[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005001404A1 - 温度センサ - Google Patents

温度センサ Download PDF

Info

Publication number
WO2005001404A1
WO2005001404A1 PCT/JP2004/008752 JP2004008752W WO2005001404A1 WO 2005001404 A1 WO2005001404 A1 WO 2005001404A1 JP 2004008752 W JP2004008752 W JP 2004008752W WO 2005001404 A1 WO2005001404 A1 WO 2005001404A1
Authority
WO
WIPO (PCT)
Prior art keywords
holder
temperature sensor
resin
temperature
sensor according
Prior art date
Application number
PCT/JP2004/008752
Other languages
English (en)
French (fr)
Inventor
Satoru Shiraki
Kaoru Sasaki
Yutaka Wakabayashi
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to CN200480017410.1A priority Critical patent/CN1809733B/zh
Priority to US10/559,763 priority patent/US7410294B2/en
Publication of WO2005001404A1 publication Critical patent/WO2005001404A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/58Tubes, sleeves, beads, or bobbins through which the conductor passes

Definitions

  • the present invention relates to a temperature sensor that detects an oil temperature such as an ATF (Automatic Transmission Fluid) of an automobile.
  • ATF Automatic Transmission Fluid
  • FIG. 15 is a schematic sectional view showing a prototype (unknown) of the temperature sensor.
  • a temperature detecting element 56 to which a pair of lead wires 54A and 54B is connected is disposed at the bottom of a bottomed cylindrical holder 52 made of metal.
  • the resin 52 is filled in the holder 52.
  • the resin 58 filled in the holder 52 forms a cylindrical side wall 62 on the opening 60 side of the holder 52.
  • a hole 64 through which a lead wire penetrates is formed in a side wall 62 made of this resin, and the lead wires 54A and 54B drawn out of the resin 58 are bent and drawn out through the hole 64. .
  • a lead wire lead-out member 66 mounted so that a part thereof is supported by the side wall 62 is mounted.
  • the lead wire lead-out member 66 is a cylindrical elastic body, and suppresses excessive bending of the lead wires 54A and 54B near the hole 64.
  • the lead wire 54A, 54B is drawn out to the outside by such a lead wire drawing member 66, and the vicinity of the hole 64, where the lead wires 54A, 54B are greatly bent, is used. This prevents the lead wires 54A and 54B from being bent and bent by nearly 90 degrees.
  • a waterproof cap 70 is covered so as to cover the resin 68 and the side wall 62.
  • the waterproof cap 70 covers the upper part of the temperature sensor exposed to the environment receiving water droplets and water vapor, thereby preventing the water droplets and the like from entering the sensor 50 from the boundary of each member and reaching the temperature detecting element 56. It is planned.
  • Reference numeral 72 denotes a metal stay that is insert-molded in the resin 58 and supports the lead wire from below to suppress the movement thereof
  • reference numeral 74 denotes the metal stay 72 that damages the lead wires 54A and 54B. It is a protection tube for preventing a situation.
  • Patent Document 1 Japanese Patent Application Laid-Open No. H11-23379
  • Patent Document 2 Japanese Utility Model Application No. 5-3955
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-267540
  • Patent Document 4 Japanese Utility Model Application Laid-Open No. 6-62336
  • Patent Document 5 JP-A-8-128901
  • the above-described temperature sensor in the prototype stage has the following problems. That is, since the constituent materials of the lead wire lead-out member 66 and the waterproof cap 70 are different, the temperature sensor 50 is configured as a separate member. This has hindered the reduction in the number of parts and, accordingly, the simplification of the manufacturing process.
  • the present invention has been made to solve the above-described problems, and has as its object to provide a temperature sensor in which the number of parts is reduced.
  • the temperature sensor according to the present invention is connected to a bottomed cylindrical holder having an opening so that a pair of lead wires is introduced from the opening side, and the temperature stored in the bottom of the holder.
  • a sensor cover having a neck portion extending outwardly of the cap portion along the outer peripheral surface of the lead wire pair is provided.
  • the entire opening of the holder is covered by the cap portion of the sensor cover, and the situation where water droplets or the like enter between the holder and the filling resin portion is prevented.
  • the break of the lead wire due to excessive bending is suppressed by the neck portion of the sensor cover.
  • Such a cap portion and a neck portion are both part of the sensor cover and are integrated.
  • the number of parts is reduced as compared with a temperature sensor in a prototype stage in which a cap and a lead wire lead-out member are separate bodies.
  • the apparatus further includes a guide portion projecting from an edge of the opening of the holder and guiding each of the lead wires constituting the lead wire pair, and the sensor cover preferably covers the guide portion. Les , since the sensor cover restricts the movement of the lead wire pair around the guide, the guide can more reliably guide the lead.
  • the shape of the guide portion is a ⁇ -shape having a portion extending in a direction perpendicular to the extending direction of the holder and a portion extending in parallel to the extending direction of the holder. It is preferable. In this case, the portion extending in the direction perpendicular to the extending direction of the holder prevents the sensor cover from falling off.
  • a substantially annular return portion that protrudes outward from the holder is formed at an edge of the opening of the holder, and at least a part of the sensor cover is locked by the return portion. Is preferred. In this case, dropping of the sensor cover from the holder can be suppressed.
  • the sensor cover is preferably formed by hot melt molding. In this case, it is possible to reliably form the sensor cover by hot melt molding, which is a molding method suitable for practical use.
  • a sensing unit which is immersed in the fluid in the case to be measured for temperature is provided, and the sensing unit accommodates a temperature detecting element to which a pair of lead wires is connected. It is preferable that the element is covered only with the element protection part made of resin.
  • a temperature detecting element to which a pair of lead wires is connected is housed in a sensing unit. The temperature detecting element is covered only by the element protection part made of resin. Ie However, this temperature sensor does not use a conductive holder, and the temperature detection element and the lead wire pair do not come into contact with the conductor, so that the temperature detection signal of the sensor is stabilized.
  • this temperature sensor unlike the conventional temperature sensor in which the temperature detecting element is housed in a metal holder, when the temperature detecting element is housed in the holder, the temperature detecting element, the lead wire pair, and the conductor are connected. Since there is no need to consider the insulation of the sensor, the fabrication of the sensor is simplified, and the efficiency of the fabrication is improved. In addition, since a metal holder, which is difficult to mold, is not used, the fabrication of the sensor is facilitated, and the cost of fabricating components is reduced.
  • the element protection portion has a laminated structure made of different or the same kind of resin.
  • the resin on the side immersed in the fluid and the resin on the side directly covering the temperature detecting element can be selected as necessary.
  • the holder is made of a resin
  • the element protection section is made up of the holder and a filled resin part filled in the holder.
  • the water tightness between the holder and the filled resin portion filled in the holder is low.
  • the watertightness between the holder and the filled resin portion is improved.
  • the element protection section contains a polyphenylene sulfide resin as a constituent material. Since this resin has high thermal conductivity, it does not hinder the temperature detection level of the temperature detection element. In addition, since this resin has a high fluidity, even if the shape of the mold is complicated, the resin can be molded with high accuracy.
  • thermosensor in which the number of parts is reduced.
  • FIG. 1 is a schematic perspective view showing a temperature sensor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the temperature sensor shown in FIG. 1, taken along the line II-II.
  • FIG. 3 is a cross-sectional view of the temperature sensor shown in FIG. 1, taken along line III-III.
  • FIG. 4 is a schematic perspective view showing a temperature sensor different from the temperature sensor shown in FIG. 1.
  • FIG. 5 is a cross-sectional view showing a VV direction of FIG.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG.
  • FIG. 7 is a view showing a thermistor housed in the temperature sensor of FIG. 4.
  • FIG. 8 is a perspective view showing a primary molded body of the temperature sensor of FIG.
  • FIG. 9 is a sectional view taken along line IX-IX of FIG.
  • FIG. 10 is a side view taken along line X—X of FIG.
  • FIG. 11 is a diagram showing a state in which the temperature sensor of FIG. 4 is applied to an automatic transmission.
  • FIG. 12 is a diagram showing a fixed-side mold in the mold for temperature sensor of FIG.
  • FIG. 13 is a cross-sectional view showing the XIII-XIII direction in FIG.
  • FIG. 14 is a view showing a process of performing secondary molding.
  • FIG. 15 is a schematic sectional view showing a prototype of a temperature sensor.
  • FIG. 1 is a schematic perspective view showing a temperature sensor according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line II-II of the temperature sensor shown in FIG. Figure 3 shows the temperature sensor I shown in Figure 1.
  • FIG. 3 is a sectional view taken along line II-III.
  • the temperature sensor 10 is a temperature sensor which is inserted into an automatic transmission (Automatic Transmission) of an automobile and detects an ATF temperature in the transmission.
  • the temperature sensor 10 has a bottomed cylindrical holder 12 made of polyphenylene sulfide (PPS) resin. Since this PPS resin has high fluidity, a highly accurate holder 12 can be obtained.
  • the holder 12 has a bottom side 12a, which is a lower end side, having a small diameter.
  • the bottom side 12a is immersed in an ATF in an automatic transmission housing (case) to be measured.
  • the sensing unit 12a is.
  • An opening 14 is formed on the upper end side 12b of the holder 12.
  • the opening 14 has a circular shape, and a barbed portion 16 is formed at an edge thereof.
  • the return portion 16 projects so as to extend in a direction perpendicular to the side wall of the holder 12, and is substantially annular.
  • a T-shaped guide portion 18 is formed at the edge of the opening 14 in a direction parallel to the direction in which the holder 12 extends.
  • the guide portion 18 is provided so as to protrude along the edge of the opening portion 14, and a harness pair 34A, 34B described later is guided between the guide portion 18 and the edge of the opening portion 14.
  • a sensor fixing portion 20 is formed on the upper end side 12b of the holder 12 so as to extend in a direction perpendicular to the side wall of the holder 12.
  • a through hole 22 is formed in the free end side 20a of the sensor fixing portion 20 in a direction parallel to the direction in which the holder 12 extends, and a screw 23 having a predetermined dimension is used to connect the temperature sensor 10 through the through hole 22.
  • the installation object 24 (that is, the case of the automatic transmission) is fixed.
  • a cylindrical metal pipe 26 is provided on the side wall of the through hole 22, and the rigidity of the through hole 22 with respect to the screw 23 is increased.
  • a hermetically closed portion 12c for preventing ATF from leaking out of the installation object 24 is formed.
  • the sealing portion 12c is formed along the outer periphery of the holder 12.
  • An annular recess 28 is formed, and a sealing ring 30 made of an elastic resin is fitted into the recess 28.
  • the installation object 24 described above has a hole 24a smaller than the outer diameter of the sealing ring 30.When the holder 12 is inserted into the hole 24a, the installation object 24 is securely secured by the sealing ring 30. Sealed.
  • an NTC (Negative Temperature Coefficient) thermistor 32 for detecting an ATF temperature in a range of -40 ° C to 150 ° C is arranged.
  • the PPS resin constituting the outer shell of the sensing unit 12a is preferable because it does not hinder the temperature detection level of the thermistor 32 having high thermal conductivity.
  • the thermistor (temperature detecting element) 32 is made of, for example, manganese, nickel, cobalt, or the like, and is a so-called polycrystalline ceramic in which crystal grains having a so-called spinel structure are gathered.
  • the thermistor 32 is sealed with glass for waterproofing, and is introduced from a pair of harness pairs (lead wire pairs) 34A and 34B, which are covered with cross-linked polyethylene, respectively. It is connected.
  • the pair of conductors 35A, 35B passing through the interior of the pair of harnesses 34A, 34B and the pair of conductors 36A, 36B drawn out of the thermistor 32 are joined by crimping with bonding bands 38A, 38B, respectively.
  • Reference numeral 39 shown in FIGS. 2 and 3 is a fluororesin tube (for example, Teflon (registered trademark) tube) that covers the conductor 36A, and prevents short circuit due to contact between the conductors.
  • One end of the harness pair 34A, 34B is connected to the thermistor 32 as described above.
  • the other end is pulled out of the temperature sensor 10 and bundled with a protective tube 40 made of cross-linked polyolefin.
  • It is connected to a control processing device (not shown) that processes the temperature detection signal detected by 32.
  • the control processing device that has received the temperature detection signal controls the shift timing and the like of the automatic transmission based on the signal.
  • the thermistor 32 and the harness pair 34A, 34B are housed in a state where the epoxy resin is filled up to the vicinity of the opening 14 on the upper end side 12b of the holder 12, and the resin is thermally cured to fill the resin part. 42 are formed.
  • the filled resin portion 42 By the filled resin portion 42, the intrusion of water into the opening portion 14 of the holder 12 and the harness pair 34A, 34B and the thermistor 32 is suppressed, and the movement of the thermistor 32 and the like is suppressed.
  • the thermistor 32 is covered with the filling resin portion 42 covering the thermistor 32 and the holder 12 accommodating the filling resin portion 42, and the thermistor 32 is watertightly sealed.
  • An element protection section 43 is formed. Note that the harness pair 34A, 34B is fixed so as to be parallel to the extending direction of the holder 12 when filling the resin, and stands substantially vertically near the surface 42a of the filling resin portion 42.
  • the harness pair 34A, 34B extending in a substantially vertical direction from the surface 42a of the filling resin portion 42 is bent at a substantially right angle in the direction of the guide portion 18 described above.
  • the harness pair 34A, 34B is divided into individual harnesses 34A, 34B by a portion 18a of the guide portion 18 extending in parallel with the extending direction of the holder 12, and is separated from the harness 34A in the extending direction of the holder 12. Is guided so as to pass between the vertically extending portion 18b and the edge of the opening 14.
  • the harnesses 34A and 34B are guided by the guide portion 18, the harnesses 34A and 34B are pressed from above by the portion 18b of the guide portion 18, and the movement of the harnesses 34A and 34B is suppressed by the frictional force accompanying the pressing. At the same time, the drop off of the honoreda 12 harnesses of the harnesses 34A and 34B is prevented.
  • a sensor cover (lead wire lead-out portion) 44 is formed in the opening 14 of the holder 12 so as to cover the entire opening 14.
  • the sensor cover 44 is formed by hot polyester molding of polyester, and includes a cap portion 44A and a neck portion 44B (see FIG. 2).
  • the cap portion 44A covers the entire portion from the edge of the opening portion 14 to the center of the surface 42a of the filling resin portion 42, and has a height enough to cover the harness pair 34A, 34B and the guide portion 18.
  • Such a cap portion 44A functions as a portion for preventing a situation where water droplets or the like enter between the holder 12 and the filling resin portion 42.
  • the portion outside the transmission must be entirely covered with the force cap 44A exposed to the environment that receives water droplets and water vapor. This prevents water droplets and the like from entering the temperature sensor 10.
  • the sensor cover 44 covers the guide portion 18, the movement of the harnesses 34A and 34B around the guide portion 18 is restricted, and the guide portion 18 can more reliably guide the harnesses 34A and 34B.
  • the position where the temperature sensor is pulled out of the harness is limited by the arrangement relationship with other parts on the layout where the automatic transmission is arranged.
  • the temperature sensor 10 can be used to change the layout of the automatic transmission for each model, It is possible to more easily cope with the change of the mold.
  • the resin surrounding the portion 18b of the guide portion 18 extending in the direction perpendicular to the direction in which the holder 12 extends prevents the sensor cover 144 from moving in the direction in which the holder 12 extends. The situation in which the cover 44 falls off can be more reliably prevented.
  • the neck portion 44B is drawn out of the cap portion 44A in a direction perpendicular to the direction in which the holder 12 extends, and the harness pair 34A, 34B and the protective tube 40 for bundling the harness pair 34A, 34B. Extends outwardly of the cap portion 44A along the outer circumferential surface of the cap portion 44A. Since the net portion 44B is made of polyester as described above, it has elasticity. Such a neck portion 44B functions as a portion for suppressing a situation in which the harness pair 34A, 34B bends greatly in the vicinity of a portion pulled out from the temperature sensor 10, and this neck portion 44B serves as a harness due to excessive bending. Disconnection of 34A and 34B is prevented.
  • the entire opening 14 can be easily and reliably resin-molded at a low temperature and a low pressure, and since the resin has fluidity during molding, Polyester can be reliably poured into the space below the turnover 16 provided at the edge of the opening 14.
  • the resin portion that has flowed into the gap below the return portion 16 and solidified prevents the sensor cover 44 from dropping out of the holder 12 in cooperation with the return portion 16. That is, the sensor cover 44 is locked by the return portion 16, thereby preventing the sensor cover 44 from dropping off the holder 12.
  • the cap portion 44 A which is a portion for preventing water drops or the like from entering between the force cover 12 and the filled resin portion 42 in the sensor cover 44
  • a harness pair 34A, 34B has a neck portion 44B, which is a portion that suppresses a situation where the harness pair 34A, 34B is largely bent near the portion pulled out from the temperature sensor 10.
  • the cap portion and the lead wire lead-out member neck portion are in a prototype stage. The number of components is reduced compared to the temperature sensor 50 (see Fig. 15).
  • the metal holder 52 and the resin 58 filled therein have physical properties (for example, thermal conductivity) and mechanical properties (for example, Young's rate) differed greatly. Therefore, a sudden temperature change, internal stress, etc. A gap is easily formed between 52 and the resin 58. If the water gap between the holder 52 and the resin 58 is reduced due to the formed gap and water drops or the like may enter through the gap, the temperature detection level of the sensor may be reduced. If it occurs, in the worst case, it will be undetectable due to an electrical short circuit.
  • physical properties for example, thermal conductivity
  • mechanical properties for example, Young's rate
  • the difference in physical characteristics and mechanical characteristics between the holder 12 and the filling resin portion 42 is very small. Therefore, compared to the temperature sensor 50 in the prototype stage, a gap is less likely to be formed between the holder 12 and the filled resin portion 42, and the watertightness between the holder 12 and the filled resin portion 42 is improved. Therefore, in the temperature sensor 10, the temperature detection level of the thermistor 32 is stable. Also, since the adhesiveness between the resins is higher than the combination of a polymer resin composed of C, H and O and a metal, the metal holder 52 is also employed from this point. It is considered that the temperature sensor 10 improves the watertightness between the holder 12 and the filled resin portion 42 as compared with the temperature sensor 50 that is used.
  • the material of the metal holder used for the temperature sensor 50 and the like often contains lead in order to improve the free-cutting property.
  • this lead has a problem of environmental pollution. Requires restrictions on its use.
  • the production of a metal holder made of a material that does not contain lead requires sophisticated technology and expensive equipment, and thus tends to be expensive.
  • the temperature sensor 10 can reduce the amount of lead used at low cost because the material of the holder 12 is a resin and does not contain lead.
  • the temperature sensor 50 in the prototype stage also had the following problems. That is, Since the holder 52 made of metal such as brass is used, the holder 52 has conductivity. Therefore, when the lead wire drawn from the thermistor 56 comes into contact with the holder 52, the temperature detection signal of the sensor 50, which is a resistance value, is disturbed, and accurate temperature detection cannot be performed. Therefore, the thermistor 56 needs to be extremely carefully accommodated in the holder 52, so that the production efficiency of the sensor 50 is reduced, which causes a problem that the production time is delayed. Therefore, in the temperature sensor 10, the efficiency of the manufacturing operation was improved.
  • the thermistor 32 is covered only by the element protection part 43 composed of the filling resin part 42 and the holder 12.
  • the filling resin portion 42 is made of epoxy resin
  • the holder 12 is made of PPS resin.
  • the sensing section 12a has a configuration in which the element protection section 43 covers the thermistor 32, and does not use a conductive holder. Therefore, the thermistor 32 and the harness pair 34A, 34B do not come into contact with the conductor.
  • the temperature sensor 10 is different from the temperature sensor 50 in the prototype stage in which the thermistor is housed in the metal holder, when the thermistor 32 is housed in the holder 12 and the thermistor 32 and the harness pair Since there is no need to consider the insulation between the 34A and 34B and the conductor, the production of the sensor is simplified and the production is made more efficient. That is, in the temperature sensor 10, the efficiency of the manufacturing operation is improved.
  • the holder used in the temperature sensor 50 in the prototype stage is made of metal and is manufactured by cutting, it takes a great deal of labor and time to manufacture the holder.
  • the holder 12 applied to the temperature sensor 10 is made of resin, and can be easily manufactured by molding. Therefore, when the holder is made of resin instead of metal, the manufacture of the sensor is facilitated. In addition, with the simplification of the holder manufacturing, the holder manufacturing cost can be reduced.
  • the holder 12 since PPS resin is used as the resin material for the holder 12, the holder 12 has high thermal conductivity and does not hinder the temperature detection level of the temperature detection element.
  • the PPS resin has a high fluidity, the resin molding can be performed with high precision even if the mold shape is complicated.
  • FIG. 4 is a perspective view showing a temperature sensor different from the temperature sensor 10 described above.
  • FIG. 5 is a sectional view taken along the line V--V in FIG. 4
  • FIG. 6 is a sectional view taken along the line VI--VI in FIG. It is sectional drawing.
  • the temperature sensor 101 has a built-in thermistor and detects the temperature of oil (ATF) or the like used in an automatic transmission of a vehicle.
  • ATF temperature of oil
  • the thermistor 110 is an NTC thermistor, and includes a temperature sensing section 111 for detecting the temperature of water, oil, or the like, and a pair of lead wires 112 and 113 connected to both sides thereof.
  • the temperature sensing portion 111 is made of, for example, manganese, nickel, cobalt, or the like, and is a polycrystalline ceramic in which crystal grains having a so-called spinel structure are gathered. Further, the temperature sensing portion 111 is coated with an epoxy rubber in order to reduce a stress applied from a resin portion (described later) covering the periphery thereof.
  • conductive wires 114 and 115 coated with a fluororesin for example, Teflon (registered trademark) are connected to the lead wire pairs 112 and 113 by pressing the crimp terminals 116 and 117.
  • the temperature sensor 101 includes a resin part (element protection part) 120 that directly covers the thermistor 110 and an outer resin part 150 that covers the resin part 120.
  • the resin part 120 is formed by first insert molding (primary molding), and the outer resin part 150 is formed by second insert molding (secondary molding).
  • the operating temperature range of the thermistor 110 is, for example, ⁇ 40 ° C. to 150 ° C.
  • the resin section 120 is formed of PPS resin, and has a first area (sensing section) 121 at the tip which covers the temperature sensing section 111 of the thermistor 110 and directly touches the oil or the like to be subjected to temperature measurement. Has been established.
  • the cross-sectional shape of the first region 121 is a flat ellipse.
  • FIG. 8 is a perspective view of the primary molded body
  • FIG. 9 is a perspective view of the primary molded body.
  • FIG. 10 is a sectional view taken along line IX-IX of FIG. 8 and FIG.
  • a second region 122 is formed continuously from the first region 121 described above.
  • the second region 122 covers a part of the pair of lead wires 112 and 113 of the thermistor 110 arranged in parallel.
  • the portion of the first region 121 that is connected to the second region 122 has a peripheral edge thickness.
  • a disk portion 121a that gradually becomes thinner toward the surroundings is formed. The reason why the periphery of the disk portion 121a is extended outward is to increase the creepage distance and improve the adhesion to the resin for the secondary molding.
  • the cross section of the second region 122 has a cross shape, and the width W of the second region 122 is the same as that of the first region 121.
  • the width here is the arrangement of the lead wire pairs 112 and 113
  • the lead wire pairs 112 and 113 are located at both ends in the width direction in the second region 122. In the area where the lead wire pairs 112 and 113 in the second area 122 are arranged, the height H (the direction intersecting the width direction; Y direction) is the first area.
  • the third region 123 is connected to the second region 122.
  • the third region 123 is wider than the second region 122 and accommodates the above-mentioned crimp terminals 116 and 117 for connecting the lead wire pairs 112 and 113 and the springs 114 and 115.
  • a through-hole 124 whose longitudinal direction faces in a direction (Y direction) intersecting with the parallel direction of the lead wires is formed between the crimp terminals 116 and 117, that is, between the lead wire pairs 112 and 113.
  • a pair of fixing portions 127 protrude from the upper and lower surfaces of the through hole 124 in the third region 123 in the figure (see FIGS. 8 and 10).
  • the fixing portions 127, 127 each have a groove having a V-shaped cross section, and the primary molded body can be positioned at the time of secondary molding by bringing a fixing bar into contact with the groove. Further, a pair of thin plate portions 125, 126 are provided upright at both upper ends of the third region 123, and the force conducting wires 114, 115 between the thin plate portions 125, 126 extend upward.
  • a substantially rectangular parallelepiped protective portion 128 that covers the periphery of the conductive wires 114 and 115 is formed.
  • the protection part 128 is formed integrally with the first, third and third regions from the same material and serves to prevent the conductive wires 114 and 115 from being damaged by contact with the mold during the secondary molding. Have. It is not always necessary to provide a protective part for bending such a conductive wire.
  • the outer resin part 150 defines the outer shape of the temperature sensor 101, and covers an area of the resin part 120 excluding most of the first area 121. In other words, the shape of the area that comes into contact with water, oil, or the like to be subjected to temperature measurement is determined by primary molding. Lower part of outer resin part 150 in the figure A pair of ring portions 151 and 152 are formed in the region of the portion, and a ring groove 153 for fitting an O-ring is formed therebetween.
  • a rectangular parallelepiped key receiving portion 154 into which a key plate described later is inserted is formed above the upper ring portion 152 of the outer resin portion 150.
  • the key receiving portion 154 has a thickness in the Y direction narrower than that of the ring portion 152 located below and the rectangular parallelepiped head 155 located above in order to prevent the key plate from being displaced in the vertical direction. It's getting done.
  • a protrusion 156 is formed on one side surface of the head 155.
  • the conductors 114 and 115 that protrude in the vertical direction (Z direction) in the primary molded body are bent at substantially right angles to extend from the protrusion 156. It is protruding.
  • FIG. 11 shows an application example of such a temperature sensor 101.
  • the figure shows an example in which the temperature sensor 101 is applied to the temperature measurement of the oil F of an automatic transmission, and is attached to a case 160 that stores the oil F.
  • a circular through hole 160h is formed in the case 160, and the ring portions 151 and 152 of the temperature sensor 101 are accommodated in the through hole 160h.
  • An O-ring is fitted into the ring groove 153 to seal a gap between the case 160 and the temperature sensor 101.
  • the first region 121 of the resin part 120 is immersed in the oil F.
  • a key plate 161 is inserted into a key receiving portion 154 located outside the case 160, and the key plate 161 is fixed to the case 160 by screws 162.
  • ECU electronice control unit
  • the thermistor 110 is accommodated in the first region 121 of the resin portion 120 immersed in the oil F in the case 160. That is, the thermistor 110 is covered only with the resin part 120 made of PPS. Thus, the first region 121 covers the thermistor 110 only with the resin portion 120, and does not use a conductive holder. Therefore, the thermistor 110 and the pair of lead wires 112 and 113 do not contact the conductor.
  • the temperature sensor 101 needs to consider insulation between the thermistor and the harness pair and the conductor when housing the thermistor in the holder. Since there is no sensor, the manufacturing operation of the sensor is simplified, and the efficiency of the manufacturing operation is improved.
  • a method of manufacturing the temperature sensor 101 and a mold for the temperature sensor suitably used in the method will be described.
  • a mold (mold for temperature sensor) 170 for insert molding (primary molding) the temperature sensor 101 is prepared. Forces using fixed-side mold and movable-side mold as molds Here, only the fixed-side mold 170 will be described in detail.
  • the type on the moving side can be determined according to the outer shape of the temperature sensor.
  • the cavity of the mold 170 includes a first cavity region 171 for forming the first region 121 of the resin part 120, a second cavity region 172 for forming the second region 122 which is continuous with the region 171, and There is a third cavity region 173 that is continuous with the region 172 and forms the third region 123.
  • the width W of the second cavity region 172 is smaller than the width W of the first cavity region 171.
  • a space 174 for allowing the injected resin to reach the tip of the first cavity region 171 is formed in the first cavity region 171 on the side opposite to the second cavity region 172.
  • a partition wall 175 that forms the through hole 124 is provided upright.
  • a similar partition wall 181 (see FIG. 13) is provided on the mold on the moving side, so that the partition walls 175 and 181 come into contact with each other when the mold is clamped.
  • a groove 176 for forming the fixed portion 127 of the primary molded body is provided on the partition wall 175 on the side opposite to the second cavity region 172. The groove 176 has such an inclination that the center is the shallowest and both ends are the deepest.
  • the third cavity region 172 is provided with spaces 177 and 178 for forming the thin plate portions 125 and 126 of the primary molded body. Spaces 177 and 178 are connected to a protection portion cavity region 179 for forming a protection portion 128 for protecting the conductors 114 and 115.
  • the mold 170 includes various other known elements. Such elements include, for example, a gate for injecting resin into the cavity, an ejector pin for removing the molded body from the mold, a guide pin and a guide pin for accurately fitting the fixed and movable molds. Bush and the like.
  • the thermistor 110 is set on the mold 170. At this time, as shown in FIG. 12, the temperature sensing portion 111 is located in the first cavity region 171 and the second cavity region is located. At 172, a pair of lead wires 112, 113 force S to make the same IJ. Also, lead wires 112 and 113 are passed one by one on both sides of the partition wall 175. After setting the thermistor 110, the movable mold is moved toward the fixed mold 170, and the mold is clamped.
  • FIG. 13 is a cross-sectional view of the clamped state in the XIII-XIII direction of FIG.
  • Reference numeral 180 indicates a mold on the moving side.
  • the second cavity region 172 has a width W smaller than the width W of the first cavity region 171 as well as the lead wires 112 and 113.
  • a high-pressure resin is injected into the cavity through the gate, and insert molding is performed. Since a highly fluid PPS resin is used here, even if the mold shape is complicated, the resin spreads to every corner of the cavity and high-precision resin molding can be realized. Also, since the resin has high thermal conductivity, it does not hinder the temperature detection level of the thermistor. Further, since the mold 170 is configured as described above, in the process of injecting the resin into the first cavity region 171 and the second cavity region 172, the resin is simultaneously injected into the protection portion cavity region 179. be able to. This eliminates the necessity of performing two injection moldings in the process of forming the first region 121 and the second region 122 and the process of molding the protection portion 128, thereby reducing the number of resin injections. In addition, simplification of the manufacturing operation can be achieved.
  • the manufacturing method described above has the following effects. That is, even if pressure is applied to the thermistor 110 during resin injection and the thermistor 110 is displaced, the lead wires 112, 113 force S come into contact with the inner wall surfaces 172a, 172b of the second cavity region 172, and thus the thermistor 110 The movement of 110 is regulated. Therefore, it is possible to prevent the temperature sensing portion 111 from reaching the inner wall surfaces 171a and 171b of the first cavity region 171 during insert molding. Thereby, in the obtained temperature sensor 101, the situation where the temperature sensing part 111 of the thermistor 110 is exposed on the surface of the resin part 120 covering the same is suppressed. Since the exposure of the temperature sensitive part 111 is suppressed, it is not necessary to cover the first area 121 where the thermistor 110 is located in the secondary molding described later, and the resin size around the temperature sensitive part 111 is reduced. The size can be reduced.
  • the height H of the area where the lead wires 112 and 113 are arranged in the second cavity area 172 is Is lower than the height H of the first cavity region 171,
  • the thermistor 110 is displaced in the height direction, the movement of the leads, the wires 112 and 113 can be restricted by the inner wall surfaces 172c and 172d of the second cavity region 172.
  • the situation of reaching the inner wall surfaces 171c and 171d of the 171 can be suppressed. For this reason, the situation where the temperature sensing part 111 is exposed on the surface of the resin part 120 that covers the temperature sensing part 111 can be further effectively suppressed.
  • the thermistor 110 is set in a mold 170 so as to pass through the lead wires 112 and 113, one by one, on both sides of the partition wall 175, and then laid. For this reason, since the partition wall 175 (therefore, the reed springs 112 and 113 can be restricted from moving toward each other, the displacement of the thermistor 110 can be suppressed more effectively.
  • the mold is opened, and the molded body is taken out of the mold by using edge tapping pins. Next, a portion connecting the protection portion 128 and the thin plate portions 125 and 126 is cut, and a portion formed by the space 174 is cut off. As a result, the primary compact shown in FIGS. 8 to 10 is obtained.
  • the linearly extending conductive wires 114 and 115 are bent at substantially right angles, and the first region 121 covering the thermistor 110 is inserted into the through hole of the mold 185, while the protective portion 128 covering the conductive wires 114 and 115 is formed. It is clamped by a pair of lower mold 190 and upper mold 191. That is, the resin is not molded around the first region 121 (the region where the leading end partial force is also close to the second region 122) in the secondary molding. Further, a bar 192 is attached to the inner surface of the lower die 190 forming the cavity, and the bar 192 is configured to abut on one of the fixing portions 127 of the primary molded body.
  • the movable mold 194 is moved and clamped. At this time, the bar 193 attached to the mold 194 comes into contact with the other fixing portion 127 of the primary molded body, so that the primary molded body can be positioned and fixed in the mold.
  • a resin is injected from the gate of the mold, and secondary molding is performed.
  • the PPS resin is injected similarly to the primary molding, but another resin may be used.
  • Second order In the shape, as described above, the conductive wires 114 and 115 are sandwiched by the lower mold 190 and the upper mold 191 via the protection portion 128, so that damage received from these molds can be suppressed.
  • resin injection for secondary molding open the mold and remove the molded body from the mold using ejecta pins. Thereby, the temperature sensor 101 shown in FIGS. 4 and 6 is obtained.
  • the outer shape of the first region 121 covering the temperature sensing portion 111 of the thermistor 110 is determined only by primary molding, and the first region 121 is formed by secondary molding. Since it is not necessary to cover 21, the size of the resin around the temperature sensing portion can be reduced. In addition, the amount of resin used can be reduced, and the cost can be reduced.
  • the outer resin portion formed by the secondary molding may be entirely removed as long as it covers the resin portion except at least a part of the first region 121. Further, an area other than the first area may be excluded.
  • the temperature sensor may be manufactured only by the primary molding without performing the secondary molding.
  • the present invention is not limited to the above embodiment, and various modifications are possible.
  • the angle of the return part formed on the holder with respect to the holder side wall is not limited to vertical (90 degrees), but may be changed within the range of 0 to 90 degrees as long as the sensor cover is locked to the holder.
  • Power S can.
  • the shape of the neck portion is not limited to the T-shape, and may be a bar shape or a plate shape as long as it can appropriately guide the harness.
  • the resin forming the holder and the resin forming the filling resin portion are not limited to the combination of the PPS resin and the epoxy resin.
  • the resin forming the holder is a liquid crystal polymer, polyamide, polyimide or the like, and the resin forming the holder and the resin forming the filling resin portion may be the same.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

 部品点数の削減が図られた温度センサを提供する。  本発明に係る温度センサ(10)においては、センサカバー(44)のキャップ部(44A)によって、ホルダ(12)の開口部(14)全体が覆われており、ホルダ(12)と充填樹脂部(42)との間に水滴等が入り込む事態の防止が図られている。また、センサカバー(44)のネック部(44B)によって、過度の屈曲に起因するハーネス対(34A,34B)の断線が抑止されている。このようなキャップ部(44A)及びネック部(44B)は、ともにセンサカバー(44)の一部分であり、一体となっている。このようなセンサカバー(44)が採用された温度センサ(10)においては、キャップとリード線引き出し部材とが別体である温度センサ(50)に比べて部品点数が削減されている。

Description

明 細 書
温度センサ
技術分野
[0001] 本発明は、 自動車の ATF (Automatic Transmission Fluid)等の油温を検知す る温度センサに関するものである。
背景技術
[0002] 従来、この技術の分野における温度センサは、例えば、下記特許文献 1や特許文 献 2等に開示されている。これらの公報に記載の温度センサにおいて、ガラス封止サ 一ミスタ(温度検出素子)が収納された黄銅製の有底筒状ホルダには樹脂が充填さ れており、温度検出素子部分への水の侵入防止が図られている。これらの温度セン サの温度検出素子には、一対のリード線の各一端部が接続されており、各他端部は 樹脂の外側まで延びる電極対に接続される。そして、この電極対には、温度検出素 子で検出した信号を制御処理装置まで伝達する一対のリード線が接続される。
[0003] 発明者らは、ショートする可能性が高い部分である電極対が不必要な温度センサ に関する研究を進めた結果、図 15に示したような温度センサ 50の試作品を完成させ た。図 15は、温度センサの試作品(未公知)を示した概略断面図である。図 15に示 すように、温度センサ 50においては、金属製の有底筒状ホルダ 52の底部に一対のリ ード線 54A, 54Bが接続された温度検出素子 56が配置されており、そのホルダ 52の 中に樹脂 58が充填されている。ホルダ 52に充填された樹脂 58は、ホルダ 52の開口 部 60側において円筒状側壁 62を形成している。この樹脂で構成される側壁 62には リード線が貫通する孔 64が形成されており、樹脂 58から引き出されたリード線 54A, 54Bは屈曲されると共に、その孔 64を介して外部に引き出される。
[0004] 側壁 62に形成された孔 64の外側には、その一部が側壁 62に坦まるように取り付け られたリード線引き出し部材 66が装着されている。このリード線引き出し部材 66は、 筒状の弾性体であり、孔 64の近傍におけるリード線 54A, 54Bの過度の屈曲を抑制 している。このようなリード線引き出し部材 66により、リード線 54A, 54Bが外部に引き 出される部分で、リード線 54A, 54Bが大きく屈曲しやすい部分である孔 64の近傍 で、リード線 54A, 54Bが 90度近く屈曲して断線してしまう事態が防止されている。
[0005] 樹脂 58によって形成された側壁 62の内部には、リード線 54A, 54Bが坦設される ように樹脂 68が充填されている。それにより、樹脂 58とリード線 54A, 54Bとの界面 力、らの水の侵入の回避、リード線 54A, 54Bの固定及び保護が図られている。また、 その樹脂 68及び側壁 62を覆うように防水キャップ 70が被せられている。この防水キ ヤップ 70は、水滴や水蒸気を受ける環境に曝されている温度センサ上部を覆うことで 、水滴等が各部材の境からセンサ 50内部に入り込み温度検出素子 56まで達する事 態の回避が図られている。なお、符号 72は、樹脂 58にインサート成形された、リード 線を下方から支持してその動きを抑制する金属ステ一であり、符号 74は、金属ステ 一 72でリード線 54A, 54Bが損傷する事態を防止するための保護チューブである。
[0006] 特許文献 1 :特開平 11一 23379号公報
特許文献 2:実開平 5 - 3955号公報
特許文献 3:特開 2002 - 267540号公報
特許文献 4 :実開平 6— 62336号公報
特許文献 5:特開平 8 - 128901号公報
発明の開示
発明が解決しょうとする課題
[0007] し力、しながら、前述した試作段階の温度センサには、次のような課題が存在してい る。すなわち、リード線引き出し部材 66及び防水キャップ 70の構成材料が異なるた め、それぞれ別部材として温度センサ 50を構成していた。それにより、部品点数の削 減が阻害され、それに伴い製造工程の簡略化も阻害されていた。
[0008] 本発明は、上述の課題を解決するためになされたもので、部品点数の削減が図ら れた温度センサを提供することを目的とする。
課題を解決するための手段
[0009] 本発明に係る温度センサは、開口部を有する有底筒状のホルダと、リード線対が開 口部側から導入されるように接続されると共に、ホルダの底部に収納された温度検出 素子と、温度検出素子を封止するようにホルダ内に充填されると共に、開口部まで延 びる充填樹脂部と、開口部全体を覆うキャップ部と、このキャップ部から引き出される リード線対の外周面に沿ってキャップ部の外方に延びるネック部とがー体となってい るセンサカバーとを備えることを特徴とする。
[0010] この温度センサにおいては、センサカバーのキャップ部によって、ホルダの開口部 全体が覆われており、ホルダと充填樹脂部との間に水滴等が入り込む事態の防止が 図られている。また、センサカバーのネック部によって、過度の屈曲に起因するリード 線の断線が抑止されている。このようなキャップ部及びネック部は、ともにセンサカバ 一の一部分であり、一体となっている。このようなセンサカバーが採用された温度セン サにおいては、キャップとリード線引き出し部材とが別体である試作段階の温度セン サに比べて部品点数が削減されている。
[0011] また、ホルダの開口部の縁に突設された、リード線対を構成するそれぞれのリード 線を案内するガイド部をさらに備え、センサカバーは、ガイド部を覆っていることが好 ましレ、。この場合、センサカバーがガイド部周辺のリード線対の移動を制限するので、 ガイド部はより確実にリード線を案内することができる。
[0012] また、ガイド部の形状は、ホルダの延在方向に対して垂直方向に延在する部分と、 ホルダの延在方向に対して平行に延在する部分とを有する τ字形状であることが好 ましい。この場合、ホルダの延在方向に対して垂直方向に延在する部分により、セン サカバーの脱落が抑止される。
[0013] また、ホルダの開口部の縁には、ホルダの外方に張り出す略環状の返し部が形成 されており、センサカバーの少なくとも一部は、前記返し部で係止されていることが好 ましレ、。この場合、センサカバーのホルダからの脱落を抑止することができる。
[0014] また、センサカバーは、ホットメルト成型により形成されていることが好ましい。この場 合、実用に適した成型方法であるホットメルト成型でセンサカバーを確実に形成する こと力 Sできる。
[0015] また、測温対象であるケース内の流体に浸されるセンシング部を備え、センシング 部には、リード線対が接続された温度検出素子が収容されており、この温度検出素 子が樹脂からなる素子保護部のみで覆われていることが好ましい。この温度センサに おいて、リード線対が接続された温度検出素子はセンシング部に収容されている。そ してこの温度検出素子は、樹脂からなる素子保護部でのみ覆われている。すなわち 、この温度センサは導電性を有するホルダは用いておらず、温度検出素子及びリー ド線対が導体に接触する事態が生じないため、センサの温度検出信号の安定化が 実現されている。従って、この温度センサにおいては、金属製のホルダに温度検出 素子が収容される従来の温度センサとは異なり、ホルダ内への温度検出素子の収容 の際に温度検出素子及びリード線対と導体との絶縁に配慮する必要がないため、セ ンサの作製作業が簡単になり、作製作業の高効率化が図られる。また、成形が困難 である金属製のホルダを利用しないため、センサ作製の容易化が図られると共に、部 品作製コストの削減が図られる。
[0016] また、素子保護部は、異種又は同種の樹脂による積層構造を有することが好ましい 。この場合、必要に応じて、流体に浸る側の樹脂及び温度検出素子を直接被覆する 側の樹脂を選択することができる。
[0017] また、ホルダは樹脂で構成されており、素子保護部が、ホルダとこのホルダの中に 充填された充填樹脂部とで構成されていることが好ましい。金属製のホルダを利用す る従来の温度センサでは、ホルダとホルダ内に充填される充填樹脂部との間におけ る水密性が低レ、が、このように樹脂製のホルダ内に樹脂を充填した場合には、ホルダ と充填樹脂部との水密性が向上する。
[0018] また、素子保護部は、構成材料としてポリフエ二レンサルファイド樹脂を含んでいる ことが好ましい。この樹脂は、熱伝導性が高いため、温度検出素子の温度検知レベ ルを妨げない。またこの樹脂は流動性が高いため、型形状が複雑であっても樹脂成 形を高精度でおこなうことができる。
発明の効果
[0019] 本発明によれば、部品点数の削減が図られた温度センサが提供される。
図面の簡単な説明
[0020] [図 1]図 1は、本発明の実施形態に係る温度センサを示した概略斜視図である。
[図 2]図 2は、図 1に示した温度センサの II II線断面図である。
[図 3]図 3は、図 1に示した温度センサの III III線断面図である。
[図 4]図 4は、図 1に示した温度センサとは異なる温度センサを示した概略斜視図であ る。 [図 5]図 5は、図 4の V— V方向を示す断面図である。
[図 6]図 6は、図 4の VI— VI方向を示す断面図である。
[図 7]図 7は、図 4の温度センサに収容されるサーミスタを示す図である。
園 8]図 8は、図 4の温度センサの 1次成形体を示す斜視図である。
[図 9]図 9は、図 8の IX— IX線断面図である。
[図 10]図 10は、図 8の X— X線側面図である。
[図 11]図 11は、図 4の温度センサを自動変速機に適用した状態を示す図である。 園 12]図 12は、図 4の温度センサ用型における固定側の型を示す図である。
[図 13]図 13は、図 12の XIII— XIII方向を示す断面図である。
[図 14]図 14は、 2次成形を実施する過程を示す図である。
園 15]図 15は、温度センサの試作品を示した概略断面図である。
符号の説明
10, 50, 101 温度センサ
12 ホルダ
12a, 121 センシング部
12c 密閉部
14 開口部
16 返し部
18 ガイド部
18a, 18b ガイド部の部分
32, 110 サーミスタ
34A, 34B ハーネス
42 充填樹脂部
43, 120 素子保護部
44 センサカバー
44A キャップ部
44B ネック部
112, 113 リード線 発明を実施するための最良の形態
[0022] 以下、添付図面を参照して本発明に係る温度センサの好適な実施の形態について 詳細に説明する。なお、同一又は同等の要素については同一の符号を付し、説明が 重複する場合にはその説明を省略する。
[0023] 図 1は、本発明の実施形態に係る温度センサを示した概略斜視図である。図 2は、 図 1に示した温度センサの II—II線断面図である。図 3は、図 1に示した温度センサの I
II一 III線断面図である。
[0024] 図 1一図 3に示す本発明の実施形態に係る温度センサ 10は、自動車の自動変速 機(Automatic Transmission)に差し込んで、変速機内の ATF温度を検知する温 度センサである。この温度センサ 10は、ポリフエ二レンサルファイド(PPS)樹脂製で 有底円筒状のホルダ 12を有している。この PPS樹脂は、流動性が高いため、高精度 のホルダ 12が得られる。このホルダ 12は、下端側である底部側 12aの径が細くなつ ており、この底部側 12aが、測温対象である自動変速機筐体 (ケース)内の ATFに浸 される、温度センサ 10のセンシング部 12aとなっている。ホルダ 12の上端側 12bには 開口部 14が形成されている。開口部 14は、円形状を有し、その縁には返し部 16が 形成されている。この返し部 16は、ホルダ 12の側壁に対して垂直方向に延びるよう 突出しており、略環状である。また、開口部 14の縁には、ホルダ 12の延在方向に平 行に T字状のガイド部 18が形成されている。このガイド部 18は、開口部 14の縁に沿 うように突設されており、このガイド部 18と開口部 14の縁との間において後述するハ 一ネス対 34A, 34Bが案内される。
[0025] さらに、ホルダ 12の上端側 12bには、ホルダ 12の側壁に対して垂直方向に突出し て延びるセンサ固定部 20が形成されている。このセンサ固定部 20の遊端側 20aに は、ホルダ 12の延在方向に平行な方向に貫通孔 22が形成されており、所定寸法の ネジ 23によりこの貫通孔 22を介して温度センサ 10と設置対象物 24 (すなわち、 自動 変速機のケース)とが固定される。なお、貫通孔 22の側壁は、円筒状の金属製パイ プ 26が揷設されており、貫通孔 22のネジ 23に対する剛性が高められている。また、 ホルダ 12の側壁の中央付近には、設置対象物 24外への ATFの漏洩を防止する密 閉部 12cが形成されている。この密閉部 12cは、ホルダ 12の外周に沿って形成され た環状の窪み 28と、この窪み 28に嵌め込まれた弾性を有する樹脂製の密閉リング 3 0とで構成されている。上述した設置対象物 24には、この密閉リング 30の外径より小 さい孔 24aが穿設されており、この孔 24aにホルダ 12を挿入した場合、密閉リング 30 によって設置対象物 24が確実に密閉される。
[0026] 径が細くなつているセンシング部 12aの内部には、— 40°C 150°Cの範囲で ATF 温度を検出する NTC (Negative Temperature Coefficient)サーミスタ 32が配置 されている。ここで、センシング部 12aの外殻を構成する PPS樹脂は、熱伝導性が高 ぐサーミスタ 32の温度検知レベルを妨げない点で好適である。このサーミスタ(温度 検出素子) 32は、例えばマンガン、ニッケル、コバルト等から形成されており、いわゆ るスピネル構造の結晶粒が集まった多結晶体セラミクスとなっている。また、サーミス タ 32は、ガラス封止され防水が図られていると共に、架橋ポリエチレンでそれぞれ被 覆された一対のハーネス対(リード線対) 34A, 34B力 開口部 14から導入されるよう にして接続されている。一対のハーネス 34A, 34B内部を通る一対の導線 35A, 35 Bとサーミスタ 32から引き出された一対の導線 36A, 36Bとは、それぞれ接合バンド 3 8A, 38Bによってカシメ固定により継ぎ合わされている。なお、図 2及び図 3に示した 符号 39は、導線 36Aを覆うフッ素樹脂チューブ(例えば、テフロン (登録商標)チュー ブ)であり、導線同士の接触によるショートを防止するものである。
[0027] ハーネス対 34A, 34Bの一端側は、上述したようにサーミスタ 32と接続されている 力 他端側は温度センサ 10から引き出され架橋ポリオレフイン製の保護チューブ 40 で束ねられた状態で、サーミスタ 32によって検出された温度検出信号を処理する制 御処理装置(図示せず)に接続されている。温度検出信号を受信した制御処理装置 は、その信号に基づレ、て自動変速機の変速タイミング等を制御する。
[0028] 上述したサーミスタ 32及びハーネス対 34A, 34Bは、ホルダ 12の上端側 12bの開 口部 14付近までエポキシ樹脂が充填された状態で収納され、その樹脂が熱硬化さ れて充填樹脂部 42が形成されている。この充填樹脂部 42により、ホルダ 12の開口 部 14及びハーネス対 34A, 34B力、らサーミスタ 32への水の侵入が抑えられると共に 、サーミスタ 32等の移動が抑えられる。このようにサーミスタ 32を覆う充填樹脂部 42と 充填樹脂部 42を収容するホルダ 12とによって、サーミスタ 32を覆って水密封止する 素子保護部 43が形成されている。なお、ハーネス対 34A, 34Bは、樹脂充填の際に ホルダ 12の延在方向に平行となるように固定され、充填樹脂部 42の表面 42a付近 においては略垂直に起立している。
[0029] 充填樹脂部 42の表面 42aから略垂直方向に延びたハーネス対 34A, 34Bは、上 述したガイド部 18の方向に略直角に屈曲される。そして、ハーネス対 34A, 34Bは、 ガイド部 18のうち、ホルダ 12の延在方向に対して平行に延在する部分 18aによって 個々のハーネス 34A, 34Bに分けられ、ホルダ 12の延在方向に対して垂直方向に 延在する部分 18bと開口部 14の縁との間を通されるように案内される。なお、ガイド 部 18によるハーネス 34A, 34Bの案内の際、ガイド部 18の一部分 18bによりハーネ ス 34A, 34Bは上側から押さえつけられ、この押さえつけに伴う摩擦力によりハーネ ス 34A, 34Bの移動が抑制されると共に、ハーネス 34A, 34Bのホノレダ 12力らの脱 落が防止される。
[0030] ホルダ 12の開口部 14には、その開口部 14全体を覆うように、センサカバー(リード 線引き出し部) 44が形成されている。このセンサカバー 44は、ポリエステルのホットメ ノレト成型によって形成されたものであり、キャップ部 44Aとネック部 44Bとで構成され ている(図 2参照)。キャップ部 44Aは、開口部 14の縁から充填樹脂部 42の表面 42a 中央までを隈無く覆っており、ハーネス対 34A, 34B及びガイド部 18が覆われる程 度の高さを有する。このようなキャップ部 44Aは、ホルダ 12と充填樹脂部 42との間に 水滴等が入り込む事態を防止する部分として機能する。すなわち、一般に自動車の 自動変速機に適用される温度センサのうち、変速機の外側に位置する部分は水滴 や水蒸気を受ける環境に曝されている力 キャップ部 44Aによって開口部 14全体が 覆われることで、水滴等の温度センサ 10内部への侵入が阻止される。
[0031] また、センサカバー 44がガイド部 18を覆うことで、ガイド部 18周辺のハーネス 34A , 34Bの移動が制限され、ガイド部 18はより確実にハーネス 34A, 34Bを案内するこ とができる。ここで、一般に、温度センサのハーネス引き出し位置は、 自動変速機が 配置されるレイアウト上の他部品との配置関係によって制限をうける。ところ力 ホット メルト成型は、金型の変さらにより容易にハーネス引き出し位置を変更することができ るため、温度センサ 10は、車種毎の自動変速機のレイアウト変さらにも、ホットメノレト 用金型の変さらにより容易に対応することができる。さらに、ガイド部 18のうち、ホルダ 12の延在方向に対して垂直方向に延在する部分 18bを囲む樹脂により、センサカバ 一 44のホルダ 12の延在方向への移動が抑止されるため、センサカバー 44が脱落す る事態をより確実に阻止することができる。
[0032] ネック部 44Bは、キャップ部 44Aからホルダ 12の延在方向に対して垂直方向に引 き出されていると共に、ハーネス対 34A, 34B及びこのハーネス対 34A, 34Bを束ね る保護チューブ 40の外周面に沿ってキャップ部 44Aの外方に延びている。このネッ ク部 44Bは、上述したようにポリエステル製であるため弾性を有している。このようなネ ック部 44Bは、温度センサ 10から引き出される部分の近傍においてハーネス対 34A , 34Bが大きく屈曲する事態を抑制する部分として機能し、このネック部 44Bにより過 度の屈曲に伴うハーネス対 34A, 34Bの断線が防止されてレ、る。
[0033] センサカバー 44は、上述したようにホットメルト成型により形成されているため、低温 低圧で容易且つ確実に開口部 14全体を樹脂モールドできると共に、成型時に樹脂 が流動性を有することで、開口部 14の縁に設けられている返し部 16下部の空隙に 確実にポリエステルを流し込むことができる。このような返し部 16下部の空隙に流れ 込んで固化した樹脂部分は、返し部 16との協働によって、センサカバー 44のホルダ 12からの脱落を抑止している。すなわち、センサカバー 44は、返し部 16で係止され ることで、ホルダ 12からの脱落が抑止されている。
[0034] 以上、詳細に説明したように、温度センサ 10においては、センサカバー 44力 ホル ダ 12と充填樹脂部 42との間に水滴等が入り込む事態を防止する部分であるキャップ 部 44Aと、温度センサ 10から引き出される部分の近傍においてハーネス対 34A, 34 Bが大きく屈曲する事態を抑制する部分であるネック部 44Bとを有している。このよう なキャップ部 44A及びネック部 44Bが一体化されたセンサカバー 44が採用された温 度センサ 10においては、キャップ部とリード線引き出し部材 (ネック部)とが別体であ る試作段階の温度センサ 50 (図 15参照)に比べて部品点数が削減されている。
[0035] ここで、試作段階の温度センサ 50においては、金属製のホルダ 52とその中に充填 される樹脂 58とは、その物理的特性 (例えば、熱伝導率)や機械的特性 (例えば、ャ ング率)が大きく異なっていた。従って、急激な温度変化や内部応力等により、ホルダ 52と樹脂 58との間には隙間が形成されやすかつた。そして、形成された隙間によつ てホルダ 52と樹脂 58との水密性が低下し、この隙間から水滴等が侵入するようなこと がある場合には、センサの温度検知レベルが低下する事態が生じてしまレ、、最悪の 場合、電気的短絡により検知不能となってしまう。
[0036] 一方、 PPS樹脂製のホルダ 12が採用された温度センサ 10においては、ホルダ 12 と充填樹脂部 42との物理的特性や機械的特性の相異はごくわずかである。従って、 試作段階の温度センサ 50に比べて、ホルダ 12と充填樹脂部 42との間に隙間が生じ にくく、ホルダ 12と充填樹脂部 42との水密性の向上が図られている。従って、温度セ ンサ 10においてはサーミスタ 32の温度検知レベルが安定している。また、 C、 H及び Oで構成される高分子の樹脂と金属との組み合わせに比べて、樹脂同士の方がその 接着性が高いため、この点からも、やはり金属製のホルダ 52が採用された温度セン サ 50に比べて、温度センサ 10はホルダ 12と充填樹脂部 42との間の水密性の向上 が図られていると考えられる。
[0037] また、温度センサ 50等に利用される金属製のホルダの材料には、快削性を向上さ せるために鉛が含有されることが多レ、が、この鉛は環境汚染の点から使用の制限が 求められている。なお、鉛を含有していない材料での金属製ホルダの作製には、高 度な技術及び高価な装置が要求されるため、高価になりがちである。その点、温度セ ンサ 10は、ホルダ 12の材料が樹脂であり鉛を含有していないので、鉛の使用量の削 減を安価に実現することが可能である。
[0038] さらに、温度センサ 10では、試作段階の温度センサ 50で必要とした金属ステー 72 及び保護チューブ 74の部品の削減が図られている(図 15参照)。これは、ホットメルト 成型に利用する金型の形状及びポリエステルの硬度の調整をすることで、センサ力 バー 44のネック部 44Bによりハーネス対 34A, 34Bが確実に支持されるためである。 すなわち、温度センサ 10においては、温度センサ 50で利用していた金属ステー 72 及び保護チューブ 74がセンサカバー 44で代用されている。なお、センサカバー 44 のネック部 44Bを伸長化したり、高硬度のポリエステル材料を採用したりすることで、 センサカバー 44でより確実にハーネス対 34A, 34Bを支持することができる。
[0039] ここで、試作段階の温度センサ 50には、次のような課題も存在していた。すなわち、 黄銅等の金属製のホルダ 52が用いられているためホルダ 52は導電性を有している 。そのため、サーミスタ 56から引き出された導線がホルダ 52に接触した場合には、抵 抗値であるセンサ 50の温度検出信号が乱れて、精度の良い温度検出をおこなうこと ができない。従って、ホルダ 52内へのサーミスタ 56の収容は極めて慎重におこなう 必要があつたため、センサ 50の作製効率が低下してしまレ、、それに伴い作製時間の 遅延を招いてしまうという問題があった。そこで、この温度センサ 10においては、作製 作業の効率向上が図られた。
[0040] すなわち、温度センサ 10のセンシング部 12aにおいて、サーミスタ 32は、充填樹脂 部 42及びホルダ 12で構成された素子保護部 43のみで覆われている。ここで、充填 樹脂部 42はエポキシ樹脂で構成され、ホルダ 12は PPS樹脂で構成されている。この ようにセンシング部 12aはサーミスタ 32を素子保護部 43が覆う構成となっており、導 電性を有するホルダは用いていなレ、。そのため、サーミスタ 32及びハーネス対 34A, 34Bが導体に接触する事態が生じなレ、。
[0041] このように、温度センサ 10は、金属製のホルダにサーミスタが収容される試作段階 の温度センサ 50とは異なり、ホルダ 12内へのサーミスタ 32の収容の際にサーミスタ 3 2及びハーネス対 34A, 34Bと導体との絶縁に配慮する必要がないため、センサの 作製作業が簡単になり、作製作業の高効率化が図られる。すなわち、温度センサ 10 においては、作製作業の効率向上が図られている。
[0042] また、試作段階の温度センサ 50で用いられるホルダは金属製であり、切削加工に より作製していたため、その作製には多大な手間と時間を要した。一方、温度センサ 10に適用されるホルダ 12は樹脂製であり、金型成型で容易に作製することができる 。従って、ホルダが金属製ではなく樹脂製である場合には、センサ作製の容易化が 図られる。また、ホルダ作製の容易化に伴レ、、ホルダ作製コストの削減が図られる。 特に、ホルダ 12は樹脂材料として PPS樹脂が採用されているため、熱伝導性が高く 、温度検出素子の温度検知レベルを妨げない。またこの PPS樹脂は流動性が高い ため、型形状が複雑であっても樹脂成形を高精度でおこなうことができる。
[0043] 次に、温度検出素子が樹脂からなる素子保護部のみで覆われている点で、上述し た温度センサ 10と同様である温度センサ 101について、図 4一図 14を参照しつつ説 明する。図 4は、上述した温度センサ 10とは異なる温度センサを示す斜視図であり、 図 5は、図 4における V— V方向の断面図であり、図 6は、図 4における VI— VI方向の 断面図である。温度センサ 101は、サーミスタを内蔵しており、自動車の自動変速機 に使用される油 (ATF)等の温度を検知する。
[0044] まず、図 7を参照して、温度センサ 101に内蔵されるサーミスタ(温度検出素子) 11 0について説明する。このサーミスタ 110は、 NTCサーミスタとなっており、水や油等 の温度を検知する感温部 111と、その両側に接続された一対のリード線対 112, 113 とを備えている。感温部 111は、例えばマンガン、ニッケル、コバルト等から形成され ており、いわゆるスピネル構造の結晶粒が集まった多結晶体セラミクスとなっている。 また、この感温部 111は、その周囲を覆う樹脂部(後述する)から受ける応力を緩和 するために、エポキシ系ゴムでコーティングされている。一方、リード線対 112, 113 には、フッ素樹脂被覆 (例えば、テフロン (登録商標)被覆)された導線 114, 115が、 圧着端子 116, 117を力しめることで接続されている。
[0045] 次に、温度センサ 101の構成を説明する。図 5に示すように、温度センサ 101は、サ 一ミスタ 110を直接覆う樹脂部 (素子保護部) 120と、この樹脂部 120を覆う外側樹脂 部 150とから構成されている。樹脂部 120は最初のインサート成形(1次成形)で形成 され、外側樹脂部 150は 2回目のインサート成形(2次成形)で形成される。サーミスタ 110の使用温度範囲は、例えば- 40°C— 150°Cの範囲である。
[0046] 樹脂部 120は、 PPS樹脂で形成されており、先端には、サーミスタ 110の感温部 11 1を覆うと共に温度測定対象の油等に直接触れる第 1領域 (センシング部) 121が形 成されている。第 1領域 121は、その断面形状は扁平楕円となっている。
[0047] ここで、図 8 図 10を参照して、樹脂部 120をさらに詳説する。各図は、 1次成形後 における成形体(以下、「1次成形体」と称す)を示すものであり、図 8は、 1次成形体 の斜視図であり、図 9は、図 8の IX— IX断面図であり、図 10は、図 8の X— X方向の佃 J 面図である。
[0048] 1次成形体には、上記の第 1領域 121に連続して第 2領域 122が形成されている。
第 2領域 122は、並列されたサーミスタ 110の一対のリード線対 112, 113の一部を 覆っている。第 1領域 121における第 2領域 122と繋がる部分には、縁部の厚みが周 囲に向けて徐々に薄くなる円盤部 121aが形成されている。円盤部 121aの周囲を外 側に張り出すようにしているのは、沿面距離を多くし、 2次成形の樹脂との密着性を 高めるためである。
[0049] また、第 2領域 122は、断面が十字形状になっており、その幅 Wは第 1領域 121の
2
幅 Wよりも狭くなつている(図 9参照)。ここでいう幅とは、リード線対 112, 113の並び
1
方向(図中の X方向)に相当する長さをいう。リード線対 112, 113は、第 2領域 122 における幅方向の両端に位置している。また、第 2領域 122におけるリード線対 112 , 113が配された領域は、その高さ H (上記幅方向と交差する方向; Y方向)が第 1領
2
域 121の同方向の高さ Hよりも低くなつている。
1
[0050] 第 2領域 122には、第 3領域 123が繋がっている。第 3領域 123は、その幅が第 2領 域 122よりち広くなつており、リード線対 112, 113と導泉 114, 115とを連結する上記 の圧着端子 116, 117を収容している。また、圧着端子 116, 117間すなわちリード 線対 112, 113間には、リード線の並列方向と交差する方向(Y方向)に長手方向が 向いた貫通孔 124が形成されている。第 3領域 123における貫通孔 124の図中上方 の表裏面からは、一対の固定部 127, 127が突出している(図 8,図 10参照)。固定 部 127, 127は断面 V字形状の溝部を有しており、固定用のバーを溝部に当接させ ることによって、 2次成形時に 1次成形体を位置決めすることができる。さらに、第 3領 域 123の上部両端には、一対の薄板部 125, 126が立設されており、薄板部 125, 1 26間力 導線 114, 115が上方に向かって延出されている。
[0051] 薄板部 125, 126の近傍には、導線 114, 115の周囲を覆う略直方体形状の保護 部 128が形成されている。保護部 128は、上記の第 1一第 3領域と一体的に同一材 料で形成されており、 2次成形時に導線 114, 115が金型と接触して損傷するのを防 止する役割を有している。このような導線を曲げるための保護部は必ずしも設けなく てもよい。
[0052] 次に、再び図 4一図 6を参照して、外側樹脂部 150について詳説する。外側樹脂部 150は温度センサ 101の外形を画成するものであり、樹脂部 120における第 1領域 1 21の大部分を除いた領域を覆っている。すなわち、温度測定対象の水や油等に接 触する領域の形状は、 1次成形で定められることになる。外側樹脂部 150の図中下 部の領域には、一対のリング部 151, 152が形成されており、その間には Oリングを嵌 め込むためのリング溝 153が形成されている。
[0053] 外側樹脂部 150における上側のリング部 152の上方には、後述のキープレートが 揷し込まれる直方体形状のキー受部 154が形成されている。キー受部 154は、キー プレートの鉛直方向の位置ずれを防止するために、 Y方向の厚みが、その下側に位 置するリング部 152及び上側に位置する直方体形状の頭部 155よりも狭くなつている 。また、頭部 155の一側面には、突出部 156が形成されており、 1次成形体において 鉛直方向(Z方向)に飛び出した導線 114, 115は、略直角に折り曲げられて突出部 156から突出している。
[0054] 図 11に、このような温度センサ 101の適用例を示す。同図は、温度センサ 101を自 動変速機の油 Fの温度測定に適用した例であり、油 Fを収容するケース 160に装着さ れている。ケース 160には、円形の貫通孔 160hが形成されており、該貫通孔 160h に温度センサ 101のリング部 151 , 152が収まっている。リング溝 153には Oリングが 嵌め込まれ、ケース 160と温度センサ 101との隙間を密封している。樹脂部 120の第 1領域 121は、油 F中に浸漬している。一方、ケース 160の外側に位置するキー受部 154にはキープレート 161が挿し込まれ、該キープレート 161はビス 162によってケ ース 160に固定されている。そして、温度センサ 101により検出した油温の情報は、 自動変速機の電子制御装置 (ECU)に送信される。電子制御装置は、受信した油温 の情報に基づいて変速タイミング等を制御する。
[0055] 以上詳細に説明したように、温度センサ 101において、ケース 160内の油 Fに浸さ れる樹脂部 120の第 1領域 121には、サーミスタ 110が収容されている。すなわち、 サーミスタ 110は PPS製の樹脂部 120のみで覆われている。このように第 1領域 121 はサーミスタ 110を樹脂部 120のみで覆われており、導電性を有するホルダは用い ていない。そのため、サーミスタ 110及びリード線対 112, 113が導体に接触する事 態が生じない。このように、温度センサ 101は、金属製のホルダにサーミスタが収容さ れる従来の温度センサとは異なり、ホルダ内へのサーミスタの収容の際にサーミスタ 及びハーネス対と導体との絶縁に配慮する必要がないため、センサの作製作業が簡 単になり、作製作業の高効率化が図られる。 [0056] 次に、温度センサ 101の製造方法及びこの方法に好適に使用される温度センサ用 型を説明する。
[0057] まず、図 12に示すように、温度センサ 101をインサート成形(1次成形)するための 金型 (温度センサ用型) 170を準備する。金型としては、固定側型及び移動側型を用 いる力 ここでは固定側の金型 170のみを詳説する。移動側の型については、温度 センサの外形に応じたものとすることができる。金型 170のキヤビティは、樹脂部 120 の第 1領域 121を形成するための第 1キヤビティ領域 171、該領域 171に連続すると 共に第 2領域 122を形成するための第 2キヤビティ領域 172、及び、該領域 172に連 続すると共に第 3領域 123を形成するための第 3キヤビティ領域 173を有している。第 2キヤビティ領域 172の幅 W は、第 1キヤビティ領域 171の幅 W よりも狭くなつてい
C2 C1
る。
[0058] また、第 1キヤビティ領域 171における第 2キヤビティ領域 172とは反対側の領域に は、第 1キヤビティ領域 171の先端まで注入樹脂を行き渡らせるための空間 174が形 成されている。また、第 3キヤビティ領域 172には、上記貫通孔 124を形成する仕切り 壁 175が立設されている。移動側の型にも同様の仕切り壁 181 (図 13参照)が設けら れており、型締めした際に仕切り壁 175, 181が互いに当接するようになつている。ま た、仕切り壁 175における第 2キヤビティ領域 172とは反対側には、 1次成形体の上 記固定部 127を形成するための溝部 176が設けられている。溝部 176は、中央部が 最も浅ぐ両端部が最も深くなるような傾斜を有している。さらに、第 3キヤビティ領域 1 72には、 1次成形体の薄板部 125, 126を形成するための空間 177, 178が設けら れている。空間 177, 178には、導線 114, 115を保護する保護部 128を形成するた めの保護部用キヤビティ領域 179が繋がっている。
[0059] 金型 170は、図示は省略するが、この他にも公知の様々な要素を備えている。かか る要素としては、例えば、キヤビティに樹脂を注入するためのゲート、成形体を金型か ら取り出すためのェジヱクタピン、固定側と移動側の型を正確にはめ合わせるための ガイドピン及びガイドピンブシュ等が挙げられる。
[0060] 以上のような金型 170を準備した後、これにサーミスタ 110をセットする。この際、図 12に示すように、第 1キヤビティ領域 171に感温部 111が位置し、第 2キヤビティ領域 172で一対のリード線対 112, 113力 S並歹 IJするようにする。また、仕切り壁 175の両側 に一本ずつリード線 112, 113が通るようにする。サーミスタ 110をセットした後、固定 側の金型 170に向けて移動側の金型を移動させ、型締めをおこなう。
[0061] 図 13は、図 12の XIII— XIII方向における型締めした状態の断面図である。符号 18 0は、移動側の金型を示す。図 13に明示されるように、第 2キヤビティ領域 172は、そ の幅 W が第 1キヤビティ領域 171の幅 W より狭レ、だけでなく、リード線 112, 113
C2 C1
が配される領域の高さ H も第 1キヤビティ領域 171の高さ H よりも低くなつている。
C2 C1
[0062] 型締めを終えた後、ゲートを通じてキヤビティ内へ樹脂を高圧で注入し、インサート 成形をおこなう。ここでは流動性の高い PPS樹脂を使用するため、型形状が複雑で あっても、キヤビティの隅々まで樹脂が行き渡り、高精度の樹脂成形を実現することが できる。また、該樹脂は熱伝導性が高いため、サーミスタの温度検知レベルを妨げな レ、。さらに、金型 170は上記のように構成されているため、第 1キヤビティ領域 171及 び第 2キヤビティ領域 172に樹脂を注入する処理において、同時に保護部用キヤビ ティ領域 179にも樹脂を注入することができる。これにより、第 1領域 121及び第 2領 域 122等を形成する処理と、保護部 128を成形する処理とで 2回射出成形をする必 要がなくなり、樹脂注入の回数を減少することができ、製造作業の簡易化を達成でき る。
[0063] 以上で示した製造方法では、次のような効果が得られる。すなわち、樹脂注入時に サーミスタ 110に圧力が作用し、該サーミスタ 110が位置ずれしたとしても、リード線 1 12, 113力 S第 2キヤビティ領域 172の内壁面 172a, 172bに接触することによってサ 一ミスタ 110の移動が規制される。そのため、インサート成形時に感温部 111が第 1 キヤビティ領域 171の内壁面 171a, 171bにまで到達する事態を抑止できる。これに より、得られる温度センサ 101においては、サーミスタ 110の感温部 111がそれを覆う 樹脂部 120の表面に露出する事態が抑制されている。し力、も、感温部 111の露出が 抑制されていることから、後述の 2次成形においてサーミスタ 110が位置する第 1領 域 121を覆う必要が無くなり、感温部 111周囲の樹脂サイズの小型化を図ることがで きる。
[0064] また、第 2キヤビティ領域 172におけるリード線 112, 113が配される領域の高さ H は第 1キヤビティ領域 171の高さ H よりも低くなつているため、樹脂の注入圧力によ
C1
つて該高さ方向にサーミスタ 110が位置ずれした場合にも、第 2キヤビティ領域 172 の内壁面 172c, 172dによってリード ,線112, 113の移動を規制できるため、感温部 111が第 1キヤビティ領域 171の内壁面 171c, 171dにまで到達する事態を抑止でき る。このため、感温部 111がそれを覆う樹脂部 120の表面に露出する事態をさらに効 果的に抑制することができる。
[0065] さらに、仕切り壁 175の両側に一本ずつリード線 112, 113力 S通るようにサーミスタ 1 10を金型 170ίこセットしてレヽる。このため、仕切り壁 175(こよって、リード泉 112, 113 が互いに近付く方向へ移動するのを規制できるため、サーミスタ 110の位置ずれをさ らに効果的に抑制することができる。
[0066] 1次成形の樹脂注入を終えた後、型開きをしてからェジ工タトピンにより成形体を金 型から取り出す。次いで、保護部 128と薄板部 125, 126とを繋ぐ部分を切断すると 共に、空間 174によって形成された部分を切り落とす。これにより、図 8—図 10に示し た 1次成形体が得られる。
[0067] 次に、図 14を参照して、 1次成形体に対して 2次成形を施す過程を説明する。まず 、直線状に延びていた導線 114, 115を略直角に折り曲げて、サーミスタ 110を覆う 第 1領域 121を金型 185の貫通孔に挿入する一方、導線 114, 115を覆う保護部 12 8を一対の下型 190及び上型 191によって狭持させる。つまり、この第 1領域 121の 大部分の周囲(先端部分力も第 2領域 122の近傍までの領域)は 2次成形において は樹脂が成形されない。また、下型 190のキヤビティを形成する内面には、バー 192 が取り付けられており、該バー 192が 1次成形体の一方の固定部 127に当接するよう になっている。
[0068] 固定側の金型である下型 190及び上型 191に対して 1次成形体を固定した後、移 動側の金型 194を移動させて型締めする。この際、金型 194に取り付けられたバー 1 93が 1次成形体の他方の固定部 127に当接するようになっており、金型内で 1次成 形体を位置決め及び固定することができる。
[0069] 以上の準備が整ったら、金型のゲートから樹脂を注入し、 2次成形を実施する。ここ では、 1次成形と同様に PPS樹脂を注入するが、他の樹脂を使用してもよい。 2次成 形において、上記のように導線 114, 115は、保護部 128を介して下型 190及び上 型 191によって狭持されているため、これらの型から受ける損傷を抑制できる。 2次成 形の樹脂注入を終えた後、型開きをしてからェジェタトピンにより成形体を金型から取 り出す。これにより、図 4一図 6に示した温度センサ 101が得られる。
[0070] このようにして得られた温度センサ 101は、サーミスタ 110の感温部 111を覆う第 1 領域 121は 1次成形のみでその外形が定められており、 2次成形によって第 1領域 1 21を覆う必要は無いため、感温部周囲の樹脂サイズを小型化することができる。また 、使用する樹脂量を低減することができ、コスト肖 IJ減も図ること力 Sできる。なお、 2次成 形で形成される外側樹脂部は、第 1領域 121の少なくとも一部を除いて樹脂部を覆 つていればよぐ第 1領域をすベて除くようにしてもよいし、さらには、第 1領域以外の 領域も除くようにしてもよレ、。また、 2次成形を実施せずに、 1次成形のみによって温 度センサを製造するようにしてもょレ、。
[0071] 本発明は上記実施形態に限定されるものではなぐ様々な変形が可能である。例 えば、ホルダに形成された返し部のホルダ側壁に対する角度は、垂直(90度)に限ら ず、センサカバーがホルダに係止される角度であれば適宜 0— 90度の範囲で変更 すること力 Sできる。また、ネック部の形状は、 T字形状に限定されず、ハーネスを適切 に案内できる形状であれば棒状や板状であってもよい。
[0072] さらに、ホルダを構成する樹脂と充填樹脂部を構成する樹脂とは、 PPS樹脂とェポ キシ樹脂との組み合わせに限定されない。例えば、ホルダを構成する樹脂は、液晶 ポリマー、ポリアミド、ポリイミド等であってよぐホルダを構成する樹脂と充填樹脂部を 構成する樹脂とは同種であってもよい。

Claims

請求の範囲
[1] 開口部を有する有底筒状のホルダと、
リード線対が前記開口部側から導入されるように接続されると共に、前記ホルダの 底部に収納された温度検出素子と、
前記温度検出素子を封止するように前記ホルダ内に充填されると共に、前記開口 部まで延びる充填樹脂部と、
前記開口部全体を覆うキャップ部と、このキャップ部から引き出される前記リード線 対の外周面に沿って前記キャップ部の外方に延びるネック部とがー体となっているセ ンサカバーと
を備える、温度センサ。
[2] 前記ホルダの前記開口部の縁に突設された、前記リード線対を構成するそれぞれ のリード線を案内するガイド部をさらに備え、
前記センサカバーは、前記ガイド部を覆っている、請求項 1に記載の温度センサ。
[3] 前記ガイド部の形状は、前記ホルダの延在方向に対して垂直方向に延在する部分 と、前記ホルダの延在方向に対して平行に延在する部分とを有する T字形状である、 請求項 2に記載の温度センサ。
[4] 前記ホルダの前記開口部の縁には、前記ホルダの外方に張り出す略環状の返し部 が形成されており、
前記センサカバーの少なくとも一部は、前記返し部で係止されている、請求項 1に 記載の温度センサ。
[5] 前記センサカバーは、ホットメルト成型により形成されてレ、る、請求項 1に記載の温 度センサ。
[6] 測温対象であるケース内の流体に浸されるセンシング部を備え、
前記センシング部には、前記リード線対が接続された前記温度検出素子が収容さ れており、この温度検出素子が樹脂からなる素子保護部のみで覆われている、請求 項 1に記載の温度センサ。
[7] 前記素子保護部は、異種の樹脂による積層構造を有する、請求項 6に記載の温度 センサ。 前記素子保護部は、同種の樹脂による積層構造を有する、請求項 6に記載の温度 センサ。
前記ホルダは樹脂で構成されており、
前記素子保護部が、前記ホルダとこのホルダの中に充填された前記充填樹脂部と で構成されている、請求項 6に記載の温度センサ。
前記素子保護部は、構成材料としてポリフヱニレンサルファイド樹脂を含んでレ、る、 請求項 6に記載の温度センサ。
PCT/JP2004/008752 2003-06-25 2004-06-22 温度センサ WO2005001404A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200480017410.1A CN1809733B (zh) 2003-06-25 2004-06-22 温度传感器
US10/559,763 US7410294B2 (en) 2003-06-25 2004-06-22 Temperature sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-181598 2003-06-25
JP2003181598A JP4041018B2 (ja) 2003-06-25 2003-06-25 温度センサ
JP2003-188511 2003-06-30
JP2003188511A JP2005024344A (ja) 2003-06-25 2003-06-30 温度センサ

Publications (1)

Publication Number Publication Date
WO2005001404A1 true WO2005001404A1 (ja) 2005-01-06

Family

ID=33554444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008752 WO2005001404A1 (ja) 2003-06-25 2004-06-22 温度センサ

Country Status (5)

Country Link
US (1) US7410294B2 (ja)
JP (2) JP4041018B2 (ja)
KR (1) KR100810937B1 (ja)
CN (1) CN1809733B (ja)
WO (1) WO2005001404A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105719782A (zh) * 2014-12-19 2016-06-29 Tdk株式会社 热敏电阻
US20220221361A1 (en) * 2021-01-12 2022-07-14 Hitachi Metals, Ltd. Physical quantity sensor-fixing structure

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
JP4041018B2 (ja) 2003-06-25 2008-01-30 Tdk株式会社 温度センサ
USD902408S1 (en) 2003-11-05 2020-11-17 Abbott Diabetes Care Inc. Analyte sensor control unit
US9351669B2 (en) 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
WO2007120363A2 (en) 2005-12-28 2007-10-25 Abbott Diabetes Care, Inc. Medical device insertion
JP2009533154A (ja) 2006-04-14 2009-09-17 デカ・プロダクツ・リミテッド・パートナーシップ 流体圧送、熱交換、熱検知および伝導率検知用システム、器具および方法
US8366316B2 (en) * 2006-04-14 2013-02-05 Deka Products Limited Partnership Sensor apparatus systems, devices and methods
US7967022B2 (en) 2007-02-27 2011-06-28 Deka Products Limited Partnership Cassette system integrated apparatus
US10537671B2 (en) 2006-04-14 2020-01-21 Deka Products Limited Partnership Automated control mechanisms in a hemodialysis apparatus
MX337294B (es) 2007-02-27 2016-02-23 Deka Products Lp Sistemas y metodos de hemodialisis.
US8393690B2 (en) 2007-02-27 2013-03-12 Deka Products Limited Partnership Enclosure for a portable hemodialysis system
US8409441B2 (en) 2007-02-27 2013-04-02 Deka Products Limited Partnership Blood treatment systems and methods
US20090107335A1 (en) 2007-02-27 2009-04-30 Deka Products Limited Partnership Air trap for a medical infusion device
US8042563B2 (en) 2007-02-27 2011-10-25 Deka Products Limited Partnership Cassette system integrated apparatus
US8357298B2 (en) 2007-02-27 2013-01-22 Deka Products Limited Partnership Hemodialysis systems and methods
US8425471B2 (en) 2007-02-27 2013-04-23 Deka Products Limited Partnership Reagent supply for a hemodialysis system
US8491184B2 (en) 2007-02-27 2013-07-23 Deka Products Limited Partnership Sensor apparatus systems, devices and methods
AU2016204226B2 (en) * 2007-02-27 2017-08-24 Deka Products Limited Partnership Sensor apparatus systems, devices and methods
US9028691B2 (en) 2007-02-27 2015-05-12 Deka Products Limited Partnership Blood circuit assembly for a hemodialysis system
US8562834B2 (en) 2007-02-27 2013-10-22 Deka Products Limited Partnership Modular assembly for a portable hemodialysis system
US7891572B1 (en) 2007-04-05 2011-02-22 C. Cowles & Company Temperature and low water monitoring for boiler systems
WO2008150917A1 (en) 2007-05-31 2008-12-11 Abbott Diabetes Care, Inc. Insertion devices and methods
US8251579B2 (en) * 2007-07-16 2012-08-28 Rtd Company Robust stator winding temperature sensor
US8771508B2 (en) 2008-08-27 2014-07-08 Deka Products Limited Partnership Dialyzer cartridge mounting arrangement for a hemodialysis system
EP2217301A2 (en) * 2007-10-12 2010-08-18 DEKA Products Limited Partnership Systems, devices and methods for cardiopulmonary treatment and procedures
US9078971B2 (en) 2008-01-23 2015-07-14 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
CA3170800A1 (en) 2008-01-23 2009-07-30 Deka Products Limited Partnership Fluid handling cassette for use with a peritoneal dialysis system
DE102008029192A1 (de) * 2008-03-13 2009-09-24 Epcos Ag Fühler zum Erfassen einer physikalischen Größe und Verfahren zur Herstellung des Fühlers
KR101020282B1 (ko) * 2008-07-09 2011-03-07 주식회사 하이닉스반도체 온도센서
JP5429476B2 (ja) * 2008-11-20 2014-02-26 Tdk株式会社 温度センサ
KR101117994B1 (ko) * 2009-01-06 2012-02-24 주식회사 엘지화학 전지팩용 스페이서 및 이를 포함한 전지팩
US20100198034A1 (en) 2009-02-03 2010-08-05 Abbott Diabetes Care Inc. Compact On-Body Physiological Monitoring Devices and Methods Thereof
DE102009015315A1 (de) * 2009-03-27 2010-09-30 Epcos Ag Sensoranordnung und Verfahren zur Herstellung
JP5326826B2 (ja) * 2009-06-02 2013-10-30 三菱マテリアル株式会社 温度センサ
JP5455454B2 (ja) * 2009-06-08 2014-03-26 矢崎総業株式会社 簡便固定機能付き温度センサとそれの搭載された電池パック送風用エアダクト
EP3923295A1 (en) 2009-08-31 2021-12-15 Abbott Diabetes Care, Inc. Medical devices and methods
US8287185B2 (en) * 2009-10-01 2012-10-16 Delphi Technologies, Inc. Cell temperature sensing apparatus for a battery module
JP2013509271A (ja) 2009-10-30 2013-03-14 デカ・プロダクツ・リミテッド・パートナーシップ 血管アクセスデバイスの離脱を検知するための装置および方法
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
CA3135001A1 (en) 2010-03-24 2011-09-29 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
CA2804216C (en) 2010-07-07 2019-01-15 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
WO2012114419A1 (ja) * 2011-02-21 2012-08-30 株式会社日立製作所 モータ
JP5307852B2 (ja) * 2011-05-19 2013-10-02 三菱電機株式会社 温度センサ
SG10201604167XA (en) 2011-05-24 2016-07-28 Deka Products Lp Blood treatment systems and methods
CA2837200C (en) 2011-05-24 2020-07-07 Deka Products Limited Partnership Hemodialysis system
JP5769298B2 (ja) * 2011-07-06 2015-08-26 株式会社芝浦電子 温度センサ、温度及び圧力を検知する一体型センサ
CN103063322B (zh) * 2011-10-19 2014-12-03 花国樑 Ntc温度传感器抗拉伸绝缘结构
MX353343B (es) 2011-11-04 2018-01-09 Deka Products Lp Sistema de tratamiento médico y métodos que usan una pluralidad de líneas de fluido.
ES2951067T3 (es) 2011-12-11 2023-10-17 Abbott Diabetes Care Inc Dispositivos sensores de analitos, conexiones y procedimientos
GB2539122B (en) 2012-03-15 2017-03-15 Fisher & Paykel Healthcare Ltd Respiratory gas humidification system
CN104619373B (zh) 2012-04-27 2017-08-11 费雪派克医疗保健有限公司 用于呼吸增湿系统的可用性特征
US20140028434A1 (en) * 2012-07-25 2014-01-30 Polestar Electric Industries Co., Ltd. Self-recovery circuit breaker
DE102012110858A1 (de) * 2012-11-12 2014-05-15 Epcos Ag Temperatursensorsystem und Verfahren zur Herstellung eines Temperatursensorsystems
DE102012110822A1 (de) 2012-11-12 2014-05-15 Epcos Ag Temperatursensorsystem und Verfahren zur Herstellung eines Temperatursensorsystems
US9709461B2 (en) * 2012-11-30 2017-07-18 Sensata Technologies, Inc. Method of integrating a temperature sensing element
BR112016007764B1 (pt) 2013-09-13 2022-05-24 Fisher & Paykel Healthcare Limited Conexões para sistema de umidificação
US10449319B2 (en) 2014-02-07 2019-10-22 Fisher & Paykel Healthcare Limited Respiratory humidification system
EP3115759B2 (en) * 2014-03-07 2023-04-26 Shibaura Electronics Co., Ltd. Temperature sensor and temperature sensor manufacturing method
WO2015187039A1 (en) 2014-06-03 2015-12-10 Fisher & Paykel Healthcare Limited Flow mixers for respiratory therapy systems
DE102014212279A1 (de) * 2014-06-26 2015-12-31 Robert Bosch Gmbh Messanordnung zur Aufnahme eines Sensors
US10168226B2 (en) * 2014-07-28 2019-01-01 Panasonic Intellectual Property Management Co., Ltd. Temperature sensor
KR102359133B1 (ko) * 2014-12-04 2022-02-07 현대모비스 주식회사 온도 센서 및 이의 제조 방법
DE102014118206A1 (de) * 2014-12-09 2016-06-09 Endress + Hauser Wetzer Gmbh + Co. Kg Temperaturfühler
JP5834167B1 (ja) * 2015-02-26 2015-12-16 株式会社芝浦電子 温度センサ
US10161639B2 (en) * 2015-03-10 2018-12-25 Joseph Copeland Heat transfer apparatus and heat transfer system for masonry heater
US10674944B2 (en) 2015-05-14 2020-06-09 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
DE102015110399A1 (de) * 2015-06-29 2016-12-29 Ebm-Papst Mulfingen Gmbh & Co. Kg Motortemperaturüberwachung
EP3112830B1 (en) 2015-07-01 2018-08-22 Sensata Technologies, Inc. Temperature sensor and method for the production of a temperature sensor
DE102015223951B4 (de) * 2015-12-01 2022-12-01 TE Connectivity Sensors Germany GmbH Substrat für eine Sensoranordnung für ein Widerstandsthermometer, Sensoranordnung und Widerstandsthermometer
DE102015223948B3 (de) * 2015-12-01 2017-03-30 TE Connectivity Sensors Germany GmbH Substrat für eine Sensoranordnung für ein Widerstandsthermometer, Sensoranordnung, Widerstandsthermometer und Verfahren zur Herstellung eines solchen Substrats
CN108463699B (zh) * 2016-01-15 2020-11-13 本田技研工业株式会社 温度检测装置
US11067520B2 (en) * 2016-06-29 2021-07-20 Rosemount Inc. Process fluid temperature measurement system with improved process intrusion
CN109313085A (zh) * 2016-06-30 2019-02-05 世美特株式会社 温度传感器及具有温度传感器的装置
US10711818B2 (en) * 2016-07-01 2020-07-14 Mann+Hummel Gmbh One-time only snap connection system mounting two parts and a sensor mounting system using the snap connection system
WO2018037716A1 (ja) * 2016-08-22 2018-03-01 日立オートモティブシステムズ株式会社 物理量検出装置
DE102016119764A1 (de) * 2016-10-18 2018-04-19 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Temperatursensor, Sensorvorrichtung und Schaltgetriebe für Nutzfahrzeuge
WO2018106126A1 (en) * 2016-12-07 2018-06-14 Fisher And Paykel Healthcare Limited Sensing arrangements for medical devices
US10428716B2 (en) 2016-12-20 2019-10-01 Sensata Technologies, Inc. High-temperature exhaust sensor
CN110461217B (zh) 2017-01-23 2022-09-16 雅培糖尿病护理公司 用于分析物传感器插入的系统、装置和方法
WO2018146776A1 (ja) 2017-02-09 2018-08-16 株式会社芝浦電子 温度センサ
US10502641B2 (en) 2017-05-18 2019-12-10 Sensata Technologies, Inc. Floating conductor housing
DE102018102709A1 (de) * 2018-02-07 2019-08-08 Tdk Electronics Ag Temperatursensor und ein Verfahren zur Herstellung des Temperatursensors
WO2020077933A1 (zh) * 2018-10-15 2020-04-23 北京康斯特仪表科技股份有限公司 压接端子、压接端子模块、接线盒及测试仪
US11092496B2 (en) * 2019-02-15 2021-08-17 Shibaura Electronics Co., Ltd. Temperature sensor and manufacturing method of temperature sensor
USD1002852S1 (en) 2019-06-06 2023-10-24 Abbott Diabetes Care Inc. Analyte sensor device
DE202019104670U1 (de) * 2019-08-26 2019-12-10 Tdk Electronics Ag Sensor
US11647954B2 (en) * 2019-11-08 2023-05-16 International Business Machines Corporation Ear device for heat stroke detection
JP7342761B2 (ja) * 2020-03-27 2023-09-12 住友電装株式会社 センサ装置
JP7394026B2 (ja) * 2020-06-09 2023-12-07 日立Astemo株式会社 温度センサ一体型圧力センサ装置
JP7492437B2 (ja) 2020-10-30 2024-05-29 日立Astemo株式会社 圧力センサ装置
USD999913S1 (en) 2020-12-21 2023-09-26 Abbott Diabetes Care Inc Analyte sensor inserter
CN112629687A (zh) * 2021-01-18 2021-04-09 佛山市川东磁电股份有限公司 一种具有防水功能的温度传感器
DE102021111975A1 (de) * 2021-05-07 2022-11-10 Fte Automotive Gmbh Flüssigkeitspumpe
CN116157661A (zh) * 2021-09-09 2023-05-23 株式会社芝浦电子 温度传感器
JP2023107053A (ja) * 2022-01-21 2023-08-02 住友電装株式会社 センサ装置
DE112022000379T5 (de) * 2022-05-25 2024-02-08 Shibaura Electronics Co., Ltd. Temperatursensor und heizkocher

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247522A (ja) * 1989-03-20 1990-10-03 Hitachi Kiden Kogyo Ltd 搬送車の単位走行距離補正装置
JPH03108624A (ja) * 1989-08-22 1991-05-08 Matsushita Electric Ind Co Ltd 温度センサ
JPH1123379A (ja) * 1997-06-30 1999-01-29 Aisin Aw Co Ltd 温度センサ
JP2000105151A (ja) * 1998-09-29 2000-04-11 Zexel Corp 温度センサ
JP2001343292A (ja) * 2000-03-31 2001-12-14 Ngk Spark Plug Co Ltd センサの防水構造及びそれを備えるセンサ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158531A (ja) * 1982-03-16 1983-09-20 Shibaura Denshi Seisakusho:Kk 温度センサ
US4560973A (en) * 1983-11-15 1985-12-24 Daimler-Benz Aktiengesellschaft Rod shaped thermometer and method of making same
JPS61110019A (ja) 1984-11-02 1986-05-28 Sanyo Electric Co Ltd 温度検出器の製造方法
JPS61142430A (ja) * 1984-12-17 1986-06-30 Matsushita Electric Ind Co Ltd 温度検出器
JPH02247532A (ja) * 1989-03-20 1990-10-03 Mitsubishi Electric Corp 温度センサ
JPH053955A (ja) 1991-04-26 1993-01-14 Sophia Co Ltd 遊技装置
KR0166712B1 (ko) 1991-11-19 1999-03-20 강진구 프로그래머블 펄스폭변조신호발생기
JP2789986B2 (ja) * 1993-02-02 1998-08-27 株式会社デンソー サーミスタ温度センサ
JPH08128901A (ja) 1994-10-31 1996-05-21 Sanyo Electric Co Ltd 温度センサーとパック電池
DE19534887B4 (de) * 1995-09-20 2004-04-15 Robert Bosch Gmbh Temperaturfühler
JP3108624B2 (ja) * 1996-03-07 2000-11-13 シャープ株式会社 電気カーペット
US6045261A (en) * 1997-11-14 2000-04-04 Alltemp Sensors Inc. Temperature sensor assembly
DE10109828A1 (de) * 2001-03-01 2002-09-05 Xcellsis Gmbh Elekrische Temperaturmessvorrichtung
JP2002267540A (ja) 2001-03-13 2002-09-18 Denso Corp 温度センサ
JP2002289407A (ja) * 2001-03-23 2002-10-04 Denso Corp 温度センサおよびその製造方法
US6607302B2 (en) * 2001-09-24 2003-08-19 Visteon Global Technologies, Inc. Temperature sensor housing design
DE10156753A1 (de) * 2001-11-19 2003-06-05 Epcos Ag Meßfühler und Meßfühleranordnung
US20040081225A1 (en) * 2002-10-25 2004-04-29 Janicek Alan J. Plastic enclosed sensor
US20040101031A1 (en) * 2002-11-25 2004-05-27 Ford Global Technologies, Inc. Temperature sensor with improved response time
JP2004198240A (ja) * 2002-12-18 2004-07-15 Denso Corp センサ装置
US6918696B2 (en) * 2003-01-15 2005-07-19 Denso Corporation Temperature sensor and method for manufacturing the same
JP4041018B2 (ja) 2003-06-25 2008-01-30 Tdk株式会社 温度センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247522A (ja) * 1989-03-20 1990-10-03 Hitachi Kiden Kogyo Ltd 搬送車の単位走行距離補正装置
JPH03108624A (ja) * 1989-08-22 1991-05-08 Matsushita Electric Ind Co Ltd 温度センサ
JPH1123379A (ja) * 1997-06-30 1999-01-29 Aisin Aw Co Ltd 温度センサ
JP2000105151A (ja) * 1998-09-29 2000-04-11 Zexel Corp 温度センサ
JP2001343292A (ja) * 2000-03-31 2001-12-14 Ngk Spark Plug Co Ltd センサの防水構造及びそれを備えるセンサ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105719782A (zh) * 2014-12-19 2016-06-29 Tdk株式会社 热敏电阻
CN105719782B (zh) * 2014-12-19 2018-06-05 Tdk株式会社 热敏电阻
US20220221361A1 (en) * 2021-01-12 2022-07-14 Hitachi Metals, Ltd. Physical quantity sensor-fixing structure
US12066303B2 (en) * 2021-01-12 2024-08-20 Proterial, Ltd. Physical quantity sensor-fixing structure

Also Published As

Publication number Publication date
CN1809733B (zh) 2010-04-14
US20070110124A1 (en) 2007-05-17
JP2005017088A (ja) 2005-01-20
KR100810937B1 (ko) 2008-03-10
CN1809733A (zh) 2006-07-26
JP2005024344A (ja) 2005-01-27
JP4041018B2 (ja) 2008-01-30
US7410294B2 (en) 2008-08-12
KR20060018266A (ko) 2006-02-28

Similar Documents

Publication Publication Date Title
WO2005001404A1 (ja) 温度センサ
KR102386006B1 (ko) 매체의 레벨을 검출하는 장치
US7028568B2 (en) Sensor having resin mold casing and method of manufacturing the same
EP1980830B1 (en) Pressure sensor device including temperature sensor contained in common housing
US20070237205A1 (en) Temperature sensor and method of manufacturing the same
CN104175844A (zh) 带有传感器的防护装置及该防护装置的端部的成型方法
US20080287008A1 (en) Electronic device having molded resin case, and molding tool and method of manufacturing the same
US20030146819A1 (en) Sensor and manufacturing method thereof
DE19938868A1 (de) Sensoreinrichtung und Verfahren zum Herstellen einer Sensoreinrichtung
US20110019714A1 (en) Overmolded temperature sensor and method for fabricating a temperature sensor
EP0920388B1 (en) Electrical device having atmospheric isolation
JP4996336B2 (ja) 温度センサの製造方法
US20050141590A1 (en) Sensor for measuring water temperature
JP5280753B2 (ja) 温度センサ及びその製造方法
CN102262969B (zh) 电气部件
US20080296796A1 (en) Method of manufacturing electronic device having resin-molded case and molding tool for forming resin-molded case
JP4455839B2 (ja) 温度センサの製造方法
CN209745993U (zh) 传感器
JP2006250763A (ja) 温度センサ
JPH08261845A (ja) サーミスタ式温度検出器
CN116868030A (zh) 用于电容式液位传感器的壳体
JP2012255754A (ja) 液温センサ
JP2000321147A (ja) 温度検出センサの製造方法
CN117073854A (zh) 温度传感器和温度传感器的制造方法
JP2016157756A (ja) 電子部品及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007110124

Country of ref document: US

Ref document number: 10559763

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057023837

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048174101

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057023837

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10559763

Country of ref document: US