[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005026773A1 - Optical distance measurement device and vehicle optical radar device - Google Patents

Optical distance measurement device and vehicle optical radar device Download PDF

Info

Publication number
WO2005026773A1
WO2005026773A1 PCT/JP2004/012568 JP2004012568W WO2005026773A1 WO 2005026773 A1 WO2005026773 A1 WO 2005026773A1 JP 2004012568 W JP2004012568 W JP 2004012568W WO 2005026773 A1 WO2005026773 A1 WO 2005026773A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
section
delay time
time
light
Prior art date
Application number
PCT/JP2004/012568
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Nishidai
Original Assignee
Omron Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corporation filed Critical Omron Corporation
Publication of WO2005026773A1 publication Critical patent/WO2005026773A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers

Definitions

  • Optical ranging device optical ranging method, and in-vehicle optical radar device
  • the present invention relates to a technique for measuring a distance to an object using a light pulse.
  • An optical distance measuring device that irradiates an object with a light pulse and receives the light pulse reflected by the object to measure the distance to the object is known.
  • PSD position detection device
  • pulse flight time method that measures the round trip time of an optical pulse.
  • the triangulation method measures the distance d to an object 103 by using the ratio of two sides of two similar right triangles 100 and 101 to each other.
  • the feature is that relatively high-accuracy distance measurement can be realized with a simple configuration.
  • the change amount X measured by the PSD 104 becomes large at a short distance and becomes small at a long distance. Therefore, in order to obtain high resolution in long-distance measurement, it is necessary to increase the distance L between transmission and reception and the focal length f, and there is a problem that the casing becomes large. Similarly, in order to guarantee a certain resolution, the measurement range becomes narrower, so that multiple types of products are required according to the distance range, and the cost of designing and manufacturing increases.
  • the pulse time-of-flight method the distance is measured by multiplying the time required for a light pulse to reciprocate with an object by the speed of light.
  • the pulse time-of-flight method has a feature that it is suitable for miniaturization of the housing because it is not necessary to secure a large distance between transmission and reception and a focal length in principle.
  • a single optical system can measure short distance force and long distance with the same resolution, a single model can cover a wide range of distances.
  • time axis expansion means that a sampling noise that gradually delays with respect to the irradiation light pulse is generated, and the light reception signal is sampled at the timing of this pulse to form a waveform on the time axis. This is to increase the geometric ratio. As a result, highly accurate distance calculation can be performed even when a relatively low-speed timing device such as a microcontroller is used.
  • Patent Document 1 a technique has been proposed to improve the SZN ratio by sampling the peak position of the reflected wave a plurality of times and accumulatively adding the peak position in the time axis expansion process.
  • Non-patent document 1 Seiji Iguchi, Kosuke Sato, "Three-dimensional image measurement", Shokodo, 1990 Patent document 1: Japanese Patent Application Laid-Open No. 2001-264419
  • Patent Document 1 has diverted the technique of Patent Document 1 to an optical distance measuring device, and could not suppress a decrease in responsiveness by sampling only the peak position of the received light pulse a plurality of times. Study was carried out. However, in the case of a force photometric device, it was found that this method could increase the distance measurement error. This is because a radio sensor uses a pulse with a steep pulse width on the order of picoseconds to detect the peak position with high accuracy, whereas the pulse width of an optical pulse is on the order of nanoseconds. It is considered that the accuracy of peak position detection is about 1000 times lower than that of simple calculation.
  • the light pulse since the light pulse has a shorter wavelength than the radio wave, the light pulse is susceptible to disturbances such as the inclination of the object to be reflected, the unevenness of the surface of the object to be reflected, and the unevenness of the propagation space due to the fluctuation of the atmosphere. Therefore, a waveform in which a plurality of optical pulses that have undergone different time delays via different optical paths are synthesized is observed, and the received light pulse waveform is distorted.
  • Fig. 13 shows an example of the received light pulse waveform. The broken line shows the waveform obtained in an ideal measurement environment, and the solid line shows the waveform when disturbance is intentionally applied. In the latter, pulse swelling and peak bimodality were confirmed (Particularly, the section after the peak position tends to expand). If such a received pulse waveform distortion occurs, it becomes difficult to specify the peak position, and the distance measurement accuracy is deteriorated.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technology capable of achieving both responsiveness and distance measurement accuracy with a simple and compact configuration. To do so.
  • the optical distance measuring apparatus of the present invention variably controls the increase rate of the delay time of the sampling pulse according to the section, so that the time axis of the section required for distance measurement is controlled. Increase the magnification only and / or adjust the time axis magnification of the received light pulse to correct the received light pulse waveform distortion. Then, the pulse flight time is obtained from the adjusted time-axis extension wave, and the distance to the object is calculated. As a result, the distance measurement accuracy can be improved without lowering the responsiveness.
  • the optical distance measuring device of the present invention includes at least a light emitting unit, a light receiving unit, a sampling unit, a pulse detecting unit, and a delay time varying unit.
  • the light pulse reflected by the object is received by the sampling means, and the sampling means expands the time axis of the received light signal based on the sampling pulse having a cycle such that the delay time for the irradiation light pulse gradually increases, and the time axis is expanded by the pulse detection means
  • the pulse existence section where the received pulse is present is detected from the wave, the delay time variable means adjusts the increase rate of the delay time of the sampling pulse, and the object is extracted from the time axis extension wave that is extended on the time axis based on the adjusted sampling pulse. Calculate the distance to.
  • the delay time varying means makes the rate of increase of the delay time of the sampling pulse in the noise existence section smaller than the rate of increase of the delay time outside the section. If the time axis is extended by the sampling pulse adjusted in this way, the sample in the noise existence section can be obtained. Since the number of times of reception increases and the reception noise waveform is greatly expanded, it becomes easy to analyze the waveform and specify the peak position with high accuracy, and the distance measurement accuracy can be improved. In addition, by increasing the enlargement ratio only for the part (pulse existence section) necessary for distance measurement, it is possible to suppress a decrease in responsiveness.
  • the method of specifying the peak position includes a method of detecting by simple comparison of the sampled values and a method of detecting a value at which the differential value becomes 0 from the waveform.
  • the delay time variable means increases the rate of increase of the delay time outside the section according to the degree of decrease in the rate of increase of the delay time of the sampling pulse in the pulse existence section. As a result, the number of times of sampling of a portion unnecessary for distance measurement (outside the section where the pulse exists) is reduced, and the response is improved.
  • the delay time variable means may adjust the rate of increase of the delay time in each of the pulse existence section and the delay time outside the section so that the number of samplings for generating one time base extension wave is constant. Is also preferred. As a result, a constant responsiveness is always guaranteed regardless of how the increase rate of the delay time changes.
  • the delay time varying means S adjusts the rate of increase of the delay time of the sampling noise in the pulse existence section so that the time-axis elongation wave in the pulse existence section has a substantially symmetrical waveform around the peak position. It is also preferable to do so. Thereby, the distortion of the received light pulse waveform due to the influence of the disturbance is corrected, so that the waveform analysis and the peak position can be easily specified with high accuracy, and the distance measurement accuracy can be improved. Moreover, since the distortion of the received light pulse waveform is corrected only by adjusting the delay time of the sampling noise, the configuration is simple, and the circuit becomes complicated, the casing becomes large, and the cost does not increase.
  • an integrating means for integrating the time-axis expanded wave is provided, and a pulse change rate minimum point at which the pulse change rate becomes minimum is detected from the time-axis expanded wave by the pulse detecting means. Then, the integration means calculates the integral value of the first section in the first section from the start point of the pulse existence section to the minimum point of the pulse change rate, and the second section in the second section from the minimum point of the pulse change rate to the end point of the pulse existence section. Calculate the integral value of the two sections, and use the delay time variable means to increase the delay time of at least one of the first and second sections so that the integral value of the first section and the integral value of the second section are substantially equal. Can be preferably adopted.
  • a section integration circuit is used as the integration means, and a pulse detection means is used as the pulse detection means. It can be realized with a simple configuration by simply adding a differentiating circuit for detecting the minimum change rate point and a zero-crossing detecting circuit.
  • the pulse detection means may set a pulse existence section from the time when the crest value of the time-axis extended wave exceeds a predetermined threshold (start point) to the time when the peak value falls below the threshold (end point). .
  • start point the time when the crest value of the time-axis extended wave exceeds a predetermined threshold
  • end point the time when the peak value falls below the threshold
  • the pulse detection means may detect a peak position from the time-axis expanded wave, and set a predetermined time before and after the peak position as a pulse existence section.
  • a powerful configuration can be realized by a simple circuit that only detects the minimum point of the panel change rate, for example, and the configuration is simplified. Note that the peak position detected here is not used directly for distance measurement, but is used only for delay time adjustment processing, which is the pre-processing of distance measurement. If the true peak position is included in the existing section, it is good.
  • the present invention can be considered as an optical distance measuring device having at least a part of the above means. Further, the present invention can be considered as an optical distance measuring method including at least a part of the above processing. The above means and processes can be combined with each other as much as possible to constitute the present invention.
  • FIG. 1 is a block diagram showing the configuration of the optical distance measuring device
  • FIG. 2 is a waveform diagram for explaining the operation of the optical distance measuring device.
  • the optical ranging device 1 irradiates a light pulse to the detection target object 2, receives the light pulse reflected by the detection target object 2, and measures the flight time (round trip time) of the light pulse. Then, the distance to the detection target object 2 is calculated. In the present embodiment, it is assumed that the distance between the device and the object is within a few meters.
  • the optical ranging device 1 includes an oscillator 3, a pulse generator 4, a light-emitting element 5, a light-receiving element 6, a waveform amplifier.
  • sampling threshold unit 8 It has a sampling threshold unit 8, a sampling pulse generator 9, an A / D converter 10, a threshold detector 11, a microcontroller 12, a DZA converter 13, and a voltage-delay time converter 14.
  • the oscillator 3 is a circuit that generates the transmission clock signal (a).
  • the transmission clock signal (a) is input to the pulse generator 4 after being inverted, and is used as a reference clock signal for generating irradiation light pulses.
  • the transmission clock signal (a) is also input to the voltage-to-delay time converter 14, and is also used as a reference clock signal for generating a sampling pulse.
  • the pulse generator 4 is a circuit that converts the inverted clock signal (b) into a pulse signal (c) having a minimum time width.
  • the noise signal (c) is input to the light emitting element 5.
  • the noise generator 4 can be composed of, for example, a differentiating circuit.
  • the pulse width of the pulse signal (c) is determined by the time constant set in this circuit.
  • the light emitting element 5 is an element that converts the electric energy of the pulse signal (c) into light energy and emits the light pulse (d) into space. That is, the light emitting element 5 is a light emitting unit that irradiates the detection target object 2 with the light pulse (d) at a fixed time interval synchronized with the transmission clock (a). As the light emitting element 5, a device having a short pulse response such as an LED or a laser diode can be used. The pulse width of the optical pulse (d) is on the order of nanoseconds. This is due to the photoelectric conversion characteristics of the light emitting element 5.
  • the light receiving element 6 is an element that converts light energy into electric energy, and can be configured by a device such as a photodiode. In the present embodiment, a reverse voltage is applied to the photodiode to reduce the capacitance, thereby responding to high-speed pulse light reception.
  • the change in current of the photodiode is converted and amplified into a voltage waveform by a waveform amplifier 7 composed of a ⁇ P amplifier, and output to the sample-and-hold device 8 as a light receiving signal (i). That is, the light receiving element 6 and the waveform amplifier 7 are light receiving means for receiving the light pulse reflected by the detection target object 2.
  • the sample hold unit 8 is a sampling unit that performs sampling (sampling) / hold (hold) of the light receiving signal (i) based on the sampling pulse (h) input from the sampling pulse generator 9.
  • the sampling pulse (h) the sampling period S and the hold period H are repeated in a cycle such that the delay time with respect to the irradiation light pulse (d) gradually increases. Therefore, the light receiving signal (i) can be extended in time axis by repeating the sampling-holding process in the sampler holder 8.
  • the time axis expansion wave (j) is converted into a digital signal by the A / D converter 10 and then input to the microcontroller 12. Further, the time-base expanded wave (j) is also input to the value detector 11.
  • the threshold detector 11 is a pulse detection unit that detects a pulse existence section in which a light receiving pulse exists from the time-axis extended wave (j).
  • the threshold detector 11 includes a comparator, a voltage setting unit, and a level conversion unit, and outputs an H level when the crest value voltage of the time-base expanded wave (j) exceeds a predetermined threshold voltage, and outputs a signal. This is a simple configuration that outputs an L level when the voltage falls below the threshold voltage.
  • the output signal of the threshold detector 11 is input to the microcontroller 12.
  • the microcontroller 12 is an IC that performs digital signal processing according to a program.
  • the microcontroller 12 mainly executes a distance measurement process for calculating a distance to the detection target object 2 based on the time-axis stretched wave (j) and a delay time control process for generating a delay time control pattern. . The details of each process will be described later.
  • the delay time control pattern generated by the microcontroller 12 is converted by the D / A converter 13 into a delay time control signal (e) that is a voltage signal.
  • Delay time control signal (e) Is a signal that repeats monotonically increasing in synchronization with one measurement cycle, and its slope is larger than 0.
  • FIG. 2 shows a ramp signal as an example of the delay time control signal (e).
  • the voltage-delay time converter 14 is a circuit that generates a sampling clock signal (g) having a delay time proportional to the voltage of the delay time control signal (e) based on the transmission clock signal (a). is there. Specifically, the voltage-delay time converter 14 generates the superimposed signal (f) by adding the transmission clock signal (a) and the delay time control signal (e), and inputs the superimposed signal (f) to the inverter. Power. When the signal passes through the inverter, the falling input is output as a rising edge with a small delay proportional to the voltage of the superimposed signal (f).
  • the sampling pulse generator 9 uses the rising edge of the sampling clock signal (g) as a delay clock to generate a sampling pulse (h).
  • FIG. 3 is a flowchart showing the flow of the process of the microcontroller 12.
  • FIG. 4 is a diagram for explaining the variable control of the delay time. The upper part shows the waveform of the delay time control signal, and the lower part shows the time-base extended wave.
  • the microcontroller 12 sets a delay time control pattern to a ramp waveform (step Sl).
  • the ramp waveform is represented by the following equation.
  • a is the slope of the ramp waveform set in advance
  • This delay time control pattern is converted into a voltage signal by the D / A converter 13 and output as a delay time control signal 20 shown by the thin line in the upper part of FIG.
  • the slope of the delay time control signal 20 is constant, the rate of increase in the delay time of the sampling pulse is constant throughout the measurement period. Therefore, the light receiving signal 21 is expanded in a proportional manner as shown by the thin line in the lower part of FIG.
  • the detection target object 2 appears in the detection area of the optical distance measuring device 1 and the light receiving pulse 22 appears in the light receiving signal 21.
  • This light receiving pulse 22 is detected by the value detector 11, (Rise / fall) when crossing the threshold voltage Vth which has been previously set (step S2).
  • an interrupt is activated by the detection signal.
  • the microcontroller 12 records the ON time tl and the OFF time t2 of the light receiving pulse 22 with reference to the start point of the delay time control pattern (0 at the start of one measurement cycle), and records the ⁇ N time tl
  • the center time of the OF time t2 is recorded as a temporary peak time ta (step S3).
  • the pulse ON time tl is the start point of the pulse existence section
  • the pulse OFF time t2 is the end point of the pulse existence section.
  • the microcontroller 12 generates a new delay time control pattern to expand the pulse existence section (Step S4).
  • the rate of increase of the delay time of the sampling pulse in the pulse existence section (tl-t2) is set to be smaller than the increase rate of the delay time outside the section (tO-tl, t2-tc).
  • the length of the measurement period that is, one time-axis extension wave, is generated by appropriately increasing the delay time increase rate outside the section according to the degree of decrease in the delay time increase rate in the pulse existence section. So that the number of times of sampling is constant.
  • the algorithm for generating the delay time control pattern will be described in detail by taking as an example a case where the pulse existence section (tl-t2) is multiplied by n (t ⁇ ′).
  • the microcontroller 12 calculates the ON time tl ′ and the OFF time Ijt2 ′ after the pulse existence section is expanded using the following equation, with the temporary peak time ta as the center.
  • the microcontroller 12 determines the section before the pulse existence section (tO-tl '), the panelless section (t-t2'), and the section after the pulse existence section ( ⁇ 2'-tc).
  • the control waveform of each delay time control pattern is set as follows.
  • This delay time control pattern is converted into a voltage signal by the DZA converter 13, and is output as a delay time control signal 23 indicated by a bold line in the upper part of FIG.
  • the slope of the delay time control signal 23 in the pulse existence section becomes gentler as 1 / n times as compared with the initial state (ramp waveform), and the increase rate of the delay time in this section becomes relatively small.
  • the sampling pulse generated based on the delay time control signal 23 is used, the number of times of sampling in the pulse existence section increases. Therefore, as shown by the bold line in the lower part of FIG. 4, a time-axis extended wave in which the waveform of the light receiving pulse 25 of the light receiving signal 24 is greatly enlarged is obtained, and the resolution around the light receiving pulse 25 can be increased.
  • the slope of the delay time control signal 23 outside the pulse existence section becomes larger than in the initial state, and the rate of increase of the delay time in this section becomes relatively large. Therefore, the number of times of sampling of a portion unnecessary for distance measurement is reduced, and a decrease in responsiveness is suppressed.
  • the voltage value of the delay time control signal 23 at time tc is set to be the same value as in the case of the ramp waveform condition, so that the constant value is always constant regardless of the change rate of the delay time. Responsiveness (length of measurement period) is guaranteed.
  • the distance measurement process is performed using the time-base stretched wave after the pulse existence section is expanded (step S5).
  • the light receiving pulse 25 in the time-axis expanded wave is detected by the threshold detector 11.
  • an interrupt is activated by the detection signal.
  • the microcontroller 12 sequentially captures and records the peak value of the received light pulse 25 from the A / D converter 10 during the time tl'-t2 ', and then specifies the peak time tp of the enlarged waveform. Since the waveform of the light receiving pulse 25 is magnified n times, it is possible to analyze the waveform and specify the peak position with high accuracy. Then, the microcontroller 12 converts the peak time tp of the enlarged waveform into the actual peak time tr by the following equation.
  • the distance d to the detection target object 2 is calculated by the following equation.
  • c is the speed of light
  • the microcontroller 12 sets the delay time control pattern to the initial ramp waveform, and the light reception noise appears again. Wait until the operation is completed (step S6).
  • the delay time control pattern is once set to the ramp waveform. Then, the same pattern generation algorithm as described above is applied to the received light pulse.
  • the distance measurement accuracy can be improved with a simple and small circuit configuration without lowering the response.
  • FIG. 5 shows a configuration of an optical distance measuring apparatus according to a second embodiment of the present invention.
  • the optical distance measuring device 30 of the present embodiment is provided with a peak detector 31 instead of the threshold value detector 11 of the optical distance measuring device 1 of the first embodiment. Since other circuit configurations are the same as those of the first embodiment, the same reference numerals are given and the detailed description is omitted.
  • the peak detector 31 detects a pulse existence section in which the received light pulse exists from the time-axis extended wave. It is a pulse detecting means for detecting.
  • the peak detector 31 is composed of a differentiating circuit and a zero-cross detection circuit, and when the rate of change of the crest value of the time base extension wave becomes the minimum (when it is estimated that the peak is reached), the microcontroller 12 detects the peak value. Send a signal.
  • an interrupt is activated by the detection signal.
  • the microcontroller 12 records the time as a temporary peak time ta, and sets [peak time ta—predetermined time width] to the start time tl of the pulse existence section and [peak time ta + predetermined time width]. Record as the end time t2 of the pulse existence section. Subsequent processing is the same as that of the first embodiment.
  • FIG. 6 shows a configuration of an optical distance measuring apparatus according to a third embodiment of the present invention.
  • the optical distance measuring apparatus 40 of the present embodiment is provided with a threshold / peak detector 41 instead of the threshold detector 11 of the optical distance measuring apparatus 1 of the first embodiment. Is added. Since other circuit configurations are the same as those of the first embodiment, the same reference numerals are given and detailed description is omitted.
  • the threshold / peak detector 41 is a pulse detection unit having a circuit configuration in which the threshold detector 11 of the first embodiment and the peak detector 31 of the second embodiment are combined, The start point and end point of the pulse existence section and the pulse change rate minimum point at which the pulse change rate is minimum are detected.
  • the section integration circuit 42 is an integration means for integrating the time-base extended wave. Each output signal is input to the microcontroller 12.
  • steps S 1 and S 2 a process of generating a ramp waveform delay time control pattern and a process of detecting a received light pulse are performed in the same manner as in the first embodiment.
  • the microcontroller 12 When the threshold / peak detector 41 detects a light receiving pulse, the microcontroller 12 starts an interrupt by the detection signal. As shown in FIG. 7, the microcontroller 12 records the start time tl and the end time t2 of the pulse existence section of the light receiving pulse 43 based on the detection signal from the threshold Z peak detector 41, The minimum point And record the time as tp (step S3).
  • the microcontroller 12 generates a new delay time control pattern to correct the distortion of the received light pulse waveform (Step S4).
  • the time-axis extended wave in the pulse existence section is made to have a substantially symmetrical waveform around the peak time tp.
  • the microcontroller 12 uses the section integration circuit 42 to calculate the first section integration value (area Sip) in the first section from the start time tl to the peak time tp, and the first section integrated value (area Sip) from the peak time tp to the end time t2. Obtain the second section integral value (area Sp2) in the second section.
  • the areas Sip and Sp2 are expressed by the following equations.
  • v (t) is the peak value (voltage value) of the received light pulse at time t.
  • the area Sip and the area Sp2 are compared, and the rate of increase of the delay time of at least one of the first section and the second section is adjusted so that both values are substantially equal. This is based on the fact that increasing the rate of increase in the delay time increases the number of samplings and increases the area, and conversely, decreasing the rate of increase decreases the area.
  • the delay time control pattern generated by the microcontroller 12 is converted into a voltage signal by the D / A converter 13, and output as a delay time control signal.
  • the slope of the delay time control signal in the second section is increased in the case of Sip and Sp2, and is reduced in the case of Slp> Sp2.
  • This method is the simplest because the value of the area Sip does not change.
  • the timing of the first section is reduced in the case of Sip ⁇ Sp2, and the slope of the first section is increased in the case of Slp> Sp2.
  • the slope of the second section also changes.
  • the method of FIG. 10 combines “correction processing of waveform distortion” and “enlargement processing of pulse existence sections” described in the first embodiment. That is, at the start of the pulse existence section From the time tl and the end time t2, find the expanded times tl 'and X2'.If Slp ⁇ Sp2, make the slope of the section tp—12' larger than the slope of the section t1 '1 tp, and set Slp> Sp2 Reverse if you want. According to this method, since the received light pulse is enlarged, it is possible to accurately correct waveform distortion.
  • the received pulse force was expanded backward as shown by the broken line in FIG. It was shaped like a waveform without distortion.
  • the distance measurement process is performed using the time-base expanded wave after the distortion correction.
  • Subsequent processing (steps S5 and S6) is the same as in the first embodiment.
  • the distortion of the received light pulse waveform due to the influence of disturbance is corrected, it is easy to analyze the waveform and specify the peak position with high accuracy, and to measure the distance. Accuracy can be improved. Since the distortion of the received pulse waveform is corrected only by adjusting the delay time of the sampling pulse, the configuration is simple, the circuit is complicated, and the size of the housing is not increased and the cost is not increased. Also, as is clear from FIGS. 8 to 10, the length of one measurement period is constant, and the response does not decrease.
  • the delay time control may be performed by a curve function according to a distortion pattern or the like.
  • the peak position is used for calculating the distance, but it is also preferable to use the barycentric position of the time-axis stretched wave instead of the peak position. Even when the peak position is difficult to identify due to waveform distortion due to the influence of disturbance, the distance measurement error can be reduced by using the center of gravity position.
  • the present invention can be used for a general-purpose photoelectric sensor, and more preferably a distance for short-distance measurement.
  • the present invention can be used for a detachable photoelectric sensor.
  • This type of photoelectric sensor is used, for example, for a manufacturing device or an industrial robot for controlling a positioning sensor, a detection sensor for detecting an intruder or an intruder, an inter-vehicle sensor (on-vehicle optical radar device), a vehicle sensor. It can be applied to various uses.
  • FIG. 14 shows a configuration example of an inter-vehicle sensor to which the present invention is applied.
  • Fig. 14 shows the road viewed from above.
  • the inter-vehicle sensor 50 is an on-vehicle optical radar device mounted on the vehicle 51.
  • the inter-vehicle sensor 50 measures the distance (inter-vehicle distance) between a preceding vehicle (vehicle in front) 52 and a following vehicle (vehicle in rear) 53 using light pulses.
  • the above-described correction of the received light pulse waveform distortion it is possible to achieve both responsiveness and inter-vehicle distance measurement accuracy with a simple and compact configuration.
  • the inter-vehicle sensor 50 may be provided with a function (relative speed calculating means) for calculating a relative speed with respect to the preceding vehicle 52 or the following vehicle 53 based on a plurality of distance measurement results. For example, if the distance measurement is performed continuously at a fixed time interval, the relative speed between the preceding vehicle 52 or the following vehicle 53 and the own vehicle can be easily calculated from the temporal change of the inter-vehicle distance.
  • the calculated relative speed information can be used for speed control of vehicle 51, collision prevention control, and the like. Furthermore, as shown in FIG.
  • the inter-vehicle sensor 50 on-vehicle optical radar device
  • the inter-vehicle sensor 50 can also detect an obstacle other than a vehicle and measure the distance to the obstacle other than the inter-vehicle distance.
  • FIG. 1 is a block diagram showing a configuration of an optical distance measuring apparatus according to a first embodiment.
  • FIG. 2 is a waveform chart for explaining the operation of the optical distance measuring apparatus in FIG. 1.
  • FIG. 3 is a flowchart showing a processing flow of a microcontroller in FIG. 1.
  • FIG. 4 is a diagram for explaining variable control of a delay time according to the first embodiment.
  • FIG. 5 is a block diagram showing a configuration of an optical distance measuring apparatus according to a second embodiment.
  • FIG. 6 is a block diagram showing a configuration of an optical distance measuring apparatus according to a third embodiment.
  • FIG. 7 is a view for explaining variable control of a delay time in a third embodiment.
  • FIG. 8 is a diagram for explaining a method 1 for adjusting a delay time increase rate.
  • FIG. 9 is a diagram for explaining a delay time increase rate adjustment method 2.
  • FIG. 10 is a diagram for explaining a delay time increase rate adjustment method 3.
  • FIG. 11 is a diagram illustrating the effect of distortion correction of a received light pulse waveform.
  • FIG. 12 is a diagram for explaining the principle of the triangulation method.
  • FIG. 13 is a diagram for explaining distortion of a received light pulse waveform.
  • FIG. 14 is a diagram showing a configuration example of an inter-vehicle sensor.
  • Threshold / peak detector Section integration circuit Light receiving pulse

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Upon detection of pulse present intervals (t1 to t2) where a reception pulse (22) exists from a reception signal (21), inclination of a delay time control signal (23) in the intervals is decreased. When a sampling pulse generated according to the delay time control signal (23) is used, the number of samplings in the pulse present intervals is increased. Accordingly, it is possible to obtain a time axis-expanded wave in which the reception pulse (25) of the reception signal (24) has a waveform greatly enlarged and improve the resolution of the periphery of the reception pulse (25). On the other hand, inclination of the delay time control signal (23) out of the pulse present intervals is increased. Thus, it is possible to improve the distance measurement accuracy without lowering the response.

Description

明 細 書  Specification
光測距装置および光測距方法、並びに、車載用光レーダ装置  Optical ranging device, optical ranging method, and in-vehicle optical radar device
技術分野  Technical field
[0001] 本発明は、光パルスを用いて物体までの距離を測定する技術に関する。  The present invention relates to a technique for measuring a distance to an object using a light pulse.
背景技術  Background art
[0002] 物体に光パルスを照射し、その物体で反射された光パルスを受光することによって 、物体までの距離を測定する光測距装置が知られている。この光測距装置の距離測 定方法としては、位置検出素子(PSD ; Position Sensitive Device)を用いた三 角測距方式と、光パルスの往復時間を計測するパルス飛行時間方式の 2つに大別 することができる (例えば、非特許文献 1参照)。  [0002] An optical distance measuring device that irradiates an object with a light pulse and receives the light pulse reflected by the object to measure the distance to the object is known. There are two major methods for measuring the distance of this optical distance measuring device: a triangular distance measuring method using a position detection device (PSD) and a pulse flight time method that measures the round trip time of an optical pulse. (See, for example, Non-Patent Document 1).
[0003] 三角測距方式は、図 12に示すように、相似する 2つの直角三角形 100, 101の 2辺 の比が等しいことを利用して物体 103までの距離 dを測定するもので、簡易な構成で 比較的高精度な距離計測が実現できるという特徴がある。  [0003] The triangulation method, as shown in Fig. 12, measures the distance d to an object 103 by using the ratio of two sides of two similar right triangles 100 and 101 to each other. The feature is that relatively high-accuracy distance measurement can be realized with a simple configuration.
[0004] し力 ながら、この方式では、 PSD104で計測される変化量 Xが近距離で大きぐ遠 距離で小さくなる。よって、長距離測定で高分解能を得るには送受信間距離 Lおよび 焦点距離 fを大きくする必要があり、筐体が大型化するという課題がある。同様に一定 の分解能を保証しょうとすると計測レンジが狭くなるため、距離レンジに応じた複数形 式の品揃えが必要となり、設計製造に力かるコストが増大するという課題もある。  [0004] However, in this method, the change amount X measured by the PSD 104 becomes large at a short distance and becomes small at a long distance. Therefore, in order to obtain high resolution in long-distance measurement, it is necessary to increase the distance L between transmission and reception and the focal length f, and there is a problem that the casing becomes large. Similarly, in order to guarantee a certain resolution, the measurement range becomes narrower, so that multiple types of products are required according to the distance range, and the cost of designing and manufacturing increases.
[0005] 一方、パルス飛行時間方式では光パルスが物体との間を往復する時間に光の速度 を乗じて距離測定を行う。このようにパルス飛行時間方式では原理的に送受信間距 離や焦点距離を大きく確保する必要がないため筐体の小型化に適するという特徴が ある。また単一の光学系機構で短距離力 長距離まで同一の分解能で測定できるた め、一機種で幅広い距離レンジをカバーする事が可能である。  [0005] On the other hand, in the pulse time-of-flight method, the distance is measured by multiplying the time required for a light pulse to reciprocate with an object by the speed of light. In this way, the pulse time-of-flight method has a feature that it is suitable for miniaturization of the housing because it is not necessary to secure a large distance between transmission and reception and a focal length in principle. In addition, since a single optical system can measure short distance force and long distance with the same resolution, a single model can cover a wide range of distances.
[0006] パルス飛行時間方式ではパルス往復時間がナノ秒オーダーと非常に短く直接計測 が困難であるため、通常、等価時間サンプリングによる時間軸伸張処理が用いられる 。時間軸伸張とは、照射光パルスに対して漸次遅延するサンプリングノ^レスを生成し 、このパルスのタイミングで受光信号をサンプリングすることにより時間軸上で波形の 等比拡大を行うものである。これによりマイクロコントローラ等の比較的低速な計時手 段を用いても精度の高い距離算出が可能となる。 [0006] In the pulse time-of-flight method, since the pulse reciprocation time is extremely short, on the order of nanoseconds, and direct measurement is difficult, a time axis expansion process by equivalent time sampling is usually used. The time axis expansion means that a sampling noise that gradually delays with respect to the irradiation light pulse is generated, and the light reception signal is sampled at the timing of this pulse to form a waveform on the time axis. This is to increase the geometric ratio. As a result, highly accurate distance calculation can be performed even when a relatively low-speed timing device such as a microcontroller is used.
[0007] なお、技術分野は異なる力 電波センサに関しては、時間軸伸張処理において反 射波のピーク位置を複数回サンプリングし累積加算することによって SZN比を向上 させる手法が提案されてレ、る(特許文献 1参照)。  [0007] With respect to force radio sensors in different technical fields, a technique has been proposed to improve the SZN ratio by sampling the peak position of the reflected wave a plurality of times and accumulatively adding the peak position in the time axis expansion process ( Patent Document 1).
非特許文献 1 :井口征士,佐藤宏介, 「三次元画像計測」,昭晃堂, 1990年 特許文献 1 :特開 2001 - 264419号公報  Non-patent document 1: Seiji Iguchi, Kosuke Sato, "Three-dimensional image measurement", Shokodo, 1990 Patent document 1: Japanese Patent Application Laid-Open No. 2001-264419
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 従来の光測距装置では、距離分解能を高めることで良好な測定精度を得ようとする 場合、サンプリングパルスの遅延時間変化を小さくし (サンプリング回数を増やし)、時 間軸拡大率を増加する手法が採られることが一般的である。しかし、時間軸拡大率を 増加すると、それに伴い測定周期が延び、応答性能が低下するという弊害を招いて しまう。つまり、パルス飛行時間方式の光測距装置にあっては、「応答性」と「距離測 定精度」の間にトレードオフの関係があり、その両立を図ることが困難であった。  [0008] In a conventional optical distance measuring device, in order to obtain good measurement accuracy by increasing the distance resolution, the delay time change of the sampling pulse is reduced (the number of times of sampling is increased), and the time axis expansion rate is increased. Generally, an increasing approach is taken. However, when the time axis expansion rate is increased, the measurement cycle is extended and the response performance is degraded. That is, in the pulse-time-of-flight optical distance measuring device, there is a trade-off relationship between "response" and "distance measurement accuracy", and it has been difficult to achieve both.
[0009] そこで、本発明者は、上記特許文献 1の技術を光測距装置に転用し、受光パルス のピーク位置のみを複数回サンプリングすることで応答性の低下を抑えることができ ないか、検討を行った。ところ力 光測距装置の場合には、本手法は逆に距離測定 誤差を増大させるおそれがあることが判明した。これは、電波センサではピコ秒ォー ダ一のパルス幅の急峻なパルスが用いられるためピーク位置を高い精度で検出可能 であるのに対し、光パルスのパルス幅はナノ秒オーダーであるため、ピーク位置の検 出精度が単純計算で 1000倍程度劣るからであると考えられる。  [0009] Therefore, the present inventor has diverted the technique of Patent Document 1 to an optical distance measuring device, and could not suppress a decrease in responsiveness by sampling only the peak position of the received light pulse a plurality of times. Study was carried out. However, in the case of a force photometric device, it was found that this method could increase the distance measurement error. This is because a radio sensor uses a pulse with a steep pulse width on the order of picoseconds to detect the peak position with high accuracy, whereas the pulse width of an optical pulse is on the order of nanoseconds. It is considered that the accuracy of peak position detection is about 1000 times lower than that of simple calculation.
[0010] しかも、光パルスは電波に比べて波長が短いため、反射対象の傾斜、反射対象表 面の凹凸、大気の揺らぎによる伝搬空間ムラなどの外乱の影響を受けやすい。それ ゆえ、異なる光路を経て異なる時間遅延を受けた複数の光パルスが合成された波形 が観測されることとなり、受光パルス波形に歪みが発生する。図 13は受光パルス波形 の一例であり、破線は理想的な測定環境で得られた波形を示し、実線は外乱を意図 的に与えた場合の波形を示してレ、る。後者にはパルス脹らみやピーク双峰ィ匕が確認 される(特にピーク位置の後の区間が脹らむ傾向にある。)。このような受光パルス波 形歪みが生じると、ピーク位置の特定が困難になり、距離測定精度が悪化する。 [0010] Furthermore, since the light pulse has a shorter wavelength than the radio wave, the light pulse is susceptible to disturbances such as the inclination of the object to be reflected, the unevenness of the surface of the object to be reflected, and the unevenness of the propagation space due to the fluctuation of the atmosphere. Therefore, a waveform in which a plurality of optical pulses that have undergone different time delays via different optical paths are synthesized is observed, and the received light pulse waveform is distorted. Fig. 13 shows an example of the received light pulse waveform. The broken line shows the waveform obtained in an ideal measurement environment, and the solid line shows the waveform when disturbance is intentionally applied. In the latter, pulse swelling and peak bimodality were confirmed (Particularly, the section after the peak position tends to expand). If such a received pulse waveform distortion occurs, it becomes difficult to specify the peak position, and the distance measurement accuracy is deteriorated.
[0011] なお、波形歪みの問題に対しては、 A/D変換器とマイコンを用いて受光パルス波 形を一括してメモリに格納しディジタル信号処理による波形整形を行う対処策も考え られる。し力、しこの場合、回路の複雑化 ·筐体の大型化'コスト増といった別の問題が 生じ、パルス飛行時間方式の光測距装置のサイズメリットを損う結果となり好ましくな レ、。 Regarding the problem of waveform distortion, a countermeasure to collectively store the received pulse waveform in a memory using an A / D converter and a microcomputer and perform waveform shaping by digital signal processing is also conceivable. In this case, another problem such as an increase in the complexity of the circuit and an increase in the size of the housing and an increase in cost arises, and the size advantage of the pulse-time-of-flight optical distance measuring device is impaired.
[0012] 本発明は上記実情に鑑みてなされたものであって、その目的とするところは、簡易 力、つ小型な構成で応答性と距離測定精度の両立を図ることが可能な技術を提供す ることにある。  [0012] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technology capable of achieving both responsiveness and distance measurement accuracy with a simple and compact configuration. To do so.
課題を解決するための手段  Means for solving the problem
[0013] 上記目的を達成するために、本発明の光測距装置は、サンプリングパルスの遅延 時間の増加率を区間に応じて可変制御することによって、距離測定に必要となる区 間の時間軸拡大率のみを大きくし、または/かつ、受光パルス波形歪みを矯正する ように受光パルスの時間軸拡大率を調整する。そして、調整後の時間軸伸張波から パルス飛行時間を求め、物体までの距離を算出する。これにより、応答性を低下させ ることなく距離測定精度を向上させることができる。  [0013] In order to achieve the above object, the optical distance measuring apparatus of the present invention variably controls the increase rate of the delay time of the sampling pulse according to the section, so that the time axis of the section required for distance measurement is controlled. Increase the magnification only and / or adjust the time axis magnification of the received light pulse to correct the received light pulse waveform distortion. Then, the pulse flight time is obtained from the adjusted time-axis extension wave, and the distance to the object is calculated. As a result, the distance measurement accuracy can be improved without lowering the responsiveness.
[0014] 詳しくは、本発明の光測距装置は、少なくとも発光手段、受光手段、サンプリング手 段、パルス検出手段および遅延時間可変手段を備え、発光手段で物体に光パルス を照射し、受光手段で物体で反射された光パルスを受光し、サンプリング手段で照射 光パルスに対する遅延時間が漸次増加するような周期を有するサンプリングパルス に基づき受光信号の時間軸伸張を行い、パルス検出手段で時間軸伸張波から受光 パルスの存在するパルス存在区間を検出し、遅延時間可変手段でサンプリングパル スの遅延時間の増加率を調整し、調整されたサンプリングパルスに基づき時間軸伸 張した時間軸伸張波から物体までの距離を算出する。  More specifically, the optical distance measuring device of the present invention includes at least a light emitting unit, a light receiving unit, a sampling unit, a pulse detecting unit, and a delay time varying unit. The light pulse reflected by the object is received by the sampling means, and the sampling means expands the time axis of the received light signal based on the sampling pulse having a cycle such that the delay time for the irradiation light pulse gradually increases, and the time axis is expanded by the pulse detection means The pulse existence section where the received pulse is present is detected from the wave, the delay time variable means adjusts the increase rate of the delay time of the sampling pulse, and the object is extracted from the time axis extension wave that is extended on the time axis based on the adjusted sampling pulse. Calculate the distance to.
[0015] ここで、遅延時間可変手段が、ノ^レス存在区間におけるサンプリングパルスの遅延 時間の増加率を区間外における遅延時間の増加率よりも小さくするとよい。このように 調整されたサンプリングパルスで時間軸伸張を行えば、ノ^レス存在区間でのサンプリ ング回数が増加し受光ノ^レス波形が大きく拡大されるので、波形の解析やピーク位 置の高精度な特定が容易となり、距離測定精度を向上させることができる。しかも、距 離測定に必要な部分 (パルス存在区間)のみ拡大率を上げることで、応答性の低下 を抑制することができる。ピークの位置の特定には、サンプリングする値の単純比較 により検出する手法や波形から微分値が 0になる値を検出する手法などがある。 [0015] Here, it is preferable that the delay time varying means makes the rate of increase of the delay time of the sampling pulse in the noise existence section smaller than the rate of increase of the delay time outside the section. If the time axis is extended by the sampling pulse adjusted in this way, the sample in the noise existence section can be obtained. Since the number of times of reception increases and the reception noise waveform is greatly expanded, it becomes easy to analyze the waveform and specify the peak position with high accuracy, and the distance measurement accuracy can be improved. In addition, by increasing the enlargement ratio only for the part (pulse existence section) necessary for distance measurement, it is possible to suppress a decrease in responsiveness. The method of specifying the peak position includes a method of detecting by simple comparison of the sampled values and a method of detecting a value at which the differential value becomes 0 from the waveform.
[0016] このとき、遅延時間可変手段が、パルス存在区間におけるサンプリングパルスの遅 延時間の増加率の減少度合いに応じて、区間外における遅延時間の増加率を増加 するとよレ、。これにより、距離測定に不要な部分 (パルス存在区間外)のサンプリング 回数が減るので、応答性が向上する。  [0016] At this time, the delay time variable means increases the rate of increase of the delay time outside the section according to the degree of decrease in the rate of increase of the delay time of the sampling pulse in the pulse existence section. As a result, the number of times of sampling of a portion unnecessary for distance measurement (outside the section where the pulse exists) is reduced, and the response is improved.
[0017] また、遅延時間可変手段が、 1つの時間軸伸張波を生成するためのサンプリング回 数が一定になるように、パルス存在区間と区間外それぞれの遅延時間の増加率を調 整することも好ましい。これにより、遅延時間の増加率がどのように変化しても常に一 定の応答性が保証される。  [0017] Further, the delay time variable means may adjust the rate of increase of the delay time in each of the pulse existence section and the delay time outside the section so that the number of samplings for generating one time base extension wave is constant. Is also preferred. As a result, a constant responsiveness is always guaranteed regardless of how the increase rate of the delay time changes.
[0018] 遅延時間可変手段力 S、パルス存在区間における時間軸伸張波がピーク位置を中 心に略対称な波形となるように、パルス存在区間におけるサンプリングノ^レスの遅延 時間の増加率を調整することも好ましい。これにより、外乱の影響に起因する受光パ ノレス波形の歪みが補正されるので、波形の解析やピーク位置の高精度な特定が容 易となり、距離測定精度を向上させることができる。しかも、受光パルス波形の歪み補 正をサンプリングノ^レスの遅延時間調整だけで行うので、構成が簡易であり、回路の 複雑化 ·筐体の大型化 ·コスト増を招くことがなレ、。  [0018] The delay time varying means S adjusts the rate of increase of the delay time of the sampling noise in the pulse existence section so that the time-axis elongation wave in the pulse existence section has a substantially symmetrical waveform around the peak position. It is also preferable to do so. Thereby, the distortion of the received light pulse waveform due to the influence of the disturbance is corrected, so that the waveform analysis and the peak position can be easily specified with high accuracy, and the distance measurement accuracy can be improved. Moreover, since the distortion of the received light pulse waveform is corrected only by adjusting the delay time of the sampling noise, the configuration is simple, and the circuit becomes complicated, the casing becomes large, and the cost does not increase.
[0019] 歪み補正のための詳しい構成としては、時間軸伸張波を積分する積分手段を設け 、パルス検出手段で時間軸伸張波からパルスの変化率が最小となるパルス変化率最 小点を検出し、積分手段でパルス存在区間の開始点からパルス変化率最小点まで の第 1区間における第 1区間積分値、および、パルス変化率最小点からパルス存在 区間の終了点までの第 2区間における第 2区間積分値を算出し、遅延時間可変手段 で第 1区間積分値と第 2区間積分値とが略等しくなるように第 1区間と第 2区間の少な くともいずれかの遅延時間の増加率を調整する構成を好ましく採用できる。かかる構 成であれば、たとえば、積分手段として区間積分回路を、パルス検出手段にパルス 変化率最小点を検出するための微分回路とゼロクロス検知回路を追加するだけの簡 易な構成で実現可能である。 [0019] As a detailed configuration for distortion correction, an integrating means for integrating the time-axis expanded wave is provided, and a pulse change rate minimum point at which the pulse change rate becomes minimum is detected from the time-axis expanded wave by the pulse detecting means. Then, the integration means calculates the integral value of the first section in the first section from the start point of the pulse existence section to the minimum point of the pulse change rate, and the second section in the second section from the minimum point of the pulse change rate to the end point of the pulse existence section. Calculate the integral value of the two sections, and use the delay time variable means to increase the delay time of at least one of the first and second sections so that the integral value of the first section and the integral value of the second section are substantially equal. Can be preferably adopted. In such a configuration, for example, a section integration circuit is used as the integration means, and a pulse detection means is used as the pulse detection means. It can be realized with a simple configuration by simply adding a differentiating circuit for detecting the minimum change rate point and a zero-crossing detecting circuit.
[0020] パルス検出手段は、時間軸伸張波の波高値が所定のしきい値を越えた時刻(開始 点)からそのしきい値を下回った時刻(終了点)までをパルス存在区間とするとよい。 かかる構成であれば、たとえば、波高値電圧としきい値電圧との比較結果を出力する だけの単純な回路でも実現でき、構成の簡易化を図ることができる。また、ピーク位 置とは無関係にパルス存在区間を決定するので、受光パルス波形が歪んでいる場合 であっても正しくパルス存在区間を検出可能である。また、パルス存在区間の中点を ピークの位置として捉えることもできるし、あらかじめノ^レス波形の歪みが分かってい る場合にはその歪みを考慮して区間内の所定の位置をピークとして距離を測定する こと力 sできる。  [0020] The pulse detection means may set a pulse existence section from the time when the crest value of the time-axis extended wave exceeds a predetermined threshold (start point) to the time when the peak value falls below the threshold (end point). . With such a configuration, for example, a simple circuit that only outputs a comparison result between the peak value voltage and the threshold voltage can be realized, and the configuration can be simplified. Further, since the pulse existence section is determined irrespective of the peak position, the pulse existence section can be correctly detected even when the received light pulse waveform is distorted. In addition, the midpoint of the pulse existence section can be regarded as the peak position, and when the distortion of the noise waveform is known in advance, the distance is set to a predetermined position in the section in consideration of the distortion. Can measure force s.
[0021] あるいは、パルス検出手段は、時間軸伸張波からピーク位置を検出し、そのピーク 位置の前後の所定時間をパルス存在区間としてもよい。力かる構成も、たとえば、パ ノレス変化率の最小点を検出するだけの単純な回路で実現でき、構成が簡易となる。 なお、ここで検出するピーク位置は、距離測定に直接使用するものではなぐ距離測 定の前段の処理にあたる遅延時間調整処理に利用されるにすぎないので、多少の 検出誤差は許容される(パルス存在区間内に真のピーク位置が含まれてレ、ればよレヽ 。)。  [0021] Alternatively, the pulse detection means may detect a peak position from the time-axis expanded wave, and set a predetermined time before and after the peak position as a pulse existence section. A powerful configuration can be realized by a simple circuit that only detects the minimum point of the panel change rate, for example, and the configuration is simplified. Note that the peak position detected here is not used directly for distance measurement, but is used only for delay time adjustment processing, which is the pre-processing of distance measurement. If the true peak position is included in the existing section, it is good.)
[0022] 本発明は、上記手段の少なくとも一部を有する光測距装置として捉えることができる 。また、本発明は、上記処理の少なくとも一部を含む光測距方法として捉えることもで きる。なお、上記手段および処理の各々は可能な限り互いに組み合わせて本発明を 構成すること力 Sできる。  [0022] The present invention can be considered as an optical distance measuring device having at least a part of the above means. Further, the present invention can be considered as an optical distance measuring method including at least a part of the above processing. The above means and processes can be combined with each other as much as possible to constitute the present invention.
発明の効果  The invention's effect
[0023] 本発明によれば、簡易かつ小型な構成で応答性と距離測定精度の両立を図ること が可能となる。  According to the present invention, it is possible to achieve both responsiveness and distance measurement accuracy with a simple and small configuration.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下に図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明する [0025] (第 1の実施形態) Preferred embodiments of the present invention will be illustratively described in detail below with reference to the drawings. (First Embodiment)
まずは、図 1と図 2を参照して本発明の第 1の実施形態に係る光測距装置の基本構 成を説明する。図 1は光測距装置の構成を示すブロック図であり、図 2は光測距装置 の動作を説明するための波形図である。  First, a basic configuration of an optical distance measuring apparatus according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram showing the configuration of the optical distance measuring device, and FIG. 2 is a waveform diagram for explaining the operation of the optical distance measuring device.
[0026] この光測距装置 1は、検知対象物体 2に光パルスを照射し、その検知対象物体 2で 反射された光パルスを受光し、光パルスの飛行時間 (往復時間)を計測することによ つて検知対象物体 2までの距離を算出する。本実施形態では、装置 -物体間距離が 数メートノレ以内の近距離測定を行う装置を想定している。 [0026] The optical ranging device 1 irradiates a light pulse to the detection target object 2, receives the light pulse reflected by the detection target object 2, and measures the flight time (round trip time) of the light pulse. Then, the distance to the detection target object 2 is calculated. In the present embodiment, it is assumed that the distance between the device and the object is within a few meters.
[0027] 光測距装置 1は、発振器 3、パルス生成器 4、発光素子 5、受光素子 6、波形増幅器[0027] The optical ranging device 1 includes an oscillator 3, a pulse generator 4, a light-emitting element 5, a light-receiving element 6, a waveform amplifier.
7、サンプノレホールド器 8、サンプリングパルス生成器 9、 A/D変換器 10、しきい値 検出器 11、マイクロコントローラ 12、 DZA変換器 13、電圧一遅延時間変換器 14を 備える。 7. It has a sampling threshold unit 8, a sampling pulse generator 9, an A / D converter 10, a threshold detector 11, a microcontroller 12, a DZA converter 13, and a voltage-delay time converter 14.
[0028] 発振器 3は、送信クロック信号 (a)を生成する回路である。この送信クロック信号 (a) は反転された後にパルス生成器 4に入力され、照射光パルスを生成するための基準 クロック信号として利用される。また、送信クロック信号 (a)は電圧一遅延時間変換器 1 4にも入力され、サンプリングパルスを生成するための基準クロック信号としても利用 される。発振器 3は、たとえば CR回路とインバータから構成することができる。この場 合、クロック周波数( = 1/ (2. 2CR) )が、光パルスの往復時間(検知最大距離 X 2 /光速)以下となるように CR時定数を設定するとよい。  [0028] The oscillator 3 is a circuit that generates the transmission clock signal (a). The transmission clock signal (a) is input to the pulse generator 4 after being inverted, and is used as a reference clock signal for generating irradiation light pulses. The transmission clock signal (a) is also input to the voltage-to-delay time converter 14, and is also used as a reference clock signal for generating a sampling pulse. The oscillator 3 can be composed of, for example, a CR circuit and an inverter. In this case, the CR time constant should be set so that the clock frequency (= 1 / (2.2CR)) is less than or equal to the round trip time of the optical pulse (maximum detection distance X2 / light speed).
[0029] パルス生成器 4は、クロック反転信号 (b)を極小時間幅のパルス信号 (c)に変換す る回路である。ノ^レス信号 (c)は発光素子 5に入力される。ノ^レス生成器 4は、たとえ ば微分回路から構成することができる。この回路に設定された時定数によりパルス信 号(c)のパルス幅が決定される。  [0029] The pulse generator 4 is a circuit that converts the inverted clock signal (b) into a pulse signal (c) having a minimum time width. The noise signal (c) is input to the light emitting element 5. The noise generator 4 can be composed of, for example, a differentiating circuit. The pulse width of the pulse signal (c) is determined by the time constant set in this circuit.
[0030] 発光素子 5は、パルス信号(c)の電気工ネルギーを光エネルギーに変換し、光パル ス(d)を空間に放射する素子である。つまり、発光素子 5は、送信クロック(a)に同期し た一定の時間間隔で、検知対象物体 2に光パルス (d)を照射する発光手段である。 発光素子 5としては、 LEDまたはレーザダイオードなどの短パルス応答性のよいデバ イスを用いることができる。なお、光パルス(d)のパルス幅はナノ秒オーダーとなるが、 これは発光素子 5の光電変換特性に起因している。 [0030] The light emitting element 5 is an element that converts the electric energy of the pulse signal (c) into light energy and emits the light pulse (d) into space. That is, the light emitting element 5 is a light emitting unit that irradiates the detection target object 2 with the light pulse (d) at a fixed time interval synchronized with the transmission clock (a). As the light emitting element 5, a device having a short pulse response such as an LED or a laser diode can be used. The pulse width of the optical pulse (d) is on the order of nanoseconds. This is due to the photoelectric conversion characteristics of the light emitting element 5.
[0031] 受光素子 6は、光エネルギーを電気エネルギーに変換する素子であり、フォトダイ オードなどのデバイスで構成可能である。本実施形態では、フォトダイオードに逆電 圧を印加し低容量ィ匕することで高速パルス受光への対応を図ってレ、る。フォトダイォ ードの電流変化は、〇Pアンプで構成される波形増幅器 7にて電圧波形へ変換 ·増幅 され、受光信号 (i)としてサンプルホールド器 8へ出力される。つまり、受光素子 6およ び波形増幅器 7は、検知対象物体 2で反射された光パルスを受光する受光手段であ る。 [0031] The light receiving element 6 is an element that converts light energy into electric energy, and can be configured by a device such as a photodiode. In the present embodiment, a reverse voltage is applied to the photodiode to reduce the capacitance, thereby responding to high-speed pulse light reception. The change in current of the photodiode is converted and amplified into a voltage waveform by a waveform amplifier 7 composed of a ΔP amplifier, and output to the sample-and-hold device 8 as a light receiving signal (i). That is, the light receiving element 6 and the waveform amplifier 7 are light receiving means for receiving the light pulse reflected by the detection target object 2.
[0032] サンプルホールド器 8は、サンプリングパルス生成器 9から入力されたサンプリング パルス (h)に基づき受光信号 (i)のサンプリング (標本化) /ホールド (保持)を行うサ ンプリング手段である。サンプリングパルス (h)は、照射光パルス(d)に対する遅延時 間が漸次増加するような周期でサンプリング期間 Sとホールド期間 Hが繰り返される。 よって、サンプノレホールド器 8で標本化一保持の処理を繰り返すことにより受光信号 (i )を時間軸伸張することができる。時間軸伸張波 (j)は A/D変換器 10でディジタル 信号に変換された後、マイクロコントローラ 12に入力される。また、時間軸伸張波 (j) はしきレ、値検出器 11にも入力される。  The sample hold unit 8 is a sampling unit that performs sampling (sampling) / hold (hold) of the light receiving signal (i) based on the sampling pulse (h) input from the sampling pulse generator 9. In the sampling pulse (h), the sampling period S and the hold period H are repeated in a cycle such that the delay time with respect to the irradiation light pulse (d) gradually increases. Therefore, the light receiving signal (i) can be extended in time axis by repeating the sampling-holding process in the sampler holder 8. The time axis expansion wave (j) is converted into a digital signal by the A / D converter 10 and then input to the microcontroller 12. Further, the time-base expanded wave (j) is also input to the value detector 11.
[0033] しきい値検出器 11は、時間軸伸張波 (j)から受光パルスの存在するパルス存在区 間を検出するパルス検出手段である。しきい値検出器 11は、コンパレータ、電圧設 定部およびレベル変換部から構成され、時間軸伸張波 (j)の波高値電圧が所定のし きい値電圧を越えたら Hレベルを出力し、しきい値電圧を下回ったら Lレベルを出力 する単純な構成である。しきい値検出器 11の出力信号はマイクロコントローラ 12に入 力される。  [0033] The threshold detector 11 is a pulse detection unit that detects a pulse existence section in which a light receiving pulse exists from the time-axis extended wave (j). The threshold detector 11 includes a comparator, a voltage setting unit, and a level conversion unit, and outputs an H level when the crest value voltage of the time-base expanded wave (j) exceeds a predetermined threshold voltage, and outputs a signal. This is a simple configuration that outputs an L level when the voltage falls below the threshold voltage. The output signal of the threshold detector 11 is input to the microcontroller 12.
[0034] マイクロコントローラ 12は、プログラムに従ってディジタル信号処理を行う ICである。  [0034] The microcontroller 12 is an IC that performs digital signal processing according to a program.
マイクロコントローラ 12は、主に、時間軸伸張波 (j)に基づき検知対象物体 2までの距 離を算出する距離計測処理と、遅延時間制御パターンを生成する遅延時間制御処 理と、を実行する。各処理の詳しい内容は後述する。  The microcontroller 12 mainly executes a distance measurement process for calculating a distance to the detection target object 2 based on the time-axis stretched wave (j) and a delay time control process for generating a delay time control pattern. . The details of each process will be described later.
[0035] マイクロコントローラ 12で生成された遅延時間制御パターンは、 D/A変換器 13に よって電圧信号である遅延時間制御信号 (e)に変換される。遅延時間制御信号 (e) は、 1測定周期と同期して単調増加を繰り返す信号であり、その傾きは 0よりも大きレ、 。図 2では、遅延時間制御信号 (e)の一例としてランプ信号が示されている。 The delay time control pattern generated by the microcontroller 12 is converted by the D / A converter 13 into a delay time control signal (e) that is a voltage signal. Delay time control signal (e) Is a signal that repeats monotonically increasing in synchronization with one measurement cycle, and its slope is larger than 0. FIG. 2 shows a ramp signal as an example of the delay time control signal (e).
[0036] 電圧-遅延時間変換器 14は、送信クロック信号 (a)を基準として遅延時間制御信 号 (e)の電圧に比例した遅延時間をもつサンプリングクロック信号 (g)を生成する回 路である。詳しくは、電圧-遅延時間変換器 14は、送信クロック信号 (a)と遅延時間 制御信号 (e)とを加算して重畳信号 (f )を生成し、この重畳信号 (f )をインバータに入 力する。インバータを通過させると、立ち下がり入力が重畳信号 (f)の電圧に比例し た微小な遅延量をもつ立ち上がりエッジとして出力される。サンプリングパルス生成器 9は、サンプリングクロック信号 (g)の立ち上がりエッジを遅延クロックとして利用し、サ ンプリングパルス(h)を生成する。  The voltage-delay time converter 14 is a circuit that generates a sampling clock signal (g) having a delay time proportional to the voltage of the delay time control signal (e) based on the transmission clock signal (a). is there. Specifically, the voltage-delay time converter 14 generates the superimposed signal (f) by adding the transmission clock signal (a) and the delay time control signal (e), and inputs the superimposed signal (f) to the inverter. Power. When the signal passes through the inverter, the falling input is output as a rising edge with a small delay proportional to the voltage of the superimposed signal (f). The sampling pulse generator 9 uses the rising edge of the sampling clock signal (g) as a delay clock to generate a sampling pulse (h).
[0037] 次に、図 3と図 4を参照して、マイクロコントローラ 12の処理を説明する。図 3はマイ クロコントローラ 12の処理の流れを示すフローチャートである。図 4は遅延時間の可 変制御を説明するための図であり、上段は遅延時間制御信号の波形を表し、下段は 時間軸伸張波を表している。  Next, the processing of the microcontroller 12 will be described with reference to FIGS. FIG. 3 is a flowchart showing the flow of the process of the microcontroller 12. FIG. 4 is a diagram for explaining the variable control of the delay time. The upper part shows the waveform of the delay time control signal, and the lower part shows the time-base extended wave.
[0038] 電源投入時の初期状態では、マイクロコントローラ 12は遅延時間制御パターンをラ ンプ波形に設定する(ステップ S l)。ランプ波形は次式で表される。  [0038] In an initial state at power-on, the microcontroller 12 sets a delay time control pattern to a ramp waveform (step Sl). The ramp waveform is represented by the following equation.
[0039] [数 1] y - ax (0≤x < tc ) [0039] [Equation 1] y-ax (0≤x <t c )
[0040] ただし、 aはあらかじめ設定されているランプ波形の傾きであり、 tcは tO = 0を開始時 亥 IJとしたときの 1測定周期の終了時刻である。 [0040] Here, a is the slope of the ramp waveform set in advance, and tc is the end time of one measurement cycle when tO = 0 is set to the start time IJ.
[0041] この遅延時間制御パターンは D/A変換器 13で電圧信号に変換され、図 4上段の 細線で示す遅延時間制御信号 20として出力される。この状態では遅延時間制御信 号 20の傾きは一定なので、サンプリングパルスの遅延時間の増加率は測定期間全 体を通して一定である。よって、受光信号 21は図 4下段の細線で示すように等比拡 大される。  This delay time control pattern is converted into a voltage signal by the D / A converter 13 and output as a delay time control signal 20 shown by the thin line in the upper part of FIG. In this state, since the slope of the delay time control signal 20 is constant, the rate of increase in the delay time of the sampling pulse is constant throughout the measurement period. Therefore, the light receiving signal 21 is expanded in a proportional manner as shown by the thin line in the lower part of FIG.
[0042] ここで光測距装置 1の検知領域内に検知対象物体 2が出現し、受光信号 21に受光 パルス 22が現れたとする。この受光パルス 22はしきレ、値検出器 11により検出され、 あら力じめ設定されたしきい値電圧 Vthを横切る際に立ち上がり/立ち下りのェ、」 を発生させる(ステップ S2)。 Here, it is assumed that the detection target object 2 appears in the detection area of the optical distance measuring device 1 and the light receiving pulse 22 appears in the light receiving signal 21. This light receiving pulse 22 is detected by the value detector 11, (Rise / fall) when crossing the threshold voltage Vth which has been previously set (step S2).
[0043] マイクロコントローラ 12ではその検出信号により割込みが起動する。マイクロコント口 ーラ 12は、遅延時間制御パターンの始点(1測定周期の開始時亥 0)を基準とした 受光パルス 22の ON時刻 tlと OFF時刻 t2を記録するとともに、この〇N時刻 tlと OF F時刻 t2の中心時刻を仮のピーク時刻 taとして記録する(ステップ S3)。パルス ON 時刻 tlがパルス存在区間の開始点であり、パルス OFF時刻 t2がパルス存在区間の 終了点である。 In the microcontroller 12, an interrupt is activated by the detection signal. The microcontroller 12 records the ON time tl and the OFF time t2 of the light receiving pulse 22 with reference to the start point of the delay time control pattern (0 at the start of one measurement cycle), and records the 〇N time tl The center time of the OF time t2 is recorded as a temporary peak time ta (step S3). The pulse ON time tl is the start point of the pulse existence section, and the pulse OFF time t2 is the end point of the pulse existence section.
[0044] 次にマイクロコントローラ 12はパルス存在区間を拡大するために新たな遅延時間制 御パターンを生成する(ステップ S4)。本実施形態では、パルス存在区間(tl一 t2) におけるサンプリングパルスの遅延時間の増加率力 区間外(tO— tl, t2— tc)にお ける遅延時間の増加率よりも小さくなるようにする。カロえて、パルス存在区間における 遅延時間の増加率の減少度合いに応じて区間外における遅延時間の増加率を適宜 増加することで、測定期間の長さ、すなわち 1つの時間軸伸張波を生成するためのサ ンプリング回数が一定になるようにする。  Next, the microcontroller 12 generates a new delay time control pattern to expand the pulse existence section (Step S4). In this embodiment, the rate of increase of the delay time of the sampling pulse in the pulse existence section (tl-t2) is set to be smaller than the increase rate of the delay time outside the section (tO-tl, t2-tc). The length of the measurement period, that is, one time-axis extension wave, is generated by appropriately increasing the delay time increase rate outside the section according to the degree of decrease in the delay time increase rate in the pulse existence section. So that the number of times of sampling is constant.
[0045] パルス存在区間(tl一 t2)を n倍 (t -Χ ' )する場合を例に挙げて、遅延時間 制御パターンの生成アルゴリズムを詳しく説明する。 The algorithm for generating the delay time control pattern will be described in detail by taking as an example a case where the pulse existence section (tl-t2) is multiplied by n (t−Χ ′).
[0046] まず、マイクロコントローラ 12は、仮のピーク時刻 taを中心にして、パルス存在区間 拡大後の ON時刻 tl' と OFF時亥 Ijt2' を次式により算出する。 First, the microcontroller 12 calculates the ON time tl ′ and the OFF time Ijt2 ′ after the pulse existence section is expanded using the following equation, with the temporary peak time ta as the center.
[0047] [数 2] [0047] [Number 2]
7'=^— 。— ) '"= + 7 '= ^ — —) '"= +
2{(" ー ("一 } t2'=ta+{ -ta)-n=^1{{n + l)-t2-{n-i t1} 2 {("ー (" one} t2 '= ta + {-t a ) -n = ^ 1 {{n + l) -t 2- {ni t 1 }
[0048] そして、マイクロコントローラ 12は、パルス存在区間よりも前の区間(tO— tl' )、パ ノレス存在区間(t 一 t2' )、パルス存在区間よりも後の区間(ΐ2' — tc)のそれぞ れの遅延時間制御パターンの制御波形を次式のように設定する。 [0048] Then, the microcontroller 12 determines the section before the pulse existence section (tO-tl '), the panelless section (t-t2'), and the section after the pulse existence section (ΐ2'-tc). The control waveform of each delay time control pattern is set as follows.
[0049] [数 3]
Figure imgf000012_0001
[0049] [Equation 3]
Figure imgf000012_0001
a ,x  a, x
y―— x + n - tj - t1 ) {t1'< x < t2')
Figure imgf000012_0002
y―— x + n-tj-t 1 ) (t 1 '<x <t 2 ')
Figure imgf000012_0002
[0050] この遅延時間制御パターンは DZA変換器 13で電圧信号に変換され、図 4上段の 太線で示す遅延時間制御信号 23として出力される。 [0050] This delay time control pattern is converted into a voltage signal by the DZA converter 13, and is output as a delay time control signal 23 indicated by a bold line in the upper part of FIG.
[0051] パルス存在区間における遅延時間制御信号 23の傾きは初期状態(ランプ波形)に 比べて 1/n倍と緩やかになり、この区間における遅延時間の増加率は相対的に小さ くなる。この遅延時間制御信号 23に基づき生成されたサンプリングパルスを用いた場 合、パルス存在区間でのサンプリング回数が増加する。したがって、図 4下段の太線 で示すように受光信号 24の受光パルス 25の波形が大きく拡大された時間軸伸張波 が得られ、受光パルス 25の周辺の分解能を高めることができる。  [0051] The slope of the delay time control signal 23 in the pulse existence section becomes gentler as 1 / n times as compared with the initial state (ramp waveform), and the increase rate of the delay time in this section becomes relatively small. When the sampling pulse generated based on the delay time control signal 23 is used, the number of times of sampling in the pulse existence section increases. Therefore, as shown by the bold line in the lower part of FIG. 4, a time-axis extended wave in which the waveform of the light receiving pulse 25 of the light receiving signal 24 is greatly enlarged is obtained, and the resolution around the light receiving pulse 25 can be increased.
[0052] 一方、パルス存在区間外における遅延時間制御信号 23の傾きは初期状態に比べ て大きくなり、この区間における遅延時間の増加率は相対的に大きくなる。したがって 、距離測定に不要な部分のサンプリング回数が減って、応答性の低下が抑えられる。 なおここでは、時刻 tcにおける遅延時間制御信号 23の電圧値がランプ波形条件の 場合と同じ値になるように設定されているため、遅延時間の増加率がどのように変化 しても常に一定の応答性 (測定期間の長さ)が保証される。  On the other hand, the slope of the delay time control signal 23 outside the pulse existence section becomes larger than in the initial state, and the rate of increase of the delay time in this section becomes relatively large. Therefore, the number of times of sampling of a portion unnecessary for distance measurement is reduced, and a decrease in responsiveness is suppressed. Note that, here, the voltage value of the delay time control signal 23 at time tc is set to be the same value as in the case of the ramp waveform condition, so that the constant value is always constant regardless of the change rate of the delay time. Responsiveness (length of measurement period) is guaranteed.
[0053] 本実施形態では、パルス存在区間拡大後の時間軸伸張波を用いて距離計測処理 が実行される(ステップ S5)。  In the present embodiment, the distance measurement process is performed using the time-base stretched wave after the pulse existence section is expanded (step S5).
[0054] 時間軸伸張波の中の受光パルス 25はしきい値検出器 11により検出される。マイク 口コントローラ 12ではその検出信号により割込みが起動する。マイクロコントローラ 12 は、時刻 tl' -t2' の間、 A/D変換器 10から受光パルス 25の波高値を順次取り 込んで記録した後、拡大波形のピーク時刻 tpを特定する。受光パルス 25の波形は n 倍に拡大されているため、波形の解析やピーク位置の特定を高精度に行うことができ る。 [0055] そして、マイクロコントローラ 12は、次式により、拡大波形のピーク時刻 tpを実際の ピーク時刻 trに変換する。 The light receiving pulse 25 in the time-axis expanded wave is detected by the threshold detector 11. In the microphone port controller 12, an interrupt is activated by the detection signal. The microcontroller 12 sequentially captures and records the peak value of the received light pulse 25 from the A / D converter 10 during the time tl'-t2 ', and then specifies the peak time tp of the enlarged waveform. Since the waveform of the light receiving pulse 25 is magnified n times, it is possible to analyze the waveform and specify the peak position with high accuracy. Then, the microcontroller 12 converts the peak time tp of the enlarged waveform into the actual peak time tr by the following equation.
[0056] [数 4]
Figure imgf000013_0001
[0056] [Equation 4]
Figure imgf000013_0001
n  n
[0057] ここでは tO力 Sパルス送信時刻と一致しているため、ピーク時刻 trが光パルスの(時 間拡大後の)飛行時間となる。よって、検知対象物体 2までの距離 dは次式により算 出される。次式において、 cは光速であり、 αは波形拡大率(=ランプ信号周期/サ 最大遅延時間)である。この算出結果は外部機器などに出力される Here, since the tO force coincides with the S pulse transmission time, the peak time tr is the flight time (after time expansion) of the light pulse. Therefore, the distance d to the detection target object 2 is calculated by the following equation. In the following equation, c is the speed of light, and α is the waveform expansion rate (= ramp signal period / maximum delay time). This calculation result is output to an external device or the like.
[0058] [数 5] [0058] [Equation 5]
Α 1 t Α 1 t
a =— tr - c a = — t r -c
2a  2a
[0059] ここで検知対象物体 2が検知領域外に出て受光ノ^レスが消失した場合、マイクロコ ントローラ 12は遅延時間制御パターンを初期値のランプ波形に設定し、再び受光パ ノレスが出現するまで待機する(ステップ S6)。または別の物体等により複数の受光パ ノレスが現れ、ピーク値比較 ·検知マスク領域等の判定の結果、注目すべき受光パル スが変化した場合についても、一旦遅延時間制御パターンをランプ波形に設定し、 当該受光パルスに対して上記と同様のパターン生成アルゴリズムを適用する。 [0059] Here, when the detection target object 2 goes out of the detection area and the light reception noise disappears, the microcontroller 12 sets the delay time control pattern to the initial ramp waveform, and the light reception noise appears again. Wait until the operation is completed (step S6). Alternatively, if multiple light-receiving panels appear due to another object, etc., and the result of comparison of the peak value and the detection mask area, etc., changes the noticeable light-receiving pulse, the delay time control pattern is once set to the ramp waveform. Then, the same pattern generation algorithm as described above is applied to the received light pulse.
[0060] 以上述べたように本実施形態によれば、簡単かつ小型な回路構成により、応答性 を低下させることなく距離測定精度を向上させることができる。  As described above, according to the present embodiment, the distance measurement accuracy can be improved with a simple and small circuit configuration without lowering the response.
[0061] (第 2の実施形態)  (Second Embodiment)
図 5には、本発明の第 2の実施形態に係る光測距装置の構成が示されている。  FIG. 5 shows a configuration of an optical distance measuring apparatus according to a second embodiment of the present invention.
[0062] 本実施形態の光測距装置 30は、第 1の実施形態の光測距装置 1のしきい値検出 器 11の代わりにピーク検出器 31を設けたものである。その他の回路構成は第 1の実 施形態のものと同様なので、同一の符号を付して、詳しい説明は省略する。  The optical distance measuring device 30 of the present embodiment is provided with a peak detector 31 instead of the threshold value detector 11 of the optical distance measuring device 1 of the first embodiment. Since other circuit configurations are the same as those of the first embodiment, the same reference numerals are given and the detailed description is omitted.
[0063] ピーク検出器 31は、時間軸伸張波から受光パルスの存在するパルス存在区間を 検出するパルス検出手段である。ピーク検出器 31は、微分回路とゼロクロス検知回 路カ 構成され、時間軸伸張波の波高値の変化率が最小となったときに (ピークと推 定されたときに)、マイクロコントローラ 12に検出信号を送出する。 [0063] The peak detector 31 detects a pulse existence section in which the received light pulse exists from the time-axis extended wave. It is a pulse detecting means for detecting. The peak detector 31 is composed of a differentiating circuit and a zero-cross detection circuit, and when the rate of change of the crest value of the time base extension wave becomes the minimum (when it is estimated that the peak is reached), the microcontroller 12 detects the peak value. Send a signal.
[0064] マイクロコントローラ 12ではその検出信号により割込みが起動する。マイクロコント口 ーラ 12は、その時刻を仮のピーク時刻 taとして記録するとともに、 [ピーク時刻 ta—所 定時間幅]をパルス存在区間の開始時刻 tl、 [ピーク時刻 ta +所定時間幅]をパルス 存在区間の終了時刻 t2として記録する。それ以降の処理は第 1の実施形態のものと 同様である。 In the microcontroller 12, an interrupt is activated by the detection signal. The microcontroller 12 records the time as a temporary peak time ta, and sets [peak time ta—predetermined time width] to the start time tl of the pulse existence section and [peak time ta + predetermined time width]. Record as the end time t2 of the pulse existence section. Subsequent processing is the same as that of the first embodiment.
[0065] 本実施形態の場合も、第 1の実施形態と同様の作用効果を奏することができる。  [0065] Also in the case of the present embodiment, the same operation and effect as those of the first embodiment can be obtained.
[0066] (第 3の実施形態)  (Third Embodiment)
図 6には、本発明の第 3の実施形態に係る光測距装置の構成が示されている。  FIG. 6 shows a configuration of an optical distance measuring apparatus according to a third embodiment of the present invention.
[0067] 本実施形態の光測距装置 40は、第 1の実施形態の光測距装置 1のしきい値検出 器 11の代わりにしきい値/ピーク検出器 41を設け、さらに区間積分回路 42を追加し たものである。その他の回路構成は第 1の実施形態のものと同様なので、同一の符 号を付して、詳しい説明は省略する。  The optical distance measuring apparatus 40 of the present embodiment is provided with a threshold / peak detector 41 instead of the threshold detector 11 of the optical distance measuring apparatus 1 of the first embodiment. Is added. Since other circuit configurations are the same as those of the first embodiment, the same reference numerals are given and detailed description is omitted.
[0068] しきい値/ピーク検出器 41は、第 1の実施形態のしきい値検出器 11と第 2の実施 形態のピーク検出器 31とを組み合わせた回路構成を有するパルス検出手段であり、 パルス存在区間の開始点および終了点とパルスの変化率が最小となるパルス変化 率最小点とを検出する。区間積分回路 42は、時間軸伸張波を積分する積分手段で ある。各々の出力信号はマイクロコントローラ 12に入力される。  The threshold / peak detector 41 is a pulse detection unit having a circuit configuration in which the threshold detector 11 of the first embodiment and the peak detector 31 of the second embodiment are combined, The start point and end point of the pulse existence section and the pulse change rate minimum point at which the pulse change rate is minimum are detected. The section integration circuit 42 is an integration means for integrating the time-base extended wave. Each output signal is input to the microcontroller 12.
[0069] マイクロコントローラ 12の処理を説明する。なお、処理の大まかな流れは第 1の実施 形態と同様であるため、便宜的に図 3のフローチャートを参照することとする。 The processing of the microcontroller 12 will be described. Since the general flow of the process is the same as that of the first embodiment, the flowchart of FIG. 3 is referred to for convenience.
[0070] ステップ S 1 S2では、第 1の実施形態と同様にして、ランプ波形の遅延時間制御 パターンの生成処理と、受光パルスの検出処理が実行される。 In steps S 1 and S 2, a process of generating a ramp waveform delay time control pattern and a process of detecting a received light pulse are performed in the same manner as in the first embodiment.
[0071] しきい値/ピーク検出器 41で受光パルスが検出されると、マイクロコントローラ 12で はその検出信号により割込みが起動する。マイクロコントローラ 12は、図 7に示すよう に、しきい値 Zピーク検出器 41からの検出信号に基づいて、受光パルス 43のパルス 存在区間の開始時刻 tlと終了時刻 t2を記録するとともに、パルス変化率最小点をピ ーク時刻 tpとして記録する(ステップ S3)。 When the threshold / peak detector 41 detects a light receiving pulse, the microcontroller 12 starts an interrupt by the detection signal. As shown in FIG. 7, the microcontroller 12 records the start time tl and the end time t2 of the pulse existence section of the light receiving pulse 43 based on the detection signal from the threshold Z peak detector 41, The minimum point And record the time as tp (step S3).
[0072] 次にマイクロコントローラ 12は受光パルス波形の歪みを補正するために新たな遅延 時間制御パターンを生成する(ステップ S4)。本実施形態では、パルス存在区間にお ける時間軸伸張波がピーク時刻 tpを中心に略対称な波形となるようにする。  Next, the microcontroller 12 generates a new delay time control pattern to correct the distortion of the received light pulse waveform (Step S4). In the present embodiment, the time-axis extended wave in the pulse existence section is made to have a substantially symmetrical waveform around the peak time tp.
[0073] まず、マイクロコントローラ 12は、区間積分回路 42により、開始時刻 tlからピーク時 刻 tpまでの第 1区間における第 1区間積分値 (面積 Sip)と、ピーク時刻 tpから終了 時刻 t2までの第 2区間における第 2区間積分値(面積 Sp2)を得る。面積 Sip, Sp2 は次式で表される。  First, the microcontroller 12 uses the section integration circuit 42 to calculate the first section integration value (area Sip) in the first section from the start time tl to the peak time tp, and the first section integrated value (area Sip) from the peak time tp to the end time t2. Obtain the second section integral value (area Sp2) in the second section. The areas Sip and Sp2 are expressed by the following equations.
[0074] [数 6]  [0074] [Number 6]
Figure imgf000015_0001
Figure imgf000015_0001
[0075] ただし、 v (t)は、時刻 tにおける受光パルスの波高値(電圧値)である。 Here, v (t) is the peak value (voltage value) of the received light pulse at time t.
[0076] 次に、面積 Sipと面積 Sp2を比較し、両値が略等しくなるように第 1区間と第 2区間 の少なくともいずれかの遅延時間の増加率を調整する。これは遅延時間の増加率を 上げるとサンプリング回数が増えて面積が大きくなり、逆に増加率を下げると面積が 小さくなることを利用したものである。  Next, the area Sip and the area Sp2 are compared, and the rate of increase of the delay time of at least one of the first section and the second section is adjusted so that both values are substantially equal. This is based on the fact that increasing the rate of increase in the delay time increases the number of samplings and increases the area, and conversely, decreasing the rate of increase decreases the area.
[0077] マイクロコントローラ 12で生成された遅延時間制御パターンは、 D/A変換器 13で 電圧信号に変換され、遅延時間制御信号として出力される。 [0077] The delay time control pattern generated by the microcontroller 12 is converted into a voltage signal by the D / A converter 13, and output as a delay time control signal.
[0078] なお、増加率の調整手法としては種々考えられる。 [0078] Various methods of adjusting the increase rate are conceivable.
[0079] たとえば図 8の手法では、 Sipく Sp2の場合に第 2区間の遅延時間制御信号の傾 きを大きくし、 Slp > Sp2の場合に傾きを小さくする。この手法は、面積 Sipの値が変 化しないため処理が最も単純である。  For example, in the method of FIG. 8, the slope of the delay time control signal in the second section is increased in the case of Sip and Sp2, and is reduced in the case of Slp> Sp2. This method is the simplest because the value of the area Sip does not change.
[0080] 図 9の手法では、 Sipく Sp2の場合に第 1区間の ί頃きを小さくし、 Slp > Sp2の場 合に第 1区間の傾きを大きくしている。併せて第 2区間の傾きも変化している。 In the method of FIG. 9, the timing of the first section is reduced in the case of Sip × Sp2, and the slope of the first section is increased in the case of Slp> Sp2. At the same time, the slope of the second section also changes.
[0081] 図 10の手法は、「波形歪みの補正処理」と第 1の実施形態で述べた「パルス存在区 間の拡大処理」とを組み合わせたものである。すなわち、パルス存在区間の開始時 刻 tlと終了時刻 t2から拡大後の時刻 tl' , X2' を求め、 Slp< Sp2の場合に区間 t 1 ' 一 tpの傾きよりも区間 tp— 12' の傾きを大きくし、 Slp > Sp2の場合に逆にする 。この手法によれば、受光パルスが拡大されるため、波形歪みの補正を高精度に行う こと力 sできる。 The method of FIG. 10 combines “correction processing of waveform distortion” and “enlargement processing of pulse existence sections” described in the first embodiment. That is, at the start of the pulse existence section From the time tl and the end time t2, find the expanded times tl 'and X2'.If Slp <Sp2, make the slope of the section tp—12' larger than the slope of the section t1 '1 tp, and set Slp> Sp2 Reverse if you want. According to this method, since the received light pulse is enlarged, it is possible to accurately correct waveform distortion.
[0082] 上記いずれかの手法により遅延時間の増加率を調整したサンプリングパルスで受 光信号のサンプリングを行ったところ、図 11の破線のように後方に脹らんでいた受光 パルス力 実線のような歪みのなレ、波形に整形された。  When the received signal was sampled with a sampling pulse whose delay time increase rate was adjusted by any of the above methods, the received pulse force was expanded backward as shown by the broken line in FIG. It was shaped like a waveform without distortion.
[0083] 本実施形態では、歪み補正が施された後の時間軸伸張波を用いて距離計測処理 を行う。以降の処理 (ステップ S5, S6)は第 1の実施形態と同様である。  In the present embodiment, the distance measurement process is performed using the time-base expanded wave after the distortion correction. Subsequent processing (steps S5 and S6) is the same as in the first embodiment.
[0084] 以上述べたように本実施形態によれば、外乱の影響に起因する受光パルス波形の 歪みが補正されるので、波形の解析やピーク位置の高精度な特定が容易となり、距 離測定精度を向上させることができる。し力も、受光パルス波形の歪み補正をサンプ リングパルスの遅延時間調整だけで行うので、構成が簡易であり、回路の複雑化'筐 体の大型化 ·コスト増を招くことがない。また、図 8—図 10から明らかなように、 1回の 測定期間の長さは一定であり、応答性が低下することもない。  As described above, according to the present embodiment, since the distortion of the received light pulse waveform due to the influence of disturbance is corrected, it is easy to analyze the waveform and specify the peak position with high accuracy, and to measure the distance. Accuracy can be improved. Since the distortion of the received pulse waveform is corrected only by adjusting the delay time of the sampling pulse, the configuration is simple, the circuit is complicated, and the size of the housing is not increased and the cost is not increased. Also, as is clear from FIGS. 8 to 10, the length of one measurement period is constant, and the response does not decrease.
[0085] なお、上記実施形態は本発明の一具体例を例示したものにすぎない。本発明の範 囲は上記実施形態に限られるものではなぐその技術思想の範囲内で種々の変形が 可能である。  [0085] The above embodiment is merely an example of one specific example of the present invention. The scope of the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the technical idea.
[0086] たとえば、上記実施形態では遅延時間制御信号の任意の区間の傾きを変化させる ことで遅延時間の増加率を調整している力 S、このような直線的な制御ではなぐピーク 位置や波形歪みのパターンなどに応じて曲線関数で遅延時間制御を行うようにして あよい。  [0086] For example, in the above-described embodiment, the force S that adjusts the rate of increase of the delay time by changing the slope of an arbitrary section of the delay time control signal, the peak position and the waveform that cannot be controlled by such linear control The delay time control may be performed by a curve function according to a distortion pattern or the like.
[0087] また、上記実施形態では距離の算出にピーク位置を用いているが、ピーク位置の 代わりに時間軸伸張波の重心位置を用いることも好ましい。外乱の影響による波形 歪みによってピーク位置の特定が困難な場合であっても、重心位置を用いれば距離 測定誤差を低減することができる。  In the above embodiment, the peak position is used for calculating the distance, but it is also preferable to use the barycentric position of the time-axis stretched wave instead of the peak position. Even when the peak position is difficult to identify due to waveform distortion due to the influence of disturbance, the distance measurement error can be reduced by using the center of gravity position.
産業上の利用可能性  Industrial applicability
[0088] 本発明は汎用的な光電センサに利用可能であり、より好ましくは近距離測定用の距 離設定型光電センサに利用可能である。この種の光電センサは、たとえば、製造装 置や工業用ロボットの制御に用レ、る位置決めセンサ、侵入物や侵入者を検知する検 知センサ、車間センサ(車載用光レーダ装置)、車両センサなど多様な用途に適用可 能である。 [0088] The present invention can be used for a general-purpose photoelectric sensor, and more preferably a distance for short-distance measurement. The present invention can be used for a detachable photoelectric sensor. This type of photoelectric sensor is used, for example, for a manufacturing device or an industrial robot for controlling a positioning sensor, a detection sensor for detecting an intruder or an intruder, an inter-vehicle sensor (on-vehicle optical radar device), a vehicle sensor. It can be applied to various uses.
[0089] 図 14に、本発明を適用した車間センサの構成例を示す。なお、図 14は道路を上方 からみた図である。車間センサ 50は、車両 51に搭載される車載用光レーダ装置であ る。車間センサ 50は、光パルスを用いて先行車 (前方にいる車両) 52や後続車 (後 方にいる車両) 53との距離 (車間距離)を測定する。このとき、上述した受光パルス波 形歪みの補正を行うことによって、簡易かつ小型な構成で応答性と車間距離測定精 度の両立を図ることができる。また、車間センサ 50に、複数の測距結果に基づき先行 車 52または後続車 53との相対速度を算出する機能 (相対速度算出手段)を設けると よい。たとえば、一定の時間間隔で連続して測距を行えば、その車間距離の時間的 な推移から、先行車 52または後続車 53と自車との相対速度を容易に算出可能であ る。算出された相対速度情報は、車両 51の速度制御や衝突防止制御などに利用可 能である。さらに、図 14のように、光パルスの照射方位を切り換える機能 (方位切換 手段)を設ければ、先行車 52または後続車 53の存在する方位を検出することも可能 となる。なお、車間センサ 50 (車載用光レーダ装置)は、車間距離の測定だけでなぐ 車両以外の障害物の検知およびその障害物との間の距離の測定などを行うことも可 能である。  FIG. 14 shows a configuration example of an inter-vehicle sensor to which the present invention is applied. Fig. 14 shows the road viewed from above. The inter-vehicle sensor 50 is an on-vehicle optical radar device mounted on the vehicle 51. The inter-vehicle sensor 50 measures the distance (inter-vehicle distance) between a preceding vehicle (vehicle in front) 52 and a following vehicle (vehicle in rear) 53 using light pulses. At this time, by performing the above-described correction of the received light pulse waveform distortion, it is possible to achieve both responsiveness and inter-vehicle distance measurement accuracy with a simple and compact configuration. Further, the inter-vehicle sensor 50 may be provided with a function (relative speed calculating means) for calculating a relative speed with respect to the preceding vehicle 52 or the following vehicle 53 based on a plurality of distance measurement results. For example, if the distance measurement is performed continuously at a fixed time interval, the relative speed between the preceding vehicle 52 or the following vehicle 53 and the own vehicle can be easily calculated from the temporal change of the inter-vehicle distance. The calculated relative speed information can be used for speed control of vehicle 51, collision prevention control, and the like. Furthermore, as shown in FIG. 14, if a function (direction switching means) for switching the irradiation direction of the light pulse is provided, it is possible to detect the direction in which the preceding vehicle 52 or the following vehicle 53 exists. In addition, the inter-vehicle sensor 50 (on-vehicle optical radar device) can also detect an obstacle other than a vehicle and measure the distance to the obstacle other than the inter-vehicle distance.
図面の簡単な説明  Brief Description of Drawings
[0090] [図 1]第 1の実施形態に係る光測距装置の構成を示すブロック図である。  FIG. 1 is a block diagram showing a configuration of an optical distance measuring apparatus according to a first embodiment.
[図 2]図 1の光測距装置の動作を説明するための波形図である。  FIG. 2 is a waveform chart for explaining the operation of the optical distance measuring apparatus in FIG. 1.
[図 3]図 1のマイクロコントローラの処理の流れを示すフローチャートである。  FIG. 3 is a flowchart showing a processing flow of a microcontroller in FIG. 1.
[図 4]第 1の実施形態における遅延時間の可変制御を説明するための図である。  FIG. 4 is a diagram for explaining variable control of a delay time according to the first embodiment.
[図 5]第 2の実施形態に係る光測距装置の構成を示すブロック図である。  FIG. 5 is a block diagram showing a configuration of an optical distance measuring apparatus according to a second embodiment.
[図 6]第 3の実施形態に係る光測距装置の構成を示すブロック図である。  FIG. 6 is a block diagram showing a configuration of an optical distance measuring apparatus according to a third embodiment.
[図 7]第 3の実施形態における遅延時間の可変制御を説明するための図である。  FIG. 7 is a view for explaining variable control of a delay time in a third embodiment.
[図 8]遅延時間の増加率の調整手法 1を説明するための図である。 [図 9]遅延時間の増加率の調整手法 2を説明するための図である。 FIG. 8 is a diagram for explaining a method 1 for adjusting a delay time increase rate. FIG. 9 is a diagram for explaining a delay time increase rate adjustment method 2.
[図 10]遅延時間の増加率の調整手法 3を説明するための図である。 FIG. 10 is a diagram for explaining a delay time increase rate adjustment method 3.
[図 11]受光パルス波形の歪み補正の効果を示す図である。 FIG. 11 is a diagram illustrating the effect of distortion correction of a received light pulse waveform.
[図 12]三角測距方式の原理を説明するための図である。 FIG. 12 is a diagram for explaining the principle of the triangulation method.
[図 13]受光パルス波形の歪みを説明するための図である。 FIG. 13 is a diagram for explaining distortion of a received light pulse waveform.
[図 14]車間センサの構成例を示す図である。 FIG. 14 is a diagram showing a configuration example of an inter-vehicle sensor.
符号の説明 Explanation of symbols
1 光測距装置  1 Optical distance measuring device
2 検知対象物体  2 Object to be detected
3 発振器  3 Oscillator
4 パルス生成器  4 Pulse generator
5 発光素子  5 Light emitting device
6 受光素子  6 Light receiving element
7 波形増幅器  7 Waveform amplifier
8 サンプルホールド器  8 Sample hold device
9 サンプリングパルス生成器  9 Sampling pulse generator
10 AZD変換器  10 AZD converter
11 しきい値検出器  11 Threshold detector
12 マイクロコン卜ローラ  12 Microcontroller
13 D/A変換器  13 D / A converter
14 電圧 -遅延時間変換器  14 Voltage-delay time converter
20 遅延時間制御信号  20 Delay time control signal
21 受光信号  21 Light reception signal
22 受光パルス  22 Received pulse
23 遅延時間制御信号  23 Delay time control signal
24 受光信号  24 Received signal
25 受光パルス  25 received pulse
30 光測距装置 ピーク検出器 光測距装置 30 Optical ranging device Peak detector Optical distance measuring device
しきい値/ピーク検出器 区間積分回路 受光パルス Threshold / peak detector Section integration circuit Light receiving pulse
車間センサ Inter-vehicle sensor
車両 Vehicle
先行車 Leading vehicle
後続車 Subsequent car

Claims

請求の範囲 The scope of the claims
[1] 光パルスを用いて物体までの距離を測定する光測距装置であって、  [1] An optical distance measuring device that measures a distance to an object using an optical pulse,
物体に光パルスを照射する発光手段と、  Light emitting means for irradiating an object with a light pulse,
物体で反射された光パルスを受光する受光手段と、  Light receiving means for receiving the light pulse reflected by the object,
照射光パルスに対する遅延時間が漸次増加するような周期を有するサンプリング パルスに基づき受光信号の時間軸伸張を行うサンプリング手段と、  Sampling means for extending the time axis of the received light signal based on a sampling pulse having a cycle such that the delay time for the irradiation light pulse gradually increases,
時間軸伸張波から受光パルスの存在するパルス存在区間を検出するパルス検出 手段と、  Pulse detection means for detecting a pulse existence section in which a light receiving pulse exists from a time axis extension wave,
パルス存在区間におけるサンプリングパルスの遅延時間の増加率を区間外におけ る遅延時間の増加率よりも小さくする遅延時間可変手段と、  Delay time varying means for making the rate of increase of the delay time of the sampling pulse in the pulse existence section smaller than the rate of increase of the delay time outside the section;
を備える光測距装置。  An optical distance measuring device comprising:
[2] 遅延時間可変手段は、パルス存在区間におけるサンプリングパルスの遅延時間の 増加率の減少度合いに応じて、区間外における遅延時間の増加率を増加する請求 項 1記載の光測距装置。  2. The optical distance measuring device according to claim 1, wherein the delay time varying means increases a delay time increase rate outside the section in accordance with the degree of decrease in the delay time increase rate of the sampling pulse in the pulse existence section.
[3] 遅延時間可変手段は、 1つの時間軸伸張波を生成するためのサンプリング回数が 一定になるように、パルス存在区間と区間外それぞれの遅延時間の増加率を調整す る請求項 1記載の光測距装置。 [3] The delay time varying means adjusts an increasing rate of the delay time in each of the pulse existence section and the delay time outside the section so that the number of times of sampling for generating one time-base stretched wave is constant. Light ranging device.
[4] パルス検出手段は、時間軸伸張波の波高値が所定のしきい値を越えた時刻からそ のしきい値を下回った時刻までをパルス存在区間とする請求項 1記載の光測距装置 [4] The optical ranging according to claim 1, wherein the pulse detection means sets a pulse existence section from a time when the crest value of the time-base extended wave exceeds a predetermined threshold value to a time when the crest value falls below the predetermined threshold value. Equipment
[5] パルス検出手段は、時間軸伸張波からピーク位置を検出し、そのピーク位置の前 後の所定時間をパルス存在区間とする請求項 1記載の光測距装置。 [5] The optical ranging device according to claim 1, wherein the pulse detection means detects a peak position from the time-axis extended wave, and a predetermined time before and after the peak position is defined as a pulse existence section.
[6] 遅延時間可変手段は、さらに、パルス存在区間における時間軸伸張波がピーク位 置を中心に略対称な波形となるように、パルス存在区間におけるサンプリングパルス の遅延時間の増加率を調整する請求項 1記載の光測距装置。 [6] The delay time varying means further adjusts the rate of increase of the delay time of the sampling pulse in the pulse existence section so that the time axis extension wave in the pulse existence section has a substantially symmetrical waveform around the peak position. The optical distance measuring device according to claim 1.
[7] 光パルスを用いて物体までの距離を測定する光測距装置であって、 [7] An optical distance measuring device that measures a distance to an object using an optical pulse,
物体に光パルスを照射する発光手段と、  Light emitting means for irradiating an object with a light pulse,
物体で反射された光ノ^レスを受光する受光手段と、 照射光パルスに対する遅延時間が漸次増加するような周期を有- パルスに基づき受光信号の時間軸伸張を行うサンプリング手段と、 Light receiving means for receiving the light reflected by the object, Sampling means for extending the time axis of the received light signal based on the pulse; and
時間軸伸張波から受光パルスの存在するパルス存在区間を検出するパルス検出 手段と、  Pulse detection means for detecting a pulse existence section in which a light receiving pulse exists from a time axis extension wave,
パルス存在区間における時間軸伸張波がピーク位置を中心に略対称な波形となる ように、パルス存在区間におけるサンプリングパルスの遅延時間の増加率を調整する 遅延時間可変手段と、  Delay time varying means for adjusting the rate of increase of the delay time of the sampling pulse in the pulse existence section so that the time axis extension wave in the pulse existence section has a substantially symmetrical waveform around the peak position;
を備える光測距装置。  An optical distance measuring device comprising:
[8] 時間軸伸張波を積分する積分手段をさらに備え、  [8] Further comprising an integration means for integrating the time-axis stretched wave,
パルス検出手段は、時間軸伸張波からパルスの変化率が最小となるパルス変化率 最小点を検出し、  The pulse detecting means detects a pulse change rate minimum point at which the pulse change rate is minimum from the time-base stretched wave,
積分手段は、パルス存在区間の開始点からパルス変化率最小点までの第 1区間に おける第 1区間積分値、および、パルス変化率最小点からパルス存在区間の終了点 までの第 2区間における第 2区間積分値を算出し、  The integration means includes a first section integral value in a first section from a start point of the pulse existence section to a pulse change rate minimum point, and a second section integral value in a second section from the pulse change rate minimum point to the end point of the pulse existence section. Calculate the two-section integral value,
遅延時間可変手段は、第 1区間積分値と第 2区間積分値とが略等しくなるように、 第 1区間と第 2区間の少なくともいずれかの遅延時間の増加率を調整する請求項 6記 載の光測距装置。  The delay time varying means adjusts an increasing rate of delay time of at least one of the first section and the second section so that the first section integral value and the second section integral value are substantially equal. Light ranging device.
[9] 時間軸伸張波を積分する積分手段をさらに備え、 [9] Further comprising an integrating means for integrating the time-axis stretched wave,
パルス検出手段は、時間軸伸張波からパルスの変化率が最小となるパルス変化率 最小点を検出し、  The pulse detecting means detects a pulse change rate minimum point at which the pulse change rate is minimum from the time-base stretched wave,
積分手段は、パルス存在区間の開始点からパルス変化率最小点までの第 1区間に おける第 1区間積分値、および、パルス変化率最小点からパルス存在区間の終了点 までの第 2区間における第 2区間積分値を算出し、  The integration means includes a first section integral value in a first section from a start point of the pulse existence section to a pulse change rate minimum point, and a second section integral value in a second section from the pulse change rate minimum point to the end point of the pulse existence section. Calculate the two-section integral value,
遅延時間可変手段は、第 1区間積分値と第 2区間積分値とが略等しくなるように、 第 1区間と第 2区間の少なくともいずれかの遅延時間の増加率を調整する請求項 7記 載の光測距装置。  The delay time varying means adjusts an increase rate of at least one of the delay time of the first section and the second section so that the first section integral value and the second section integral value become substantially equal. Light ranging device.
[10] 物体に光パルスを照射し、 [10] Irradiate the object with a light pulse,
物体で反射された光パルスを受光し、 照射光パルスに対する遅延時間が漸次増加するような周期を有- パルスに基づき受光信号の時間軸伸張を行い、 Receives the light pulse reflected by the object, There is a cycle such that the delay time for the irradiation light pulse gradually increases.
時間軸伸張波から受光パルスの存在するパルス存在区間を検出し、  Detects the pulse existence section where the received light pulse exists from the time axis extension wave,
パルス存在区間におけるサンプリングパルスの遅延時間の増加率を区間外におけ る遅延時間の増加率よりも小さくなるように調整し、  Adjust the rate of increase of the delay time of the sampling pulse in the pulse existence section so as to be smaller than the rate of increase of the delay time outside the section,
調整されたサンプリングパルスに基づき時間軸伸張した時間軸伸張波から、物体ま での距離を算出する  Calculate the distance to the object from the time-base stretched wave based on the adjusted sampling pulse
光測距方法。  Light ranging method.
[11] 物体に光パルスを照射し、  [11] Irradiate the object with a light pulse,
物体で反射された光パルスを受光し、  Receives the light pulse reflected by the object,
照射光パルスに対する遅延時間が漸次増加するような周期を有するサンプリング パルスに基づき受光信号の時間軸伸張を行い、  Extending the time axis of the received light signal based on the sampling pulse having a period such that the delay time for the irradiation light pulse gradually increases,
時間軸伸張波から受光パルスの存在するパルス存在区間を検出し、  Detects the pulse existence section where the received light pulse exists from the time axis extension wave,
パルス存在区間における時間軸伸張波がピーク位置を中心に略対称な波形となる ように、パルス存在区間におけるサンプリングパルスの遅延時間の増加率を調整し、 調整されたサンプリングパルスに基づき時間軸伸張した時間軸伸張波から、物体ま での距離を算出する  The rate of increase of the sampling pulse delay time in the pulse existence section was adjusted so that the time axis extension wave in the pulse existence section became a substantially symmetrical waveform around the peak position, and the time axis was extended based on the adjusted sampling pulse. Calculate the distance to the object from the time axis stretching wave
光測距方法。  Light ranging method.
[12] 物体に光パルスを照射し、  [12] irradiate the object with a light pulse,
物体で反射された光ノ^レスを受光し、  Receives the light reflected by the object,
照射光パルスに対する遅延時間が漸次増加するような周期を有するサンプリング パルスに基づき受光信号の時間軸伸張を行い、  Extending the time axis of the received light signal based on the sampling pulse having a period such that the delay time for the irradiation light pulse gradually increases,
時間軸伸張波から受光パルスの存在するパルス存在区間を検出し、  Detects the pulse existence section where the received light pulse exists from the time axis extension wave,
パルス存在区間におけるサンプリングパルスの遅延時間の増加率を、区間外にお ける遅延時間の増加率よりも小さくなるように、かつ、パルス存在区間における時間 軸伸張波がピーク位置を中心に略対称な波形となるように調整し、  The increase rate of the delay time of the sampling pulse in the pulse existence section is smaller than the increase rate of the delay time outside the section, and the time-axis elongation wave in the pulse existence section is substantially symmetrical about the peak position. Adjust so that it has a waveform,
調整されたサンプリングパルスに基づき時間軸伸張した時間軸伸張波から、物体ま での距離を算出する 光測距方法。 Calculate the distance to the object from the time-base stretched wave based on the adjusted sampling pulse Light ranging method.
[13] 光パルスを用いて先行車または後続車との距離を測定する車載用光レーダ装置で あってヽ  [13] An on-vehicle optical radar device that measures the distance to a preceding or following vehicle using optical pulses.
先行車または後続車に光パルスを照射する発光手段と、  Light emitting means for irradiating a preceding vehicle or a following vehicle with a light pulse,
先行車または後続車で反射された光パルスを受光する受光手段と、  Light receiving means for receiving a light pulse reflected by a preceding or following vehicle,
照射光パルスに対する遅延時間が漸次増加するような周期を有するサンプリング パルスに基づき受光信号の時間軸伸張を行うサンプリング手段と、  Sampling means for extending the time axis of the received light signal based on a sampling pulse having a cycle such that the delay time for the irradiation light pulse gradually increases,
時間軸伸張波から受光パルスの存在するパルス存在区間を検出するパルス検出 手段と、  Pulse detection means for detecting a pulse existence section in which a light receiving pulse exists from a time axis extension wave,
パルス存在区間におけるサンプリングパルスの遅延時間の増加率を区間外におけ る遅延時間の増加率よりも小さくする遅延時間可変手段と、  Delay time varying means for making the rate of increase of the delay time of the sampling pulse in the pulse existence section smaller than the rate of increase of the delay time outside the section;
を備える車載用光レーダ装置。  An in-vehicle optical radar device comprising:
[14] 光パルスを用いて先行車または後続車との距離を測定する車載用光レーダ装置で あってヽ  [14] An on-vehicle optical radar device that measures the distance to a preceding vehicle or a following vehicle using optical pulses.
先行車または後続車に光パルスを照射する発光手段と、  Light emitting means for irradiating a preceding vehicle or a following vehicle with a light pulse,
先行車または後続車で反射された光パルスを受光する受光手段と、  Light receiving means for receiving a light pulse reflected by a preceding or following vehicle,
照射光パルスに対する遅延時間が漸次増加するような周期を有するサンプリング パルスに基づき受光信号の時間軸伸張を行うサンプリング手段と、  Sampling means for extending the time axis of the received light signal based on a sampling pulse having a cycle such that the delay time for the irradiation light pulse gradually increases,
時間軸伸張波から受光パルスの存在するパルス存在区間を検出するパルス検出 手段と、  Pulse detection means for detecting a pulse existence section in which a light receiving pulse exists from a time axis extension wave,
パルス存在区間における時間軸伸張波がピーク位置を中心に略対称な波形となる ように、パルス存在区間におけるサンプリングパルスの遅延時間の増加率を調整する 遅延時間可変手段と、  Delay time varying means for adjusting the rate of increase of the delay time of the sampling pulse in the pulse existence section so that the time axis extension wave in the pulse existence section has a substantially symmetrical waveform around the peak position;
を備える車載用光レーダ装置。  An in-vehicle optical radar device comprising:
[15] 複数の測距結果に基づいて先行車または後続車との相対速度を算出する相対速 度算出手段をさらに備える  [15] Further comprising a relative speed calculating means for calculating a relative speed with respect to a preceding vehicle or a following vehicle based on a plurality of distance measurement results.
請求項 13記載の車載用光レーダ装置。  14. The on-vehicle optical radar device according to claim 13.
[16] 複数の測距結果に基づいて先行車または後続車との相対速度を算出する相対速 度算出手段をさらに備える [16] Relative speed to calculate relative speed with preceding or following vehicle based on multiple ranging results Further comprising a degree calculating means
請求項 14記載の車載用光レーダ装置。  15. The on-vehicle optical radar device according to claim 14.
PCT/JP2004/012568 2003-09-11 2004-08-31 Optical distance measurement device and vehicle optical radar device WO2005026773A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003319946 2003-09-11
JP2003-319946 2003-09-11

Publications (1)

Publication Number Publication Date
WO2005026773A1 true WO2005026773A1 (en) 2005-03-24

Family

ID=34308591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012568 WO2005026773A1 (en) 2003-09-11 2004-08-31 Optical distance measurement device and vehicle optical radar device

Country Status (1)

Country Link
WO (1) WO2005026773A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7581864B2 (en) 2020-12-25 2024-11-13 株式会社リコー OBJECT DETECTION DEVICE, MOVING BODY, OBJECT DETECTION METHOD, AND PROGRAM

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127240A (en) * 1995-10-30 1997-05-16 Koden Electron Co Ltd Pulse radar and time axis elongation circuit
JPH09264960A (en) * 1996-03-28 1997-10-07 Koden Electron Co Ltd Optical speedometer and rangefinder
JPH09281215A (en) * 1996-04-11 1997-10-31 Mitsubishi Electric Corp Method and device for pulse signal classification
JPH10319111A (en) * 1997-05-02 1998-12-04 Endress & Hauser Gmbh & Co Distance measuring method and device using electromagnetic wave by pulse propagation time method
JPH11287852A (en) * 1998-03-31 1999-10-19 Omron Corp Radar, signal processing method for radar, communicating method for radar and recording medium
JP2001264419A (en) * 2000-03-17 2001-09-26 Omron Corp Distance detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127240A (en) * 1995-10-30 1997-05-16 Koden Electron Co Ltd Pulse radar and time axis elongation circuit
JPH09264960A (en) * 1996-03-28 1997-10-07 Koden Electron Co Ltd Optical speedometer and rangefinder
JPH09281215A (en) * 1996-04-11 1997-10-31 Mitsubishi Electric Corp Method and device for pulse signal classification
JPH10319111A (en) * 1997-05-02 1998-12-04 Endress & Hauser Gmbh & Co Distance measuring method and device using electromagnetic wave by pulse propagation time method
JPH11287852A (en) * 1998-03-31 1999-10-19 Omron Corp Radar, signal processing method for radar, communicating method for radar and recording medium
JP2001264419A (en) * 2000-03-17 2001-09-26 Omron Corp Distance detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7581864B2 (en) 2020-12-25 2024-11-13 株式会社リコー OBJECT DETECTION DEVICE, MOVING BODY, OBJECT DETECTION METHOD, AND PROGRAM

Similar Documents

Publication Publication Date Title
CN109343069B (en) Photon counting laser radar capable of realizing combined pulse ranging and ranging method thereof
Jansson et al. A multichannel high-precision CMOS time-to-digital converter for laser-scanner-based perception systems
JP4488170B2 (en) Method and apparatus for recording a three-dimensional distance image
US8000169B2 (en) Object detecting apparatus, opening and closing control system for vehicle using object detecting apparatus, and method of detecting upstroke of envelope
US10473769B2 (en) Distance measuring apparatus and distance image photographing apparatus
KR102317072B1 (en) Method and apparatus for time-to-digital conversion in LiDAR system
JP5103816B2 (en) Signal processing device
JP5634404B2 (en) Ultrasonic detector
JP4837413B2 (en) Ranging method and ranging device
CN110456369B (en) Flight time sensing system and distance measuring method thereof
CN110456370B (en) Flight time sensing system and distance measuring method thereof
JP5741508B2 (en) Distance and speed measuring device
KR101915858B1 (en) Apparatus and method for reducing measurement error due to signal size and LIDAR sensor system using the same
JP4096861B2 (en) Detection device
JP2019060670A (en) Time measuring device, range finder, mobile device, time measurement method and range finding method
Huang et al. High-precision ultrasonic ranging system platform based on peak-detected self-interference technique
JP4525253B2 (en) Optical sensor and distance measuring method
JP3706031B2 (en) Target identification device
WO2005026773A1 (en) Optical distance measurement device and vehicle optical radar device
Kurtti et al. An integrated receiver channel for a laser scanner
JP3961428B2 (en) Ranging device
CN213715460U (en) Ultrasonic ranging device
CN210072076U (en) Azimuth detection device
JPH09222476A (en) Radar device
JP2010187092A (en) Peak hold circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP