[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005037535A2 - 多層フィルム - Google Patents

多層フィルム Download PDF

Info

Publication number
WO2005037535A2
WO2005037535A2 PCT/JP2004/015868 JP2004015868W WO2005037535A2 WO 2005037535 A2 WO2005037535 A2 WO 2005037535A2 JP 2004015868 W JP2004015868 W JP 2004015868W WO 2005037535 A2 WO2005037535 A2 WO 2005037535A2
Authority
WO
WIPO (PCT)
Prior art keywords
polyvalent metal
layer
polymer
carboxyl group
polymer layer
Prior art date
Application number
PCT/JP2004/015868
Other languages
English (en)
French (fr)
Other versions
WO2005037535A1 (ja
WO2005037535A3 (ja
Inventor
Masahiro Yamazaki
Hideaki Tanaka
Yusaku Inaba
Original Assignee
Kureha Chemical Ind Co Ltd
Masahiro Yamazaki
Hideaki Tanaka
Yusaku Inaba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Chemical Ind Co Ltd, Masahiro Yamazaki, Hideaki Tanaka, Yusaku Inaba filed Critical Kureha Chemical Ind Co Ltd
Priority to JP2005514889A priority Critical patent/JP4684891B2/ja
Priority to EP20040792984 priority patent/EP1676700B1/en
Priority to CN2004800311842A priority patent/CN1871125B/zh
Priority to US10/576,677 priority patent/US7608339B2/en
Publication of WO2005037535A1 publication Critical patent/WO2005037535A1/ja
Publication of WO2005037535A2 publication Critical patent/WO2005037535A2/ja
Publication of WO2005037535A3 publication Critical patent/WO2005037535A3/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a multilayer film including a polymer layer containing a carboxyl group-containing polymer represented by poly (meth) acrylic acid and a polyvalent metal salt thereof.
  • the multilayer film of the present invention is excellent in gas barrier properties, moisture resistance, water resistance, hot water resistance, and water vapor resistance, and is excellent not only under low humidity conditions but also under high humidity conditions.
  • the multilayer film of the present invention is bent at the time of molding or the molded article is repeatedly bent after molding, the gas barrier property of the polymer layer is restored, and excellent gas barrier properties can be maintained. it can.
  • the multilayer film of the present invention can be suitably used, for example, in the field of packaging materials by utilizing these various properties.
  • the film means not only a film having a thickness of less than 0.25 mm but also a sheet having a thickness of 0.225 mm or more.
  • poly (meth) acrylic acid means polyacrylic acid, polymethacrylic acid, or a mixture thereof.
  • Polyvinyl alcohol film has excellent gas barrier properties, but has insufficient moisture resistance and water resistance, has a large humidity dependence of gas barrier properties, and is apt to remarkably deteriorate oxygen gas barrier properties due to moisture absorption.
  • the ethylene-butyl alcohol copolymer film has relatively good gas barrier properties and water resistance, but has large humidity dependence of gas barrier properties.
  • Poly (meth) acrylic acid film exhibits excellent gas barrier properties under dry conditions such as 0% relative humidity, but is inferior in moisture resistance, water resistance, hot water resistance, and water vapor resistance. Properties are significantly reduced.
  • a film is prepared by heat-treating a coating film composed of a mixture of poly (meth) acrylic acid and polyvinyl alcohol or saccharide, and then the film is immersed in a medium containing an alkali metal or an alkaline earth metal.
  • a method for producing a gas barrier film having improved hot water resistance and water vapor resistance by introducing an ionic bond between poly (meth) acrylic acid and a metal see, for example, Japanese Patent Application Laid-Open No. — 23 7180.
  • Each of the films disclosed in the above-mentioned Japanese Patent Application Laid-Open Nos. 10-237-180 and 2000-9331 has a ionic bond in addition to a crosslinked structure composed of an ester bond formed by heat treatment.
  • An ionic cross-linking (also called metal cross-linking) structure consisting of
  • the method of introducing an ionic bond using a metal compound disclosed in Japanese Patent Application Laid-Open Nos. Hei 10-237180 and 2000-931 also requires a coating film having the above composition to be formed under high temperature conditions.
  • esterification The film has a crosslinked structure, which makes it difficult to dispose or regenerate the film.
  • the silicon oxide thin film is formed by depositing a silicon oxide on each film.
  • Such a silicon oxide vapor-deposited film is liable to cause minute cracks due to bending. Oxygen gas and moisture penetrate the fine cracks. Therefore, when the moisture-proof film is subjected to bending fatigue, gas barrier properties and moisture-proof properties are reduced.
  • An object of the present invention is to provide a multilayer film including a film having excellent gas barrier properties underneath.
  • an object of the present invention is to provide a multilayer film capable of restoring the excellent gas barrier properties inherent in itself even if the gas barrier properties temporarily decrease due to bending or bending fatigue. It is in.
  • the inventors of the present invention have conducted intensive studies to achieve the above object, and have found that, by ion-crosslinking a carboxyl group-containing polymer such as poly (meth) acrylic acid with a polyvalent metal, gas barrier properties, moisture resistance, Excellent water resistance, hot water resistance and water vapor resistance, and excellent gas barrier properties under high humidity conditions as well as under low humidity conditions. I found that Ilm can be obtained.
  • this film does not dissolve or lose its shape due to water, hot water, water vapor, etc., but it dissolves in strongly acidic or strongly viscous water. And easy to reuse.
  • the film or a multilayer film including the film is bent, or when a molded article after the forming is subjected to bending fatigue, the oxygen gas barrier property is reduced.
  • a polyvalent compound formed by a reaction between the carboxyl group-containing polymer and a polyvalent metal compound is obtained.
  • a method of providing a gradient structure in the thickness direction for the metal salt concentration That is, in order to ion-crosslink a carboxyl group-containing polymer with a polyvalent metal, it is necessary to react the carboxyl group-containing polymer with a polyvalent metal compound to generate a polyvalent metal salt.
  • This polyvalent metal salt is a salt in which the carboxyl group of the carboxy ⁇ / group-containing polymer and the polyvalent metal are ion-bonded.
  • the concentration of the carboxyl group-containing polymer polyvalent metal salt in the obtained film is not uniformly distributed in the thickness direction, but rather in the thickness direction.
  • a concentration gradient is provided to provide a high concentration region and a low concentration region of the polyvalent metal salt.
  • the polyvalent metal compound is transferred from the polyvalent metal compound layer to the carboxyl group-containing polymer layer by adhering the polyvalent metal compound-containing layer to one or both sides of the carboxyl group-containing polymer layer. It can be formed by the method of making.
  • a multilayer film having a layer configuration in which a polyvalent metal compound-containing layer is adjacent to one or both sides of a polymer layer containing a carboxylic acid-containing polymer and a polyvalent metal salt of the carboxyl group-containing polymer Is obtained.
  • the polymer layer has a concentration gradient in which the concentration of the carboxyl group-containing polymer polyvalent metal salt in the polymer layer continuously decreases in the thickness direction from the surface adjacent to the polyvalent metal compound-containing layer. It has a structure. Even if such a concentration gradient is provided, if the ionic cross-linking degree of the entire polymer layer is adjusted to be a predetermined value or more, excellent gas barrier properties can be obtained. Can be demonstrated.
  • a polyvalent metal compound-containing layer (B) is provided on one or both sides of a polymer layer (A) containing a carboxyl group-containing polymer and a polyvalent metal salt of the carboxyl group-containing polymer.
  • a multilayer film having adjacent layer constitutions wherein (1) the polymer layer (A) has a concentration of a carboxyl group-containing polymer polyvalent metal salt in the polymer layer (A) containing a polyvalent metal compound-containing layer ( Has a concentration gradient structure that continuously decreases in the thickness direction from the surface adjacent to B), and
  • FIG. 1 is a cross-sectional view showing an example of a layer configuration of a multilayer film.
  • FIG. 2 is a cross-sectional view showing another example of the layer configuration of the multilayer film.
  • FIG. 3 is a diagram showing an example of a dumbbell concentration distribution in a polyacrylic acid layer based on a measurement of £ 1 ⁇ ⁇ £ 0.
  • FIG. 4 is a diagram showing another example of the concentration distribution of zinc in the polyacrylic acid layer based on the measurement of the temperature.
  • the carboxyl group-containing polymer used in the present invention is a polymer having two or more carboxyl groups in a molecule, and is sometimes referred to as a “polycarboxylic acid polymer”.
  • the polymer having a carboxylic acid group include a homopolymer of a carboxyl group-containing unsaturated monomer, a copolymer of a carboxyl group-containing unsaturated monomer, a carboxyl group-containing unsaturated monomer and another polymerizable monomer.
  • Typical examples are copolymers with a dimer and polysaccharides containing a hydroxyl group in the molecule (also referred to as “acidic polysaccharides”).
  • the carboxyl group includes not only a free carboxyl group but also an acid anhydride group (specifically, a dicarboxylic anhydride group).
  • the acid anhydride group may be partially opened to form a carboxyl group.
  • Some of the hydroxyl groups may be neutralized with alkali. In this case, the degree of neutralization is preferably 20% or less.
  • a graft polymer obtained by graft-polymerizing a polymer containing no carboxyl group, such as polyolefin, with an unsaturated monomer having a hydroxyl group can also be used as the carboxyl group-containing polymer.
  • a polymer having a hydrolyzable esterol group such as an alkoxy group (for example, a methoxycarbonyl group) is hydrolyzed and converted to a carboxyl group, and the resulting polymer is used as a carboxyl group-containing polymer. You can also.
  • the force Rupokishiru group-containing unsaturated monomer, a, I3- monoethylenically unsaturated saturated Preferred are carboxylic acids.
  • polymers containing a carboxylic acid group include homopolymers of ⁇ , i3-monoethylenically unsaturated carboxylic acids, copolymers of two or more ⁇ , ⁇ -monoethylenically unsaturated carboxylic acids, and ,) Includes copolymers of 3-monoethylenically unsaturated carboxylic acids and other polymerizable monomers.
  • an ethylenically unsaturated monomer is typical.
  • a, monomonoethylenically unsaturated carboxylic acids include, for example, unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid and crotonic acid; unsaturated dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid; Unsaturated dicarboxylic anhydrides such as acids and itaconic anhydrides; and mixtures of two or more of these.
  • acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and at least one ⁇ , monomonoethylenically unsaturated carboxylic acid selected from the group consisting of itaconic acid are preferable, and acrylic acid, methacrylic acid At least one ⁇ , ⁇ -monoethylenically unsaturated carboxylic acid selected from the group consisting of acids and maleic acid is more preferred.
  • polymerizable monomers copolymerizable with ⁇ , j3-monoethylenically unsaturated carboxylic acid especially ethylenically unsaturated monomers include, for example, ethylene; propylene, 1-butene, 11-pentene, 1 — ⁇ -olefins such as hexene and 1-otaten; saturated carboxylic acid esters such as butyl acetate; alkyl acrylates such as methyl acrylate and ethyl acrylate; methyl methacrylate, ethyl methacrylate; Methacrylic acid alkyl esters; chlorine-containing vinyl monomers such as vinyl chloride and vinylidene chloride; fluorine-containing vinyl monomers such as vinyl fluoride and vinylidene fluoride; unsaturated nitriles such as acrylonitrile and methacrylonitrile; Aromatic vinyl monomers such as ⁇ -methylstyrene and alkyl itaconate And the like
  • ethylenically unsaturated monomers can be used alone or in combination of two or more.
  • carboxyl group-containing polymer is a copolymer of an ⁇ , ⁇ -monoethylenically unsaturated carboxylic acid and a vinyl ester of a saturated sulfonic acid such as vinyl acetate
  • the copolymer is saponified.
  • Saturated carboxylic acid butyl ester unit was converted to butyl alcohol unit Copolymers can also be used.
  • carboxyl group-containing polysaccharides examples include acidic polysaccharides having a carboxyl group in the molecule, such as alginic acid, carboxymethyl cellulose, and pectin. These acidic polysaccharides can be used alone or in combination of two or more. Also, acidic polysaccharides can be used in combination with (co) polymers of ⁇ , -monoethylenically unsaturated carboxylic acids.
  • the carboxyl group-containing polymer used in the present invention is ⁇ a copolymer of a monoethylenically unsaturated carboxylic acid and another ethylenically unsaturated monomer
  • the resulting film has gas barrier properties and heat resistance.
  • the copolymer composition is preferably such that the ⁇ , monoethylenically unsaturated carboxylic acid monomer composition is at least 60 mol%, and preferably at least 80 mol%. More preferably, it is particularly preferably at least 90 mol%.
  • the carboxyl group-containing polymer is excellent in gas barrier properties, moisture resistance, water resistance, hot water resistance, water vapor resistance, and is easy to obtain a film excellent in gas barrier properties under high humidity conditions.
  • It is preferably a homopolymer or a copolymer obtained by polymerization of only a monoethylenically unsaturated carboxylic acid.
  • the carboxyl group-containing polymer is a (co) polymer comprising only ⁇ , ⁇ -monoethylenically unsaturated carboxylic acid
  • preferred specific examples thereof include acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, Homopolymers and copolymers obtained by the polymerization of at least one ⁇ , ⁇ -monoethylenically unsaturated carboxylic acid selected from the group consisting of itaconic acids; It is a mixture.
  • homopolymers and copolymers of at least one ⁇ , ⁇ -monoethylenically unsaturated carboxylic acid selected from the group consisting of acrylic acid, methacrylic acid and maleic acid are more preferred. .
  • polyacrylic acid As the carboxyl group-containing polymer, polyacrylic acid, polymethacrylic acid, polymaleic acid, and a mixture of two or more of these are particularly preferable.
  • Alginic acid is preferred as the acidic polysaccharide.
  • polyacrylic acid is particularly preferred because it is relatively easy to obtain and a film having excellent physical properties is easily obtained. Yes.
  • the molecular weight of the carboxyl group-containing polymer is not particularly limited, but from the viewpoint of film formability and film properties, the number average molecular weight is preferably in the range of 2,000 to 10,000,000, and 5,000. It is more preferably in the range of 1,000,000 to 1,000,000, and even more preferably in the range of 10,000,000 to 500,000.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC). In GPC measurement, generally, the number average molecular weight of a polymer is measured in terms of standard polystyrene.
  • the polymer constituting the film of the present invention besides the carboxyl group-containing polymer, other polymers are mixed as long as the properties such as gas barrier properties, hot water resistance and steam resistance of the film are not impaired. Can be used. In many cases, it is preferable to use only a polymer containing a hydroxyl group.
  • the oxygen-containing polymer used as a raw material has an oxygen permeation coefficient of preferably 1,000 cm, measured under drying conditions at 30 ° C and 0% relative humidity, for a film formed using it alone. 3 ⁇ ⁇ m / (m 2 ⁇ day ⁇ MP a) or less, more preferably 500 cm 3 ⁇ ⁇ m / ( m 2 ⁇ day ⁇ MP a) hereinafter, particularly preferably 1 00 cm 3 ⁇ ⁇ ⁇ . / (m 2 ⁇ day ⁇ MP a) It is desirable to have the following. If the oxygen permeation coefficient of the carboxyl group-containing polymer used as a raw material is too low, the gas barrier properties of the multilayer film of the present invention and the stability (hot water resistance and steam resistance) to hot water and steam tend to be insufficient.
  • the oxygen permeability coefficient of the carboxyl group-containing polymer used as a raw material can be determined by the following method.
  • the carboxyl group-containing polymer is dissolved in water to prepare an aqueous solution having a concentration of 10% by weight.
  • This aqueous solution is applied onto a plastic film substrate using a bar coater and dried to produce a coating film having a dry thickness of 1 / m on which a lipoxyl group-containing polymer layer is formed.
  • the oxygen permeability of the obtained coating film is measured under the conditions of 30 ° C. and 0% relative humidity.
  • a plastic film having a relatively high oxygen permeability is used as a plastic film substrate. Gained power
  • the oxygen permeability of the coating film having the dried coating film of the lipoxyl group-containing polymer is higher than the oxygen permeability of the plastic film used alone as the base material.
  • the measured value of the oxygen permeability can be regarded as substantially the oxygen permeability of the carboxyl group-containing polymer layer alone.
  • the measured value obtained as described above is the oxygen permeability of a 1 ⁇ m-thick lipoxyl group-containing polymer layer, and is converted to the oxygen permeability coefficient by multiplying the measured value by l / im. can do.
  • the oxygen permeability can be measured, for example, by using an oxygen permeation tester OXTRAN 2/20 manufactured by Modern Control.
  • the oxygen permeability is measured according to ASTM D 3985-81 (corresponding to the method B (isobaric method) specified in JIS K 7126)
  • the measured value is in cm 3 (S TP) / ( m 2 -day ⁇ MP a), but STP means standard conditions (0 ° C, 1 atm) for defining the volume of oxygen. It may be described.
  • the polyvalent metal compound used in the present invention is a polyvalent metal atom alone or a polyvalent metal compound in which the valence of a metal ion is 2 or more. Therefore, the polyvalent metal compound used in the present invention includes a polyvalent metal atom alone.
  • Specific examples of polyvalent metals include metals from Group A of the periodic table such as beryllium, magnesium, and calcium; transition metals such as titanium, zirconium, chromium, manganese, iron, cobalt, nickel, copper, and zinc; and aluminum. But not limited to these.
  • Specific examples of the polyvalent metal compound include, but are not limited to, oxides, hydroxides, carbonates, organic acid salts, and inorganic acid salts of polyvalent metals.
  • Organic salts include, for example, acetates, oxalates, citrates, lactates, phosphates, phosphites, hypophosphites, stearates, monoethylenically unsaturated carboxylic acids But not limited to, salts.
  • examples of the inorganic acid salt include, but are not limited to, chlorides, sulfates, and nitrates.
  • Alkyl alkoxides of polyvalent metals can also be used as polyvalent metal compounds. The These polyvalent metal compounds can be used alone or in combination of two or more.
  • polyvalent metal compounds beryllium, magnesium, calcium, copper, cobalt, nickel, zinc, and aluminum are preferred from the viewpoints of dispersion stability in a coating solution (coating solution) and gas barrier properties of a formed multilayer film.
  • zirconium compounds are preferred, and divalent metal compounds such as beryllium, magnesium, calcium, copper, zinc, cobalt and nickel are more preferred.
  • Preferred divalent metal compounds include, for example, oxides such as zinc oxide, magnesium oxide, copper oxide, nickel oxide, and cobalt oxide; carbonates such as calcium carbonate; organic acid salts such as calcium lactate, zinc lactate, and calcium acrylate Alkoxides such as magnesium methoxide; and the like, but not limited thereto.
  • the polyvalent metal compound is used as a solution or a dispersion. These solutions or dispersions are used as coating liquids.
  • the coating liquid contains a polyvalent metal compound, but may be a coating containing a resin component.
  • the average particle diameter is preferably 10 nm or more from the viewpoint of dispersion stability of the coating liquid and migration from the layer containing the polyvalent metal compound.
  • the range of 10 ⁇ m is preferred, the range of 12 nm to 1 ⁇ m is more preferred, the range of 15 to 500 nm is still more preferred, and the range of 15 to 50 nm is particularly preferred.
  • the multilayer film of the present invention is obtained by a method in which at least one carboxyl group-containing polymer layer and at least one polyvalent metal compound-containing layer are formed adjacent to each other on a substrate (support) by a coating method. Can be manufactured.
  • the polyvalent metal compound migrates from the polyvalent metal compound-containing layer into the carboxyl group-containing polymer layer, where it forms a polyvalent metal salt with the carboxyl group of the carboxyl group-containing polymer, thereby forming an ionic bond (ie, Ionic crosslinking) is introduced.
  • the number of layers to be arranged can be appropriately determined as necessary.
  • the polymer layer containing the lipoxyl group is represented by A
  • the layer containing the polyvalent metal compound is represented by B
  • specific examples of the multilayer structure include, for example, A / B, B / A / B, A / B / A is mentioned.
  • a multilayer structure of four or more layers such as A / B / A / B, B / A / BZA, and BZAZBZA / B may be used.
  • a plastic film is preferably used as the substrate.
  • the type of plastic that constitutes the plastic film is not particularly limited, but includes, for example, high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, polypropylene, poly (4-methylpentene), and cyclic polyolefin.
  • Polyolefin polymers and acid-modified products thereof vinyl acetate polymers such as poly (vinyl acetate), ethylene-mono-vinyl acetate copolymer, saponified ethylene-mono-vinyl acetate copolymer, and poly-vinyl alcohol, and modified products thereof
  • Polyesters such as poly (ethylene terephthalate), polybutylene terephthalate, and polyethylene naphthalate; aliphatic polyesters such as poly ⁇ -proprotatone, polyhydroxybutyrate, polyhydroxyparylate; nylon 6, nylon Polyamides such as 66, nylon 12, nylon 6/66 copolymer, nylon 612 copolymer, metaxylene adipamide and nylon 6 copolymer; polyethylene glycol, polyether sulfone, Polyethers such as polyphenylene sulfide and polyphenylene oxide; halogenated polymers such as polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride
  • an unstretched film or stretched film made of these plastics is used as a substrate. Lum is preferred.
  • thin films of inorganic compounds such as silicon oxide, aluminum oxide, aluminum, and silicon nitride; metal compounds, etc. are deposited on the surface of plastic films (including sheets) by vapor deposition, sputtering, ion plating, and the like. A substrate formed by the method can be used as a substrate.
  • a coating solution (coating solution) containing a carboxyl group-containing polymer and a solvent is prepared, and this coating solution is coated on a substrate or a layer containing a polyvalent metal compound. Apply and dry.
  • the solvent is not particularly limited as long as it is capable of uniformly dissolving or dispersing the polymer containing a hydroxyl group, and specific examples thereof include water; methyl alcohol, ethyl alcohol, and isopropyl. Alcohols such as alcohols; polar organic solvents such as dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide;
  • the concentration of the lipoxyl group-containing polymer in the coating liquid containing the lipoxyl group-containing polymer and the solvent is not particularly limited, but from the viewpoint of the stability, uniformity, and coating workability of the coating liquid. It is preferably in the range of 0.1 to 50% by weight, more preferably 1 to 40% by weight, and particularly preferably 5 to 30% by weight.
  • concentration of the lipoxyl group-containing polymer in the coating liquid containing the lipoxyl group-containing polymer and the solvent is not particularly limited, but from the viewpoint of the stability, uniformity, and coating workability of the coating liquid. It is preferably in the range of 0.1 to 50% by weight, more preferably 1 to 40% by weight, and particularly preferably 5 to 30% by weight.
  • additives such as an inorganic layered compound, a coloring agent, and an ultraviolet absorber represented by the formula (1) can be appropriately added.
  • the amount of the additive is preferably not more than 5% by weight, more preferably not more than 3% by weight, particularly preferably not more than 1% by weight of the
  • the polyvalent metal compound-containing layer can be formed by applying a coating solution containing a polyvalent metal compound on a substrate or a carboxyl group-containing polymer layer and drying.
  • the coating solution containing the polyvalent metal compound can be prepared by dissolving or dispersing the polyvalent metal compound in a solvent.
  • Solvents are those that can uniformly dissolve or disperse polyvalent metal compounds. There is no particular limitation, but specific examples thereof include water; methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propizole alcohol, n-butynoleanol, and n-pentynole.
  • Alkonoles such as alcohol; ketones such as acetone and methylethylketone; ethenoles such as getyl ether, dioxane, and tetrahydrofuran; esters such as ethinole acetate and butynole acetate; dimethyl sulfoxide, N, N-dimethyl Polar organic solvents such as acetoamide, N, N-dimethylformamide, N-methyl-1-pyrrolidone, tetramethylurine, hexamethylphosphate triamide, ⁇ -petit mouth ratataton; toluene, hexane , Heptane, cyclohexane and other hydrocarbons; That. These solvents can be used alone or in combination of two or more.
  • Additives such as resin components, dispersants, surfactants, softeners, stabilizers, film-forming agents, anti-blocking agents, and adhesives are appropriately added to the coating solution containing the polyvalent metal compound, if necessary. Can be added. From the viewpoint of improving the dispersibility and coatability of the polyvalent metal compound, it is preferable to include a resin component soluble in the solvent used.
  • Examples of the resin component added to the coating solution containing a polyvalent metal compound include alkyd resin, melamine resin, acrylic resin, nitrified cotton, urethane resin, polyester resin, phenol resin, amino resin, fluorine resin, and epoxy resin.
  • General-purpose binder resins for paints such as resins can be used. These resins do not contain carboxyl groups that react with polyvalent metal compounds.
  • the total amount (concentration) of the polyvalent metal compound, the resin component, and other additives in the coating liquid is preferably 1 to 50% by weight, from the viewpoint of the stability of the coating liquid and the coating workability. It is preferably in the range of 3 to 45% by weight, particularly preferably 5 to 40% by weight.
  • the polymer layer containing a lipoxyl group or a polyvalent metal compound may be used.
  • An adhesive (primer) can be applied to the surface of the substrate to improve the adhesion between the compound-containing layer and the substrate.
  • the type of adhesive is particularly limited Specific examples include, but are not limited to, alkyd resins, melamine resins, acrylic resins, nitrified cotton, urethane resins, polyester resins, and phenols that are soluble in solvents used for dry lamination, anchor coating, and primer. Resins, amino resins, fluororesins, and epoxy resins can be used.
  • Each coating solution is applied and dried such that the carboxyl group-containing polymer layer and the polyvalent metal compound-containing layer are disposed adjacent to each other on the substrate.
  • a method is adopted in which one coating liquid is applied and dried, and then another coating liquid is applied thereon and dried.
  • the layer constitution the above-mentioned layer constitution can be adopted.
  • Preferred layer constitutions including the substrate layer are, for example, a substrate layer as a “substrate” and a carboxyl group-containing polymer layer as A
  • a specific example of the multilayer structure is, for example, “base material / AZ B” (base material 1 Z carboxyl group-containing polymer layer 2 polyvalent Metallic compound-containing layer 3), and ⁇ Base ZB / AZBj (Base 21 / polyvalent metal compound-containing layer 22 / carboxyl group-containing polymer layer 23 / polyvalent metal compound-containing layer 24) shown in FIG. Or "Base material ZAZ B no A".
  • a and B may be arranged alternately so as to form a multi-layered structure.
  • the above-mentioned adhesive layer may be provided to enhance the adhesion between the substrate and the coating film thereon.
  • the coating method of each coating liquid is arbitrary, such as a spray method, a dive method, a coating method using a coater, and a printing method using a printing machine.
  • a gravure coater such as a direct gravure method, a reverse gravure method, a kiss reverse gravure method, or an offset gravure method.
  • Zopcoater Coater, Comma Coater-Tie Coater 1, etc. can be employed.
  • the method for drying the coating film is not particularly limited, as long as a solid layer can be obtained by evaporating the solvent.
  • a method of natural drying a method of drying in an open at a predetermined temperature, and the like.
  • a method using any other drying means include the art dryers, floating dryers, drum dryers, and infrared dryers that come with various coaters. Dryers such as laiya are typical. Drying conditions can be arbitrarily set within a range in which a coating film, a film, a substrate, and the like are not damaged by heat. Drying is performed until the solvent in the coating film is substantially removed.
  • the dry thickness of the carboxyl group-containing polymer layer is not particularly limited, but is usually 0.001 m to 1 mm, preferably 0.01 to 100 mm, from the viewpoint of moldability during film formation and film handling. ⁇ , more preferably 0.1 to 10 ⁇ m, particularly preferably 0.5 to 5 im.
  • the dry thickness of the polyvalent metal compound-containing layer is generally in the range of 0.001 m to: L mm, preferably in the range of 0.01 to 100 jum, and more preferably in the range of 0.1 to 10 ⁇ .
  • the polyvalent metal compound is transferred from the adjacent polyvalent metal compound-containing layer into the lipoxyl group-containing polymer layer to form a polyvalent metal salt of the lipoxyl group-containing polymer.
  • the carboxyl group-containing polymer layer is converted into a “polymer layer ( ⁇ ) containing a carboxyl group-containing polymer and a polyvalent metal salt of the carboxyl group-containing polymer”. Since the transfer of the polyvalent metal compound includes the transfer in the form of a polyvalent metal ion, the transfer is hereinafter referred to as “the transfer of the polyvalent metal ion”.
  • the transfer of polyvalent metal ions can be performed by leaving the multilayer film at room temperature and humidity for a long period of time.However, the transfer of polyvalent metal ions is accelerated, and before the secondary forming of the multilayer film, In order to form a desired concentration gradient structure of the polyvalent metal salt having a carboxyl group-containing polymer having a desired level of gas barrier properties (oxygen gas permeability or oxygen gas permeability coefficient), a predetermined humidity and temperature must be satisfied. It is desirable to perform aging (moisture conditioning) in the prepared atmosphere.
  • gas barrier properties oxygen gas permeability or oxygen gas permeability coefficient
  • the multilayer film is prepared at a relative humidity of usually 20% or more, preferably 40 to 100%, more preferably 60 to 100%, and a temperature of usually 5 ° C to 200%. C, preferably 20. 1 to 150 ° C, more preferably 30 ° C.
  • the aging time is appropriately adjusted depending on the relative humidity and temperature until the desired gas barrier property and the concentration gradient structure are formed, preferably within 10 days, more preferably within 5 days, and further preferably within 2 days. Within days.
  • the pressure during aging is 0.00 IMP a (0.O la tm) to 1000 MPa (10000 atm).
  • the multilayer film of the present invention comprises a polymer layer (A) containing a carboxyl group-containing polymer and a polyvalent metal salt of the carboxyl group-containing polymer, wherein the polymer layer (A) has It is necessary to have a concentration gradient structure in which the concentration of the coalesced polyvalent metal salt continuously decreases in the thickness direction from the surface adjacent to the polyvalent metal compound-containing layer (B).
  • the concentration gradient structure is determined, for example, by observing an image with a transmission electron microscope (TEM) or a scanning electron microscope (SEM), and determining a measurement point. Then, in the cross-sectional thickness direction of the film [polymer layer (A)], It can be identified by measuring the elemental composition distribution by energy dispersive X-ray spectroscopy (EDX).
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • EDX energy dispersive X-ray spectroscopy
  • the ratio M C of the number M of polyvalent metal atoms to the number C of carbon atoms at the measurement point can be measured.
  • FIG. 3 and FIG. A concentration gradient structure as shown can be observed.
  • the polyvalent metal element forms a salt with the carboxyl group of the carboxy group-containing polymer, and the concentration distribution of the polyvalent metal element in the thickness direction is determined by the polymer layer (A).
  • 3 shows the concentration distribution of the carboxyl group-containing polymer polyvalent metal salt in the parentheses.
  • Fig. 3 shows the case of the layer structure of "A / B”
  • Fig. 4 shows the layer structure of ⁇ / ⁇ / BJ. The case of is shown.
  • the polymer layer (A) of the multilayer film of the present invention is formed of a carboxyl group-containing polymer polyvalent metal salt.
  • the polymer layer (A) of the multilayer film of the present invention is formed of a carboxyl group-containing polymer polyvalent metal salt.
  • the polymer layer (A) has a gradient structure of the concentration of the polyvalent metal salt of the lipoxyl group-containing polymer, so that a moderately low concentration region exists, thereby improving processability and gas barrier properties. Can be compatible.
  • the concentration gradient structure of the polymer layer (A) has an element molar ratio [metal element (n-valent) ZC element] calculated based on the elemental composition analysis in the thickness direction by energy dispersive X-ray spectroscopy. It is preferable to have a low concentration region of the carboxyl group-containing polymer polyvalent metal salt in the range of 0.06 / n to 5% to 80% in terms of the thickness ratio of the polymer layer (A).
  • the molar ratio of the elements in the low concentration region is preferably in the range of 0 to 0.05 / n, more preferably in the range of 0 to 0.04 / n.
  • the thickness ratio of the low concentration region is preferably in the range of 5 to 70%, more preferably 5 to 60%.
  • the molar ratio of the element in which the carboxyl group-containing polymer polyvalent metal salt is not substantially present is in the range of 0 to 0.04 / n, and the thickness ratio of the polymer layer (A) is 5 to 30%. It is particularly preferable that the content is within the range of
  • the concentration gradient structure of the polymer layer (A) is based on the elemental composition analysis in the thickness direction by energy dispersive X-ray spectroscopy.
  • the molar ratio of the elements in the high concentration region is preferably in the range of 0.07 to 0.33 / ⁇ , and more preferably in the range of 0.08 to 0.33 ⁇ .
  • the thickness ratio of the high concentration region is preferably in the range of 20 to 80%, more preferably 20 to 70%.
  • the multilayer film of the present invention has gas barrier properties, water resistance, hot water resistance, and water vapor resistance.
  • the polymer layer wavenumber is determined based on the infrared absorption scan Bae-vector of (A) 1 560 cm one first absorption peak height A 156 of at.
  • peak ratio A 1560 ZA 1700 between the height A 1700 of the absorption peak at the wave number 1700 cm one 1 is 0.25 or more. This peak ratio is more preferably 0.30 or more, and particularly preferably 0.40 or more.
  • the method for measuring the peak ratio is described in Examples.
  • the multilayer film of the present invention is characterized in that the total lipoxyl group-containing polymer layer (A) and the total polyvalent metal compound with respect to the total (A t) of the total lipoxyl groups contained in all the carboxyl group-containing polymer layers (A) It is preferable that the chemical equivalent of the polyvalent metal compound to the carboxyl group calculated based on the total (B t) of the polyvalent metal compounds contained in the containing layer (B) is 1.0 or more. This chemical equivalent is desirably in the range of preferably 1.0 to 10.0, more preferably 1.0 to 5.0, from the viewpoints of moldability and transparency of the multilayer film.
  • the total of lipoxyl groups includes not only free lipoxyl groups but also other forms such as lipoxyl groups which are carboxylic acid polyvalent metal salts.
  • the total of the polyvalent metal compounds includes those in the form of carboxylic acid polyvalent metal salts.
  • the chemical equivalent can be determined, for example, as follows.
  • the case where the carboxy group-containing polymer is polyataryl acid and the polyvalent metal compound is magnesium oxide will be described as an example. Assuming that the mass of polyacrylic acid is 100 g, the molecular weight of the monomer unit of polyacrylic acid is 72, and each monomer has one carboxylic acid group. The amount of carboxyl groups is 1.39 mol. At this time, 1. stoichiometric equivalent per 100 g of polyacrylic acid is the amount of the base that neutralizes 1.39 mol. When magnesium oxide is used in a ratio of 1.0 chemical equivalent to 100 g of polyacrylic acid, magnesium oxide that only neutralizes 1.39 moles of carboxyl groups is used. You can use a program. Since the valence of magnesium is divalent and the molecular weight of magnesium oxide is 40, 1.0 chemical equivalent of magnesium oxide per 100 g of polyacrylic acid is 27.8 g (0.695 mol) .
  • the multilayer film of the present invention can recover the oxygen gas barrier property by aging treatment even if the oxygen gas barrier property decreases due to bending or bending fatigue. More specifically, a multilayer film formed into a cylindrical shape was used as a sample, and a bending test was performed with Gelboflex 150 times using a gelbotester at a temperature of 5 ° C and a relative humidity of 10% in accordance with the provisions of ASTM F392. Thereafter, when the sample was aged for 20 hours in an environment of a temperature of 30 ° C and a relative humidity of 80%, the temperature was adjusted to 30 according to ASTM D 3985-81.
  • the oxygen permeability of the sample after aging measured under the conditions of C and 0% relative humidity is preferably within ⁇ 50%, more preferably within ⁇ 30%, particularly preferably within ⁇ 30% of the oxygen permeability of the sample before the bending test. Or less than ⁇ 10%.
  • the multilayer film of the present invention has an oxygen permeability of preferably 1,000 cm 3 (STP) under any conditions of a temperature of 30 ° C. and a relative humidity of 0% and a temperature of 30 ° C. and a relative humidity of 80%. / (m 2 - day ⁇ MP a) or less, more preferably 5 00 cm 3 (STP) Z (m 2 - day ⁇ MP a) , particularly preferably not more than 10 0 cm 3 (STP) / (m 2 ⁇ day ⁇ MP a) It is desirable to have the following gas barrier properties.
  • the substrate of the multilayer film of the present invention can be removed as desired, it is often used as a multilayer film containing a substrate for use in packaging materials.
  • one or more other resin layers can be disposed by a lamination method or a coating method.
  • Other resin layers include, but are not limited to, the resin layer used as the base material, and various resin layers capable of imparting desired properties such as heat sealability, abrasion resistance, and heat resistance. Can be arranged.
  • one or more layers such as metal foil and silicon oxide can be formed by a lamination method or a vapor deposition method.
  • the multilayer film of the present invention can be used for foods, beverages, medicines, It is suitable as a packaging material for pharmaceuticals and electronic components.
  • the multilayer film of the present invention is suitable as a material for packaging containers such as bottles, cups, trays, tubes, and bags.
  • the secondary forming process for such a container is optional such as heat sealing, sheet forming (vacuum forming and Z or pressure forming).
  • the multilayer film of the present invention can recover the gas barrier property over time even if the multilayer film is bent at the time of molding. Further, a molded article such as a container formed using the multilayer film of the present invention can maintain a high gas barrier property even when subjected to bending fatigue.
  • the infrared absorption spectrum was measured by FTIR 8200 manufactured by Shimadzu Corporation by the attenuated total reflection method (ATR method). And based on the infrared absorption spectrum of the film, the peak height ratio A 156. ZA 17 . . I asked.
  • a 1560 is the absorption peak height of the infrared absorption spectrum attributable to the carboxyl group salt (—COO—) at a wavenumber of about 1560 cm ⁇ 1 due to C-0 stretching vibration.
  • the absorbance of the film is determined by the amount of infrared active species present in the film. There is a proportional relationship. Therefore, the peak ratio of the infrared absorption spectrum, A 1560 "A i 7., indicates that the carboxyl group of the carboxyl group-containing polymer in the film has a liberation force with the carboxylate (1-COO-), which forms a salt with a polyvalent metal. It can be used as a measure of the ratio of lipoxyl groups (1-COOH), which is also an indicator of the degree of ionization.
  • the oxygen permeability of the film was measured using an oxygen permeation tester OX tran 2/20 manufactured by Modern Control (Modern Control 1) under the conditions of a temperature of 30 ° C. and a relative humidity of 0%. The measurement was performed in accordance with ASTM D 3985-81 (corresponding to the method B of JISK 7126). The unit of the measured value is cm 3 (STP) / (m 2 -day-MP a). "STPJ means standard conditions (0 ° C, 1 atm) for defining the volume of oxygen.
  • the oxygen permeability was measured before and after the bending test described below. Furthermore, after the bending test, the sample was aged for 20 hours in an environment of a temperature of 30 ° C and a relative humidity of 80%, and the oxygen permeability of this aged sample (referred to as a humidity control sample) was also measured.
  • a bending test was performed using a gel botester under conditions of a temperature of 5 ° C and a relative humidity of 10%. This method repeats the operation of twisting a film formed into a cylindrical shape and compressing it, and was used as a method for testing the film for bending fatigue resistance. Specifically, a cylindrical multilayer molded film was used as a sample, and a bending test was performed with a gel pot tester for 150 times under the above conditions using a gel pot tester.
  • the multilayer film to be observed was embedded with an epoxy resin (trade name “Quentol 812J” manufactured by Nissin EM Co., Ltd.)
  • the embedded material was trimmed to about 0.5 X 0.5 mm square and Ultra Ultrathin sections were obtained using a microtome (trade name “ULTRACUT. Nj” manufactured by Reichert-Nissei Co.)
  • the thickness of the ultrathin section was about 100 nm.
  • Observation of a transmission electron microscope (TEM) image of the obtained ultrathin section was performed using a transmission electron microscope HF-2000 manufactured by Hitachi, Ltd., and measurement points were determined.
  • the element composition distribution in the thickness direction of the film cross section was measured by energy dispersive X-ray spectroscopy (EDX).
  • EDX energy dispersive X-ray spectroscopy
  • Measuring device NO RAN elemental analyzer VOYAGE R III,
  • X-ray detector S i ZL i semiconductor detector
  • Beam diameter about 1 ⁇
  • Capture time 30 seconds.
  • the concentration of the polyvalent metal element component in the polymer layer containing the polymer containing a lipoxyl group and the polymer containing a carboxyl group is described. The distribution was evaluated.
  • the polyvalent metal element in the polymer layer forms a salt with a carboxyl group, and the concentration distribution of the polyvalent metal element in the thickness direction indicates that the carboxyl group-containing polymer polyvalent metal in the polymer layer 3 shows a salt concentration distribution. That is, the ratio MZC of the number of polyvalent metal atoms ⁇ ⁇ ⁇ ⁇ to the number of carbon atoms C in the thickness direction of the film cross section was used as identification of the inclined structure.
  • Polyacrylic acid aqueous solution [manufactured by Toagosei Co., Ltd., trade name “Aron II ⁇ -10 ⁇ ”, concentration 25% by weight, number average molecular weight 200,000] is diluted with distilled water to obtain a polyacrylic acid having a concentration of 10% by weight.
  • An aqueous acid ( ⁇ ) solution was prepared.
  • the resulting aqueous solution, oriented polyethylene terephthalate Tofirumu [[rho E T Film: Toray Co., Ltd., trade name "Lumirror 1" M S 10 ", thickness 12 m, 90 ° 3 0 in hot water at C The heat shrinkage when immersed for 0.5 seconds is 0.5%].
  • a bar coater (RK PRINT-COAT INS TRUMENT, product name "K303 PROO” FER TM J), and the coating film was dried with a dryer. Dry coating amount of polyacrylic acid, at 0. 90 ⁇ Bruno 111 2, dry thickness of the coating film (film) was 1. O / zm.
  • an ultrafine zinc oxide-containing paint [trade name “ZR133” manufactured by Sumitomo Osaka Cement Co., Ltd., 33% by weight of all nonvolatile components, on the PAA film thus obtained, Ultrafine zinc oxide particles 18% by weight] was applied and dried to prepare a multilayer film having a layer structure of “ ⁇ / ⁇ -containing layer”.
  • the dry coating amount of the ultrafine zinc oxide-containing paint was 2.7 g / m 2 , and the dry film thickness was 1.5 / zm.
  • the resin component of this paint is an unsaturated polyester resin and contains an isocyanate compound as a curing agent and a phosphate-based surfactant. +
  • the multilayer film was left standing in a thermo-hygrostat adjusted to an atmosphere of a temperature of 30 ° C and a relative humidity of 80% for 24 hours to transfer Zn ions into the PAA film, and the PAA was subjected to solid-phase reaction.
  • the multilayer film has a layer configuration including a base material 1, a polymer group containing a carboxylic acid group 2, and a layer 3 containing a polyvalent metal compound.
  • the multilayer film thus obtained had a peak ratio of infrared absorption spectrum of 156 . / 17 . .
  • the oxygen permeability and the zinc concentration distribution in the thickness direction of the PAA film were measured. Table 1 shows the measurement results.
  • the concentration distribution of zinc is shown in Fig. 3 by plotting the value of the molar ratio of elements (Zn / C) against the distance in the thickness direction from the metal compound layer.
  • the zinc concentration in the PAA layer shows a concentration gradient structure in which the zinc concentration continuously decreases in the thickness direction from the surface adjacent to the Z ⁇ -containing layer.
  • This measurement result indicates that the PAA layer has a concentration gradient structure in which the concentration of the carboxyl group-containing polymer polyvalent metal salt in the PAA layer continuously decreases in the thickness direction from the surface adjacent to the polyvalent metal compound-containing layer. It is shown that.
  • the oxygen permeability was measured for the multilayer films before and after the bending test.
  • the oxygen permeability was determined by conducting a flex test of the multilayer film sample 150 times with a gel pot tester using a gel pot tester, and then subjecting the sample to a temperature of 30 ° C and a relative humidity of 8.
  • the sample was aged for 20 hours in a 0% environment, and the aged sample was also measured.
  • the oxygen permeability of the multilayer film sample prepared above was measured under the conditions of a temperature of 30 ° C and a relative humidity of 80%. As a result, the oxygen permeability [cm 3 (STP) / (m 2 ⁇ day-MP a)] was 15 before the flex fatigue test, 52 after the flex fatigue test, and after moisture conditioning after the flex fatigue test. It was 30. Therefore, it is understood that the multilayer film of the present invention exhibits excellent oxygen gas barrier properties even under high humidity conditions.
  • the same ultrafine zinc oxide-containing paint as described above is applied using a bar coater and dried to form a layer configuration of ⁇ / ⁇ -containing layer ⁇ nO-containing layer.
  • a multilayer film was prepared.
  • the dry coating amount of the ultrafine zinc oxide-containing paint was 2.4 g / m 2 , and the dry film thickness was 1.3 m.
  • This multilayer film was allowed to stand for 24 hours in a thermo-hygrostat adjusted to an atmosphere of a temperature of 30 ° C and a relative humidity of 80% to transfer Zn ions into the PAA film. Then, a zinc salt of PAA was formed by a solid-phase reaction.
  • the multilayer film has a layer configuration including a base material 21, a polyvalent metal compound-containing layer 22, a carboxyl group-containing polymer layer 23, and a polyvalent metal compound-containing layer 24.
  • the peak ratio A 156 of the infrared absorption spectrum was obtained. / A 17 . .
  • the oxygen permeability and the zinc concentration distribution in the thickness direction of the PAA film were measured. Table 1 shows the results.
  • the zinc concentration distribution is shown in FIG. 4 by plotting the value of the element molar ratio (Zn / C) against the distance in the thickness direction from the metal compound layer.
  • the zinc concentration in the PAA layer shows a concentration gradient structure in which the zinc concentration continuously decreases in the thickness direction from the surface adjacent to the Z ⁇ -containing layer.
  • the measurement results shown in FIG. 4 show that the PAA layer has a concentration of the carboxyl group-containing polymer polyvalent metal salt in the PAA layer. This indicates that the layer has a concentration gradient structure that continuously decreases from the surface adjacent to the polyvalent metal compound-containing layer to the center of the PAA layer in the thickness direction. Comparative Example 1
  • PET film [Toray Co., Ltd., trade name "Lumirror TM S 10J] on, Kei-containing oxide with a base Ruja evaporator depositing a deposited film of (S i 0 2).
  • the oxygen permeability of the obtained multilayer film having the layer structure of “PET / SiO 2 deposited film” was measured. Table 1 shows the results.
  • Comparative Example 1 50 1000 1000 1000
  • the unit of oxygen permeability is cm 3 (STP) / m 2 ⁇ day ⁇ MPa (temperature 30 C, relative humidity 0%).
  • the oxygen permeability of the PET film used as the substrate was 1,400 cm 3 (STP) / m 2 ⁇ day ⁇ MPa (temperature 30 ° C, relative humidity 0%).
  • the present invention it is possible to provide a multilayer film which is excellent in gas barrier properties, moisture resistance, water resistance, hot water resistance, and water vapor resistance, and excellent in gas barrier properties not only under low humidity conditions but also under high humidity conditions.
  • the multilayer film of the present invention may be bent at the time of molding, or the molded article may be repeatedly bent after molding. Even if the rear properties decrease, the gas barrier properties recover over time.
  • the multilayer film of the present invention can be suitably used, for example, in the field of packaging materials by utilizing these characteristics.

Landscapes

  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Description

明細書 多層フィルム 技術分野
本発明は、 ポリ (メタ) アクリル酸に代表されるカルボキシル基含有重合 体とその多価金属塩とを含有する重合体層を含む多層フィルムに関する。 本 発明の多層フィルムは、 ガスバリア性、 耐湿性、 耐水性、 耐熱水性、 耐水蒸 気性に優れ、 低湿条件下ではもとより、 高湿条件下でのガスパリァ性に優れ ている。
さらに、 本発明の多層フィルムは、 成形時に折り曲げ加工されたり、 成形 後に成形品が繰り返し屈曲されたりしても、 該重合体層のガスパリア性が回 復し、 優れたガスバリア性を維持することができる。 本発明の多層フィルム は、 これらの諸特性を生かして、 例えば、 包装材料の分野で好適に用いるこ とができる。
本発明において、 フィルムとは、 厚みが 0 . 2 5 mm未満のものだけでは なく、 0 . 2 5 mm以上のシートをも意味するものとする。 また、 本発明に おいて、 ポリ(メタ) アクリル酸とは、 ポリアクリル酸またはポリメタクリル 酸若しくはこれらの混合物を意味する。 背景技術
ポリビエルアルコールフィルムは、 ガスパリア性に優れているが、 耐湿性 及ぴ耐水性が不十分であり、 ガスバリァ性の湿度依存性も大きく、 吸湿によ つて、 酸素ガスバリア性が著しく低下し易い。 エチレン一ビュルアルコール 共重合体フィルムは、 ガスバリア性及ぴ耐水性が比較的良好であるものの、 ガスパリア性の湿度依存性が大きい。 ポリ (メタ) アクリル酸フィルムは、 相対湿度 0 %のような乾燥条件下では優れたガスバリァ性を示すが、 耐湿性、 耐水性、 耐熱水性、 耐水蒸気性に劣り、 特に高湿条件下においてガスバリア 性が著しく低下する。 従来、 ポリ (メタ) アクリル酸またはその部分中和物とポリビエルアルコ ールまたは糖類との混合物から形成された塗膜を熱処理することにより、 ガ スバリア性、 耐水性、 耐熱水性に優れ、 ガスバリア性の湿度依存性が小さな フィルムを得る方法が提案されている (例えば、 日本国の特許第 27366 00号公報、 特許第 28 1 1 540号公報、 特許第 3 20328 7号公報、 及ぴ特許第 3340780号公報)。
し力 し、 これらの方法では、 ガスパリア性フィルムを得るために、 一般に、 前記混合物からなる塗膜を 1 00°C以上の高温で比較的長時間にわたって加 熱処理する必要がある。 また、 上記フィルムは、 熱処理により前記ポリマー 間にエステル結合が生成し、 その結果、 高度に架橋しており、 使用後の廃棄 処理や再利用が困難である。
ポリ (メタ) アクリル酸とポリビエルアルコールまたは糖類との混合物か らなる塗膜を熱処理してフィルムを作製し、 次いで、 該フィルムをアルカリ 金属またはアルカリ土類金属を含む媒体中に浸漬処理して、 ポリ (メタ) ァ クリル酸と金属との間にイオン結合を導入することにより、 耐熱水性及ぴ耐 水蒸気性が向上したガスバリア性フィルムを製造する方法が提案されている (例えば、 特開平 10— 23 7180号公報)。
ポリ (メタ) アクリル酸またはその部分中和物とポリビュルアルコールま たは糖類との混合物から形成された塗膜の表面に金属化合物含有層を形成し、 該塗膜中への金属化合物の移行によりイオン結合を形成させて、 ガスパリア 性、 耐熱水性、 耐水蒸気性に優れたフィルムを製造する方法が提案されてい る (例えば、 特開 2000— 93 1号公報)。
上記の特開平 1 0— 23 7 1 80号公報及ぴ特開 2000— 9 3 1号公報 に開示されている各フィルムには、 熱処理により生成したエステル結合から なる架橋構造に加えて、 イオン結合からなるイオン架橋 (金属架橋ともい う) 構造が導入されている。
しかし、 特開平 10— 23 71 80号公報及ぴ特開 2000— 93 1号公 報に開示されている金属化合物を用いたイオン結合の導入方法も、 前記組成 を持つ塗膜を高温条件下で熱処理する必要があることに加えて、 エステル結 合による架橋構造を有しているため、 フィルムの廃棄処理や再生処理が困難 である。
他方、 少なくとも片面にケィ素酸化物薄膜を形成したポリビニルアルコー ルフィルムと、 少なくとも片面にケィ素酸化物薄膜を有する透明なプラスチ ックフィルムを少なくとも 1層含む透明フィルムとを接合した積層構造を有 する防湿フィルムが提案されている (例えば、 特開平 2— 2 5 8 2 5 1号公 報)。 ケィ素酸化物薄膜は、 ケィ素酸化物を各フィルム上に蒸着することによ り形成されている。 このようなケィ素酸化物の蒸着膜は、 屈曲により微小な クラックが発生し易い。 酸素ガスや湿気は、 微細なクラックを透過する。 そ のため、 該防湿フィルムが屈曲疲労を受けると、 ガスバリア性や防湿性が低 下する。
ケィ素酸化物の蒸着膜だけではなく、 アルミニウム箔の如き金属箔を積層 したプラスチックフィルムについても、 折り曲げ加工や屈曲疲労により、 ク ラックを発生するためガスバリア性の低下が避けられない。 そのため、 ケィ 素酸化物の蒸着膜やアルミニウム箔を有する多層フィルムは、 成形加工や用 途に制限がある。 発明の開示
本発明の目的は、 力ルポキシル基含有重合体を多価金属によりイオン架橋 してなるガスパリア性、 耐湿性、 耐水性、 耐熱水性、 耐水蒸気性に優れ、 低 湿条件下ではもとより、 高湿条件下でのガスバリア性にも優れたフィルムを 含む多層フィルムを提供することにある。
特に、 本発明の目的は、 折り曲げ加工や屈曲疲労を受けて一時的にガスパ リア性が低下しても、 それ自体が本来有するところの優れたガスバリア性を 回復することができる多層フィルムを提供することにある。
本発明者らは、 前記目的を達成するために鋭意研究した結果、 ポリ (メ タ) ァクリル酸のようなカルボキシル基含有重合体を多価金属でイオン架橋 することにより、 ガスパリア性、 耐湿性、 耐水性、 耐熱水性、 耐水蒸気性に 優れ、 低湿条件下ではもとより、 高湿条件下でのガスバリア性にも優れたフ イルムが得られることを見出した。
このフィルムは、 通常の使用条件下では、 水、 熱水、 水蒸気などによって、 溶解したり形状が崩れたりすることはないが、 強酸性または強アル力リ性の 水に溶解するため、 廃棄処理や再生利用が容易である。 ところが、 該フィル ムまたは該フィルムを含む多層フィルムを折り曲げ加工したり、 成形加工後 の成形品に屈曲疲労を与えたりした場合に、 酸素ガスパリア性が低下するこ とが判明した。
そこで、 本発明者らは、 さらに研究を行った結果、 カルボキシル基含有重 合体を多価金属でィォン架橋したフィルムにおいて、 該カルボキシル基含有 重合体と多価金属化合物との反応により生成する多価金属塩の濃度に、 厚み 方向に傾斜構造を設ける方法に想到した。 すなわち、 カルボキシル基含有重 合体を多価金属でイオン架橋するには、 該カルボキシル基含有重合体と多価 金属化合物とを反応させて、 多価金属塩を生成させる必要がある。 この多価 金属塩は、 カルボキシ^/基含有重合体のカルボキシル基と多価金属とがィォ ン結合した塩である。
カルボキシル基含有重合体と多価金属化合物とを反応させる際に、 得られ るフィルム中のカルボキシル基含有重合体多価金属塩の濃度を厚み方向に均 一に分布させるのではなく、 厚み方向に濃度傾斜を設けて、 該多価金属塩が 高濃度の領域と低濃度の領域を設ける。 このような濃度傾斜構造は、 カルボ キシル基含有重合体層の片面または両面に多価金属化合物含有層を隣接させ て、 多価金属化合物層からカルボキシル基含有重合体層へ多価金属化合物を 移行させる方法により形成することができる。
上記方法により、 力ルポキシル基含有重合体と該カルボキシル基含有重合 体の多価金属塩とを含有する重合体層の片面または両面に多価金属化合物含 有層が隣接した層構成を有する多層フィルムが得られる。 この多層フィルム では、 重合体層が、 該重合体層中のカルボキシル基含有重合体多価金属塩の 濃度が多価金属化合物含有層との隣接面から厚み方向に連続的に減少する濃 度傾斜構造を有している。 このような濃度傾斜を設けても、 該重合体層全体 のイオン架橋度が所定値以上となるように調整すれば、 優れたガスバリア性 を発揮させることができる。
このような多層フィルムまたは該多層フィルムと他の樹脂層とを含む多層 フィルムを用いて、 折り曲げ加工したり、 成形したりした成形品 (例えば、 袋や容器) に繰り返し屈曲を与えると、 一時的に酸素ガスパリア性が低下す るものの、 経時的に元の酸素ガスバリア性が回復することが見出された。 前記重合体層中にカルボキシル基含有重合体多価金属塩の低濃度領域が含 まれることにより、 屈曲疲労によりガスバリア性が一時的に低下しても、 該 低濃度領域への多価金属化合物の移行により新たなイオン結合 (多価金属 塩) が形成されて、 ガスバリア性が回復するものと考えることができる。 し かも、 低濃度領域が存在することによって、 多層フィルムの可撓性が損なわ れないため、 成形加工性が良好となる。
これに対して、 前記重合体層中でカルボキシル基含有重合体と多価金属化 合物とを十分かつ均一に反応させてカルボキシル基含有重合体多価金属塩を 形成させると、 該重合体層の可撓性が低下して成形加工性が低下することに 加えて、 屈曲疲労によりガスバリア性が低下した場合に、 新たなイオン結合 の形成による.ガスバリア性の回復が困難になる。 本発明は、 これらの知見に 基づいて完成するに至ったものである。 かくして、 本発明によれば、 カルボキシル基含有重合体と該カルボキシル 基含有重合体の多価金属塩とを含有する重合体層(A)の片面または両面に多価 金属化合物含有層(B)が隣接した層構成を有する多層フィルムであって、 ( 1 ) 重合体層(A)が、 重合体層(A)中のカルボキシル基含有重合体多価金属 塩の濃度が多価金属化合物含有層(B)との隣接面から厚み方向に連続的に減少 する濃度傾斜構造を有し、 かつ、
( 2 ) 重合体層(A)の赤外線吸収スぺク トルに基づいて求められる波数 1 5 6
0 c m一1での吸収ピーク高さ A 1 5 6。と波数 1 7 0 0 c πχ- 1での吸収ピークの 高さ Α 1 7。。とのピーク比 1 5 61 7。。が 0 . 2 5以上である
多層フィルムが提供される。 図面の簡単な説明
図 1は、 多層フィルムの層構成について、 その一例を示す断面図である。 図 2は、 多層フィルムの層構成について、 他の一例を示す断面図である。 図 3は、 丁£ 1^ー£ 0 測定にょるポリァクリル酸層中での亜鈴の濃度分布 について、 その一例を示す図である。
図 4は、 丁£ ー£ 0 測定にょるポリァクリル酸層中での亜鉛の濃度分布 について、 他の一例を示す図である。 発明を実施するための最良の形態
1 . カルボキシル基含有重合体:
本発明で使用するカルポキシル基含有重合体は、 分子内に 2個以上のカル ポキシル基を有する重合体であり、 「ポリカルボン酸重合体」 と呼ばれること がある。 力ルポキシル基含有重合体としては、 カルボキシル基含有不飽和単 量体の単独重合体、 カルボキシル基含有不飽和単量体の共重合体、 カルボキ シル基含有不飽和単量体と他の重合性単量体との共重合体、 及び分子内に力 ルポキシル基を含有する多糖類 (「酸性多糖類」 ともいう) が代表的なもので める。
カルボキシル基には、 遊離のカルボキシル基のみならず、 酸無水物基 (具 体的には、 ジカルボン酸無水物基) も含まれる。 酸無水物基は、 部分的に開 環してカルボキシル基となっていてもよい。 力ルポキシル基の一部は、 アル カリで中和されていてもよい。 この場合、 中和度は、 2 0 %以下であること が好ましい。
また、 ポリオレフインなどのカルボキシル基を含有していない重合体に力 ルポキシル基含有不飽和単量体をグラフト重合してなるグラフト重合体も、 カルボキシル基含有重合体として使用することができる。 アルコキシ力ルポ 二ノレ基 (例えば、 メ トキシカルボニル基) のような加水分解性のエステノレ基 を持つ重合体を加水分解して、 カルボキシル基に変換した重合体をカルポキ シル基含有重合体として使用することもできる。
力ルポキシル基含有不飽和単量体としては、 a, i3—モノエチレン性不飽 和カルボン酸が好ましい。 したがって、 力ルポキシル基含有重合体には、 α, i3—モノエチレン性不飽和カルボン酸の単独重合体、 2種以上の α, β —モ ノエチレン性不飽和カルボン酸の共重合体、 及ぴひ, )3—モノエチレン性不 飽和カルボン酸と他の重合性単量体との共重合体が含まれる。 他の重合性単 量体としては、 エチレン性不飽和単量体が代表的なものである。
a , 一モノエチレン性不飽和カルボン酸としては、 例えば、 アクリル酸、 メタクリル酸、 クロ トン酸などの不飽和モノカルボン酸;マレイン酸、 フマ ル酸、 ィタコン酸などの不飽和ジカルボン酸;無水マレイン酸、 無水イタコ ン酸などの不飽和ジカルボン酸無水物; これらの 2種以上の混合物が挙げら れる。 これらの中でも、 アクリル酸、 メタクリル酸、 クロ トン酸、 マレイン 酸、 フマル酸、 及びィタコン酸からなる群より選ばれる少なくとも 1種の α, 一モノエチレン性不飽和カルボン酸が好ましく、 アクリル酸、 メタクリル 酸、 及びマレイン酸からなる群より選ばれる少なく とも 1種の α, β —モノ エチレン性不飽和カルボン酸がより好ましい。
α, j3—モノエチレン性不飽和カルボン酸と共重合可能な他の重合性単量 体、 特にエチレン性不飽和単量体としては、 例えば、 エチレン; プロピレン、 1—ブテン、 1一ペンテン、 1—へキセン、 1—オタテンなどの α—ォレフ ィン ;酢酸ビュルなどの飽和カルボン酸ビュルエステル類;ァクリル酸メチ ル、 ァクリル酸ェチルなどのァクリル酸アルキルエステル類; メタタリル酸 メチル、 メタクリル酸ェチルなどのメタクリル酸アルキルエステル類;塩化 ビュル、 塩化ビニリデンなどの塩素含有ビュル単量体; フッ化ビュル、 フッ 化ビニリデンなどのフッ素含有ビニル単量体;アクリロニトリル、 メタクリ ロニトリルなどの不飽和二トリル類;スチレン、 α—メチルスチレンなどの 芳香族ビニル単量体; ィタコン酸アルキルエステル類; などを挙げることが できる。 これらのエチレン性不飽和単量体は、 それぞれ単独で、 あるいは 2 種以上を組み合わせて使用することができる。 また、 カルボキシル基含有重 合体が α , β一モノエチレン性不飽和カルボン酸と酢酸ビニルなどの飽和力 ルボン酸ビュルエステル類との共重合体である場合は、 該共重合体をケン化 して飽和カルボン酸ビュルエステル単位をビュルアルコール単位に変換した 共重合体も使用することができる。
カルボキシル基含有多糖類としては、 例えば、 アルギン酸、 カルボキシメ チルセルロース、 ぺクチンなどの分子内にカルボキシル基を有する酸性多糖 類を挙げることができる。 これらの酸性多糖類は、 それぞれ単独で、 あるい は 2種以上を組み合わせて使用することができる。 また、 酸性多糖類を α, —モノエチレン性不飽和カルボン酸の (共) 重合体と組み合わせて使用す ることもできる。
本発明で用いるカルボキシル基含有重合体が、 《, 一モノエチレン性不 飽和カルボン酸とその他のエチレン性不飽和単量体との共重合体である場合 には、 得られるフィルムのガスバリア性、 耐熱水性、 耐水蒸気性の観点から、 その共重合組成は、 α, 一モノエチレン性不飽和カルボン酸単量体組成が 6 0モル%以上であることが好ましく、 8 0モル%以上であることがより好 ましく、 9 0モル%以上であることが特に好ましい。
カルボキシル基含有重合体は、 ガスバリア性、 耐湿性、 耐水性、 耐熱水性、 耐水蒸気性に優れ、 高湿条件下でのガスバリア性にも優れたフィルムが得ら れやすい点で、 α, ]3—モノエチレン性不飽和カルボン酸のみの重合によつ て得られる単独重合体または共重合体であることが好ましい。 カルボキシル 基含有重合体が α, β一モノエチレン性不飽和カルボン酸のみからなる (共) 重合体の場合、 その好ましい具体例は、 アクリル酸、 メタクリル酸、 クロ トン酸、 マレイン酸、 フマル酸、 及ぴィタコン酸からなる群から選ばれ る少なくとも 1種の α, β一モノエチレン性不飽和カルボン酸の重合によつ て得られる単独重合体、 共重合体、 及ぴそれらの 2種以上の混合物である。 これらの中でも、 アクリル酸、 メタクリル酸、 及ぴマレイン酸からなる群よ り選ばれる少なく とも 1種の α, β一モノエチレン性不飽和カルボン酸の単 独重合体及ぴ共重合体がより好ましい。
カルボキシル基含有重合体としては、 ポリアクリル酸、 ポリメタクリル酸、 ポリマレイン酸、 及ぴこれらの 2種以上の混合物が特に好ましい。 酸性多糖 類としては、 アルギン酸が好ましい。 これらの中でも、 入手が比較的容易で、 諸物性に優れたフィルムが得られやすい点で、 ポリアクリル酸が特に好まし い。
カルボキシル基含有重合体の分子量は、 特に制限されないが、 フィルム形 成性とフィルム物性の観点から、 数平均分子量が 2, 000〜1 0, 000, 000の範囲であることが好ましく、 5, 000〜1, 000, 000の範 囲であることがより好ましく、 1 0, 000〜 500, 000の範囲である ことがさらに好ましい。 数平均分子量は、 ゲルパーミエーシヨンクロマトグ ラフィ (GPC) により測定することができる。 G PC測定では、 一般に、 標準ポリスチレン換算で重合体の数平均分子量が測定される。
本発明のフィルムを構成する重合体として、 カルボキシル基含有重合体以 外にも、 フィルムのガスバリア性、 耐熱水性、 耐水蒸気性などの特性を損な わない範囲内において、 他の重合体を混合して用いることができる。 多くの 場合、 力ルポキシル基含有重合体のみを使用することが好ましい。
原料として使用する力ルポキシル基含有重合体は、 それを単独で用いて形 成したフィルムについて、 30°C及ぴ相対湿度 0%の乾燥条件下で測定した 酸素透過係数が好ましくは 1, 000 c m3 · μ m/ (m2 · d a y · MP a) 以下、 より好ましくは 500 cm3 · μ m/ (m2 · d a y · MP a) 以 下、 特に好ましくは 1 00 cm3 · μ ΐΏ./ (m2 · d a y · MP a) 以下のも のであることが望ましい。 原料として使用するカルボキシル基含有重合体の 酸素透過係数が低すぎると、 本発明の多層フィルムのガスバリア性、 並びに 熱水及び水蒸気に対する安定性 (耐熱水性及び耐水蒸気性) が不十分となり 易い。
原料として使用するカルボキシル基含有重合体の酸素透過係数は、 以下の 方法により求めることができる。 カルボキシル基含有重合体を水に溶解して 濃度 1 0重量%の水溶液を調製する。 この水溶液を、 バーコ一ターを用いて、 プラスチックフィルム基材上に塗布し、 乾燥することにより、 乾燥厚さ 1 / mの力ルポキシル基含有重合体層が形成されたコーティングフィルムを作製 する。 得られたコーティングフィルムについて、 30°C及ぴ相対湿度 0%の 条件下における酸素透過度を測定する。 プラスチックフィルム基材として、 その酸素透過度が比較的大きいプラスチックフィルムを用いる。 得られた力 ルポキシル基含有重合体の乾燥塗膜を有するコーティングフィルムの酸素透 過度が、 基材として用いたプラスチックフィルム単独の酸素透過度に対して、
10分の 1以下であれば、 その酸素透過度の測定値を実質的にカルボキシル 基含有重合体層単独の酸素透過度と見なすことができる。
上記のようにして得られた測定値は、 厚さ 1 μ mの力ルポキシル基含有重 合体層の酸素透過度であるため、 その測定値に l /i mを乗じることにより、 酸素透過係数に変換することができる。 酸素透過度の測定は、 例えば、 モダ ンコントロール (Mo d e r n Co n t r o l )社製の酸素透過試験器ォク ス トラン (OXTRAN) 2/20を用いて行うことができる。 酸素透過度 の測定方法は、 AS TM D 3985-81 (J I S K 71 26に規 定されている B法 (等圧法) に相当〕 に従って実施する。 測定値は、 単位 c m3 (S TP) / (m2 - d a y · MP a) で表記することができるが、 ST Pは、 酸素の体積を規定するための標準条件 (0°C、 1気圧) を意味するの で、 S TPを割愛して表記することがある。
2. 多価金属化合物:
本発明で用いる多価金属化合物は、 金属イオンの価数が 2以上の多価金属 原子単体及ぴ多価金属化合物である。 したがって、 本発明で使用する多価金 属化合物には、 多価金属原子単体も含まれる。 多価金属の具体例としては、 ベリリウム、 マグネシウム、 カルシウムなどの周期表 2 A族の金属;チタン、 ジルコニウム、 クロム、 マンガン、 鉄、 コバルト、 ニッケル、 銅、 亜鉛など の遷移金属;アルミニウムを挙げることができるが、 これらに限定されない。 多価金属化合物の具体例としては、 多価金属の酸化物、 水酸化物、 炭酸塩、 有機酸塩、 無機酸塩が挙げられるが、 これらに限定されない。 有機酸塩とし ては、 例えば、 酢酸塩、 シユウ酸塩、 クェン酸塩、 乳酸塩、 リン酸塩、 亜リ ン酸塩、 次亜リン酸塩、 ステアリン酸塩、 モノエチレン性不飽和カルボン酸 塩が挙げられるが、 これらに限定されない。 無機酸塩としては、 例えば、 塩 化物、 硫酸塩、 硝酸塩を挙げることができるが、 これらに限定されない。 多 価金属のアルキルアルコキシドも多価金属化合物として使用することができ る。 これらの多価金属化合物は、 それぞれ単独で、 あるいは 2種以上を組み 合わせて使用することができる。
多価金属化合物の中でも、 塗工液 (コーティング液) 中での分散安定性と 形成される多層フィルムのガスパリア性の観点から、 ベリリウム、 マグネシ ゥム、 カルシウム、 銅、 コバルト、 ニッケル、 亜鉛、 アルミニウム、 及ぴジ ルコニゥムの化合物が好ましく、 ベリリウム、 マグネシウム、 カルシウム、 銅、 亜鉛、 コバルト、 及びニッケルなどの 2価金属の化合物がより好ましい。 好ましい 2価金属化合物としては、 例えば、 酸化亜鉛、 酸化マグネシウム、 酸化銅、 酸化ニッケル、 酸化コバルトなどの酸化物;炭酸カルシウムなどの 炭酸塩;乳酸カルシウム、 乳酸亜鉛、 アクリル酸カルシウムなどの有機酸塩 ;マグネシウムメ トキシドなどのアルコキシド;などを挙げることができる 力 これらに限定されない。
多価金属化合物は、 溶液または分散液として用いられる。 これらの溶液ま たは分散液は、 塗工液として用いられる。 塗工液は、 多価金属化合物を含む ものであるが、 他に樹脂成分を含む塗料であってもよい。
多価金属化合物が塗工液中において粒子形状で用いられる場合には、 塗工 液の分散安定性と多価金属化合物含有層からの移行性の観点から、 その平均 粒子径が 1 0 n m〜 1 0 μ mの範囲が好ましく、 1 2 n m〜 1 β mの範囲が より好ましく、 1 5〜 5 0 0 n mの範囲が更に好ましく、 1 5〜5 0 n mの 範囲が特に好ましい。
3 . 多層フィルムの製造方法:
本発明の多層フィルムは、 基材 (支持体) 上に、 少なくとも 1層のカルボ キシル基含有重合体層と少なくとも 1層の多価金属化合物含有層とを塗工法 により隣接して形成する方法により製造することができる。 多価金属化合物 含有層から多価金属化合物がカルボキシル基含有重合体層中に移行し、 そこ でカルボキシル基含有重合体のカルボキシル基と多価金属塩を形成し、 それ によって、 イオン結合 (すなわち、 イオン架橋) が導入される。
カルボキシル基含有重合体層と多価金属化合物含有層とが隣接しているこ とが必要であるが、 各層の配置数は、 必要に応じて適宜定めることができる。 力ルポキシル基含有重合体層を A、 多価金属化合物含有層を Bとして表記す ると、 多層の層構成の具体例としては、 例えば、 A/ B、 B /A/B , A/ B /Aが挙げられる。 もちろん、 所望により、 A/ B /A/ B、 B /A/ B ZA、 B ZAZB ZA/Bなど 4層以上の多層構成としてもよい。
基材としては、 プラスチックフィルムが好ましく用いられる。 プラスチッ クフィルムを構成するプラスチックの種類としては、 特に制限されないが、 例えば、 高密度ポリエチレン、 中密度ポリエチレン、 低密度ポリエチレン、 直鎖状低密度ポリエチレン、 ポリプロピレン、 ポリ 4—メチルペンテン、 環 状ポリオレフインなどのォレフィン重合体類及びその酸変性物;ポリ酢酸ビ 二ノレ、 エチレン一酢酸ビニノレ共重合体、 エチレン一酢酸ビニノレ共重合体ケン 化物、 ポリビュルアルコールなどの酢酸ビュル重合体類及ぴその変性物;ポ リエチレンテレフタレート、 ポリプチレンテレフタレート、 ポリエチレンナ フタレートなどのポリエステル類; ポリ ε —力プロラタ トン、 ポリ ヒ ドロキ シブチレート、 ポリ ヒ ドロキシパリ レートなどの脂肪族ポリエステル類;ナ ィロン 6、 ナイロン 6 6、 ナイロン 1 2、 ナイロン 6 / 6 6共重合体、 ナイ ロン 6ノ1 2共重合体、 メタキシレンアジパミ ド ·ナイロン 6共重合体など のポリアミ ド類;ポリエチレングリコール、 ポリエーテルスルホン、 ポリフ ェニレンスルフィ ド、 ポリフエ二レンォキシドなどのポリエーテル類; ポリ 塩化ビニル、 ポリ塩化ビニリデン、 ポリフッ化ビュル、 ポリフッ化ビニリデ ンなどのハロゲン化重合体類;ポリメチルアタリ レート、 ポリェチルアタリ レート、 ポリメチルメタクリ レート、 ポリェチルメタタリレート、 ポリアク リロニトリルなどのァクリル重合体類;ポリイミ ド樹脂;その他、 塗料用に 用いるアルキド樹脂、 メラミン樹脂、 アクリル樹脂、 硝化綿、 ウレタン樹脂、 不飽和ポリエステル樹脂、 フエノール樹脂、 ァミノ樹脂、 フッ素樹脂、 ェポ キシ樹脂などの樹脂;セルロース、 澱粉、 プルラン、 キチン、 キトサン、 グ ルコマンナン、 ァガロース、 ゼラチンなどの天然高分子化合物; などを挙げ ることができる。
基材としては、 これらプラスチック類からなる未延伸フィルムや延伸フィ ルムが好ましい。 また、 プラスチック類からなるフィルム (シートを含む) の表面上にケィ素酸化物、 酸化アルミニウム、 アルミニウム、 窒化ケィ素な どの無機化合物;金属化合物などの薄膜が、 蒸着法、 スパッタリング法、 ィ オンプレーティング法により形成されたも を基材として用いることができ る。
カルボキシル基含有重合体層を形成するには、 カルボキシル基含有重合体 と溶媒とを含有する塗工液 (コーティング液) を調製し、 この塗工液を基材 上または多価金属化合物含有層上に塗布し、 乾燥させる。 溶媒としては、 力 ルポキシル基含有重合体を均一に溶解または分散することができるものであ ればよく、 特に限定はされないが、 その具体例としては、 水;メチルアルコ ール、 エチルアルコール、 イソプロピルアルコールなどのアルコール類;ジ メチルスルホキシド、 N, N—ジメチルホルムアミ ド、 N, N—ジメチルァ セトアミ ドなどの極性有機溶媒;を挙げることができる。
力ルポキシル基含有重合体と溶媒を含有する塗工液中の力ルポキシル基含 有重合体の濃度は、 特に限定されないが、 塗工液の安定性、 均一性、 塗工作 業性などの観点から、 好ましくは 0 . 1〜 5 0重量%、 より好ましくは 1〜 4 0重量%、 特に好ましくは 5〜 3 0重量%の範囲であることが望ましい。 カルボキシル基含有重合体を含有する塗工液には、 ガスバリア性を損なわな い範囲内で、 必要に応じて、 その他の重合体、 柔軟剤、 安定剤、 アンチプロ ッキング剤、 粘着剤、 モンモリ ロナイトに代表される無機層状化合物、 着色 剤、 紫外線吸収剤などの添加剤成分を適宜添加することができる。 その添加 量は、 添加剤の総量として、 カルボキシル基含有重合体の好ましくは 5重量 %以下、 より好ましくは 3重量%以下、 特に好ましくは 1重量%以下である ことが望ましい。
多価金属化合物含有層は、 多価金属化合物を含有する塗工液を基材上また はカルボキシル基含有重合体層上に塗布し、 乾燥することにより形成するこ とができる。 多価金属化合物を含有する塗工液は、 多価金属化合物を溶媒に 溶解または分散させることにより調製することができる。
溶媒は、 多価金属化合物を均一に溶解または分散することができるもので あればよく、 特に限定されないが、 その具体例としては、 水;メチルアルコ ール、 ェチノレアルコール、 イソプロピルアルコーノレ、 n—プロピゾレアルコー ノレ、 n—ブチノレアノレコール、 n—ペンチノレアルコーノレなどのアルコーノレ類; アセトン、 メチルェチルケトンなどのケトン類;ジェチルエーテル、 ジォキ サン、 テトラヒ ドロフランなどのエーテノレ類;酢酸ェチノレ、 酢酸ブチノレなど のエステル類; ジメチルスルホキシド、 N, N—ジメチルァセトアミ ド、 N, N—ジメチルホルムアミ ド、 N—メチル一 2—ピロリ ドン、 テトラメチル尿 素、 へキサメチルリン酸トリアミ ド、 γ—プチ口ラタトンなどの極性有機溶 媒; トルエン、 へキサン、 ヘプタン、 シクロへキサンなどの炭化水素類; を 挙げることができる。 これらの溶媒は、 それぞれ単独で、 あるいは 2種以上 を組み合わせて使用することができる。
多価金属化合物を含有する塗工液には、 必要に応じて、 樹脂成分、 分散剤、 界面活性剤、 柔軟剤、 安定剤、 膜形成剤、 アンチブロッキング剤、 粘着剤な どの添加剤を適宜添加することができる。 多価金属化合物の分散性及ぴ塗工 性を向上させる観点から、 使用する溶媒に可溶な樹脂成分を含有させること が好ましい。
多価金属化合物を含有する塗工液に添加する樹脂成分としては、 例えば、 アルキッド樹脂、 メラミン樹脂、 アクリル樹脂、 硝化綿、 ウレタン樹脂、 ポ リエステル樹脂、 フ ノール樹脂、 ァミノ樹脂、 フッ素樹脂、 エポキシ樹脂 などの塗料用として汎用のバインダー樹脂を挙げることができる。 これらの 樹脂は、 多価金属化合物と反応するカルボキシル基を含有しない樹脂である。 塗工液中の多価金属化合物、 樹脂成分、 その他の添加剤の総量 (濃度) は、 塗工液の安定性や塗工作業性などの観点から、 好ましくは 1〜 5 0重量%、 より好ましくは 3〜4 5重量%、 特に好ましくは 5〜4 0重量%の範囲であ ることが望ましい。
基材上に、 力ルポキシル基含有重合体を含有する塗工液または多価金属化 合物を含有する塗工液を塗工する際には、 力ルポキシル基含有重合体層また は多価金属化合物含有層と基材との接着性を向上させるために、 接着剤 (プ ライマー) を基材表面に塗工することができる。 接着剤の種類は、 特に限定 されないが、 その具体例としては、 ドライラミネート用、 アンカーコート用、 プライマー用として用いられている溶媒に可溶性のアルキッド樹脂、 メラミ ン樹脂、 アクリル樹脂、 硝化綿、 ウレタン樹脂、 ポリエステル樹脂、 フエノ ール樹脂、 ァミノ樹脂、 フッ素樹脂、 エポキシ樹脂を挙げることができる。 基材上に、 カルボキシル基含有重合体層と多価金属化合物含有層とが隣接 して配置されるように、 各塗工液を塗布し、 乾燥させる。 この場合、 1つの 塗工液を塗布し、 乾燥させた後、 その上に他の塗工液を塗布し、 乾燥させる 方法を採用する。 層構成としては、 前述の層構成を採用することができるが、 基材層をも含めた好ましい層構成としては、 例えば、 基材層を 「基材」、 カル ポキシル基含有重合体層を A、 多価金属化合物含有層を Bとして表記すると、 多層の層構成の具体例としては、 例えば、 図 1に示す 「基材 /AZ B」 (基材 1 Zカルボキシル基含有重合体層 2 多価金属化合物含有層 3 )、 図 2に示す 「基材 ZB /AZB j (基材 2 1 多価金属化合物含有層 2 2 /カルボキシル 基含有重合体層 2 3 /多価金属化合物含有層 2 4 )、 あるいは 「基材 ZAZ B ノ A」 が挙げられる。 もちろん、 これ以上の多層となるように A及び Bを交 互に重ねて配置してもよい。 基材とその上の塗膜との密着性を高めるために、 前述の接着剤層を配置することもできる。
各塗工液の塗工方法としては、 スプレー法、 デイツビング法、 コーターを 用いた塗布法、 印刷機による印刷法など任意である。 コーターや印刷機を用 いて塗布する場合には、 ダイレクトグラビア方式、 リバースグラビア方式、 キスリバースグラビア方式、 オフセットグラビア方式などのグラビアコータ 一; リノ 一スローノレコーター、 マイクログラビアコーター、 エアナイフコー ター、 テノ 、、ゾプコ^ ター ノ ーコーター、 コンマコーター- タイコータ1 ~な どの各種方式を採用することができる。
塗膜の乾燥方法は、 特に制限されず、 溶媒を蒸発させて固形層を得ること ができる方法であればよく、 例えば、 自然乾燥による方法、 所定の温度に設 定したオープン中で乾燥させる方法、 その他の任意の乾燥手段を用いる方法 などが挙げられる。 その他の乾燥方法としては、 各種コーターに付属するァ ーチドライヤー、 フローティングドライヤー、 ドラムドライヤー、 赤外線ド ライヤ一などの乾燥機が代表的なものである。 乾燥条件は、 塗膜やフィルム、 基材などが熱による損傷を蒙らない範囲で任意に設定することができる。 乾 燥は、 塗膜中の溶媒が実質的に除去されるまで行う。
カルボキシル基含有重合体層の乾燥厚みは、 特に限定されないが、 フィル ム形成時の成形性やフィルムのハンドリング性の観点で、 通常 0. 001 m〜 1 mm、 好ましくは 0. 01〜: 1 00 πι、 より好ましくは 0. 1〜1 0 μ m, 特に好ましくは 0. 5〜5 imの範囲である。 多価金属化合物含有 層の乾燥厚みは、 通常 0. 001 m〜: L mm、 好ましくは 0. 0 1〜1 0 0 jum、 より好ましくは、 0. 1〜 10 μπιの範囲である。
基材上に各層を形成した後、 力ルポキシル基含有重合体層中へ隣接する多 価金属化合物含有層から多価金属化合物を移行させて、 力ルポキシル基含有 重合体の多価金属塩を形成し、 カルボキシル基含有重合体層を 「カルボキシ ル基含有重合体と該カルポキシル基含有重合体の多価金属塩とを含有する重 合体層(Α)」 に変換する。 多価金属化合物の移行は、 多価金属イオンの形態で の移行を含むので、 以下、 「多価金属イオンの移行」 という。
多価金属イオンの移行は、 多層フィルムを常温 ·常湿下で長時間放置する ことによって行うことができるが、 多価金属イオンの移行を加速化させ、 多 層フィルムの二次成形加工前に所望のガスバリア性 (酸素ガス透過度または 酸素ガス透過係数) の水準を有し、 しかもカルボキシル基含有重合体多価金 属塩の所望の濃度傾斜構造を形成するには、 所定の湿度と温度に調製した雰 囲気下でエージング (調湿処理) することが望ましい。
エージング方法としては、 多層フィルムを、 相対湿度が通常 20%以上、 好ましくは 40〜 1 00 %、 より好ましくは 60〜 1 00 %、 温度が通常 5 °C〜 200。C、 好ましくは 20。じ〜 1 50 °C、 より好ましくは 30。じ〜 1 3 0°Cの雰囲気下に放置する方法が挙げられる。 エージングは、 上記の条件に 調整した気相中または液相中で行う。 エージング時間は、 相対湿度や温度に よつて適宜調整し、 所望のガスパリア性と濃度傾斜構造が形成されるまでと するが、 好ましくは 1 0日以内、 より好ましくは 5日以内、 さらに好ましく は 2日以内である。 エージング時の圧力は、 0. 00 IMP a (0. O l a tm) 〜1000MP a (10000 a t m) の範囲から適宜選択すること ができる。
4. 多層フィルム :
本発明の多層フィルムは、 カルボキシル基含有重合体と該カルボキシル基 含有重合体の多価金属塩とを含有する重合体層(A)が、 該重合体層(A)中の力 ルポキシル基含有重合体多価金属塩の濃度が多価金属化合物含有層(B)との隣 接面から厚み方向に連続的に減少する濃度傾斜構造を有していることが必要 である。
濃度傾斜構造は、 例えば、 透過型電子顕微鏡 (TEM) または走査型電子 顕微鏡 (SEM) により像観察を行って測定点を決定し、 そして、 フィルム 〔重合体層 (A)〕 の断面厚み方向での元素組成分布をエネルギー分散型 X線 分光法 (EDX) により測定することにより、 同定することができる。 重合 体層 (A)の厚みが 5 m程度かそれより薄い薄膜の場合には、 空間分解能及 び観察サンプル作成の観点から、 TEMによる像観察を行い、 EDXにより 元素組成分布を同定することが好ましい。
EDX測定により、 測定点での炭素原子数 Cに対する多価金属原子数 Mの 比 M Cを測定することができる。 隣接する多価金属化合物含有層からの厚 み方向の距離を横軸とし、 元素モル数比 MZCを縦軸にしたグラフを作成し、 MZC値をプロットすると、 例えば、 図 3及ぴ図 4に示すような濃度傾斜構 造を観察することができる。 重合体層 (A)中で多価金属元素は、 カルボキシ ル基含有重合体のカルボキシル基と塩を形成しており、 厚み方向での多価金 属元素の濃度分布は、 重合体層 (A)中でのカルボキシル基含有重合体多価金 属塩の濃度分布を示す。
カルボキシル基含有重合体層を A、 多価金属化合物含有層を Bとして表記 すると、 図 3は、 「A/B」 の層構成の場合を示し、 図 4は、 ΓΒ/Α/BJ の層構成の場合を示す。
前述のエージング処理を進めすぎると、 濃度傾斜構造が損なわれる。 本発 明の多層フィルムの重合体層 (A)がカルボキシル基含有重合体多価金属塩の 濃度傾斜構造を有し、 低濃度領域を有することにより、 金属イオン架橋に伴 ぅ該重合体層の可撓性の低下を防ぎ、 二次加工性を高めることができる。 さ らに、 低濃度領域が存在することにより、 多層フィルムが折り曲げ加工され たり、 多層フィルムから形成した成形品が屈曲疲労を受けたりして、 酸素ガ スバリア性が一時的に低下しても、 低濃度領域に多価金属イオンが移行する ことによって、 ガスバリア性が回復する。
このように、 重合体層 (A)が力ルポキシル基含有重合体多価金属塩の濃度 傾斜構造を有すること、 それによつて、 適度の低濃度領域が存在することに よって、 加工性及びガスバリア性を両立させることができる。
重合体層(A)の濃度傾斜構造は、 エネルギー分散型 X線分光法による厚み方 向での元素組成分析結果に基づいて算出した元素モル数比 〔金属元素 (n 価) ZC元素〕 が 0〜0. 06/nの範囲内にあるカルボキシル基含有重合 体多価金属塩の低濃度領域を、 重合体層(A)の厚み比率で 5〜80%の割合で 有することが好ましい。 低濃度領域の元素モル数比は、 好ましくは 0〜0. 05/n, より好ましくは 0〜0. 04 /nの範囲である。 低濃度領域の厚 み比率は、 好ましくは 5〜 70%、 より好ましくは 5〜 60%の範囲である。 低濃度領域として、 カルボキシル基含有重合体多価金属塩が実質的に存在し ない元素モル数比 0〜0. 04/nの範囲を、 重合体層 (A)の厚み比率で 5 〜 30 %の範囲で含むことが特に好ましい。
他方、 ガスバリア性、 耐水性、 耐熱水性、 及ぴ耐水蒸気性の観点から、 重 合体層(A)の濃度傾斜構造は、 エネルギー分散型 X線分光法による厚み方向で の元素組成分析結果に基づいて算出した元素モル数比 〔金属元素 (n価) / C元素〕 が 0. 06 η超過 0. 33/η以下の範囲内にあるカルボキシル 基含有重合体多価金属塩の高濃度領域を重合体層(Α)の厚み比率で 20〜 95 %の割合で多価金属化合物含有層 (Β)に隣接して有することが望ましい。 高濃 度領域の元素モル数比は、 好ましくは 0. 07〜0. 33/η、 より好まし くは 0. 08〜0. 33 Ζηの範囲である。 高濃度領域の厚み比率は、 好ま しくは 20〜80%、 より好ましくは 20〜70%の範囲である。
本発明の多層フィルムは、 ガスバリア性、 耐水性、 耐熱水性、 及ぴ耐水蒸 気性の観点から、 重合体層(A)の赤外線吸収スぺク トルに基づいて求められる 波数 1 560 cm一1での吸収ピーク高さ A156。と波数 1700 cm一1での吸 収ピークの高さ A 1700とのピーク比 A 1560ZA 1700が 0. 25以上である ことが好ましい。 このピーク比は、 より好ましくは 0. 30以上、 特に好ま しくは 0. 40以上である。 このピーク比の測定法は、 実施例に記載されて レヽる。
このピーク比は、 多価金属化合物によるイオン化の程度を示す一つの指標 である。 このピーク比が小さすぎると、 多層フィルムの製品への加工時に十 分なガスバリア性、 耐水性、 耐熱水性、 耐水蒸気性を得ることが困難になる。 また、 本発明の多層フィルムは、 全カルボキシル基含有重合体層(A)中に含 まれる力ルポキシル基の合計 (A t) に対する全力ルポキシル基含有重合体 層(A)と全多価金属化合物含有層(B)の中に含まれる多価金属化合物の合計 (B t ) とに基づいて算出されるカルボキシル基に対する多価金属化合物の 化学当量が 1. 0以上であることが好ましい。 この化学当量は、 多層フィル ムの成形加工性及ぴ透明性の観点から、 好ましくは 1. 0~10. 0、 より 好ましくは 1. 0〜5. 0の範囲であることが望ましい。
力ルポキシル基の合計は、 遊離の力ルポキシル基だけではなく、 カルボン 酸多価金属塩となっている力ルポキシル基など他の形態となっているものを も含む。 同様に、 多価金属化合物の合計は、 カルボン酸多価金属塩となって いるものも含む。 また、 これらの計算は、 多層構成の全層について行う。
化学当量は、 例えば、 以下のようにして求めることができる。 カルボキシ ル基含有重合体がポリアタリル酸で多価金属化合物が酸化マグネシゥムの場 合を例に挙げて説明する。 ポリアクリル酸の質量を 100 gとした場合、 ポ リアクリル酸の単量体単位の分子量は 72であり、 単量体 1分子当たり 1個 の力ルポキシル基を有するため、 ポリアクリル酸 100 g中のカルボキシル 基の量は、 1. 39モルである。 このとき、 ポリアクリル酸 100 gに対す る 1. ひ化学当量とは、 1. 39モルを中和する塩基の量である。 ポリアク リル酸 100 gに対して、 酸化マグネシウムを 1. 0化学当量の割合で使用 する場合、 1. 39モルのカルボキシル基を中和するだけの酸化マグネシゥ ムを使用すればよい。 マグネシウムの価数は 2価であり、 酸化マグネシウム の分子量は 40であるため、 ポリアクリル酸 100 gに対する 1. 0化学当 量の酸化マグネシウムとは、 27. 8 g (0. 695モル) である。
本発明の多層フィルムは、 折り曲げ加工や屈曲疲労により酸素ガスバリア 性が低下しても、 エージング処理によって、 酸素ガスパリア性を回復させる ことができる。 より具体的に、 筒状に成形した多層フィルムを試料とし、 A STM F 392の規定に従って温度 5 °C及ぴ相対湿度 10%の条件下で ゲルボテスターによりゲルボフレックス 150回の屈曲試験を行った後、 該 試料を温度 30 °C及ぴ相対湿度 80 %の環境下で 20時間エージングしたと き、 ASTM D 3985— 81に従って温度 30。C及び相対湿度 0%の 条件下で測定したエージング後の試料の酸素透過度が屈曲試験前の試料の酸 素透過度の好ましくは ± 50%以内、 より好ましくは ± 30%以内、 特に好 ましくは ± 10 %以内に維持されていることが望ましい。
本発明の多層フィルムは、 温度 30 °Cと相対湿度 0 %、 及び温度 30 °Cと 相対湿度 80%のいずれの条件下においても、 酸素透過度が好ましくは 1, 000 cm3 (S TP) / (m2 - d a y · MP a) 以下、 より好ましくは 5 00 cm3 (STP) Z (m2 - d a y · MP a) 以下、 特に好ましくは 10 0 cm3 (STP) / (m2 · d a y · MP a) 以下のガスバリア性を有する ものであることが望ましい。
本発明の多層フィルムは、 所望により基材を除去することができるが、 包 装材料の用途では、 基材を含む多層フィルムとして用いることが多い。 また、 本発明の多層フィルムには、 必要に応じて、 ラミネーシヨン法ゃコーティン グ法などにより、 他の樹脂層を 1層以上配置することができる。 他の樹脂層 としては、 基材として用いた樹脂層が挙げられるが、 それらに限定されず、 ヒートシール性、 耐摩耗性、 耐熱性などの所望の特性を付与することができ る各種樹脂層を配置することが可能である。 さらに、 本発明の多層フィルム には、 所望により、 ラミネーシヨン法や蒸着法により金属箔ゃケィ素酸化物 などの層を 1層以上形成することができる。
本発明の多層フィルムは、 酸素によって変質を受け易い食品、 飲料、 薬品、 医薬品、 電子部品などの包装材料として好適である。 本発明の多層フィルム は、 ボトル、 カップ、 トレー、 チューブ、 袋などの包装容器の材料として好 適である。 このような容器への二次成形加工は、 ヒートシール、 シート成形 (真空成形及び Zまたは圧空成形) など任意である。 本発明の多層フィルム は、 成形加工時に折り曲げ加工がされても、 ガスバリア性を経時的に回復す ることができる。 また、 本発明の多層フィルムを用いて形成した容器などの 成形品は、 屈曲疲労を受けても、 ガスバリア性を高度に維持することができ る。 実施例
以下に実施例及ぴ比較例を挙げて、 本発明について、 より具体的に説明す る。 本発明における物性及ぴ特性の測定法及び評価法は、 下記のとおりであ る。
(1) 赤外線吸収スぺク トル測定:
赤外線吸収スぺク トルは、 島津社製 F T I R 8200を用いて、 全反射減 衰法 (ATR法) により測定した。 フィルムの赤外線吸収スペク トルに基づ いて、 ピーク高さ比 A156。ZA17。。を求めた。 ここで、 A 1560は、 カルボ キシル基の塩 (― COO— ) に帰属される波数 1 560 cm— 1付近の C-0 伸縮振動に起因する赤外線吸収スぺクトルの吸収ピーク高さである。 すなわ ち、 カルボン酸塩 (一 COO一) に帰属される C = 0伸縮振動は、 一般に、 波 数 1 600 c —1〜 1500 c m 1の赤外光波数領域に 1560 c m 1付近 に吸収極大を有する吸収ピークを与える。
A170。は、 前記 A156。とは分離独立した赤外線吸収ピークであり、 カルボ キシル基 (一 COOH) に帰属される波数 1 700 c m 1付近の C = 0伸縮 振動に起因する赤外線吸収スぺク トルの吸収ピーク高さである。 すなわち、 カルボキシル基 (― COOH) に帰属される C = 0伸縮振動は、 波数 180 0 c m―1〜 1600 c in 1の赤外光波数領域に 1 700 cm— 1付近に吸収極 大を有する吸収ピークを与える。
フィルムの吸光度は、 フィルム中に存在する赤外活性を持つ化学種の量と 比例関係にある。 したがって、 赤外線吸収スペクトルのピーク比 A 1560 "A i 7。。は、 フィルム中でカルボキシル基含有重合体のカルポキシル基が多価金 属と塩を形成したカルボン酸塩 (一 COO— ) と遊離力ルポキシル基 (一 C OOH) の量比を表す尺度として用いることができる。 この比は、 イオン化 の程度を表わす指標でもある。
(2) 酸素透過度の測定:
フィルムの酸素透過度は、 モダンコントロール (Mo d e r n C o n t r o 1 ) 社製の酸素透過試験器 O X t r a n 2/20を用いて、 温度 30 °C及び相対湿度 0%の条件下で測定した。 測定方法は、 AS TM D 39 85 - 81 ( J I S K 7126の B法に相当) に従って行った。 測定値 の単位は、 cm3 (STP) / (m2 - d a y - MP a ) である。 「STPJ は、 酸素の体積を規定するための標準条件 (0°C、 1気圧) を意味する。
酸素透過度は、 下記の屈曲試験前と屈曲試験後に測定した。 さらに、 屈曲 試験後、 試料を温度 30°C及ぴ相対湿度 80%の環境下で 20時間エージン グし、 このエージングした試料 (調湿試料という) についても、 酸素透過度 を測定した。
(3) 屈曲試験:
ASTM F 392の規定に従って、 温度 5 °C及び相対湿度 10%の条 件下でゲルボテスターを用いて屈曲試験を行った。 筒状に成形したフィルム をねじって、 さらにそれを圧縮する操作を繰り返す方法であり、 フィルムの 耐屈曲疲労試験法として用いた。 具体的に、 筒状に成形した多層フィルムを 試料とし、 前記条件下でゲルポテスターによりゲルポフレックス 1 50回の 屈曲試験を行った。
(4) 濃度傾斜構造の測定:
観察しょうとする多層フィルムをエポキシ樹脂 (日新 EM株式会社製、 商 品名 「Qu e n t o l 812J) で包埋した。 この包埋物を約 0. 5 X0. 5 mm角にトリ ミングして、 ウルトラミクロ トーム (R e i c h e r t— N i s s e i社製、 商品名 「ULTRACUT. Nj) を用いて超薄切片を得た。 この超薄切片の厚みは、 約 100 nmであった。 得られた超薄切片の透過型電子顕微鏡 (TEM) 像観察を、 日立製作所社 製透過型電子顕微鏡 HF— 2000を用いて行い、 測定点を決定した。 そし て、 フィルム断面厚み方向での元素組成分布をエネルギー分散型 X線分光法 (EDX) により測定した。 エネルギー分散型 X線分光法の測定条件は、 下 記のとおりである。
測定装置: NO RAN社製元素分析装置 VOYAGE R III、
X線検出器: S i ZL i半導体検出器、
エネルギー分解能: 137 e V、
X線取出し角: 22° (side take up方式)、
加速電圧: 200 kV、
ビーム径: 約 1 ηπιφ、
取り込時間: 30秒間。
炭素原子数 Cに対する多価金属原子数 Μの比 M/Cにより、 力ルポキシル 基含有重合体とカルボキシル基含有重合体多価金属塩とを含む重合体層中で の多価金属元素成分の濃度分布を評価した。
前記重合体層中で多価金属元素は、 カルボキシル基と塩を形成しており、 厚み方向での多価金属元素の濃度分布は、 重合体層中でのカルボキシル基含 有重合体多価金属塩の濃度分布を示す。 すなわち、 フィルム断面厚み方向で の炭素原子数 Cに対する多価金属原子数 Μの比 MZCを傾斜構造の同定とし て用いた。 実施例
ポリアクリル酸水溶液 〔東亞合成 (株) 製、 商品名 「ァロン ΤΜΑ— 10 Η」、 濃度 25重量%、 数平均分子量 200, 000〕 を蒸留水で希釈し、 濃 度 10重量%のポリアクリル酸 (ΡΑΑ) 水溶液を調製した。 得られた水溶 液を、 延伸ポリエチレンテレフタレー トフィルム 〔Ρ Ε Τフィルム : 東レ (株) 製、 商品名 「ルミラー1 "MS 10」、 厚さ 12 m、 90°Cの熱水中に 3 0秒間浸漬したときの熱収縮率が 0. 5%〕 上にバーコ一ター (RK PR I NT-COAT I NS TRUMENT社製、 商品名 「K303 PROO F ER™J) を用いて塗布し、 塗膜をドライヤーにより乾燥させた。 ポリア クリル酸の乾燥塗布量は、 0. 90 §ノ1112で、 塗膜 (フィルム) の乾燥厚み は、 1. O /zmであった。
このようにして得られた P A Aフィルム上に、 前記と同じバーコ一ターを 用いて、 超微粒子酸化亜鉛含有塗料 〔住友大阪セメント (株) 製、 商品名 「ZR133」、 全不揮発成分 33重量%、 酸化亜鉛超微粒子 18重量%〕 を 塗布し、 乾燥させて、 「ΡΕΤΖΡΑΑ/Ζ ηθ含有層」 の層構成を有する多 層フィルムを調製した。 超微粒子酸化亜鉛含有塗料の乾燥塗布量は、 2. 7 g/m2であり、 乾燥膜厚は、 1. 5 /zmであった。 この塗料の樹脂成分は、 不飽和ポリエステル樹脂であり、 硬化剤のイソシァネート化合物とリン酸ェ ステル系界面活性剤を含んでいる。 +
この多層フィルムを、 温度 30°C及ぴ相対湿度 80%の雰囲気に調整した 恒温恒湿槽中に 24時間静置して、 Z nイオンを P A Aフィルム中に移行せ しめ、 固相反応で PAAの亜鉛塩を形成させた。 この多層フィルムは、 図 1 に示すように、 基材 1、 力ルポキシル基含有重合体層 2、 及ぴ多価金属化合 物含有層 3からなる層構成を有している。
このようにして得られた多層フィルムについて、 赤外線吸収スぺク トルの ピーク比 156。/ 17。。、 酸素透過度、 P A Aフィルムの厚み方向での亜鉛 濃度分布を測定した。 測定結果を表 1に示す。
亜鉛の濃度分布は、 金属化合物層からの厚み方向の距離に対して元素モル 数比 (Z n/C) の値をプロットして図 3に示した。 図 3から明らかなよう に、 PAA層中で亜鉛濃度は、 Z ηθ含有層との隣接面から厚み方向に連続 的に減少する濃度傾斜構造を示している。 この測定結果は、 PAA層が、 該 P A A層中のカルボキシル基含有重合体多価金属塩の濃度が多価金属化合物 含有層との隣接面から厚み方向に連続的に減少する濃度傾斜構造を有するこ とを示している。
酸素透過度は、 屈曲試験前と屈曲試験後の多層フィルムについて測定した。 また、 酸素透過度は、 多層フィルム試料をゲルポテスターによりゲルポフレ ックス 1 50回の屈曲試験を行った後、 該試料を温度 30°C及ぴ相対湿度 8 0%の環境下で 20時間エージングし、 このエージングした試料についても 測定した。
上記で作成した多層フィルム試料の酸素透過度は、 温度 30°C及ぴ相対湿 度 80%の条件下でも測定した。 その結果、 酸素透過度 [cm3 (STP) / (m2 · d a y - MP a)] は、 屈曲疲労試験前が 1 5、 屈曲疲労試験後が 5 2、 そして屈曲疲労試験後に調湿後が 30であった。 したがって、 本発明の 多層フィルムは、 高湿条件下でも優れた酸素ガスバリア性を示すことが分か る。 実施例 2
超微粒子酸化亜鉛含有塗料 〔住友大阪セメント (株) 製、 商品名 「ZR 1
33」〕 を PETフィルム 〔東レ (株) 製、 商品名 「ルミラー TMS 10」〕 上 にバーコ一ター (RK PR I NT— COAT I NS TRUMENT社製、 商品名 「K303 PROOFERTM」) を用いて塗布し、 塗膜をドライヤー により乾燥させた。 超微粒子酸化亜鉛含有塗料の乾燥塗布量は、 2. 4 g/ m2であり、 乾燥膜厚は、 1. 3 /zmであった。
他方、 ポリアクリル酸水溶液 〔東亞合成 . (株) 製、 商品名 「ァロン TMA—
10HJ) を蒸留水で希釈し、 濃度 10重量%の PAA水溶液を調製した。 上 記で形成した Z nO含有層の上に、 前記と同じバーコ一ターを用いて PAA 水溶液を塗布し、 乾燥させて、 ΓΡΕΤ/Ζ nO含有層/ P AA」 からなる層 構成の多層フィルムを作製した。 PAAの乾燥塗布量は、 1. 8 gZm2で、 乾燥厚みは、 2. O jwmであった。
さらに、 前記多層フィルムの P A A層上に、 前記と同じ超微粒子酸化亜鉛 含有塗料を、 バーコ一ターを用いて塗布し、 乾燥させて、 ΓΡΕΤ/ΖηΟ含 有層 ΑΑΖΖ nO含有層」 の層構成を持つ多層フィルムを調製した。 超 微粒子酸化亜鉛含有塗料の乾燥塗布ェ量は、 2. 4 g/m2であり、 乾燥膜厚 は、 1. 3 mであった。
この多層フィルムを、 温度 30°C及ぴ相対湿度 80%の雰囲気に調整した 恒温恒湿槽中に 24時間静置して、 Z nイオンを P A Aフィルム中に移行せ しめ、 固相反応で PAAの亜鉛塩を形成させた。
この多層フィルムは、 図 2に示すように、 基材 21、 多価金属化合物含有 層 22、 カルボキシル基含有重合体層 23、 及び多価金属化合物含有層 24 からなる層構成を有している。
このようにして得られた多層フィルムについて、 赤外線吸収スペク トルの ピーク比 A156。/A17。。、 酸素透過度、 P A Aフィルムの厚み方向での亜鉛 濃度分布を測定した。 結果を表 1に示す。
亜鉛の濃度分布は、 金属化合物層からの厚み方向の距離に対して元素モル 数比 (Z n/C) の値をプロットして図 4に示した。 図 4から明らかなよう に、 PAA層中で亜鉛濃度は、 Z ηθ含有層との隣接面から厚み方向に連続 的に減少する濃度傾斜構造を示している。 この多層フィルムでは、 PAA層 の両面が Z nO含有層と隣接しているため、 図 4に示す測定結果は、 PAA 層が、 該 P A A層中のカルボキシル基含有重合体多価金属塩の濃度が多価金 属化合物含有層との隣接面から厚み方向に該 P A A層の中心部まで連続的に 減少する濃度傾斜構造を有することを示している。 比較例 1
PETフィルム 〔東レ (株) 製、 商品名 「ルミラー TMS 10J〕 上に、 ベ ルジャー蒸着器を用いてケィ素酸化物 (S i 02) の蒸着膜を堆積させた。 こ のようにして得られた 「PET/S i O2蒸着膜」 の層構成を有する多層フィ ルムについて、 酸素透過度を測定した。 結果を表 1に示す。
TEM-EDX に カルホキンル 酸素透過度 *3
IRスぺクトル
よる多価金 基に対する
のピーク比 ^J¾i^ レ 屈曲疲労 屈曲疲労後
傾斜構造の "1560, "-1700 合物の化学 *4 後に調湿
*1
実施例 1 有り 0.5 2.0 68 170 67 実施例 2 有り 0.5 2.0 34 90 32 無し
比較例 1 50 1000 1000
Si02蒸着膜
(脚注)
(*1) ATR法によるフィルムの赤外線吸収スぺクトルにおけるピーク高さの
Figure imgf000029_0001
(*2)互いに隣接する全てのカルボキシル基含有重合体中に含まれる.力ルポキ シル基の合計と多価金属化合物の合計とに基づいて算出されるカルボキシル 基に対する多価金属化合物の化学当量である。
(*3)酸素透過度の単位は、 cm3 (STP) /m2 · d a y · MP a (温度 3 0 C、 相対湿度 0%) である。 基材として用いた PETフィルムの酸素透過 度は、 1, 400 cm3 (STP) /m2 · d a y · MP a (温度 30°C、 相 対湿度 0%) であった。
(*4)ゲルポテスターによるゲルボフレックスを 1 50回実施する屈曲疲労試 験後の酸素透過度である。
(*5)ゲルポテスターによるゲルボフレックス 1 50回実施後に、 温度 30で、 相対湿度 80%の環境下で 20時間調湿処理した試料の酸素透過度である。 産業上の利用可能性
本発明によれば、 ガスバリア性、 耐湿性、 耐水性、 耐熱水性、 耐水蒸気性 に優れ、 低湿条件下ではもとより、 高湿条件下でのガスバリア性に優れた多 層フィルムを提供することができる。 本発明の多層フィルムは、 成形時に折 り曲げ加工されたり、 成形後に成形品が繰り返し屈曲を受けたりしてガスパ リア性が低下しても、 経時によりガスバリア性が回復する。 本発明の多層フ イルムは、 これらの諸特性を生かして、 例えば、 包装材料の分野で好適に用 いることができる。

Claims

請求の範囲
1 . カルボキシル基含有重合体と該カルボキシル基含有重合体の多価金属 塩とを含有する重合体層(A)の片面または両面に多価金属化合物含有層(B)が 隣接した層構成を有する多層フィルムであって、
( 1 ) 重合体層(A)が、 重合体層(A)中の力ルポキシル基含有重合体多価金属 塩の濃度が多価金属化合物含有層(B)との隣接面から厚み方向に連続的に減少 する濃度傾斜構造を有し、 かつ、
( 2 ) 重合体層(A)の赤外線吸収スぺク トルに基づいて求められる波数 1 5 6 0 c in 1での吸収ピーク高さ A 1 5 6 0と波数 1 7 0 0 c m 1での吸収ピークの 高さ A 1 7 0 0とのピーク比 A 1 5 6。ZA 1 70が 0 . 2 5以上である
2 . 多層フィルムが、 重合体層(A) Z多価金属化合物含有層(B)の層構成を 有し、 かつ、 重合体層(A)が、 該重合体層(A)中のカルボキシル基含有重合体 多価金属塩の濃度が多価金属化合物含有層 (B)との隣接面から厚み方向に該重 合体層 (A)の反対面まで連続的に減少する濃度傾斜構造を有する請求項 1記載 の多層'
3 . 多層フィルムが、 重合体層(A) Z多価金属化合物含有層(B) /重合体層 (A)の層構成を有し、 かつ、 各重合体層(A)が、 該重合体層(A)中のカルポキシ ル基含有重合体多価金属塩の濃度が多価金属化合物含有層(B)との隣接面から 厚み方向に該重合体層(A)の反対面まで連続的に減少する濃度傾斜構造を有す る請求項 1記載の多層フィルム。
4 . 多層フィルムが、 多価金属化合物含有層(B) 重合体層 (A)Z多価金属 化合物含有層(B)の層構成を有し、 かつ、 該重合体層(A)が、 該重合体層(A)中 のカルボキシル基含有重合体多価金属塩の濃度が各多価金属化合物含有層(B) との隣接面から厚み方向に該重合体層(A)の中心部まで連続的に減少する濃度 • 傾斜構造を有する請求項 1記載の多層フィルム。
5. 重合体層 (A)の濃度傾斜構造が、 エネルギー分散型 X線分光法による厚 み方向での元素組成分析結果に基づいて算出した元素モル数比 〔金属元素
(n価) ZC元素〕 が 0〜0. 06/nの範囲内にあるカルボキシル基含有 重合体多価金属塩の低濃度領域を重合体層(A)の厚み比率で 5 ~ 80 %の割合 で有するものである請求項 1記載の多層フィルム。
6. 重合体層(A)の濃度傾斜構造が、 エネルギー分散型 X線分光法による厚 み方向での元素組成分析結果に基づいて算出した元素モル数比 〔金属元素
(n価) ZC元素〕 が 0. 06/n超過 0. 3 3 Z n以下の範囲内にある力 ルポキシル基含有重合体多価金属塩の高濃度領域を重合体層(A)の厚み比率で 20〜95%の割合で多価金属化合物含有層(B)に隣接して有するものである 請求項 1記載の多層'
7. 重合体層(A)が、 エネルギー分散型 X線分光法による厚み方向での元素 組成分析結果に基づいて算出した元素モル数比 〔金属元素 (n価) /C元 素〕 が 0. 06Zn超過 0. 33Zn以下の範囲内にあるカルボキシル基含 有重合体多価金属塩の高濃度領域を重合体層(A)の厚み比率で 20〜 95 %の 割合で多価金属化合物含有層 (B)に隣接して有し、 かつ、 多価金属化合物含有 層(B)との隣接面とは反対面側に、 元素モル数比 〔金属元素 (n価) /C元 素〕 が 0〜0. 06 Znの範囲内にあるカルボキシル基含有重合体多価金属 塩の低濃度領域を重合体層(A)の厚み比率で 5〜 80 %の割合で有するもので ある請求項 2記載の多層'
8. 各重合体層(A)が、 エネルギー分散型 X線分光法による厚み方向での元 素組成分析結果に基づいて算出した元素モル数比 〔金属元素 (n価) ZC元 素〕 が 0. 06_ n超過 0. 33Zn以下の範囲内にあるカルボキシル基含 有重合体多価金属塩の高濃度領域を重合体層(A)の厚み比率で 20〜 95 %の 割合で多価金属化合物含有層(B)に隣接して有し、 かつ、 多価金属化合物含有 層(B)との隣接面とは反対面側に、 元素モル数比 〔金属元素 (n価) 元 素〕 が 0〜0. 06 Znの範囲内にあるカルボキシル基含有重合体多価金属 塩の低濃度領域を重合体層(A)の厚み比率で 5〜 80 %の割合で有するもので ある請求項 3記載の多層フィルム。
9. 重合体層(A)が、 エネルギー分散型 X線分光法による厚み方向での元素 組成分析結果に基づいて算出した元素モル数比 〔金属元素 (n価) ZC元 素〕 が 0. 06/n超過 0. 33 η以下の範囲内にあるカルボキシ /レ基含 有重合体多価金属塩の高濃度領域を重合体層(Α)の厚み比率で合計 20〜 95 %の割合で各多価金属化合物含有層 (Β)に隣接して有し、 かつ、 中心部に、 元 素モル数比 〔金属元素 (η価) C元素〕 が 0〜0. 06Ζηの範囲内にあ るカルボキシル基含有重合体多価金属塩の低濃度領域を重合体層 (Α)の厚み比 率で 5〜 80 %の割合で有するものである請求項 4記載の多層フィルム。
10. 全カルボキシル基含有重合体層(Α)中に含まれるカルボキシル基の合 計 (A t) に対する全カルボキシル基含有重合体層(A)と全多価金属化合物含 有層(B)の中に含まれる多価金属化合物の合計 (B t) とに基づいて算出され るカルボキシル基に対する多価金属化合物の化学当量が 1. 0以上である請 求項 1記載の多層フィルム。
1 1. 筒状に成形した多層フィルムを試料とし、 AS TM F 3 9 2の 規定に従って温度 5 °C及ぴ相対湿度 1 0%の条件下でゲルポテスターにより ゲルボフレックス 1 50回の屈曲試験を行った後、 該試料を温度 30 °C及び 相対湿度 80%の環境下で 20時間エージングしたとき、 AS TM D 3 985 - 8 1に従って温度 30°C及ぴ相対湿度 0%の条件下で測定したエー ジング後の試料の酸素透過度が屈曲試験前の試料の酸素透過度の ± 5 O %以 内に維持されている請求項 1記載の多層フィルム。
1 2. カルボキシル基含有重合体が、 それを単独で成形したフィ 7レムにつ いて、 3 0°C及び相対湿度 0 %の低湿度条件下で測定した酸素透過 ί 数が 1, 0 0 0 c m3 · μ τα/ (m2 - d a y · MP a ) 以下となるものである請求項 1記載の多層フィルム。
1 3. 力ルポキシル基含有重合体が、 カルボキシル基含有不飽和単量体の 単独重合体、 カルボキシル基含有不飽和単量体の共重合体、 力ルポキシル基 含有不飽和単量体と他の重合性単量体との共重合体、 カルボキシル基含有多 糖類、 またはこれらの 2種以上の混合物である請求項 1記載の多層フィルム。
1 4. カルボキシル基含有不飽和単量体が、 アタリル酸、 メタクリル酸、 クロ トン酸、 ィタコン酸、 マレイン酸、 及ぴフマル酸からなる群より選ばれ る少なくとも 1種の α, β一モノエチレン性不飽和カルボン酸である請求項 1 3記載の多層フィルム。
1 5. 多価金属化合物が、 ベリ リゥム、 マグネシウム、 カルシウム、 銅、 コバルト、 ニッケル、 亜鉛、 アルミニウムまたはジルコニウムの酸 f匕物、 炭 酸塩、 有機酸塩またはアルコキシドである請求項 1記載の多層
1 6. 多価金属化合物が、 2価金属化合物である請求項 1記載の多層ブイ ノレム。
1 7. 重合体層(A)の厚みが 0. 0 0 1 μ m〜 1 mmで、 多価金属 ί匕合物含 有層(Β)の厚みが 0. 0 0 1 π!〜 1 mmである請求項 1記載の多層フィルム c
1 8. 基材上に、 少なく とも 1層のカルボキシル基含有重合体層と少なく とも 1層の多価金属化合物含有層とを塗工法により隣接して形成し、 その後、 多価金属化合物含有層相対湿度 2 0 %以上、 温度 5 °C〜 2 0 0 °Cの雰囲気下 でエージングして、 多価金属化合物含有層から多価金属化合物を力/レポキシ ル基含有重合体層中に移行させて、 力ルポキシル基含有重合体の力ルポキシ ル基と多価金属塩を形成させる方法により得られたものである請求項 1記載 の多層:
19. 温度 30°C、 相対湿度 80%の高湿条件下において測定した酸素透 過度が 1, 000 cm3 (S TP) / (m2 · d a y · MP a ) 以下である請 求項 1記載の多層'
20. 請求項 1乃至 1 9のいずれか 1項に記載の多層フィルムの片面また は両面に、 少なくとも 1層の他の樹脂層が更に配置されている多層フィルム c
PCT/JP2004/015868 2003-10-22 2004-10-20 多層フィルム WO2005037535A2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005514889A JP4684891B2 (ja) 2003-10-22 2004-10-20 ガスバリア性多層フィルム
EP20040792984 EP1676700B1 (en) 2003-10-22 2004-10-20 Multilayer film
CN2004800311842A CN1871125B (zh) 2003-10-22 2004-10-20 多层薄膜
US10/576,677 US7608339B2 (en) 2003-10-22 2004-10-20 Multilayer film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003362323 2003-10-22
JP2003-362323 2003-10-22

Publications (3)

Publication Number Publication Date
WO2005037535A1 WO2005037535A1 (ja) 2005-04-28
WO2005037535A2 true WO2005037535A2 (ja) 2005-04-28
WO2005037535A3 WO2005037535A3 (ja) 2005-07-21

Family

ID=34463504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015868 WO2005037535A2 (ja) 2003-10-22 2004-10-20 多層フィルム

Country Status (6)

Country Link
US (1) US7608339B2 (ja)
EP (1) EP1676700B1 (ja)
JP (1) JP4684891B2 (ja)
KR (1) KR20060092252A (ja)
CN (1) CN1871125B (ja)
WO (1) WO2005037535A2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341522A (ja) * 2005-06-09 2006-12-21 Kureha Corp 複合蒸着フィルム及びその製造方法
JP2007106046A (ja) * 2005-10-14 2007-04-26 Kureha Corp ガスバリア性フィルム
JP2008080533A (ja) * 2006-09-26 2008-04-10 Kureha Corp 絞り成形用積層体及びそれを用いた絞り成形容器
WO2009112255A1 (en) 2008-03-14 2009-09-17 Tetra Laval Holdings & Finance S.A. Packaging laminate, method for manufacturing of the packaging laminate and packaging container produced therefrom
EP2199077A1 (en) 2008-12-17 2010-06-23 Tetra Laval Holdings & Finance SA Packaging laminate, method for manufacturing of the packaging laminate and packaging container produced there from
WO2011003564A1 (en) 2009-07-08 2011-01-13 Tetra Laval Holdings & Finance S.A. High barrier packaging laminate, method for manufacturing of the packaging laminate and packaging container
JP2011079327A (ja) * 2010-11-30 2011-04-21 Kureha Corp 積層体のガスバリア性向上方法
JP2011140240A (ja) * 2011-04-20 2011-07-21 Mitsui Chemicals Tohcello Inc 延伸成形体及びその製造方法
JP2012024758A (ja) * 2010-06-25 2012-02-09 Sumitomo Chemical Co Ltd 多層構造体の製造方法
JP2015120782A (ja) * 2013-12-20 2015-07-02 田中 英明 食用油再生用濾過装置及びそれを用いた劣化食用油の再生方法
JP2015157359A (ja) * 2014-02-21 2015-09-03 ユニチカ株式会社 ガスバリア性積層体
JP2019127027A (ja) * 2018-01-19 2019-08-01 凸版印刷株式会社 ガスバリア積層体および包装体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278802B2 (ja) * 2006-04-26 2013-09-04 凸版印刷株式会社 コーティング液、それを用いたガスバリア性フィルム、ガスバリア性積層体及びガスバリア性多層フィルム、並びにそれらの製造方法
EP2100932B1 (en) * 2006-12-01 2013-03-06 Toppan Printing Co., Ltd. Coating solution, gas barrier laminate and gas barrier molded article each produced by using the coating solution, and method for production of gas barrier laminate
WO2009041500A1 (ja) * 2007-09-27 2009-04-02 Toyo Seikan Kaisha, Ltd. 耐ブロッキング性に優れたガスバリア材及びその製造方法
JP5517446B2 (ja) * 2008-12-19 2014-06-11 東洋製罐株式会社 パウチの製造方法及びパウチ
US20110262731A1 (en) * 2008-12-26 2011-10-27 Kao Corporation Suspension of cellulose fibers, film and method for producing the same
KR102250387B1 (ko) * 2018-06-21 2021-05-10 주식회사 엘지화학 분리막 활성층의 제조 전 분리막 활성층을 구성하는 아민 화합물을 정량하는 방법, 분리막 활성층 중의 폴리아마이드 또는 미반응 아민 화합물을 정량하는 방법, 및 분리막 활성층의 제조 조건의 설정 기준 또는 제조 조건을 설정하는 방법

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304485A (ja) 1988-06-02 1989-12-08 Mitsubishi Electric Corp カーソル制御方式
CA2004663A1 (en) * 1988-12-05 1990-06-05 Tsutomu Sawada Moistureproof film
TW221977B (ja) 1990-11-30 1994-04-01 Kureha Chemical Ind Co Ltd
JP3127008B2 (ja) 1991-07-30 2001-01-22 日本ラバル株式会社 サクション型固液分離装置
JPH0623735A (ja) 1991-11-27 1994-02-01 Terao Masahisa コンシステンシーの調整方法
JP3518610B2 (ja) 1992-03-23 2004-04-12 住友ベークライト株式会社 耐火物用フェノール樹脂組成物
JP3118107B2 (ja) 1992-12-22 2000-12-18 キヤノン株式会社 現像装置
JP3340780B2 (ja) * 1993-01-27 2002-11-05 呉羽化学工業株式会社 ガスバリヤー性フィルム及びその製造方法
JP2736600B2 (ja) * 1993-09-27 1998-04-02 呉羽化学工業株式会社 ガスバリヤー性フィルム及びその製造方法
JP2811540B2 (ja) * 1993-10-20 1998-10-15 呉羽化学工業株式会社 ガスバリヤー性フィルム及びその製造方法
JP3203287B2 (ja) * 1994-01-26 2001-08-27 呉羽化学工業株式会社 ガスバリヤー性積層体及びその製造方法
JPH09256216A (ja) 1996-03-26 1997-09-30 Asahi Chem Ind Co Ltd 再生セルロース繊維およびその製造法
US6022913A (en) * 1996-09-06 2000-02-08 Kureha Chemical Industry Co. Ltd. Container for retort packaging, resin composition, and gas-barrier film prepared therefrom
JP3801319B2 (ja) * 1996-12-27 2006-07-26 株式会社クレハ 樹脂組成物及びそれからなるガスバリヤー性フィルム
JPH10193490A (ja) * 1997-01-06 1998-07-28 Mitsubishi Gas Chem Co Inc 水性液状物質の包装方法
JPH11104523A (ja) 1997-10-08 1999-04-20 Masao Senoo 洗髪台用シャワーヘッド
JP4154069B2 (ja) * 1998-04-15 2008-09-24 株式会社クレハ ガスバリヤ性フィルム
JP3685707B2 (ja) 2000-07-21 2005-08-24 東洋計器株式会社 水道メータシステム
JP3856718B2 (ja) * 2002-04-01 2006-12-13 レンゴー株式会社 ガスバリア性樹脂組成物及びこれから成形されるガスバリア性フィルム
CA2483317A1 (en) * 2002-04-23 2003-11-06 Kureha Chemical Industry Company, Limited Film and producing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP1676700A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341522A (ja) * 2005-06-09 2006-12-21 Kureha Corp 複合蒸着フィルム及びその製造方法
JP2007106046A (ja) * 2005-10-14 2007-04-26 Kureha Corp ガスバリア性フィルム
JP2008080533A (ja) * 2006-09-26 2008-04-10 Kureha Corp 絞り成形用積層体及びそれを用いた絞り成形容器
WO2009112255A1 (en) 2008-03-14 2009-09-17 Tetra Laval Holdings & Finance S.A. Packaging laminate, method for manufacturing of the packaging laminate and packaging container produced therefrom
US8409679B2 (en) 2008-12-17 2013-04-02 Tetra Laval Holdings & Finance S.A. Packaging laminate, method for manufacturing of the packaging laminate and packaging container produced therefrom
EP2199077A1 (en) 2008-12-17 2010-06-23 Tetra Laval Holdings & Finance SA Packaging laminate, method for manufacturing of the packaging laminate and packaging container produced there from
WO2011003564A1 (en) 2009-07-08 2011-01-13 Tetra Laval Holdings & Finance S.A. High barrier packaging laminate, method for manufacturing of the packaging laminate and packaging container
JP2012024758A (ja) * 2010-06-25 2012-02-09 Sumitomo Chemical Co Ltd 多層構造体の製造方法
JP2011079327A (ja) * 2010-11-30 2011-04-21 Kureha Corp 積層体のガスバリア性向上方法
JP2011140240A (ja) * 2011-04-20 2011-07-21 Mitsui Chemicals Tohcello Inc 延伸成形体及びその製造方法
JP2015120782A (ja) * 2013-12-20 2015-07-02 田中 英明 食用油再生用濾過装置及びそれを用いた劣化食用油の再生方法
JP2015157359A (ja) * 2014-02-21 2015-09-03 ユニチカ株式会社 ガスバリア性積層体
JP2019127027A (ja) * 2018-01-19 2019-08-01 凸版印刷株式会社 ガスバリア積層体および包装体

Also Published As

Publication number Publication date
JPWO2005037535A1 (ja) 2006-12-28
EP1676700A2 (en) 2006-07-05
EP1676700B1 (en) 2014-09-10
JP4684891B2 (ja) 2011-05-18
CN1871125A (zh) 2006-11-29
CN1871125B (zh) 2011-06-01
US7608339B2 (en) 2009-10-27
EP1676700A4 (en) 2008-10-22
WO2005037535A3 (ja) 2005-07-21
KR20060092252A (ko) 2006-08-22
US20080274341A9 (en) 2008-11-06
US20070134476A1 (en) 2007-06-14

Similar Documents

Publication Publication Date Title
WO2005037535A2 (ja) 多層フィルム
JP4154069B2 (ja) ガスバリヤ性フィルム
JP4373797B2 (ja) フィルム及びその製造方法
JP5282445B2 (ja) ガスバリア性前駆積層体、ガスバリア性積層体およびこれらの製造方法
JP2015150836A (ja) ガスバリア積層体
WO2007020794A1 (ja) ガスバリア性フィルム及びその製造方法
WO2008068948A1 (ja) コーティング液、それを用いたガスバリア性積層体およびガスバリア性成形体、並びにガスバリア性積層体の製造方法
EP1676699B1 (en) Multilayer body and method for producing same
JPH0839716A (ja) 複合蒸着フィルム及びその製造方法
JP3294440B2 (ja) 複合蒸着フィルム及びその製造方法
JP5051609B2 (ja) 絞り成形用積層体及びそれを用いた絞り成形容器
WO2009081715A1 (ja) ガスバリア性フィルム、ガスバリア性積層フィルム及びそれらを用いた包装材料
JP4765089B2 (ja) 延伸成形用積層体、並びにそれを用いた延伸積層体及び延伸多層フィルム
JP4828280B2 (ja) 容器蓋材
JP5056933B2 (ja) 積層体のガスバリア性向上方法
JP2023064414A (ja) ガスバリア性積層体、包装体及び包装物品
JP2023068474A (ja) ガスバリア性積層体、包装体及び包装物品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480031184.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514889

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007134476

Country of ref document: US

Ref document number: 10576677

Country of ref document: US

Ref document number: 1020067007728

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004792984

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 2004792984

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067007728

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10576677

Country of ref document: US