WO2005028562A1 - 成形品成形用重合体組成物、成形品、親水性成形品及びその製造方法並びに積層品 - Google Patents
成形品成形用重合体組成物、成形品、親水性成形品及びその製造方法並びに積層品 Download PDFInfo
- Publication number
- WO2005028562A1 WO2005028562A1 PCT/JP2004/013672 JP2004013672W WO2005028562A1 WO 2005028562 A1 WO2005028562 A1 WO 2005028562A1 JP 2004013672 W JP2004013672 W JP 2004013672W WO 2005028562 A1 WO2005028562 A1 WO 2005028562A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molded article
- parts
- molded
- hydrophilic
- water
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
Definitions
- the present invention relates to a polymer composition for molding a molded article, a molded article, a hydrophilic molded article, a method for producing the same, and a laminated article. More specifically, the present invention relates to a method for producing a molded article efficiently and permanently. Polymer composition for molding a molded article capable of imparting hydrophilicity to the molded article, a molded article using the same, and a hydrophilic molded article which can be easily produced and has a molded article having excellent hydrophilicity And a method of manufacturing the same, and a laminated product in which hydrophilic members are laminated.
- thermoplastic polymers such as thermoplastic resins are useful as molding materials in various fields, and molded products are used as various products according to purposes. For example, it is used for home electric parts, automobile parts, building material parts, housing parts and the like. It is also used for other structures and outdoor goods.
- thermoplastic resins have been studied in order to prevent the adherence of stains on structures made of thermoplastic resins, outdoor articles, and the like, and to remove them by rain or the like.
- a method for imparting hydrophilicity to a thermoplastic resin a method is known in which a silicon compound is used and a silanol group is expressed on the surface of a structure.
- Patent Literature 1 and Patent Literature 2 disclose that the hydrolysis product of an organosilicate is applied to the surface of a top coating film of an industrial machine for a building structure, a civil engineering structure, etc. A coating method for preventing the resulting contamination is disclosed.
- Patent Document 3 discloses a method of forming a thin film by applying a surface treating agent containing a silanol conjugate having a silanol group to a hydrophobic synthetic resin coating film.
- Patent Literature 4 discloses a coating method in which a silicon-containing liquid composition containing an organosilicate or the like is applied to the surface of an architectural structure or a civil engineering structure to prevent dirt.
- Patent Document 5 discloses a coating-forming composition, a coating composition, and a water-based emulsion-forming composition containing a specific polyalkoxysiloxane, an acrylic resin, and the like. Yes.
- Patent Document 1 Japanese Patent Application Laid-Open No. Hei 7-136583
- Patent Document 2 JP-A-10-202177
- Patent document 3 JP-A-8-12922
- Patent document 4 JP-A-2000-327996
- Patent Document 5 International Publication WO98Z36016
- the present invention has been made in view of the above circumstances, and can be easily manufactured.
- the surface of the molded product is made permanent by contacting the molded product with water or the like. It is an object of the present invention to provide a polymer composition for forming a molded article, a molded article, a hydrophilic molded article having excellent hydrophilicity, a method for producing the same, and a laminated article, which can impart specific hydrophilicity.
- the polymer composition for molding a molded article of the present invention comprises (A) a thermoplastic polymer, and (B) at least one type of silane compound selected from the group consisting of (B) an alkoxysilane capable of bleeding out to the surface of the molded article and a condensate thereof. And the content of the silane conjugate (B) is 0.1 to 50 parts by mass in terms of SiO, based on 100 parts by mass of the thermoplastic polymer (A), and The above thermoplastic
- the water droplet contact angle on the surface of the molded article after contacting water with the molded article having 100 parts by mass of the reactive polymer (A) and 3 parts by mass of the silani conjugate (B) is 60 degrees or less. Is It is characterized by that.
- the relationship with the solubility parameter (s) is I s —s I ⁇ 0.2.
- the weight average molecular weight of the silane compound (B) is preferably from 300 to 3,000.
- the water content is preferably 0.2% by mass or less.
- a molded article of the present invention is molded using the above-described polymer composition for molding a molded article.
- the minimum thickness of the thin portion is 35 ⁇ m or more.
- the method for producing a hydrophilic molded article of the present invention comprises a molding step of forming a molded article using the polymer composition for molding a molded article described above, and a surface force of the molded article. A bleed-out step of bleeding out; and a water contacting step of bringing the molded article into contact with water.
- the hydrophilic molded article of the present invention is obtained by the above method.
- the water droplet contact angle on the surface of the hydrophilic molded article can be 60 degrees or less.
- the minimum thickness of the thin portion is preferably 35 m or more.
- the laminate of the present invention includes a base, and a member provided on the surface of the base and molded using the above-described polymer composition for molding a molded article.
- the water droplet contact angle on the surface of the member may be 60 degrees or less.
- the polymer composition for molding a molded article of the present invention comprises (A) a thermoplastic polymer, (B) at least one kind of alkoxysilane capable of bleeding out on the surface of the molded article, and a condensate thereof.
- a molded article is obtained by including a predetermined amount of each of the silane conjugate and the molded article, water and the like can be brought into contact with the molded article to impart permanent hydrophilicity to the surface. Further, as compared with the case where the surface is coated with a hydrophilicity-imparting agent, a hydrophilic molded article that can maintain hydrophilicity for a long time can be easily obtained.
- the weight average molecular weight of the silane compound (B) is 300-3,000, It can be more efficiently oozed to the surface of the article.
- the silane compound (B) efficiently oozes out on the surface of the molded article, and is hydrolyzed by contact with water at the time of use, so that silanol groups are formed. Can be generated efficiently, and as a result, permanent hydrophilicity of the surface can be imparted.
- the method for producing a hydrophilic molded article of the present invention includes a molding step of forming a molded article using the polymer composition for molding a molded article, and a step of converting the surface of the molded article to a silane bonded product (B). Since the method includes a bleed-out step of bleeding out and a water contacting step of bringing the molded article into contact with water, a hydrophilic molded article having a water droplet contact angle of 60 ° or less on the surface can be easily obtained.
- the surface of the hydrophilic molded article has excellent hydrophilicity. Further, the hydrophilicity can be maintained for a long period of time as compared with the case where the surface is coated with a hydrophilicity-imparting agent.
- the laminate of the present invention includes a base and a member provided on the surface of the base and molded using the polymer composition for molding a molded product, the laminate is superior to the surface of the member. It has improved hydrophilicity. Further, the hydrophilicity can be maintained for a long period of time as compared with the case where the surface is coated with a hydrophilicity-imparting agent.
- FIG. 1 is a schematic sectional view showing one example of a laminated product of the present invention.
- FIG. 2 is a schematic sectional view showing another example of the laminated product of the present invention.
- composition of the present invention comprises (A) a thermoplastic polymer, (B) an alkoxysilane capable of bleeding out on the surface of the molded article, and
- the condensate power also includes at least one selected silani conjugate.
- the content of the silani conjugate (B) is calculated as SiO with respect to 100 parts by mass of the thermoplastic polymer (A). , 0.1—
- thermoplastic polymer (A) is not particularly limited, and elastomers, rubbers, and resins can be used alone or in combination.
- elastomers include olefin elastomers; styrene elastomers such as styrene 'butadiene' styrene block copolymer and styrene 'isoprene' styrene block copolymer; polyester elastomers; urethane elastomers; PVC-based elastomer; polyamide-based elastomer; fluoroelastomer-based elastomer. These can be used alone or in combination of two or more.
- Examples of the rubber include gen-based rubbers such as polybutadiene and polyisoprene; styrene'butadiene (block) copolymer; styrene'isoprene (block) copolymer; acrylonitrile'butadiene copolymer; ) Acrylate copolymer, hydrogenated styrene • Butadiene block copolymer, hydrogenated butadiene-based polymer, ethylene ⁇ -olefin copolymer, ethylene ⁇ -olefin copolymer, acrylic rubber, Examples include silicone rubber, fluorine rubber, butyl rubber, and ethylene ionomer.
- the styrene'butadiene block copolymer and the styrene'isoprene block copolymer include those having a ⁇ -type, ABA-type, taper-type, or radial teleblock-type structure.
- the hydrogenated butadiene-based polymer has a hydrogenated product of a polymer having a styrene block and a styrene′-butadiene random copolymerized block, and a 1,2-butyl bond, which is weaker than the hydrogenated product of the block copolymer.
- the above rubbers can be used alone or in combination of two or more.
- thermoplastic resin examples include polyolefin resins such as polyethylene and polypropylene; acrylic resins such as polymethyl methacrylate; styrene resins such as polystyrene and rubber-reinforced styrene resins; polyethylene terephthalate; Polyester resin such as butylene terephthalate, polyamide resin such as nylon 6, nylon 66, nylon 46, and polycarbonate. Fats, fluorine resins, polysulfones, polyphenylene sulfides, liquid crystal polymers and the like. These can be used alone or in combination of two or more. Of these, polyolefin resin, acrylic resin, styrene resin, polyester resin, polyamide resin and polycarbonate resin are preferred, and styrene resin is particularly preferred.
- the styrene resin is a resin obtained by polymerizing a monomer component containing an aromatic vinyl compound in the presence or absence of a rubbery polymer.
- the rubbery polymer the rubber component exemplified as the thermoplastic polymer can be used with a predetermined particle size.
- Preferred rubbery polymers are polybutadiene, polyisoprene, styrene 'butadiene (block) copolymer, styrene' isoprene (block) copolymer, acrylonitrile 'butadiene copolymer, butadiene' (meth) acrylate Copolymers, hydrogenated styrene'butadiene block copolymers, hydrogenated butadiene-based polymers, ethylene' ⁇ -age olefin copolymers, ethylene.Hichiseki olefin'polyene copolymers, acrylic rubber, silicone rubber, etc. It is. These can be used alone or in combination of two or more.
- styrene resin styrene, ⁇ -methylstyrene, ⁇ -methyl styrene, ⁇ -methyl styrene, ethyl styrene, vinyl toluene, vinyl xylene, methyl ⁇ -methyl styrene, t-butyl styrene, divinyl benzene, 1,1-diphenyl styrene, N, N-getyl p-aminomethyl styrene, N, Examples include chlorinated styrenes such as N-getyl-p-aminoethyl styrene, vinylinolephthalene, vinylinolepyridine, monochlorostyrene and dichlorostyrene, brominated styrenes such as monobromostyrene and dibutomost
- the monomer component to be polymerized in the presence or absence of the rubbery polymer may be only an aromatic vinyl conjugate, or the aromatic vinyl compound and It may be a combination with another copolymerizable compound.
- Examples of the other vinyl compounds copolymerizable with the aromatic bilirubide include: Cyanidyl-billy conjugates such as tolyl and metallized mouth-tolyl; methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate, 2-ethyl acrylate Acrylates such as xyl; methacrylates such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate; maleimide, N Maleimide compounds such as methylmaleimide, N-butylmaleimide, N-phenylmaleimide and N-cyclohexylmaleimide; unsaturated epoxy compounds such as glycidyl acrylate, gly
- the resin (i) obtained by polymerizing the above monomer component in the presence of a rubbery polymer may be used alone or in the absence of a rubbery polymer. Further, the resin (ii) obtained by polymerizing the monomer component may be used alone, or (i) and (ii) may be used in combination.
- the content of the rubbery polymer in the styrenic resin is preferably 3 to 80% by mass, more preferably 5 to 6% by mass. 0 weight 0/0, more preferably from 10 40% by weight.
- the intrinsic viscosity of the styrene resin soluble in methylethyl ketone is preferably 0.3-1. 5dlZg.
- the styrenic resin can be produced by known polymerization methods such as emulsion polymerization, solution polymerization, suspension polymerization, bulk polymerization and the like.
- the graft ratio of the graft copolymer is preferably from 5 to 200% by mass, more preferably from 5 to 150% by mass.
- This silane conjugate (B) is at least one type of alkoxysilane that can be bleed out on the surface of a molded article molded using the composition of the present invention, and its condensate power is also selected. Bleed-out occurs when the molded article is allowed to stand at room temperature or when it is appropriately heated.
- the alkoxysilane is a compound represented by the following general formula (I).
- R 1 is each independently a linear or branched hydrocarbon group having 10 to 10 carbon atoms
- R 2 is each independently a halogen atom or an organic group.
- N is 0, 1 or 2 o]
- R 1 in the general formula (I) is a hydrocarbon group, the hydrocarbon group may be aliphatic, alicyclic and aromatic, it may also be a shift ⁇ .
- Aliphatic hydrocarbon groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-pentyl, i-pentyl, neopentyl, and n- Xyl groups, n-heptyl groups, n-octyl groups, 2-ethylhexyl groups and the like.
- Examples of the alicyclic hydrocarbon group include a cyclopropyl group, a cyclobutyl group, and a cyclohexyl group.
- aromatic hydrocarbon group examples include an aryl group, a xylyl group, and a naphthyl group.
- the hydrocarbon group may be a hydrocarbon group which may have a substituent, such as a halogen atom, a hydroxyl group or an ether group.
- each R 1 may be the same hydrocarbon group or different hydrocarbon groups.
- R 2 in formula (I) is an organic radical, as the organic group, a hydrocarbon group, ⁇ Rukokishiru group (cycloalkoxyl group, including Ariruokishi group).
- the hydrocarbon group may be any of aliphatic, alicyclic, and aromatic, and those exemplified above may be applied.
- OR 1 represented by using the above R 1 can be applied.
- the hydrocarbon group and the alkoxyl group may be a hydrocarbon group and an alkoxyl group having a halogen atom, a hydroxyl group, an ether group or the like which may have a substituent.
- R 1 in the above general formula (I) is an aliphatic hydrocarbon group
- R 2 is an organic group
- n l, methyltrimethoxysilane, methyltriethoxysilane, ethylethyl Alkyl trialkoxysilanes such as methoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, hexyltrimethoxysilane, and hexyltriethoxysilane; phenyl Aryltrialkoxysilanes such as trimethoxysilane, phenyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2aminoethyl) 3-aminopropyltrieth
- R 1 in the general formula (I) is an aliphatic hydrocarbon group
- R 2 is an organic group
- n 2
- dialkyl dialkoxy silanes such as toxic silane.
- the above alkoxysilanes may be used alone or in combination of two or more as a silane conjugate (B). They can be used in combination.
- the condensate of the alkoxysilane is usually an oligomer obtained by hydrolyzing and condensing the alkoxysilane represented by the general formula (I), and for example, a compound represented by the following general formula ( ⁇ ) And the like.
- R 3 in this general formula ( ⁇ ) can be the same as R 1 in the above general formula (I) .
- each IT may be the same hydrocarbon group, Different hydrocarbon groups may be used.
- the degree of condensation is usually 2 to 10 mer, preferably 2 to 6 mer, and more preferably 2 to 4 mer.
- the number of carbon atoms in the hydrocarbon group of R 3 is 3 to 6, it is usually 2 to 10 mer, preferably 2 to 8 mer, and more preferably 4 to 8 mer.
- a part of R 3 in the general formula ( ⁇ ⁇ ⁇ ⁇ ) may be a hydrogen atom.
- the content ratio of such a silanol group is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less, based on the total amount of the alkoxyl group before condensation.
- the condensate of the alkoxysilane may be a product obtained by further performing a transesterification reaction and modified to an ester of an alcohol having a higher carbon number.
- a transesterification reaction can be performed on a portion of the methyl ester to give a condensate modified to a butyl ester.
- the condensate of the alkoxysilane a compound in which R 3 in the above general formula ( ⁇ ) is a hydrocarbon group having 3 to 6 carbon atoms and is a 418-mer is preferable.
- the condensate of the above alkoxysilane can be used alone or in combination of two or more as the silane compound (B). Also, an alkoxysilane and a condensate of an alkoxysilane can be used in combination.
- the molecular weight of the silane compound (B) is a weight average molecular weight in terms of standard polypropylene glycol determined by gel permeation chromatography (GPC), and is preferably 300 One 3,000, preferably 350-2,500. If the weight average molecular weight is less than 300, the persistence of hydrophilicity may be insufficient, and toxicity problems may occur. On the other hand, if the weight average molecular weight is too large, bleed out may be insufficient.
- the content (in terms of SiO) of the composition of the present invention is 0.1% with respect to 100 parts by mass of the thermoplastic polymer (A). 1-50 mass
- SiO conversion means that the Si amount of alkoxysilane is converted to SiO.
- the content (in terms of SiO) of the composition of the present invention is based on 100 parts by mass of the thermoplastic polymer (A).
- 0.1 to 50 parts by mass preferably 0.1 to 40 parts by mass, more preferably 0.5 to 30 parts by mass, more preferably 0.5 to 20 parts by mass, particularly preferably 110 to 10 parts by mass. It is.
- the total amount (in terms of SiO) of the composition of the present invention is used.
- thermoplastic polymer (A) Is 0.1 to 50 parts by mass, preferably 0.5 to 30 parts by mass, more preferably 0.5 to 20 parts by mass, based on 100 parts by mass of the thermoplastic polymer (A).
- the mixing ratio of these alkoxysilanes and their condensates is not particularly limited, but is usually 0 to 30 parts by mass, Z0.1 to 40 parts by mass, preferably 100 parts by mass of the thermoplastic polymer (A). Is 0-10 parts by mass Z 0.5-30 parts by mass.
- the content of the silane compound (B) is less than 0.1 part by mass, the surface of the molded article tends to exhibit hydrophilicity, and tends to become ⁇ . On the other hand, when the content exceeds 50 parts by mass, the silane compound is used. It is not preferable because the product (B) itself reacts (condensation and the like) to easily form a Geri-dashi, which results in a decrease in hydrophilicity.
- composition of the present invention may contain other silane compounds in addition to the above-mentioned silani conjugate (B).
- Other silane compounds include alkyltrichlorosilanes such as methyltrichlorosilane, ethyltrichlorosilane, propyltrichlorosilane, butyltrichlorosilane, hexyltrichlorosilane, phenyltrichlorosilane, methylsilyltriisocyanate, and dimethyisilane. Lucilyl diisocyanate, bursilyl triisocyanate, dimethyl vinyl methoxy silane, dimethyl vinyl chlorosilane, and the like. These other silane compounds can be used alone or in combination of two or more.
- the content when using these other silane conjugates is preferably 20 parts by mass or less, more preferably 15 parts by mass, in terms of SiO amount, based on 100 parts by mass of the thermoplastic polymer (A).
- thermoplastic polymer (A) and the silane compound (B) contained in the composition of the present invention the thermoplastic polymer (A) has a solubility parameter of S, and the solubility of the silane compound (B) is
- I s A—s More preferably, I s A—s, and even more preferably
- composition of the present invention contains the thermoplastic polymer (A) and the silane compound (B) as essential components, and further contains at least one of a catalyst and a diluent. Can be.
- the catalyst is not particularly limited as long as it can promote the hydrolysis of the silani conjugate (B).
- the catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; organic carboxylic acids such as formic acid, acetic acid, benzoic acid, phthalic acid and maleic acid; benzenesulfonic acid; toluenesulfonic acid; xylenesulfonic acid; Organic sulfonic acids such as tylbenzenesulfonic acid; inorganic alkali catalysts such as sodium hydroxide, potassium hydroxide, calcium hydroxide, and ammonia; organic amine compounds; organic metal compounds; Metal alkoxide compounds such as organic compounds, organic titanium compounds and organic zirconium compounds; and boron compounds such as boron tri-n-butoxide and boric acid.
- inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid
- the content when the above catalyst is used is determined by the amount of SiO from which the capacity of the silani conjugate (B) is also calculated.
- the amount is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, and still more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass. Within this range, the effect of promoting hydrolysis is It is enough. If the content of the catalyst is too small, the effect of promoting hydrolysis may not be sufficient.
- the diluent is used for diluting the silane conjugate (B), and can suppress the condensation reaction.
- the diluent is not particularly limited, but is preferably a diluting solvent having a hydroxyl group, for example, a glycol solvent such as ethylene glycol or propylene glycol; having 8 or more carbon atoms, preferably 12 or more, more preferably 18 or more. High-grade alcohol. These diluents can be used alone or in combination of two or more.
- the amount is preferably 100 to 50,000 parts by mass, more preferably 150 to 10,000 parts by mass, and still more preferably 200 to 5,000 parts by mass with respect to 100 parts by mass of 2 parts.
- composition of the present invention may further contain various additives in addition to the above components.
- Additives include antioxidants, lubricants, fillers (inorganic compounds, metal powders, polymer compounds, etc.), reinforcing agents, plasticizers, compatibilizers, heat stabilizers, light stabilizers, ultraviolet absorbers, coloring Agents (dyes, pigments, etc.), antistatic agents, flame retardants, antibacterial agents and the like.
- each additive is usually 0.01 to 20% by mass, preferably 0.01 to 10% by mass, and more preferably 0.1 to 5% by mass, when the composition of the present invention is 100% by mass. % By mass.
- the composition of the present invention preferably has a low water content of preferably 0.2% by mass or less, more preferably 0-0.15% by mass, and still more preferably 0-0.1% by mass. is there. Due to the low water content, when a molded article is formed, the silane conjugate (B) is efficiently oozed (bleed-out) on its surface and is hydrolyzed by contact with water when used. As a result, silanol groups can be efficiently generated, and as a result, permanent hydrophilicity of the surface can be imparted.
- the hydrolysis of the silane compound (B) proceeds inside the composition, and the hydrophilicity on the surface where the silane conjugate (B) is difficult to bleed out is reduced or the hydrophilicity is maintained. May deteriorate.
- the water content of the composition can be measured by a method such as the Karl Fischer method.
- the composition of the present invention is obtained by contacting water with a molded article composed of 100 parts by mass of the thermoplastic polymer (A) and 3 parts by mass of the silane conjugate (B) under the following conditions.
- the water droplet contact angle on the surface of the molded article is 60 degrees or less, preferably 5 to 60 degrees, and more preferably 5 to 30 degrees.
- a sheet-shaped molded product with a length of 150 mm, a width of 30 mm and a thickness of 300 m was used as a test piece, immersed in water at 23 ° C (the amount used is three times the volume of the sheet) for 1 hour, and then Leave the product in the air at a temperature of 23 ° C and a humidity of 30-50% for 1 hour without wiping off the water on the surface of the molded product. After that, 0.2cc of water droplet is dropped on the surface of the molded product, and the contact angle is measured after a lapse of 30 seconds at 23 ° C in an air atmosphere.
- the measuring device include a fully automatic contact angle measuring device manufactured by Kyowa Interface Science Co., Ltd.
- the method for obtaining the composition of the present invention is not particularly limited.
- a method in which a raw material composition containing a thermoplastic polymer (A) and a silane compound (B) is melt-kneaded using a kneading apparatus There is a method in which only the plastic polymer (A) is melt-kneaded in advance, and then the silane compound (B) is added and further melt-kneaded.
- the shapes of the thermoplastic polymer (A) and the silane conjugate (B), and the catalyst, diluent, and various additives used as necessary are not particularly limited.
- the solid substance may be in the form of a block such as a pellet or may be in the form of a powder. When it is in the form of a powder, it is preferable because it is more efficiently and uniformly dispersed.
- Examples of the method for preparing the raw material composition in the former case include a method of impregnating the powdery thermoplastic polymer (A) with the silane conjugate (B) at room temperature. Further, the raw material composition may be put into the kneading device at once, or may be put in portions.
- Examples of the kneading device include an extruder and a Brabender.
- the temperature, time, and the like for melting and kneading the raw material composition are not particularly limited.
- the melting temperature is preferably equal to or higher than the melting point of the thermoplastic polymer (A).
- the kneading time is usually 0.1 to 60 minutes, preferably 0.5 to 20 minutes.
- a catalyst, a diluent and various additives When a catalyst, a diluent and various additives are blended, they may be blended by themselves, or may be alcohols, glycol derivatives, hydrocarbons, esters, ketones, or the like. It may be dissolved or dispersed in a solvent such as ethers and blended.
- Examples of the alcohols include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, and acetylacetone alcohol anhydrides.
- glycol derivatives examples include ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether ether, propylene glycol, propylene glycol monomethynoethyl ether, propylene glycol monomethyl ethyl ether, and diethylene glycol monomethyl ether.
- hydrocarbons examples include hexane, benzene, toluene, xylene, kerosene and the like.
- esters examples include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl acetate acetate, ethyl acetate acetate, butyl acetate acetate and the like.
- ketones include acetone, methylethyl ketone, methyl isobutyl ketone, and acetyl acetone.
- ethers examples include ethyl ether, butyl ether, methoxyethanol, ethoxyethanol, dioxane, furan, and tetrahydrofuran.
- thermoplastic polymer (A) having a low water content in advance, for example, a method such as vacuum heating drying. It is preferable to use a thermoplastic polymer (A) whose content is set to 0.2% by mass or less.
- thermoplastic polymer While only the thermoplastic polymer is melted and kneaded in a kneading apparatus described below, steam may be appropriately exhausted.
- a raw material composition that does not absorb moisture so as not to absorb moisture.
- it can be prepared under an atmosphere such as nitrogen gas.
- all raw material components that can be used by dissolving or dispersing in a solvent or the like may be used in this way.
- the composition comprises a melting step of melting and kneading the thermoplastic polymer (A) while discharging water (steam), and a silane compound (B), and the thermoplastic polymer (A) is charged. It can be produced by sequentially providing the kneading (A) and a kneading step for further kneading.
- the thermoplastic polymer (A) is melt-kneaded while discharging water (steam). Melt kneading can be performed using an extruder with a vent port or the like.
- the thermoplastic polymer (A) may be charged into the above-described device at once, or may be separately charged.
- the melting temperature is preferably equal to or higher than the melting point of the thermoplastic polymer (A).
- the kneading time is usually 0.1 to 60 minutes, preferably 0.5 to 20 minutes.
- the silani conjugate (B) is charged and further kneaded with the thermoplastic polymer (A).
- the silani conjugate (B) may be charged immediately after the above-mentioned melting step, or the thermoplastic polymer (A) may be cooled and cooled. Further, the addition of the silane conjugate (B) may be performed simultaneously with other additives, or may be performed before or after any of the additives. Further, the silane compound (B) may be charged at once, or may be divided and charged.
- the kneading temperature in this kneading step is preferably equal to or higher than the melting point of the thermoplastic polymer (A).
- the kneading time is usually 0.1 to 60 minutes, preferably 0.5 to 20 minutes.
- water water vapor
- this storage step for example, it can be housed in a container, bag or the like that can be sealed under an atmosphere of nitrogen gas or the like.
- a molded article of the present invention is characterized by being molded using the above-mentioned polymer composition for molding a molded article.
- the molded article of the present invention may be a thermoplastic polymer (A) and a silane compound (B), or may further contain other additives. Good.
- the shape of the molded article of the present invention is not particularly limited, and can be determined according to the purpose, application, and the like. Examples of molded articles will be described later.
- Examples of the molding method include extrusion molding, injection molding, hollow molding, compression molding, vacuum molding, slash molding, steam foam molding, lamination molding, and calendar molding.
- thermoplastic polymer (A) itself has transparency
- the molded article also has transparency regardless of the content of the silane compound (B).
- the molded article containing the thermoplastic polymer (A) and the silane compound (B) and having a low water content has a moisture content of 0.2% by mass or less, and a silane compound (A1).
- the composition can be produced by melt-kneading the raw material composition (S1) containing B1) and then molding.
- thermoplastic polymer (A1) those exemplified for the above thermoplastic polymer (A) can be used. Preferred shapes are pellets or powders. In order to adjust the water content of the thermoplastic polymer (A1) to 0.2% by mass, it can be adjusted by a method such as vacuum heating and drying before forming the raw material composition (S1). Further, while melting and kneading only the thermoplastic polymer (A1) in the kneading apparatus, steam may be appropriately exhausted. Further, as the silani conjugate (B1), those described above for the silani conjugate (B) can be used. The weight average molecular weight of the silane compound (B1) can be the same as that of the above-mentioned silane compound (B).
- the method for preparing the raw material composition (S1) can be the same as the method for producing the above-described polymer composition for molding a molded article. Further, the method, conditions, apparatus and the like for melting and kneading the raw material composition (S1) can be the same as those described above.
- a molded product can be obtained by a known molding method.
- thermoplastic polymer (A2) As another method for producing a molded article containing the thermoplastic polymer (A) and the silane compound (B), and having a low water content, the thermoplastic polymer (A2) is used for discharging water (steam).
- a method of sequentially comprising a melting step of melt-kneading while mixing, a kneading step of adding the silane compound (B2) and further kneading with the thermoplastic polymer (A2), and a molding step of molding using the kneaded material.
- thermoplastic polymer (A2) is exemplified by the thermoplastic polymer (A). Can be used. Preferred shapes are pellets or powders.
- the silane conjugate (B2) may be the same as that described for the silane conjugate (B).
- the weight average molecular weight of the silane compound (B2) can be the same as described above.
- the melting step and the kneading step can be the same as those described in the method for producing a polymer composition for forming a molded article.
- the above-mentioned molding step can be performed by applying a known molding method.
- the molded article When the moisture content of the molded article is low, the molded article may be further stored in the absence of moisture (steam).
- the silane conjugate (B) does not deteriorate. That is, when the water content is large, the silane compound (B) reacts with water to produce diacid silicon and the like, and the desired content cannot be maintained, but this can be prevented. Therefore, when the thermoplastic polymer (A) has transparency, since the silicon dioxide and the like have a white color, it becomes a whitened molded product, but the thermoplastic polymer (A) This can be prevented by lowering the water content of the water.
- the shape of the molded article of the present invention is not limited as described above, but is preferably thicker. That is, the minimum thickness in the case of having a thin portion is preferably 35 / zm or more, more preferably 50 ⁇ m or more, further preferably 80 ⁇ m or more, and particularly preferably 200 ⁇ m or more. In particular, for a portion required for hydrophilicity of the surface, the thicker the wall thickness, the longer the hydrophilicity can be maintained. If the thickness of the thin portion is too small, it may be difficult to obtain a molded article having excellent hydrophilicity after various treatments described below.
- the method for producing a hydrophilic molded article of the present invention uses the above-mentioned polymer composition for molding a molded article (hereinafter, referred to as a molded article)
- a molded article having silanol groups formed by hydrolyzing the silani conjugate (B) having a bleed-out surface force can be obtained.
- the specific means in the molding step are not particularly limited, and known polymer molding methods such as extrusion molding, injection molding, and hollow molding are used. , Compression molding, vacuum molding, slash molding, steam foam molding, lamination molding, calendar molding and the like.
- the method (I) for producing a hydrophilic molded article of the present invention specific means in the bleed-out step are not particularly limited.
- the untreated molded article can be bleed-out by leaving the untreated molded article in the air at room temperature or under heating, etc.
- the degree of the bleed-out depends on the thermoplastic weight. Influence by the compatibility between the coalesced (A) and the silane compound (B), the type and properties of the thermoplastic polymer (A) (crystallinity, glass transition point), and the type of additives (for example, fillers) Receive.
- the untreated molded article contains a silani conjugate having a small molecule (B) or an silane conjugate having an alkoxyl group having a small number of carbon atoms (B), the bleed out is relatively quick.
- the untreated molded article contains a silane compound having a large molecule (B) or a silane compound having a large number of carbon atoms and an alkoxyalkyl group (B)
- the untreated molded article contains a filler such as a filler.
- the additive is impregnated with the silane conjugate (B)
- bleed out is relatively slow. The latter case is remarkable, for example, when a filler having a strong force such as zeolite is used. Therefore, bleed out can be controlled by appropriately adjusting the above factors, and as a result, the hydrophilicity of the obtained hydrophilic molded article can be appropriately adjusted.
- the specific means in the water contact step is not particularly limited.
- water tap water or the like can be preferably used as long as it is available on a daily basis.
- deionized water distilled water, ultrapure water, etc. can be used.
- Water obtained may be used as it is (temperature, atmosphere, etc.) or heated. Force may also be used.
- the amount of water used is not particularly limited, and may be an amount that wets a desired position of the unprocessed molded article, or may be an amount large enough to enter a large container.
- a method of using water may be selected depending on purposes such as spraying, coating, and dipping.
- the contact time of the untreated molded article with water is preferably 1 second to 20 hours, more preferably 2 seconds to 10 hours, and further preferably 5 seconds to 13 hours. If the contact time is too short, the hydrolysis reaction of the silane compound (B) on the surface of the untreated molded article becomes insufficient, and the surface may not be uniformly hydrophilized. In the water contact step, the untreated molded article may be heated in advance. By selecting the above conditions, the hydrolysis reaction rate of the silane conjugate (B) can be controlled.
- a catalyst which can be contained in the composition is dissolved or dispersed in water. Is also good.
- an inorganic acid such as sulfuric acid may be used.
- the contact method in this case can be the same as described above.
- the bleed-out step can be omitted, and the process can proceed to the water contact step.
- This water contact step may be performed a plurality of times.
- silanol groups generated by hydrolysis of the silane compound (B) contained in the untreated molded article can be generated on the surface thereof.
- the surface of the hydrophilic molded article of the present invention obtained through each of the above-mentioned steps is at least partially (typically, a silane compound) of the bleed-out silane ligated product (B) compared to the surface of the untreated molded article.
- a silane compound a silane compound
- the alkoxyl group contained in the compound (1) contains abundant silanol groups formed by hydrolysis. Since the silanol group has a high affinity for water, a suitable hydrophilic molded article can be obtained. The higher the content of the silanol group, the higher the durability of the excellent hydrophilic property.
- Another method for producing a hydrophilic molded article of the present invention is a method for molding using the above-described polymer composition for molding a molded article.
- the molding step in the method for producing a hydrophilic molded article ( ⁇ ) of the present invention can be the same as the method for producing a hydrophilic molded article ( ⁇ ) described above.
- the surface of the untreated molded article is And at least one treatment selected from radiation treatment and corona discharge treatment.
- radiation treatment include methods such as electron beam irradiation, ultraviolet irradiation, and ion irradiation using a known electron beam irradiation device, ultraviolet irradiation device, or the like. Of these, electron beam irradiation is preferred.
- the processing conditions are not particularly limited.
- the corona discharge treatment can also be performed using a known device.
- the processing conditions are not particularly limited.
- surface modification can be performed by applying irradiation with an excimer lamp or the like.
- either one of the radiation treatment and the corona discharge treatment may be performed, or both may be performed. If both are performed, the order is not limited. Further, the processing may be performed plural times. Further, the water contact step in the method (I) for producing a hydrophilic molded article of the present invention may be combined.
- the contact angle of water droplets on the surface of the hydrophilic molded article of the present invention obtained by the above two production methods is preferably 60 degrees or less, more preferably 5-60 degrees, and even more preferably 5-30 degrees. You.
- the hydrophilic molded article of the present invention is dried at room temperature for 9 hours in the air and then immersed in water at 23 ° C for 15 hours, and the hydrophilic molded article is repeated 50 times.
- the contact angle of the water droplet on the surface of the product can be preferably 60 degrees or less, more preferably 5-60 degrees, and even more preferably 5-30 degrees. This means that the hydrophilicity is persistent.
- the hydrophilic molded article of the present invention has a water droplet contact angle of preferably 60 degrees or less, more preferably 60 degrees or less, after washing with ethanol and then immersing in water at 23 ° C for 1 hour. Preferably it can be 5-60 degrees, more preferably 5-30 degrees.
- concrete A typical cleaning method is to wipe the surface of the molded article three times using gauze impregnated with ethanol.
- the silanol groups present on the surface of the hydrophilic molded article may be reduced quantitatively due to the disappearance of the components containing it due to washing with ethanol.However, it must be newly immersed in water. Thereby, the silanol group is regenerated, and the above-mentioned contact angle is obtained.
- the hydrophilic molded article of the present invention is preferably thicker. That is, the minimum thickness in the case of having a thin portion is preferably 35 m or more, more preferably 50 m or more, still more preferably 80 m or more, and particularly preferably 200 m or more. In particular, for a portion that exhibits hydrophilicity on the surface, the thicker the wall, the longer the hydrophilicity can be maintained.
- the content of the silane conjugate (B) per unit area is
- the density of the molded product is lgZcm 3 .
- excellent hydrophilicity is maintained.
- the silanol conjugate (B) bleeds out to the entire surface of the molded article and one surface is covered with silanol groups, and the silanol groups are distributed like islands. There are times when you do. These depend on the content of the silane compound (B) contained in the molded article, and also depend on conditions such as a water contact step.
- silane conjugate (B) When the content of the silane conjugate (B) is sufficient and a stable solid film (silanol group-containing film) is formed on the surface of the hydrophilic molded article, the above-mentioned sustainability, Alternatively, it has excellent resistance to organic solvents such as ethanol, and can maintain the hydrophilicity of the surface without newly requiring hydrolysis and condensation.
- the molded article and the hydrophilic molded article may be a composition containing 100 parts by mass of the thermoplastic polymer (A) and the silane conjugate (B).
- a composition having a water droplet contact angle of more than 60 degrees on the surface of the molded article after contacting water with the molded article having 100 parts by mass and 3 parts by mass of the silane conjugate (B) is used.
- the molded article and the hydrophilic molded article can be obtained by a known molding method and the method (I) or (II) for producing a hydrophilic molded article of the present invention.
- the molded article and the hydrophilic molded article of the present invention are used, for example, in handle covers and cowls for motorcycles and the like, engine covers for small boats and snowmobiles, furniture, home appliances for AV equipment, signboards, and the like.
- products that come into contact with water, products that are installed outdoors, and these parts are suitable, such as toilet seats, tank covers, casings, kitchen fixtures, washbasin-related parts, bathroom-related parts, etc.
- Sanitary-related parts, window frames, flooring materials, wall materials, and other housing and housing-related parts are particularly suitable.
- the molded article and hydrophilic molded article of the present invention may be damaged or abraded depending on the conditions of use, environment, etc., but should reproduce the specified hydrophilicity only by contact with water. Therefore, the same performance can be maintained for a long period of time.
- the hydrophilic molded article of the present invention can be subjected to processing such as printing, painting, plating, bonding and the like as necessary.
- the laminate of the present invention includes a base, and a member disposed on the surface of the base and molded using the polymer composition for molding a molded article.
- the member surface of the laminated article can be made hydrophilic by performing a water contact step or the like in the method for producing a hydrophilic molded article on this member. Therefore, the durability of the hydrophilicity is excellent as compared with a laminate in which a hydrophilicity-imparting material is formed on the surface of the base as in the prior art.
- Fig. 1 shows an example of a laminated product including the base and the member. That is, the laminated product 1 of FIG. 1 includes a base 11 and a member 12 disposed on the surface of the base 11.
- the shape of the above member is not particularly limited, and may be plate-like, linear, massive, or the like. The member may be provided on a part of the surface of the base as shown in FIG. 1 or may be provided on the entire surface.
- the material, shape, and the like constituting the base are not particularly limited, and may be selected according to the purpose, application, and the like.
- constituent materials include thermoplastic polymers (elastomer, rubber, resin, etc.), thermosetting resin, wood, inorganic materials (metal, nonmetal, ceramic, marble, etc.).
- shape can be a plate, a line, a lump, or the like.
- the base and the member may be bonded with an adhesive, a pressure-sensitive adhesive or the like.
- Figure 2 shows an example.
- the laminated product la in FIG. 2 has a joint 2 between the base 11 and the member 12.
- the laminated product of the present invention can be obtained, for example, by a method such as vacuum forming, in-mold molding, molding such as co-extrusion, laminating, pressure bonding, or bonding.
- examples of the laminated product of the present invention include signboards, panels, various containers, home electric appliances and parts thereof, and members for vehicles. Furthermore, since the laminate of the present invention has a property of continuously exhibiting hydrophilicity due to silanol groups generated by hydrolysis of the silane compound (B) contained in the above-mentioned member, it can be used for products that come into contact with water, It can be suitably used for products installed outdoors and these parts. For example, sanitary-related parts such as toilet seats, tank covers, casings, fixtures around sinks, wash basin-related parts, bathroom-related parts, etc., and housing and housing-related parts such as window frames, flooring materials, and wall materials are particularly suitable. is there.
- the laminate of the present invention may be a laminate having a hydrophilic member on the surface in advance.
- the contact angle of the water droplet on the surface of the member is preferably 60 degrees or less, more preferably 5-60 degrees, and even more preferably 5-30 degrees.
- Example 1-1 4 parts of tetra n-butyl silicate (trade name “silicate MS58B30”, manufactured by Mitsubishi Chemical Corporation, weight average molecular weight 1,500-1,800) (4) (SiO conversion) and heat-resistant
- a water-zethanol mixed solvent (mass ratio 1: 1) was sprayed on the surface of the obtained sheet-like molded body by spraying, and allowed to dry at room temperature for a certain period of time.
- surface treatment (i) a hydrophilic molded article was obtained.
- the number in the column of the treatment time of the surface treatment (i) in Table 1 means the time (second) during which the spraying was performed.
- the evaluation of the hydrophilicity of the hydrophilic molded article was performed using the contact angle according to the following method. That is, a water droplet of 0.2 cc was dropped on the surface of the hydrophilic molded article, and the contact angle after 30 seconds from the dropping in an air atmosphere at 23 ° C was measured with a fully automatic contact angle measuring device (manufactured by Kyowa Interface Science Co., Ltd.). It was measured.
- the hydrophilicity was changed in the same manner as in Example 11 except that the mixing ratio of the silane conjugate (I) and the thermoplastic polymer (I), and the conditions of the surface treatment (i) were as shown in Table 1. Molded articles were manufactured and evaluated for hydrophilicity.
- zeolite trade name “Molequiura 1-Sieve 3A (powder)”, manufactured by Union Showa
- zeolite trade name “Molequiura 1-Sieve 3A (powder)”, manufactured by Union Showa
- a hydrophilic molded article was produced in the same manner as in Example 1-1, and the hydrophilicity was evaluated.
- thermoplastic polymer (I) The sheet-like molded article consisting of only the thermoplastic polymer (I) was subjected to the surface treatment (i) under the conditions shown in Table 2 to evaluate the hydrophilicity.
- Table 2 shows the blending ratios of the silane conjugate (I), the thermoplastic polymer (I) and the zeolite.
- a hydrophilic molded article was produced and evaluated for hydrophilicity in the same manner as in Example 13 except that the procedure was followed. In addition, cloudiness was observed on the surface of the obtained hydrophilic molded article.
- a mixture (mass ratio 1: 1) of the above-mentioned silane conjugate (I) and the above-mentioned mixed solvent of water and ethanol was applied to the surface of the sheet-like molded product used in Comparative Example 11 by spraying. After that, it was left to dry at room temperature for a certain period of time and air-dried (hereinafter referred to as “surface treatment (ii)”) to produce a hydrophilic molded article, which was evaluated for hydrophilicity (see Table 2). Incidentally, cloudiness was observed on the surface of the obtained hydrophilic molded article.
- the number in the column of the treatment time of the surface treatment (ii) in Table 2 means the time (second) during which the spraying was performed.
- a mixture (mass ratio 1: 1) of the above-mentioned silane conjugate (I) and the above-mentioned mixed solvent of water and ethanol was applied to the surface of the sheet-like molded product used in Comparative Example 11 by spraying. Thereafter, the surface treatment (ii) and the surface treatment (i) were successively performed under the conditions shown in Table 2, and a hydrophilic molded article was produced in the same manner as described above, and the hydrophilicity was evaluated.
- Thermoplastic polymer (I) (parts) 100 100 100 100 100 100 10 Polymer
- Air drying time after treatment (hours) 24 12 Surface treatment Treatment time (seconds) 30 30 30 30
- the contact angle of the molded article of Comparative Example 11 was 80 degrees, while the contact angle of the molded article of Comparative Example 11 did not include the silani conjugate (alkoxysilane condensate).
- the contact angle was 36 to 57, in which a silanol group was formed on the surface of the molded article by hydrolysis. Degrees (Table 1). From this result, it can be seen that the hydrophilic molded article of Examples 111-111 has improved hydrophilicity.
- the contact angle was 70 degrees
- the hydrophilicity of Example 11-11 It turns out that it is inferior in hydrophilicity compared with a molded article.
- the contact angles were 72 degrees and 75 degrees, and the hydrophilic molded articles of Examples 1-1 to 1-11 were obtained.
- the hydrophilic molded product of the present invention Since the hydrophilic molded product of the present invention has a larger value, the hydrophilic molded product of the present invention exhibits superior hydrophilicity as compared with a conventional hydrophilic molded product in which a silicate is applied to a resin surface. You can see that
- Example 1-8-1-11 in which zeolite is incorporated has a smaller contact force and a smaller contact angle. Indicates the value. This shows that the hydrophilicity can be improved by kneading zeolite. This may be due to the immediate effect of the kneading of the alkoxysilane and the possibility of control by the effect of the slow effect due to the impregnation of the filler.
- a T-die extruder manufactured by Soken Co., Ltd.
- a die width of 250 mm was used to obtain a sheet-like molded body having a width of 200 mm and a thickness of lmm at a molding temperature of 200 ° C.
- a water / ethanol mixed solution (mass ratio 1: 1) was sprayed onto the sheet-like molded body by spraying, allowed to stand at room temperature for 24 hours, and air-dried. Thereafter, the contact angle at 23 ° C. was measured in the same manner as in Example 11.
- the haze was measured using a haze measuring device (model name "hazegard-plus", manufactured by BYK Japan KK).
- a polymer composition and a sheet-like molded product were produced and evaluated in the same manner as in Example 2-1 except that the amount of the silane ligated product (I) was changed to 6 parts. The results are shown in Table 3.
- Example 2-3 Acrylonitrile 'butadiene pellets with a moisture content of 0.45% by the precision micro moisture meter above.
- Styrene resin (trade name “Techno ABS810”, manufactured by Techno Polymer Co., Ltd .; hereinafter, “thermoplastic polymer ( ⁇ )” 6 kg was melt-kneaded with the above extruder at a cylinder temperature of 200 ° C. and a residence time of 2 minutes, and was then dehydrated and dried by suction of ventroka steam (730 mmHg).
- a polymer composition and a sheet-like molded product were produced and evaluated in the same manner as in Example 2-3, except that the blending amount of the silane ligated product (I) was changed to 6 parts. The results are shown in Table 3.
- a polymer composition and a sheet-like molded product were produced in the same manner as in Example 2-1 except that the pellet-shaped thermoplastic resin (I) having a water content of 0.45% according to the precision trace moisture meter was used. It was manufactured and evaluated. The results are shown in Table 3.
- a polymer composition and a sheet-like molded product were produced and evaluated in the same manner as in Example 2-3, except that the vent port of the extruder was closed. The results are shown in Table 3.
- a polymer composition and a sheet-like molded product were produced and evaluated in the same manner as in Example 2-1, except that the silane ligated product (I) was not used. The results are shown in Table 3.
- a polymer composition and a sheet-like molded body were produced and evaluated in the same manner as in Example 2-3, except that the vent of the extruder was closed, and the silani ligated product (I) was not injected and used. .
- the result Also shown in Table 3
- Comparative Examples 2-1 and 2-2 are examples in which a silani conjugate (condensate of alkoxysilane) was not used, and the contact angle was 80 degrees regardless of the production method. A highly hydrophilic surface could not be obtained.
- Example 2-1 acrylonitrile 'butadiene' having a water content of 0.01% or less was used. Since styrene resin is used, the contact angle is 35 degrees and it has excellent hydrophilicity. After 30 days, the temperature improved slightly to 31 degrees. The haze was 3.5% and the transparency was high.
- Example 2-2 was an example in which the amount of the silani conjugate (condensate of alkoxysilane) was increased, and the haze was slightly reduced but sufficiently transparent. In addition, the contact angle was 33 degrees, and the hydrophilicity was higher than that of Example 2-1.
- Example 2-3 atari port-tolyl.butadiene / styrene resin was melted with the vent port opened, the water content was reduced, and a silane coupling product (condensation product of alkoxysilane) was added.
- the contact angle was smaller than in Example 2-1 and the haze was improved. In this example, it was confirmed that all had permanent hydrophilicity.
- the solubility parameter (hereinafter, also referred to as “SP value”) according to the Smart formula used in Example 11 above was 100 parts of the thermoplastic resin (1) having a value of 10.3, and the SP value was determined as a silane compound ( ⁇ ). And 3 parts of tetra n-butyl silicate (trade name “silicate MS58B15”, manufactured by Mitsubishi Chemical Corporation, weight average molecular weight 1,600-1,800) with a force of 2 using a Henschel mixer. The mixture was melt-kneaded at 200 ° C using a 40 mm extruder to obtain pellets.
- the pellet was put into a sheet forming machine to produce a sheet 150 mm long, 30 mm wide and 300 m thick (hereinafter also referred to as “untreated sheet”).
- the content of the untreated sheet ( ⁇ ) per unit area of the untreated sheet was 0.9 mgZcm 2 , and the surface contact angle was 80 degrees.
- Pretreatment was performed on the untreated sheet to obtain a hydrophilic sheet.
- the untreated sheet was left in air at a temperature of 23 ° C and a humidity of 50% or less for 7 days. At this time, the contact angle on the sheet surface was 70 degrees.
- immerse the sheet in water at 23 ° C (the amount used is three times the volume of the sheet) for 22 hours, take out the sheet, and remove the sheet surface without wiping the water at 23 ° C. It was left in air at a humidity of 50% or less for 2 hours and dried (hereinafter, this treatment is also referred to as “immersion in water”). At this time, the contact angle of the hydrophilic sheet surface was 45 degrees (see Table 4). Further, a water film was formed on the surface of the hydrophilic sheet and the state of wetness was visually observed. If the film was not uniformly wetted, it was evaluated as "uneven”. Judged.
- the surface of the hydrophilic sheet was wiped three times using gauze impregnated with ethanol, and dried at 23 ° C for 1 minute.
- one cycle was allowed to dry in air at a temperature of 23 ° C and a humidity of 50% or less for 9 hours, then dried at 23 ° C with water (amount used). Is 3 times the volume of the sheet.) The process of immersing in 15 hours was repeated 50 times.
- An untreated sheet having a thickness of 100 / zm was produced in the same manner as in Example 3-1 using 100 parts of the thermoplastic resin (I) and 3 parts of the silane conjugate ( ⁇ ). The contact angle on the surface of the untreated sheet was 80 degrees.
- This untreated sheet was subjected to the same pretreatment as in Example 3-1 to obtain a hydrophilic sheet, and subjected to the above treatments (3) to (5). Table 4 shows the results.
- An untreated sheet having a thickness of 50 m was produced in the same manner as in Example 3-1 by using 100 parts of the thermoplastic resin (I) and 3 parts of the silane conjugate ( ⁇ ).
- the contact angle on the surface of the untreated sheet was 80 degrees.
- This untreated sheet was subjected to the same pretreatment as in Example 3-1 to obtain a hydrophilic sheet, and the contact angle was measured and the surface condition was observed. Table 4 shows the results.
- An untreated sheet was produced in the same manner as in Example 3-3, except that the amount of the silane ligated product ( ⁇ ) was changed to 8 parts.
- the contact angle on the surface of the untreated sheet was 80 degrees.
- the untreated sheet was subjected to the same pretreatment as in Example 3-1 to obtain a hydrophilic sheet, and subjected to the above treatments (3) to (5). Table 4 shows the results.
- An untreated sheet having a thickness of 30 m was produced in the same manner as in Example 3-1 using 100 parts of the thermoplastic resin (I) and 8 parts of the silane conjugate (11). The contact angle of the surface of this untreated sheet is 80 degrees.
- This untreated sheet was subjected to the same pretreatment as in Example 3-1 to obtain a hydrophilic sheet, and subjected to the above treatments (3) to (5). Table 4 shows the results.
- Example 3-1 After leaving the untreated sheet prepared in Example 3-1 in air at a temperature of 23 ° C and a humidity of 50% or less for 7 days, the surface of the sheet was irradiated with an electron beam under the following conditions to obtain a hydrophilic sheet.
- the above processes (3) to (5) were performed. Table 4 shows the results.
- Example 3-1 The untreated sheet prepared in Example 3-1 was subjected to the same pretreatment as in Example 3-1 and was further subjected to electron beam irradiation under the same conditions as in Example 3-6, whereby a hydrophilic sheet was obtained. Obtained.
- the above treatments (3)-(5) were performed on this hydrophilic sheet, and the results are shown in Table 4.
- thermoplastic polymer 100 parts of acrylo-tolyl.styrene.atalylate (ASA) resin having an SP value of 11.1 and a silane having an SP value of 3 were prepared by the method described below.
- An untreated sheet having a thickness of 150 / zm was produced in the same manner as in Example 3-1 using 5 parts of the compound (1).
- the contact angle on the surface of the untreated sheet was 80 degrees. After leaving this untreated sheet in air at a temperature of 23 ° C. and a humidity of 50% or less for 7 days, immersion in water was repeated twice to obtain a hydrophilic sheet, and the contact angle was measured and the surface condition was observed. Table 5 shows the results. Production method for Kusan ⁇ fat>
- a latex containing 50 parts of an acrylic rubbery polymer obtained by emulsion polymerization of 99% of n-butyl acrylate and 1% of acryl methacrylate, 200 parts of water (total amount), and dodecyl The reactor was charged with 1 part of sodium benzenesulfonate, and the temperature was raised to 60 ° C. while stirring under a nitrogen stream. After the temperature reached 60 ° C, an aqueous solution in which 0.2 part of sodium formaldehyde sulfoxylate was dissolved was added to the reaction system.
- ASA resin was obtained by mixing resin (pi) and copolymer (p2) at a mass ratio of 4Z6.
- Example 3-8 The untreated sheet obtained in Example 3-8 was subjected to the same pretreatment as in Example 3-7 to obtain a hydrophilic sheet, and the contact angle was measured and the surface condition was observed. Table 5 shows the results.
- thermoplastic polymer (VI) 100 parts of a polyethylene terephthalate resin having an SP value of 12.8 (trade name “IS404”, manufactured by MCC) and 3 parts of a silane conjugate (I) were used.
- An untreated sheet having a thickness of 150 / zm was prepared in the same manner as in 3-1. The contact angle on the surface of this untreated sheet was 80 degrees. After leaving this untreated sheet in air at a temperature of 23 ° C and a humidity of 50% or less for 7 days, a hydrophilic sheet was obtained by repeating water immersion twice, and the above treatment (3)-(5) was performed. Table 5 shows the results.
- thermoplastic polymer ( ⁇ ) acrylonitrile 'butadiene' styrene resin with an SP value of 11.1 (trade name “Techno ABS 150”, manufactured by Technopolymer Co., Ltd.) 17.4 parts, and the thermoplastic polymer (IV) 13 parts of styrene 'butadiene-based thermoplastic elastomer (trade name: TR2500, manufactured by JSR Corporation) having an SP value of 10.7 and polypropylene having an SP value of 0.9 as a thermoplastic polymer (V) Resin (trade name “FY6C”, manufactured by JPP) 69.6 parts and 5 parts of silane conjugated product (I) were used, and untreated with a thickness of 150 m in the same manner as in Example 3-1.
- a sheet was prepared.
- the contact angle on the surface of this untreated sheet was 80 degrees.
- immersion in water was repeated three times to obtain a hydrophilic sheet. Treatments (3)-(5) were performed and the results are shown in Table 5.
- An untreated sheet having a thickness of 150 m was produced in the same manner as in Example 3-1 by using 100 parts of the thermoplastic polymer (V) and 5 parts of the silane conjugate (1).
- the contact angle on the surface of the untreated sheet was 80 degrees. After leaving this untreated sheet in air at a temperature of 23 ° C and a humidity of 50% or less for 7 days, the hydrophilic sheet was obtained by repeating water immersion 35 times, and the contact angle was measured and the surface condition was observed. Table 5 shows the results.
- thermoplastic polymer (V) and tetramethyl silicate having an SP value of 1 (trade name “silicate MS41”, manufactured by Mitsubishi Chemical Corporation, weight average molecular weight 400 to 600) as a silani conjugate (III) 5
- an untreated sheet having a thickness of 150 m was produced in the same manner as in Example 3-1.
- the contact angle on the surface of the untreated sheet was 80 degrees.
- the hydrophilic sheet was obtained by repeating immersion in water 10 times, and the contact angle was measured and the surface state was observed. Table 5 shows the results.
- An untreated sheet having a thickness of 300 m was produced in the same manner as in Example 3-1 by using 100 parts of the thermoplastic polymer (VII) and 3 parts of the silane conjugate.
- the contact angle on the surface of the untreated sheet was 80 degrees.
- the untreated sheet was left in air at a temperature of 23 ° C. and a humidity of 80% or more for 50 days to obtain a hydrophilic sheet, and the contact angle was measured and the surface condition was observed. Table 5 shows the results.
- Example 3-1 After leaving the untreated sheet prepared in Example 3-1 in air at a temperature of 23 ° C and a humidity of 50% or less for 7 days, the water used for the above water immersion was added to an aqueous sulfuric acid solution (2 parts of concentrated sulfuric acid was replaced by 100 parts of water). In the same manner as in Example 3-1 and subjected to the above treatments (3) to (5). The results are shown in Table 5.
- An untreated sheet having a thickness of 300 m was obtained in the same manner as in Example 3-1 using only the thermoplastic resin (I).
- the contact angle on the surface of the untreated sheet was 80 degrees.
- This unprocessed sheet On the other hand, the contact angle after water immersion 50 times was 80 degrees (Table 6).
- the untreated sheet prepared in Example 3-1 was placed in air at a temperature of 23 ° C and a humidity of 20% or less.
- the untreated sheet prepared in Comparative Example 3-1 was placed in air at a temperature of 23 ° C and a humidity of 20% or less.
- Example 3-6 After standing for 0 days, electron beam irradiation was performed under the same conditions as in Example 3-6 to obtain a hydrophilic sheet.
- the contact angle of the surface of the hydrophilic sheet was 69 degrees.
- Thermoplastic polymer (V) (Part) 69.6 100
- m Humidity 50% or less 50% or less 50% or less 50% or less 50% or less Presence or absence of water treatment and infiltration (number of times) Yes (2) Yes (1) Yes (2) Yes (3) Yes (35) Presence or absence of sulfuric acid aqueous solution immersion (number of times)
- Comparative Example 3-1 which does not contain the silani conjugate of the present invention has a surface with a high contact angle of 80 degrees even after immersion in water, and the surface is not hydrophilized.
- Comparative Example 3-2 is an example in which water immersion was not performed, and the contact angle was as high as 78 degrees because hydrolysis of the silane compound on the sheet surface did not progress even when left in a low-humidity environment for a long time.
- Natsuta Comparative Example 3-3 is an example in which a sheet not containing the silani conjugate of the present invention was irradiated with an electron beam. The surface modification effect was so low that the angle was reduced.
- Comparative Examples 3-4 are examples in which a commercially available hydrophilic coating agent was applied, and there was no recovery of the contact angle by the above treatments (3)-(5).
- thermoplastic polymer and the silane compound are contained within the scope of the present invention, and good hydrophilicity is obtained.
- Example 3-2 is an example in which the thickness of the film is thinner (100 m) than that of Example 3-1. Force maintaining high hydrophilicity The ethanol treatment reduced the contact angle to 65 degrees. Then, it was immersed in water again to show the original hydrophilicity.
- Example 3-5 the thickness of the force film in which the content of the silane conjugate was increased was set to 30 ⁇ m. Although the hydrophilicity was reduced by the ethanol treatment, the film was immersed again in water. Showed its original hydrophilicity. However, when the wet-dry cycle was repeated 50 times, the hydrophilicity disappeared.
- Example 3-6 is an example in which the surface was modified with an electron beam without immersion in water, and a contact angle smaller than that of Example 3-1 and a surface having excellent hydrophilicity could be formed. .
- Example 3-7 in which water immersion and electron beam irradiation were combined, the hydrophilicity was further improved (contact angle: 30 degrees). From Table 5, it was found that the hydrophilicity was excellent even when the type of the thermoplastic polymer was different. It can be seen that it can be made into a molded product. In particular, even when the difference using the SP value of each component is as small as 0.2 as in Example 3-13, the silane conjugate bleeds out and a silanol group is formed by immersion in water. It is thought that it was done.
- Examples 3 to 14 are examples in which water immersion was not performed, and it can be seen that a hydrophilic surface can be formed only by leaving in air having a high humidity of 80% or more.
Landscapes
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本発明の目的は、成形品とした場合に、その表面に効率的に、且つ、永続的に親水性を付与することができる成形品成形用重合体組成物及びそれを用いた成形品、更には、容易に製造することができ、成形品の表面が親水性に優れる親水性成形品及びその製造方法、並びに、親水性部材が積層された積層体を提供することである。本組成物は、(A)熱可塑性重合体と、(B)成形体表面にブリードアウト可能なアルコキシシラン及びその縮合物から選ばれる少なくとも1種のシラン化合物とを含み、上記シラン化合物(B)の含有量は、上記熱可塑性重合体(A)100質量部に対して、SiO2換算で、0.1~50質量部であり、且つ、上記熱可塑性重合体(A)100質量部及び上記シラン化合物(B)3質量部からなる成形品に対し、水を接触させた後の、上記成形品の表面における水滴接触角が、60度以下である。
Description
明 細 書
成形品成形用重合体組成物、成形品、親水性成形品及びその製造方法 並びに積層品
技術分野
[0001] 本発明は、成形品成形用重合体組成物、成形品、親水性成形品及びその製造方 法並びに積層品に関し、更に詳しくは、成形品の表面に効率的に、且つ、永続的に 親水性を付与することができる成形品成形用重合体組成物及びそれを用いた成形 品、更には、容易に製造することができ、成形品の表面が親水性に優れる親水性成 形品及びその製造方法、並びに、親水性部材が積層された積層品に関する。
背景技術
[0002] 熱可塑性榭脂等の熱可塑性重合体は、多種多様な分野の成形材料として有用で あり、目的に応じてその成形品が各種製品として用いられている。例えば、家電部品 、自動車部品、建材部品、住設部品等に使用されている。また、その他の構造物や 屋外物品にも使用されて 、る。
[0003] 近年、熱可塑性榭脂からなる構造物、屋外物品等の汚れの付着防止、雨等により 除去するために、熱可塑性榭脂に親水性を付与する方法が検討されている。熱可塑 性榭脂に親水性を付与する方法として、ケィ素化合物を使用し、構造物表面にシラノ 一ル基を発現させる方法が知られている。例えば、特許文献 1及び特許文献 2には、 オルガノシリケートの加水分解生成物を、建築構造物、土木構造物用の産業機械等 の上塗り塗膜表面に塗装し、付着する塵埃や油性成分等に起因する汚れを防止す る塗装方法が開示されている。また、特許文献 3には、シラノール基を有するシランィ匕 合物等を含む表面処理剤を、疎水性合成樹脂塗膜に塗装し、薄膜を形成する方法 が開示されている。更に、特許文献 4には、オルガノシリケート等を含むケィ素含有液 状組成物を、建築構造物、土木構造物の表面に塗布し、汚れを防止する塗装方法 が開示されている。
また、特許文献 5には、特定のポリアルコキシシロキサンと、アクリル榭脂等とを含む 被膜形成用組成物、塗料組成物及び水系エマルシヨン形成用組成物が開示されて
いる。
[0004] 特許文献 1 :特開平 7— 136583号公報
特許文献 2 :特開平 10- 202177号公報
特許文献 3 :特開平 8— 12922号公報
特許文献 4:特開 2000-327996号公報
特許文献 5:国際公開 WO98Z36016号公報
発明の開示
発明が解決しょうとする課題
[0005] しかし、上記特許文献 1一 3及び 5のように、単にシリケート含有溶液を構造物の表 面に塗布して親水性皮膜を形成する方法の場合、通常、その厚さが数; z m程度と薄 いことから、接触等により剥がれやすい。し力も、一度剥がれてしまうと、構造物の表 面における親水性が低下することから、親水性が持続しにくいという問題がある。また 、上記特許文献 4に開示されて 、るケィ素含有液状組成物等のシリケートの液状組 成配合物は、多量の水 アルコール等の溶剤を含んでいることから、このようなシリケ ートの液状組成配合物を榭脂に練り込むことは、多量の水 アルコールを同時に練り 込むことになる結果、シリケ一トを榭脂に練り込むことは事実上困難となるという問題 がある。
[0006] 本発明は、上記実情に鑑みてなされたものであり、容易に製造することができ、成 形品とした場合に、該成形品に水等を接触させることにより、その表面の永続的な親 水性を付与することができる成形品成形用重合体組成物、成形品、親水性に優れる 親水性成形品及びその製造方法、並びに、積層品を提供することを目的とする。 課題を解決するための手段
[0007] 本発明成形品成形用重合体組成物は、(A)熱可塑性重合体と、(B)成形体表面 にブリードアウト可能なアルコキシシラン及びその縮合物力も選ばれる少なくとも 1種 のシランィ匕合物とを含み、上記シランィ匕合物(B)の含有量は、上記熱可塑性重合体 (A) 100質量部に対して、 SiO換算で、 0. 1— 50質量部であり、且つ、上記熱可塑
2
性重合体 (A) 100質量部及び上記シランィ匕合物(B) 3質量部力もなる成形品に対し 、水を接触させた後の、上記成形品の表面における水滴接触角が、 60度以下である
ことを特徴とする。
上記熱可塑性重合体 (A)の溶解度パラメーター(S )と、上記シランィ匕合物 (B)の
A
溶解度パラメーター(s )との関係が、 I s — s I ≥0. 2であることが好ましい。
B A B
また、上記シラン化合物(B)の重量平均分子量が 300— 3, 000であることが好まし い。
更に、触媒及び希釈剤のうちの少なくとも 1種を含有することが好ましい。 含水率が 0. 2質量%以下であることが好ましい。
[0008] 本発明の成形品は、上記の成形品成形用重合体組成物を用いて成形されたもの である。
薄肉部の最小厚さが 35 μ m以上であることが好ましい。
[0009] 本発明の親水性成形品の製造方法は、上記の成形品成形用重合体組成物を用い て成形品とする成形工程と、上記成形品の表面力 シランィ匕合物 (B)をブリードアゥ トさせるブリードアウト工程と、上記成形品に水を接触させる水接触工程とを備える。 また、本発明の親水性成形品は、上記方法により得られたものである。 親水性成形品の表面における水滴接触角が 60度以下であるものとすることができ る。
更に、薄肉部の最小厚さが 35 m以上であることが好ましい。
[0010] 本発明の積層品は、基部と、該基部の表面に配設され且つ上記の成形品成形用 重合体組成物を用いて成形された部材とを備える。
上記部材の表面における水滴接触角が 60度以下であるものとすることができる。 発明の効果
[0011] 本発明の成形品成形用重合体組成物は、(A)熱可塑性重合体と、(B)成形体表 面にブリードアウト可能なアルコキシシラン及びその縮合物力も選ばれる少なくとも 1 種のシランィ匕合物とを各々所定量含むことにより、成形品とした場合に、該成形品に 水等を接触させることにより、その表面の永続的な親水性を付与することができる。ま た、親水性付与剤を表面に被覆する場合と比較して、長期に渡って親水性を維持す ることができる親水性成形品を容易に得ることができる。
上記シラン化合物(B)の重量平均分子量が 300— 3, 000である場合には、成形
品の表面により効率的ににじみ出させることができる。
特に、含水率が 0. 2質量%以下である場合には、成形品の表面にシラン化合物( B)を効率的ににじみ出させ、使用時に水に接触する等により加水分解されることで シラノール基を効率的に生成させることができ、その結果、表面の永続的な親水性を 付与することができる。
[0012] 本発明の親水性成形品の製造方法は、上記成形品成形用重合体組成物を用いて 成形品とする成形工程と、上記成形品の表面カもシランィ匕合物 (B)をブリードアウトさ せるブリードアウト工程と、上記成形品に水を接触させる水接触工程とを備えることか ら、表面における水滴接触角が 60度以下の親水性成形品を容易に得ることができる 本発明の親水性成形品は、その表面が優れた親水性を有する。また、親水性付与 剤を表面に被覆する場合と比較して、長期に渡って親水性を維持することができる。 本発明の積層品は、基部と、上記基部の表面に配設され、且つ、上記成形品成形 用重合体組成物を用いて成形された部材とを備えることから、部材表面にぉ ヽて優 れた親水性を有する。また、親水性付与剤を表面に被覆する場合と比較して、長期 に渡って親水性を維持することができる。
図面の簡単な説明
[0013] [図 1]本発明の積層品の 1例を示す概略断面図である。
[図 2]本発明の積層品の他の例を示す概略断面図である。
符号の説明
[0014] 1, la ;積層品、 11 ;基部、 12 ;部材、 2 ;接合部。
発明を実施するための最良の形態
[0015] 以下、本発明を詳しく説明する。
1.成形品成形用重合体組成物
本発明の成形品成形用重合体組成物(以下、「本発明の組成物」ともいう。)は、 (A )熱可塑性重合体と、 (B)成形体表面にブリードアウト可能なアルコキシシラン及びそ の縮合物力も選ばれる少なくとも 1種のシランィ匕合物とを含み、上記シランィ匕合物(B )の含有量は、上記熱可塑性重合体 (A) 100質量部に対して、 SiO換算で、 0. 1—
2
50質量部であり、且つ、上記熱可塑性重合体 (A) 100質量部及び上記シランィ匕合 物(B) 3質量部からなる成形品に対し、水を接触した後の、上記成形品の表面にお ける水滴接触角が、 60度以下であることを特徴とする。
[0016] 上記熱可塑性重合体 (A)としては特に限定されず、エラストマ一、ゴム及び榭脂を 単独であるいは組み合わせて用いることができる。
エラストマ一としては、ォレフィン系エラストマ一;スチレン 'ブタジエン 'スチレンブロ ック共重合体、スチレン 'イソプレン'スチレンブロック共重合体等のスチレン系エラス トマ一;ポリエステノレ系エラストマ一;ウレタン系エラストマ一;塩ビ系エラストマ一;ポリ アミド系エラストマ一;フッ素ゴム系エラストマ一等が挙げられる。これらは、 1種単独で あるいは 2種以上を組み合わせて用いることができる。
[0017] ゴムとしては、ポリブタジエン、ポリイソプレン等のジェン系ゴム、スチレン'ブタジェ ン(ブロック)共重合体、スチレン 'イソプレン(ブロック)共重合体、アクリロニトリル 'ブ タジェン共重合体、ブタジエン'(メタ)アクリル酸エステル共重合体、水素化スチレン •ブタジエンブロック共重合体、水素化ブタジエン系重合体、エチレン' α—ォレフイン 共重合体、エチレン' α—才レフイン'ポリェン共重合体、アクリル系ゴム、シリコーンゴ ム、フッ素ゴム、ブチルゴム、エチレン系アイオノマー等が挙げられる。
尚、上記スチレン 'ブタジエンブロック共重合体及び上記スチレン 'イソプレンブロッ ク共重合体には、 ΑΒ型、 ABA型、テーパー型、ラジアルテレブロック型の構造を有 するものも含まれる。更に、上記水素化ブタジエン系重合体は、上記ブロック共重合 体の水素化物のほ力に、スチレンブロックとスチレン 'ブタジエンランダム共重合ブロ ックを有する重合体の水素化物、 1, 2 -ビュル結合含有量が 20質量%以下のポリブ タジェンブロックと 1, 2—ビュル結合含量が 20重量%を超えるポリブタジエンブロック と力 なる重合体の水素化物等が含まれる。
上記ゴムは、 1種単独であるいは 2種以上を組み合わせて用いることができる。
[0018] 熱可塑性榭脂としては、ポリエチレン、ポリプロピレン等のポリオレフイン榭脂、ポリメ タクリル酸メチル等のアクリル系榭脂、ポリスチレン、ゴム強化スチレン系榭脂等のス チレン系榭脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステ ル榭脂、ナイロン 6、ナイロン 66、ナイロン 46等のポリアミド榭脂、ポリカーボネート榭
脂、フッ素榭脂、ポリスルホン、ポリフエ-レンスルフイド、液晶ポリマー等が挙げられ る。これらは、 1種単独であるいは 2種以上を組み合わせて用いることができる。また、 これらのうち、ポリオレフイン榭脂、アクリル系榭脂、スチレン系榭脂、ポリエステル榭 脂、ポリアミド榭脂及びポリカーボネート榭脂が好ましぐ特に、スチレン系榭脂が好 ましい。
[0019] 上記スチレン系榭脂は、ゴム質重合体の存在下又は非存在下に、芳香族ビニルイ匕 合物を含む単量体成分を重合して得られる榭脂である。上記ゴム質重合体としては、 上記熱可塑性重合体として例示したゴム成分を所定の粒径で用いることができる。好 ましいゴム質重合体は、ポリブタジエン、ポリイソプレン、スチレン 'ブタジエン(ブロッ ク)共重合体、スチレン 'イソプレン(ブロック)共重合体、アクリロニトリル 'ブタジエン 共重合体、ブタジエン'(メタ)アクリル酸エステル共重合体、水素化スチレン'ブタジ ェンブロック共重合体、水素化ブタジエン系重合体、エチレン' α—才レフイン共重合 体、エチレン. ひ一才レフイン'ポリェン共重合体、アクリル系ゴム、シリコーンゴム等で ある。これらは、 1種単独であるいは 2種以上を組み合わせて用いることができる。
[0020] 上記スチレン系榭脂とするために、上記ゴム質重合体の存在下に重合される単量 体成分のうち、芳香族ビ-ルイ匕合物としては、スチレン、 α—メチルスチレン、 ο—メチ ノレスチレン、 ρ—メチルスチレン、ェチルスチレン、ビニルトルエン、ビニルキシレン、メ チルー α—メチルスチレン、 tーブチルスチレン、ジビニルベンゼン、 1, 1ージフエニル スチレン、 N, N—ジェチルー p—アミノメチルスチレン、 N, N—ジェチルー p—アミノエチ ノレスチレン、ビニノレナフタレン、ビニノレピリジン、モノクロノレスチレン、ジクロロスチレン 等の塩素化スチレン、モノブロモスチレン、ジブ口モスチレン等の臭素化スチレン、モ ノフルォロスチレン等が挙げられる。これらの化合物は、 1種単独であるいは 2種以上 を組み合わせて用いることができる。また、これらのうち、スチレン及び α—メチルスチ レンが好ましい。
[0021] 尚、上記ゴム質重合体の存在下又は非存在下に、重合させる単量体成分は、芳香 族ビ-ルイ匕合物のみであってもよ 、し、この芳香族ビニル化合物と共重合可能な他 のビュル系化合物との組み合わせであってもよ 、。
上記芳香族ビ-ルイ匕合物と共重合可能な他のビュル系化合物としては、アタリ口-
トリル、メタタリ口-トリル等のシアンィ匕ビ-ルイ匕合物;アクリル酸メチル、アクリル酸ェ チル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸へキシル、アクリル酸ォクチ ル、アクリル酸 2—ェチルへキシル等のアクリル酸エステル;メタクリル酸メチル、メタク リル酸ェチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸へキシル、メタク リル酸ォクチル、メタクリル酸 2—ェチルへキシル等のメタクリル酸エステル;マレイミド 、 N メチルマレイミド、 N ブチルマレイミド、 N フエ-ルマレイミド、 N—シクロへキシ ルマレイミド等のマレイミド系化合物;アクリル酸グリシジル、メタクリル酸グリシジル、ァ リルグリシジルエーテル等の不飽和エポキシィ匕合物;アクリルアミド、メタクリルアミド等 の不飽和カルボン酸アミド;アクリルァミン、 N, N—ジメチルァミノメチルアタリレート、 N, N—ジメチルァミノメチルメタタリレート、 N, N—ジメチルアミノエチルアタリレート、 N, N—ジメチルアミノエチルメタタリレート、アクリル酸ァミノプロピル、メタクリル酸アミ ノプロピル、アミノスチレン等のアミノ基含有不飽和化合物;ヒドロキシスチレン、 3—ヒ ドロキシ一 1 プロペン、 4—ヒドロキシ一 1ーブテン、シス 4ーヒドロキシー 2—ブテン、トラ ンスー 4ーヒドロキシー 2—ブテン、 3—ヒドロキシー 2—メチルー 1 プロペン、 2—ヒドロキシ ェチルアタリレート、 2—ヒドロキシェチルメタタリレート等のヒドロキシル基含有不飽和 化合物;アクリル酸、メタクリル酸、ィタコン酸、マレイン酸等の不飽和酸;無水マレイ ン酸、無水ィタコン酸、無水シトラコン酸等の酸無水物基含有不飽和化合物;ビニル ォキサゾリン等のォキサゾリン基含有不飽和化合物等が挙げられる。
これら他のビニル系化合物は、 1種単独であるいは 2種以上を組み合わせて用いる ことができる。
上記スチレン系榭脂としては、ゴム質重合体の存在下に、上記単量体成分を重合 して得られる榭脂 (i)を単独で用いてもよいし、ゴム質重合体の非存在下に、上記単 量体成分を重合して得られる榭脂 (ii)を単独で用いてもよ!ヽし、 (i)及び (ii)を組み 合わせて用いてもよい。
尚、上記スチレン系榭脂として、(i)を含むものとする場合には、上記スチレン系榭 脂中の、ゴム質重合体の含有割合は、好ましくは 3— 80質量%、より好ましくは 5— 6 0質量0 /0、更に好ましくは 10— 40質量%である。また、上記スチレン系榭脂のメチル ェチルケトン可溶分の固有粘度 (メチルェチルケトン中、 30°Cで測定)は、好ましくは
0. 3-1. 5dlZgである。
上記スチレン系榭脂は、公知の重合法である乳化重合、溶液重合、懸濁重合、塊 状重合等により製造することができる。グラフト共重合体のグラフト率は、好ましくは 5 一 200質量%、更に好ましくは 5— 150質量%である。
[0023] 次に、シランィ匕合物(B)につ 、て説明する。
このシランィ匕合物(B)は、本発明の組成物を用いて成形された成形品の表面にブ リードアウト可能なアルコキシシラン及びその縮合物力も選ばれる少なくとも 1種であ る。ブリードアウトは、成形品を室温に静置することにより、あるいは、適宜、加熱する ことにより発生する。
[0024] 上記アルコキシシランは、下記一般式 (I)で表される化合物である。
(R'O) -Si-R2 (I)
4— n n
〔式中、 R1は、各々、独立して炭素数カ^ー 10の、直鎖状又は分岐状の炭化水素基 であり、 R2は、各々、独立してハロゲン原子又は有機基であり、 nは 0、 1又は 2である o ]
[0025] 上記一般式 (I)における R1は、炭化水素基であり、この炭化水素基は、脂肪族、脂 環族及び芳香族の 、ずれであってもよ ヽ。
脂肪族の炭化水素基としては、メチル基、ェチル基、 n プロピル基、 i プロピル基 、 n ブチル基、 i ブチル基、 t ブチル基、 n ペンチル基、 i ペンチル基、ネオペン チル基、 n—へキシル基、 n—へプチル基、 n—ォクチル基、 2—ェチルへキシル基等が 挙げられる。
脂環族の炭化水素基としては、シクロプロピル機、シクロブチル基、シクロへキシル 基等が挙げられる。
芳香族の炭化水素基としては、ァリール基、キシリル基、ナフチル基等が挙げられ る。
尚、上記炭化水素基は、置換基を有してもよぐハロゲン原子、ヒドロキシル基、ェ 一テル基等を有する炭化水素基であってもよ 、。
また、上記一般式 (I)において、 R1が複数ある場合、各 R1は同一の炭化水素基で もよいし、異なる炭化水素基でもよい。
[0026] 上記一般式 (I)における R2は、有機基であり、この有機基としては、炭化水素基、ァ ルコキシル基 (シクロアルコキシル基、ァリールォキシ基を含む)等が挙げられる。 この炭化水素基は、脂肪族、脂環族及び芳香族のいずれであってもよぐ上記 と して例示したものを適用することができる。また、アルコキシル基としては、上記 R1を 用いて表される OR1を適用することができる。尚、上記炭化水素基及びアルコキシ ル基は、置換基を有してもよぐハロゲン原子、ヒドロキシル基、エーテル基等を有す る炭化水素基及びアルコキシル基であってもよ 、。
[0027] 上記一般式 (I)で表されるアルコキシシランは、以下に例示される。
上記一般式 (I)における R1が脂肪族の炭化水素基であり、且つ、 n=0である場合 、 R1の炭素数は、好ましくは 1一 8、更に好ましくは 1一 6、特に好ましくは 1一 4である 。従って、テトラメトキシシラン、テトラエトキシシラン、テトラ n プロボキシシラン、テトラ イソプロボキシシラン、テトラ n ブトキシシラン、テトライソブトキシシラン、テトラ sec—ブ トキシシラン、テトラ t ブトキシシラン、テトラフエノキシシラン等が挙げられる。
また、上記一般式 (I)における R1が脂肪族の炭化水素基であり、 R2が有機基であり 、且つ、 n= lである場合、メチルトリメトキシシラン、メチルトリエトキシシラン、ェチルト リメトキシシラン、ェチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエト キシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、へキシルトリメトキシシ ラン、へキシルトリエトキシシラン等のアルキルトリアルコキシシラン;フエニルトリメトキ シシラン、フエ-ルトリエトキシシラン等のァリールトリアルコキシシラン、 3—クロ口プロ ピルトリメトキシシラン、 3-ァミノプロピルトリエトキシシラン、 N—(2 アミノエチル) 3— ァミノプロピルトリエトキシシラン、 3—グリシドキシプロピルトリメトキシシラン、 3—メルカ ブトプロピルトリメトキシシラン等が挙げられる。
更に、上記一般式 (I)における R1が脂肪族の炭化水素基であり、 R2が有機基であり 、且つ、 n= 2である場合、ジメチルジメトキシシラン、ジメチルジェトキシシラン、ジェ チルジェトキシシラン等のジアルキルジアルコキシシラン等が挙げられる。
本発明において、上記アルコキシシランとしては、上記一般式 (I)における R1が脂 肪族の炭化水素基であり、 R2が有機基であり、且つ、 n= lである化合物が好ましい。 上記アルコキシシランは、シランィ匕合物(B)として、 1種単独であるいは 2種以上を
組み合わせて用いることができる。
[0028] 上記アルコキシシランの縮合物は、通常、上記一般式 (I)で表されるアルコキシシラ ンが加水分解 '縮合したオリゴマーであり、例えば、下記一般式 (Π)で表される化合 物等が挙げられる。
R30 [Si (OR3) -0] — R3 (II)
2 m
この一般式 (Π)における R3は、上記一般式 (I)における R1と同様とすることができる 上記一般式 (Π)における R3は、各 ITは同一の炭化水素基でもよいし、異なる炭化 水素基でもよい。縮合の程度は、 R3の炭化水素基の炭素数が 1又は 2である場合、 通常、 2— 10量体、好ましくは 2— 6量体、更に好ましくは 2— 4量体である。また、 R3 の炭化水素基の炭素数が 3— 6である場合、通常、 2— 10量体、好ましくは 2— 8量 体、更に好ましくは 4一 8量体である。
尚、上記アルコキシシランの縮合物は、上記一般式 (Π)において R3の一部が水素 原子であってもよい。このようなシラノール基の含有割合は、縮合前のアルコキシル 基の全量に対して、好ましくは 20%以下、より好ましくは 15%以下、更に好ましくは 1 0%以下である。上記シラノール基の含有量をこの範囲とすることにより、アルコキシ シランの縮合物が結晶状態となることを抑制することができる。
[0029] また、上記アルコキシシランの縮合物は、更にエステル交換反応を行って得られた 、より炭素数の多いアルコールのエステルに変性したものであってもよい。例えば、メ チルエステルの一部に対し、エステル交換反応を行 ヽブチルエステルに変性された 縮合物とすることができる。
本発明において、上記アルコキシシランの縮合物としては、上記一般式 (Π)におけ る R3が炭素数 3— 6の炭化水素基であり、且つ、 4一 8量体である化合物が好ましい。 上記アルコキシシランの縮合物は、シラン化合物(B)として、 1種単独であるいは 2 種以上を組み合わせて用いることができる。また、アルコキシシランと、アルコキシシラ ンの縮合物とを組み合わせて用いることもできる。
[0030] 上記シラン化合物(B)の分子量は、ゲルパーミエーシヨンクロマトグラフィー(GPC) による標準ポリプロピレングリコール換算における重量平均分子量で、好ましくは 300
一 3, 000、更〖こ好ましくは 350— 2, 500である。重量平均分子量が 300未満では、 親水性の持続性が不十分な場合があり、また、毒性の問題が生じる場合がある。一 方、重量平均分子量が大きすぎると、ブリードアウトが不十分な場合がある。
[0031] 上記シランィ匕合物(B)として、アルコキシシランを用いる場合、本発明の組成物中 の含有量 (SiO換算)は、熱可塑性重合体 (A) 100質量部に対して、 0. 1— 50質量
2
部であり、好ましくは 0. 1— 20質量部、より好ましくは 0. 5— 15質量部、更に好ましく は 0. 5— 10質量部である。尚、「SiO換算」とは、アルコキシシランの Si量を SiOに
2 2 換算して求められる値である。以下の「アルコキシシランの縮合物」についても同じで める。
また、上記シランィ匕合物(B)として、アルコキシシランの縮合物を用いる場合、本発 明の組成物中の含有量 (SiO換算)は、熱可塑性重合体 (A) 100質量部に対して、
2
0. 1一 50質量部であり、好ましくは 0. 1— 40質量部、更に好ましくは 0. 5— 30質量 部、より好ましくは 0. 5— 20質量部、特に好ましくは 1一 10質量部である。
更に、上記シランィ匕合物(B)として、アルコキシシランと、アルコキシシランの縮合物 とを組み合わせて用いる場合、本発明の組成物におけるこれらの合計量 (SiO換算
2
)は、熱可塑性重合体 (A) 100質量部に対して、 0. 1— 50質量部であり、好ましくは 0. 5— 30質量部、更に好ましくは 0. 5— 20質量部である。尚、これらアルコキシシラ ン及びその縮合物の混合割合は特に限定されないが、熱可塑性重合体 (A) 100質 量部に対して、通常、 0— 30質量部 Z0. 1— 40質量部、好ましくは 0— 10質量部 Z 0. 5— 30質量部である。
上記シラン化合物(B)の含有量が 0. 1質量部未満であると、成形品の表面に親水 性が発現しに《なる傾向にあり、一方、 50質量部を超えると、上記シランィ匕合物 (B) 自身が反応 (縮合等)することによりゲルィ匕物が生成し易くなり、その結果、親水性が 低下するので好ましくな 、。
[0032] また、本発明の組成物は、上記シランィ匕合物 (B)以外に、他のシラン化合物を含ん でもよい。他のシラン化合物としては、メチルトリクロロシラン、ェチルトリクロロシラン、 プロピルトリクロロシラン、ブチルトリクロロシラン、へキシルトリクロロシラン等のアルキ ルトリクロロシランや、フエ-ルトリクロロシラン、メチルシリルトリイソシァネート、ジメチ
ルシリルジイソシァネート、ビュルシリルトリイソシァネート、ジメチルビ-ルメトキシシラ ン、ジメチルビ-ルクロロシラン等が挙げられる。これらの他のシラン化合物は、 1種単 独であるいは 2種以上を組み合わせて用いることができる。
これらの他のシランィ匕合物を用いる場合の含有量は、熱可塑性重合体 (A) 100質 量部に対して、 SiO量換算で、好ましくは 20質量部以下、より好ましくは 15質量部
2
以下、更に好ましくは 10質量部以下である。
[0033] 本発明の組成物に含有される熱可塑性重合体 (A)及びシラン化合物 (B)としては 、上記熱可塑性重合体 (A)の溶解度パラメーターを S 、上記シラン化合物(B)の溶
A
解度パラメーターを sとした場合、
B I s —
A s B I ≥0. 2の関係を満たすことが好ましい
。より好ましくは、 I s A— s 、更に好ま
B I≥o. 5 しくは I s A— s B I≥1である。 I s A -
S I〈0. 2では、シランィ匕合物(B)をブリードアウトさせるために、長時間必要となる
B
傾向がある。尚、上記溶解度パラメータ一は、 Smart式により求められたものである。
[0034] 本発明の組成物は、熱可塑性重合体 (A)及びシラン化合物 (B)を必須成分として 含有するが、更に、触媒及び希釈剤のうちの少なくとも 1種を含有したものとすること ができる。
[0035] 上記触媒は、シランィ匕合物 (B)の加水分解を促進することができるものであれば、 特に限定されない。この触媒としては、塩酸、硫酸、硝酸、リン酸等の無機酸;ギ酸、 酢酸、安息香酸、フタル酸、マレイン酸等の有機系カルボン酸、ベンゼンスルホン酸 、トルエンスルホン酸、キシレンスルホン酸、ェチルベンゼンスルホン酸等の有機系ス ルホン酸;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア等の無 機アルカリ触媒;有機アミン化合物;有機金属化合物;有機スズィ匕合物、有機アルミ -ゥム化合物、有機チタニウム化合物、有機ジルコニウム化合物等の金属アルコキシ ド化合物;ボロントリ n—ブトキシド、ホウ酸等のホウ素化合物等が挙げられる。
これらの化合物は、 1種単独であるいは 2種以上を組み合わせて用いることができる
[0036] 上記触媒を用いる場合の含有量は、シランィ匕合物 (B)の量力も計算される SiO量
2
100質量部に対して、好ましくは 0. 1— 10質量部、より好ましくは 0. 1— 5質量部、 更に好ましくは 0. 5— 5質量部である。この範囲にあれば、加水分解の促進効果が
十分である。尚、この触媒の含有量が少なすぎると、加水分解の促進効果が十分で ない場合がある。
上記希釈剤は、上記シランィ匕合物(B)の希釈に用いるものであり、縮合反応を抑制 することができる。この希釈剤としては、特に限定されないが、ヒドロキシル基を有する 希釈溶剤が好ましぐ例えば、エチレングリコール、プロピレングリコール等のグリコー ル系溶剤;炭素数 8以上、好ましくは 12以上、より好ましくは 18以上の高級アルコー ル等が挙げられる。尚、これらの希釈剤は、 1種単独であるいは 2種以上を組み合わ せて用いることができる。
[0037] 上記希釈剤を用いる場合の含有量は、シランィ匕合物(B)の量から計算される SiO
2 量 100質量部に対して、好ましくは 100— 50, 000質量部、より好ましくは 150— 10 , 000質量部、更に好ましくは 200— 5, 000質量部である。
[0038] 本発明の組成物は、上記成分以外に、更に、各種添加剤を含有したものとすること ができる。
添加剤としては、酸化防止剤、滑剤、充填剤 (無機化合物、金属粉末、高分子化合 物等)、補強剤、可塑剤、相溶化剤、熱安定剤、光安定剤、紫外線吸収剤、着色剤( 染料、顔料等)、帯電防止剤、難燃剤、抗菌剤等が挙げられる。
各添加剤の含有量は、本発明の組成物を 100質量%とした場合、通常、 0. 01— 2 0質量%、好ましくは 0. 01— 10質量%、更に好ましくは 0. 1— 5質量%である。
[0039] 本発明の組成物は、含水率が低いことが好ましぐ好ましくは 0. 2質量%以下、より 好ましくは 0— 0. 15質量%、更に好ましくは 0— 0. 1質量%である。この水分量が少 ないことにより、成形品とした場合、その表面にシランィ匕合物(B)を効率的ににじみ 出させ (ブリードアウトさせ)、使用時に水に接触する等により加水分解されることでシ ラノール基を効率的に生成させることができ、その結果、表面の永続的な親水性を付 与することができる。一方、水分量が多すぎると、組成物の内部でシラン化合物(B) の加水分解が進行し、シランィ匕合物 (B)がブリードアウトしにくぐ表面における親水 性が低下あるいは親水性の持続性が低下する場合がある。
尚、組成物の含水率は、カールフィッシャー法等の方法により測定することができる
[0040] 本発明の組成物は、上記熱可塑性重合体 (A) 100質量部及び上記シランィ匕合物( B) 3質量部からなる成形品に対し、下記条件により水を接触させた後の、上記成形 品の表面における水滴接触角が、 60度以下であり、好ましくは 5— 60度、より好まし くは 5— 30度である。
く条件〉
縦 150mm、横 30mm及び厚さ 300 mのシート状成形品を試験片として用い、 23 °Cの水 (使用量は、シートの体積の 3倍量である。 )に 1時間浸し、取り出した後、成形 品表面の水を拭き取らずに、気温 23°C及び湿度 30— 50%の空気中に 1時間放置 し、乾燥する。その後、成形品の表面に、水滴 0. 2ccを滴下し、 23°C、空気雰囲気 下、滴下力も 30秒経過後の接触角を測定する。測定装置としては、協和界面科学社 製の全自動接触角測定器等がある。
[0041] 本発明の組成物を得る方法は特に限定されず、例えば、熱可塑性重合体 (A)及び シラン化合物 (B)を含む原料組成物を、混練装置を用いて溶融混練する方法、熱可 塑性重合体 (A)のみを予め溶融混練した後、シラン化合物(B)を添加して更に溶融 混練する方法等が挙げられる。これらの製造方法において、熱可塑性重合体 (A)及 びシランィ匕合物(B)、並びに、必要に応じて用いられる触媒、希釈剤及び各種添カロ 剤の形状は、特に限定されない。
固体の物質は、ペレット等の塊状であってもよいし、粉末状であってもよい。粉末状 である場合には、より効率的に且つ均一に分散させやすぐ好ましい。
前者の場合における原料組成物の調製方法としては、室温で、粉末状の熱可塑性 重合体 (A)に、シランィ匕合物 (B)を含浸させる方法等が挙げられる。また、原料組成 物は、混練装置に一括して投入してもよいし、分割して投入してもよい。
混練装置としては、押出機、ブラベンダー等が挙げられる。
[0042] 上記原料組成物を溶融混練する温度、時間等も特に限定されない。溶融温度は、 熱可塑性重合体 (A)の融点以上であることが好ましい。また、混練時間は、通常、 0 . 1一 60分間、好ましくは 0. 5— 20分間である。
[0043] 尚、触媒、希釈剤及び各種添加剤を配合する場合には、それ自身を単独で配合し てもよいし、アルコール類、グリコール誘導体、炭化水素類、エステル類、ケトン類、
エーテル類等の溶剤に溶解あるいは分散させてカゝらこれを配合してもよい。
[0044] アルコール類としては、メタノール、エタノール、 n—プロパノール、イソプロパノール 、 n—ブタノール、イソブタノール、ァセチルアセトンアルコールの各無水物等が挙げら れる。
グリコール誘導体としては、エチレングリコール、エチレングリコールモノメチルエー テル、エチレングリコーノレモノェチノレエーテル、プロピレングリコール、プロピレングリ コーノレモノメチノレエーテノレ、プロピレングリコーノレモノェチノレエーテノレ、ジエチレング リコーノレモノメチノレエーテノレ、ジエチレングリコーノレモノェチノレエーテノレ、エチレング リコ一ノレモノメチノレエーテノレアセテート、エチレングリコ一ノレモノェチノレエーテノレァセ テート、プロピレングリコーノレモノメチノレエーテノレアセテート、プロピレングリコーノレモノ ェチルエーテルアセテート等が挙げられる。
[0045] 炭化水素類としては、へキサン、ベンゼン、トルエン、キシレン、ケロシン等が挙げら れる。
エステル類としては、酢酸メチル、酢酸ェチル、酢酸プロピル、酢酸ブチル、ァセト 酢酸メチル、ァセト酢酸ェチル、ァセト酢酸ブチル等が挙げられる。
ケトン類としては、アセトン、メチルェチルケトン、メチルイソブチルケトン、ァセチル アセトン等が挙げられる。
また、エーテル類として、ェチルエーテル、ブチルエーテル、メトキシエタノール、ェ トキシエタノール、ジォキサン、フラン、テトラヒドロフラン等が挙げられる。
これらの溶剤は、単独である 、は組み合わせて用いることができる。
[0046] 本発明の組成物を含水率の低いものとするためには、予め、低含水率とした熱可 塑性重合体 (A)を用いることが好ましぐ例えば、真空加熱乾燥等の方法によって 0 . 2質量%以下とした熱可塑性重合体 (A)を用いることが好ま 、。
また、下記で説明する混練装置内でこの熱可塑性重合体のみを溶融混練させなが ら、適宜水蒸気を排気してもよい。
[0047] 本発明の組成物を含水率の低いものとするためには、原料組成物とする際には、 吸湿していない原料成分を、吸湿しないようにして調製することが好ましい。例えば、 窒素ガス等の雰囲気下で調製する等とすることができる。また、触媒を配合する場合
には、上記のように、溶剤等に溶解あるいは分散させて用いることもできる力 全ての 原料成分をこのようにして用いてもょ 、。
[0048] 含水率の低 、組成物は、熱可塑性重合体 (A)を、水分 (水蒸気)を排出しながら溶 融混練する溶融工程と、シラン化合物 (B)を投入し、上記熱可塑性重合体 (A)と更 に混練する混練工程と、を順次備えることにより製造することができる。
[0049] 上記溶融工程においては、水分 (水蒸気)を排出しながら、熱可塑性重合体 (A)の 溶融混練を行う。溶融混練は、ベント口付きの押出機等を用いて行うことができる。熱 可塑性重合体 (A)は、上記装置に一括して投入してもよいし、分割して投入してもよ い。溶融温度は、熱可塑性重合体 (A)の融点以上であることが好ましい。また、混練 時間は、通常、 0. 1— 60分間、好ましくは 0. 5— 20分間である。
[0050] その後、混練工程にぉ 、て、シランィ匕合物 (B)を投入して熱可塑性重合体 (A)と更 に混練する。シランィ匕合物(B)の投入は、上記溶融工程の直後であってもよいし、熱 可塑性重合体 (A)をー且冷却して力もでもよ 、。また、シランィ匕合物(B)の投入は、 他の添加物と同時でもよいし、いずれかを先又は後にしてもよい。更に、シラン化合 物(B)は、一括して投入してもよいし、分割して投入してもよい。
[0051] この混練工程における混練温度は、熱可塑性重合体 (A)の融点以上であることが 好ましい。また、混練時間は、通常、 0. 1— 60分間、好ましくは 0. 5— 20分間である 尚、この製造方法においては、混練物を取り出した後、更に、混練物を水分 (水蒸 気)の存在しないところで貯蔵する貯蔵工程を備えることができる。この貯蔵工程にお いては、例えば、窒素ガス等の雰囲気下で密閉可能な容器、袋等に収容させること ができる。水分の存在しないところで、貯蔵することにより、成形品を製造した際に、 後述する各種処理後に親水性に優れた成形品を得ることができる。
[0052] 2.成形品
本発明の成形品は、上記の成形品成形用重合体組成物を用いて成形されたことを 特徴とする。組成物の含水率が、例えば、 0. 2質量%以下等と低い場合には、製造 される成形品の含水率も低くなる。本発明の成形品は、熱可塑性重合体 (A)と、シラ ン化合物(B)と力 なるものであってもよいし、更に他の添加剤を含むものであっても
よい。本発明の成形品の形状は特に限定されず、目的、用途等に応じたものとするこ とができる。成形品の例は後述する。
成形方法としては、例えば、押出成形、射出成形、中空成形、圧縮成形、真空成形 、スラッシュ成形、蒸気発泡成形、積層成形、カレンダー成形等が挙げられる。
尚、熱可塑性重合体 (A)自体に透明性を有する場合には、シラン化合物 (B)の含 有量に関わらず、成形品も透明性を有する。
[0053] 熱可塑性重合体 (A)及びシラン化合物(B)を含み、含水率の低 、成形品は、水分 量が 0. 2質量%以下の熱可塑性重合体 (A1)と、シラン化合物(B1)とを含む原料 組成物(S1)を溶融混練した後、成形することにより製造することができる。
上記熱可塑性重合体 (A1)は、上記熱可塑性重合体 (A)において例示したものを 用いることができる。好ましい形状は、ペレット状あるいは粉末状である。この熱可塑 性重合体 (A1)の水分量を 0. 2質量%とするためには、原料組成物(S1)とする前に 、真空加熱乾燥等の方法によって調整することができる。また、混練装置内でこの熱 可塑性重合体 (A1)のみを溶融混練させながら、適宜水蒸気を排気してもよ ヽ。 また、シランィ匕合物(B1)は、上記シランィ匕合物(B)において説明したものを用いる ことができる。シラン化合物 (B1)の重量平均分子量も、上記シランィ匕合物 (B)と同様 とすることができる。
[0054] 原料組成物(S1)の調製方法も、上記の成形品成形用重合体組成物の製造方法と 同様とすることができる。また、原料組成物 (S1)を溶融混練する方法、条件、装置等 も上記と同様とすることができる。
上記原料組成物(S1)が混練された後、公知の成形方法によって成形品を得ること ができる。
[0055] 熱可塑性重合体 (A)及びシラン化合物(B)を含み、含水率の低 、成形品の他の 製造方法としては、熱可塑性重合体 (A2)を、水分 (水蒸気)を排出しながら溶融混 練する溶融工程と、シラン化合物 (B2)を投入し、上記熱可塑性重合体 (A2)と更に 混練する混練工程と、混練物を用いて成形する成形工程とを順次備える方法が挙げ られる。
上記熱可塑性重合体 (A2)は、上記熱可塑性重合体 (A)において例示したものを
用いることができる。好ましい形状は、ペレット状あるいは粉末状である。 また、シランィ匕合物(B2)は、上記シランィ匕合物(B)において説明したものを用いる ことができる。シラン化合物(B2)の重量平均分子量も、上記と同様とすることができる
[0056] 上記溶融工程及び混練工程は、上記の成形品成形用重合体組成物の製造方法 における説明と同様とすることができる。
上記成形工程としては、公知の成形方法の適用によるものとすることができる。
[0057] 成形品の含水率が低い場合には、更に、この成形品を水分 (水蒸気)の存在しない ところで貯蔵してもよ 、。
成形品の含水率を低くする場合には、熱可塑性重合体 (A)の融点を超える温度で 混練しても、シランィ匕合物(B)が変質することがない。即ち、水分量が多いと、シラン 化合物 (B)が水と反応して二酸ィ匕ケィ素等を生成し、所望の含有量を維持できなく なるが、これを防ぐことができる。従って、熱可塑性重合体 (A)が透明性を有する場 合には、二酸ィ匕ケィ素等が白色を有するために、白化した成形品となってしまうが、 熱可塑性重合体 (A)の水分量を低下させることで、これを防ぐことができる。
[0058] 本発明の成形品は、上記のように、形状が限定されるものではないが、より肉厚で あることが好ましい。即ち、薄肉部を有する場合の最小厚さは、好ましくは 35 /z m以 上、より好ましくは 50 μ m以上、更に好ましくは 80 μ m以上、特に好ましくは 200 μ m 以上である。特に、表面の親水性が要求する部位については、肉厚であるほど、長 期の親水性を維持することができる。尚、上記薄肉部の厚さが小さすぎると、後述す る各種処理後に親水性に優れた成形品とすることが困難な場合がある。
[0059] 3.親水性成形品及びその製造方法
本発明の親水性成形品の製造方法 (以下、「親水性成形品の製造方法 (I) Jとも 、 う。)は、上記の成形品成形用重合体組成物を用いて成形品(以下、「未処理成形品 」という。)とする成形工程と、上記未処理成形品の表面カもシランィ匕合物 (B)をプリ ードアウトさせるブリードアウト工程と、上記成形品に水を接触させる水接触工程とを 備えることを特徴とする。この方法によると、表面力もブリードアウトしたシランィ匕合物( B)が加水分解されてシラノール基が形成された成形品を得ることができる。
[0060] 本発明の親水性成形品の製造方法 (I)において、上記成形工程における具体的な 手段は特に限定されず、公知の重合体の成形方法、例えば、押出成形、射出成形、 中空成形、圧縮成形、真空成形、スラッシュ成形、蒸気発泡成形、積層成形、カレン ダー成形等により得ることができる。
[0061] 本発明の親水性成形品の製造方法 (I)において、上記ブリードアウト工程における 具体的な手段は特に限定されない。上記未処理成形品を空気中、室温下に静置す る、加熱下に静置する等により、シランィ匕合物 (B)をブリードアウトさせることができる このブリードアウトの程度は、熱可塑性重合体 (A)と、シラン化合物(B)との相溶性 、熱可塑性重合体 (A)の種類及び性質 (結晶性、ガラス転移点)、添加剤 (例えば、 充填剤等)の種類等によって影響を受ける。
例えば、未処理成形品が、分子の小さいシランィ匕合物 (B)、あるいは、炭素数が少 ないアルコキシル基を有するシランィ匕合物 (B)を含む場合には、ブリードアウトが比 較的早い。一方、未処理成形品が、分子の大きなシランィ匕合物 (B)、あるいは、炭素 数の多 1、アルコキシキル基を有するシラン化合物 (B)を含む場合、未処理成形品が 充填剤等の添加剤にシランィ匕合物 (B)を含浸させて製造されたものである場合には 、ブリードアウトが比較的遅くなる。後者の場合、例えば、ゼォライト等力もなる充填剤 を用いた場合顕著である。従って、上記の因子を適宜調整することによってブリード アウトを制御することができ、その結果、得られる親水性成形品の親水性を適宜調整 することができる。
[0062] 本発明の親水性成形品の製造方法 (I)において、上記水接触工程における具体 的な手段は特に限定されない。
水は、日常入手できるものであれば、水道水等であっても好ましく用いることができ る。また、目的、用途等によって、脱イオン水、蒸留水、超純水等を用いることもできる 水は、入手したものをそのままの状態 (温度、雰囲気等)で用いてもよいし、加温し て力も用いてもよい。また、水の使用量も特に限定されず、未処理成形品の所望の 位置を濡らす程度の量でもよいし、大型の容器内に入るほどの大量であってもよい。
[0063] 上記水接触工程において、水の使用方法は、噴霧、塗布、浸漬等目的により選択 すればよい。また、未処理成形品の水への接触時間は、好ましくは 1秒一 20時間、よ り好ましくは 2秒一 10時間、更に好ましくは 5秒一 3時間である。接触時間が短すぎる と、未処理成形品の表面におけるシラン化合物 (B)の加水分解反応が不十分となり 、表面が均一に親水化されない場合がある。尚、上記水接触工程において、未処理 成形品は、予め、加温しておいてもよい。上記条件を選択することで、シランィ匕合物( B)の加水分解反応速度を制御することができる。
[0064] 尚、上記水接触工程においては、通常、水を用いる力 本発明の組成物の説明に おいて、組成物に含有させることのできる触媒を水に溶解又は分散させたものを用い てもよい。例えば、硫酸等の無機酸等が挙げられる。この場合の接触方法は上記と 同様とすることができる。
また、上記成形工程の後、ブリードアウト工程を省略して、水接触工程へと進めるこ ともできる。この水接触工程は、複数回行ってもよい。
[0065] 上記水接触工程によって、上記未処理成形品に含まれるシラン化合物(B)の加水 分解により生成したシラノール基をその表面に生成させることができる。
即ち、上記各工程を経て得られた本発明の親水性成形品の表面は、未処理成形 品の表面に比べ、ブリードアウトしたシランィ匕合物 (B)の少なくとも一部 (通常、シラン 化合物 )が有するアルコキシル基の 20%以上、好ましくは 30%以上、更に好まし くは 40%以上)が加水分解して生成したシラノール基が豊富に存在する。このシラノ ール基は、水に対して親和性が高いので、好適な親水性成形品とすることができる。 尚、シラノール基の存在割合が高いほど、優れた親水性の持続性も向上する。
[0066] 本発明の他の親水性成形品の製造方法 (以下、「親水性成形品の製造方法 (Π)」 ともいう。)は、上記の成形品成形用重合体組成物を用いて成形品とする成形工程と 、上記成形品(未処理成形品)の表面に放射線処理及びコロナ放電処理から選ばれ る少なくとも 1種の処理工程とを備えることを特徴とする。
本発明の親水性成形品の製造方法 (Π)における成形工程は、上記の親水性成形 品の製造方法 (Π)と同様とすることができる。
[0067] 本発明の親水性成形品の製造方法 (Π)において、未処理成形品の表面に対して
、放射線処理及びコロナ放電処理から選ばれる少なくとも 1種の処理を行う。これらの 処理によって、未処理成形品の最表面における熱可塑性重合体 (A)の分子の一部 に C O 結合、 c = o結合等を生成させ、親水性を向上させることができる。 放射線処理としては、公知の電子線照射装置、紫外線照射装置等を用いた、電子 線照射、紫外線照射、イオン照射等の方法が挙げられる。これらのうち、電子線照射 が好ましい。尚、処理条件は、特に限定されない。
また、コロナ放電処理も、公知の装置を用いて行うことができる。尚、処理条件は、 特に限定されない。
更に、その他の方法として、エキシマーランプの照射等を適用することによって、表 面改質を行うこともできる。
尚、本発明において、放射線処理及びコロナ放電処理は、いずれか一方のみ行つ てよいし、両方行ってもよい。両方行う場合は、その順序は限定されない。また、処理 を複数回行ってもよい。更に、本発明の親水性成形品の製造方法 (I)における水接 触工程を組み合わせてもよ ヽ。
[0068] 上記 2つの製造方法において、最後に、水等により濡れている場合、又は、水等を 用いて成形品の表面を洗浄した場合には、自然乾燥、温風乾燥、赤外線乾燥等の 方法により、乾燥させることができる。乾燥温度は、好ましくは 5— 80°C、より好ましく は 10— 70°C、更に好ましくは 20— 60°Cである。
[0069] 上記 2つの製造方法により得られた本発明の親水性成形品の表面における水滴接 触角は、好ましくは 60度以下、より好ましくは 5— 60度、更に好ましくは 5— 30度であ る。
[0070] 本発明の親水性成形品は、大気中、室温で 9時間乾燥し、その後、 23°Cの水中で 、 15時間浸漬する処理を、 50回連続で繰り返した後の、親水性成形品の表面にお ける水滴接触角を好ましくは 60度以下、より好ましくは 5— 60度、更に好ましくは 5— 30度とすることができる。これは、親水性に持続性があることを意味する。
[0071] 本発明の親水性成形品は、エタノールで洗浄し、その後、 23°Cの水中で、 1時間 浸漬した後の、成形品の表面における水滴接触角を好ましくは 60度以下、より好まし くは 5— 60度、更に好ましくは 5— 30度とすることができる。尚、エタノールによる具体
的な洗浄方法は、エタノールを含浸させたガーゼを用い、成形品の表面を 3回強くぬ ぐうことにより行う方法である。
尚、親水性成形品の表面に存在するシラノール基は、エタノールによる洗浄によつ て、それを含む成分自体が消失する等によって量的に減少する場合があるが、新た に水に浸漬することによって、シラノール基が再生成されて、上記の接触角が得られ る。
[0072] 本発明の親水性成形品は、より肉厚であることが好ましい。即ち、薄肉部を有する 場合の最小厚さは、好ましくは 35 m以上、より好ましくは 50 m以上、更に好ましく は 80 m以上、特に好ましくは 200 m以上である。特に、表面に親水性を発揮す る部位については、肉厚であるほど、長期の親水性を維持することができる。
成形品が肉厚であるほど、単位面積あたりのシランィ匕合物 (B)の含有割合が多くな るため、表面に生成したシラノール基が使用時に摩耗等により消滅した場合であって も、シランィ匕合物 (B)の新たな供給が容易である。
本発明の親水性成形品にお 、て、単位面積あたりのシランィ匕合物 (B)の含有量は
、好ましくは 0. 35mgZcm2以上、より好ましくは 0. 4— 2mgZcm2である。尚、成形 品の密度を lgZcm3とする。上記範囲にあれば、親水性の持続性に優れる。
[0073] 本発明の親水性成形品は、シランィ匕合物 (B)が成形品の全表面にブリードアウトし て、一面がシラノール基で覆われている場合と、島状にシラノール基が分布している 場合とがある。これらは、成形品に含有されるシラン化合物(B)の含有量に依存し、 また、水接触工程等の条件等にも依存する。
シランィ匕合物 (B)の含有量が十分であり、親水性成形品の表面に安定した固膜 (シ ラノール基含有膜)が形成されている場合には、上記のような、持続性能、あるいは、 エタノール等の有機溶剤に対する耐性にも優れており、新たに加水分解縮合を要す ることなく、表面の親水性を維持することができる。
し力しながら、シランィ匕合物 (B)の含有量が十分ではなぐ水、有機溶剤等による処 理、物理的な接触等により、生成しているシラノール基が消失してしまうと、成形品の 断面方向においてシランィ匕合物 (B)の濃度差が生じるため、それを補おうとしてシラ ン化合物 (B)が新たに表出しょうとする。その際、更に水接触工程を進めることにより
、親水性が再現される。
[0074] 尚、成形品及び親水性成形品は、上記熱可塑性重合体 (A) 100質量部及び上記 シランィ匕合物(B)を含む組成物であれば、上記熱可塑性重合体 (A) 100質量部及 び上記シランィ匕合物 (B) 3質量部力 なる成形品に対し、水を接触させた後の、上記 成形品の表面における水滴接触角が、 60度を超える組成物を用いても製造すること ができる。この成形品及び親水性成形品は、公知の成形方法、並びに、本発明の親 水性成形品の製造方法 (I)又は (Π)によって得ることができる。
[0075] 本発明の成形品及び親水性成形品の用途としては、例えば、自動二輪車等のハン ドルカバーやカウル、小型船舶、雪上車等のエンジンカバー、家具、 AV機器の家電 製品、看板、自動販売機等の部品、便座、タンクカバー、ケーシング、台所回りの備 品、洗面台関連部品、浴室関連パーツ等のサニタリー関連部品、窓枠、床材、壁材 等の住宅、住設関連部品等が挙げられる。これらのうち、水と接触する製品や屋外に 設置される製品、これらの部品等が好適であり、例えば、便座、タンクカバー、ケーシ ング、台所回りの備品、洗面台関連部品、浴室関連パーツ等のサニタリー関連部品 、窓枠、床材、壁材等の住宅、住設関連部品等が特に好適である。
本発明の成形品及び親水性成形品は、使用条件、環境等によっては、表面が傷 付いたり、摩耗したりすることがあるが、水に接触するのみで、所定の親水性を再現 することができるので、同じ性能を長期に渡って維持することができる。
尚、本発明の親水性成形品は、必要に応じて、印刷、塗装、メツキ、接着等の加工 を施すことちできる。
[0076] 4.積層品
本発明の積層品は、基部と、上記基部の表面に配設され、且つ、上記成形品成形 用重合体組成物を用いて成形された部材とを備える。この部材に対して、上記親水 性成形品の製造方法における水接触工程等を行うことにより、積層品の部材表面を 親水性にすることができる。従って、従来技術のように、基部の表面に親水性付与材 料を形成した積層品に比べ、親水性の持続性に優れる。
[0077] 上記基部及び上記部材を含む積層品の 1例を図 1に示す。即ち、図 1の積層品 1は 、基部 11と、この基部 11の表面に配設する部材 12とを備える。
[0078] 上記部材の形状は特に限定されず、板状、線状、塊状等とすることができる。 尚、上記部材は、図 1のように、上記基部の表面の一部にあってよいが、全面にあ つてもよい。
[0079] 上記基部を構成する材料、形状等も特に限定されず、目的、用途等に応じて選択 すればよい。
構成材料としては、熱可塑性重合体 (エラストマ一、ゴム、榭脂等)、熱硬化榭脂、 木材、無機材料 (金属、非金属、セラミック、大理石等)等が挙げられる。また、形状は 、板状、線状、塊状等とすることができる。
[0080] 本発明の積層品は、上記基部及び上記部材が、接着剤、粘着剤等により接合され たものであってもよい。その例を図 2に示す。図 2の積層品 laは、基部 11及び部材 1 2の間に接合部 2を備える。
[0081] 本発明の積層品は、例えば、本発明の積層品は、真空成形、インモールド成形、 共押出等の成形、ラミネート、圧着、接着等の方法により得ることができる。
また、本発明の積層品は、例えば、看板、パネル、各種容器、家電製品及びその部 品、車両用部材等が挙げられる。更に、本発明の積層品は、上記部材に含まれるシ ラン化合物 (B)の加水分解により生成したシラノール基による親水性を継続的に発 現する性質を有することから、水と接触する製品や屋外に設置される製品、これらの 部品等に好適に使用することができる。例えば、便座、タンクカバー、ケーシング、台 所回りの備品、洗面台関連部品、浴室関連パーツ等のサニタリー関連部品、窓枠、 床材、壁材等の住宅、住設関連部品等が特に好適である。
尚、本発明の積層品は、表面に、予め、親水性を有する部材を備える積層品であ つてもよい。その場合には、部材の表面における水滴接触角は、好ましくは 60度以 下、より好ましくは 5— 60度、更に好ましくは 5— 30度である。
実施例
[0082] 以下に、実施例を挙げて本発明を更に具体的に説明する。尚、実施例及び比較例 において、部及び%は特に断らない限り質量基準である。
[0083] 1.親水性成形品の製造及び評価
実施例 1—1
シランィ匕合物 (I)として、テトラ n プチルシリケート(商品名「シリケート MS58B30」 、三菱化学社製、重量平均分子量 1, 500— 1, 800)を 4部(SiO換算)、また、熱可
2
塑性重合体 (I)として、パウダー状の ABS榭脂(アクリロニトリル 'ブタジエン.スチレン 榭脂、商品名「テクノ ABS830」、テクノポリマー社製)を 100部、室温にてヘンシェル ミキサーを用!ヽて均一に攪拌混合した後、 40mm押出機を用 1ヽて 200°Cで溶融混練 しペレットを得た。その後、該ペレットをシート成形機に投入して、幅 20cm及び厚さ 2 mmのシート状の成形体を得た。
[0084] 次 、で、得られたシート状の成形体の表面に、水 Zエタノール混合溶媒 (質量比 1: 1)を霧吹きにより噴霧し、一定時間室温下で放置することにより自然乾燥させて (以 下、「表面処理 (i)」という。)、親水性成形品を得た。ここで、表 1における表面処理 (i )の処理時間の欄の数字は、噴霧を行った時間(秒)を意味する。
親水性成形品の親水性の評価は、下記方法による接触角をもって行った。即ち、 親水性成形品の表面に、水滴 0. 2ccを滴下し、 23°C、空気雰囲気下、滴下から 30 秒経過後の接触角を全自動接触角測定器 (協和界面科学社製)により測定した。
[0085] 実施例 1 2— 1 7
シランィ匕合物 (I)及び熱可塑性重合体 (I)の配合割合、並びに、表面処理 (i)の条 件を表 1に示すようにした以外は、実施例 1 1と同様にして親水性成形品を製造し、 親水性の評価を行った。
[0086] 実施例 1 8— 1 11
シート状の成形体とするための原料成分として、更にゼォライト(商品名「モレキユラ 一シーブ 3A (パウダー)」、ユニオン昭和社製)を用い、各配合割合、並びに、表面 処理 (i)の条件を表 1に示すようにした以外は、実施例 1-1と同様にして親水性成形 品を製造し、親水性の評価を行った。
[0087] 比較例 1 1
上記熱可塑性重合体 (I)のみからなるシート状の成形体に対し、表 2の条件で表面 処理 (i)を行!ヽ、親水性の評価を行った。
[0088] 比較例 1 2
シランィ匕合物 (I)、熱可塑性重合体 (I)及び上記ゼォライトの配合割合を表 2に示
すようにした以外は、実施例 1 3と同様にして親水性成形品を製造し、親水性の評 価を行った。尚、得られた親水性成形品の表面には、白濁が観察された。
[0089] 比較例 1 3
比較例 1 1で用いたシート状の成形体の表面に、上記シランィ匕合物 (I)及び上記 水 Zエタノール混合溶媒の混合物 (質量比 1: 1)を霧吹きにより塗布した。その後、 一定時間室温下で放置することにより自然乾燥し (以下、「表面処理 (ii)」という。)て 親水性成形品を製造し、親水性の評価を行った (表 2参照)。尚、得られた親水性成 形品の表面には、白濁が観察された。
ここで、表 2における表面処理 (ii)の処理時間の欄の数字は、噴霧を行った時間( 秒)を意味する。
[0090] 比較例 1 4
比較例 1 1で用いたシート状の成形体の表面に、上記シランィ匕合物 (I)及び上記 水 Zエタノール混合溶媒の混合物 (質量比 1: 1)を霧吹きにより塗布した。その後、 表 2の条件で表面処理 (ii)及び上記表面処理 (i)を続けて行!、、上記と同様にして 親水性成形品を製造し、親水性の評価を行った。
[0091] [表 1]
実 施
1-1 1 2 1-3 1-4 1 5 1-6 1 熱可塑性重合体 (I) (部) 100 100 100 100 100 100 10 重合体
組成物 シラン化合物 (I) (部) 4 5 6 7 8 10 15 ゼォライト (部) 0 0 0 0 0 0 0 表面処理 処理時間 (秒) 0 0 30 50 10 15 20
(i) 処理後自然乾燥時間(時間) 14 14 14 14 24 24 24 評価 接触角 (度) 57 57 54 50 52 43 44
比 較 例
1-1 1-2 1-3 1-4 熱可塑性重合体(I) (部) 100 100 100 100 重合体
ンフンィ匕合物(I)
組成物 (部) 55
ゼオフィ卜 10
シラン化合物(I)塗布量 (部) 100 100 表面処理
処理時間 (秒) 30 30
(ii)
処理後自然乾燥時間 (時間) 24 12 表面処理 処理時間 (秒) 30 30 30
(i) 処理後自然乾燥時間 (時間) 14 14 2 評価 接 fe角 (度) 80 70 72 75
[0093] 表 2より、シランィ匕合物(アルコキシシランの縮合物)を含まな!/、比較例 1 1の成形 品の接触角は 80度であるのに対し、シランィ匕合物(アルコキシシランの縮合物)を榭 脂に練り込みブリードアウトさせ、その後、加水分解により成形品表面にシラノール基 を形成した実施例 1-1一 1-11の親水性成形品では、接触角が 36— 57度である( 表 1)。この結果より、実施例 1 1一 1 11の親水性成形品では、親水性が向上して いることが分かる。また、シランィ匕合物(アルコキシシランの縮合物)の練り込み量が過 剰な比較例 1 2の親水性成形品では、接触角が 70度であり、実施例 1 1一 1 11 の親水性成形品と比べて親水性に劣ることが分かる。更に、アルコキシシラン含有液 を榭脂表面に塗布した比較例 1 3及び 1 4の親水性成形品では、接触角が 72度 及び 75度と実施例 1-1一 1-11の親水性成形品より大きい値を示していることから、 本発明の親水性成形品は、シリケ一トを榭脂表面に塗布した従来型の親水性成形 品と比較して、優れた親水性を発現して ヽることが分かる。
[0094] また、実施例 1—1一 1—7と実施例 1 8— 1—11とを対比すると、ゼォライトを練り込 んだ実施例 1—8— 1—11の方力 接触角の小さい値を示している。このことから、ゼォ ライトを練り込むことにより親水性を向上させることができることが分かる。これは、アル コキシシランの直練りの即効性とフィラー含浸により遅効性の効果による制御の可能 性が考えられる。
[0095] 更に、アルコキシシランの練り込み量が過剰な比較例 1 2、並びに、アルコキシシ ランを加水分解させてシラノールとした状態で塗布した比較例 1 3及び 1 4では、成
形品表面に白濁が認められたのに対し、実施例 1—1一 1—11では力かる白濁が認め られな力つた。このことから、本発明の親水性成形品の製造方法により、アルコキシシ ランの加水分解促進 縮合反応を適切に制御し、成形品の白濁を防止するこができ ることが分力ゝる。
[0096] 2.含水率の低い重合体組成物の製造及び評価
実施例 2—1
オーブンを用い、 80°Cで 16時間乾燥させ、精密微量水分計 (型名 ΓΟΖΑ-3100] 、チノ一社製)による含水率を 0. 01%以下としたパウダー状の上記熱可塑性榭脂 (I ) 100部及び上記シランィ匕合物 (I) 3部をヘンシェルミキサーに入れ、均一に攪拌混 合した。その後、ベント口を閉ざした 30mm押出機 (型名「TEX30」、 日本製鋼所社 製)を用い、シリンダー温度 200°C及び滞留時間 4分間として溶融混練し、ホットカツ ト方式でペレット(重合体組成物)を作製し、密閉容器内に収容した。
その後、このペレットを用い、ダイス幅 250mmとした Tダイ押出成形機 (創研社製) により、成形温度 200°Cで、幅 200mm及び厚さ lmmのシート状成形体を得た。
[0097] 上記シート状成形体を下記項目につ!/、て評価し、表 3に示した。
(1)接触角
上記シート状成形体に、水 ·エタノール混合液 (質量比 1: 1)を、霧吹きにより吹きつ け、室温で 24時間静置し、 自然乾燥させた。その後、実施例 1 1と同様にして 23°C における接触角を測定した。
(2)ヘイズ (曇価)
ヘイズ測定器 (型名「hazegard—plus」、ビックケミージャパン社製)により測定した。
[0098] また、持続性を評価するために、縦 100mm、横 100mm及び厚さ lmmのシート状 成形体を 23°Cの水槽に 30日間浸漬させた。その後、水槽力も取り出して自然乾燥さ せ、翌日、上記方法で接触角及びヘイズを測定した。その結果を表 3に併記した。
[0099] 実施例 2— 2
シランィ匕合物 (I)の配合量を 6部とした以外は、実施例 2-1と同様にして重合体組 成物及びシート状成形体を製造し、評価した。その結果を表 3に併記した。
[0100] 実施例 2— 3
上記精密微量水分計による含水率が 0. 45%であるペレット状のアクリロニトリル'ブ タジェン.スチレン榭脂(商品名「テクノ ABS810」、テクノポリマー社製、以下、「熱可 塑性重合体 (Π)」ともいう。)6kgを、上記押出機により、シリンダー温度 200°C及び滞 留時間 2分間として溶融混練し、ベントロカ 水蒸気を吸引(730mmHg)して脱水 乾燥させた。その後、シランィ匕合物(1) 0. 18kgを、プランジャーポンプ (型名「2MC0 51— 75V」、 FUJI PUMP社製)により注入し、更に 2分間混練し、重合体組成物を 得た。また、実施例 2— 1と同様にしてシート状成形体を得た。これらの評価も上記と 同様にして行い、その結果を表 3に併記した。
[0101] 実施例 2— 4
シランィ匕合物 (I)の配合量を 6部とした以外は、実施例 2— 3と同様にして重合体組 成物及びシート状成形体を製造し、評価を行った。その結果を表 3に併記した。
[0102] 実施例 2— 5
上記精密微量水分計による含水率が 0. 45%であるペレット状の熱可塑性榭脂 (I) を用いた以外は、実施例 2— 1と同様にして重合体組成物及びシート状成形体を製造 し、評価を行った。その結果を表 3に併記した。
[0103] 実施例 2— 6
押出機のベント口を開き、ベントロカも水蒸気を吸引(730mmHg)して脱水乾燥さ せた以外は、実施例 2 - 5と同様にして重合体組成物及びシート状成形体を製造し、 評価を行った。その結果を表 3に併記した。
[0104] 実施例 2— 7
押出機のベント口を閉じた以外は、実施例 2— 3と同様にして重合体組成物及びシ ート状成形体を製造し、評価を行った。その結果を表 3に併記した。
[0105] 比較例 2— 1
シランィ匕合物 (I)を用いな力つたこと以外は、実施例 2-1と同様にして重合体組成 物及びシート状成形体を製造し、評価を行った。その結果を表 3に併記した。
[0106] 比較例 2— 2
押出機のベント口を閉じ、シランィ匕合物 (I)を注入しな力つた以外は、実施例 2— 3と 同様にして重合体組成物及びシート状成形体を製造し、評価を行った。その結果を
表 3に併記した
[0107] [表 3]
[0108] 表 3より、比較例 2— 1及び 2— 2は、シランィ匕合物(アルコキシシランの縮合物)を用 いな力つた例であり、製造方法によらず、接触角が 80度と高ぐ親水性表面が得られ なかった。
一方、実施例 2— 1では、含水率が 0. 01%以下であるアクリロニトリル 'ブタジエン'
スチレン榭脂を用いたため、接触角が 35度であり、親水性に優れる。 30日経過する と、 31度とわずかに良化した。ヘイズは 3. 5%であり、透明性も高力つた。実施例 2— 2は、シランィ匕合物(アルコキシシランの縮合物)の使用量を増やした例であり、ヘイ ズはわずかに低下したが十分に透明であった。また、接触角が 33度であり、実施例 2 —1よりも親水性が高くなつた。実施例 2-3は、ベント口を開いた状態でアタリ口-トリ ル.ブタジエン ·スチレン榭脂を溶融し、その水分量を減らしてカもシランィ匕合物(ァ ルコキシシランの縮合物)を添加した例であり、実施例 2— 1よりも更に接触角が小さく 、ヘイズも良化した。本実施例においては、いずれも永続的な親水性を有するものと 確認された。
[0109] 3.親水性成形品の製造及び評価
実施例 3—1
上記実施例 1 1で用いた、 Smart式による溶解度パラメーター(以下、「SP値」とも いう。)が 10. 3の熱可塑性榭脂(1) 100部と、シラン化合物(Π)として、 SP値力 2 のテトラ n-プチルシリケート(商品名「シリケート MS58B15」、三菱化学社製、重量 平均分子量 1, 600— 1, 800) 3部とを、ヘンシェルミキサーを用いて均一に攪拌混 合した後、 40mm押出機用いて 200°Cで溶融混練しペレットを得た。その後、該ペレ ットをシート成形機に投入して、縦 150mm、横 30mm及び厚さ 300 mのシート(以 下、「未処理シート」ともいう。)を作製した。この未処理シートの、単位面積あたりのシ ランィ匕合物 (Π)の含有量は、 0. 9mgZcm2であり、表面の接触角は 80度であった。 上記未処理シートに対して前処理を行い、親水性シートを得た。まず、上記未処理 シートを気温 23°C及び湿度 50%以下の空気中に 7日間放置した。このときのシート 表面の接触角は 70度であった。その後、シートを 23°Cの水 (使用量は、シートの体 積の 3倍量である。)に 22時間浸し、取り出した後、シート表面の水を拭き取らずに、 気温 23°C及び湿度 50%以下の空気中に 2時間放置し、乾燥した (以下、この処理を 「水浸漬」ともいう。)。このときの親水性シート表面の接触角は 45度であった (表 4参 照)。また、この親水性シートの表面に、水の膜を形成させて濡れの状態を目視観察 し、一様に濡れていない場合を「ムラ有」、一様に濡れた場合を「ムラ無」と判定した。
[0110] 次に、上記親水性シートに対して、下記(3)—(5)の各処理を行い、各処理後の成
形品表面の接触角を測定し、その結果を表 4に示した。
(3)エタノール処理(エタノール拭き取り)
エタノールを含浸させたガーゼを用いて、親水性シートの表面を 3回ぬぐい、 23°C で 1分間乾燥した。
(4)エタノール処理後の再度の水浸漬
上記(3)による処理の後、再度水浸漬を行った。
(5)乾湿サイクル試験
親水性シートの親水性表面の堅牢性を見るため、 1サイクルを、気温 23°C及び湿 度 50%以下の空気中に 9時間放置して乾燥させ、次いで、 23°Cの水 (使用量は、シ ートの体積の 3倍量である。 )に 15時間浸す工程を 50回繰り返した。
[0111] 実施例 3— 2
熱可塑性榭脂 (I) 100部及びシランィ匕合物 (Π) 3部を用い、実施例 3-1と同様にし て、厚さ 100 /z mの未処理シートを作製した。この未処理シートの表面の接触角は 8 0度であった。この未処理シートに対して、実施例 3—1と同じ前処理を行い、親水性 シートを得、上記処理(3)—(5)を行った。その結果を表 4に示した。
[0112] 実施例 3— 3
熱可塑性榭脂 (I) 100部及びシランィ匕合物 (Π) 3部を用い、実施例 3-1と同様にし て、厚さ 50 mの未処理シートを作製した。この未処理シートの表面の接触角は 80度であった。この未処理シートに対して、実施例 3—1と同じ前処理を行い、親水性 シートを得、接触角の測定及び表面状態を観察した。その結果を表 4に示した。
[0113] 実施例 3— 4
シランィ匕合物 (Π)の使用量を 8部とした以外は、実施例 3— 3と同様にして未処理シ ートを作製した。この未処理シートの表面の接触角は 80度であった。この未処理シー トに対して、実施例 3— 1と同じ前処理を行い、親水性シートを得、上記処理 (3)—(5 )を行った。その結果を表 4に示した。
[0114] 実施例 3— 5
熱可塑性榭脂 (I) 100部及びシランィ匕合物 (11) 8部を用い、実施例 3-1と同様にし て、厚さ 30 mの未処理シートを作製した。この未処理シートの表面の接触角は
80度であった。この未処理シートに対して、実施例 3—1と同じ前処理を行い、親水性 シートを得、上記処理(3)—(5)を行った。その結果を表 4に示した。
[0115] 実施例 3— 6
実施例 3—1で作製した未処理シートを気温 23°C及び湿度 50%以下の空気中に 7 日間放置した後、下記条件で、シートの表面に電子線を照射し、親水性シートを得、 上記処理(3)— (5)を行った。その結果を表 4に示した。
〈電子線照射条件〉
; EC250Z15Z180L型(アイ'エレクト口ビーム社製)
加速電圧 125kV
ビーム電流 3. 46mA
照射線量 100. OkGy。
[0116] 実施例 3— 7
実施例 3— 1で作製した未処理シートに対して、実施例 3— 1と同じ前処理を行い、更 に、実施例 3-6と同じ条件で電子線照射を行うことで親水性シートを得た。この親水 性シートに対して、上記処理(3)—(5)を行い、その結果を表 4に示した。
[0117] 実施例 3— 8
熱可塑性重合体 (VII)として、下記に記載の方法で製造した、 SP値が 11. 1のァク リロ-トリル.スチレン.アタリレート (ASA)榭脂 100部と、 SP値力 3のシラン化合物 (1) 5部とを用い、実施例 3—1と同様にして、厚さ 150 /z mの未処理シートを作製した 。この未処理シートの表面の接触角は 80度であった。この未処理シートを気温 23°C 及び湿度 50%以下の空気中に 7日間放置した後、水浸漬を 2回繰り返すことで親水 性シートを得、接触角の測定及び表面状態を観察した。その結果を表 5に示した。 く ASA榭脂の製造方法〉
まず、アクリル酸 n—ブチル 99%及びァリルメタタリレート 1%を乳化重合することに より得られたアクリル系ゴム質重合体 50部を含むラテックスと、水 200部 (合計量)と、 ドデシルベンゼンスルホン酸ナトリウム 1部とを反応器に仕込み、窒素気流下で攪拌 しながら 60°Cに昇温した。 60°Cに達した後、ナトリウムホルムアルデヒドスルホキシレ ート 0. 2部を溶解した水溶液を反応系に添加し、その直後、スチレン 38部、アタリ口
二トリル 12部及び tーブチルノヽイド口パーオキサイド 0. 6部の混合溶液を 3時間に渡つ て連続添加し、重合を行った。重合転ィ匕率は 96%であった。その後、得られたラテツ タスより、反応生成物 (重合体)を凝固、洗浄及び乾燥し、粉末状の榭脂 (pi)を得た 。グラフト率は 55%であった。
一方、メタクリル酸メチル、スチレン及びアクリロニトリルを用いて、溶液重合を行い、 結合メタクリル酸メチル含量 72%、スチレン含量 21%及びアクリロニトリル含量 7%の 共重合体 (P2)を得た。極限粘度〔 7?〕は、 0. 5dlZgであった。
ASA榭脂は、榭脂 (pi)及び共重合体 (p2)を質量比 4Z6で混合することにより得 た。
[0118] 実施例 3— 9
実施例 3— 8で得た未処理シートに対して、実施例 3— 7と同じ前処理を行うことで親 水性シートを得、接触角の測定及び表面状態を観察した。その結果を表 5に示した。
[0119] 実施例 3— 10
熱可塑性重合体 (VI)として、 SP値が 12. 8のポリエチレンテレフタレート榭脂(商 品名「IS404」、 MCC社製) 100部と、シランィ匕合物 (I) 3部とを用い、実施例 3— 1と 同様にして、厚さ 150 /z mの未処理シートを作製した。この未処理シートの表面の接 触角は 80度であった。この未処理シートを気温 23°C及び湿度 50%以下の空気中に 7日間放置した後、水浸漬を 2回繰り返すことで親水性シートを得、上記処理 (3)—( 5)を行 、、その結果を表 5に示した。
[0120] 実施例 3— 11
熱可塑性重合体(ΠΙ)として、 SP値が 11. 1のアクリロニトリル 'ブタジエン 'スチレン 榭脂(商品名「テクノ ABS 150」、テクノポリマー社製) 17. 4部と、熱可塑性重合体 (I V)として、 SP値が 10. 7のスチレン 'ブタジエン系熱可塑性エラストマ一(商品名「T R2500」、JSR社製) 13部と、熱可塑性重合体 (V)として、 SP値力 . 9のポリプロピ レン榭脂(商品名「FY6C」、 JPP社製) 69. 6部と、シランィ匕合物 (I) 5部とを用い、実 施例 3—1と同様にして、厚さ 150 mの未処理シートを作製した。この未処理シート の表面の接触角は 80度であった。この未処理シートを気温 23°C及び湿度 50%以下 の空気中に 7日間放置した後、水浸漬を 3回繰り返すことで親水性シートを得、上記
処理(3)—(5)を行い、その結果を表 5に示した。
[0121] 実施例 3— 12
熱可塑性重合体 (V) 100部と、シランィ匕合物 (1) 5部とを用い、実施例 3— 1と同様に して、厚さ 150 mの未処理シートを作製した。この未処理シートの表面の接触角は 80度であった。この未処理シートを気温 23°C及び湿度 50%以下の空気中に 7日間 放置した後、水浸漬を 35回繰り返すことで親水性シートを得、接触角の測定及び表 面状態を観察した。その結果を表 5に示した。
[0122] 実施例 3— 13
熱可塑性重合体 (V) 100部と、シランィ匕合物(III)として、 SP値力 1のテトラメチ ルシリケート(商品名「シリケート MS41」、三菱化学社製、重量平均分子量 400— 60 0) 5部とを用い、実施例 3—1と同様にして、厚さ 150 mの未処理シートを作製した。 この未処理シートの表面の接触角は 80度であった。この未処理シートを気温 23°C及 び湿度 50%以下の空気中に 7日間放置した後、水浸漬を 10回繰り返すことで親水 性シートを得、接触角の測定及び表面状態を観察した。その結果を表 5に示した。
[0123] 実施例 3— 14
熱可塑性重合体 (VII) 100部と、シランィ匕合物 3部とを用い、実施例 3—1と同様に して、厚さ 300 mの未処理シートを作製した。この未処理シートの表面の接触角は 80度であった。この未処理シートを気温 23°C及び湿度 80%以上の空気中に 50日 間放置することで親水性シートを得、接触角の測定及び表面状態を観察した。その 結果を表 5に示した。
[0124] 実施例 3— 15
実施例 3—1で作製した未処理シートを気温 23°C及び湿度 50%以下の空気中に 7 日間放置した後、上記水浸漬に使用する水を硫酸水溶液 (濃硫酸 2部を水 100部に 溶解したもの)として実施例 3-1と同様にして親水性シートを得、上記処理 (3)— (5) を行い、その結果を表 5に示した。
[0125] 比較例 3— 1
熱可塑性榭脂 (I)のみを用いて、実施例 3—1と同様にして厚さ 300 mの未処理シ ートを得た。この未処理シートの表面の接触角は 80度であった。この未処理シートに
対して水浸漬を 50回行った後の接触角は 80度であった (表 6)。
[0126] 比較例 3— 2
実施例 3—1で作製した未処理シートを気温 23°C及び湿度 20%以下の空気中に 5
0日間放置し、シート表面の接触角を測定したところ、 78度であった (表 6)。
[0127] 比較例 3— 3
比較例 3—1で作製した未処理シートを気温 23°C及び湿度 20%以下の空気中に 5
0日間放置した後、実施例 3— 6と同じ条件で電子線照射を行うことで親水性シートを 得た。この親水性シートの表面の接触角は 69度であった。
[0128] 比較例 3— 4
比較例 3— 1で得たシート (厚さ 300 m)の表面に、親水化材料として、シリケート 配合親水性コーティング剤(商品名「シンスィフロー MS 1200」、大日本色材工業社 製)を塗布し、乾燥して厚さ 5 mの皮膜を形成し、親水性シートを得た。この親水性 シートの表面の接触角は 52度であった。また、上記処理(3)—(5)を行い、その結果 を表 6に示した。
[0129] [表 4]
表 4
実 施
3-1 3-2 3-3 3-4 重合体熱可塑性重合体 (I) (SPfi = 10.3) (部) 100 100 100 100 組成物 シラン化合物(II) (SP値 = 8.2) (部) 3 3 3 8
SP値の差 2.1 2.1 2.1 2.1 フィルム厚さ ( m) 300 100 50 50 単位面積あたりのシラン化合物含有量 (mg/ cm ) 0.9 0.3 0.15 0.4 日数 (曰) 7 7 7 7 空気中放置
湿度 (%) 50%以下 50%以下 50%以下 50%以下 前処理
水浸漬の有無(回数) 有 (1) 有 (1) 有 (1) 有 (1)
EB照射 (mA)
前処理後の接触角 (度) 45 45 45〜65 45 前処理後の成形品の表面状態 ムラ無 ムラ無 ムラ有 ムラ無 評価 接触角(エタノール拭き取り後) (度) 45 65 45 接触角(エタノール拭き取り再浸漬後) (度) 45 45 45 接触角(乾湿サイクル X 50回後) (度) 45 45 45
実 施
3-8 3-9 3-10 3-1 1 3-12 熱^塑性重合体 (I) (SP : = 10.3) (部)
熱 塑性重合体(III) (SP値 = 1 1 .1 ) (部) 17.4 熱^塑性重合体 (IV) (SP¾ = 10.7) (部) 13
八
熱^塑性重合体 (VI) (SP値 = 12.8) 100
組 (部)
成熱可塑性重合体 (VII) (SP値 = 1 1 . 1 ) (部) 100 100
物 シラン化合物(I) (SP値 =8.3) (部) 5 5 3 5 5 シラン化合物(II) (SPffi=8.2) (部)
シラン化合物(III) (SP値 =8.1) (部)
SP値の差 2.8 2.8 4.5 1.9 0.4 フィルム厚さ 、 m) 150 150 150 150 150
¥ -位而積あたりのシラン化合物含有量 (mg/cm ) 0.75 0.75 0.45 0.75 0.75 日数 (曰) 7 7 7 7 7 空気中放置
m 湿度 (%) 50%以下 50%以下 50%以下 50%以下 50%以下 処水浸清の有無(回数) 有 (2) 有 (1) 有 (2) 有 (3) 有 (35) 理硫酸水溶液浸漬の有無(回数)
照射 (αιΑ) 3.46
前処理後の接触角 (度) 45 25 30 35 35 前処理後の成形品の表面状態 ムラ無 ムラ無 ムラ無 ムラ無 ムラ無 評
接触角(エタノール拭き取り後) (度) 30 35
価
接触角(エタノール拭き取り再浸漬後) (度) 30 35
接触角(乾湿サイクル X 50回後) (度) 30 35
[0131] [表 6]
[0132] 表 6より、本発明のシランィ匕合物を含有しない比較例 3— 1は、水浸漬を行っても、接 触角が 80度と高ぐ表面が親水化されていないことが分かる。比較例 3— 2は、水浸漬 を行わなかった例であり、低湿度の環境下に長期間放置しても、シート表面のシラン 化合物の加水分解が進行しないため、接触角が 78度と高くなつた。比較例 3— 3は、 本発明のシランィ匕合物を含有しないシートに対して電子線を照射した例であり、接触
角を低下させるほどの表面改質効果が得られな力つた。また、比較例 3— 4は、巿販 の親水性コーティング剤を塗布した例であり、上記処理(3)— (5)による接触角の回 復が見られなカゝつた。
[0133] 一方、表 4及び表 5より、熱可塑性重合体及びシラン化合物が本発明の範囲内に 含有され、良好な親水性が得られることが分力る。
表 4より、実施例 3— 2は、実施例 3—1に比べて、フィルムの厚さが薄い(100 m) 例であり、乾湿サイクル 50回繰り返しても、シラノール基が消失せず、良好な親水性 を維持した力 エタノール処理により、接触角が 65度にまで低下した。その後、再度 水浸漬することにより、もとの親水性を示した。
実施例 3— 5は、シランィ匕合物の含有量を増量した力 フィルムの厚さを 30 μ mとし たものであり、エタノール処理により、親水性が低下したものの、再度水浸漬すること により、もとの親水性を示した。しかし、乾湿サイクルを 50回繰り返した場合には、親 水'性がなくなった。
実施例 3 - 6は、水浸漬を行わず、電子線により表面改質した例であり、実施例 3 - 1 よりも接触角の小さい、優れた親水性を有する表面を形成することができた。水浸漬 と電子線照射を組み合わせた実施例 3— 7は、更に親水性が向上 (接触角 30度)した また、表 5より、熱可塑性重合体の種類が異なっても、親水性に優れた成形品とす ることができることが分かる。特に、実施例 3— 13のように、各成分の SP値を用いた差 が 0. 2と小さい場合であっても、シランィ匕合物がブリードアウトし、水浸漬によりシラノ ール基が形成されたものと考えられる。
実施例 3— 14は、水浸漬を行わなかった例であり、湿度が 80%以上と高い空気中 に放置するのみで、親水性表面を形成することが可能であることが分かる。
[0134] 尚、本発明においては、上記具体的実施例に示すものに限られず、目的、用途に 応じて本発明の範囲内で種々変更した実施例とすることができる。
Claims
請求の範囲
[I] (A)熱可塑性重合体と、 (B)成形体表面にブリードアウト可能なアルコキシシラン及 びその縮合物力も選ばれる少なくとも 1種のシランィ匕合物とを含み、
上記シランィ匕合物(B)の含有量は、上記熱可塑性重合体 (A) 100質量部に対して 、 SiO換算で、 0. 1— 50質量部であり、且つ、
2
上記熱可塑性重合体 (A) 100質量部及び上記シラン化合物(B) 3質量部からなる 成形品に対し、水を接触させた後の、該成形品の表面における水滴接触角が、 60 度以下であることを特徴とする成形品成形用重合体組成物。
[2] 上記熱可塑性重合体 (A)の溶解度パラメーター (S )と、上記シランィ匕合物 (B)の
A
溶解度パラメーター(s )との関係が、 s
B I s—
A B I ≥0. 2である請求項 1に記載の成 形品成形用重合体組成物。
[3] 上記シラン化合物(B)の重量平均分子量が 300— 3, 000である請求項 1に記載の 成形品成形用重合体組成物。
[4] 更に、触媒及び希釈剤のうちの少なくとも 1種を含有する請求項 1に記載の成形品 成形用重合体組成物。
[5] 含水率が 0. 2質量%以下である請求項 1に記載の成形品成形用重合体組成物。
[6] 請求項 1に記載の成形品成形用重合体組成物を用いて成形されたことを特徴とす る成形品。
[7] 薄肉部の最小厚さが 35 μ m以上である請求項 6に記載の成形品。
[8] 請求項 1に記載の成形品成形用重合体組成物を用いて成形品とする成形工程と、 該成形品の表面カもシランィ匕合物 (B)をブリードアウトさせるブリードアウト工程と、該 成形品に水を接触させる水接触工程とを備えることを特徴とする親水性成形品の製 造方法。
[9] 請求項 8に記載の方法により得られたことを特徴とする親水性成形品。
[10] 本親水性成形品の表面における水滴接触角が 60度以下である請求項 9に記載の 親水性成形品。
[II] 基部と、該基部の表面に配設され且つ請求項 1に記載の成形品成形用重合体組 成物を用いて成形された部材とを備えることを特徴とする積層品。
[12] 上記部材の表面における水滴接触角が 60度以下である請求項 11に記載の積層
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-324866 | 2003-09-17 | ||
JP2003324866 | 2003-09-17 | ||
JP2003419986 | 2003-12-17 | ||
JP2003-419986 | 2003-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005028562A1 true WO2005028562A1 (ja) | 2005-03-31 |
Family
ID=34380309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/013672 WO2005028562A1 (ja) | 2003-09-17 | 2004-09-17 | 成形品成形用重合体組成物、成形品、親水性成形品及びその製造方法並びに積層品 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2005028562A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8286561B2 (en) | 2008-06-27 | 2012-10-16 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US9067821B2 (en) | 2008-10-07 | 2015-06-30 | Ross Technology Corporation | Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation |
US9074778B2 (en) | 2009-11-04 | 2015-07-07 | Ssw Holding Company, Inc. | Cooking appliance surfaces having spill containment pattern |
US9139744B2 (en) | 2011-12-15 | 2015-09-22 | Ross Technology Corporation | Composition and coating for hydrophobic performance |
US9388325B2 (en) | 2012-06-25 | 2016-07-12 | Ross Technology Corporation | Elastomeric coatings having hydrophobic and/or oleophobic properties |
US9546299B2 (en) | 2011-02-21 | 2017-01-17 | Ross Technology Corporation | Superhydrophobic and oleophobic coatings with low VOC binder systems |
US9914849B2 (en) | 2010-03-15 | 2018-03-13 | Ross Technology Corporation | Plunger and methods of producing hydrophobic surfaces |
US10317129B2 (en) | 2011-10-28 | 2019-06-11 | Schott Ag | Refrigerator shelf with overflow protection system including hydrophobic layer |
US11786036B2 (en) | 2008-06-27 | 2023-10-17 | Ssw Advanced Technologies, Llc | Spill containing refrigerator shelf assembly |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1060362A (ja) * | 1996-08-12 | 1998-03-03 | Nippon Synthetic Chem Ind Co Ltd:The | 樹脂−ガラス複合組成物、その組成物からなる成形物および被覆剤 |
JPH11148019A (ja) * | 1997-11-18 | 1999-06-02 | Daikin Ind Ltd | 合成樹脂水性分散組成物 |
JP2000309714A (ja) * | 1999-02-26 | 2000-11-07 | Arakawa Chem Ind Co Ltd | 有機無機ハイブリッド体用溶液組成物、有機無機ハイブリッド体、コーティング剤およびコーティング方法 |
JP2001261972A (ja) * | 2000-03-16 | 2001-09-26 | Ube Nitto Kasei Co Ltd | 有機−無機複合傾斜材料及びその用途 |
-
2004
- 2004-09-17 WO PCT/JP2004/013672 patent/WO2005028562A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1060362A (ja) * | 1996-08-12 | 1998-03-03 | Nippon Synthetic Chem Ind Co Ltd:The | 樹脂−ガラス複合組成物、その組成物からなる成形物および被覆剤 |
JPH11148019A (ja) * | 1997-11-18 | 1999-06-02 | Daikin Ind Ltd | 合成樹脂水性分散組成物 |
JP2000309714A (ja) * | 1999-02-26 | 2000-11-07 | Arakawa Chem Ind Co Ltd | 有機無機ハイブリッド体用溶液組成物、有機無機ハイブリッド体、コーティング剤およびコーティング方法 |
JP2001261972A (ja) * | 2000-03-16 | 2001-09-26 | Ube Nitto Kasei Co Ltd | 有機−無機複合傾斜材料及びその用途 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12096854B2 (en) | 2008-06-27 | 2024-09-24 | Ssw Advanced Technologies, Llc | Spill containing refrigerator shelf assembly |
US8596205B2 (en) | 2008-06-27 | 2013-12-03 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US10827837B2 (en) | 2008-06-27 | 2020-11-10 | Ssw Holding Company, Llc | Spill containing refrigerator shelf assembly |
US10130176B2 (en) | 2008-06-27 | 2018-11-20 | Ssw Holding Company, Llc | Spill containing refrigerator shelf assembly |
US11191358B2 (en) | 2008-06-27 | 2021-12-07 | Ssw Advanced Technologies, Llc | Spill containing refrigerator shelf assembly |
US8286561B2 (en) | 2008-06-27 | 2012-10-16 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US9179773B2 (en) | 2008-06-27 | 2015-11-10 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US9207012B2 (en) | 2008-06-27 | 2015-12-08 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US9532649B2 (en) | 2008-06-27 | 2017-01-03 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US11786036B2 (en) | 2008-06-27 | 2023-10-17 | Ssw Advanced Technologies, Llc | Spill containing refrigerator shelf assembly |
US9096786B2 (en) | 2008-10-07 | 2015-08-04 | Ross Technology Corporation | Spill resistant surfaces having hydrophobic and oleophobic borders |
US9279073B2 (en) | 2008-10-07 | 2016-03-08 | Ross Technology Corporation | Methods of making highly durable superhydrophobic, oleophobic and anti-icing coatings |
US9243175B2 (en) | 2008-10-07 | 2016-01-26 | Ross Technology Corporation | Spill resistant surfaces having hydrophobic and oleophobic borders |
US9926478B2 (en) | 2008-10-07 | 2018-03-27 | Ross Technology Corporation | Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation |
US9067821B2 (en) | 2008-10-07 | 2015-06-30 | Ross Technology Corporation | Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation |
US9074778B2 (en) | 2009-11-04 | 2015-07-07 | Ssw Holding Company, Inc. | Cooking appliance surfaces having spill containment pattern |
US9914849B2 (en) | 2010-03-15 | 2018-03-13 | Ross Technology Corporation | Plunger and methods of producing hydrophobic surfaces |
US9546299B2 (en) | 2011-02-21 | 2017-01-17 | Ross Technology Corporation | Superhydrophobic and oleophobic coatings with low VOC binder systems |
US10317129B2 (en) | 2011-10-28 | 2019-06-11 | Schott Ag | Refrigerator shelf with overflow protection system including hydrophobic layer |
US9139744B2 (en) | 2011-12-15 | 2015-09-22 | Ross Technology Corporation | Composition and coating for hydrophobic performance |
US9528022B2 (en) | 2011-12-15 | 2016-12-27 | Ross Technology Corporation | Composition and coating for hydrophobic performance |
US9388325B2 (en) | 2012-06-25 | 2016-07-12 | Ross Technology Corporation | Elastomeric coatings having hydrophobic and/or oleophobic properties |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101948495B1 (ko) | 공중합체의 제조 방법 | |
JP5276789B2 (ja) | 付加硬化性物質との付着性が向上した組成物及びその組成物を含む複合材料製品 | |
EP3056339B1 (en) | Gas barrier laminate having good moisture barrier properties | |
JP6434519B2 (ja) | スルホン酸系共重合体とアミノ樹脂からなる親水性材料 | |
CN102171279B (zh) | 经表面处理的基材、使用其的太阳能电池用受光面侧保护片、和太阳能电池组件 | |
KR101777034B1 (ko) | 공중합체 또는 조성물을 포함하는 막 | |
CN108136727A (zh) | 水分阻挡性层压体 | |
CN105295325B (zh) | 包括表面改性的微球体的低密度模塑料 | |
JPH036282A (ja) | プライマー組成物 | |
WO2005028562A1 (ja) | 成形品成形用重合体組成物、成形品、親水性成形品及びその製造方法並びに積層品 | |
JP2005200629A (ja) | 成形品成形用重合体組成物、成形品、親水性成形品及びその製造方法並びに積層品 | |
CN113330044B (zh) | 粉粒体及其利用 | |
JPH0238095B2 (ja) | ||
JP2007169488A (ja) | ガスバリア膜及びガスバリア性を有する積層体 | |
JPH0238094B2 (ja) | ||
JPS6049598B2 (ja) | 積層成形体 | |
JP2001205752A (ja) | コロイダルシリカ含有アクリル樹脂積層シートおよびそれを用いた成形品 | |
CA1181636A (en) | Article comprising silicone resin coated, methacrylate-primed substrate | |
WO2005063894A1 (ja) | 熱硬化樹脂組成物及びその製造方法、成形品及びその製造方法並びに離型剤 | |
JPS5984952A (ja) | 被覆用硬化型樹脂組成物 | |
JPH0623331B2 (ja) | 被覆用硬化型樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NA NI NO NZ OM PG PL PT RO RU SC SD SE SG SK SL SY TM TN TR TT TZ UA UG US UZ VC YU ZA ZM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |