[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005036270A1 - 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路 - Google Patents

放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路 Download PDF

Info

Publication number
WO2005036270A1
WO2005036270A1 PCT/JP2004/014852 JP2004014852W WO2005036270A1 WO 2005036270 A1 WO2005036270 A1 WO 2005036270A1 JP 2004014852 W JP2004014852 W JP 2004014852W WO 2005036270 A1 WO2005036270 A1 WO 2005036270A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
coating film
curable composition
atom
pattern
Prior art date
Application number
PCT/JP2004/014852
Other languages
English (en)
French (fr)
Inventor
Haruaki Sakurai
Kouichi Abe
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to EP04792149A priority Critical patent/EP1672427A4/en
Priority to JP2005511732A priority patent/JP3758669B2/ja
Publication of WO2005036270A1 publication Critical patent/WO2005036270A1/ja
Priority to US11/166,415 priority patent/US7297464B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/106Binder containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/114Initiator containing
    • Y10S430/115Cationic or anionic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/114Initiator containing
    • Y10S430/12Nitrogen compound containing

Definitions

  • the present invention relates to a radiation-curable composition, a method for storing the composition, a method for forming a cured film, a method for forming a pattern, a method for using a pattern, an electronic component, and an optical waveguide.
  • an SiO film formed by a CVD method and an organic SOG (Spin) formed by a coating method because of its excellent heat resistance and electrical reliability.
  • On Glass film and inorganic SOG film are often used. However, it is impossible to directly form wiring trenches and via holes with the conventional insulating film. Usually, after patterning photoresist on the insulating film, dry etching by plasma or chemical etching Then, a pattern is formed through a resist removing step and a cleaning step. On the other hand, if photosensitive properties are imparted to an insulating film material that is excellent in heat resistance, electrical reliability, transparency, etc., the resist material required in the above process is no longer necessary, and dry etching treatment using plasma can be performed. It becomes possible to omit a wet etching process using a chemical solution, a resist removal process and a cleaning process.
  • Patent Documents 1 and 2 disclose a photosensitive resin composition comprising an alkali-soluble siloxane polymer from which water and a catalyst have been removed, a photoacid generator, and a solvent.
  • Patent Documents 3 and 4 disclose photosensitive polysilazane compositions containing polysilazane and a photoacid generator.
  • Patent Document 5 discloses a radiation-curable composition comprising a hydrolyzable silane compound, a photoacid generator and an acid diffusion controller.
  • Patent Document 1 JP-A-6-148895
  • Patent Document 2 JP-A-10-246960
  • Patent document 3 JP-A-2000-181069
  • Patent document 4 JP 2002-72502 A
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2001-288364
  • a radiation-curable composition comprising a hydrolyzable silane compound, a photoacid generator and an acid diffusion controller disclosed in Patent Document 5
  • an acid diffusion controller suppresses the diffusion of an acid generated by radiation.
  • the pattern accuracy of the silane ligature can be improved.
  • the acid diffusion controller deactivates (neutralizes) the acid, the amount of photoacid generator is small! / In some cases or the amount of exposure is small, the curability decreases and the pattern accuracy decreases. There are concerns. Conversely, it has become clear that the pursuit of improved pattern accuracy increases the amount of exposure and is suitable for mass production.
  • the present invention has been made in view of vigorous circumstances, and a radiation-curable composition capable of obtaining a cured product excellent in pattern accuracy even with a relatively small amount of exposure, a method for storing the composition, and a cured film.
  • An object of the present invention is to provide a forming method and a pattern forming method, and a pattern using method, an electronic component and an optical waveguide using the same.
  • the present invention provides (a) a component: a siloxane resin, (b) a photoacid generator or a photobase generator, (c) a component: a solvent capable of dissolving the (a) component, and (d) Component: Provided is a radiation curable composition containing a curing acceleration catalyst.
  • siloxane resin is represented by the following general formula (1):
  • R 1 represents an H atom or an F atom, or a group containing a B atom, an N atom, an A1 atom, a P atom, a Si atom, a Ge atom or a Ti atom, or an organic group having 120 carbon atoms.
  • X represents a hydrolysable group
  • n represents an integer of 0 to 2
  • each R 1 may be the same or different.
  • n is 1 to 2
  • each X is the same or different. It may be.
  • the radiation-curable composition comprises a resin obtained by hydrolyzing and condensing a compound represented by the formula (I).
  • the present invention provides the above radiation-curable composition, wherein the curing acceleration catalyst is an onium salt.
  • the foam salt is preferred from the viewpoint of improving the electrical properties and mechanical strength of the obtained cured product and further improving the stability of the composition.
  • the present invention provides the radiation-curable composition, wherein the curing acceleration catalyst is a quaternary ammonium salt.
  • the curing acceleration catalyst is a quaternary ammonium salt.
  • the present invention includes a step of applying the radiation-curable composition on a substrate and drying to obtain a coating film, and a step of exposing the coating film.
  • a method for forming a cured film without heating According to this method, the diffusion of acid due to heating and the increase in production cost are sufficiently suppressed, and the pattern accuracy of the obtained cured film is sufficiently excellent.
  • the present invention provides a step of applying the radiation-curable composition on a substrate and drying to obtain a coating film, a step of exposing the coating film, and a step of heating the coating film after the exposing step.
  • a method for forming a cured film having the following is provided.
  • the present invention provides the above-mentioned method for forming a cured film, wherein the coating film is heated to 70 to 110 ° C in the heating step. Thereby, diffusion of the acid during heating can be further suppressed.
  • the present invention in the step of exposing the above, to provide the pattern forming method of exposing by irradiation of light of the light amount of the coating film 5- lOOmjZcm 2.
  • the present invention provides a step of applying the radiation-curable composition on a substrate and drying to obtain a coating, a step of exposing the coating through a mask, and a step of exposing the coating after the exposing step. And a step of removing unexposed portions by development, and not heating the coating film after the exposing step.
  • the diffusion of acid due to heating and the increase in production cost are sufficiently suppressed, and the patterning accuracy of the obtained cured film is sufficiently excellent.
  • the “heating” here refers to heating in a stage before the above-described removing step, and thus heating may be performed after the above-described removing step.
  • the present invention provides a step of applying the radiation-curable composition on a substrate and drying to obtain a coating film, a step of exposing the coating film via a mask, and a step of exposing the coating film after the exposing step.
  • a pattern forming method including a heating step and a step of removing an unexposed portion of a coating film by development after the heating step.
  • the present invention provides the above pattern forming method, wherein the coating is heated to 70 to 110 ° C. in the above heating step. Thereby, diffusion of the acid during heating can be further suppressed.
  • the present invention provides the above-described pattern forming method, wherein in the above-mentioned exposing step, the coating film is exposed by irradiating a coating film with light of 5-lOOmjZcm 2 .
  • the coating film is exposed by irradiating a coating film with light of 5-lOOmjZcm 2 .
  • the present invention provides the above pattern forming method, wherein the removing step uses an aqueous solution of tetramethylammonium-dimethylhydroxide as a developing solution. As a result, contamination of the electronic component with the alkali metal during development can be sufficiently suppressed.
  • the present invention provides a pattern using method using a pattern formed by the above pattern forming method as a resist mask.
  • the present invention provides an electronic component having a pattern formed by the pattern forming method.
  • the present invention provides an optical waveguide including a pattern formed by the pattern forming method.
  • the present invention provides a method for storing the radiation-curable composition, which stores the radiation-curable composition at a temperature of 0 ° C or lower.
  • the storage stability becomes better than when storing the composition at a temperature higher than 0 ° C.
  • the amount of exposure is low. Even if the amount is relatively small, it is possible to form a cured product having excellent pattern accuracy, and it is possible to solve the conventional problems that the amount of exposure and the excellent pattern accuracy cannot be achieved at the same time.
  • the radiation-curable composition of the present invention can provide a cured product having excellent pattern accuracy even when the exposure amount is relatively small. Therefore, the present invention is useful for a method of using a pattern, an electronic component, and an optical waveguide.
  • FIG. 1 is a schematic sectional view showing a preferred embodiment of an electronic component according to the present invention.
  • FIG. 2 is an SEM photograph showing a pattern shape according to an example of the present invention.
  • FIG. 3 is an SEM photograph showing a pattern shape according to a comparative example of the present invention.
  • the component (a) is a siloxane resin, and a known resin can be used, but it is preferable that the resin has an OH group at a terminal or a side chain. This is for further promoting the hydrolysis-condensation reaction for curing the radiation-curable composition.
  • the siloxane resin has a weight average molecular weight (Mw) force of 500 to 1,000,000, preferably S to 500 to 500,000, from the viewpoint of solubility in a solvent, mechanical properties, moldability, and the like. More preferably, the force is 500-100,000, even more preferably, the force is 500-10000, and S is particularly preferably 500-5000. If the weight average molecular weight is less than 500, the film formability of the cured product tends to be inferior, and if the weight average molecular weight exceeds 1,000,000, the compatibility with the solvent tends to decrease. In this specification, the weight average molecular weight is measured by gel permeation chromatography (hereinafter, referred to as “GPC”) and converted using a standard polystyrene calibration curve.
  • GPC gel permeation chromatography
  • the weight average molecular weight (Mw) can be measured by, for example, GPC under the following conditions.
  • Standard polystyrene Standard polystyrene manufactured by Tosoh Corporation (molecular weight: 190,000, 17900)
  • siloxane resin for example, the following general formula (1);
  • R 1 is an H atom or an F atom, or a group containing a B atom, an N atom, an A1 atom, a P atom, a Si atom, a Ge atom, or a Ti atom, or an organic group having 1 to 20 carbon atoms.
  • X represents a hydrolyzable group; n represents an integer of 0-2; when n is 2, each R 1 is the same or different When X is SO-2, each X may be the same or different.
  • Examples of the hydrolyzable group X include an alkoxy group, a halogen atom, an acetoxy group, an isocyanate group, and a hydroxyl group.
  • an alkoxy group is preferable in terms of the liquid stability of the composition itself, the coating properties, and the like.
  • Examples of the compound (alkoxysilane) of the general formula (1) in which the hydrolyzable group X is an alkoxy group include tetraalkoxysilane, trialkoxysilane, and diorganodialkoxysilane.
  • tetraalkoxysilane for example, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-isopropoxysilane, tetra-n-butoxysilane
  • trialkoxysilanes include, for example, trimethoxysilane, triethoxysilane, tripropoxysilane, fluorotrimethoxysilane, fluorotriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropanesilane, Methyl tree iso-propoxy silane, methyl tree n-butoxy silane, methyl tree iso-butoxy silane, methyl tree tert-butoxy silane, methyl triphenoxy silane, ethyl trimethoxy silane, ethyl triethoxy silane, ethyl tri- n —propoxy silane, ethyl tree iso-propoxysilane, ethyltri- n -butoxysilane, ethyl-iso-butoxysilane, ethyl-tri-tert-butoxysilane, ethyl-triphenoxy
  • diorganodialkoxysilanes include dimethyldimethoxysilane, dimethyldiethoxysilane, dimethinoresipropoxysilane, dimethinoresi isopropoxysilane, dimethyldi-n-butoxysilane, dimethyldisec-butoxysilane, dimethylditert-butoxysilane, dimethyisilane Noresiphenoxysilane, Jetinoresimethoxysilane, Jetinoresiediethoxysilane, Jetinoresipropoxysilane, Jetinoresi isopropoxysilan, Jetirzy n -butoxysilane, Jetirzy sec butoxysilane, Jetirzy tert butoxysilane, Jetinoresphenoxysilane, G-propynolexy methoxysilane, g-propyl propyl ethoxysilane, g-propyl propyl n-propoxysilane, g-
  • R 1 is an organic group having 1 one 20 carbon atoms (1), as the compound other than the above, for example, bis (trimethoxysilyl) methane, bis (triethoxysilyl ) Methane, bis (tree n propoxysilyl) methane, bis (tree isopropoxysilyl) methane, bis (trimethoxysilyl) ethane, bis (triethoxysilyl) ethane, bis (tree n propoxysilyl) ethane, bis (tree n isopropoxysilyl) ethane, bis (trimethoxysilyl) propane, bis (triethoxysilyl) propane, bis (tri-n-propoxysilyl) propane, bis (tri-isopropoxysilyl) propane, bis (trimethoxysilyl) benzene, bis (Triethoxysilyl) benzene, bis (tree n
  • Examples of the compound of the general formula (1) in which R 1 is a group containing a Si atom include, for example, hexamethoxydisilane, hexetoxydisilane, hexanol n-propoxydisilane, hexar isopropoxydisilane, and the like.
  • dialkyltetraalkoxydisilanes such as orchids.
  • Examples of the compound (halogenated silane) of the general formula (1) in which the hydrolyzable group X is a halogen atom (halogen group) include, for example, the case where the alkoxy group in each of the above-mentioned alkoxysilane molecules is a halogen atom. And those substituted with an atom.
  • examples of the compound (acetoxysilane) of the general formula (1) in which the hydrolyzable group X is an acetyloxy group include, for example, those in which the alkoxy group in each of the above-mentioned alkoxysilane molecules is substituted with an acetyloxy group. I can do it.
  • the compound (isocyanate silane) of the general formula (1) in which the hydrolyzable group X is an isocyanate group for example, the compound represented by the above formula (1) is substituted with an alkoxy group and a sulfur isocyanate group in each alkoxysilane molecule described above. And the like.
  • examples of the compound (hydroxysilane) of the general formula (1) in which the hydrolyzable group X is a hydroxyl group include, for example, those in which the alkoxy group in each of the above alkoxysilane molecules is substituted with a hydroxyl group. Is mentioned.
  • a resin obtained by hydrolyzing and condensing a partial condensate such as a polymer of the compound represented by the general formula (1), a portion of a polymer such as the polymer of the general formula (1)
  • Fats, resins obtained by hydrolyzing and condensing a partial condensate such as a polymer of a compound represented by the general formula (1) with a compound represented by the general formula (1) and other compounds. Can also be used.
  • Examples of the partial condensate such as a multimer of the compound represented by the general formula (1) include, for example, hexamethoxydisiloxane, hexaethoxydisiloxane, hexa-n-propoxydisiloxane, hexaiso- Hexaalkoxydisiloxane such as propoxydisiloxane, trisiloxane, tetrasiloxane, oligosiloxane, etc., with advanced partial condensation are included.
  • Examples of the "other compound” include a compound having a polymerizable double bond or triple bond.
  • Compounds having a polymerizable double bond include, for example, ethylene, propylene, isobutene, butadiene, isoprene, butyl chloride, butyl acetate, butyl propionate, butyl caproate, butyl stearate, methyl butyl ether, Ruby ether, propyl butyl ether, acrylonitrile, styrene, methacrylic acid
  • the resin thus obtained is used alone or in combination of two or more.
  • the amount of water used for hydrolyzing and condensing the compound represented by the general formula (1) is preferably 0.1 to 1000 mol per mol of the compound represented by the general formula (1). Even more preferably 0.5-100 moles.
  • the amount of water is less than 0.1 mol, the hydrolysis-condensation reaction does not tend to proceed sufficiently, and when the amount of water exceeds 1000 mol, gelling tends to occur during hydrolysis or condensation.
  • a catalyst in the hydrolytic condensation of the compound represented by the general formula (1).
  • examples of the type of such a catalyst include an acid catalyst, an alkali catalyst, and a metal compound.
  • Examples of the acid catalyst include organic acids and inorganic acids.
  • Organic acids include, for example, formic acid, maleic acid, fumaric acid, phthalic acid, malonic acid, succinic acid, tartaric acid, malic acid, lactic acid, citric acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptaic acid Acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, adipic acid, sebacic acid, butyric acid, oleic acid, stearic acid, linoleic acid, linoleic acid, salicylic acid, benzenesulfonic acid, benzoic acid, P-aminobenzoic acid , P-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroethanesulf
  • hydrochloric acid for example, hydrochloric acid, phosphoric acid, nitric acid, boric acid, sulfuric acid, hydrofluoric acid and the like can be mentioned. These are used alone or in combination of two or more.
  • Examples of the alkali catalyst include an inorganic alkali and an organic alkali.
  • the inorganic alkali examples include sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, and the like.
  • the organic alkali for example, pyridine, monoeta Nolamine, diethanolamine, triethanolamine, dimethyl monoethanolamine, monomethyl ethanolamine, ammonia, tetramethylammonium hydroxide oxide, tetraethylammonium hydroxide oxide, tetrapropylammonium hydroxide oxide, Methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, norylamine, decylamine, pendecacilamine, dodecacilamine, cyclopentylamine, cyclohexylamine, N, N-dimethylamine, N, N-ethylamine , N-dipropylamine, N, N-dibut
  • metal chelate conjugates examples include trimethoxy'mono (acetylacenate) titanium, triethoxy'mono (acetylacenate) titanium, tree n-propoxy mono (acetylacenate) titanium, and tree iso-propoxy.
  • the material may be affected by corrosion or the like.
  • the catalyst may be removed from the composition or reacted with another compound to deactivate the function as a catalyst.
  • the hydrolyzate obtained from the compound represented by the general formula (1) may be extracted from the composition by reprecipitation or the like.
  • a method of deactivating the function as a catalyst by a reaction for example, when the catalyst is an alkali catalyst, a method of adding an acid catalyst and neutralizing the acid by an acid-base reaction or adjusting the pH to an acidic side.
  • the amount of the catalyst to be used is preferably in the range of 0.0001-1 mol per 1 mol of the compound represented by the general formula (1). If the amount is less than 0.0001 mol, the reaction does not substantially proceed, and if it exceeds 1 mol, gelling tends to be promoted during hydrolysis and condensation. In the direction.
  • the alcohol by-produced by this hydrolysis is a protic solvent, it is preferable to remove the alcohol using an evaporator or the like.
  • the resin thus obtained has a weight-average molecular weight of 500 to 1,000,000, preferably S, and more preferably 500 to 500,000. More preferably, the force is 500-100,000, more preferably, the force is 500-10000, and particularly preferably, 500-5000. If the weight average molecular weight is less than 500, the film formability of the cured product tends to be inferior, and if the weight average molecular weight exceeds 1,000,000, the compatibility with the solvent tends to decrease.
  • H atom, F atom, B atom, N atom, A1 atom, P atom, and Si atom are used for 1 mole of Si atom in general formula (1).
  • Ge atom, Ti atom, and C atom the total content of at least one atom selected from the group consisting of the total number (M) of specific bonding atoms (R 1 in general formula (1)) ) Is preferably 1.3-0.2 mol, more preferably 1.0-0.2 mol, and particularly preferably 0.90-0.2 mol. It is very preferable that the amount is 0.8-0.2 mol. By doing so, it is possible to suppress a decrease in adhesiveness and mechanical strength of the cured product to another film (layer).
  • the dielectric properties when the cured product is used as an insulating film tend to be inferior. It tends to have poor adhesion to other films (layers) and mechanical strength.
  • at least one selected from the group consisting of H atoms, F atoms, N atoms, Si atoms, Ti atoms, and C atoms in terms of film formability of the cured product It is preferable to include at least one kind of atom whose group force is selected from the group consisting of H atom, F atom, N atom, Si atom and C nuclear atom in terms of dielectric properties and mechanical strength. More preferably, it is included.
  • the total number (M) of the specific bonding atoms can be determined by the charged amount of the siloxane resin.
  • the following formula (A) is the following formula (A).
  • Ml is the total number of atoms that are bonded to a single (and only one) Si atom of a particular bond atom
  • M2 is the Indicates the total number of atoms bonded to two silicon atoms
  • M3 indicates the total number of atoms bonded to three of the specific bonded atoms
  • Msi indicates the total number of Si atoms .
  • Such siloxane resins are used alone or in combination of two or more.
  • a method of combining two or more siloxane resins for example, a method of combining two or more siloxane resins having different weight average molecular weights, or two methods obtained by hydrolyzing and condensing different compounds as essential components A method of combining the above siloxane resins is exemplified.
  • the component (b) is a photoacid generator or a photobase generator, and upon irradiation, releases an acid active substance or a basic active substance capable of photocuring (hydrolytic polycondensation) the component (a). It is defined as a compound that can be issued.
  • Examples of the photoacid generator include diaryl sulfonium salt, triaryl sulfonium salt, dialkylphenacyl sulfonium salt, diallydonium salt, aryl diazonium salt, and aromatic.
  • Examples of the photobase generator include a compound group represented by the following general formulas (2) to (5), a nonionic photobase generator such as nifedipine, a cobalt amine complex, (6), ionic photobase generators such as quaternary ammonium salts represented by the following general formula (7), and the like. These are used alone or in combination of two or more. Also, they can be used in combination with other sensitizers and the like.
  • R 3 and m have the same meanings as in the above formula (2), and R 4 and R 5 each independently represent a monovalent organic group having 130 carbon atoms, and To form a ring structure.
  • R 2 has the same meaning as in general formula (2) above, and R 6 and R 7 each independently represent a monovalent organic group having 110 to 130 carbon atoms, V may form the structure, or either one of them may be a hydrogen atom.
  • R. And R 7 have the same meanings as in the above general formula (4), and R 8 represents a monovalent organic group having 130 to 130 carbon atoms, and an alkoxy group, a nitro group, an amino group, an alkyl-substituted amino group on the side chain.
  • R 9 which may contain an aromatic ring having an alkylthio group is a divalent organic group having 1 to 30 carbon atoms.
  • R 11 and R 12 each independently represent a monovalent organic group having 1 to 30 carbon atoms or a hydrogen atom
  • X 1 represents Any of the following general formulas (6A), (6B), (6C), (6D), (6E), and (6F) (hereinafter referred to as “(6A) — (6F)”).
  • R 13 , R 14 , R 15 and R 16 each independently represent a monovalent organic group having 130 carbon atoms
  • R 17 , R 18 and R 19 each independently represent 1 carbon atom. It represents 30 divalent organic groups or single bonds
  • R 2G and R 21 each independently represent a trivalent organic group having 130 carbon atoms.
  • R, R and R, Z—, t, p, and q are the same as those in the above general formula (6), and X 2 is any of the following general formulas (7A) to (7D) Represents a divalent group represented by [0073]
  • R 13 , R “, R 15 , R 16 , R 17 , R 18 , R 19 , R 2 ° and R 21 have the same meanings as those in the general formula (6A)-(6F). is there.
  • R NI may be a photoacid generator or a photo salt to be used.
  • the range is wide because it depends on the sensitivity and efficiency of the base generator, the light source used, the desired thickness of the cured product, and the like.
  • the amount of the component (b) used is preferably 0.0001 to 50% by weight based on the total amount of the component (a) in the radiation-curable composition, and 0.0001 to 20% by weight. Is more preferably 0.01 to 10% by weight. If the amount is less than 0.0001% by weight, the photocurability tends to decrease or a large amount of exposure is required for curing. If the amount exceeds 50% by weight, the stability of the composition and film formation are increased. The properties tend to be inferior, and the electrical properties and process compatibility of the cured product tend to decrease.
  • a photosensitizer may be used in combination with the above-described photoacid generator or photobase generator.
  • the photosensitizer By using the photosensitizer, the energy ray of radiation can be efficiently absorbed, and the sensitivity of the photoacid generator or photobase generator can be improved.
  • the photosensitizer include an anthracene derivative, a perylene derivative, an anthraquinone derivative, a thioxanthone derivative, and coumarin.
  • the radiation-curable composition is stored in two parts for the purpose of improving storage stability, it is preferable to store the component (b) and the component (a) separately.
  • the radiation-curable composition When the radiation-curable composition is stored as a single solution, it is preferable to store the radiation-curable composition at a temperature of 0 ° C or lower, for example.
  • the lower limit of this temperature is determined by the condensation of the solvent in the radiation-curable composition. It is preferable that the temperature is not less than the solid point, and it is preferable that the temperature is ⁇ 50 ° C.
  • the component (c) is a solvent capable of dissolving the component (a), and includes, for example, an aprotic solvent and a protic solvent, and preferably contains an aprotic solvent.
  • an aprotic solvent may be effective in reducing the amount of exposure and improving the pattern accuracy.
  • a protic solvent represented by an alcohol has a hydrogen atom bonded to an oxygen atom having a high electronegativity.
  • the protic solvent molecules form hydrogen bonds with nucleophiles and solvate. That is, since the protic solvent solvates with the siloxane resin obtained by hydrolyzing the compound represented by the general formula (1), the solvent must be capable of removing this solvent molecule in order for the siloxane resin to condense. Therefore, it is considered that curing at low temperature tends to be hindered.
  • an aprotic solvent is a solvent having no hydrogen atom on an element having a high electronegativity, and is considered to have a smaller factor of inhibiting the reaction than a protic solvent. Therefore, in the exposed area, the curing reaction proceeds with the generation of acidic active substances and basic active substances, and it is considered that pattern precision tends to be improved, where pattern precision is unlikely to decrease due to diffusion of acids and bases. This is different from the mechanism of improving the pattern accuracy by inactivating (neutralizing) the acid generated by the conventional acid diffusion controller. Accordingly, it is considered that when the aprotic solvent is contained in the component (c), the effects of improving the pattern accuracy and reducing the exposure amount are more effectively exerted.
  • Examples of the aprotic solvent contained in the component (c) include acetone, methylethylketone, methyl-n-propylketone, methyl-iso-propylketone, methyl-n-butylketone, methyl-iso-butylketone, methyl-n-pentylketone, Kishiruketon to methyl-n-, di Echiruketon, dipropyl ketone, Gee iso- butyl ketone, trimethyl Roh Nanon, cyclohexane key Sanon, cyclohexanone cyclopentanone, methylcyclohexane, 2, 4-pentanedione, Asetoniru acetone, .gamma.
  • ether solvents Preferred are ether solvents, ester solvents, ether acetate solvents and ketone solvents. Further, it is preferable that the solvent does not have a nitrogen atom. Among these, the inventors believe that ether acetate solvents are preferred first, ether solvents are preferred second, and ketone solvents are preferred third. These are used alone or in combination of two or more.
  • component (c) is soluble in water or water. It is preferable that the compound has both water solubility and water solubility, which are preferable. Therefore, when the aprotic solvent has no solubility in water or has no solubility in water, it is preferable to add a protic solvent. When the aprotic solvent has poor solubility in water or water, and does not contain a protic solvent, the compatibility of the component (a) with the solvent tends to decrease, and the stability tends to decrease. When sensitivity is required even if the stability is somewhat sacrificed, it is better to use less protic solvent.
  • Examples of such a protic solvent include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, t-butanol, n-pentanol, i-pentanol, and 2-methyl.
  • the proportion of the aprotic solvent used is preferably 50% by weight or more of the total solvent. More preferably, it is at least 90% by weight, particularly preferably at least 95% by weight. If the use ratio is small, the exposed portion tends not to be sufficiently cured when the exposure amount is small. Alternatively, if the use ratio is small, a heat treatment at a higher temperature is required to sufficiently cure, and the generated acid or base is easily diffused, and the pattern accuracy tends to deteriorate.
  • the method of using the component (c) is not particularly limited.
  • a method of using the component (a) as a solvent for preparing the component a method of adding the component (a) after preparation, and a method of exchanging the solvent.
  • removing the components by distilling off the solvent and adding (c) a solvent a solvent.
  • the radiation-curable composition of the present invention may contain water as necessary, but may preferably contain water, but is preferably in a range that does not impair desired properties.
  • the amount of water used is preferably 10% by weight or less, more preferably 5% by weight or less, more preferably 2% by weight or less, based on the total amount of the radiation-curable composition. preferable. If the water usage exceeds 10% by weight, the applicability and the stability of the coating solution tend to deteriorate. Although the details are not clear, it is possible to reduce the exposure amount by adding a little water.
  • the amount of the solvent (the sum of the aprotic solvent and the protic solvent) used is preferably such that the concentration of the component (a) (siloxane resin) is 3 to 60% by weight. . If the amount of the solvent is too large and the concentration of the component (a) is less than 3% by weight, it tends to be difficult to form a cured product having a desired film thickness. If the amount of the solvent is too small and the concentration of the component (a) is 60% by weight. %, The film formability of the cured product and the like tend to deteriorate, and the stability of the composition itself tends to decrease.
  • the component (d) in the present invention is a curing accelerating catalyst, and when added to the radiation-curable composition, reduces the amount of photoacid generator or photobase generator, reduces the amount of exposure, or reduces the amount of PEB. It is considered that the effect of lowering the temperature can be expected.
  • This curing accelerating catalyst is different from a usual photoacid generator or photobase generator which generates an active substance by the light of the component (b). Therefore, they are usually distinguished from hondium salts used as photoacid generators or photobase generators. However, any material having both photoacid generating ability or photobase generating ability and curing promoting catalytic ability can be used.
  • the catalyst does not show a catalytic action in a solution, but is active in the coated film after application.
  • the curing reaction by the curing accelerating catalyst progresses along with the generation of acidic active substances and basic active substances.Therefore, it is more difficult for the pattern accuracy to decrease due to the diffusion of acids and bases. Presumed.
  • a composition comprising component (a) and component (c) is prepared.
  • composition prepared in 1 above was added with 0.01% by weight, based on the total amount of component (a), of a compound whose curing promoting catalytic ability was to be confirmed, to obtain the composition.
  • Examples of the curing-promoting catalyst that is the component (d) include alkali metals such as sodium hydroxide, sodium chloride, potassium hydroxide, potassium chloride, and the like, and potassium salts. Can be These are used alone or in combination of two or more.
  • quaternary ammonium salts are preferred from the viewpoint that the electrical properties and mechanical strength of the obtained cured product can be improved and the stability of the composition can be enhanced. It is more preferable to be salt! / ,.
  • one of the polymer salt conjugates for example, at least one selected from (d-1) a nitrogen-containing compound, (d-2) an ionic group-containing compound, and a halogen atom And salts formed from
  • the atoms bonded on the nitrogen of the (d-1) nitrogen-containing compound are H atom, F atom, B atom, N atom, A1 atom, P atom, Si atom, Ge atom, Ti atom, and C atom. It is preferably at least one selected from the group consisting of atoms.
  • the above-mentioned ionic group and Examples thereof include a hydroxyl group, a nitrate group, a sulfate group, a carbonyl group, a carboxyl group, a carbonate group, and a phenoxy group.
  • ammonium salt compounds include, for example, ammonium hydroxide, ammonium fluoride, ammonium chloride, ammonium bromide, ammonium ammonium iodide.
  • ammonium moiety of the above-mentioned ammonium salt compound may be methylammonium, dimethylammonium, trimethylammonium, tetramethylammonium, ethylammonium, getylammonium.
  • Amm triethylammonium, tetraethylammonium, propylammonium, dipropylammonium, tripropylammonium, tetrapropylammonium, butylammonium, dibutylammonium, Examples thereof include an ammonium salt substituted compound substituted with tributylammonium, tetrabutylammonium, ethanolammonium, diethanolammonium, triethanolammonium and the like.
  • tetra-ammonium nitrate tetramethyl-ammonium acetate
  • tetramethyl-ammonium-dimethyl propionate are used in these rubber salt conjugates.
  • Ammonium salt is preferred.
  • the amount of the component (d) used is 0.1% based on the total amount of the component (a) in the radiation-curable composition.
  • 0001—preferably 5% by weight 0.000001—1% by weight is more preferable. If this amount is less than 0.0001% by weight, a large amount of exposure tends to be required for curing. If the amount used exceeds 5% by weight, the stability and film formability of the composition tend to be poor, and the electrical properties and process compatibility of the cured product tend to decrease.
  • the amount of the curing acceleration catalyst used as the component (d) is 0.0001-0.000 to the total amount of the component (a) in the radiation-curable composition.
  • force S preferably 1 wt%, more preferably be force S 0. 0001- is 0.05 weight 0/0, and particularly preferably is 01% by weight 0. 0005- 0.! /,.
  • oxalates may be dissolved or diluted in water or a solvent, if necessary, and then added to obtain a desired concentration.
  • the timing of addition is not particularly limited. For example, there are times when the component (a) is hydrolyzed, during hydrolysis, at the end of the reaction, before and after the solvent is distilled off, and when an acid generator is added.
  • a dye may be added to the radiation-curable composition of the present invention.
  • a dye for example, an effect of adjusting sensitivity, an effect of suppressing a standing wave effect, and the like can be obtained.
  • a thermally decomposable compound such as a surfactant, a silane coupling agent, a thickener, an inorganic filler, and polypropylene glycol may be used.
  • Compounds may be added! It is preferable that the thermally decomposable compound and the volatile compound can be decomposed or volatilized by heat (preferably 250 to 500 ° C.) to form voids.
  • the siloxane resin as the component (a) may be provided with a void-forming ability.
  • the metal ion in the composition may be used.
  • the concentration is preferably 100 ppm or less, more preferably 1 ppm or less.
  • the concentration of these metal ions exceeds 100 ppm, the metal ions easily flow into electronic components such as semiconductor elements having a cured product obtained from the composition, and the Performance may itself be adversely affected. Therefore, if necessary, it is effective to remove the alkali metal or alkaline earth metal from the composition using, for example, an ion exchange filter.
  • the purpose is not impaired unless the purpose is impaired!
  • a method for forming a patterned cured product on a substrate by using such a radiation-curable composition of the present invention will be described by taking, as an example, a spin coating method which is generally excellent in film formability and film uniformity. .
  • the method for forming a cured product is not limited to the spin coating method.
  • the substrate may have a flat surface, or may have electrodes and the like formed thereon and have irregularities.
  • the radiation-curable composition is spin-coated on a substrate such as a silicon wafer or a glass substrate at preferably 500 to 5000 rotations Z, more preferably 500 to 3000 rotations Z to form a film. If the number of rotations is less than 500 rotations Z, the film uniformity tends to be poor, and if it exceeds 5000 rotations Z, the film formability may be poor.
  • the film thickness of the cured product differs depending on the intended use.
  • the film thickness used for an interlayer insulating film such as an LSI is preferably 0.01-1 / zm when used for a passivation layer.
  • the film thickness is preferably 2 to 40 m.
  • Thickness for use in liquid crystal applications is preferably 0.1-20 m.
  • Thickness for use in photoresists is preferably 0.1-2 m.
  • the film thickness at the time of this process be 1-150 m.
  • the thickness is generally preferably 0.01-1-10 m, more preferably 0.01-1-5 m, and more preferably 0.01-1-3 m.
  • the concentration of the component (a) in the composition may be adjusted.
  • the film thickness can be adjusted by adjusting the number of rotations and the number of coatings.
  • the concentration of the component (a) is controlled by adjusting the concentration of the component (a), for example, when increasing the film thickness, the concentration of the component (a) is increased, and when decreasing the film thickness, the component (a) is used.
  • the spin coating method for example, when the film thickness is increased, the number of rotations is reduced, or when the number of coatings is increased, and when the film thickness is reduced, the rotation speed is reduced. Adjust by increasing the number or reducing the number of applications Can do.
  • the solvent in the coating is dried on a hot plate or the like at preferably 50 to 200 ° C, more preferably 70 to 150 ° C, and the coating dissolves under various conditions during the subsequent development. It is necessary to adjust the drying temperature as follows. If the drying temperature is lower than 50 ° C, the solvent tends to be insufficiently dried. If the drying temperature is higher than 200 ° C, the solvent does not dissolve during development and a pattern may not be formed.
  • radiation is exposed through a mask having a desired pattern.
  • this dose is 2 particularly preferred instrument 5-LOOmjZcm be a signaling 5-500MjZcm 2 and more preferable is that preferred instrument 5-LOOOmjZcm 2 be 5-5000MjZcm 2 .
  • the exposure amount is less than 5 mjZcm 2 , it may be difficult to control depending on the light source, and if it exceeds 5000 mjZcm 2 , the exposure time becomes longer and the productivity tends to deteriorate.
  • the exposure amount of a conventional general siloxane-based radiation curable composition is about 500-5 OOOiujZcm 2 .
  • the radiation at this time is, for example, a force capable of using visible light, ultraviolet light, infrared light, X-ray, ⁇ -ray, j8-ray, ⁇ -ray, or the like, particularly preferably ultraviolet light.
  • the ultraviolet light source include an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a metalno, a ride lamp, an excimer lamp and the like.
  • the unexposed area has sufficient solubility in the developing solution, but the exposed area generates an acidic active substance or a basic active substance, and a hydrolytic condensation reaction occurs, resulting in poor solubility in the developing solution. descend. Thereby, a pattern is formed.
  • a heating step (post-Etas plunger bake: ⁇ ) may be followed by additional heating.
  • This heating is for heating the film with a hot plate or the like.
  • the heating is preferably performed in a temperature range where the solubility of the unexposed portion in the developing solution does not decrease. This temperature is preferably 50-200 ° C 70-150 ° C is more preferable 70-110 ° C is particularly preferable 70-100 ° C Is very preferred. Generally, the higher the temperature, the easier the generated acid is to diffuse, so the lower the temperature, the better.
  • the heating temperature of the conventional general siloxane radiation curable composition in the PEB step is about 115 to 120 ° C.
  • a developing solution such as an alkaline aqueous solution
  • the alkaline aqueous solution include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, etc .; primary amines such as ethylamine, n-propylamine, etc .; secondary amines such as n-propylamine; tertiary amines such as triethylamine and methylethylamine; alcoholamines such as dimethylethanolamine and triethanolamine; tetramethylammonium-dimethyl hydroxide ( Quaternary ammonium salts such as TMAH), tetraethylammonium and idroxide.
  • TMAH tetraethylammonium and idroxide
  • an aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent or a surfactant to these alkaline aqueous solutions can also be used. Since electronic parts do not like the contamination of alkali metals, tetramethylammonium-dumno and an aqueous solution of idroxide are preferred as the developer.
  • a suitable development time depends on the film thickness and the solvent, but is preferably 5 seconds to 5 minutes, more preferably 30 seconds to 13 minutes, and more preferably 30 seconds to 1 minute. Is particularly preferred. If the development time is less than 5 seconds, it may be difficult to control the time on the entire surface of the wafer or the substrate, and if it exceeds 5 minutes, the productivity tends to deteriorate.
  • the processing temperature during development is generally 20-30 ° C.
  • a developing method for example, a method such as spraying, paddle, dipping, and ultrasonic wave can be used.
  • the pattern formed by development can be rinsed with distilled water or the like as necessary.
  • the cured product patterned according to the present invention can be used as it is as a resist mask.
  • the cured product patterned according to the present invention is left as an interlayer insulating film, a clad layer, or the like, for example, it is preferable to perform final curing by baking the coating at a heating temperature of 100 to 500 ° C. This final curing is performed in the atmosphere or under reduced pressure in an inert atmosphere such as N, Ar, or He.
  • the heating temperature is lower than 100 ° C, sufficient curing tends not to be achieved, and the electrical insulation tends to be poor. If the heating temperature exceeds 500 ° C, the material used for the lower layer may be deteriorated.
  • the heating time for final curing is preferably 2 to 240 minutes, and is preferably 2 to 120 minutes. More preferably. If the heating time exceeds 240 minutes, it may not be suitable for mass production.
  • the heating device include a furnace such as a quartz tube furnace, a hot plate, and a heat treatment device such as a rabbit thermal annealing (RTA).
  • Examples of an electronic component that is a use example having a hardened product include a device having an insulating film such as a semiconductor element and a multilayer wiring board.
  • an insulating film such as a semiconductor element
  • a multilayer wiring board it can be used as an interlayer insulating film.
  • the semiconductor element for example, an individual semiconductor such as a diode, a transistor, a compound semiconductor, a thermistor, a noristor, and a thyristor, a DRAM (dynamic "random access” memory), and an SRAM (static random access “memory”) , EPROM (erasable programmable read-only memory), mask ROM (mask read-only memory), EEPROM (electrically erasable programmable read-only memory), flash memory, etc.
  • an individual semiconductor such as a diode, a transistor, a compound semiconductor, a thermistor, a noristor, and a thyristor, a DRAM (dynamic "random access” memory), and an SRAM (static random access "memory”)
  • EPROM erasable programmable read-only memory
  • mask ROM mask read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory etc.
  • Storage elements microprocessors, logic circuit elements such as DSPs and ASICs, integrated circuit elements such as compound semiconductors represented by MMICs (monolithic 'microwave integrated circuits), hybrid integrated circuits (hybrid ICs), light-emitting diodes, charge-coupled devices Photoelectric conversion elements such as elements .
  • MMICs monolithic 'microwave integrated circuits
  • hybrid ICs hybrid integrated circuits
  • Photoelectric conversion elements such as elements .
  • Examples of the multilayer wiring board include a high-density wiring board such as an MCM.
  • FIG. 1 is a schematic end view showing an embodiment of a TFT (thin film transistor) according to the present invention, which is an electronic component provided in a TFT liquid crystal display.
  • a conductive layer 3 also having a polysilicon force is provided on an undercoat film 2 formed on a glass substrate 1, and a source 4 and a drain 5 are sandwiched between the conductive layers 3 in an in-plane direction.
  • a gate electrode is formed on the conductive layer 3 via a gate oxide film 6 made of SiO.
  • the gate oxide film 6 is provided so as not to bring the conductive layer 3 into direct contact with the gate electrode 7.
  • the undercoat film 2, the conductive layer 3, the source 4, the drain 5, the gate oxide film 6, and the gate electrode 7 are covered with a first interlayer insulating film 8 to prevent a short circuit.
  • a part of the first interlayer insulating film 8 is removed at the time of forming the TFT, and the metal wiring 9 is drawn out while being connected to the source 4 and the drain 5 respectively.
  • the metal wiring 9, which is drawn out in a state of being connected to the drain 5, is electrically connected to the transparent electrode 11, and the other parts are not short-circuited so as not to be short-circuited. It is covered with.
  • the cured film obtained from the radiation-curable composition of the present invention may be mainly used as the second interlayer insulating film 10 for the first interlayer insulating film 8 provided in the TFT. .
  • These interlayer insulating films 8 and 10 are formed, for example, as follows. First, the radiation-curable composition of the present invention is applied on a substrate by a spin coating method or the like and dried to obtain a coating film. Next, the coating film is exposed through a mask having a predetermined pattern to expose a predetermined portion (a portion other than the portion where the metal wiring 9 is to be formed in the case of the first interlayer insulating film 8, and a transparent electrode in the case of the second interlayer insulating film 10).
  • interlayer insulating films 8 and 10 may have the same composition or different compositions.
  • the radiation-curable composition was used until the photocurable composition or the photobase generator was not developed until the step of developing the radiation-curable composition was completed.
  • the work was performed in an environment that did not include the photosensitive wavelength of the photobase generator and the sensitizer.
  • the amount of component (a) used was 15% by weight based on the total amount of the radiation-curable composition, and the amount of component (b) was 1.9% by weight based on the total amount of the radiation-curable composition.
  • the amount of component (d) used was 0.075% by weight based on the total amount of the radiation-curable composition.
  • TMAH tetramethylammonium - ⁇ beam Hydro O sulfoxide
  • Tetraethoxysilane 96. 13 g and a methylolmelamine Honoré triethoxysilane 165. 44 g and the propylene glycol 3 one Honoré methylcarbamoyl Honoré ether Honoré Seteto 562. 99 g [This dissolved the solution [This, prepared 0.644 wt 0/0 18.9 g of an aqueous tetramethylammonium nitrate solution (PH3.6) adjusted to 75.47 g of the prepared nitric acid and 2.38% by weight were added dropwise over 5 minutes with stirring.
  • PH3.6 aqueous tetramethylammonium nitrate solution
  • the amount of component (a) used was 20% by weight based on the total amount of the radiation-curable composition, and the amount used of component (b) was 0.4% by weight based on the total amount of the radiation-curable composition.
  • the amount of the component (d) used was 0.1% by weight based on the total amount of the radiation-curable composition.
  • the wafer was immersed in a developing solution consisting of an aqueous solution of tetramethylammonium-palladium hydroxide (TMAH) by weight for 30 seconds to perform paddle development to dissolve unexposed portions. Thereafter, the wafer was washed with water and spin-dried. Then, using a furnace, the wafer after spin drying was heated at 350 ° C. for 30 minutes in a nitrogen atmosphere to obtain a radiation cured product on the wafer. Observation of the pattern shape of the radiation-cured product from above using an optical microscope and observation of the cross-sectional shape using an SEM revealed that the lines were formed accurately and that the pattern accuracy was 2 m.
  • Figure 2 shows an SEM photograph of the cross-sectional shape.
  • a radiation-curable composition was prepared by mixing 0.40 g of a photobase generator (NBC-101, manufactured by Midori Kagaku) with 10. Og of the polysiloxane solution for radiation-curable composition obtained in Example 2. .
  • the amount of the component (a) used was 20% by weight based on the total amount of the radiation-curable composition, and the amount used of the component (b) was 0.4% by weight based on the total amount of the radiation-curable composition.
  • the amount of the component used was 0.1% by weight based on the total amount of the radiation-curable composition.
  • Polysiloxane solution for radiation-curable composition obtained in Example 2. 10. Og in 0.040 g of photoacid generator (PAI-101, manufactured by Midori Kagaku Co., Ltd.), and polypropylene glycol as a thermally degradable conjugate (Aldrich, PPG725) was mixed with 0.5 g to prepare a radiation-curable composition.
  • the amount of the component (a) used was 20% by weight based on the total amount of the radiation-curable composition, and the amount used of the component (b) was 0.4% by weight based on the total amount of the radiation-curable composition.
  • the amount of component (d) used was 0.1% by weight based on the total amount of the radiation-curable composition.
  • the radiation-curable composition was dropped in a volume of 2 mL at the center of a 6-inch silicon wafer, and a coating film was formed on the wafer by a spin coating method (700 rotations, Z minutes and 30 seconds rotation). Dry on a hot plate at 30 ° C. for 30 seconds. Then, the exposed coating film was exposed to UV light through an exposure machine (FPA-3000 iW, manufactured by Canon Inc.) through a negative mask having a line pattern with a minimum line width of 2 m. cm 2 was irradiated.
  • FPA-3000 iW manufactured by Canon Inc.
  • TMAH tetramethylammonium hydroxide
  • the thickness of the radiation cured product was 3.0 m, but no defects such as cracks were observed. Observation of the pattern shape of the radiation-cured material using an optical microscope and observation of the cross-sectional shape using an SEM revealed that the lines were formed with high accuracy and that the pattern accuracy was 2 m.
  • a photoacid generator (PAI-1001, manufactured by Midori Kagaku) was mixed with 10. Og of the polysiloxane solution for radiation-curable composition to prepare a radiation-curable composition.
  • the amount of component (a) used was 15% by weight based on the total amount of the radiation-curable composition, and the amount of component (b) was 1.5% by weight based on the total amount of the radiation-curable composition.
  • TMAH Hydro O sulfoxide
  • the development was performed in the same manner as in Comparative Example 1 except that the exposure to ultraviolet light of 200 mjZcm 2 was changed to that of ultraviolet light of 100 mJZ cm 2 .
  • the wafer was washed with water and spin-dried. And the furnace body The spin-dried wafer was heated at 350 ° C for 30 minutes in a nitrogen atmosphere to obtain a radiation-cured product.
  • Observation of the pattern shape of the radiation-cured product from above by an optical microscope and observation of its cross-sectional shape by SEM showed that although a line with a width of 10 / zm was formed, the shape was not good.
  • Figure 3 shows an SEM photograph of the cross-sectional shape.
  • a photoacid generator (PAI-1001, manufactured by Midori Kagaku) was added to 10. Og of the polysiloxane solution for the radiation-curable composition, but the solution was dissolved.
  • the amount of component (a) used was 20% by weight based on the total amount of the radiation-curable composition, and the amount of component (b) was 1.5% by weight based on the total amount of the radiation-curable composition.
  • Table 1 shows the results of Examples 14 to 14 and Comparative Examples 13 to 13 described above.
  • Example 2 When the radiation-curable composition obtained in Example 2 was stored in an atmosphere at 20 ° C for 30 days, the storage stability was higher than that when the same radiation-curable composition was stored in an atmosphere at room temperature for 30 days. Excellent! The radiation-curable composition stored in an atmosphere at 20 ° C could be puttered after storage for 30 days, but the radiation-curable composition stored in an atmosphere at room temperature for 30 days could be stored after 7 days. You can no longer putter Jung. This is considered to be due to the fact that the condensation of the siloxane resin progressed in the radiation-curable composition stored for 7 days in an atmosphere at normal temperature, and water was generated accordingly.
  • the present invention is useful for a method of using a pattern, an electronic component, and an optical waveguide.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

 本発明の放射線硬化性組成物は、(a)成分:シロキサン樹脂と、(b)成分:光酸発生剤又は光塩基発生剤と、(c)成分:(a)成分を溶解可能な溶媒と、(d)成分:硬化促進触媒とを含有してなるものである。

Description

明 細 書
放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成 方法、パターン使用方法、電子部品及び光導波路
技術分野
[0001] 本発明は、放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成 方法、パターン使用方法、電子部品及び光導波路に関する。
背景技術
[0002] 従来、 LSIや PDPなどに用いられる絶縁膜として、耐熱性や電気的信頼性等に優 れることから CVD法により成膜される SiO膜、塗布法で成膜される有機 SOG (Spin
2
On Glass)膜や無機 SOG膜が多用されている。し力しながら、従来の絶縁膜では 直接的に配線溝やビアホールを形成することが不可能であり、通常は絶縁膜上にフ オトレジストをパターユング後、プラズマによるドライエッチング処理や薬液によるゥェ ットエッチング処理を行 、、次 、でレジスト除去工程と洗浄工程とを経てパターンを形 成する。これに対し、耐熱性、電気的信頼性、透明性等に優れる絶縁膜材料に感光 特性が付与されたならば、上記工程で必須であったレジスト材料が不要となり、ブラ ズマによるドライエッチング処理や薬液によるウエットエッチング処理、レジスト除去ェ 程や洗浄工程を省略することが可能となる。
[0003] 近年、耐熱性、電気的信頼性、透明性等に優れる放射線硬化性ポリシロキサン材 料が提案されている。例えば、特許文献 1及び特許文献 2には、水及び触媒を除去 したアルカリ可溶性シロキサンポリマーと光酸発生剤と溶剤とからなる感光性榭脂組 成物が開示されている。また、特許文献 3及び特許文献 4にはポリシラザン及び光酸 発生剤を含む感光性ポリシラザン組成物が開示されている。さら〖こは、特許文献 5に は加水分解性シラン化合物、光酸発生剤及び酸拡散制御剤からなる放射線硬化性 組成物が開示されている。
特許文献 1:特開平 6- 148895号公報
特許文献 2:特開平 10- 246960号公報
特許文献 3 :特開 2000-181069号公報 特許文献 4:特開 2002-72502号公報
特許文献 5:特開 2001— 288364号公報
発明の開示
発明が解決しょうとする課題
[0004] しカゝしながら、本発明者らは、このような従来の、感光特性を付与された絶縁膜材料 を用いたパターユングについて詳細に検討を行ったところ、例えば、特許文献 1及び 特許文献 2で開示されている水及び触媒を除去したアルカリ可溶性シロキサンポリマ 一と光酸発生剤と溶剤とからなる感光性榭脂組成物を用いると、いずれも多量の露 光量を必要とし、大量生産性に優れないことが明らかとなった。また、特許文献 3及び 特許文献 4に開示されたポリシラザン及び光酸発生剤を含む感光性ポリシラザン組 成物を用いると、露光量は少ないものの、露光後に純水中に浸漬する、又は加湿処 理を必要とするなど工程が煩雑になり、高いパターン精度が得られ難くなることが明 白となった。一方、特許文献 5に開示された加水分解性シラン化合物、光酸発生剤 及び酸拡散制御剤からなる放射線硬化性組成物を用いると、放射線により生成した 酸の拡散を酸拡散制御剤が抑制することより、シランィ匕合物のパターン精度を高める ことができる。しかし、酸拡散制御剤が酸を失活(中和)させてしまうため、光酸発生剤 量が少な!/、場合や露光量が少な!、場合は硬化性が低下し、パターン精度が低下す る懸念がある。逆にパターン精度の向上を追求すると露光量が多くなり、大量生産に は向 ヽて ヽな 、ことが明らかとなつた。
[0005] 本発明は力かる事情に鑑みてなされたものであり、露光量が比較的少なくても、パ ターン精度に優れた硬化物が得られる放射線硬化性組成物、その保存方法、硬化 膜形成方法及びパターン形成方法を提供すると共に、それを用いたパターン使用方 法、電子部品及び光導波路を提供するものである。
課題を解決するための手段
[0006] 放射線により酸を発生させパターンを形成する際、従来の技術では、パターン精度 を向上させるために、発生した酸を酸拡散制御剤で失活させる。こうすると、失活した 分、余計に酸を発生させるために露光量を増加する必要があり、パターン精度向上と 露光量の低減は両立し難 、。 [0007] 酸の拡散を抑制するには、酸拡散制御剤で酸を失活させる代わりに、露光量を減 らして発生する酸の量を減らす、露光後のポストエタスプロージャべイク(PEB)工程 の温度を低下させる、又は、 PEBを行わない等の手段も考えられる。しかし、従来、 そのような手段の基礎となる思想は認められない。また、そのような手段に適した放射 線硬化性組成物も認められな ヽ。そのような手段に適した放射線硬化性組成物であ ると、酸拡散制御剤を用いずに精度良くパターンを形成することができる。しかし、従 来の放射線硬化性組成物を用いてパターニングする際、発生する酸の量を減らすと 硬化が十分に進行しない。また、露光後のポストエタスプロージャべイク(PEB)工程 の温度を低下させる力、又は、 PEBを行わないと、同様に露光部の硬化が進行しな い。その結果、ノ《ターンが精度良く形成され難くなる。
[0008] 本発明者らは、鋭意研究を重ねた結果、特定の成分を含有する放射線硬化性組 成物、硬化膜形成方法及びパターン形成方法が、従来の種々の問題点を解消し得 ることを見出し、本発明を完成するに至った。
[0009] 本発明は、(a)成分:シロキサン榭脂、(b)成分:光酸発生剤又は光塩基発生剤、 ( c)成分:(a)成分を溶解可能な溶媒、及び (d)成分:硬化促進触媒を含有してなる放 射線硬化性組成物を提供する。
[0010] また、本発明は、シロキサン樹脂が、下記一般式(1);
R1 SiX
n 4— n
(式中、 R1は、 H原子若しくは F原子、又は B原子、 N原子、 A1原子、 P原子、 Si原子 、 Ge原子若しくは Ti原子を含む基、又は炭素数 1一 20の有機基を示し、 Xは加水分 解性基を示し、 nは 0— 2の整数を示し、 nが 2のとき、各 R1は同一でも異なっていても よぐ n力 一 2のとき、各 Xは同一でも異なっていてもよい。 )
で表される化合物を加水分解縮合して得られる榭脂を含む上記放射線硬化性組成 物を提供する。
[0011] 本発明は、硬化促進触媒がォニゥム塩である上記放射線硬化性組成物を提供す る。ォ-ゥム塩は、得られる硬化物の電気特性及び機械強度を向上でき、更に、組成 物の安定性を高めることができると 、う観点から好まし 、。
[0012] 本発明は、硬化促進触媒が第 4級アンモ -ゥム塩である上記放射線硬化性組成物 を提供する。第 4級アンモ-ゥム塩を効果促進触媒として用いることにより、上述の電 気特性及び機械強度の向上効果並びに組成物の安定性の向上効果が更に発揮さ れる。
[0013] 本発明は、上記放射線硬化性組成物を基板上に塗布し乾燥して塗膜を得る工程と 、その塗膜を露光する工程とを有し、かつ露光する工程の後に塗膜を加熱しない硬 化膜形成方法を提供する。この方法によると、加熱による酸の拡散や生産コストの増 大が十分に抑えられ、しかも、得られる硬化膜のパターン精度は十分に優れたものと なる。
[0014] 本発明は、上記放射線硬化性組成物を基板上に塗布し乾燥して塗膜を得る工程と 、その塗膜を露光する工程と、露光する工程の後に塗膜を加熱する工程とを有する 硬化膜形成方法を提供する。
[0015] 本発明は、上述の加熱する工程において、塗膜を 70— 110°Cに加熱する上記硬 化膜形成方法を提供する。これにより、加熱時の酸の拡散をより抑制することができ る。
[0016] 本発明は、上述の露光する工程において、塗膜を 5— lOOmjZcm2の光量の光の 照射により露光する上記パターン形成方法を提供する。光量を上記範囲内にするこ とにより、露光制御が容易となり生産効率が向上する傾向にある。
[0017] 本発明は、上記放射線硬化性組成物を基板上に塗布し乾燥して塗膜を得る工程と 、マスクを介してその塗膜を露光する工程と、露光する工程の後に塗膜の未露光部 を現像によって除去する工程とを有し、かつ露光する工程の後に塗膜を加熱しない パターン形成方法を提供する。この方法によると、加熱による酸の拡散や生産コスト の増大が十分に抑えられ、し力も、得られる硬化膜のパターン精度は十分に優れた ものとなる。なお、ここでの「加熱」は、上記除去する工程よりも前の段階における加熱 をいうので、上記除去する工程の後であれば加熱してもよい。
[0018] 本発明は、上記放射線硬化性組成物を基板上に塗布し乾燥して塗膜を得る工程と 、マスクを介してその塗膜を露光する工程と、露光する工程の後に塗膜を加熱するェ 程と、加熱する工程の後に塗膜の未露光部を現像によって除去する工程とを有する パターン形成方法を提供する。 [0019] 本発明は、上述の加熱する工程において、塗膜を 70— 110°Cに加熱する上記パ ターン形成方法を提供する。これにより、加熱時の酸の拡散をより抑制することができ る。
[0020] 本発明は、上述の露光する工程にお!、て、塗膜を 5— lOOmjZcm2の光量の光の 照射により露光する上記パターン形成方法を提供する。光量を上記範囲内にするこ とにより、露光制御が容易となり生産効率が向上する傾向にある。
[0021] 本発明は、上述の除去する工程において、テトラメチルアンモ -ゥムハイド口ォキシ ド水溶液を現像液として用いる上記パターン形成方法を提供する。これにより、現像 時における電子部品のアルカリ金属による汚染を十分に抑制できる。
[0022] 本発明は、上記パターン形成方法により形成されたパターンをレジストマスクとして 用いるパターン使用方法を提供する。
[0023] 本発明は、上記パターン形成方法により形成されたパターンを備える電子部品を 提供する。
[0024] 本発明は、上記パターン形成方法により形成されたパターンを備える光導波路を 提供する。
[0025] 本発明は、上記放射線硬化性組成物を 0°C以下の温度で保存する放射線硬化性 組成物の保存方法を提供する。この組成物を 0°C以下の温度で保存することにより、 0°Cよりも高い温度で保存する場合よりも、保存安定性が優れたものとなる。
[0026] このような成分構成を有する放射線硬化性組成物や、その放射線硬化性組成物を 用いた硬化膜形成方法及びパターン形成方法並びに放射線硬化性組成物の保存 方法によれば、露光量が比較的少なくても、パターン精度に優れた硬化物を形成で き、少な 、露光量と優れたパターン精度とを両立できな 、と 、つた従来の問題点を解 決することができる。
[0027] 本発明にお 、て、このような従来達成されなかった効果が奏されるメカニズムの詳 細は、未だ不明な点がある。し力しながら本発明者らは、例えば、発生した酸の拡散 を抑制する酸拡散制御剤を用いる必要性がないこと、又は、添加剤として硬化促進 触媒を更に含有させることに起因して、露光量を低減しても十分に優れたパターン精 度を確保できると推定して!/ヽる。 [0028] パターン精度の向上は、添加剤として硬化促進触媒を用いると、酸や塩基の拡散よ りも先に放射線硬化性組成物の硬化反応が起こることに由来していると推定される。 このようなメカニズムは、従来の、酸拡散制御剤が発生した酸を失活(中和)させるこ とによりパターン精度が向上する、というメカニズムとは異なるものである。本発明にお いては、従来とは異なる上述のメカニズムに基づいて、パターン精度の向上と露光量 の低減とを両立することが可能になると考えられる。
発明の効果
[0029] 本発明の放射線硬化性組成物、その保存方法、硬化膜形成方法及びパターン形 成方法により、露光量が比較的少なくても、パターン精度に優れた硬化物を得ること ができる。したがって、本発明は、パターン使用方法、電子部品及び光導波路に有 用である。
図面の簡単な説明
[0030] [図 1]本発明に係る電子部品の好適な一実施形態を示す模式断面図である。
[図 2]本発明の実施例に係るパターン形状を示す SEM写真である。
[図 3]本発明の比較例に係るパターン形状を示す SEM写真である。
符号の説明
[0031] 1…ガラス基板、 2…アンダーコート膜、 3…伝導層、 4…ソース、 5…ドレイン、 6…ゲ ート酸化膜、 7· ··ゲート電極、 8…第 1層間絶縁膜、 9…金属配線、 10· ··第 2層間絶 縁膜、 11…透明電極。
発明を実施するための最良の形態
[0032] 以下、本発明の実施形態について詳細に説明する。
[0033] く (a)成分〉
(a)成分はシロキサン榭脂であり、公知のものを使用できるが、榭脂の末端や側鎖 などに OH基を有することが好ま 、。これは放射線硬化性組成物を硬化させるため の加水分解縮合反応を一層進行させるためである。
[0034] また、シロキサン榭脂は、溶媒への溶解性、機械特性、成形性等の観点から、重量 平均分子量(Mw)力 500— 1000000であること力 S好ましく、 500— 500000である とより好ましく、 500— 100000であること力更に好ましく、 500— 10000であること力 S 特に好ましぐ 500— 5000であることが極めて好ましい。この重量平均分子量が 500 未満では硬化物の成膜性が劣る傾向にあり、この重量平均分子量が 1000000を超 えると、溶媒との相溶性が低下する傾向にある。なお、本明細書において、重量平均 分子量は、ゲルパーミエーシヨンクロマトグラフィー(以下、「GPC」という。)により測定 され且つ標準ポリスチレンの検量線を使用して換算されたものである。
[0035] 重量平均分子量 (Mw)は、例えば、以下の条件による GPCにより測定することがで きる。
試料:放射線硬化性組成物 10 μ L
標準ポリスチレン:東ソー株式会社製標準ポリスチレン(分子量; 190000、 17900
、 9100、 2980、 578、 474、 370、 266)
検出器:株式会社日立製作所社製 RI -モニター、商品名「L - 3000」
インテグレータ:株式会社日立製作所社製 GPCインテグレーター、商品名「D— 22
00」
ポンプ:株式会社日立製作所社製、商品名「L 6000」
デガス装置:昭和電工株式会社製、商品名「Shodex DEGASJ
カラム:日立化成工業株式会社製、商品名「GL-R440」、 「GL-R430」、 「GL-R 420」をこの順番で連結して使用
溶離液:テトラヒドロフラン (THF)
測定温度: 23°C
流速: 1. 75mLZ分
測定時間: 45分
[0036] 好ま 、シロキサン榭脂としては、例えば、下記一般式(1);
R1 SiX
n 4— n
で表される化合物を必須成分として加水分解縮合して得られる榭脂等が挙げられる
。ここで、式中、 R1は、 H原子若しくは F原子、又は B原子、 N原子、 A1原子、 P原子、 Si原子、 Ge原子若しくは Ti原子を含む基、又は、炭素数 1一 20の有機基を示し、 X は加水分解性基を示し、 nは 0— 2の整数を示し、 nが 2のとき、各 R1は同一でも異な つていてもよぐ n力 SO— 2のとき、各 Xは同一でも異なっていてもよい。
[0037] 加水分解性基 Xとしては、例えば、アルコキシ基、ハロゲン原子、ァセトキシ基、イソ シァネート基、ヒドロキシル基等が挙げられる。これらの中では、組成物自体の液状 安定性や塗布特性等の観点力 アルコキシ基が好ましい。
[0038] 加水分解性基 Xがアルコキシ基である一般式(1)の化合物(アルコキシシラン)とし ては、例えば、テトラアルコキシシラン、トリアルコキシシラン、ジオルガノジアルコキシ シランなどが挙げられる。
[0039] テトラアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、 テトラー n プロポキシシラン、テトラー iso プロポキシシラン、テトラー n ブトキシシラン
、テトラ- sec-ブトキシシラン、テトラ- tert-ブトキシシラン、テトラフエノキシシラン等 が挙げられる。
[0040] トリアルコキシシランとしては、例えば、トリメトキシシラン、トリエトキシシラン、トリプロ ポキシシラン、フルォロトリメトキシシラン、フルォロトリエトキシシラン、メチルトリメトキ シシラン、メチルトリエトキシシラン、メチルトリー n プロポキシシラン、メチルトリー iso— プロポキシシラン、メチルトリー n ブトキシシラン、メチルトリー iso ブトキシシラン、メチ ルトリー tert ブトキシシラン、メチルトリフエノキシシラン、ェチルトリメトキシシラン、ェ チルトリエトキシシラン、ェチルトリー n—プロポキシシラン、ェチルトリー iso プロポキシ シラン、ェチルトリー n—ブトキシシラン、ェチルトリー iso ブトキシシラン、ェチルトリー te rt ブトキシシラン、ェチルトリフエノキシシラン、 n プロピルトリメトキシシラン、 n プロ ピルトリエトキシシラン、 n—プロピルトリー n—プロポキシシラン、 n プロピルトリー iso—プ ロポキシシラン、 n プロピルトリー n ブトキシシラン、 n プロピルトリー iso—ブトキシシラ ン、 n プロピルトリー tert ブトキシシラン、 n プロピルトリフエノキシシラン、 iso プロ ピルトリメトキシシラン、 iso プロピルトリエトキシシラン、 iso プロピルトリー n プロポキ シシラン、 iso プロピルトリー iso プロポキシシラン、 iso プロピルトリー n—ブトキシシラ ン、 iso プロピルトリー iso ブトキシシラン、 iso プロピルトリー tert ブトキシシラン、 is o—プロピルトリフエノキシシラン、 n—ブチルトリメトキシシラン、 n ブチルトリエトキシシ ラン、 n ブチルトリー n プロポキシシラン、 n ブチルトリー iso プロポキシシラン、 n— ブチルトリー n ブトキシシラン、 n ブチルトリー iso ブトキシシラン、 n ブチルトリー tert ブトキシシラン、 n ブチルトリフエノキシシラン、 sec—ブチルトリメトキシシラン、 sec— ブチルトリエトキシシラン、 sec ブチルトリー n プロポキシシラン、 sec ブチルトリー iso プロポキシシラン、 sec ブチルトリー n ブトキシシラン、 sec ブチルトリー iso—ブトキ シシラン、 sec ブチルトリー tert ブトキシシラン、 sec ブチルトリフエノキシシラン、 t ブチルトリメトキシシラン、 t ブチルトリエトキシシラン、 t ブチルトリー n プロポキシシ ラン、 t ブチルトリー iso プロポキシシラン、 t ブチルトリー n ブトキシシラン、 tーブチ ルトリー iso ブトキシシラン、 t ブチルトリー tert ブトキシシラン、 t ブチルトリフエノキ シシラン、フエニルトリメトキシシラン、フエニルトリエトキシシラン、フエニルトリー n プロ ポキシシラン、フエニルトリー iso プロポキシシラン、フエニルトリー n ブトキシシラン、 フエニルトリー iso ブトキシシラン、フエニルトリー tert ブトキシシラン、フエニルトリフエ ノキシシラン、トリフルォロメチルトリメトキシシラン、ペンタフルォロェチルトリメトキシシ ラン、 3, 3, 3—トリフルォロプロピルトリメトキシシラン、 3, 3, 3—トリフルォロプロビルト リエトキシシラン等が挙げられる。
ジオルガノジアルコキシシランとしては、例えば、ジメチルジメトキシシラン、ジメチル ジエトキシシラン、ジメチノレジ プロポキシシラン、ジメチノレジ iso プロポキシシラ ン、ジメチルジー n ブトキシシラン、ジメチルジー sec—ブトキシシラン、ジメチルジー ter t ブトキシシラン、ジメチノレジフエノキシシラン、ジェチノレジメトキシシラン、ジェチノレ ジエトキシシラン、ジェチノレジ プロポキシシラン、ジェチノレジ iso プロポキシシ ラン、ジェチルジー n—ブトキシシラン、ジェチルジー sec ブトキシシラン、ジェチルジー tert ブトキシシラン、ジェチノレジフエノキシシラン、ジー n プロピノレジメトキシシラン、 ジー n プロピルジェトキシシラン、ジー n プロピルジー n プロポキシシラン、ジー n—プ ロピルジー iso プロポキシシラン、ジー n プロピルジー n ブトキシシラン、ジー n プロ ピルジー sec—ブトキシシラン、ジー n プロピルジー tert ブトキシシラン、ジー n プロピ ルジフエノキシシラン、ジー iso プロピルジメトキシシラン、ジー iso プロピルジェトキシ シラン、ジー iso プロピルジー n プロポキシシラン、ジー iso—プロピルジー iso プロボ キシシラン、ジー iso プロピルジー n ブトキシシラン、ジー iso プロピルジー sec—ブトキ シシラン、ジー iso プロピルジー tert ブトキシシラン、ジー iso プロピルジフエノキシシ ラン、ジー n—ブチノレジメトキシシラン、ジー n—ブチノレジェトキシシラン、ジー n—ブチノレ ジー n プロポキシシラン、ジー n—ブチルジー iso プロポキシシラン、ジー n—ブチルジー n ブトキシシラン、ジー n—ブチルジー sec—ブトキシシラン、ジー n—ブチルジー tert—ブ トキシシラン、ジー n—ブチノレジフエノキシシラン、ジー sec—ブチノレジメトキシシラン、ジー sec—ブチルジェトキシシラン、ジ—sec—ブチルジー n プロポキシシラン、ジ—sec—ブ チルジー iso プロポキシシラン、ジー sec—ブチルジー n ブトキシシラン、ジ—sec—ブチ ルジー sec ブトキシシラン、ジー sec—ブチルジー tert ブトキシシラン、ジー sec—ブチ ルジフエノキシシラン、ジー tert—ブチルジメトキシシラン、ジー tert—ブチルジェトキシ シラン、ジー tert—ブチルジー n プロポキシシラン、ジー tert—ブチルジー iso プロポキ シシラン、ジー tert—ブチルジー n ブトキシシラン、ジー tert—ブチルジー sec ブトキシ シラン、ジー tert—ブチルジー tert ブトキシシラン、ジー tert—ブチルジフエノキシシラ ン、ジフエ二ルジメトキシシラン、ジフエ二ルジェトキシシラン、ジフエ二ルジー n プロボ キシシラン、ジフエ二ルジー iso プロポキシシラン、ジフエ二ルジー n ブトキシシラン、 ジフエ二ルジー sec ブトキシシラン、ジフエ二ルジー tert ブトキシシラン、ジフエニル ジフエノキシシラン、ビス(3, 3, 3—トリフルォロプロピル)ジメトキシシラン、メチル(3, 3, 3—トリフルォロプロピル)ジメトキシシラン等が挙げられる。
[0042] また、 R1が炭素数 1一 20の有機基である一般式(1)の化合物で、上記以外の化合 物としては、例えば、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビ ス(トリー n プロポキシシリル)メタン、ビス(トリー iso プロポキシシリル)メタン、ビス(トリ メトキシシリル)ェタン、ビス(トリエトキシシリル)ェタン、ビス(トリー n プロポキシシリル )ェタン、ビス(トリー iso プロポキシシリル)ェタン、ビス(トリメトキシシリル)プロパン、 ビス(トリエトキシシリル)プロパン、ビス(トリー n プロポキシシリル)プロパン、ビス(トリ— iso プロポキシシリル)プロパン、ビス(トリメトキシシリル)ベンゼン、ビス(トリエトキシ シリル)ベンゼン、ビス(トリー n プロポキシシリル)ベンゼン、ビス(トリー iso プロポキシ シリル)ベンゼン等のビスシリルアルカン、ビスシリルベンゼンなどが挙げられる。
[0043] また、 R1が Si原子を含む基である一般式(1)の化合物としては、例えば、へキサメト キシジシラン、へキサェトキシジシラン、へキサー n プロポキシジシラン、へキサー iso プロポキシジシラン等のへキサァノレコキシジシラン類、 1, 2—ジメチノレテトラメトキシ ジシラン、 1, 2—ジメチノレテトラエトキシジシラン、 1, 2—ジメチノレテトラプロポキシジシ ラン等のジアルキルテトラアルコキシジシラン類などが挙げられる。
[0044] また、加水分解性基 Xが、ハロゲン原子 (ハロゲン基)である一般式(1)の化合物( ハロゲン化シラン)としては、例えば、上述した各アルコキシシラン分子中のアルコキ シ基がハロゲン原子で置換されたもの等が挙げられる。さらに、加水分解性基 Xが、 ァセトキシ基である一般式(1)の化合物(ァセトキシシラン)としては、例えば、上述し た各アルコキシシラン分子中のアルコキシ基がァセトキシ基で置換されたもの等が挙 げられる。またさらに、加水分解性基 Xが、イソシァネート基である一般式(1)の化合 物 (イソシァネートシラン)としては、例えば、上述した各アルコキシシラン分子中のァ ルコキシ基カ Sイソシァネート基で置換されたもの等が挙げられる。さらにまた、加水分 解性基 Xが、ヒドロキシル基である一般式(1)の化合物(ヒドロキシシラン)としては、例 えば、上述した各アルコキシシラン分子中のアルコキシ基がヒドロキシル基で置換さ れたもの等が挙げられる。
[0045] これら一般式(1)で表される化合物は、 1種類を単独で又は 2種類以上を組み合わ せて使用される。
[0046] また、一般式(1)で表される化合物の多量体等の部分縮合物を加水分解縮合して 得られる榭脂、一般式 (1)で表される化合物の多量体等の部分縮合物と一般式 (1) で表される化合物とを加水分解縮合して得られる榭脂、一般式 (1)で表される化合 物とその他の化合物とを加水分解縮合して得られる榭脂、一般式(1)で表される化 合物の多量体等の部分縮合物と一般式(1)で表される化合物とその他の化合物とを 加水分解縮合して得られる榭脂、などを使用することもできる。
[0047] 一般式(1)で表される化合物の多量体等の部分縮合物としては、例えば、へキサメ トキシジシロキサン、へキサエトキシジシロキサン、へキサー n—プロポキシジシロキサン 、へキサー iso—プロポキシジシロキサン等のへキサアルコキシジシロキサン、部分縮 合が進んだトリシロキサン、テトラシロキサン、オリゴシロキサン等が挙げられる。
[0048] 上記「その他の化合物」としては、例えば、重合性の 2重結合又は 3重結合を有する 化合物等が挙げられる。重合性の 2重結合を有する化合物としては、例えば、ェチレ ン、プロピレン、イソブテン、ブタジエン、イソプレン、塩化ビュル、酢酸ビュル、プロピ オン酸ビュル、カプロン酸ビュル、ステアリン酸ビュル、メチルビ-ルエーテル、ェチ ルビ-ルエーテル、プロピルビュルエーテル、アクリロニトリル、スチレン、メタクリル酸
、メタクリル酸メチル、メタクリル酸ェチル、メタクリル酸 n プロピル、メタクリル酸 iso プロピル、メタクリル酸 n—ブチル、アクリル酸、アクリル酸メチル、アクリル酸ェチル 、アクリル酸フエ-ル、ビュルピリジン、ビュルイミダゾール、アクリルアミド、ァリルベン ゼン、ジァリルベンゼン等やこれらの化合物が部分縮合したものなどが挙げられる。 3 重結合を有する化合物としてはアセチレン、ェチニルベンゼン等が挙げられる。
[0049] このようにして得られる榭脂は 1種類を単独で又は 2種類以上を組み合わせて使用 される。
[0050] 一般式(1)で表される化合物を加水分解縮合させる際に用いる水の量は、一般式( 1)で表される化合物 1モル当たり 0. 1— 1000モルであることが好ましぐさらに好ま しくは 0. 5— 100モルである。この水の量が 0. 1モル未満では加水分解縮合反応が 十分に進行しない傾向にあり、水の量が 1000モルを超えると加水分解中又は縮合 中にゲルィ匕物を生じる傾向にある。
[0051] また、一般式(1)で表される化合物の加水分解縮合において、触媒を使用すること も好ましい。このような触媒の種類としては、例えば、酸触媒、アルカリ触媒、金属キレ 一トイ匕合物等が挙げられる。
[0052] 酸触媒としては、例えば、有機酸及び無機酸などが挙げられる。有機酸としては、 例えば、蟻酸、マレイン酸、フマル酸、フタル酸、マロン酸、コハク酸、酒石酸、リンゴ 酸、乳酸、クェン酸、酢酸、プロピオン酸、ブタン酸、ペンタン酸、へキサン酸、ヘプタ ン酸、オクタン酸、ノナン酸、デカン酸、シユウ酸、アジピン酸、セバシン酸、酪酸、ォ レイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、ベンゼンスルホン酸、 安息香酸、 P—ァミノ安息香酸、 p—トルエンスルホン酸、メタンスルホン酸、トリフルォロ メタンスルフォン酸、トリフルォロエタンスルフォン酸等が挙げられる。無機酸としては
、例えば、塩酸、燐酸、硝酸、ホウ酸、硫酸、フッ酸等が挙げられる。これらは 1種類を 単独で又は 2種類以上を組み合わせて使用される。
[0053] アルカリ触媒としては、例えば、無機アルカリ及び有機アルカリなどが挙げられる。
無機アルカリとしては、例えば、水酸化ナトリウム、水酸ィ匕カリウム、水酸化ルビジウム 、水酸ィ匕セシウム等が挙げられる。有機アルカリとしては、例えば、ピリジン、モノエタ ノールァミン、ジエタノールァミン、トリエタノールァミン、ジメチルモノエタノールァミン 、モノメチルジェタノールァミン、アンモニア、テトラメチルアンモニゥムハイド口ォキサ イド、テトラエチルアンモ -ゥムハイド口オキサイド、テトラプロピルアンモ-ゥムハイド 口オキサイド、メチルァミン、ェチルァミン、プロピルァミン、ブチルァミン、ペンチルァ ミン、へキシルァミン、ヘプチルァミン、ォクチルァミン、ノ-ルァミン、デシルァミン、ゥ ンデカシルァミン、ドデカシルァミン、シクロペンチルァミン、シクロへキシルァミン、 N , N—ジメチルァミン、 N, N—ジェチルァミン、 N, N—ジプロピルァミン、 N, N—ジブチ ルァミン、 N, N—ジペンチルァミン、 N, N—ジへキシルァミン、 N, N—ジシクロペンチ ルァミン、 N, N—ジシクロへキシルァミン、トリメチルァミン、トリエチルァミン、トリプロピ ルァミン、トリブチルァミン、トリペンチルァミン、トリへキシルァミン、トリシクロペンチル ァミン、トリシクロへキシルァミン等が挙げられる。これらは 1種類を単独で又は 2種類 以上を組み合わせて使用される。
金属キレートイ匕合物としては、例えば、トリメトキシ'モノ(ァセチルァセナート)チタン 、トリエトキシ 'モノ(ァセチルァセナート)チタン、トリー n—プロポキシ ·モノ(ァセチルァ セナート)チタン、トリー iso—プロポキシ 'モノ(ァセチルァセナート)チタン、トリー n—ブト キシ ·モノ(ァセチノレアセナート)チタン、トリー sec—ブトキシ ·モノ(ァセチノレアセナート )チタン、トリー tert—ブトキシ 'モノ(ァセチルァセナート)チタン、ジメトキシ 'モノ(ァセ チルァセナート)チタン、ジェトキシ 'ジ(ァセチルァセナート)チタン、ジ n—プロポキシ •ジ(ァセチルァセナート)チタン、ジ iso—プロポキシ ·ジ(ァセチルァセナート)チタン 、ジ n—ブトキシ 'ジ(ァセチルァセナート)チタン、ジ sec—ブトキシ 'ジ(ァセチルァセナ ート)チタン、ジ tert—ブトキシ 'ジ(ァセチルァセナート)チタン、モノメトキシ 'トリス(ァ セチルァセナート)チタン、モノエトキシ 'トリス(ァセチルァセナート)チタン、モノ n—プ 口ポキシ 'トリス(ァセチルァセナート)チタン、モノ iso—プロポキシ 'トリス(ァセチルァ セナート)チタン、モノ n—ブトキシ 'トリス(ァセチルァセナート)チタン、モノ sec—ブトキ シ ·トリス(ァセチノレアセナート)チタン、モノ tert—ブトキシ ·トリス(ァセチノレアセナート) チタン、テトラキス(ァセチルァセナート)チタン、トリメトキシ 'モノ(ェチルァセトァセテ ート)チタン、トリエトキシ 'モノ(ェチルァセトアセテート)チタン、トリー n—プロポキシ 'モ ノ(ェチノレアセトアセテート)チタン、トリー iso—プロポキシ ·モノ(ェチノレアセトァセテー ト)チタン、トリー n—ブトキシ 'モノ(ェチルァセトアセテート)チタン、トリ— sec—ブトキシ' モノ(ェチルァセトアセテート)チタン、トリー tert—ブトキシ.モノ(ェチルァセトァセテー ト)チタン、ジメトキシ 'モノ(ェチノレアセトアセテート)チタン、ジエトキシ 'ジ(ェチノレア セトアセテート)チタン、ジ n—プロポキシ 'ジ(ェチルァセトアセテート)チタン、ジ iso— プロポキシ ·ジ(ェチルァセトアセテート)チタン、ジ n—ブトキシ ·ジ(ェチルァセトァセ テート)チタン、ジ sec—ブトキシ.ジ(ェチルァセトアセテート)チタン、ジ tert—ブトキシ .ジ(ェチノレアセトアセテート)チタン、モノメトキシ'トリス(ェチノレアセトアセテート)チタ ン、モノエトキシ 'トリス(ェチルァセトアセテート)チタン、モノ n—プロポキシ 'トリス(ェ チルァセトアセテート)チタン、モノ iso—プロポキシ 'トリス(ェチルァセトアセテート)チ タン、モノ n—ブトキシ 'トリス(ェチルァセトアセテート)チタン、モノ sec—ブトキシ 'トリス (ェチルァセトアセテート)チタン、モノ tert—ブトキシ 'トリス(ェチルァセトアセテート) チタン、テトラキス (ェチルァセトアセテート)チタン等のチタンを有する金属キレート 化合物、上記チタンを有する金属キレートイ匕合物のチタンがジルコニウム、アルミ-ゥ ム等に置換されたィ匕合物などが挙げられる。これらは 1種類を単独で又は 2種類以上 を組み合わせて使用される。
[0055] 一般式(1)で表される化合物の加水分解縮合において、力かる触媒を用い加水分 解を行うことが好ましいが、組成物の安定性が悪化する場合や触媒を含むことにより 他材料への腐食等の影響が懸念される場合もある。そのような場合は、例えば、加水 分解後に、上記触媒を組成物から取り除いたり、他の化合物と反応させて触媒として の機能を失活させてもよい。取り除く方法や反応させる方法に特に制限はないが、蒸 留ゃイオンクロマトカラム等を用いて取り除いてもよい。また、一般式(1)で表される 化合物から得られる加水分解物は、再沈等により組成物カゝら取り出されてもよい。ま た、反応により触媒としての機能を失活させる方法としては、例えば、触媒がアルカリ 触媒の場合、酸触媒を添加して、酸塩基反応により中和したり pHを酸性側にしたり する方法が挙げられる。
[0056] この触媒の使用量は、一般式(1)で表される化合物 1モルに対して 0. 0001— 1モ ルの範囲であることが好ましい。この使用量が 0. 0001モル未満では実質的に反応 が進行しな 、傾向にあり、 1モルを超えると加水分解縮合時にゲルィ匕が促進される傾 向にある。
[0057] さらに、この加水分解によって副生するアルコールはプロトン性溶媒であるため、ェ バポレータ等を用いて除去することが好まし 、。
[0058] このようにして得られる榭脂は、溶媒への溶解性、機械特性、成形性等の観点から 、重量平均分子量力 500— 1000000であること力 S好ましく、 500— 500000である とより好ましく、 500— 100000であること力更に好ましく、 500— 10000であること力 S 特に好ましぐ 500— 5000であることが極めて好ましい。この重量平均分子量が 500 未満では硬化物の成膜性が劣る傾向にあり、この重量平均分子量が 1000000を超 えると、溶媒との相溶性が低下する傾向にある。
[0059] 下地への接着性及び機械強度を必要とする場合は、一般式(1)における Si原子 1 モルに対する、 H原子、 F原子、 B原子、 N原子、 A1原子、 P原子、 Si原子、 Ge原子、 Ti原子及び C原子からなる群より選ばれる少なくとも 1種の原子の総含有割合 (これ を、特定の結合原子(一般式(1)中の R1)の総数 (M)とする。)が、 1. 3-0. 2モル であることが好ましぐ 1. 0-0. 2モルであることがより好ましぐ 0. 90-0. 2モルで あることが特に好ましぐ 0. 8-0. 2モルであることが極めて好ましい。このようにすれ ば、硬化物の他の膜 (層)への接着性及び機械強度の低下を抑制することができる。
[0060] この特定の結合原子の総数 (M)が 0. 20未満では、硬化物を絶縁膜として用いた ときの誘電特性が劣る傾向にあり、 1. 3を超えると最終的に得られる硬化物の他の膜 (層)との接着性や機械強度等が劣る傾向にある。また、上述の特定の結合原子のな かでも、硬化物の成膜性の点で、 H原子、 F原子、 N原子、 Si原子、 Ti原子及び C原 子からなる群から選択される少なくとも 1種の原子を含むことが好ましく、それらのなか でも、誘電特性及び機械強度の点において、 H原子、 F原子、 N原子、 Si原子及び C 原子力もなる群力も選択される少なくとも 1種の原子を含むことがより好ましい。
[0061] なお、特定の結合原子の総数 (M)は、シロキサン樹脂の仕込み量力 求めることが でき、例えば、下記式 (A) ;
M = (M 1 + (M2/2) + (M3/3))/Msi - -- (A)
で表される関係を用いて算出できる。式中、 Mlは、特定の結合原子のうち単一の( ただ 1つの) Si原子と結合している原子の総数を示し、 M2は、特定の結合原子のうち 2つのケィ素原子と結合している原子の総数を示し、 M3は、特定の結合原子のうち 3 つのケィ素原子と結合している原子の総数を示し、 Msiは、 Si原子の総数を示す。
[0062] このようなシロキサン榭脂は 1種類を単独で又は 2種類以上を組み合わせて使用さ れる。 2種類以上のシロキサン榭脂を組み合わせる方法としては、例えば、異なる重 量平均分子量を有する 2種類以上のシロキサン榭脂を組み合わせる方法、異なる化 合物を必須成分として加水分解縮合して得られる 2種類以上のシロキサン榭脂を組 み合わせる方法等が挙げられる。
[0063] く (b)成分〉
(b)成分は、光酸発生剤又は光塩基発生剤であり、放射線を照射することにより、 ( a)成分を光硬化 (加水分解重縮合)可能な酸性活性物質又は塩基性活性物質を放 出することができる化合物として定義される。
[0064] 光酸発生剤としては、例えば、ジァリールスルホ -ゥム塩、トリアリールスルホ -ゥム 塩、ジアルキルフエナシルスルホ -ゥム塩、ジァリールョードニゥム塩、ァリールジァゾ ユウム塩、芳香族テトラカルボン酸エステル、芳香族スルホン酸エステル、ニトロベン ジルエステル、ォキシムスルホン酸エステル、芳香族 N—ォキシイミドスルフォネート、 芳香族スルフアミド、ハロアルキル基含有炭化水素系化合物、ハロアルキル基含有 ヘテロ環状化合物、ナフトキノンジアジドー 4ースルホン酸エステル等が挙げられる。こ れらは 1種類を単独で又は 2種類以上を組み合わせて使用される。また、他の増感 剤等と組み合わせて使用することもできる。
[0065] 光塩基発生剤としては、例えば、下記一般式 (2)—(5)で表される化合物群、ニフ ェジピン類等の非イオン性の光塩基発生剤、コバルトアミン錯体、下記一般式 (6)、 下記一般式(7)で表される 4級アンモ-ゥム塩等のイオン性の光塩基発生剤などが 挙げられる。これらは単独で又は 2種類以上を組み合わせて使用される。また、他の 増感剤等と組合せて使用することもできる。
[0066] (R2— OCO— NH) — R3 - -- (2)
ここで、式中、 R2は炭素数 1一 30の 1価の有機基を示し、側鎖にメトキシ基又は-トロ 基を有する芳香族環を含んでいてもよぐ R3は炭素数 1一 20の 1一 4価の有機基を 示し、 mは 1一 4の整数である。 [0067] (R R C = N- OCO) - R - -- (3)
m
ここで、式中、 R3及び mは上記一般式(2)におけるものと同義であり、 R4及び R5は各 々独立に炭素数 1一 30の 1価の有機基を示し、互いに結合して環状構造を形成して もよい。
[0068] R2- OCO- NR6R7 · · · (4)
ここで、式中、 R2は上記一般式(2)におけるものと同義であり、 R6及び R7は各々独立 に炭素数 1一 30の 1価の有機基を示し、互いに結合して環状構造を形成してもよぐ V、ずれか一方が水素原子であってもよ 、。
[0069] R8- CO- R9- NR6R7 - -- (5)
ここで、式中、 R。及び R7は上記一般式 (4)におけるものと同義であり、 R8は炭素数 1 一 30の 1価の有機基を示し、側鎖にアルコキシ基、ニトロ基、アミノ基、アルキル置換 アミノ基又はアルキルチオ基を有する芳香族環を含んでいてもよぐ R9は炭素数 1一 30の 2価の有機基を示す。
[0070] [化 1]
Figure imgf000018_0001
ここで、式中、 は炭素数 1一 30の 1価の有機基を示し、 R11及び R12は各々独立に 炭素数 1一 30の 1価の有機基又は水素原子を示し、 X1は、下記一般式 (6A)、 (6B) 、(6C)、 (6D)、 (6E)及び(6F) (以下、「(6A)—(6F)」のように表記する。)のいず れかで表される 1価の基を示し、 Z—はアンモ-ゥム塩の対イオンを示し、 tは 1一 3の整 数であり、 p及び qは 0— 2の整数であり、 t + p + q = 3である。 [0071] [化 2]
Figure imgf000019_0001
Figure imgf000019_0002
Figure imgf000019_0003
ここで、式中、 R13、 R14、 R15及び R16は各々独立に炭素数 1一 30の 1価の有機基を 示し、 R17、 R18及び R19は各々独立に炭素数 1一 30の 2価の有機基又は単結合を示 し、 R2G及び R21は各々独立に炭素数 1一 30の 3価の有機基を示す。
[0072] [化 3]
〇 R 1 1 R 11 / 0
R 0-C- -c— x2-c ■C _—D R10 2Z" (7)
t R 12 t
q R 12
■、 q
2
ここで、式中、 R 、 R 及び R 、 Z―、 t、 p及び qは上記一般式(6)におけるものと同 様であり、 X2は下記一般式(7A)— (7D)のいずれかで表される 2価の基を示す。 [0073] [化 4]
R 13 R 5 1
'① Θ Θ
一 N (7A) -R18- : N— (フ B)
R 14 R 16 R 14
(7D)
Figure imgf000020_0001
ここで、式中、 R13、 R"、 R15、 R16、 R17、 R18、 R19、 R2°及び R21は、上記一般式 (6A) 一 (6F)におけるものと同義である。
[0074] (b)成分の使用量は特に制限されるものではなR NI 、が、用いる光酸発生剤又は光塩
3
基発生剤の感度、効率、用いる光源、所望とする硬化物の厚さ等に依存するため、 その範囲は広きに渡る。具体的には、放射線硬化性組成物中の(a)成分の総量に 対して(b)成分の使用量は 0. 0001— 50重量%であることが好ましぐ 0. 001— 20 重量%であることがより好ましぐ 0. 01— 10重量%であることが特に好ましい。この 使用量が 0. 0001重量%未満では光硬化性が低下する、又は硬化させるために多 大な露光量を必要とする傾向があり、 50重量%を超えると組成物の安定性、成膜性 等が劣る傾向にあると共に、硬化物の電気特性及びプロセス適合性が低下する傾向 がある。
[0075] また、上述した光酸発生剤又は光塩基発生剤とともに光増感剤を併用してもよい。
光増感剤を用いることにより、効率的に放射線のエネルギー線を吸収することができ 、光酸発生剤又は光塩基発生剤の感度を向上させることができる。光増感剤としては 、例えば、アントラセン誘導体、ペリレン誘導体、アントラキノン誘導体、チォキサント ン誘導体、クマリン等が挙げられる。
[0076] なお、保存安定性向上のために放射線硬化性組成物を二液に分けて保存する場 合は、この (b)成分と (a)成分とを別々に保存することが好ましい。
[0077] また、放射線硬化性組成物中を一液で保存する場合は、例えば、 0°C以下の温度 で保存することが好ましい。この温度の下限は、放射線硬化性組成物中の溶媒の凝 固点以上であることが好ましぐ—50°Cであることが好ましい。
[0078] く (c)成分〉
(c)成分は、(a)成分を溶解可能な溶媒であり、例えば、非プロトン性溶媒、プロトン 性溶媒等が挙げられ、非プロトン性溶媒を含有させることが好ましい。非プロトン性溶 媒は、露光量の低減やパターン精度の向上に有効なのではないかと発明者らは推 定している。
[0079] アルコールに代表されるプロトン性溶媒は、電気陰性度の大きい酸素原子に結合 した水素原子を持っている。そのために、プロトン性溶媒分子は求核試薬などと水素 結合を作って溶媒和する。すなわち、プロトン性溶媒は一般式(1)で表される化合物 を加水分解して得られるシロキサン樹脂と溶媒和するため、シロキサン樹脂が縮合す るためにはこの溶媒分子を取り除力なければならず、低温での硬化を阻害する傾向 があると考えられる。
[0080] 一方、非プロトン性溶媒は、電気陰性度の大きい元素上に水素原子を持たない溶 媒であり、プロトン性溶媒よりも反応阻害の要因は小さいと考えられる。そのため、露 光部では酸性活性物質や塩基性活性物質の発生とともに硬化反応が進み、酸や塩 基の拡散などによるパターン精度の低下が起こり難ぐパターン精度が向上する傾向 があると考えられる。これは、従来の酸拡散制御剤が発生した酸を失活(中和)させる ことによりパターン精度を向上するというメカニズムとは異なるものである。これにより、 (c)成分に非プロトン性溶媒を含有させると、パターン精度の向上及び露光量の低減 という効果が一層有効に発揮されると考えられる。
[0081] (c)成分に含まれる非プロトン性溶媒としては、例えば、アセトン、メチルェチルケト ン、メチルー n プロピルケトン、メチルー iso—プロピルケトン、メチルー n—ブチルケトン、 メチルー iso—ブチルケトン、メチルー n ペンチルケトン、メチルー n—へキシルケトン、ジ ェチルケトン、ジプロピルケトン、ジー iso—ブチルケトン、トリメチルノナノン、シクロへキ サノン、シクロペンタノン、メチルシクロへキサノン、 2, 4 ペンタンジオン、ァセトニル アセトン、 γ—ブチロラタトン、 Ύ バレロラタトン等のケトン系溶媒;ジェチルエーテル 、メチノレエチノレエーテノレ、メチノレー η—ジー η プロピノレエーテノレ、ジー iso プロピノレエ 一テル、テトラヒドロフラン、メチルテトラヒドロフラン、ジォキサン、ジメチルジォキサン 、エチレングリコーノレジメチノレエーテノレ、エチレングリコーノレジェチノレエーテノレ、ェチ レングリコールジー n—プロピルエーテル、エチレングリコールジブチルエーテル、ジェ チレングリコールジメチルエーテル、ジエチレングリコールジェチルエーテル、ジェチ レングリコールメチルェチルエーテル、ジエチレングリコールメチルモノー n—プロピル エーテノレ、ジエチレングリコーノレメチノレモノー n—ブチノレエーテノレ、ジエチレングリコー ルジー n—プロピルエーテル、ジエチレングリコールジー n—ブチルエーテル、ジェチレ ングリコールメチルモノー n—へキシルエーテル、トリエチレングリコールジメチルエー テル、トリエチレングリコールジェチルエーテル、トリエチレングリコーノレメチノレエチノレ エーテル、トリエチレングリコールメチルモノー n—ブチルエーテル、トリエチレングリコ 一ルジー n—ブチルエーテル、トリエチレングリコールメチルモノー n—へキシルエーテ ル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジェチルェ 一テル、テトラジエチレングリコールメチルェチルエーテル、テトラエチレンダリコール メチルモノー n—ブチルエーテル、ジエチレングリコールジー n—ブチルエーテル、テトラ エチレングリコールメチルモノー n—へキシルエーテル、テトラエチレングリコールジー n ーブチノレエーテノレ、プロピレングリコールジメチルエーテル、プロピレングリコールジェ チルエーテル、プロピレングリコールジー n—プロピルエーテル、プロピレングリコール ジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコー ルジェチルエーテル、ジプロピレングリコールメチルェチルエーテル、ジプロピレング リコーノレメチノレモノー n—ブチノレエーテノレ、ジプロピレングリコーノレジー n—プロピノレエ一 テル、ジプロピレングリコールジー n—ブチルエーテル、ジプロピレングリコールメチル モノー n—へキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレ ングリコーノレジェチノレエーテノレ、トリプロピレングリコーノレメチノレエチノレエーテノレ、トリ プロピレングリコールメチルモノー n—ブチルエーテル、トリプロピレングリコ一ルジー n— ブチルエーテル、トリプロピレングリコールメチルモノー n—へキシルエーテル、テトラプ ロピレングリコールジメチルエーテル、テトラプロピレングリコールジェチルエーテル、 テトラジプロピレングリコールメチルェチルエーテル、テトラプロピレングリコールメチ ルモノー n—ブチルエーテル、ジプロピレングリコールジー n—ブチルエーテル、テトラプ ロピレングリコールメチルモノー n—へキシルエーテル、テトラプロピレングリコールジー n -ブチルエーテル等のエーテル系溶媒;酢酸メチル、酢酸ェチル、酢酸 n -プロピル 、酢酸 i プロピル、酢酸 n -ブチル、酢酸 iーブチル、酢酸 sec -ブチル、酢酸 n -ペン チル、酢酸 sec ペンチル、酢酸 3—メトキシブチル、酢酸メチルペンチル、酢酸 2—ェ チルブチル、酢酸 2—ェチルへキシル、酢酸ベンジル、酢酸シクロへキシル、酢酸メ チルシクロへキシル、酢酸ノエル、ァセト酢酸メチル、ァセト酢酸ェチル、酢酸ジェチ レングリコーノレモノメチノレエーテノレ、酢酸ジエチレングリコーノレモノェチノレエーテノレ、 酢酸ジエチレングリコールモノー n—ブチルエーテル、酢酸ジプロピレングリコールモノ メチルエーテル、酢酸ジプロピレングリコールモノェチルエーテル、ジ酢酸ダリコール 、酢酸メトキシトリグリコール、プロピオン酸ェチル、プロピオン酸 n—ブチル、プロピオ ン酸 iーァミル、シユウ酸ジェチル、シユウ酸ジー n ブチル等のエステル系溶媒;ェチ レングリコーノレメチノレエーテノレプロピオネート、エチレングリコーノレェチノレエーテノレプ 口ピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコーノレェチ ノレエーテノレアセテート、ジエチレングリコールメチルエーテルアセテート、ジエチレン グリコールェチルエーテルアセテート、ジエチレングリコール ブチルエーテルァ セテート、プロピレングリコーノレメチノレエーテノレアセテート、プロピレングリコーノレェチ ノレエーテノレアセテート、プロピレングリコールプロピルエーテルアセテート、ジプロピ レングリコーノレメチノレエーテノレアセテート、ジプロピレングリコーノレェチノレエーテノレア セテート等のエーテルアセテート系溶媒;ァセトニトリル、 N—メチルピロリジノン、 N— ェチルピロリジノン、 N—プロピルピロリジノン、 N—ブチルピロリジノン、 N—へキシルピ ロリジノン、 N—シクロへキシルピロリジノン、 N, N—ジメチルホルムアミド、 N, N—ジメ チルァセトアミド、 N, N ジメチルスルホキシドなどが挙げられ、パターン形成時の感 度及びパターン精度、並びに硬化物の機械強度の観点から、エーテル系溶媒、エス テル系溶媒、エーテルアセテート系溶媒及びケトン系溶媒が好ましい。また、窒素原 子を有しない溶媒であることが好ましい。これらの中でも発明者らは 1番目にエーテ ルアセテート系溶媒が好ましぐ 2番目にエーテル系溶媒が好ましぐ 3番目にケトン 系溶媒が好ましいと考えている。これらは 1種類を単独で又は 2種類以上を組み合わ せて使用される。
放射線硬化性組成物の安定性を考慮すると、(c)成分は水に対する溶解性又は水 の溶解性があることが好ましぐ水に対する溶解性及び水の溶解性の両方があること が好ましい。したがって、非プロトン性溶媒が水に対する溶解性又は水の溶解性がな い場合は、プロトン性溶媒を添加することが好ましい。非プロトン性溶媒が水に対する 溶解性又は水の溶解性がなぐかつプロトン性溶媒を含まない場合は、(a)成分の溶 媒に対する相溶性が低下し、安定性が低下する傾向がある。し力しながら、安定性を 多少犠牲にしてでも感度が求められるような場合はプロトン性溶媒が少ない方がよい
[0083] このようなプロトン性溶媒としては、例えば、メタノール、エタノール、 n プロパノー ル、 i プロパノール、 n—ブタノール、 iーブタノール、 sec—ブタノール、 tーブタノール、 n ペンタノール、 i ペンタノール、 2—メチルブタノール、 sec ペンタノール、 t ペン タノール、 3—メトキシブタノール、 n—へキサノール、 2—メチルペンタノール、 sec キサノール、 2—ェチルブタノール、 sec プタノール、 n—ォクタノール、 2—ェチル へキサノーノレ、 sec—才クタノーノレ、 n—ノニノレアノレコーノレ、 n—デカノーノレ、 sec—ゥンデ シノレアノレコーノレ、 トリメチノレノニノレアノレコーノレ、 sec—テトラテンノレァノレコーノレ、 sec プタデシノレァノレコーノレ、フエノーノレ、シクロへキサノーノレ、メチノレシクロへキサノーノレ、 ベンジルアルコール、エチレングリコーノレ、 1, 2 プロピレングリコール、 1, 3—ブチレ ングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコーノレ 、トリプロピレングリコール等のアルコール系溶媒;エチレングリコールメチルエーテル 、エチレングリコーノレェチノレエーテノレ、エチレングリコーノレモノフエニノレエーテノレ、ジ エチレングリコーノレモノメチノレエーテノレ、ジエチレングリコーノレモノェチノレエーテノレ、 ジエチレングリコールモノー n—ブチルエーテル、ジエチレングリコールモノー n キシ ルエーテル、エトキシトリグリコール、テトラエチレンダリコールモノー n—ブチルエーテ ル、プロピレングリコールモノメチルエーテル、ジプロピレングリコーノレモノメチノレエー テル、ジプロピレングリコーノレモノェチノレエーテル、トリプロピレングリコーノレモノメチ ルエーテル等のエーテル系溶媒;乳酸メチル、乳酸ェチル、乳酸 n -ブチル、乳酸 n ーァミル等のエステル系溶媒などが挙げられる。これらは 1種類を単独で又は 2種類 以上を組み合わせて使用される。
[0084] 非プロトン性溶媒の使用割合は、全溶媒中 50重量%以上であることが好ましぐ 70 重量%以上であることがより好ましぐ 90重量%以上であることが特に好ましぐ 95重 量%以上であることが極めて好ましい。この使用割合が少ないと、露光量が少ない場 合に露光部が充分に硬化しない傾向がある。あるいは、この使用割合が少ないと、充 分に硬化させるためにより高温での熱処理が必要となり、発生した酸や塩基が拡散し やすくなり、パターン精度が劣化する傾向がある。
[0085] (c)成分を用いる方法は特に限定されないが、例えば、(a)成分を調製する際の溶 媒として用いる方法、(a)成分を調製後、添加する方法、溶媒交換を行う方法、 (a) 成分を溶媒留去等で取り出して (c)溶媒を加える方法等がある。
[0086] また、更に、本発明の放射線硬化性組成物は、必要に応じて水を含んで!/、てもよ いが、目的とする特性を損なわない範囲であることが好ましい。水の使用量としては、 放射線硬化性組成物の全量に対して、 10重量%以下であることが好ましぐ 5重量 %以下であることがより好ましぐ 2重量%以下であることが特に好ましい。この水の使 用量が 10重量%を超えると塗布性及び塗布液の安定性が劣化する傾向がある。ま た、詳細は定かでないが、若干の水を添加することにより、露光量を低減できることが める。
[0087] この溶媒 (非プロトン性溶媒とプロトン性溶媒との合計)の使用量は、 (a)成分 (シロ キサン樹脂)の濃度が 3— 60重量%となるような量であることが好ましい。溶媒の量が 過多で (a)成分の濃度が 3重量%未満では所望の膜厚を有する硬化物を形成し難く なる傾向があり、溶媒の量が過少で (a)成分の濃度が 60重量%を超えると硬化物の 成膜性等が悪化すると共に、組成物自体の安定性が低下する傾向がある。
[0088] 〈(d)成分〉
本発明における (d)成分は硬化促進触媒であり、放射線硬化性組成物に添加する ことにより、光酸発生剤量若しくは光塩基発生剤量の低減効果、露光量の低減効果 、又は、 PEBの温度の低下効果が期待できると考えられる。この硬化促進触媒は (b) 成分の光によって活性物質を発生するような通常の光酸発生剤又は光塩基発生剤 とは異なる。したがって、通常、光酸発生剤又は光塩基発生剤として使用されるような ォニゥム塩とは区別される。しかし、光酸発生能又は光塩基発生能と、硬化促進触媒 能と、を併せ持つような材料であれば使用することも可能である。 [0089] 当該触媒は溶液中では触媒作用を示さず、塗布後の被膜中で活性を示す特異な ものであると考えられる。露光部では酸性活性物質や塩基性活性物質の発生ととも に硬化促進触媒による硬化反応が進むため、酸や塩基の拡散などによるパターン精 度の低下がさらに起こりづらい、すなわちパターン精度がさらに向上すると推定され る。
[0090] 硬化促進触媒の硬化促進触媒能を調べる手段を以下 1一 4に示す。
[0091] 1. (a)成分及び (c)成分からなる組成物を用意する。
[0092] 2.ベイク後の膜厚が 1. 0±0. l /z mになるようにシリコンウェハに上記 1で用意し た組成物を塗布し、所定の温度で 30秒間べイクして、被膜の膜厚を測定する。
[0093] 3.被膜が形成されたシリコンウェハを 23 ± 2°Cの 2. 38重量0 /0のテトラメチルアン モ -ゥムハイド口才キシド (TMAH)水溶液に 30秒間浸漬し、水洗、乾燥後の被膜の 膜減りを観察する。この際、 TMAH水溶液浸漬前後の被膜の膜厚変化が 20%以内 であるべイク時の最低温度を不溶解温度とする。
[0094] 4.上記 1で用意した組成物に硬化促進触媒能を確認したい化合物を、(a)成分の 総量に対して、 0. 01重量%添加して組成物を得、上記 2及び 3と同様にして、不溶 解温度を求める。硬化促進触媒能を確認したい化合物を添加することにより、不溶解 温度が低下すれば、その化合物は硬化促進触媒能がある。
[0095] (d)成分である硬化促進触媒としては、例えば、水酸化ナトリウム、塩ィ匕ナトリウム、 水酸ィ匕カリウム、塩ィ匕カリウム等のアルカリ金属類、ォ -ゥム塩などが挙げられる。こ れらは 1種類を単独で又は 2種類以上を組み合わせて使用される。
[0096] これらの中でも、得られる硬化物の電気特性及び機械強度を向上でき、更に、組成 物の安定性を高めることができるという観点からォ -ゥム塩が好ましぐ 4級アンモ-ゥ ム塩であることがより好まし!/、。
[0097] ォ-ゥム塩ィ匕合物の一つとして、例えば、(d— 1)窒素含有化合物と、(d— 2)ァ-ォ ン性基含有化合物及びハロゲン原子から選ばれる少なくとも一種と、から形成される 塩が挙げられる。上記 (d— 1)窒素含有ィ匕合物の窒素上に結合する原子は、 H原子、 F原子、 B原子、 N原子、 A1原子、 P原子、 Si原子、 Ge原子、 Ti原子、及び C原子か らなる群より選ばれる少なくとも 1種であることが好ましい。また、上記ァ-オン性基と しては、例えば、水酸基、硝酸基、硫酸基、カルボニル基、カルボキシル基、カーボ ネート基、フエノキシ基等が挙げられる。
[0098] これらォ-ゥム塩化合物としては、例えば、アンモ-ゥムハイドロォキシド、アンモ- ゥムフルオライド、アンモ-ゥムクロライド、アンモ-ゥムブロマイド、ヨウ化アンモ-ゥム
、燐酸アンモ-ゥム塩、硝酸アンモ-ゥム塩、ホウ酸アンモ-ゥム塩、硫酸アンモ-ゥ ム塩、蟻酸アンモ-ゥム塩、マレイン酸アンモ-ゥム塩、フマル酸アンモ-ゥム塩、フ タル酸アンモニゥム塩、マロン酸アンモニゥム塩、コハク酸アンモニゥム塩、酒石酸ァ ンモニゥム塩、リンゴ酸アンモ-ゥム塩、乳酸アンモニゥム塩、クェン酸アンモニゥム 塩、酢酸アンモ-ゥム塩、プロピオン酸アンモ-ゥム塩、ブタン酸アンモ-ゥム塩、ぺ ンタン酸アンモ-ゥム塩、へキサン酸アンモ-ゥム塩、ヘプタン酸アンモ-ゥム塩、ォ クタン酸アンモニゥム塩、ノナン酸アンモニゥム塩、デカン酸アンモニゥム塩、シユウ酸 アンモ-ゥム塩、アジピン酸アンモ-ゥム塩、セバシン酸アンモ-ゥム塩、酪酸アンモ -ゥム塩、ォレイン酸アンモ-ゥム塩、ステアリン酸アンモ-ゥム塩、リノール酸アンモ -ゥム塩、リノレイン酸アンモ-ゥム塩、サリチル酸アンモ-ゥム塩、ベンゼンスルホン 酸アンモ-ゥム塩、安息香酸アンモ-ゥム塩、 p—ァミノ安息香酸アンモ-ゥム塩、 p— トルエンスルホン酸アンモ-ゥム塩、メタンスルホン酸アンモ-ゥム塩、トリフルォロメタ ンスルフォン酸アンモ-ゥム塩、トリフルォロエタンスルフォン酸アンモ-ゥム塩、等の アンモ-ゥム塩ィ匕合物が挙げられる。
[0099] また、上記アンモ-ゥム塩化合物のアンモ-ゥム部位力メチルアンモ-ゥム、ジメチ ルアンモ-ゥム、トリメチルアンモ-ゥム、テトラメチルアンモ-ゥム、ェチルアンモ-ゥ ム、ジェチルアンモ-ゥム、トリェチルアンモ-ゥム、テトラエチルアンモ-ゥム、プロピ ルアンモ-ゥム、ジプロピルアンモ-ゥム、トリプロピルアンモ-ゥム、テトラプロピルァ ンモユウム、ブチルアンモ-ゥム、ジブチルアンモ-ゥム、トリブチルアンモ-ゥム、テ トラブチルアンモ-ゥム、エタノールアンモ-ゥム、ジエタノールアンモ-ゥム、トリエタ ノールアンモ-ゥム等に置換されたアンモ-ゥム塩ィ匕合物なども挙げられる。
[0100] これらのォ-ゥム塩ィ匕合物では、硬化物の硬化促進の観点から、テトラメチルアン モ -ゥム硝酸塩、テトラメチルアンモ -ゥム酢酸塩、テトラメチルアンモ -ゥムプロピオ ン酸塩、テトラメチルアンモ -ゥムマレイン酸塩、テトラメチルアンモ -ゥム硫酸塩等の アンモニゥム塩が好まし 、。
[0101] これらは 1種類を単独で又は 2種類以上を組み合わせて使用される。
[0102] また、(d)成分の使用量は、放射線硬化性組成物中の(a)成分の総量に対して 0.
0001— 5重量%であることが好ましぐ 0. 0001— 1重量%であることがより好ましい 。この使用量が 0. 0001重量%未満では硬化させるために多大な露光量を必要とす る傾向がある。この使用量が 5重量%を超えると、組成物の安定性、成膜性等が劣る 傾向があると共に、硬化物の電気特性及びプロセス適合性が低下する傾向がある。
[0103] また、感度及び安定性の見地からは、(d)成分である硬化促進触媒の使用量は、 放射線硬化性組成物中の(a)成分の総量に対して 0. 0001—0. 1重量%であること 力 S好ましく、 0. 0001— 0. 05重量0 /0であること力 Sより好ましく、 0. 0005— 0. 01重量 %であることが特に好まし!/、。
[0104] なお、これらのォ-ゥム塩は、必要に応じて水や溶媒に溶解又は希釈してから、所 望の濃度となるように添加することができる。また、添加する時期は特に限定されない 力 例えば、(a)成分の加水分解を行う時点、加水分解中、反応終了時、溶媒留去 前後、酸発生剤を添加する時などがある。
[0105] 〈その他の成分〉
また、本発明の放射線硬化性組成物に色素を添加してもよい。色素を添加する事 により、例えば、感度を調整する効果、定在波効果を抑制する効果等が得られる。
[0106] また、本発明の目的や効果を損なわない範囲で、さらに界面活性剤、シランカップ リング剤、増粘剤、無機充填剤、ポリプロピレングリコール等の熱分解性ィ匕合物、揮 発性化合物などを添加してもよ!ヽ。上記熱分解性化合物及び揮発性化合物は熱 (好 ましくは 250— 500°C)により分解又は揮発し、空隙を形成可能であることが好ましい 。また、(a)成分であるシロキサン樹脂に空隙形成能を付与してもよい。
[0107] なお、本発明の放射線硬化性組成物を電子部品に使用する場合は、アルカリ金属 やアルカリ土類金属を含有しないことが望ましぐ含まれる場合でも組成物中のそれ らの金属イオン濃度が lOOOppm以下であることが好ましく、 lppm以下であることが より好ましい。これらの金属イオン濃度が lOOOppmを超えると、組成物から得られる 硬化物を有する半導体素子等の電子部品に金属イオンが流入し易くなつて、デバイ ス性能そのものに悪影響を与えるおそれがある。したがって、必要に応じて、例えば 、イオン交換フィルタ一等を使用してアルカリ金属やアルカリ土類金属を組成物中か ら除去することが有効である。しかし、光導波路や他の用途等に用いる際は、その目 的を損なわな 、のであれば、この限りではな!/、。
[0108] このような本発明の放射線硬化性組成物を用いて、基板上にパターニングされた 硬化物を形成する方法について、一般に成膜性及び膜均一性に優れるスピンコート 法を例にとって説明する。ただし、硬化物形成方法はスピンコート法に限定されるも のではない。また、基板は表面が平坦なものでも、電極等が形成され凹凸を有してい るものであってもよい。
[0109] まず、放射線硬化性組成物をシリコンウェハ又はガラス基板等の基板上に好ましく は 500— 5000回転 Z分、より好ましくは 500— 3000回転 Z分でスピン塗布して被 膜を形成する。この回転数が 500回転 Z分未満では膜均一性が悪ィ匕する傾向があり 、 5000回転 Z分を超えると成膜性が悪ィ匕するおそれがある。
[0110] 硬化物の膜厚は使用用途により異なり、例えば、 LSI等の層間絶縁膜に使用する 際の膜厚は 0. 01— 2 /z mであることが好ましぐパッシベーシヨン層に使用する際の 膜厚は 2— 40 mであることが好ましい。液晶用途に使用する際の膜厚は 0. 1— 20 mであることが好ましぐフォトレジストに使用する際の膜厚は 0. 1— 2 mであるこ とが好ましぐ光導波路に使用する際の膜厚は 1一 50 mであることが好ましい。通 常、この膜厚は概して 0. 01— 10 mであることが好ましぐ 0. 01— 5 mであること 力 り好ましぐ 0. 01— 3 mであることが更に好ましぐ 0. 01— 2 mであること力 S 特に好ましぐ 0. 1一 2 /z mであることが極めて好ましい。硬化物の膜厚を調整するた めには、例えば、組成物中の(a)成分の濃度を調整してもよい。また、スピン塗布法 を用いる場合、回転数と塗布回数を調整することにより膜厚を調整することができる。 (a)成分の濃度を調整して膜厚を制御する場合は、例えば、膜厚を厚くする場合に は (a)成分の濃度を高くし、膜厚を薄くする場合には (a)成分の濃度を低くすることに より制御することができる。また、スピン塗布法を用いて膜厚を調整する場合は、例え ば、膜厚を厚くする場合には回転数を下げたり、塗布回数を増やしたりし、膜厚を薄 くする場合には回転数を上げたり、塗布回数を減らしたりすることにより調整すること ができる。
[0111] 次いで、好ましくは 50— 200°C、より好ましくは 70— 150°Cでホットプレート等により 被膜中の溶媒を乾燥させるが、後に行われる現像の際の諸条件でこの被膜が溶解 するように乾燥温度を調整する必要がある。この乾燥温度が 50°C未満では溶媒の乾 燥が充分に行われない傾向があり、 200°Cを超えると現像時に溶解せず、パターン が形成されな!、可能性がある。
[0112] 次 、で、所望のパターンを有するマスクを介して、放射線を露光する。この露光量 は 5— 5000mjZcm2であることが好ましぐ 5— lOOOmjZcm2であることがより好ま しぐ 5— 500mjZcm2であることが特に好ましぐ 5— lOOmjZcm2であることが極め て好ましい。この露光量が 5mjZcm2未満では光源によっては制御が困難となるお それがあり、 5000mjZcm2を超えると露光時間が長くなり、生産性が悪くなる傾向が ある。なお、従来の一般的なシロキサン系放射線硬化性組成物の露光量は 500— 5 OOOiujZcm2程度である。
[0113] この際の放射線としては、例えば、可視光、紫外線、赤外線、 X線、 α線、 j8線、 γ 線等を用いることができる力 特に紫外線であることが好ましい。紫外線の発生源とし ては、例えば、超高圧水銀灯、高圧水銀灯、低圧水銀灯、メタルノ、ライドランプ、ェキ シマランプ等が挙げられる。
[0114] 未露光部は現像液に対して、充分に溶解性を有するが、露光部では酸性活性物 質や塩基性活性物質が発生し、加水分解縮合反応が起こり、現像液に対する溶解 性が低下する。これにより、パターンが形成される。
[0115] また、露光後に必要に応じて加熱(ポストエタスプロージャべイク: ΡΕΒ)工程を追カロ してもよい。この加熱はホットプレート等にて被膜を加熱させるものである力 未露光 部の現像液に対する溶解性が低下しな 、温度領域で加熱させることが好まし ヽ。こ の温度は 50— 200°Cであることが好ましぐ 70— 150°Cであることがより好ましぐ 70 一 110°Cであることが特に好ましぐ 70— 100°Cであることが極めて好ましい。一般に 温度が高いと発生した酸が拡散しやすくなるため、この温度は低い方がよい。なお、 従来の一般的なシロキサン系放射線硬化性組成物の PEB工程の加熱温度は 115 一 120°C程度である。 [0116] 放射線硬化性組成物の未露光部分の除去、すなわち現像に関しては、例えば、ァ ルカリ性水溶液等の現像液を使用することができる。このアルカリ性水溶液としては、 例えば、水酸化ナトリウム、水酸ィ匕カリウム、炭酸ナトリウム、珪酸ナトリウム、メタ珪酸 ナトリウム、アンモニア等の無機アルカリ類;ェチルァミン、 n—プロピルアミン等の一級 アミン類;ジェチルァミン、ジー n—プロピルアミン等の二級アミン類;トリェチルァミン、 メチルジェチルァミン等の三級アミン類;ジメチルエタノールァミン、トリエタノールアミ ン等のアルコールアミン類;テトラメチルアンモ -ゥムハイドロォキシド (TMAH)、テト ラエチアンモ-ゥムノ、イドロォキシド等の四級アンモ-ゥム塩などが挙げられる。また
、これらのアルカリ水溶液に水溶性有機溶媒や界面活性剤を適当量添加した水溶液 を好適に使用することもできる。電子部品ではアルカリ金属の汚染を嫌うため、現像 液としては、テトラメチルアンモ-ゥムノ、イドロォキシド水溶液が好まし!/、。
[0117] 好適な現像時間は膜厚や溶剤にもよるが、 5秒間一 5分間であることが好ましぐ 30 秒間一 3分間であることがより好ましぐ 30秒間一 1分間であることが特に好ましい。こ の現像時間が 5秒間未満ではウェハ又は基板全面での時間制御が困難となる場合 があり、 5分間を超えると生産性が悪くなる傾向がある。現像時の処理温度は、一般 に 20— 30°Cである。現像方法としては、例えば、スプレー、パドル、浸漬、超音波等 の方式が可能である。次に現像によって形成したパターンを必要に応じて蒸留水等 によりリンスすることちできる。
[0118] 本発明によりパターン化された硬化物はそのままレジストマスクとして使用することも できる。
[0119] 本発明によりパターン化された硬化物を層間絶縁膜、クラッド層等として残存させる 場合は、例えば、被膜を 100— 500°Cの加熱温度で焼成して最終硬化を行うことが 好ましい。この最終硬化は、 N、 Ar、 He等の不活性雰囲気下、大気中や減圧化で
2
行うのが好ましいが、用いる用途に要求される特性を満足するのであれば特に制限 はない。この加熱温度が 100°C未満では充分な硬化が達成されない傾向があると共 に、電気絶縁性に劣る傾向があり、 500°Cを超えるとその下層に用いる材料が劣化 するおそれがある。
[0120] また、最終硬化の加熱時間は 2— 240分間であることが好ましぐ 2— 120分間であ ることがより好ましい。この加熱時間が 240分間を超えると量産性に向かない可能性 がある。加熱装置としては、例えば、石英チューブ炉等の炉、ホットプレート、ラビッド サーマルアニール (RTA)などの加熱処理装置などが挙げられる。
[0121] 力かる硬化物を有する使用例である電子部品としては、例えば、半導体素子、多層 配線板等の絶縁膜を有するデバイスなどが挙げられる。具体的には、半導体素子に おいては、表面保護膜 (パッシベーシヨン膜)、バッファーコート膜、層間絶縁膜等とし て使用することができる。一方、多層配線板においては、層間絶縁膜として好適に使 用することができる。
[0122] 半導体素子としては、例えば、ダイオード、トランジスタ、化合物半導体、サーミスタ 、ノ リスタ、サイリスタ等の個別半導体、 DRAM (ダイナミック 'ランダム ·アクセス 'メモ リー)、 SRAM (スタティック ·ランダム ·アクセス 'メモリー)、 EPROM (ィレイザブル · プログラマブル 'リード.オンリ ~ .メモリー)、マスク ROM (マスク 'リード'オンリ ~ .メモ リー)、 EEPROM (エレクトリカル ·ィレイザブル ·プログラマブル 'リード'オンリ ~ ·メモ リー)、フラッシュメモリー等の記憶素子、マイクロプロセッサー、 DSP、 ASIC等の理 論回路素子、 MMIC (モノリシック 'マイクロウエーブ集積回路)に代表される化合物 半導体等の集積回路素子、混成集積回路 (ハイブリッド IC)、発光ダイオード、電荷 結合素子等の光電変換素子などが挙げられる。また、多層配線板としては、例えば、 MCM等の高密度配線板などが挙げられる。
[0123] また、液晶用部品、光導波路、フォトレジスト等の用途としても使用することができる 力 使用用途はこの限りではない。
[0124] 図 1は、 TFT液晶ディスプレイに備えられる電子部品である、本発明に係る TFT ( 薄膜トランジスタ)の一実施形態を示す模式端面図である。この TFTでは、ガラス基 板 1上に形成されたアンダーコート膜 2の上にポリシリコン力もなる伝導層 3が設けら れており、その伝導層 3を面内方向で挟むようにしてソース 4及びドレイン 5が配置さ れている。伝導層 3上には SiOを構成材料とするゲート酸ィ匕膜 6を介してゲート電極
2
7が備えられている。ゲート酸ィ匕膜 6は、伝導層 3をゲート電極 7と直接接触させない ように設けられている。アンダーコート膜 2、並びに伝導層 3、ソース 4、ドレイン 5、ゲ 一ト酸ィ匕膜 6及びゲート電極 7は、短絡防止用に第 1層間絶縁膜 8で覆われているが 、第 1層間絶縁膜 8の一部は TFT形成時に除去され、その部分力 ソース 4及びドレ イン 5のそれぞれに接続した状態で金属配線 9が引き出されている。金属配線 9のう ち、ドレイン 5と接続した状態で引き出されている金属配線 9は、透明電極 11と電気 的に接続しており、それ以外の部分は短絡しないように第 2層間絶縁膜 10で覆われ ている。
[0125] 本発明の放射線硬化性組成物カゝら得られる硬化膜は、主に第 2層間絶縁膜 10とし てこの TFTに備えられている力 第 1層間絶縁膜 8に用いられてもよい。これらの層 間絶縁膜 8、 10は、例えば、以下のようにして形成される。まず、本発明の放射線硬 化性組成物をその下地上にスピンコート法等により塗布し乾燥し塗膜を得る。次いで 、所定パターンのマスクを介して塗膜を露光して所定部分 (第 1層間絶縁膜 8の場合 は金属配線 9を形成すべき部分以外の部分、第 2層間絶縁膜 10の場合は透明電極 11を形成すべき部分以外の部分など)を硬化させ、更に必要に応じて加熱処理する 。そして未露光部を現像処理により除去して、層間絶縁膜 8、 10が得られる。この後、 必要に応じて加熱処理により最終硬化させることもできる。なお、層間絶縁膜 8、 10 は同一の組成を有して ヽても異なる組成を有して 、てもよ 、。
実施例
[0126] 以下、本発明に係る具体的な実施例について説明するが、本発明はこれらに制限 されるものではない。
[0127] 本実施例において、放射線硬化性組成物は光酸発生剤又は光塩基発生剤が励 起されないように、放射線硬化性組成物の現像工程が終了するまでは、使用する酸 発生剤又は光塩基発生剤と増感剤の感光波長を含まない環境下で作業した。
[0128] (実施例 1)
テトラエトキシシラン 317. 9gとメチルトリエトキシシラン 247. 9gとをジエチレングリコ ールジメチルエーテル 1116. 7gに溶解させた溶液中に、 0. 644重量%に調製した 硝酸 167. 5gを攪拌下で 30分間かけて滴下した。滴下終了後 3時間反応させた後、 減圧下、温浴中で生成エタノールおよびジエチレングリコールジメチルエーテルの一 部を留去して、ポリシロキサン溶液 1077. Ogを得た。このポリシロキサン溶液 525. 1 gにジエチレングリコールジメチルエーテル 53. 0g、 2. 38重量%に調製したテトラメ チルアンモ-ゥム硝酸塩水溶液 (pH3. 6)及び水 3. Ogを添カ卩し、室温 (25°C)で 30 分間攪拌溶解して放射線硬化性組成物用ポリシロキサン溶液を得た。 GPC法により ポリシロキサンの重量平均分子量を測定すると、 830であった。この放射線硬化性組 成物用ポリシロキサン溶液 10. Ogに光酸発生剤(PAI-1001、みどり化学社製) 0. 193gを配合し、放射線硬化性組成物を調製した。なお、(a)成分の使用量は放射線 硬化性組成物総量に対して 15重量%であり、 (b)成分の使用量は放射線硬化性組 成物総量に対して 1. 9重量%であり、(d)成分の使用量は放射線硬化性組成物総 量に対して 0. 075重量%であった。
[0129] 上記放射線硬化性組成物を 5インチシリコンウェハの中心に 2mL滴下して、スピン 塗布法(700回転 Z分で 30秒間回転)によりそのウェハ上に塗膜を作製し、それを 7 0°Cのホットプレート上で 30秒間乾燥させた。その後、乾燥させた塗膜に対して、最 小線幅が 10 mのライン状パターンを有するネガ用のマスクを介して、露光機 (PLA — 600F、キャノン社製)で紫外光を 200miZcm2照射した。露光後の塗膜を備えた ウェハを、 2. 38重量0 /0テトラメチルアンモ -ゥムハイドロォキシド (TMAH)水溶液か らなる現像液に 30秒間浸漬して、未露光部を溶解させた。その後、ウェハを水洗、ス ピン乾燥した。そして、炉体を用い、スピン乾燥後のウェハを窒素雰囲気下、 350°C で 30分間加熱し、ウェハ上に放射線硬化物を得た。放射線硬化物のパターン形状 を光学顕微鏡による上部からの観察、及び SEMによる断面形状を観察したところ、ラ インが精度よく形成されており、ノ ターン精度は 10 mであることが分力つた。
[0130] (実施例 2)
テトラエトキシシラン 96. 13gとメチノレトリエトキシシラン 165. 44gとをプロピレングリ =3一ノレメチノレエーテノレ セテート 562. 99g【こ溶解させた溶液中【こ、 0. 644重量0 /0 に調製した硝酸 75. 47g及び 2. 38重量%に調製したテトラメチルアンモ -ゥム硝酸 塩水溶液 (PH3. 6) 18. 9gを攪拌下で 5分間かけて滴下した。滴下終了後 3時間反 応させた後、減圧下、温浴中で生成エタノールおよびプロピレングリコールメチルェ 一テルアセテートの一部を留去して、ポリシロキサン溶液 359. 94gを得た。これに、 プロピレングリコールメチルエーテルアセテートをカ卩えて、放射線硬化性組成物用ポ リシロキサン溶液 450. 02gを得た。 GPC法によりポリシロキサンの重量平均分子量 を測定すると、 1110であった。この放射線硬化性組成物用ポリシロキサン溶液 20. 0 gに光酸発生剤(PAI-101、みどり化学社製) 0. 080gを配合し、放射線硬化性組 成物を調製した。なお、(a)成分の使用量は放射線硬化性組成物総量に対して 20 重量%であり、(b)成分の使用量は放射線硬化性組成物総量に対して 0. 4重量% であり、(d)成分の使用量は放射線硬化性組成物総量に対して 0. 1重量%であった
[0131] 上記放射線硬化性組成物を 6インチシリコンウェハの中心に 2mL滴下して、スピン 塗布法(700回転 Z分で 30秒間回転)によりそのウェハ上に塗膜を作製し、それを 1 00°Cのホットプレート上で 30秒間乾燥させた。その後、乾燥させた塗膜に対して、最 小線幅が 2 mのライン状パターンを有するネガ用のマスクを介して、露光機 (FPA— 3000 iW、キャノン社製)で紫外光を 75mjZcm2照射した。露光後の塗膜を備えた ウェハを 100°Cのホットプレートで 30秒間加熱し、ウェハが室温になるまで自然冷却 させた後、コータ 'デベロッパ(Mark 7、東京エレクトロン社製)で 2. 38重量%テトラ メチルアンモ -ゥムハイドロォキシド (TMAH)水溶液からなる現像液にそのウェハを 30秒間浸漬してパドル現像を行い、未露光部を溶解させた。その後、ウェハを水洗 、スピン乾燥した。そして、炉体を用い、スピン乾燥後のウェハを窒素雰囲気下、 350 °Cで 30分間加熱し、ウェハ上に放射線硬化物を得た。放射線硬化物のパターン形 状を光学顕微鏡による上部からの観察、及び SEMによる断面形状を観察したところ 、ラインが精度よく形成されており、パターン精度は 2 mであることが分力つた。断面 形状の SEM写真を図 2に示す。
[0132] (実施例 3)
実施例 2で得られた放射線硬化性組成物用ポリシロキサン溶液 10. Ogに光塩基発 生剤 (NBC-101、みどり化学社製) 0. 040gを配合し、放射線硬化性組成物を調製 した。なお、(a)成分の使用量は放射線硬化性組成物総量に対して 20重量%であり 、(b)成分の使用量は放射線硬化性組成物総量に対して 0. 4重量%であり、(d)成 分の使用量は放射線硬化性組成物総量に対して 0. 1重量%であった。
[0133] 上記放射線硬化性組成物を 6インチシリコンウェハの中心に 2mL滴下して、スピン 塗布法(700回転 Z分で 30秒間回転)によりそのウェハ上に塗膜を作製し、それを 1 00°Cのホットプレート上で 30秒間乾燥させた。その後、乾燥させた塗膜に対して、最 小線幅が 2 mのライン状パターンを有するネガ用のマスクを介して、露光機 (FPA— 3000 iW、キャノン社製)で紫外光を lOOmj/cm2照射した。露光後の塗膜を備え たウェハを 100°Cのホットプレートで 30秒間加熱し、ウェハが室温になるまで自然冷 却させた後、コータ 'デベロツバ(Mark 7、東京エレクトロン社製)で 2. 38重量%テ トラメチルアンモ -ゥムハイドロォキシド (TMAH)水溶液からなる現像液にそのゥェ ハを 30秒間浸漬してパドル現像を行い、未露光部を溶解させた。その後、ウェハを 水洗、スピン乾燥した。そして、炉体を用い、スピン乾燥後のウェハを窒素雰囲気下 、 350°Cで 30分間加熱し、ウェハ上に放射線硬化物を得た。放射線硬化物のパター ン形状を光学顕微鏡による上部力 の観察、及び SEMによる断面形状を観察したと ころ、ラインが精度よく形成されており、パターン精度は 2 mであることが分力つた。
[0134] (実施例 4)
実施例 2で得られた放射線硬化性組成物用ポリシロキサン溶液 10. Ogに光酸発生 剤(PAI— 101、みどり化学社製) 0. 040g、及び熱分解性ィ匕合物としてポリプロピレ ングリコール (アルドリッチ社製、 PPG725) 0. 5gを配合し、放射線硬化性組成物を 調製した。なお、(a)成分の使用量は放射線硬化性組成物総量に対して 20重量% であり、(b)成分の使用量は放射線硬化性組成物総量に対して 0. 4重量%であり、 ( d)成分の使用量は放射線硬化性組成物総量に対して 0. 1重量%であった。
[0135] 上記放射線硬化性組成物を 6インチシリコンウェハの中心に 2mL滴下して、スピン 塗布法(700回転 Z分で 30秒間回転)によりそのウェハ上に塗膜を作製し、それを 1 00°Cのホットプレート上で 30秒間乾燥させた。その後、乾燥させた塗膜に対して、最 小線幅が 2 mのライン状パターンを有するネガ用のマスクを介して、露光機 (FPA— 3000 iW、キャノン社製)で紫外光を lOOmj/cm2照射した。露光後の塗膜を備え たウェハを 100°Cのホットプレートで 30秒間加熱し、ウェハが室温になるまで自然冷 却させた後、コータ 'デベロツバ(Mark 7、東京エレクトロン社製)で 2. 38重量%テ トラメチルアンモ -ゥムハイドロォキシド (TMAH)水溶液からなる現像液にそのゥェ ハを 30秒間浸漬してパドル現像を行い、未露光部を溶解させた。その後、ウェハを 水洗、スピン乾燥した。そして、炉体を用い、スピン乾燥後のウェハを窒素雰囲気下 、 350°Cで 30分間加熱し、ウェハ上に放射線硬化物を得た。放射線硬化物の膜厚 は 3. 0 mであったがクラック等の不具合は認められなかった。放射線硬化物のパタ ーン形状を光学顕微鏡による上部力 の観察、及び SEMによる断面形状を観察し たところ、ラインが精度よく形成されており、パターン精度は 2 mであることが分かつ た。
[0136] (比較例 1)
テトラエトキシシラン 128. 87gとメチルトリエトキシシラン 100. 51gとをプロピレング リコールモノメチルエーテル 229. 97gに溶解させた溶液中に、 0. 644重量%に調 製した硝酸 67. 91gを攪拌下で 10分間力 4ナて滴下した。滴下終了後 3時間反応させ 放射線硬化性組成物用ポリシロキサン溶液 527. 26gを得た。 GPC法によりポリシ口 キサンの重量平均分子量を測定すると、 980であった。この放射線硬化性組成物用 ポリシロキサン溶液 10. Ogに光酸発生剤(PAI-1001、みどり化学社製) 0. 150gを 配合し、放射線硬化性組成物を調製した。なお、(a)成分の使用量は放射線硬化性 組成物総量に対して 15重量%であり、 (b)成分の使用量は放射線硬化性組成物総 量に対して 1. 5重量%であった。
[0137] 上記放射線硬化性組成物を 5インチシリコンウェハの中心に 2mL滴下して、スピン 塗布法(700回転 Z分で 30秒間回転)によりそのウェハ上に塗膜を作製し、それを 1 00°Cのホットプレート上で 30秒間乾燥させた。その後、乾燥させた塗膜に対して、最 小線幅が 10 mのライン状パターンを有するネガ用のマスクを介して、露光機 (PLA — 600F、キャノン社製)で紫外光を 200mi/Cm2照射した。露光後の塗膜を備えた ウェハを 100°Cのホットプレートで 30秒間加熱し、ウェハが室温になるまで自然冷却 させた後、 2. 38重量0 /0テトラメチルアンモ -ゥムハイドロォキシド (TMAH)水溶液 力もなる現像液にそのウェハを 30秒間浸漬して、未露光部を溶解させた。その後、ゥ ェハを水洗、スピン乾燥したところ、塗膜が全て溶解しており、パターン形成が認めら れなかった。
[0138] (比較例 2)
紫外光 200mjZcm2の露光を紫外光 lOOOmjZcm2に変更した以外は比較例 1と 同様にして現像まで行った。現像後、ウェハを水洗、スピン乾燥した。そして、炉体を 用い、スピン乾燥後のウェハを窒素雰囲気下、 350°Cで 30分間加熱し、 放射線硬化物を得た。放射線硬化物のパターン形状を光学顕微鏡による上部から の観察、及び SEMによる断面形状を観察したところ、 10 /z m幅のラインは形成され ているもの、その形状は良好ではな力つた。断面形状の SEM写真を図 3に示す。
[0139] (比較例 3)
テトラエトキシシラン 44. 90gとメチノレトリエトキシシラン 77. 20gとをエタノーノレ 122 . 75gに溶解させた溶液中に、 0. 644重量%に調製した硝酸 35. 24gを攪拌下で 1 0分間かけて滴下した。滴下終了後 3時間反応させた後、減圧下、温浴中で生成ェ タノールの一部を留去して、放射線硬化性組成物用ポリシロキサン溶液 210. 05gを 得た。 GPC法によりポリシロキサンの重量平均分子量を測定すると、 910であった。こ の放射線硬化性組成物用ポリシロキサン溶液 10. Ogに光酸発生剤(PAI-1001、 みどり化学社製) 0. 150gを配合したが溶解しな力つた。なお、(a)成分の使用量は 放射線硬化性組成物総量に対して 20重量%であり、 (b)成分の使用量は放射線硬 化性組成物総量に対して 1. 5重量%であった。
[0140] 以上の実施例 1一 4及び比較例 1一 3について、結果を表 1に示す。
[0141] [表 1]
Figure imgf000038_0001
[0142] (実施例 5)
実施例 2で得られた放射線硬化性組成物を 20°Cの雰囲気下で 30日間保管した ところ、同じ放射線硬化性組成物を常温の雰囲気下で 30日間保管したものよりも保 存安定性が優れて!/、た。 20°Cの雰囲気下で保管した放射線硬化性組成物は 30 日間保管後もパターユングを行うことができたが、常温の雰囲気下で 30日間保管し た放射線硬化性組成物は 7日間保管後にパターユングを行うことができなくなった。 これは、常温の雰囲気下で 7日間保管した放射線硬化性組成物ではシロキサン榭脂 の縮合が進行し、それに伴 、水が生じたことに起因すると考える。
産業上の利用可能性
本発明の放射線硬化性組成物、その保存方法、硬化膜形成方法及びパターン形 成方法により、露光量が比較的少なくても、パターン精度に優れた硬化物を得ること ができる。したがって、本発明は、パターン使用方法、電子部品及び光導波路に有 用である。

Claims

請求の範囲
[1] (a)成分:シロキサン榭脂、
(b)成分:光酸発生剤又は光塩基発生剤、
(c)成分:(a)成分を溶解可能な溶媒、及び
(d)成分:硬化促進触媒
を含有してなる放射線硬化性組成物。
[2] 前記シロキサン樹脂が、下記一般式(1);
R1 SiX
n 4— n
(式中、 R1は、 H原子若しくは F原子、又は B原子、 N原子、 A1原子、 P原子、 Si原子 、 Ge原子若しくは Ti原子を含む基、又は炭素数 1一 20の有機基を示し、 Xは加水分 解性基を示し、 nは 0— 2の整数を示し、 nが 2のとき、各 R1は同一でも異なっていても よぐ n力 一 2のとき、各 Xは同一でも異なっていてもよい。 )
で表される化合物を加水分解縮合して得られる榭脂を含む、請求項 1記載の放射線 硬化性組成物。
[3] 前記硬化促進触媒がォニゥム塩である、請求項 1又は 2に記載の放射線硬化性組 成物。
[4] 前記硬化促進触媒が第 4級アンモ -ゥム塩である、請求項 1又は 2に記載の放射線 硬化性組成物。
[5] 請求項 1一 4の ヽずれか一項に記載の放射線硬化性組成物を基板上に塗布し乾 燥して塗膜を得る工程と、前記塗膜を露光する工程と、を有し、かつ前記露光するェ 程の後に前記塗膜を加熱しない、硬化膜形成方法。
[6] 請求項 1一 4の ヽずれか一項に記載の放射線硬化性組成物を基板上に塗布し乾 燥して塗膜を得る工程と、前記塗膜を露光する工程と、該露光する工程の後に前記 塗膜を加熱する工程と、を有する、硬化膜形成方法。
[7] 前記加熱する工程において、前記塗膜を 70— 110°Cに加熱する、請求項 6記載の 硬化膜形成方法。
[8] 前記露光する工程において、前記塗膜を 5— lOOmiZcm2の光量の光の照射によ り露光する、請求項 5— 7の ヽずれか一項に記載の硬化膜形成方法。
[9] 請求項 1一 4の ヽずれか一項に記載の放射線硬化性組成物を基板上に塗布し乾 燥して塗膜を得る工程と、マスクを介して前記塗膜を露光する工程と、前記露光する 工程の後に前記塗膜の未露光部を現像によって除去する工程と、を有し、かつ前記 露光する工程の後に前記塗膜を加熱しない、パターン形成方法。
[10] 請求項 1一 4の ヽずれか一項に記載の放射線硬化性組成物を基板上に塗布し乾 燥して塗膜を得る工程と、マスクを介して前記塗膜を露光する工程と、前記露光する 工程の後に前記塗膜を加熱する工程と、前記加熱する工程の後に前記塗膜の未露 光部を現像によって除去する工程と、を有する、パターン形成方法。
[11] 前記加熱する工程において、前記塗膜を 70— 110°Cに加熱する、請求項 10記載 のパターン形成方法。
[12] 前記露光する工程において、前記塗膜を 5— lOOmiZcm2の光量の光の照射によ り露光する、請求項 9一 11のいずれか一項に記載のパターン形成方法。
[13] 前記除去する工程において、テトラメチルアンモ -ゥムハイドロォキシド水溶液を現 像液として用いる、請求項 9一 12のいずれか一項に記載のパターン形成方法。
[14] 請求項 9一 13のいずれか一項に記載のパターン形成方法により形成されたパター ンをレジストマスクとして用いるパターン使用方法。
[15] 請求項 9一 13のいずれか一項に記載のパターン形成方法により形成されたパター ンを備える電子部品。
[16] 請求項 9一 13のいずれか一項に記載のパターン形成方法により形成されたパター ンを備える光導波路。
[17] 請求項 1一 4の ヽずれか一項に記載の放射線硬化性組成物を 0°C以下の温度で 保存する、放射線硬化性組成物の保存方法。
PCT/JP2004/014852 2003-10-07 2004-10-07 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路 WO2005036270A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04792149A EP1672427A4 (en) 2003-10-07 2004-10-07 RADIODURCISSABLE COMPOSITION, METHOD FOR STORING THE SAME, METHOD FOR FORMING CURED FILM, METHOD FOR FORMING PATTERN, METHOD FOR USING PATTERN, ELECTRONIC COMPONENT, AND OPTICAL WAVEGUIDE
JP2005511732A JP3758669B2 (ja) 2003-10-07 2004-10-07 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
US11/166,415 US7297464B2 (en) 2003-10-07 2005-06-27 Radiation curable composition, storing method thereof, forming method of cured film, patterning method, use of pattern, electronic components and optical waveguide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003348160 2003-10-07
JP2003-348160 2003-10-07
JP2004-245106 2004-08-25
JP2004245106 2004-08-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/166,415 Continuation-In-Part US7297464B2 (en) 2003-10-07 2005-06-27 Radiation curable composition, storing method thereof, forming method of cured film, patterning method, use of pattern, electronic components and optical waveguide

Publications (1)

Publication Number Publication Date
WO2005036270A1 true WO2005036270A1 (ja) 2005-04-21

Family

ID=34436894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014852 WO2005036270A1 (ja) 2003-10-07 2004-10-07 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路

Country Status (6)

Country Link
US (1) US7297464B2 (ja)
EP (1) EP1672427A4 (ja)
JP (1) JP3758669B2 (ja)
KR (1) KR100698391B1 (ja)
TW (1) TWI267703B (ja)
WO (1) WO2005036270A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031696A (ja) * 2005-06-10 2007-02-08 Hitachi Chem Co Ltd 樹脂組成物、シリカ系被膜及びその製造方法、積層体、並びに、電子部品
JP2007031697A (ja) * 2005-06-10 2007-02-08 Hitachi Chem Co Ltd 被アルカリ処理被膜形成用組成物、被アルカリ処理被膜及びその製造方法、積層体、反射防止膜、並びに電子部品
JP2007163720A (ja) * 2005-12-13 2007-06-28 Toray Ind Inc 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2010117439A (ja) * 2008-11-11 2010-05-27 Jsr Corp ポジ型感放射線性組成物、硬化パターン形成方法及び硬化パターン
JP2010243773A (ja) * 2009-04-06 2010-10-28 Sanyo Chem Ind Ltd 光塩基発生剤を含有する感光性組成物
JP2010282031A (ja) * 2009-05-01 2010-12-16 Jsr Corp ネガ型感放射線性組成物、硬化パターン形成方法及び硬化パターン
JP2011026495A (ja) * 2009-07-28 2011-02-10 Asahi Kasei E-Materials Corp ポリオルガノシロキサンの保存方法
JP2011048200A (ja) * 2009-08-27 2011-03-10 Jsr Corp ネガ型感放射線性組成物、硬化パターン形成方法及び硬化パターン
US8158981B2 (en) 2006-09-25 2012-04-17 Hitachi Chemical Company, Ltd. Radiation-sensitive composition, method of forming silica-based coating film, silica-based coating film, apparatus and member having silica-based coating film and photosensitizing agent for insulating film
WO2013054771A1 (ja) * 2011-10-12 2013-04-18 セントラル硝子株式会社 シラン系組成物およびその硬化膜、並びにそれを用いたネガ型レジストパターンの形成方法
JP2014126717A (ja) * 2012-12-26 2014-07-07 Tokyo Ohka Kogyo Co Ltd 感光性樹脂組成物
US8864898B2 (en) 2011-05-31 2014-10-21 Honeywell International Inc. Coating formulations for optical elements
US8901268B2 (en) 2004-08-03 2014-12-02 Ahila Krishnamoorthy Compositions, layers and films for optoelectronic devices, methods of production and uses thereof
JP2017504174A (ja) * 2014-01-16 2017-02-02 ヒューネット プラスHunet Plus 有機電子素子及びその製造方法
US10544329B2 (en) 2015-04-13 2020-01-28 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3821165B2 (ja) * 2003-10-07 2006-09-13 日立化成工業株式会社 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP5801052B2 (ja) * 2008-03-31 2015-10-28 サンアプロ株式会社 光塩基発生剤
WO2010005892A1 (en) * 2008-07-08 2010-01-14 Massachusetts Institute Of Technology Resist composition and lithographic process using said composition
US8158338B2 (en) * 2008-07-08 2012-04-17 Massachusetts Institute Of Technology Resist sensitizer
TW201030469A (en) * 2008-12-25 2010-08-16 Jsr Corp Negative-tone radiation-sensitive composition, cured pattern forming method, and cured pattern
US20100255412A1 (en) * 2009-04-06 2010-10-07 Sam Xunyun Sun Photo-imaging Hardmask with Negative Tone for Microphotolithography
KR101736237B1 (ko) 2009-06-08 2017-05-16 제이에스알 가부시끼가이샤 감방사선성 조성물, 보호막 및 층간 절연막 및, 그들의 형성 방법
US8557877B2 (en) 2009-06-10 2013-10-15 Honeywell International Inc. Anti-reflective coatings for optically transparent substrates
WO2012133443A1 (ja) * 2011-03-29 2012-10-04 株式会社カネカ 活性エネルギー線硬化性コーティング用樹脂組成物
CN103034048B (zh) * 2011-09-29 2015-04-22 中芯国际集成电路制造(北京)有限公司 光刻方法
JP6163770B2 (ja) * 2012-03-07 2017-07-19 Jsr株式会社 レジスト下層膜形成用組成物及びパターン形成方法
TWI551951B (zh) * 2014-05-07 2016-10-01 奇美實業股份有限公司 感光性組成物、保護膜以及具有保護膜的元件
KR20170069914A (ko) * 2015-12-11 2017-06-21 삼성에스디아이 주식회사 감광성 수지 조성물, 그로부터 형성된 경화막, 및 경화막을 갖는 소자
WO2019177689A1 (en) 2018-03-16 2019-09-19 Dow Silicones Corporation Curable polysiloxane composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107561A (ja) * 1990-08-29 1992-04-09 Fujitsu Ltd レジスト組成物
JPH04366958A (ja) * 1991-06-14 1992-12-18 Oki Electric Ind Co Ltd 放射線感応性樹脂組成物
JPH06148887A (ja) * 1991-01-28 1994-05-27 Oki Electric Ind Co Ltd 感光性樹脂組成物
JPH06148895A (ja) * 1992-11-06 1994-05-27 Toray Ind Inc 感光性樹脂組成物およびこれを用いたパターン形成方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3376629B2 (ja) 1993-03-19 2003-02-10 東レ株式会社 感光性樹脂組成物およびこれを使用したパターン形成方法
JP3321548B2 (ja) * 1996-06-17 2002-09-03 株式会社日立製作所 感光性ポリイミド前駆体組成物、およびそれを用いたパターン形成方法
JP3505990B2 (ja) 1997-01-31 2004-03-15 信越化学工業株式会社 高分子シリコーン化合物、化学増幅ポジ型レジスト材料及びパターン形成方法
JP3870471B2 (ja) * 1997-03-05 2007-01-17 東レ株式会社 感光性樹脂組成物、およびこれを使用したパターン形成方法
DE69815073T3 (de) * 1997-03-14 2008-07-03 Minnesota Mining And Manufacturing Co., St. Paul Auf-anfrage-härtung von feuchtigkeithärtbaren zusammensetzungen mit reaktiven funktionellen silangruppen
JP2000181069A (ja) 1998-10-05 2000-06-30 Tonen Corp 感光性ポリシラザン組成物及びパタ―ン化されたポリシラザン膜の形成方法
US6210856B1 (en) * 1999-01-27 2001-04-03 International Business Machines Corporation Resist composition and process of forming a patterned resist layer on a substrate
US6187505B1 (en) * 1999-02-02 2001-02-13 International Business Machines Corporation Radiation sensitive silicon-containing resists
JP2001215714A (ja) 2000-02-02 2001-08-10 Fuji Photo Film Co Ltd 感放射線性樹脂組成物
JP2001288364A (ja) 2000-04-05 2001-10-16 Jsr Corp 放射線硬化性組成物およびそれを用いた光導波路ならびに光導波路の製造方法
JP3414708B2 (ja) 2000-08-31 2003-06-09 クラリアント ジャパン 株式会社 パターン化されたポリシラザン膜の形成方法
JP2002107932A (ja) 2000-10-03 2002-04-10 Toray Ind Inc 感放射線性組成物
US6653045B2 (en) * 2001-02-16 2003-11-25 International Business Machines Corporation Radiation sensitive silicon-containing negative resists and use thereof
JP3832572B2 (ja) * 2001-10-09 2006-10-11 信越化学工業株式会社 光硬化性樹脂組成物、パターン形成方法及び基板保護用フィルム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107561A (ja) * 1990-08-29 1992-04-09 Fujitsu Ltd レジスト組成物
JPH06148887A (ja) * 1991-01-28 1994-05-27 Oki Electric Ind Co Ltd 感光性樹脂組成物
JPH04366958A (ja) * 1991-06-14 1992-12-18 Oki Electric Ind Co Ltd 放射線感応性樹脂組成物
JPH06148895A (ja) * 1992-11-06 1994-05-27 Toray Ind Inc 感光性樹脂組成物およびこれを用いたパターン形成方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8901268B2 (en) 2004-08-03 2014-12-02 Ahila Krishnamoorthy Compositions, layers and films for optoelectronic devices, methods of production and uses thereof
JP2007031697A (ja) * 2005-06-10 2007-02-08 Hitachi Chem Co Ltd 被アルカリ処理被膜形成用組成物、被アルカリ処理被膜及びその製造方法、積層体、反射防止膜、並びに電子部品
JP2007031696A (ja) * 2005-06-10 2007-02-08 Hitachi Chem Co Ltd 樹脂組成物、シリカ系被膜及びその製造方法、積層体、並びに、電子部品
JP4655914B2 (ja) * 2005-12-13 2011-03-23 東レ株式会社 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2007163720A (ja) * 2005-12-13 2007-06-28 Toray Ind Inc 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
US8158981B2 (en) 2006-09-25 2012-04-17 Hitachi Chemical Company, Ltd. Radiation-sensitive composition, method of forming silica-based coating film, silica-based coating film, apparatus and member having silica-based coating film and photosensitizing agent for insulating film
JP2010117439A (ja) * 2008-11-11 2010-05-27 Jsr Corp ポジ型感放射線性組成物、硬化パターン形成方法及び硬化パターン
JP2010243773A (ja) * 2009-04-06 2010-10-28 Sanyo Chem Ind Ltd 光塩基発生剤を含有する感光性組成物
JP2010282031A (ja) * 2009-05-01 2010-12-16 Jsr Corp ネガ型感放射線性組成物、硬化パターン形成方法及び硬化パターン
JP2011026495A (ja) * 2009-07-28 2011-02-10 Asahi Kasei E-Materials Corp ポリオルガノシロキサンの保存方法
JP2011048200A (ja) * 2009-08-27 2011-03-10 Jsr Corp ネガ型感放射線性組成物、硬化パターン形成方法及び硬化パターン
US8864898B2 (en) 2011-05-31 2014-10-21 Honeywell International Inc. Coating formulations for optical elements
WO2013054771A1 (ja) * 2011-10-12 2013-04-18 セントラル硝子株式会社 シラン系組成物およびその硬化膜、並びにそれを用いたネガ型レジストパターンの形成方法
US9411231B2 (en) 2011-10-12 2016-08-09 Central Glass Company, Limited Silane composition and cured film thereof, and method for forming negative resist pattern using same
US9638998B2 (en) 2011-10-12 2017-05-02 Central Glass Company, Limited Silane composition and cured film thereof, and method for forming negative resist pattern using same
JP2014126717A (ja) * 2012-12-26 2014-07-07 Tokyo Ohka Kogyo Co Ltd 感光性樹脂組成物
JP2017504174A (ja) * 2014-01-16 2017-02-02 ヒューネット プラスHunet Plus 有機電子素子及びその製造方法
US10411221B2 (en) 2014-01-16 2019-09-10 Hunet Plus Organic electronic device and fabrication method thereof
US10544329B2 (en) 2015-04-13 2020-01-28 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications

Also Published As

Publication number Publication date
KR20060026839A (ko) 2006-03-24
JPWO2005036270A1 (ja) 2006-12-21
EP1672427A4 (en) 2010-01-13
US7297464B2 (en) 2007-11-20
TW200513802A (en) 2005-04-16
KR100698391B1 (ko) 2007-03-23
JP3758669B2 (ja) 2006-03-22
US20050266344A1 (en) 2005-12-01
EP1672427A1 (en) 2006-06-21
TWI267703B (en) 2006-12-01

Similar Documents

Publication Publication Date Title
WO2005036270A1 (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP3821165B2 (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JPWO2006068181A1 (ja) 被膜、シリカ系被膜及びその形成方法、シリカ系被膜形成用組成物、並びに電子部品
JP2007031696A (ja) 樹脂組成物、シリカ系被膜及びその製造方法、積層体、並びに、電子部品
JP3788475B2 (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP3818307B2 (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP3781049B2 (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP4600090B2 (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP3801192B2 (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP2006091806A (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP4655633B2 (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP4604710B2 (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP2006257437A (ja) 放射線硬化性組成物及びその硬化膜、並びに、電子部品及び光導波路
JP2012242483A (ja) シリカ系感光性樹脂組成物、パターンを有するシリカ系絶縁被膜の形成方法及びそれを備える電子部品
JP2012222104A (ja) シリカ系被膜の形成方法及び電子部品
JP2012159739A (ja) 感光性樹脂組成物、シリカ系被膜の形成方法及び電子部品
JP2006091818A (ja) 硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP2006091805A (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP2006091827A (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP2012098453A (ja) 感光性樹脂組成物、パターンを有するシリカ系絶縁被膜の形成方法及びその方法により形成されるパターンを有するシリカ系絶縁被膜を備える電子部品
JP2006195175A (ja) 放射線硬化性組成物、その保存方法、硬化膜形成方法、パターン形成方法、パターン使用方法、電子部品及び光導波路
JP2011257611A (ja) 感光性樹脂組成物、シリカ系被膜の形成方法及び電子部品
JP2007031697A (ja) 被アルカリ処理被膜形成用組成物、被アルカリ処理被膜及びその製造方法、積層体、反射防止膜、並びに電子部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005511732

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047021316

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048004986

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004792149

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11166415

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020047021316

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004792149

Country of ref document: EP