より強いトーン性抑制が必要である。 [0027] 図 10は、入力高域サブバンド信号のトーン Zノイズ比と、低域サブバンド信号のト ーン Zノイズ比とに基づ 、て、低域サブバンド信号のトーン性抑制の要否を示す図 である。低域サブバンド信号及び高域サブバンド信号のいずれにおいても、トーン Z ノイズ比 qjo(i)または q_hi(i)が大きい場合には、トーン/ノイズ比 q_lo(i)または q_hi(i)は 、そのサブバンド信号のトーン性が高いことを示している。逆に、トーン/ノイズ比 qjo(i)または q_hi(i)が小さ 、場合には、そのトーン Zノイズ比 qJo(i)または q_hi(i)は、サ ブバンド信号のトーン性が低い (すなわち、ノイズ性が高い)ことを示している。従って 、同図に示すように、トーン性の高い (q_loが大)低域サブバンド信号を、原信号であ る高域サブバンド信号のトーン性が低 ヽ (q_hiが小)高域サブバンドに複製する場合 には、低域サブバンド信号のトーン性を抑制する必要があることが分かる。
[0028] 入力高域サブバンド信号のトーン Zノイズ比は、線形予測処理を用いることにより算 出できる。高域サブバンド信号を S(t,k)で表すとして、この信号は、線形予測を用いる ことにより、トーン成分 St(t,k)とノイズ成分 Sn(t,k)に分離することができる。信号成分算 出部 111は、チヤープファクタバンド biに含まれるすべての高域サブバンド kに対して 、線形予測を適用することにより、高域サブバンド信号 S(t,k)をトーン成分 St(t,k)とノィ ズ成分 Sn(t,k)とに分離する。
[0029] [数 2]
S(t,k) ¾ St(t,k)+Sn(t,k)
[0030] ここで、あるチヤープファクタバンド bi (すなわち、図 6 (b)に示した高域区分のノイズ バンド qiと同じバンド)において、トーン成分のエネルギ合計は、このチヤープファクタ バンドに含まれるすべてのサブバンド k (kはサブバンド番号)について、 St ,k)を時 間 t = 0から T(i)まで加算したものである。ここで、 T(i)は対象となるチヤープファクタ バンド biの時間方向へのサンプル数である。同様に、ノイズ成分のエネルギ合計は、 チヤープファクタバンドに含まれるすべてのサブバンド kに対して、 Sn (t,k)を時間 t = 0から T(i)までカ卩算したものである。これらのトーン成分のエネルギ合計と、ノイズ成 分のエネルギ合計とから、チヤープファクタ算出部 104は、チヤープファクタバンド bi における入力高域サブバンド信号のトーン Zノイズ比 q_hi(i)を、次式を用いて算出す る(S1401)
[0031] [数 3] tc™ kc i
.、
Figure imgf000016_0001
k)
q hi(i)
J t匚 Tffl kcbi
Figure imgf000016_0002
[0032] また、トーン成分 Sn2(t,k)のエネルギ合計および、ノイズ成分 Sn ,k)のエネルギ合計 は、線形予測処理を用いて次の様に算出できる。
[0033] 画 t T{i)
∑St2(t,k)= Iひ 0120 a (2,2)+2 Re<aoa1*0 (1,2)}
Figure imgf000016_0003
[0034] ここで、
[0035] [数 5] tCTfi)
0(m,n)=∑S(t- m,k)S*(t- n,k)
= 0(O,1)0(1,2)+ (O,2)0(1,1)
1 0(2,2)<0(1,1)- |0(1,2) ひ
Figure imgf000016_0004
0(1,1)
[0036] である。このようにして、成分エネルギ算出部 112は、チヤープファクタバンド biにお ける高域サブパンド信号のトーン成分 St2(t,k)のエネルギ合計、及びノイズ成分 Sn2 (t,k)のエネルギ合計を算出する。
[0037] デコーダにおける複製処理に従い、高域サブバンド kのサブバンド信号力 マツピ ング関数 P(k)で表される低域サブバンド信号力 生成されるとすると、チヤープファタ タ算出部 104は、複製される低域サブバンド信号のトーン Zノイズ比 qJoG)を、次式力2 ら算出する(S1402)。
[数 6]
Figure imgf000017_0001
[0039] また、高域サブバンド kに複製される低域サブバンド信号のトーン成分 St2(t,p(k))の エネルギ合計、および低域サブバンド信号のノイズ成分 Sn ,p(k))のエネルギ合計を 、前記高域サブバンド kにおける入力高域サブバンド信号のトーン成分 St2(t,k)のエネ ルギ合計、および入力高域サブバンド信号のノイズ成分 Sn ,k)のエネルギ合計と同 様に線形予測処理を用いて算出できることは自明である。
[0040] 以上の様に算出された、入力高域サブバンド信号および、その高域サブバンドに 複製される低域サブバンド信号のトーン Zノイズ比について、両者の大小関係を評 価することにより、必要なトーン性抑制度合を決定することができる。大小関係の評価 方法の一例として、入力高域サブバンド信号のトーン Zノイズ比 q_hi(i)が第 1の閾値 Trはりも小さく(S 1403で Yes)、かつ、複製される低域サブバンド信号のトーン/ノィ ズ比 q_lo(i)が第 2の閾値 Tr2よりも大きい(S1404で Yes)場合に、チヤープファクタ算 出部 104はトーン性抑制処理が必要であると判定する(S1405)。また、トーン性抑 制の度合、つまりチヤープファクタ Biは次式の様に求められる(S 1406)。
[0041] [数 7]
Figure imgf000017_0002
B^ minCB,, !)
[0042] ここで、数式 7に含まれる Tr3は第 3の閾値であり、チヤープファクタの飽和点(Bi= 1)を決定する役割を持つ。すなわち、低域サブバンド信号のトーン Zノイズ比 qJo(i) が閾値 Tr3より大きくなると、チヤープファクタ Biは、 Bi= lの一定値をとる。数式 7の 第 2式である Bi=min (Bi, 1)は、数式 7の第 1式力も得られた Biと「1」とのうち、小 さい方を選択することを示している。図 11は、算出されるチヤープファクタ Biと、低域 サブバンド信号と入力高域サブバンド信号との 2つのトーン Zノイズ比の関係を図示 したものである。チヤープファクタ Biは、 q_lo(i)が増加するに従って大きくなり、逆に、 q_hi(i)が増加するに従って小さくなる。すなわち、チヤープファクタ Biは、低域サブバ ンド信号のトーン性が増加するに従って大きくなり、逆に、高域サブバンド信号のトー ン性が増加するに従って小さくなる。また、領域 1001で示されるノ、ツチング部分につ いては、入力高域サブバンド信号のトーン Zノイズ比 q_Wが閾値 Trl以上である力 (図 14の S1403で No)、または、低域サブバンド信号のトーン/ノイズ比 q_loが閾値 Tr2 以下である(図 14の S1404で No)ので、チヤープファクタ算出部 104はトーン性抑制 処理が必要でないと判断するため、チヤープファクタは「0」となる。算出されたチヤ一 プファクタ Biは、先に説明した様に、当該チヤープファクタバンドに含まれる高域サブ バンドに対してマッピングされ、 B(t,k)と表される。チヤープファクタ算出処理は、すべ てのチヤープファクタバンドについてチヤープファクタが算出されるまで繰り返される。 算出された各チヤープファクタは、符号化され、符号ィ匕情報がビットストリーム多重化 部 107に送られる。
[0043] なお、上記実施の形態で示した数式 7は実験式であり、チヤープファクタを算出す るための最も好ましい一例を示したものである。従って、チヤープファクタを算出する ための数式はこれに限定されない。
[0044] 続いて、トーン信号付加決定部 105の動作について説明する。図 15は、図 9に示し たトーン信号付加決定部 105の動作を示すフローチャートである。先に説明した各ト ーンバンド hiに対して、人工的なトーン信号を付加する必要があるかどうかは、対象と なるトーンバンドに対応する高域サブバンド信号のトーン Zノイズ比 q_hiが、複製され る低域サブバンド信号のトーン Zノイズ比 qJoを超えて 、るかどうかに基づ 、て判定 することができる。ただし、トーン信号を付加する条件としては、さらに 2つの条件が必 要である。一つは、高域サブバンド信号のトーン Zノイズ比が絶対的に大きな値であ ることが必要である。つまり、高域サブバンド信号のトーン Zノイズ比力 低域サブバ ンド信号のトーン Zノイズ比に対して、どれだけ相対的に大きいとしても、高域サブバ ンド信号自身がトーン性の高!ヽ信号で無ければ、トーン信号を付加する意味は無 、
。また、高域サブバンド信号が純粋なトーン性信号で無い場合に、人工的なトーン信 号を付加すると、不自然な音が発生し、音質が低下する恐れがある。もう一つは、複 製される低域サブバンド信号のトーン Zノイズ比が絶対的に (高域サブバンド信号と 比較して相対的にではなぐ)極度に大きくないことである。低域サブバンド信号のト ーン Zノイズ比が非常に大きい場合、つまり、非常にトーン性の強い信号である場合 には、高域サブバンド信号のトーン性は、複製された低域信号に含まれるトーン性信 号成分によって維持されるので、新たに人工的なトーン信号を付加する必要は無い と考えられる。なお、複製される低域サブバンド信号のトーン Zノイズ比は、先に説明 したトーン性抑制処理の影響を受けるので、その影響にっ 、ても考慮する必要があ る。
[0045] トーン信号付加決定部 105は、各トーンバンド hiについて、高域サブバンド信号お よび、複製される低域サブバンド信号のトーン Zノイズ比を算出する(S1501)。この とき、高域サブバンド信号のトーン/ノイズ比については、チヤープファクタ算出部 10 4において算出したトーン成分 St(t,k)とノイズ成分 Sn(t,k)を用いることができる。
[0046] [数 8]
Figure imgf000019_0001
し力しながら、複製される低域サブバンド信号のトーン Zノイズ比については、トー ン性抑制処理の影響を考慮する必要があるため、処理が異なる。トーン性抑制処理 によるトーン成分のエネルギの減少は、ほぼ (1— B(t,k))を乗ずることによって近似で きるので、低域サブバンド信号のトーン Zノイズ比は次式のように算出できる(S1502 [0048] [数 9] (t,k))
q一 lo(、i) 7 tcT§ kchi
Figure imgf000020_0001
[0049] トーン信号付加決定部 105は、算出した q_lo(i)および q_hi(i)が次の条件を満たす場 合に、当該トーンバンドに人工的なトーン信号を付加する必要があると判定する(S1 503〜S1505)。すなわち、
[0050] [数 10] q_hi(i)>q_lo(i)*Tr4
かつ、 q— hi(i)>Tr5、 かつ、 q— lo(i)<Tr6
[0051] ここで、 Tr4、 Tr5、 Tr6は、あらかじめ定められた閾値である。
[0052] トーン信号付加決定部 105は、この判定を、すべてのトーンバンド hiに対して行い、 各トーンバンドにおけるトーン信号の付加の有無の情報力 ビットストリーム多重化部 107に送られる。なお、ここでは「トーン信号の付加の有無の情報」だけをビットストリ ーム多重化部 107に送っているが、「トーン信号が付加されるトーンバンド内の周波 数位置を示す情報」も一緒に送ってもよい。
[0053] なお、トーン信号付加決定部 105としては、別の構成を用いることもできる。この構 成においては、低域サブバンド信号の形状に関わらず、入力高域サブバンド信号に 明らかなトーン成分が存在する場合にのみ、人工的なトーン信号を付加する。明らか なトーン成分の検出は、相対的に低いエネルギの複数のサブバンド信号の中に、突 出して高いエネルギのサブバンド信号が存在するかどうかを判定することにより行なう
[0054] 図 12 (a)〜(c)は、隣接しあうサブバンド信号のエネルギを比較して、トーンバンド 中のトーン成分の位置を判定する例を示す図である。すなわち、図 12 (a)〜(c)は、 トーン成分判定の基準となる、 3つのパタンを表したものである。 3つのパタンとは、ト ーン成分が(1)サブバンドの周波数中央付近にある場合、 (2)サブバンドの周波数 上限付近にある場合及び(3)サブバンドの周波数下限付近にある場合である。ここ では、例として、いずれも、あるサブバンド kにトーン成分が存在していることを示して いる力 図 12 (a)では、サブバンドのエネルギ 1101のトーン成分は、サブバンド kの 中心周波数付近に存在している場合を示している。この場合、サブバンド kのェネル ギだけが隣接するサブバンドに対して相対的に大きくなつている。これに対して、図 1 2 (b)では、サブバンドのエネルギ 1102のトーン成分は、サブバンド kの上限周波数 付近に存在している場合を示している。この場合、一般的なサブバンドフィルタの特 性により、信号エネルギの一部が隣接サブバンドに漏れ出すため、サブバンド (k+ 1 )のエネルギも上昇する。同様に、図 12 (c)では、サブバンドのエネルギ 1103のトー ン成分が、サブバンド kの下限周波数付近に存在している場合を示している。この場 合、サブバンド (k—1)のエネルギが上昇する。また、明らかなトーン成分が存在して いるサブバンドもしくはその近傍のサブバンドにおいては、信号のトーン Zノイズ比が 上昇する。図 13は、隣接しあうサブバンドのエネルギを比較することによって、当該サ ブバンドにトーン成分があるか否かを判定するための表である。このような現象に基 づけば、サブバンド kに明らかなトーン成分が存在するかどうかは、図 13の表に示さ れる関係式によって判定することができる。ここで、 Ethresおよび Qthresは、あらかじ め定められたエネルギ及びトーン Zノイズ比の閾値を示し、 E(k)は次式で算出される エネルギ値である。
[0055] [数 11]
E(k)= J_ S2(t,k)
[0056] トーン信号付加決定部 105は、トーンバンド hiに含まれるすべての高域サブバンド k について、図 13に示される 3つの条件による判定を行い、少なくとも 1つの高域サブ バンドにおいて、少なくとも 1つの条件が満たされれば、当該トーンバンドは明らかな トーン性の信号であると判定し、人工的なトーン信号を付加するフラグをセットする( 図 15の SI 506)。すべてのトーンバンド hiについて、本判定を行い、決定された人工 的なトーン信号を付加する力否かのフラグ情報は、ビットストリーム多重化部 107に送 られる。なお、本例では、対象となるサブバンド kおよび、その隣接サブバンドにおけ る判定閾値として、すべて同一の値を用いているが、これをサブバンド毎に異なる閾 値を用いるようにしても良い。また、各サブバンドにおける判定結果を総合する「AN D」および「OR」の論理演算についても、設定する閾値との相互関係により、最適な 演算を選択して使用することができる。また、トーン性の評価においては、トーン成分 が比較的広い範囲に広がって存在している場合を考慮して、対象サブバンド kの上 下数サブバンド程度のトーン Zノイズ比も評価するようにしても良い。
[0057] 続いて、ノイズ成分算出部 106の動作について説明する。複製される信号に含まれ るノイズ成分の合計が、入力信号に含まれるノイズ成分の合計にほぼ等しければ、入 力信号と複製信号のノイズ成分によって表現される音の質感は、近いものとなる。ま た、一般的に、ノイズ成分は周波数的に広い帯域を持つ信号であるため、先に説明 したトーンバンドに対して、より広い帯域をカバーするバンド (ノイズバンドと呼ぶ)に おいて考慮すれば良い。よって、あるノイズバンドには複数のトーンバンドが包含され ることになるため、正しいノイズ成分を算出するには、トーン信号が付加されたトーン バンドにおけるノイズ成分と、トーン信号が付加されないトーンバンドにおけるノイズ 成分の両方を考慮しなければならない。複製される低域サブバンド信号において、こ れらの 2つの成分から構成されるノイズ成分の合計値が、入力信号の当該高域サブ バンドにおけるノイズ成分の合計値と等しくなるように、ノイズ成分量が決定される。な お、当処理においても、先に説明したトーン性抑制処理の影響を考慮する必要があ る。
[0058] まず、入力高域サブバンド信号のノイズ成分の合計は次式で算出される。
[0059] [数 12]
Figure imgf000022_0001
[0060] ここで、ノイズバンド qiにおけるノイズ成分量を Qiとして、複製されるサブバンド信号 にお 、て、トーン信号が付加されたトーンバンドの信号からもたらされるノイズ成分: は、次式で表される。
[0061] [数 13] r(t,k)
Figure imgf000023_0001
[0062] ここで、 TB(i)は、ノイズバンド qiに含まれる、トーンが付加されたトーンバンドの集合 を表す。 r(t,k)は複製される高域サブバンド信号に含まれるノイズ成分割合であり、 St(t,p(k》に施されるトーン性抑制処理の影響を考慮して、次式で表される。
[0063] [数 14]
Figure imgf000023_0002
Sn2(t p(k))+St2(t,p(k))(l- B(t/k))
[0064] また、複製される高域サブバンド信号において、トーン信号が付加されないトーンバ ンドの信号からもたらされるノイズ成分量は、次式で表される。
[0065] [数 15]
ΖΤβ) kCNTBii) -
∑ ∑ E(t,k) r(t,k)+E ( k Ql
iノ iノノ
Figure imgf000023_0003
[0066] ここで、 NTB(i)はノイズバンド qiに含まれる、トーン信号が付加されないトーンバンド の集合を表す。集合
[0067] [数 16]
TB(i) U NTB ) は、ノイズバンド qiに含まれるすべてのトーンバンドとなる。ノイズバンド qiにおける、 複製されるサブバンド信号に含まれるすべてのノイズ成分の和が、該当する入力高 域サブバンド信号のノイズ成分に等しくなるためには、次式を満たす必要がある。
[0068] [数 17]
Figure imgf000024_0001
[0069] この式は、単純な 1次方程式であるので、ノイズ成分量 QUま次式の様に算出できる [0070] [数 18]
Figure imgf000024_0002
[0071] ノイズ成分量算出の処理は、すべてのノイズバンドに対して行なわれ、算出されたノ ィズ成分量 QUま、符号化され、ビットストリーム多重化部 107に送られる。このように、 成分エネルギ算出部 113は、チヤープファクタ算出部 104内の成分エネルギ算出部 112と同様、ノイズバンド qiにおける高域サブバンド信号のトーン成分 St2(t,k)のエネ ルギ合計、及びノイズ成分 Sn ,k)のエネルギ合計を算出する。しかし、ノイズ成分算 出部 106の成分エネルギ算出部 113の方では、チヤープファクタ算出部 104の成分 エネルギ算出部 112による処理に加えて、同一ノイズバンドにおける、チヤープファタ タゃ、トーン信号の付加によるトーン成分の増減を考慮した上で、ノイズ成分の補正 を行なっているので、より原音に近いノイズ成分を算出することができる。
[0072] なお、ノイズ成分量 Qi.の算出においては、トーン信号が付加されたトーンバンドか らもたらされるノイズ成分を省略し、算出に必要な演算量を削減することも可能である 。トーン信号が付加されるトーンバンドにおいては、信号に占めるトーン成分の割合 が非常に大きくなつているため、相対的に小さいノイズ成分を「0」としても、算出結果 に与える影響が小さいためである。この場合の Qi.の算出式は次式で表される。
[0073] [数 19]
Figure imgf000025_0001
[0074] なお、以上の説明は、本発明の構成を示す一例であり、その具体的な構成をもって 本発明の適用範囲を制限するものではない。
産業上の利用可能性
[0075] 本発明は、オーディオ信号のスペクトルをトーン成分とノイズ成分に分離して、効率 的に符号化、復号化する装置において、再生オーディオ信号の品質を向上させるの に有用な手段である。すなわち、本発明は、デコーダにおいてオーディオ信号の帯 域を拡張するための情報を、より計算負荷の少ない方法で、より精度よく算出し、低 域信号とともに符号化するェンコーダとして有用である。

Claims

請求の範囲
[1] 区分された時間—周波数領域において、低周波領域に属する信号を複製して、高 周波領域に属する信号を生成するための情報を含んだ符号化信号を生成する符号 化装置であって、
特定の周波数に信号成分が偏在するトーンと、周波数に関係なく信号成分が存在 するノイズとについて、区分された前記高周波領域の信号のトーン Zノイズ比と、前 記高周波領域に複製される前記低周波領域の信号のトーン Zノイズ比とを、線形予 測処理を用いて算出するトーン Zノイズ比算出手段と、
前記低周波領域と前記高周波領域との信号について算出されたトーン Zノイズ比 に基づいて、前記高周波領域に複製される前記低周波領域の信号のトーン性を調 整する調整係数を算出する調整係数算出手段と、
算出された前記調整係数を含む符号化信号を生成する符号化手段と
を備える符号化装置。
[2] 前記トーン Zノイズ比算出手段は、さらに、
区分された前記高周波領域の信号に含まれるトーン成分とノイズ成分とを、線形予 測を用いて算出する高域信号成分算出部と、
算出された前記トーン成分と前記ノイズ成分とから、前記高周波領域における前記 トーン成分のエネルギ合計と前記ノイズ成分のエネルギ合計との比である高域トーン
Zノイズ比を算出する高域トーン Zノイズ比算出部と、
前記高周波領域に複製されるべく対応付けられた低周波領域の信号に含まれるト ーン成分とノイズ成分とを、線形予測を用いて算出する低域信号成分算出部と、 算出された前記トーン成分と前記ノイズ成分とから、前記高周波領域に対応付けら れた前記低周波領域の信号の前記トーン成分のエネルギ合計と前記ノイズ成分のェ ネルギ合計との比である低域トーン Zノイズ比を算出する低域トーン Zノイズ比算出 部とを備え、
前記調整係数算出手段は、算出された前記高域トーン Zノイズ比と前記低域トーン Zノイズ比とに基づ 、て調整係数を算出する
請求項 1記載の符号化装置。 [3] 前記調整係数算出手段は、さらに、
前記高域トーン Zノイズ比 q_hi(i)が第 1の閾値 Trlよりも小さぐかつ、対応する前 記低周波領域の前記低域トーン Zノイズ比 q—lo (i)が第 2の閾値 Tr2よりも大き 、場 合、前記低周波領域の信号のトーン性を抑制する必要があると判定するトーン性抑 制判定部を備え、
前記調整係数算出手段は、前記判定の結果、トーン性を抑制する必要があると判 定された場合、数式 7に従って前記調整係数を算出する
[数 7]
Figure imgf000027_0001
B^minCB,,!) 請求項 2記載の符号化装置。
[4] 前記符号化装置は、さらに、
前記低周波領域及び前記高周波領域の信号について算出された前記トーン Zノ ィズ比に基づいて、前記高周波領域に複製される前記低周波領域の信号に、トーン 性を有する所定の信号を付加するか否かを判定するトーン信号付加判定手段とを備 え、
前記符号化手段は、前記トーン信号付加判定手段の判定結果を含む符号化信号 を生成する
請求項 1記載の符号化装置。
[5] 前記調整係数算出手段は、複製される前記低周波領域の信号のトーン性を抑制 する度合いを示す調整係数を算出し、
前記トーン信号付加判定手段は、算出された前記調整係数を用いて前記低周波 領域の信号のトーン性が抑制されることにより、前記低周波領域の信号成分のエネ ルギが減少する分、前記低周波領域の信号の前記トーン Zノイズ比を補正した上で 、トーン性を有する前記信号を付加するか否かを判定する 請求項 4記載の符号化装置。
前記トーン信号付加判定手段は、トーン性を有する前記信号を付加するか否かを 判定する際に、算出された前記調整係数 Biを用いて前記低周波領域の信号のトー ン性が抑制されることにより、前記低周波領域の信号成分のエネルギが減少する分、 数式 9 (ただし、 tは時間軸方向に t=0〜T(i)までのサンプルの個数であり、 kは周波 数方向に細分されたトーンバンド hiに含まれる k個のサブバンドを示す。 )に従って、 前記低周波領域の信号の前記トーン Zノイズ比 qJo (i)を補正する
[数 9]
: T¾) kChi
∑∑St2(t,p(k))(l- B(t,k))
tc™ kchi
Figure imgf000028_0001
請求項 5記載の符号化装置。
[7] 前記トーン信号付加判定手段は、前記高域トーン Zノイズ比 q— hi (i)と、前記調整 係数 Biにより前記低周波領域の信号のトーン性が抑制された分、補正された前記低 域トーン Zノイズ比 q_lo (i)と力 数式 10 (ただし、 Tr4、 Tr5、 Tr6は、あらかじめ定めら れた閾値である。 )に示す条件を満たす場合に、
[数 10] q_hi(j)>q_lo(i)*Tr4
かつ、 q_hi(i)>Tr5、 かつ、 q_lo(i)<Tr6 前記高周波領域にトーン性を有する前記信号を負荷する必要があると判定する 請求項 6記載の符号化装置。
[8] 前記トーン信号付加判定手段は、区分された前記高周波領域における信号のエネ ルギ分布と、前記高周波領域の信号の前記トーン Zノイズ比とに基づいて、前記高 周波領域にトーン性を有する前記信号を付加するか否かを判定する
請求項 4記載の符号化装置。 [9] 前記トーン信号付加判定手段は、区分された前記高周波領域において、相対的に 低 、エネルギの複数の信号の中に、突出して高 、エネルギの信号が存在する場合 に、トーン性を有する前記信号を付加すると判定する
請求項 8記載の符号化装置。
[10] 前記符号化装置は、さらに、
区分された前記高周波領域の信号に含まれるトーン成分とノイズ成分とを、線形予 測を用いて算出する信号成分算出手段と、
算出された前記各成分のエネルギに基づ!/、て、前記高周波領域の信号のエネル ギと、前記高周波領域の信号のエネルギに含まれるノイズ成分のエネルギとを算出 する成分エネルギ算出手段とを備え、
前記符号化手段は、前記高周波領域の信号のエネルギを示す情報と、前記エネ ルギに含まれるノイズ成分のエネルギを示す情報とを含む符号化信号を生成する 請求項 1記載の符号化装置。
[11] 前記調整係数算出手段は、複製される前記低周波領域の信号のトーン性を抑制 する度合いを示す調整係数を算出し、
前記成分エネルギ算出手段は、さらに、算出された前記調整係数を用いて前記低 周波領域の信号のトーン性が抑制される分だけ、前記低周波領域のトーン成分のェ ネルギを補正した上で、前記高周波領域の信号のエネルギに含まれる前記ノイズ成 分のエネノレギを算出する
請求項 10記載の符号化装置。
[12] 前記成分エネルギ算出手段は、前記高周波領域に対応するすべてのサブバンド につ 、て、トーン性を有する前記信号が付加されるサブバンド内の信号に起因するノ ィズ成分と、トーン性を有する前記信号が付加されないサブバンド内の信号に起因 するノイズ成分との総和を求めることにより、前記高周波領域のエネルギのノイズ成分 を算出する
請求項 11記載の符号化装置。
[13] 前記成分エネルギ算出手段は、さらに、前記高周波領域に複製される前記低周波 領域の信号に、トーン性を有する前記信号が付加されるか否かに応じて、前記高周 波領域のノイズ成分のエネルギを算出する
請求項 11記載の符号化装置。
[14] 区分された時間 周波数領域において、低周波領域に属する信号を複製して、高 周波領域に属する信号を生成するための情報を含んだ符号化信号を生成する符号 化方法であって、
特定の周波数に信号成分が偏在するトーンと、周波数に関係なく信号成分が存在 するノイズとについて、区分された前記高周波領域の信号のトーン Zノイズ比と、前 記高周波領域に複製される前記低周波領域の信号のトーン Zノイズ比とを、線形予 測処理を用いて算出し、
前記低周波領域と前記高周波領域との信号について算出されたトーン Zノイズ比 に基づいて、前記高周波領域に複製される前記低周波領域の信号のトーン性を調 整する調整係数を算出し、
算出された前記調整係数を含む符号化信号を生成する符号化方法。
[15] 前記符号化方法は、さらに、
前記低周波領域及び前記高周波領域の信号について算出された前記トーン Zノ ィズ比に基づいて、前記高周波領域に複製される前記低周波領域の信号に、トーン 性を有する所定の信号を付加するか否かを判定し、
前記判定結果を含む符号化信号を生成する
請求項 14記載の符号化方法。
[16] 区分された時間 周波数領域において、低周波領域に属する信号を複製して、高 周波領域に属する信号を生成するための情報を含んだ符号化信号を生成する符号 化装置のためのプログラムであって、
特定の周波数に信号成分が偏在するトーンと、周波数に関係なく信号成分が存在 するノイズとについて、区分された前記高周波領域の信号のトーン Zノイズ比と、前 記高周波領域に複製される前記低周波領域の信号のトーン Zノイズ比とを、線形予 測処理を用いて算出するステップと、
前記低周波領域と前記高周波領域との信号について算出されたトーン Zノイズ比 に基づいて、前記高周波領域に複製される前記低周波領域の信号のトーン性を調 整する調整係数を算出するステップと、
算出された前記調整係数を含む符号ィ匕信号を生成するステップとをコンビュ 実行させるプログラム。
PCT/JP2005/007498 2004-04-23 2005-04-20 符号化装置 WO2005104094A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/575,452 US7668711B2 (en) 2004-04-23 2005-04-20 Coding equipment
JP2006512555A JP4741476B2 (ja) 2004-04-23 2005-04-20 符号化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-128961 2004-04-23
JP2004128961 2004-04-23

Publications (1)

Publication Number Publication Date
WO2005104094A1 true WO2005104094A1 (ja) 2005-11-03

Family

ID=35197222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007498 WO2005104094A1 (ja) 2004-04-23 2005-04-20 符号化装置

Country Status (3)

Country Link
US (1) US7668711B2 (ja)
JP (1) JP4741476B2 (ja)
WO (1) WO2005104094A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187905A (ja) * 2006-01-13 2007-07-26 Sony Corp 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
JP2008129542A (ja) * 2006-11-24 2008-06-05 Fujitsu Ltd 復号化装置および復号化方法
WO2009084221A1 (ja) * 2007-12-27 2009-07-09 Panasonic Corporation 符号化装置、復号装置およびこれらの方法
JP2010020251A (ja) * 2008-07-14 2010-01-28 Ntt Docomo Inc 音声符号化装置及び方法、音声復号化装置及び方法、並びに、音声帯域拡張装置及び方法
JP2011059685A (ja) * 2009-09-04 2011-03-24 Thomson Licensing 基本層及び拡張層を有する音声信号を検出する方法
JP2011215198A (ja) * 2010-03-31 2011-10-27 Sony Corp 復号装置および復号方法、符号化装置および符号化方法、並びにプログラム
JP2012515362A (ja) * 2009-01-16 2012-07-05 ドルビー インターナショナル アーベー クロス生成物により向上された高調波転換
JP2012234184A (ja) * 2006-01-06 2012-11-29 Realnetworks Inc 通信網を介して加入者端末機に送信されるオーディオ信号の出力品質改善のためのオーディオ信号の処理方法およびこの方法を採用したオーディオ信号処理装置
JP2014013408A (ja) * 2009-05-27 2014-01-23 Dolby International Ab 信号の高周波成分を生成するためのシステム及び方法
WO2014115225A1 (ja) * 2013-01-22 2014-07-31 パナソニック株式会社 帯域幅拡張パラメータ生成装置、符号化装置、復号装置、帯域幅拡張パラメータ生成方法、符号化方法、および、復号方法
JP2014523548A (ja) * 2011-06-30 2014-09-11 サムスン エレクトロニクス カンパニー リミテッド 帯域幅拡張信号生成装置及びその方法
JP2014240974A (ja) * 2014-08-06 2014-12-25 ソニー株式会社 符号化装置、符号化方法、およびプログラム
US9183847B2 (en) 2010-09-15 2015-11-10 Samsung Electronics Co., Ltd. Apparatus and method for encoding and decoding signal for high frequency bandwidth extension
JP2016105174A (ja) * 2010-12-29 2016-06-09 サムスン エレクトロニクス カンパニー リミテッド 高周波数帯域幅拡張のための符号化/復号化装置及びその方法
US10002621B2 (en) 2013-07-22 2018-06-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for decoding an encoded audio signal using a cross-over filter around a transition frequency
US10896684B2 (en) 2017-07-28 2021-01-19 Fujitsu Limited Audio encoding apparatus and audio encoding method
US11657788B2 (en) 2009-05-27 2023-05-23 Dolby International Ab Efficient combined harmonic transposition
US12112765B2 (en) 2015-03-09 2024-10-08 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder, audio decoder, method for encoding an audio signal and method for decoding an encoded audio signal
US12142251B2 (en) 2024-02-12 2024-11-12 Dolby International Ab Efficient combined harmonic transposition

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0709044D0 (en) 2007-05-11 2007-06-20 Teradyne Diagnostic Solutions Signal detection
KR101161866B1 (ko) * 2007-11-06 2012-07-04 노키아 코포레이션 오디오 코딩 장치 및 그 방법
US9082397B2 (en) * 2007-11-06 2015-07-14 Nokia Technologies Oy Encoder
WO2009059632A1 (en) * 2007-11-06 2009-05-14 Nokia Corporation An encoder
EP2301015B1 (en) * 2008-06-13 2019-09-04 Nokia Technologies Oy Method and apparatus for error concealment of encoded audio data
JP4932917B2 (ja) * 2009-04-03 2012-05-16 株式会社エヌ・ティ・ティ・ドコモ 音声復号装置、音声復号方法、及び音声復号プログラム
WO2011114192A1 (en) * 2010-03-19 2011-09-22 Nokia Corporation Method and apparatus for audio coding
US8560330B2 (en) * 2010-07-19 2013-10-15 Futurewei Technologies, Inc. Energy envelope perceptual correction for high band coding
US8849663B2 (en) 2011-03-21 2014-09-30 The Intellisis Corporation Systems and methods for segmenting and/or classifying an audio signal from transformed audio information
US9142220B2 (en) 2011-03-25 2015-09-22 The Intellisis Corporation Systems and methods for reconstructing an audio signal from transformed audio information
US8620646B2 (en) 2011-08-08 2013-12-31 The Intellisis Corporation System and method for tracking sound pitch across an audio signal using harmonic envelope
US8548803B2 (en) 2011-08-08 2013-10-01 The Intellisis Corporation System and method of processing a sound signal including transforming the sound signal into a frequency-chirp domain
US9183850B2 (en) 2011-08-08 2015-11-10 The Intellisis Corporation System and method for tracking sound pitch across an audio signal
US9058820B1 (en) 2013-05-21 2015-06-16 The Intellisis Corporation Identifying speech portions of a sound model using various statistics thereof
EP3731226A1 (en) * 2013-06-11 2020-10-28 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Device and method for bandwidth extension for acoustic signals
US9484044B1 (en) 2013-07-17 2016-11-01 Knuedge Incorporated Voice enhancement and/or speech features extraction on noisy audio signals using successively refined transforms
US9530434B1 (en) 2013-07-18 2016-12-27 Knuedge Incorporated Reducing octave errors during pitch determination for noisy audio signals
US9208794B1 (en) 2013-08-07 2015-12-08 The Intellisis Corporation Providing sound models of an input signal using continuous and/or linear fitting
US9870785B2 (en) 2015-02-06 2018-01-16 Knuedge Incorporated Determining features of harmonic signals
US9922668B2 (en) 2015-02-06 2018-03-20 Knuedge Incorporated Estimating fractional chirp rate with multiple frequency representations
US9842611B2 (en) 2015-02-06 2017-12-12 Knuedge Incorporated Estimating pitch using peak-to-peak distances
TWI771266B (zh) * 2015-03-13 2022-07-11 瑞典商杜比國際公司 解碼具有增強頻譜帶複製元資料在至少一填充元素中的音訊位元流
CN108496221B (zh) * 2016-01-26 2020-01-21 杜比实验室特许公司 自适应量化
JP6769299B2 (ja) * 2016-12-27 2020-10-14 富士通株式会社 オーディオ符号化装置およびオーディオ符号化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07295594A (ja) * 1994-04-28 1995-11-10 Sony Corp オーディオ信号符号化方法
JPH07336231A (ja) * 1994-06-13 1995-12-22 Sony Corp 信号符号化方法及び装置、信号復号化方法及び装置、並びに記録媒体
WO2003046891A1 (en) * 2001-11-29 2003-06-05 Coding Technologies Ab Methods for improving high frequency reconstruction
JP2004080635A (ja) * 2002-08-21 2004-03-11 Sony Corp 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
WO2004027368A1 (en) * 2002-09-19 2004-04-01 Matsushita Electric Industrial Co., Ltd. Audio decoding apparatus and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE512719C2 (sv) 1997-06-10 2000-05-02 Lars Gustaf Liljeryd En metod och anordning för reduktion av dataflöde baserad på harmonisk bandbreddsexpansion
SE9903553D0 (sv) 1999-01-27 1999-10-01 Lars Liljeryd Enhancing percepptual performance of SBR and related coding methods by adaptive noise addition (ANA) and noise substitution limiting (NSL)
US6978236B1 (en) 1999-10-01 2005-12-20 Coding Technologies Ab Efficient spectral envelope coding using variable time/frequency resolution and time/frequency switching
US7187907B2 (en) * 2000-05-09 2007-03-06 Bernard Widrow Simultaneous two-way transmission of information signals in the same frequency band
SE0004163D0 (sv) 2000-11-14 2000-11-14 Coding Technologies Sweden Ab Enhancing perceptual performance of high frequency reconstruction coding methods by adaptive filtering
KR100841096B1 (ko) * 2002-10-14 2008-06-25 리얼네트웍스아시아퍼시픽 주식회사 음성 코덱에 대한 디지털 오디오 신호의 전처리 방법
KR100754439B1 (ko) * 2003-01-09 2007-08-31 와이더댄 주식회사 이동 전화상의 체감 음질을 향상시키기 위한 디지털오디오 신호의 전처리 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07295594A (ja) * 1994-04-28 1995-11-10 Sony Corp オーディオ信号符号化方法
JPH07336231A (ja) * 1994-06-13 1995-12-22 Sony Corp 信号符号化方法及び装置、信号復号化方法及び装置、並びに記録媒体
WO2003046891A1 (en) * 2001-11-29 2003-06-05 Coding Technologies Ab Methods for improving high frequency reconstruction
JP2004080635A (ja) * 2002-08-21 2004-03-11 Sony Corp 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
WO2004027368A1 (en) * 2002-09-19 2004-04-01 Matsushita Electric Industrial Co., Ltd. Audio decoding apparatus and method

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234184A (ja) * 2006-01-06 2012-11-29 Realnetworks Inc 通信網を介して加入者端末機に送信されるオーディオ信号の出力品質改善のためのオーディオ信号の処理方法およびこの方法を採用したオーディオ信号処理装置
JP2007187905A (ja) * 2006-01-13 2007-07-26 Sony Corp 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
JP4736812B2 (ja) * 2006-01-13 2011-07-27 ソニー株式会社 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
JP2008129542A (ja) * 2006-11-24 2008-06-05 Fujitsu Ltd 復号化装置および復号化方法
WO2009084221A1 (ja) * 2007-12-27 2009-07-09 Panasonic Corporation 符号化装置、復号装置およびこれらの方法
JP2010020251A (ja) * 2008-07-14 2010-01-28 Ntt Docomo Inc 音声符号化装置及び方法、音声復号化装置及び方法、並びに、音声帯域拡張装置及び方法
JP2012515362A (ja) * 2009-01-16 2012-07-05 ドルビー インターナショナル アーベー クロス生成物により向上された高調波転換
US11200874B2 (en) 2009-05-27 2021-12-14 Dolby International Ab Efficient combined harmonic transposition
JP2014013408A (ja) * 2009-05-27 2014-01-23 Dolby International Ab 信号の高周波成分を生成するためのシステム及び方法
US11935508B2 (en) 2009-05-27 2024-03-19 Dolby International Ab Efficient combined harmonic transposition
US11657788B2 (en) 2009-05-27 2023-05-23 Dolby International Ab Efficient combined harmonic transposition
US10657937B2 (en) 2009-05-27 2020-05-19 Dolby International Ab Efficient combined harmonic transposition
US9190067B2 (en) 2009-05-27 2015-11-17 Dolby International Ab Efficient combined harmonic transposition
US10304431B2 (en) 2009-05-27 2019-05-28 Dolby International Ab Efficient combined harmonic transposition
JP2011059685A (ja) * 2009-09-04 2011-03-24 Thomson Licensing 基本層及び拡張層を有する音声信号を検出する方法
JP2011215198A (ja) * 2010-03-31 2011-10-27 Sony Corp 復号装置および復号方法、符号化装置および符号化方法、並びにプログラム
US10152983B2 (en) 2010-09-15 2018-12-11 Samsung Electronics Co., Ltd. Apparatus and method for encoding/decoding for high frequency bandwidth extension
US9183847B2 (en) 2010-09-15 2015-11-10 Samsung Electronics Co., Ltd. Apparatus and method for encoding and decoding signal for high frequency bandwidth extension
US9837090B2 (en) 2010-09-15 2017-12-05 Samsung Electronics Co., Ltd. Apparatus and method for encoding and decoding signal for high frequency bandwidth extension
US10811022B2 (en) 2010-12-29 2020-10-20 Samsung Electronics Co., Ltd. Apparatus and method for encoding/decoding for high frequency bandwidth extension
JP2016105174A (ja) * 2010-12-29 2016-06-09 サムスン エレクトロニクス カンパニー リミテッド 高周波数帯域幅拡張のための符号化/復号化装置及びその方法
US10453466B2 (en) 2010-12-29 2019-10-22 Samsung Electronics Co., Ltd. Apparatus and method for encoding/decoding for high frequency bandwidth extension
US9734843B2 (en) 2011-06-30 2017-08-15 Samsung Electronics Co., Ltd. Apparatus and method for generating bandwidth extension signal
US10037766B2 (en) 2011-06-30 2018-07-31 Samsung Electronics Co., Ltd. Apparatus and method for generating bandwith extension signal
JP2014523548A (ja) * 2011-06-30 2014-09-11 サムスン エレクトロニクス カンパニー リミテッド 帯域幅拡張信号生成装置及びその方法
JP2018025830A (ja) * 2011-06-30 2018-02-15 サムスン エレクトロニクス カンパニー リミテッド 帯域幅拡張信号の復号化装置
JP2016197271A (ja) * 2011-06-30 2016-11-24 サムスン エレクトロニクス カンパニー リミテッド 帯域幅拡張信号の復号化装置
US9349380B2 (en) 2011-06-30 2016-05-24 Samsung Electronics Co., Ltd. Apparatus and method for generating bandwidth extension signal
WO2014115225A1 (ja) * 2013-01-22 2014-07-31 パナソニック株式会社 帯域幅拡張パラメータ生成装置、符号化装置、復号装置、帯域幅拡張パラメータ生成方法、符号化方法、および、復号方法
JPWO2014115225A1 (ja) * 2013-01-22 2017-01-19 パナソニック株式会社 帯域幅拡張パラメータ生成装置、符号化装置、復号装置、帯域幅拡張パラメータ生成方法、符号化方法、および、復号方法
US9424847B2 (en) 2013-01-22 2016-08-23 Panasonic Corporation Bandwidth extension parameter generation device, encoding apparatus, decoding apparatus, bandwidth extension parameter generation method, encoding method, and decoding method
US10593345B2 (en) 2013-07-22 2020-03-17 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus for decoding an encoded audio signal with frequency tile adaption
US11735192B2 (en) 2013-07-22 2023-08-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder, audio decoder and related methods using two-channel processing within an intelligent gap filling framework
US10347274B2 (en) 2013-07-22 2019-07-09 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for encoding and decoding an encoded audio signal using temporal noise/patch shaping
US10332539B2 (en) 2013-07-22 2019-06-25 Fraunhofer-Gesellscheaft zur Foerderung der angewanften Forschung e.V. Apparatus and method for encoding and decoding an encoded audio signal using temporal noise/patch shaping
US10515652B2 (en) 2013-07-22 2019-12-24 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for decoding an encoded audio signal using a cross-over filter around a transition frequency
US10573334B2 (en) 2013-07-22 2020-02-25 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for encoding or decoding an audio signal with intelligent gap filling in the spectral domain
US10311892B2 (en) 2013-07-22 2019-06-04 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for encoding or decoding audio signal with intelligent gap filling in the spectral domain
US10276183B2 (en) 2013-07-22 2019-04-30 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for decoding or encoding an audio signal using energy information values for a reconstruction band
US10147430B2 (en) 2013-07-22 2018-12-04 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for decoding and encoding an audio signal using adaptive spectral tile selection
US10847167B2 (en) 2013-07-22 2020-11-24 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder, audio decoder and related methods using two-channel processing within an intelligent gap filling framework
US12142284B2 (en) 2013-07-22 2024-11-12 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder, audio decoder and related methods using two-channel processing within an intelligent gap filling framework
US10984805B2 (en) 2013-07-22 2021-04-20 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for decoding and encoding an audio signal using adaptive spectral tile selection
US11049506B2 (en) 2013-07-22 2021-06-29 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for encoding and decoding an encoded audio signal using temporal noise/patch shaping
US11996106B2 (en) 2013-07-22 2024-05-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E. V. Apparatus and method for encoding and decoding an encoded audio signal using temporal noise/patch shaping
US11222643B2 (en) 2013-07-22 2022-01-11 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus for decoding an encoded audio signal with frequency tile adaption
US11250862B2 (en) 2013-07-22 2022-02-15 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for decoding or encoding an audio signal using energy information values for a reconstruction band
US11257505B2 (en) 2013-07-22 2022-02-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder, audio decoder and related methods using two-channel processing within an intelligent gap filling framework
US11289104B2 (en) 2013-07-22 2022-03-29 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for encoding or decoding an audio signal with intelligent gap filling in the spectral domain
US10134404B2 (en) 2013-07-22 2018-11-20 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder, audio decoder and related methods using two-channel processing within an intelligent gap filling framework
US10332531B2 (en) 2013-07-22 2019-06-25 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for decoding or encoding an audio signal using energy information values for a reconstruction band
US11769513B2 (en) 2013-07-22 2023-09-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for decoding or encoding an audio signal using energy information values for a reconstruction band
US11769512B2 (en) 2013-07-22 2023-09-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for decoding and encoding an audio signal using adaptive spectral tile selection
US11922956B2 (en) 2013-07-22 2024-03-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for encoding or decoding an audio signal with intelligent gap filling in the spectral domain
US10002621B2 (en) 2013-07-22 2018-06-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for decoding an encoded audio signal using a cross-over filter around a transition frequency
JP2014240974A (ja) * 2014-08-06 2014-12-25 ソニー株式会社 符号化装置、符号化方法、およびプログラム
US12112765B2 (en) 2015-03-09 2024-10-08 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder, audio decoder, method for encoding an audio signal and method for decoding an encoded audio signal
US10896684B2 (en) 2017-07-28 2021-01-19 Fujitsu Limited Audio encoding apparatus and audio encoding method
US12142251B2 (en) 2024-02-12 2024-11-12 Dolby International Ab Efficient combined harmonic transposition

Also Published As

Publication number Publication date
US7668711B2 (en) 2010-02-23
US20070156397A1 (en) 2007-07-05
JPWO2005104094A1 (ja) 2008-03-13
JP4741476B2 (ja) 2011-08-03

Similar Documents

Publication Publication Date Title
WO2005104094A1 (ja) 符号化装置
RU2473140C2 (ru) Устройство для микширования множества входных данных
JP3762579B2 (ja) デジタル音響信号符号化装置、デジタル音響信号符号化方法及びデジタル音響信号符号化プログラムを記録した媒体
JP5485909B2 (ja) オーディオ信号処理方法及び装置
KR100986150B1 (ko) 합성된 스펙트럼 성분을 적용하기 위하여 디코딩된 신호의 특성을 사용하는 오디오 코딩 시스템
US9646616B2 (en) System and method for audio coding and decoding
JP5539203B2 (ja) 改良された音声及びオーディオ信号の変換符号化
JP5224017B2 (ja) オーディオ符号化装置、オーディオ符号化方法およびオーディオ符号化プログラム
JP5048697B2 (ja) 符号化装置、復号化装置、符号化方法、復号化方法、プログラムおよび記録媒体
JP6517723B2 (ja) 高度なスペクトラム拡張を使用して量子化ノイズを低減するための圧縮伸張装置および方法
JP3926726B2 (ja) 符号化装置および復号化装置
JP5267362B2 (ja) オーディオ符号化装置、オーディオ符号化方法及びオーディオ符号化用コンピュータプログラムならびに映像伝送装置
US20060031075A1 (en) Method and apparatus to recover a high frequency component of audio data
JP5480274B2 (ja) 信号処理方法及び装置
CA2489443C (en) Audio coding system using characteristics of a decoded signal to adapt synthesized spectral components
JP2010540990A (ja) 埋め込み話声およびオーディオコーデックにおける変換情報の効率的量子化のための方法および装置
JP4021124B2 (ja) デジタル音響信号符号化装置、方法及び記録媒体
JP2008519990A (ja) 信号符号化の方法
AU2021303726B2 (en) Audio quantizer and audio dequantizer and related methods
JP7447085B2 (ja) コンパンディングによる密過渡イベントの符号化
JP2008026372A (ja) 符号化データの符号化則変換方法および装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512555

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10575452

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10575452

Country of ref document: US