[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2005081290A1 - 露光装置及びデバイス製造方法 - Google Patents

露光装置及びデバイス製造方法 Download PDF

Info

Publication number
WO2005081290A1
WO2005081290A1 PCT/JP2005/002228 JP2005002228W WO2005081290A1 WO 2005081290 A1 WO2005081290 A1 WO 2005081290A1 JP 2005002228 W JP2005002228 W JP 2005002228W WO 2005081290 A1 WO2005081290 A1 WO 2005081290A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid
exposure apparatus
base member
optical system
Prior art date
Application number
PCT/JP2005/002228
Other languages
English (en)
French (fr)
Inventor
Takeyuki Mizutani
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2006510195A priority Critical patent/JP4797984B2/ja
Publication of WO2005081290A1 publication Critical patent/WO2005081290A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Definitions

  • the present invention relates to an exposure apparatus and a device manufacturing method for exposing a substrate by irradiating the substrate with exposure light via a liquid.
  • Semiconductor devices and liquid crystal display devices are manufactured by a so-called photolithography technique in which a pattern formed on a mask is transferred onto a photosensitive substrate.
  • An exposure apparatus used in the photolithography process has a mask stage for supporting a mask and a substrate stage for supporting a substrate, and sequentially moves the mask stage and the substrate stage to project a pattern of the mask through a projection optical system. Transfer to the substrate.
  • further improvement in the resolution of the projection optical system has been desired in order to cope with higher integration of device patterns.
  • the resolution of the projection optical system increases as the exposure wavelength used decreases and as the numerical aperture of the projection optical system increases. Therefore, the exposure wavelength used in the exposure apparatus is becoming shorter year by year, and the numerical aperture of the projection optical system is also increasing.
  • the mainstream exposure wavelength is 248 nm of KrF excimer laser, and 193 nm of short wavelength ArF excimer laser is being put to practical use.
  • the depth of focus (DOF) is as important as the resolution.
  • the resolution R and the depth of focus ⁇ are respectively represented by the following equations.
  • is the exposure wavelength
  • is the numerical aperture of the projection optical system
  • k is the process coefficient
  • Patent Document 1 International Publication No. 99Z49504 pamphlet
  • the exposure light Exposure failure may occur without being incident on the desired position on the substrate. Also, if the supplied liquid leaks onto the substrate or onto the substrate stage that holds the substrate, the liquid around the substrate stage and the electrical equipment may be damaged by the liquid, and inconveniences such as electric leakage or failure may occur. In addition, if the leaked liquid is diffused, the damage will increase, and the return operation will require a lot of time and labor, which will lower the operation rate of the exposure apparatus.
  • the present invention has been made in view of such circumstances, and uses an exposure apparatus that can prevent a decrease in the operation rate of an exposure apparatus, an exposure apparatus that can prevent exposure failure, and use of these exposure apparatuses. It is an object to provide a device manufacturing method.
  • the present invention employs the following configuration corresponding to Figs.
  • the reference numerals in parentheses attached to each element are merely examples of the element, and do not limit each element.
  • the exposure apparatus (EX) of the present invention is an exposure apparatus that exposes a substrate (P) by irradiating exposure light (EL) onto a substrate (P) via a liquid (LQ), wherein the first base member (BP1) And a substrate stage (PST) that movably holds the substrate (P), and a second base member (BP2) that supports the substrate stage (PST), and leaks onto the second base member (BP2).
  • First base of liquid (LQ) Diffusion to the member (BP1) is prevented.
  • the present invention even if a liquid leaks from a substrate or a substrate stage holding the substrate onto a second base member supporting the substrate stage, diffusion to the first base member is prevented. Because it is prevented, the spread of damage caused by the leaked liquid can be prevented. Further, since the damage caused by the leaked liquid is prevented from spreading, it is only necessary to perform a return operation to, for example, only the damaged device among the plurality of devices constituting the exposure apparatus. Therefore, the operation of returning the exposure apparatus can be performed smoothly, and the time until the return can be shortened. Therefore, exposure processing can be performed without lowering the operation rate of the exposure apparatus.
  • the exposure apparatus (EX) of the present invention is an exposure apparatus that exposes the substrate (P) by irradiating the substrate (P) with exposure light (EL) via the liquid (LQ).
  • First electrical system (120B) including 9, 47, 48, 100B, 400, 500, PST, PSTC, etc., and second device (6, 7, 82, 100A, CONT, IL, MST, PL, etc.)
  • second electrical system (12 OA) that is independent of the first electrical system (120B), even if the first electrical system (120B) stops due to leakage of the liquid (LQ),
  • the second electric system (120A) is operable.
  • the second electric system is operable, so that the driving of the second device can be continued.
  • the return work may be performed only on the first electrical system including the first device. Therefore, the return work time and the time until the exposure apparatus returns can be shortened, and a decrease in the operation rate of the exposure apparatus can be prevented.
  • the exposure apparatus (EX) of the present invention exposes the substrate (P) by irradiating the substrate (P) with exposure light (EL) via the projection optical system (PL) and the liquid (LQ).
  • the exposure apparatus has a supply port (12) for supplying a liquid (LQ) on a substrate (P) moving in a first direction (X), and the supply port (12) is provided in the first direction (X). With respect to (X), they are provided on both sides of the projection area (AR1) of the projection optical system (PL), respectively.
  • the movement distance of the substrate (P) in the first direction (X) is Ll, When the distance between them is L2,
  • a liquid supply port is provided so as to satisfy the above condition, By setting the moving distance of the liquid, the liquid immersion area can be satisfactorily formed on the optical path of the exposure light with the fresh liquid supplied from the liquid supply port, and the exposure processing can be performed.
  • the exposure apparatus (EX) of the present invention exposes the substrate (P) by irradiating the substrate (P) with exposure light (EL) via the projection optical system (PL) and the liquid (LQ).
  • the exposure apparatus has a supply port (12) that is connected to the supply pipe (13) and supplies the liquid (LQ) onto the substrate (P) moving in the first direction (X).
  • the liquid supply amount per unit time supplied to the supply port (12) is Q
  • the area of the supply port (12) is S
  • the width of the supply port (12) in the first direction (X) is H
  • the supply port is
  • the flow velocity of the liquid (LQ) supplied onto the substrate (P) from (12) is U
  • the moving speed of the substrate (P) is V
  • the distance between the projection optical system (PL) and the substrate (P) is WD.
  • the immersion area can be satisfactorily formed on the optical path of the exposure light with the liquid supplied from the liquid supply port. Exposure processing.
  • the exposure apparatus (EX) of the present invention is an exposure apparatus that exposes the substrate (P) by irradiating the substrate (P) with exposure light (EL) via the liquid (LQ). It has a substrate stage (PST) that can move while holding the substrate (P), and a liquid supply mechanism (10) that supplies liquid (LQ) .
  • the liquid supply mechanism (10) is connected to the substrate stage (PST). It is characterized by having a plate-like member (72) which is arranged to face each other and has a plurality of liquid supply holes (71).
  • the liquid can be uniformly supplied onto the substrate stage via the plurality of liquid supply holes. Therefore, it is possible to form the liquid immersion area well and perform the exposure processing.
  • a device manufacturing method uses the above-described exposure apparatus. According to the present invention, since the leakage of the liquid and the diffusion of the leaked liquid can be prevented, the exposure processing can be performed while preventing the inconvenience caused by the leaked liquid. Further, according to the present invention, the immersion area can be formed favorably, and the exposure processing can be performed without lowering the exposure accuracy. Therefore, a device having desired performance can be manufactured. The invention's effect
  • the present invention it is possible to prevent a decrease in the operation rate of an exposure apparatus, and to use this apparatus. This makes it possible to manufacture a device with reduced manufacturing costs. Further, according to the present invention, exposure processing of a substrate can be performed by favorably forming a liquid immersion region. By using this apparatus, device manufacturing can be performed while maintaining a high yield.
  • FIG. 1 is a schematic configuration diagram showing one embodiment of an exposure apparatus of the present invention.
  • FIG. 2 is a plan view of the substrate stage as viewed from above.
  • FIG. 3 is a diagram showing a liquid supply mechanism and a liquid recovery mechanism.
  • FIG. 4 is a plan view showing a positional relationship between a first base member and a second base member.
  • FIG. 5 is a perspective view showing a measuring device for measuring a relative position between a first base member and a second base member.
  • FIG. 6 is a schematic diagram for explaining how the leaked liquid flows.
  • FIG. 7 is a schematic view showing one embodiment of a liquid recovery mechanism for recovering a liquid flowing between a first base member and a second base member.
  • FIG. 8 is a diagram showing a positional relationship between a liquid supply port and a liquid recovery port.
  • FIG. 9 is a schematic diagram for explaining conditions of a liquid supply mechanism.
  • FIG. 10 is a sectional view showing another embodiment of the liquid supply mechanism and the liquid recovery mechanism.
  • FIG. 11 is a plan view showing another embodiment of the liquid supply mechanism and the liquid recovery mechanism.
  • FIG. 12 is a flowchart showing an example of a semiconductor device manufacturing process.
  • Liquid recovery mechanism liquid receiving member
  • 71 Liquid supply holes 72 Supply plate
  • 73 Liquid recovery holes 74 Recovery plate
  • 82 Laser interferometer 90... Measuring device (first measuring device), 100 ⁇ ⁇ Main power source (1st power source), 100 ⁇ ⁇ Power source for stage (2nd power source), 120A... Main electrical system (2nd electrical device) ), 120 ⁇ ⁇ Stage electrical system (first electrical system), 130... wireless device, 400... illuminance unevenness sensor (sensor system), 500... aerial image measurement sensor (sensor system), AR1... projection area, AR2 ” 'Immersion area, BP1... First base member, ⁇ 2 ⁇ Second Base member, CONT: Main controller, EL: Exposure light, EX: Exposure device, LQ: Liquid, M: Mask, MST: Mask stage (mask holding member), P: Substrate, PL: Projection optical system, PST: Substrate stage, PSTC ... Stage control device, S1-S24
  • FIG. 1 is a schematic configuration diagram showing an embodiment of the exposure apparatus of the present invention.
  • an exposure apparatus EX includes a mask stage MST for supporting a mask M, a substrate stage PST for supporting a substrate P, and an illumination for illuminating the mask M supported by the mask stage MST with exposure light EL.
  • the exposing device EX has a main column 3 that supports the mask stage MST and the projection optical system PL.
  • the main column 3 is provided on a first base member BP1 placed horizontally on the floor FD.
  • the main column 3 has an upper step 3A and a lower step 3B protruding inward.
  • the exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which the immersion method is applied in order to substantially shorten the exposure wavelength and improve the resolution and to substantially widen the depth of focus.
  • pure water is used for the liquid LQ.
  • the exposure apparatus EX at least partially transfers the pattern image of the mask M onto the substrate P using the liquid LQ supplied from the liquid supply mechanism 10 on the substrate P including the projection area AR1 of the projection optical system PL. Then, an immersion area AR2 larger than the projection area AR1 and smaller than the substrate P is locally formed.
  • the exposure apparatus EX fills the liquid LQ between the optical element 2 at the image plane side tip of the projection optical system PL and the surface (exposure surface) of the substrate P, and the projection optical system PL and the substrate P
  • the substrate P is exposed by projecting a pattern image of the mask M onto the substrate P via the liquid LQ and the projection optical system PL.
  • the exposure apparatus EX the mask M and the substrate P are scanned in the scanning direction (predetermined direction).
  • a scanning type exposure apparatus a so-called scanning stepper
  • the synchronous movement direction (scanning direction, predetermined direction) between the mask M and the substrate P in the horizontal plane is the X-axis direction
  • the direction orthogonal to the X-axis direction in the horizontal plane is the Y-axis direction (non-scanning direction).
  • the direction perpendicular to the X-axis and Y-axis directions and coinciding with the optical axis AX of the projection optical system PL is defined as the Z-axis direction.
  • the rotation (tilt) directions around the X, Y, and Z axes are defined as 0X, 0Y, and 0Z directions, respectively.
  • the “substrate” includes a semiconductor wafer coated with a resist
  • the “mask” includes a reticle on which a device pattern to be reduced and projected onto the substrate is formed.
  • the illumination optical system (illumination system) IL is supported by a support column 5 fixed on the upper part of the main column 3. Therefore, the illumination optical system IL is configured to be supported on the first base member BP1 via the main column 3 and the support column 5.
  • the illumination optical system IL illuminates the mask M supported on the mask stage MST with the exposure light EL, and is used to make the illuminance of the exposure light source and the luminous flux emitted from the exposure light source uniform. It has an integrator, a condenser lens that collects the exposure light EL from the optical integrator, a relay lens system, and a variable field stop that sets the illumination area on the mask M by the exposure light EL in a slit shape. A predetermined illumination area on the mask M is illuminated by the illumination optical system IL with exposure light EL having a uniform illuminance distribution.
  • Exposure light EL that is emitted is, for example, a bright line (g-line, h-line, i-line) that also emits a mercury lamp power, or a deep ultraviolet light (DUV light) such as a KrF excimer laser light (wavelength 248 nm). And vacuum ultraviolet light (VUV) such as ArF excimer laser light (wavelength 193 nm) and F laser light (wavelength 157 nm).
  • a bright line g-line, h-line, i-line
  • DUV light deep ultraviolet light
  • ArF excimer laser light wavelength 193 nm
  • F laser light wavelength 157 nm
  • ArF excimer laser light is used.
  • the liquid LQ in the present embodiment is pure water, and can be transmitted even when the exposure light EL is ArF excimer laser light. Pure water is also capable of transmitting bright ultraviolet rays (g-line, h-line, i-line) and far ultraviolet light (DUV light) such as KrF excimer laser light (wavelength: 248 nm).
  • the mask stage (mask holding member) MST movably holds the mask M, and has an opening 34A at the center thereof through which a pattern image of the mask M passes.
  • a mask surface plate 31 is supported on the upper step 3A of the main column 3 via an anti-vibration unit 6.
  • the anti-vibration unit 6 has a passive anti-vibration mechanism such as an air damper and an actuator (such as an electromagnetic actuator) driven by electric power, and actively transmits vibration between the mask surface plate 31 and the main column 3. Is curtailed.
  • the anti-vibration units 6 are provided in at least three places, and each can be driven based on a command from the main control unit CONT to adjust the position (posture) of the mask base 31.
  • An opening 34B through which the pattern image of the mask M passes is also formed in the center of the mask base 31.
  • a plurality of gas bearings (air bearings) 32 which are non-contact bearings, are provided on the lower surface of the mask stage MST.
  • the mask stage MST is supported in a non-contact manner with respect to the upper surface (guide surface) 31 A of the mask surface plate 31 by an air bearing 32, and is moved to the optical axis AX of the projection optical system PL by a mask stage drive system such as a linear motor. It can be moved two-dimensionally in a vertical plane, that is, in the XY plane, and can be slightly rotated in the Z direction.
  • the mask stage MST since the mask stage MST is supported on the mask base 31 supported by the upper step 3A of the main column 3, the mask stage MST passes through the main column 3 and the mask base 31. It is configured to be supported on the first base member BP1.
  • a movable mirror 35 is provided at a predetermined position on the + X side on the mask stage MST.
  • a laser interferometer 36 is provided at a position facing the movable mirror 35.
  • a movable mirror is also provided on the + Y side on the mask stage MST, and a laser interferometer is provided at a position facing the movable mirror.
  • the position of the mask M on the mask stage MST in the two-dimensional direction and the rotation angle in the ⁇ Z direction are measured in real time by the laser interferometer 36, and the measurement results are obtained. Is output to the main controller CONT.
  • the main controller CONT drives the mask stage driving system based on the measurement result of the laser interferometer 36 to position the mask M supported by the mask stage MST.
  • the projection optical system PL is for projecting and exposing the pattern of the mask M onto the substrate P at a predetermined projection magnification 13 and includes a plurality of optical elements (lenses) 2 provided at the front end on the substrate P side. These optical elements are supported by a lens barrel PK.
  • the projection optical system PL is a reduction system with a projection magnification j8 of, for example, 1Z4 or 1Z5. It is. Note that the projection optical system PL may be either a unity magnification system or an enlargement system.
  • the optical element 2 at the distal end of the projection optical system PL of the present embodiment is provided so as to be detachable (replaceable) from the lens barrel PK. Further, the optical element 2 at the tip is exposed from the lens barrel PK, and the liquid LQ in the liquid immersion area A R2 comes into contact with the optical element 2. This prevents corrosion of the lens barrel PK made of metal.
  • the optical element 2 is formed of fluorite. Since fluorite has a high affinity for pure water, the liquid LQ can be brought into close contact with almost the entire liquid contact surface 2A of the optical element 2. That is, in the present embodiment, since the affinity for the liquid contact surface 2A of the optical element 2 is high and the liquid (water) LQ is supplied, the liquid contact surface 2A of the optical element 2 and the liquid The optical element 2 having high adhesion to LQ may be quartz having high affinity for water. Further, the liquid contact surface 2A of the optical element 2 is subjected to a hydrophilic (lyophilic) treatment so as to further enhance the affinity with the liquid LQ.
  • a flange FLG is provided on the outer periphery of the lens barrel PK.
  • a lens barrel base 8 is supported on the lower step portion 3B of the main column 3 via a vibration isolation unit 7.
  • the anti-vibration unit 7 has a passive anti-vibration mechanism such as an air damper and an actuator (such as an electromagnetic actuator) driven by electric power, and transmits vibration between the lens barrel base 8 and the main column 3. Is actively suppressed.
  • the vibration isolating units 7 are provided in at least three places, and each can be driven based on a command from the main control unit CONT to adjust the position (posture) of the lens barrel base 8.
  • the lens barrel PK is supported by the lens barrel base 8 by the engagement of the flange portion FLG with the lens barrel base 8.
  • the barrel PK of the projection optical system PL is supported on the barrel base 8 supported by the lower step 3B of the main column 3. Therefore, the projection optical system PL is configured to be supported on the first base member BP1 via the main column 3 and the barrel base 8.
  • the substrate stage PST movably holds the substrate P via a substrate holder PH, and a plurality of gas bearings (air bearings) 42 as non-contact bearings are provided on the lower surface thereof. You.
  • the substrate stage PST is supported by an air bearing 42 in a non-contact manner with respect to an upper surface (guide surface) 41 A of a substrate surface plate 41. Non-contact supported on guide surface 41A
  • the substrate stage PST is movable along the guide surface 41A.
  • the substrate stage PST can be moved two-dimensionally in a plane perpendicular to the optical axis AX of the projection optical system PL, that is, in the XY plane, and can be slightly rotated in the ⁇ Z direction by a substrate stage drive system such as a linear motor. Further, the substrate stage PST is provided so as to be movable also in the Z-axis direction, the ⁇ X direction, and the ⁇ Y direction.
  • the substrate surface plate 41 is supported on a second base member BP2 different from the first base member BP1 via the vibration isolation unit 9.
  • the vibration isolation unit 9 has a passive vibration isolation mechanism such as an air damper and an actuator (such as an electromagnetic actuator) driven by electric power.
  • the vibration isolation unit 9 is connected to the board surface plate 41 and the second base member BP2 (floor FD). The transmission of vibrations between them is actively suppressed.
  • the vibration isolating units 9 are provided in at least three places, and each of them is driven based on a command from the main control unit CONT (or a stage control unit PSTC described later), so that the position of the board surface plate 41 ( Attitude) can be adjusted.
  • the substrate stage PST is configured to be supported on a second base member BP2 via a substrate surface plate 41.
  • a gap (gap) 4 is formed between the first base member BP1 and the second base member BP2.
  • the second base member BP2 is mounted on the liquid receiving member 60, and the liquid receiving member 60 is provided on the floor FD. That is, the second base member BP2 is provided on the floor FD via the liquid receiving member 60.
  • the liquid receiving member 60 collects the liquid LQ flowing in the gap 4 between the first base member BP1 and the second base member BP2, and has a bottom plate 60A larger than the second base member BP2 and a bottom plate 60A. And a peripheral wall 60B surrounding the periphery of 60A.
  • the liquid receiving member 60 is preferably configured to be able to hold a larger amount of liquid by about 10 to 20% than the expected maximum amount of leaked liquid. Further, the liquid receiving member may be arranged on the second base member BP2, and the substrate surface plate 41 may be further arranged on the liquid receiving member via the vibration isolation unit 9. In this case, the liquid receiving member 60 below the second base member BP may be omitted or used together.
  • a gas supply system 150 for flowing gas toward the gap 4 is provided above the gap 4. The gas supply system 150 is provided at least above the substrate stage PST, and further above the liquid supply port 12.
  • the substrate stage drive system includes an X guide stage 44 that supports the substrate stage PST movably in the X-axis direction.
  • the substrate stage PST can be moved at a predetermined stroke in the X-axis direction by the X linear motor 47 while being guided by the X guide stage 44.
  • the X linear motor 47 includes a stator 47A provided on the X guide stage 44 so as to extend in the X-axis direction, and a mover 47B provided corresponding to the stator 47A and fixed to the substrate stage PST. ing. Then, when the mover 47B is driven relative to the stator 47A, the substrate stage PST moves in the X-axis direction.
  • the substrate stage PST is supported in a non-contact manner by a magnet and a magnetic guide, which maintains a predetermined gap in the Z-axis direction with respect to the X guide stage 44.
  • the substrate stage PST is moved in the X-axis direction by the X linear motor 47 in a state of being supported by the X guide stage 44 in a non-contact manner.
  • a pair of Y linear motors 48, 48 capable of moving the X guide stage 44 in the Y axis direction together with the substrate stage PST are provided.
  • Each of the ⁇ linear motors 48 includes a mover 48B provided at both ends in the longitudinal direction of the X guide stage 44, and a stator 48A provided corresponding to the mover 48B. Then, when the mover 48B is driven relative to the stator 48A, the X guide stage 44 moves in the Y-axis direction together with the substrate stage PST. Also, by adjusting the drive of each of the Y linear motors 48, 48, the X guide stage 44 can be rotated in the ⁇ Z direction. Therefore, the Y linear motors 48 enable the substrate stage PST to move in the Y-axis direction and the ⁇ Z direction almost integrally with the X guide stage 44.
  • Guide portions 49 for guiding the movement of the X guide stage 44 in the Y-axis direction are provided on both sides of the substrate surface plate 41 in the X-axis direction.
  • the guide part 49 is supported on the base plate 4.
  • a concave guided member 45 is provided at each of both longitudinal ends of the lower surface of the X guide stage 44.
  • the guide portion 49 is engaged with the guided member 45, and is provided such that the upper surface (guide surface) of the guide portion 49 and the inner surface of the guided member 45 face each other.
  • a gas bearing (air bearing) 46 which is a non-contact bearing is provided on the guide surface of the guide portion 49.
  • the X guide stage 44 is supported in a non-contact manner with respect to the guide surface of the guide portion 49.
  • a movable mirror 80 is provided at a predetermined position on the + X side on the substrate stage PST (substrate holder PH), and a reference mirror (fixed mirror) 81 is provided at a predetermined position on the + X side of the lens barrel PK. ing. Further, a laser interferometer 82 is provided at a position facing the movable mirror 80. The laser interferometer 82 irradiates the measuring beam (measuring light) to the movable mirror 80 and irradiates the reference mirror 81 with the reference beam (reference light) via the mirrors 83A and 83B.
  • the reflected light from each of the moving mirror 80 and the reference mirror 81 based on the irradiated measuring beam and the reference beam is received by the light receiving section of the laser interferometer 82, and the laser interferometer 82 interferes with these lights to form the reference beam.
  • the amount of change in the optical path length of the measurement beam based on the optical path length, and thus the position (coordinates) and displacement of the movable mirror 80 with respect to the reference mirror 81 are measured. Since the reference mirror 81 is supported by the barrel PK of the projection optical system PL and the movable mirror 80 is supported by the substrate stage PST, the laser interferometer 82 measures the position of the substrate stage PST based on the barrel PK. I do.
  • the laser interferometer 82 is mounted on the lens barrel base 8 supporting the projection optical system PL (the main column 3). Measure the positional relationship between the substrate stage and PST.
  • the reference mirror 81 may be provided on the barrel base 8 instead of the barrel PK.
  • a moving mirror and a reference mirror are also provided on the substrate stage PST and on the + Y side of the lens barrel PK, and a laser interferometer is provided at a position facing these.
  • the position and the rotation angle of the substrate P on the substrate stage PST in the two-dimensional direction are measured by the laser interferometer 82 in real time.
  • the substrate stage drive system is supported by the substrate stage PST by moving the substrate stage PST in a two-dimensional coordinate system defined by the laser interferometer 82 based on the measurement result of the laser interferometer 82.
  • the board P is positioned in the X-axis and Y-axis directions.
  • the exposure apparatus EX has a focus detection system (not shown) for detecting surface position information on the surface of the substrate P.
  • the focus detection system projects the detection light from the oblique direction to the surface (exposure surface) of the substrate P via the liquid LQ, and receives the reflected light from the substrate P via the liquid LQ. Detect surface position information.
  • Focus detection The output system detects a position (focus position) of the surface of the substrate P in the z-axis direction with respect to a predetermined reference plane (for example, an image plane). Further, the focus detection system can also obtain the attitude of the substrate P in the tilt direction by obtaining each focus position at each of a plurality of points on the surface of the substrate P.
  • the focus detection system for example, the configuration disclosed in Japanese Patent Application Laid-Open No. 8-37149 can be used. Further, the focus detection system may project the detection light onto the surface of the substrate P without passing through the liquid LQ and receive the reflected light.
  • the substrate stage drive system controls the position (focus position) in the Z-axis direction of the substrate P held by the substrate stage PST, and the position in the X and Y directions. That is, the substrate stage drive system drives the substrate stage PST based on the detection result of the focus detection system, controls the focus position (Z position) and the tilt angle of the substrate P, and controls the surface of the substrate P (the exposure surface). ) Is adjusted to the image plane formed via the projection optical system PL and the liquid LQ.
  • a recess 55 is provided on the substrate stage PST, and the substrate holder PH is disposed in the recess 55. Then, the upper surface 51 of the substrate stage PST other than the concave portion 55 has a flat surface (flat portion) that is almost the same height (flat) as the surface of the substrate P held in the substrate holder PH! /
  • the upper surface 51 of the substrate stage PST is liquid-repellent and has a liquid-repellent property.
  • the liquid-repellent treatment includes, for example, a liquid-repellent material such as a fluorine resin material or an acrylic resin material. Coating or affixing a thin film made of the liquid-repellent material.
  • a material that is insoluble in the liquid LQ is used as the liquid-repellent material for making the liquid-repellent. Since the upper surface 51, which is almost flush with the surface of the substrate P, is provided around the substrate P, the liquid LQ is applied to the image plane side of the projection optical system PL even when performing immersion exposure on the edge region of the surface of the substrate P.
  • the liquid immersion area AR2 can be formed favorably by holding. However, as long as the liquid immersion area AR2 can be held well, even if there is a step between the surface of the substrate P and the upper surface 51, no force is exerted. Also, there is a gap of about 0.1 to 2 mm between the edge of the substrate P and the flat surface 51 provided around the substrate P. The liquid LQ flows into the gap due to the surface tension of the liquid LQ. The liquid LQ can be held under the projection optical system PL even when exposing the edge region of the substrate P.
  • FIG. 2 shows a substrate stage PST, which is a movable body that can hold and move the substrate P, as viewed from above.
  • movable mirrors 80 are arranged on two mutually perpendicular edges of a substrate stage PST having a rectangular shape in a plan view.
  • a reference member 300 is arranged at a predetermined position outside the substrate P above the substrate stage PST.
  • the reference member 300 includes, for example, a reference mark PFM that is detected in a non-liquid immersion state without a liquid by a substrate alignment system (not shown) as disclosed in Japanese Patent Application Laid-Open No.
  • a reference mark MFM detected in a liquid immersion state via a liquid by a mask alignment system (not shown) as disclosed in JP-A-7-176468 is provided in a predetermined positional relationship.
  • the upper surface 301 A of the reference member 300 is substantially flat, and is provided at substantially the same height (level) as the surface of the substrate P held by the substrate stage PST and the upper surface 51 of the substrate stage PST. .
  • the substrate alignment system also detects an alignment mark 1 formed on the substrate P. As shown in FIG. 2, a plurality of shot areas S1 to S24 arranged in a matrix are provided on the substrate P, and the alignment mark 1 is provided on the substrate P corresponding to the plurality of shot areas S1 to S24. A plurality is provided on P.
  • an illuminance non-uniformity sensor 400 as disclosed in, for example, JP-A-57-117238 is arranged as a measurement sensor. Te ru.
  • the illuminance unevenness sensor 400 includes a rectangular upper plate 401 in a plan view.
  • the upper surface 401A of the upper plate 401 is substantially flat, and is provided at substantially the same height (level) as the surface of the substrate P held by the substrate stage PST and the upper surface 51 of the substrate stage PST.
  • the upper surface 401A of the upper plate 401 is provided with a pinhole 470 through which light can pass. Of the upper surface 401A, portions other than the pinhole portion 470 are covered with a light-shielding material such as chrome, and the illuminance distribution of the exposure light EL is measured via the projection optical system PL and the liquid LQ.
  • an aerial image measurement sensor 500 as disclosed in, for example, JP-A-2002-14005 is provided as a measurement sensor. Is provided.
  • the aerial image measurement sensor 500 includes a rectangular upper plate 501 in plan view.
  • the upper surface 501A of the upper plate 501 is substantially flat, and is provided at substantially the same height (level) as the surface of the substrate P held by the substrate stage PST and the upper surface 51 of the substrate stage PST.
  • a slit portion 570 through which light can pass is provided.
  • the upper surface 501A is covered with a light-shielding material such as chrome, except for the slit portion 570, receives the exposure light EL through the projection optical system PL, the liquid LQ, and the slit portion 570, and based on the received light result. Measuring various imaging characteristics.
  • an irradiation amount sensor as disclosed in, for example, Japanese Patent Application Laid-Open No. H11-16816 is also provided on the substrate stage PST.
  • the upper surface of the upper plate is provided at substantially the same height (level) as the surface of the substrate P held by the substrate stage PST and the upper surface 51 of the substrate stage PST.
  • the reference member 300 and the upper plates 401 and 501 are detachable (replaceable) from the substrate stage PST.
  • the upper surface of the movable mirror 80 is also arranged so as to be substantially the same height (level) as the upper surface 51 of the substrate stage PST.
  • a substrate stage drive system for moving substrate stage PST is controlled by a stage control device PSTC provided separately from main control device CONT.
  • the stage controller PSTC controls the movement of the substrate stage PST via the substrate stage drive system.
  • the stage controller PSTC can control the movement of the board stage PST under the command of the main controller CONT, or can independently move the board stage PST without the command of the main controller CONT. It can also be controlled.
  • exposure apparatus EX includes a wireless device 130 for wirelessly communicating between main controller CONT and stage controller PSTC.
  • the wireless device 130 allows the main controller CNT and the stage controller PSTC to communicate wirelessly.
  • the electric device supported on first base member BP1 is driven by electric power supplied from main power supply 100A.
  • the electric device supported on the second base member BP2 is driven by electric power that is also supplied with the power for the stage power supply 100B independently of the main power supply 100A.
  • the electric device on the first base member BP1 and the electric device on the second base member BP2 are electrically independent.
  • the electric device (second device) on the first base member BP1 a mask stage MST supported via the main column 3 and a mask stage drive for moving the mask stage MST are used.
  • the optical system includes an anti-vibration unit (anti-vibration system) 7 that supports a lens barrel base 8 that supports the PL, and a drive system that drives an optical member that constitutes the projection optical system PL.
  • the electric devices on the first base member BP1 include the main power supply 100A and the main control device CONT. Further, examples of the electric device include a linear motor, various cables, a control board, and the like that constitute the drive system.
  • a main electric system 120A is constituted by electric devices supported on the first base member BP1 and driven by electric power supplied from the main power supply 100A.
  • the electric equipment to be supplied with power from the main power supply 100A is not limited to those described above, and does not need to include all of the above.
  • the substrate stage PST and the substrate stage PST are moved in the X, ⁇ , ⁇ , ⁇ , 0 ⁇ , and 0 ⁇ directions.
  • Stage drive system including linear motors 47, 48, etc., vibration isolation unit (vibration isolation system) 9 that supports substrate stage PST via substrate surface plate 41, and uneven illuminance sensor placed on substrate stage PST Sensor systems including the 400 and the aerial image measurement sensor 500 are exemplified.
  • the electric devices on the second base member 2 also include a stage power supply 100B and a stage control device PSTC. Further, examples of the electric device include a linear motor constituting the drive system, a light receiving element constituting the sensor system, various cables, a control board, and the like.
  • the stage electric system 120B is constituted by electric equipment supported on the second base member 2 and driven by electric power supplied with the power for the stage power supply 100B.
  • the electric equipment to which the power for the stage power supply 100B is also supplied is not limited to those described above, and it is not necessary to include all of the above-mentioned ones.
  • Main controller CONT mainly controls main electric system 120A including electric devices on first base member BP1, and stage controller PSTC mainly controls second base member # 2. Controls the stage electrical system 120 mm including the electrical equipment of the above.
  • a linear motor constituting the stage drive system a stage power supply 100 °, a control board constituting the stage control device PSTC, and a cable connecting these (Not shown) are arranged below the substrate stage PST.
  • the sensor system and the like Located on the PST.
  • the main control unit CONT and the main power supply 100A that constitute the main electric system 120A are provided above the substrate stage PST, more specifically, above the liquid supply port 12 described later.
  • FIG. 3 is an enlarged view showing the vicinity of the liquid supply mechanism 10, the liquid recovery mechanism 20, and the tip of the projection optical system PL.
  • the liquid supply mechanism 10 is for supplying a predetermined liquid LQ to the image plane side of the projection optical system PL, and has a liquid supply unit 11 capable of sending out the liquid LQ, and one end of the liquid supply unit 11. And a supply pipe 13 for connection.
  • the liquid supply unit 11 includes a tank that stores the liquid LQ, a pressure pump, a liquid temperature controller that adjusts the temperature of the supplied liquid LQ, and the like.
  • the liquid supply operation of the liquid supply unit 11 is controlled by the main controller CONT.
  • the liquid supply mechanism 10 supplies the liquid LQ between the projection optical system PL and the substrate P on the substrate stage PST.
  • the liquid supply tank, pressurizing pump, temperature controller, etc. do not need to be fully equipped with the exposure equipment EX, and at least a part of the equipment should be installed at the factory where the exposure equipment EX is installed. Can be substituted.
  • the liquid recovery mechanism 20 is for recovering the liquid LQ on the image plane side of the projection optical system PL, and includes a liquid recovery unit 21 capable of recovering the liquid LQ and one end of the liquid recovery unit 21. And a collection pipe 23 for connecting the same.
  • the liquid recovery unit 21 includes, for example, a vacuum system (suction device) such as a vacuum pump, a gas-liquid separator that separates the recovered liquid LQ and gas, a tank that stores the recovered liquid LQ, and the like.
  • a vacuum system a vacuum system of a factory where the exposure apparatus EX is arranged may be used without providing a vacuum pump in the exposure apparatus EX.
  • the gas-liquid separator and the recovery tank may be replaced by facilities such as a factory.
  • the liquid recovery operation of the liquid recovery unit 21 is controlled by the main controller CONT.
  • the liquid recovery mechanism 20 recovers a predetermined amount of the liquid LQ on the substrate P supplied from the liquid supply mechanism 10.
  • a flow path forming member 70 is disposed near the optical element 2 that is in contact with the liquid LQ.
  • the flow path forming member 70 is an annular member provided to surround the side surface of the optical element 2 above the substrate P (substrate stage PST).
  • a gap is provided between the flow path forming member 70 and the optical element 2, and the flow path forming section
  • the member 70 is supported by a predetermined support mechanism so as to be separated from the optical element 2 by vibration.
  • the flow path forming member 70 is provided above the substrate P (substrate stage PST), and has the liquid supply port 12 arranged so as to face the surface of the substrate P.
  • the liquid supply port 12 is provided on the lower surface 70A of the flow path forming member 70. Further, the flow path forming member 70 has a supply flow path corresponding to the liquid supply port 12 therein.
  • the flow path forming member 70 is provided above the substrate P (substrate stage PST), and has a liquid recovery port 22 arranged so as to face the surface of the substrate P.
  • the liquid recovery port 22 is provided on the lower surface 70A of the flow path forming member 70.
  • the flow path forming member 70 has a recovery flow path corresponding to the liquid recovery port 22 inside thereof.
  • the flow path forming member 70 constitutes a part of each of the liquid supply mechanism 10 and the liquid recovery mechanism 20.
  • the liquid supply ports 12 constituting the liquid supply mechanism 10 are provided at least at respective positions on both sides in the X-axis direction with the projection area AR1 of the projection optical system PL interposed therebetween.
  • the liquid recovery port 22 constituting the liquid recovery mechanism 20 is provided outside the liquid supply port 12 of the liquid supply mechanism 10 with respect to the projection area AR1 of the projection optical system PL.
  • the projection area AR1 of the projection optical system PL in the present embodiment is set to have a rectangular shape in plan view with the Y-axis direction as the long direction and the X-axis direction as the short direction.
  • the other end of the supply pipe 13 is connected to the liquid supply port 12 via the supply flow path of the flow path forming member 70.
  • the supply pipes 13 are provided corresponding to the plurality of liquid supply ports 12, respectively.
  • the other end of the recovery pipe 23 is connected to the liquid recovery port 22 via the recovery flow path of the flow path forming member 70.
  • a valve 15 for opening and closing the flow path of the supply pipe 13 is provided in the supply pipe 13.
  • valve 15 The opening and closing operation of the valve 15 is controlled by the main controller CONT.
  • the valve 15 in the present embodiment is a so-called normally closed system that mechanically closes the flow path of the supply pipe 13 when the drive source (power supply) of the exposure apparatus EX (main controller CONT) stops due to a power failure or the like. Become.
  • a flow rate control called a mass flow controller that controls the amount of liquid supplied per unit time from the liquid supply unit 11 to the liquid supply port 12.
  • a controller 16 is provided in the middle of the supply pipe 13. The control of the liquid supply amount by the flow controller 16 is performed under the command signal of the main controller CONT.
  • the main controller CONT When supplying the liquid LQ onto the substrate P, the main controller CONT sends out the liquid LQ from the liquid supply unit 11 and supplies the liquid LQ above the substrate P via the supply pipe 13 and the supply flow path of the flow path forming member 70.
  • the liquid LQ is supplied onto the substrate P from the liquid supply port 12 provided in the apparatus.
  • the liquid supply ports 12 are arranged at least on both sides of the projection area AR1 of the projection optical system PL, and the liquid LQ can be supplied from both sides of the projection area AR1 via the liquid supply ports 12. It is.
  • the amount of the liquid LQ supplied from the liquid supply port 12 onto the substrate P per unit time can be controlled by a flow controller 16 provided in the supply pipe 13.
  • the liquid recovery operation of liquid recovery unit 21 is controlled by main controller CONT.
  • the main control unit CONT can control the amount of liquid collected by the liquid recovery unit 21 per unit time.
  • the liquid LQ on the substrate P recovered from the liquid recovery port 22 provided above the substrate P is recovered by the liquid recovery unit 21 via the recovery flow path of the flow path forming member 70 and the recovery pipe 23.
  • the liquid contact surface 2A of the optical element 2 of the projection optical system PL and the lower surface (liquid contact surface) 70A of the flow path forming member 70 have lyophilicity (hydrophilicity).
  • the lyophilic treatment is performed on the liquid contact surfaces of the optical element 2 and the flow path forming member 70, and the lyophilic processing causes the liquid contact surfaces of the optical element 2 and the flow path forming member 70 to change.
  • at least the liquid contact surface of the member facing the exposed surface (surface) of the substrate P held by the substrate stage PST becomes lyophilic!
  • the lyophilic treatment is performed by forming a thin film with a substance having a large polarity and a molecular structure such as alcohol, for example. It imparts hydrophilicity to the liquid contact surface of the element 2 and the flow path forming member 70. That is, when water is used as the liquid LQ, it is desirable to provide a liquid having a large polar molecular structure such as an OH group on the liquid contact surface.
  • a lyophilic material such as MgF, Al 2 O 3, SiO
  • the lower surface (the surface facing the substrate P side) 70A of the flow path forming member 70 is a substantially flat surface, and the optical element 2
  • the lower surface (liquid contact surface) 2A is also a flat surface, and the lower surface 70A of the flow path forming member 70 and the lower surface 2A of the optical element 2 are substantially flush.
  • the liquid immersion area AR2 can be favorably formed in a wide range.
  • the liquid immersion mechanism disclosed in International Publication No. 2004Z053955 pamphlet and the liquid immersion mechanism disclosed in European Patent Publication No. 1420298 can also be applied to the exposure apparatus of the present embodiment.
  • FIG. 4 is a plan view showing the positional relationship between the first base member BP1 and the second base member BP2 that supports the substrate stage PST via the substrate surface plate 41.
  • the second base member BP2 is formed in a substantially rectangular shape in plan view
  • the first base member BP1 is formed in a frame shape surrounding the second base member BP2. ing.
  • the shape of the first and second base members BP1 and BP2 can be arbitrarily provided as long as the desired strength can be maintained, such as providing the first base member BP1 in a U-shape in plan view.
  • a measuring device 90 for measuring a relative position between the first base member BP1 and the second base member BP2 is provided.
  • the measuring device 90 is provided at each of two positions separated from each other on the second base member BP2.
  • FIG. 5 is a perspective view showing an example of the measuring device 90.
  • the measuring device 90 has a mark detection unit 91 having a microscope, and the mark detection unit 91 is supported on the second base member BP2 via the support unit 92.
  • a position detection mark 93 is provided on the first base member BP1.
  • the support section 92 supports the mark detection section 91 so that the mark detection section 91 and the position detection mark 93 face each other.
  • the position detection mark 93 has a plurality of lines 'and' space marks 93X arranged in the Y-axis direction and the X-axis direction, and a plurality of lines 'AND' arranged in the X-axis direction and the long direction. 'Has a space mark 93Y.
  • the measuring device 90 may be provided on the first base member BP1, and the position detection mark 93 may be provided on the second base member BP2.
  • the measuring device 90 detects the position detection mark 93 using the mark detection section 91, and based on the position detection result, moves the first base member BP1 and the second base member BP2 in the horizontal direction (XY direction). Find the relative position with respect to. Specifically, the measuring device 90 initializes the detected mark position based on the image information of the position detecting mark 93 detected by the mark detecting section 91. The amount of displacement with respect to the set position is determined, and the relative position (the amount of displacement) in the XY direction between the first base member BP1 and the second base member BP2 is determined based on the determined amount of displacement.
  • the measuring device 90 is provided at two locations. However, even if the measuring device 90 is provided at one location, it measures the relative position between the first base member B1 and the second base member BP2. be able to. On the other hand, the measuring devices 90 are provided at two or more positions, respectively, and the main control unit CONT operates the measurement results of the plurality of measuring devices 90 to calculate the relative position between the first base member BP1 and the second base member BP2. By obtaining position information (including relative rotation information), the relative position information can be obtained with higher accuracy.
  • the main controller CONT uses the measuring device 90 to obtain relative position information between the first base member BP1 and the second base member BP2.
  • the main controller CONT obtains a correction amount for adjusting the positional relationship between the pattern image of the mask M and the substrate P via the projection optical system PL, based on the obtained relative position information.
  • the main controller CONT drives the mask stage MST, the substrate stage PST, the image stabilizing units 6, 7, 9 and the like based on the obtained correction amount, and starts the exposure of the mask stage MST and the substrate stage PST at the start of the exposure. Adjust the initial position.
  • the first base member BP1 supporting the main column 3 and the second base member BP2 supporting the substrate stage PST are separated from each other. May fluctuate.
  • the relative positional relationship between the first base member BP1 and the second base member BP2 may greatly deviate from a desired relative positional relationship. If the relative positional relationship is largely deviated, there arises a problem that, for example, the movable mirror 80 on the substrate stage PST is not arranged in the measurable area of the laser interferometer 82 attached to the main column 3.
  • the board alignment system described above is mounted on the main column 3, the reference mark PFM on the board stage PST and the alignment mark 1 on the board P are detected by the board alignment system. Inconveniences such as inability to arrange in the exit area occur. Therefore, the relative positional relationship between the first base member BP1 and the second base member BP2 (and, consequently, the relative positional relationship between the main column 3 and the substrate stage PST) is roughly measured using the measuring device 90, and based on the measurement results. Therefore, for example, by correcting the position of the substrate stage PST, it is possible to prevent the above-mentioned inconvenience from occurring.
  • the main controller CONT uses the substrate interferometer 82 to arrange the movable mirror 80 within the measurable area of the laser interferometer 82. Move the substrate stage PST so that the fiducial mark is located within the detection area, and roughly align the substrate stage PST.
  • the relative position of the first base member BP1 and the second base member BP2 in the horizontal direction is measured using the measuring device 90, and the substrate stage PST is measured based on the measurement result.
  • the position of the substrate stage PST in the Z-axis direction is adjusted based on the measurement result by adjusting the position of the substrate stage PST in the XY direction. You may try to adjust.
  • the base line information (the positional relationship between the projection position of the pattern image formed by the projection optical system PL and the detection reference position of the substrate alignment system) in the coordinate system defined by the laser interferometer 82 is also used as the reference member 300. It is assumed that the measurement has already been performed using.
  • the main controller CONT detects (in a dry state) the alignment mark 1 formed in the shot area S1 to S24, which is the area to be exposed, on the substrate P without using the liquid LQ in the substrate alignment system.
  • the position of the substrate stage PST when the substrate alignment system detects alignment mark 1 is measured by the laser interferometer 82, and the measurement result is output to the main controller CONT.
  • the main controller CONT obtains positional information (deviation) of the shot area S1-S24 with respect to the detection reference position of the substrate alignment system, and obtains the alignment information (array information) of the shot area S1-S24 from the position of the substrate stage PST at that time. Ask for.
  • the main controller CO The NT drives the liquid supply mechanism 10 to supply the liquid LQ onto the substrate P and drives the liquid recovery mechanism 20 to perform a predetermined amount of liquid LQ on the substrate P in order to perform the liquid immersion exposure of the substrate P. to recover.
  • the liquid immersion area AR2 of the liquid LQ is formed between the optical element 2 at the tip of the projection optical system PL and the substrate P.
  • the main controller CONT is configured to carry out the liquid LQ on the substrate P by the liquid recovery mechanism 20 in parallel with the supply of the liquid LQ onto the substrate P by the liquid supply mechanism 10, and the substrate supporting the substrate P While moving the stage PST in the X-axis direction (scanning direction), an image of the pattern of the mask M is placed on the substrate P via the liquid LQ between the projection optical system PL and the substrate P and the projection optical system PL. Perform projection exposure. At this time, the alignment between the mask M and the substrate P is performed based on the previously obtained baseline information and the alignment information of the shot areas S1 to S24. Also, at the time of exposure of substrate P, main controller CONT (or stage controller PSTC) controls the movement of substrate stage PST based on the measurement result of laser interferometer 82.
  • the liquid LQ supplied from the liquid supply unit 11 of the liquid supply mechanism 10 to form the liquid immersion area AR2 flows through the supply pipe 13, and then is supplied to the supply channel formed inside the channel forming member 70.
  • the liquid is supplied onto the substrate P from the liquid supply port 12 via the.
  • the liquid LQ supplied onto the substrate P from the liquid supply port 12 is supplied so as to spread between the lower end surface of the front end portion (optical element 2) of the projection optical system PL and the substrate P, and includes the projection area AR1.
  • An immersion area AR2 smaller than the substrate P and larger than the projection area AR1 is locally formed on a part of the substrate P.
  • the exposure apparatus EX projects and exposes the pattern image of the mask M onto the substrate P while moving the mask M and the substrate P in the X-axis direction (scanning direction). Then, a part of the pattern image of the mask M is projected into the projection area AR1 via the liquid LQ in the immersion area AR2 and the projection optical system PL, and the mask M is moved in the ⁇ X direction (or + X direction) at a velocity V. In synchronization with the movement, the substrate P moves with respect to the projection area AR1 in the + X direction (or X direction) at a speed ⁇ ⁇ ⁇ ( ⁇ is a projection magnification). A plurality of shot areas S1 to S24 are set on the substrate ⁇ .
  • the next shot area is moved to the scanning start position by the stepping movement of the substrate ⁇ .
  • the scanning exposure process for each of the shot areas S1 to S24 is performed in order while moving the substrate in a step-and-scan manner. Next is done.
  • the liquid LQ supplied onto the substrate stage PST may leak out of the substrate stage PST.
  • Leakage of the liquid LQ may damage members such as metal parts around the substrate stage PST, control boards, cables, and electrical equipment such as power supplies, and cause inconveniences such as short circuit or failure.
  • damage to electrical equipment such as a sensor system provided on the substrate stage PST, and electrical equipment such as a substrate stage drive system and a vibration isolation unit disposed below the substrate stage PST become remarkable.
  • the leaked liquid LQ diffuses, for example, the damage to various electrical equipment supported by the main column 3 will also increase, and the return work will require much time and labor, and the exposure apparatus EL will operate. This leads to a lower rate.
  • the first base member BP1 and the second base member BP2 supporting the substrate stage PST are separated from each other, so that the substrate stage PST upward force second base member Even if the liquid LQ leaks to BP2, as shown in the schematic diagram of FIG. 6, the liquid LQ that leaks onto the second base member BP2 forms a gap between the first base member BP1 and the second base member BP2. 4 and does not diffuse to the first base member BP1.
  • the exposure processing can be performed without lowering the operation rate of the exposure apparatus EX.
  • the liquid LQ flowing into the gap 4 is recovered by the liquid receiving member 60 on which the second base member BP2 is placed, so that the diffusion of the liquid LQ is effective. Can be effectively prevented.
  • the liquid receiving member 60 is disposed separately from the first base member BP1 that supports the illumination system and the like, it is possible to prevent the damage caused by the leakage of the liquid LQ from spreading.
  • the gas supply system 150 supplies gas so as to guide the liquid LQ leaked from the substrate stage PST to the gap 4 between the first base member BP1 and the second base member BP2. Since the liquid LQ is flowing, the leaked liquid LQ can be prevented from diffusing, and the leaked liquid LQ can be smoothly collected by the liquid receiving member LQ.
  • the local liquid immersion method is used in which exposure is performed with the liquid LQ locally provided on the substrate P.
  • the liquid LQ can leak from the substrate P or the substrate stage PST. High. Therefore, by providing the second base member BP2 supporting the substrate stage PST separately from the first base member BP1 supporting devices other than the substrate stage PST among the plurality of devices constituting the exposure apparatus EX, It is possible to prevent the liquid LQ from diffusing into the first base member BP1, and prevent the liquid LQ from intruding (diffusion) into devices supported on the first base member BP1.
  • the power for the stage power supply 100B independent of the main power supply 100A is also supplied. Since the electrical equipment on the base member BP2 and the electrical equipment on the first base member BP1 are electrically independent, including the electrical equipment on the second base member BP2 and this electrical equipment due to the spilled liquid LQ Even when the stage electric system 120B stops due to a short circuit or a failure, the main electric system 120A including the electric device on the first base member BP1 can operate. Therefore, it is possible to prevent serious damage such as failure or stoppage of the electrical system of the entire exposure apparatus EX. Also, when performing the return operation, the return operation may be performed only on the stage electric system 120B including the electric device on the second base member BP2. Therefore, the return work time can be shortened, and a reduction in the operation rate of the exposure apparatus EX can be prevented.
  • the main electric system 120A is operable, so that it is possible to continue driving the electric device on the first base member BP1.
  • the main controller CONT is electrically independent of the stage controller PSTC, so the stage controller Even if the PSTC fails or stops, the main controller CONT can operate, and therefore, when the stage electric system 120B stops or restarts, the main electric controller CONT operates based on the command of the main controller CONT. System 120A can be driven.
  • the electrical equipment on the first base member BP1 including the main control device CONT and the electrical equipment on the second base member BP2 including the stage control device PSTC via a cable or the like transmit signal or power.
  • the leaked liquid LQ may be applied to the cable and cause inconvenience such as electric leakage.
  • the electric equipment on the second base member BP2 leaks due to the leaked liquid LQ, there is a possibility that the electric equipment on the first base member BP1 may also be electrically damaged through the cable. is there.
  • the electric device on the first base member BP1 including the main control device CONT and the electric device on the second base member BP2 including the stage control device PSTC are wirelessly communicated.
  • the device on the first base member BP1 and the device on the second base member BP2 can be physically and electrically separated from each other, and the above-mentioned inconvenience can be prevented.
  • FIG. 1 shows that stage control device PSTC on second base member BP2 and main control device CONT on first base member BP1 can be wirelessly communicated by wireless device 130.
  • electric devices other than the stage controller PSTC and the main controller CONT may be wirelessly communicated with each other.
  • a liquid sensor 160 is provided at a predetermined position such as a side surface of the substrate stage PST to detect the liquid LQ that has also leaked on the substrate stage PST.
  • the valve 15 of the liquid supply mechanism 10 may close the flow path of the supply pipe 13 when a liquid amount equal to or larger than the set allowable value is detected. Further, based on the detection result of the liquid sensor 160, after the valve 15 closes the flow path of the supply pipe 13, the amount of liquid substantially equal to the volume of the liquid flow path between the liquid supply port 12 and the valve 15 is obtained.
  • main controller CONT and main power supply 100A constituting main electric system 120A are located above substrate stage PST, and more specifically, liquid supply port 12A. Even if liquid LQ scatters from liquid immersion area AR2 or liquid LQ leaks from substrate stage PST, liquid LQ constitutes main control unit CONT, for example, control board And the inconvenience of the main power supply 100A is suppressed.
  • the substrate surface plate 41 and the lens barrel surface 8 are supported on different base members BP1 and BP2, respectively.
  • a substrate surface position sensor for measuring the position of the substrate surface 41 as disclosed in, for example, WO 00Z14779 pamphlet.
  • a column position sensor for measuring the position of the lens barrel base 8 with respect to the first base member BP1 may be provided.
  • the substrate surface position sensor measures at least the positions of the substrate surface 41 in the X, Y, and Z directions, and the X, ⁇ , and ⁇ directions with reference to the first base member BP1.
  • the column position sensor measures the positions of the lens barrel base 8 in the X, ⁇ , ⁇ , 0 ⁇ , 0 ⁇ , and 0 ⁇ directions with respect to the first base member BP1. Therefore, main controller CONT can determine the relative positions of first base member BP1 and substrate surface plate 41 in the directions of six degrees of freedom based on the measurement results of the substrate surface position sensor, and can also use the column position sensor. The relative positions of the first base member BP1 and the barrel base 8 in the directions of six degrees of freedom can be obtained based on the measurement results.
  • the main controller CONT obtains the relative position of the substrate base 41 in the direction of six degrees of freedom with respect to the first base member BP1 based on the measurement value of the substrate base position sensor, and uses the information of the relative position to prevent the position.
  • the vibration unit 9 the substrate surface plate 41 can be constantly maintained at a stable position with respect to the first base member BP1.
  • main controller CONT obtains a relative position of lens barrel base 8 in the direction of six degrees of freedom with respect to first base member BP1 based on the measurement value of the column position sensor, and uses the information of the relative position to perform vibration isolation.
  • the lens barrel base 8 can be constantly maintained at a stable position with respect to the first base member BP1.
  • the liquid for recovering the liquid LQ flowing in the gap 4 is used.
  • the recovery mechanism is constituted by the liquid receiving member 60, a gutter member 61 provided according to the shape and size of the gap 4 is disposed below the gap 4 as shown in FIG. You may.
  • a liquid recovery mechanism 64 for recovering the liquid LQ flowing between the first base member BP1 and the second base member BP2 includes a gutter member 61 arranged corresponding to the gap 4 and a vacuum system (suction). Device) 63, a gas-liquid separator 62 provided between the gutter member 61 and the vacuum system 63, and the like.
  • the gutter member 61 and the gas-liquid separator 62 are connected via a flow path 62A, and the gas-liquid separator 62 and the vacuum system 63 are connected via a flow path 63A.
  • the liquid LQ leaked onto the second base member BP2 flows to the gap 4.
  • the liquid LQ flowing into the gap 4 is collected by the gutter member 61.
  • the liquid LQ collected in the gutter member 61 is sent to the gas-liquid separator 62 via the flow path 62A by the suction operation of the vacuum system 63.
  • the gas-liquid separator 62 separates the liquid component and the gas component collected via the flow path 62A.
  • the gas component separated by the gas-liquid separator 62 is sucked into the vacuum system 63, and the liquid component is discharged through the discharge channel 62B.
  • FIG. 8 is a view of the lower surface 70A of the flow path forming member 70 as viewed from below.
  • a liquid supply port 12A for supplying the liquid LQ onto the substrate P is provided on both sides of the projection area AR1 of the projection optical system PL in the X-axis direction (scanning direction) in the lower surface 70A of the flow path forming member 70. , 12B are provided respectively.
  • the liquid supply ports 12A and 12B have a slit shape whose longitudinal direction is the Y-axis direction.
  • a liquid supply port 12C for supplying the liquid LQ onto the substrate P, 12D are provided respectively.
  • the liquid supply ports 12C and 12D have a slit shape whose longitudinal direction is the X-axis direction.
  • an annular liquid recovery port 22 formed so as to surround the projection area AR1 of the projection optical system PL and the liquid supply ports 12A to 12D is provided on the lower surface 70A of the flow path forming member 70.
  • the exposure light EL is supplied while supplying and collecting the liquid LQ while moving the substrate P in the X-axis direction. Irradiate on substrate P. Then, assuming that the moving distance in the X-axis direction required to scan and expose one shot area is Ll, and the distance between the liquid supply ports 12A and 12B is L2. L1 ⁇ L2 ... set to satisfy the condition of (h).
  • the moving distance L1 in the X-axis direction is a distance including a constant velocity section and an acceleration and deceleration section of the substrate P (substrate stage PST) during scanning exposure.
  • the step moving distance in the Y-axis direction for exposing the next shot area is L3
  • the distance between the liquid supply ports 12C and 12D is L4
  • the immersion area AR2 can be favorably formed on the substrate P, and the inconvenience that the temperature distribution (temperature unevenness) occurs in the liquid LQ in the immersion area AR2 is reduced. Can be prevented.
  • the temperature of the liquid LQ supplied on the substrate P is controlled by a temperature controller provided in the liquid supply unit 11, there is a possibility that a temperature distribution may occur after being supplied onto the substrate P. is there .
  • One of the factors that cause the temperature distribution in the liquid LQ in the liquid immersion area AR2 formed on the substrate P is heat generated by irradiation with the exposure light EL. Then, when the exposure light EL is applied to the immersion area AR2, the movement amount of the liquid LQ in the immersion area AR2 is small (if the liquid LQ is stagnant), the liquid LQ is locally heated. And the temperature distribution becomes significant.
  • the liquid LQ disposed on the optical path of the exposure light EL can be sufficiently moved (replaced) to suppress the stagnation of the liquid LQ, thereby preventing the occurrence of a temperature distribution. Then, by satisfying the condition of the above equation (1), the stagnation of the liquid LQ can be suppressed.
  • the liquid LQ supplied from the liquid supply port 12A on the X side is moved to the + X side as the substrate P moves, and the light of the exposure light EL is emitted. It is effective to place them on the road.
  • the liquid supply port 12B on the + X side moves the liquid LQ to which the force is also supplied to the X side along with the movement of the substrate P, and emits the light of the exposure light EL. It is effective to arrange it on the road.
  • the distance L2 between the liquid supply ports 12A and 12B is, of course, the distance L2 between the leading ends of the projection optical system PL.
  • the diameter (or the size in the X-axis direction) of the optical element 2 is set to be larger than ⁇ . Therefore,
  • the flow rate of the liquid LQ supplied onto the substrate P from the liquid supply port 12 is U
  • the moving speed of the substrate P is V
  • the distance between the tip of the projection optical system PL and the substrate P (working distance)
  • WD is defined as WD
  • it is preferable to satisfy the condition of HXU ⁇ WD XV (where U QZS) (5).
  • the space between the projection optical system PL and the substrate P can be favorably filled with the liquid LQ.
  • FIG. 10 is a sectional view showing a flow path forming member 70 'according to another embodiment of the present invention
  • FIG. 11 is a view of the flow path forming member 70' as viewed from below.
  • the flow path forming member 70 ′ is provided so as to face the substrate stage PST, and includes a supply plate-shaped member 72 in which a plurality of liquid supply holes 71 are formed.
  • the flow path forming member 70 ′ is disposed so as to face the substrate stage PST, and includes a collecting plate member 74 in which a plurality of liquid collecting holes 73 are formed.
  • the supply plate-like members 72 are substantially fan-shaped in plan view, and are provided in plural (four) so as to surround the projection area AR1 of the projection optical system PL.
  • the plurality of (four) recovery plate members 74 are provided so as to surround the outside of the supply plate member 72.
  • the flow path forming member 70 ′ has a frame member (supporting member) 75, and the plate members 72 and 74 are supported by the frame member 75.
  • the lower surface 70A of the flow path forming member 70 'facing the substrate stage PST is formed by a plurality of supply plate members 72 and a plurality of recovery plate members 74 by a plurality of liquid supply areas and a plurality of liquid collection areas. It is divided into two parts.
  • the liquid supply hole 71 is formed in a substantially circular shape, and the liquid recovery hole 73 is also formed in a substantially circular shape.
  • Each of the plurality of liquid supply holes 71 is formed in substantially the same size, and has a diameter of about 0.1 to 3 mm. However, the diameter of the liquid supply hole 71 can be appropriately changed according to the target value of the amount of liquid supplied onto the substrate P.
  • the liquid supply holes 71 are uniformly formed in the supply plate member 72 at substantially the same pitch as the diameter of the holes.
  • each of the plurality of liquid recovery holes 73 is formed to have substantially the same size, and has a diameter of about 0.1 to 3 mm. However, liquid recovery The diameter of the hole 73 can be appropriately changed according to the target value of the amount of liquid collected from the substrate P.
  • the liquid recovery holes 73 are uniformly formed in the recovery plate member 74 at substantially the same pitch as the diameter of the holes.
  • the flow path forming member 70 ′ has a supply space 76 connected to the supply pipe 13.
  • the supply space 76 is a space surrounded by the supply plate member 72 and the frame member 75, and is formed in a plurality (four) corresponding to the supply plate member 71.
  • Each of the plurality of supply spaces 76 is an independent space.
  • the flow path forming member 70 ′ has a collecting space 77 connected to the collecting pipe 23.
  • the collection space 77 is a space surrounded by the collection plate member 74 and the frame member 75, and is formed in a plurality (four) corresponding to the collection plate member 74!
  • the plurality of collection spaces 77 are also independent spaces.
  • the liquid LQ supplied from the supply pipe 13 is filled in the supply space 76, it is supplied onto the substrate P from each of the plurality of liquid supply holes 71.
  • the liquid LQ is uniformly supplied from the surface of the supply plate member 72 facing the substrate stage PST by being supplied through the liquid supply holes 71 formed uniformly in the supply plate member 72.
  • the liquid LQ on the substrate P is recovered through the liquid recovery holes 73 formed uniformly in the recovery plate member 74.
  • the liquid LQ recovered from the liquid recovery hole 73 is recovered to the recovery pipe 23 through the recovery space 77.
  • the liquid LQ on the substrate P is collected through a liquid collecting hole 73 uniformly formed in the collecting plate member 74.
  • the forces of the plurality of liquid supply holes 71 are almost the same, and the liquid LQ is uniformly supplied from the surface of the supply plate member 72. Can be supplied with liquid LQ.
  • the exposure processing can be performed in a state where the liquid immersion area AR2 is well formed.
  • the plurality of liquid supply holes 71 The pressure of the liquid LQ supplied from each of them can be made uniform uniformly.
  • a pressure detector that detects the pressure of the liquid LQ can be provided in the space 76.
  • the liquid supply mechanism 10 adjusts the amount of liquid supplied per unit time from the liquid supply unit 11 to the space 76 via the supply pipe 13 based on the detection result of the pressure detector. In this way, the amount of liquid supplied to the substrate P per unit time can be adjusted.
  • the liquid supply hole 71 has a substantially circular shape, but any shape such as a rectangular shape or a slit shape can be adopted.
  • the liquid recovery hole 73 can have any shape.
  • four supply plate members 71 are provided, the number is arbitrary. Further, the number of the supply plate-like members 71 may be one. Similarly, the number of the recovery plate members 73 can be arbitrarily set.
  • the liquid LQ in the present embodiment is composed of pure water.
  • Pure water has the advantage that it can be easily obtained in large quantities at a semiconductor manufacturing plant or the like, and that it has no adverse effect on the photoresist on the substrate P, optical elements (lenses), and the like.
  • pure water has no adverse effect on the environment and has an extremely low impurity content, so it is expected to have the effect of cleaning the surface of the substrate P and the surface of the optical element provided on the front end surface of the projection optical system PL. it can.
  • the exposure apparatus may have an ultrapure water maker.
  • the refractive index n of pure water (water) with respect to the exposure light EL having a wavelength of about 193 nm is said to be approximately 1.44, and ArF excimer laser light (wavelength 193 nm) is used as the light source of the exposure light EL. If used, the wavelength is shortened to lZn, that is, about 134 nm on the substrate P, and high resolution is obtained. Furthermore, since the depth of focus is expanded to about n times, that is, about 1.44 times as compared to that in the air, if it is sufficient to secure the same depth of focus as that used in the air, the projection optical system PL Can further increase the numerical aperture, and in this regard, the resolution is also improved.
  • the numerical aperture NA of the projection optical system may be 0.9-11.
  • the numerical aperture NA of the projection optical system is increased as described above, it has been conventionally used as the exposure light! /, Since the random polarization light may deteriorate the imaging performance due to the polarization effect, It is desirable to use polarized illumination.
  • linearly polarized illumination is performed according to the longitudinal direction of the line pattern of the line 'and' space pattern of the mask (reticle). From the pattern of the mask (reticle), the S-polarized component (TE-polarized component), It is preferable that a large amount of diffracted light of the polarization direction component along the longitudinal direction of the line pattern is emitted.
  • the projection optical system PL and the resist applied on the surface of the substrate P are not filled.
  • the transmittance of the diffracted light of the s-polarization component (TE polarization component), which contributes to the enhancement of contrast, on the resist surface increases, so that the projection optical system Even when the numerical aperture NA exceeds 1.0, high imaging performance can be obtained.
  • it is more effective to appropriately combine a phase shift mask such as an oblique incidence illumination method (particularly a dipole illumination method) adapted to the longitudinal direction of the line pattern as disclosed in Japanese Patent Application Laid-Open No. 6-188169.
  • a fine line 'and' space pattern for example, a line 'and' space of about 25-50 nm
  • a projection optical system PL with a reduction magnification of about 1Z4
  • the mask M acts as a polarizing plate due to the wave guide effect, and reduces the contrast.
  • the amount of diffracted light of the S-polarized component (TE polarized component) becomes larger than that of the diffracted light of the (TM polarized component) and is emitted by the mask M, it is desirable to use the linearly polarized illumination described above. Even when the mask M is illuminated, high resolution performance can be obtained even when the numerical aperture NA of the projection optical system PL is as large as 0.9-1.3. Also, when exposing a very fine line 'and' space pattern on the mask M on the substrate P, the P-polarized component (TM-polarized component) is larger than the S-polarized component (TE-polarized component) due to the Wire Grid effect.
  • the projection optical system PL when an ArF excimer laser is used as the exposure light and a line 'and' space pattern larger than 25 nm is exposed on the substrate P using the projection optical system PL with a reduction ratio of about 1Z4 Since the diffracted light of the S-polarized component (TE polarized component) is emitted from the mask M more than the diffracted light of the P-polarized component (TM polarized component), the numerical aperture NA of the projection optical system PL is 0.9. Even in the case of a large value such as 1.3, high resolution performance can be obtained.
  • the optical element 2 is attached to the tip of the projection optical system PL, and this lens is used to adjust the optical characteristics of the projection optical system PL, for example, aberrations (spherical aberration, coma, etc.). be able to.
  • the optical element attached to the tip of the projection optical system PL may be an optical plate used for adjusting the optical characteristics of the projection optical system PL. Alternatively, it may be a plane-parallel plate that can transmit the exposed light EL.
  • the space between the projection optical system PL and the surface of the substrate P is filled with the liquid LQ.
  • a cover glass having a plane-parallel plate force is attached to the surface of the substrate P. It may be configured to fill the liquid LQ in the closed state.
  • the substrate P is exposed by filling the optical path space on the light emission side of the optical element 2 of the projection optical system PL with liquid (pure water).
  • liquid pure water
  • the optical path space on the light incident side of the optical element 2 of the projection optical system PL may be filled with liquid (pure water).
  • the liquid LQ of the present embodiment may be a liquid other than water, which is water.
  • the light source of the exposure light EL is an F laser
  • the F laser light does not transmit water. So
  • liquid LQ for example, perfluoropolyether (PFPE) or
  • the part in contact with the liquid LQ has a small polarity, for example, containing fluorine! ⁇ ⁇ Lyophilization treatment is performed by forming a thin film using a substance with a molecular structure.
  • other liquid LQs that are transparent to the exposure optical system EL and have a refractive index as high as possible and are stable to the photo resist coated on the surface of the substrate P (for example, Cedar) Oil) can also be used.
  • the surface treatment is performed according to the polarity of the liquid LQ used.
  • the substrate P in each of the above embodiments is not limited to a semiconductor wafer for manufacturing a semiconductor device, but may be a glass substrate for a display device or a ceramic for a thin film magnetic head. Wafers, masks or reticles used in exposure equipment (synthetic quartz, silicon wafers), etc. are applied.
  • the exposure apparatus EX is a step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the pattern of the mask M by synchronously moving the mask M and the substrate P.
  • a step-and-repeat projection exposure apparatus (a step-and-repeat type projection exposure apparatus in which the pattern of the mask M is exposed collectively while the M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
  • the present invention can also be applied to an exposure apparatus of the step 'and' stitch type in which at least two patterns are partially overlapped and transferred on the substrate P
  • a reduced image of the first pattern is projected using a projection optical system (for example, a refraction projection optical system that does not include a reflective element at 1Z8 reduction magnification) while the first pattern and the substrate P are almost stationary.
  • a projection optical system for example, a refraction projection optical system that does not include a reflective element at 1Z8 reduction magnification
  • a batch exposure is performed on the plate P, and then, with the second pattern and the substrate P almost stationary, a reduced image of the second pattern is partially overlapped with the first pattern by using the projection optical system thereof.
  • the present invention can also be applied to a stitch type batch exposure apparatus that performs batch exposure on P.
  • a type of exposure apparatus having no projection optical system for example, a proximity type exposure apparatus or a two-beam interference type exposure apparatus that exposes a wafer by forming interference fringes on the wafer can be used. .
  • the present invention can also be applied to a twin-stage type exposure apparatus disclosed in JP-A-10-163099, JP-A-10-214783, JP-T-2000-505958, and the like.
  • the exposure apparatus may include a measurement stage mounted with a member for measurement and a sensor and moved on the image plane side of the projection optical system, separately from the stage holding the substrate P.
  • the measurement stage acquires the first movement information and the second movement information and moves the measurement stage based on the first movement information and the second movement information. May be controlled.
  • An exposure apparatus equipped with a measurement stage is disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-164504 (corresponding to U.S. Application No. 09Z593,800), and is designed for use in designated countries (or selected selected countries) specified in this international application. To the extent permitted by national law, the disclosures in this specification are incorporated by reference, using the disclosures in the above-mentioned publications and corresponding U.S. applications. Part of
  • the exposure apparatus that locally fills the liquid between the projection optical system PL and the substrate P is employed.
  • Japanese Patent Application Laid-Open Nos. The present invention is also applicable to an immersion exposure apparatus in which the entire surface of a substrate to be exposed is covered with a liquid, as described in detail in, for example, US Pat. No. 3,303,114 and US Pat. No. 5,825,043. is there.
  • the type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element for exposing a semiconductor element pattern onto a substrate P, but may be an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, or the like. It can be widely applied to an image pickup device (CCD), an exposure apparatus for manufacturing a reticle or a mask, and the like.
  • CCD image pickup device
  • a linear motor (USP 5,623,853 or
  • each stage PST and MST may be of a type that moves along a guide or a guideless type that does not have a guide.
  • each stage PST, MST is such that a magnet cut in which a two-dimensional magnet is arranged and an armature unit in which a two-dimensional coil is arranged face each other, and each stage PST, MST is driven by electromagnetic force. May be used.
  • one of the magnet unit and the armature unit should be connected to the stages PST and MST, and the other of the magnet unit and the armature unit should be provided on the moving surface side of the stages PST and MST!
  • a reaction force generated by movement of the mask stage MST is mechanically controlled by using a frame member so as not to be transmitted to the projection optical system PL. You may escape to the floor (earth).
  • the exposure apparatus EX of the embodiment of the present application performs various types of subsystems including the components described in the claims of the present application with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to maintain accuracy. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical For, adjustments are made to achieve electrical accuracy.
  • Various subsystems The process of assembling into the exposure apparatus includes mechanical connection, electrical circuit wiring connection, and pneumatic circuit piping connection between the various subsystems. Needless to say, there is an assembling process for each subsystem before the assembling process into the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustment is performed, and various precisions of the entire exposure apparatus are secured. It is desirable to manufacture the exposure apparatus in a clean room in which the temperature, cleanliness, etc. are controlled.
  • a micro device such as a semiconductor device has a step 201 for designing the function and performance of the micro device, a step 202 for fabricating a mask (reticle) based on the design step, and a substrate for the device.
  • Step 203 of manufacturing a certain substrate substrate processing step 204 of exposing a mask pattern to the substrate by the exposure apparatus EX of the above-described embodiment, device assembly step (including dicing step, bonding step, package step) 205, inspection step Manufactured through 206 etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 液体が漏出しても被害の拡大を抑え、露光装置の稼働率の低下や露光精度の低下を防止できる露光装置を提供する。露光装置(EX)は、液体(LQ)を介して基板(P)上に露光光(EL)を照射して基板Pを露光するものであって、第1ベース部材(BP1)と、基板Pを移動可能に保持する基板ステージ(PST)と、基板ステージ(PST)を支持する第2ベース部材(BP2)とを備え、第2ベース部材(BP2)上に漏出した液体(LQ)の第1ベース部材(BP1)への拡散が防止されている。

Description

明 細 書
露光装置及びデバイス製造方法
技術分野
[0001] 本発明は、液体を介して基板上に露光光を照射して基板を露光する露光装置及び デバイス製造方法に関するものである。
本願は、 2004年 2月 19日に出願された特願 2004— 42929号に対し優先権を主 張し、その内容をここに援用する。
背景技術
[0002] 半導体デバイスや液晶表示デバイスは、マスク上に形成されたパターンを感光性の 基板上に転写する、いわゆるフォトリソグラフィの手法により製造される。このフォトリソ グラフイエ程で使用される露光装置は、マスクを支持するマスクステージと基板を支 持する基板ステージとを有し、マスクステージ及び基板ステージを逐次移動しながら マスクのパターンを投影光学系を介して基板に転写するものである。近年、デバイス ノターンのより一層の高集積ィ匕に対応するために投影光学系の更なる高解像度化 が望まれている。投影光学系の解像度は、使用する露光波長が短いほど、また投影 光学系の開口数が大きいほど高くなる。そのため、露光装置で使用される露光波長 は年々短波長化しており、投影光学系の開口数も増大している。そして、現在主流の 露光波長は KrFエキシマレーザの 248nmである力 更に短波長の ArFエキシマレ 一ザの 193nmも実用化されつつある。
また、露光を行う際には、解像度と同様に焦点深度 (DOF)も重要となる。解像度 R 、及び焦点深度 δはそれぞれ以下の式で表される。
R=k · λ /ΝΑ … (1)
δ = ±k - λ /ΝΑ2
2 … (2)
ここで、 λは露光波長、 ΝΑは投影光学系の開口数、 k ロセス係数である。
1、 kはプ
2
(1)式、(2)式より、解像度 Rを高めるために、露光波長えを短くして、開口数 NAを 大きくすると、焦点深度 δが狭くなることが分力る。
[0003] 焦点深度 δが狭くなり過ぎると、投影光学系の像面に対して基板表面を合致させる ことが困難となり、露光動作時のフォーカスマージンが不足するおそれがある。そこで 、実質的に露光波長を短くして、且つ焦点深度を広くする方法として、例えば下記特 許文献 1に開示されている液浸法が提案されている。この液浸法は、投影光学系の 下面と基板表面との間を水や有機溶媒等の液体で満たして液浸領域を形成し、液 体中での露光光の波長が空気中の lZn (nは液体の屈折率で通常 1. 2-1. 6程度 )になることを利用して解像度を向上するとともに、焦点深度を約 n倍に拡大するとい うものである。
特許文献 1:国際公開第 99Z49504号パンフレット
発明の開示
発明が解決しょうとする課題
[0004] ところで、液浸法を用いて基板の露光を行う場合には、液体で満たされるべき露光 光の光路に部分的あるいは全体的に気体 (空気)が存在してしまうと、露光光が基板 上の所望位置に入射せずに露光不良を起こす可能性がある。また、基板上やその 基板を保持する基板ステージ上などに供給した液体が漏出すると、基板ステージ周 辺の部材ゃ電気機器に液体による被害が及び、例えば鲭びゃ漏電あるいは故障等 といった不都合が生じる。また、漏出した液体が拡散すると被害が拡大し、復帰作業 にも多くの時間と手間を要することとなり、露光装置の稼働率の低下を招く。
[0005] 本発明はこのような事情に鑑みてなされたものであって、露光装置の稼働率の低下 を防止できる露光装置、あるいは露光不良を防止できる露光装置、及びそれらの露 光装置を用いるデバイス製造方法を提供することを目的とする。
課題を解決するための手段
[0006] 上記の課題を解決するため、本発明は実施の形態に示す図 1一図 12に対応付け した以下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の 例示に過ぎず、各要素を限定するものではない。
本発明の露光装置 (EX)は、液体 (LQ)を介して基板 (P)上に露光光 (EL)を照射 して基板 (P)を露光する露光装置において、第 1ベース部材 (BP1)と、基板 (P)を移 動可能に保持する基板ステージ (PST)と、基板ステージ (PST)を支持する第 2ベー ス部材 (BP2)とを備え、第 2ベース部材 (BP2)上に漏出した液体 (LQ)の第 1ベース 部材 (BP1)への拡散が防止されて 、ることを特徴とする。
[0007] 本発明によれば、基板上やその基板を保持する基板ステージ上から、その基板ス テージを支持する第 2ベース部材上に液体が漏出しても、第 1ベース部材への拡散 が防止されているので、漏出した液体による被害の拡大を防止できる。また、漏出し た液体による被害の拡大が防止されて 、るので、露光装置を構成する複数の機器の うち例えば被害を被った機器のみに対して復帰作業を行えばよい。したがって、露光 装置の復帰作業を円滑に行うことができるとともに復帰までの時間を短くすることがで きる。したがって、露光装置の稼働率の低下を招くことなく露光処理することができる
[0008] 本発明の露光装置 (EX)は、液体 (LQ)を介して基板 (P)上に露光光 (EL)を照射 して基板 (P)を露光する露光装置において、第 1機器(9、 47、 48、 100B、 400、 50 0、 PST、 PSTCなど)を含む第 1電気系(120B)と、第 2機器(6、 7、 82、 100A、 C ONT、 IL、 MST、 PLなど)を含み、第 1電気系(120B)とは独立した第 2電気系(12 OA)とを備え、第 1電気系(120B)が液体 (LQ)の漏出に起因して停止した場合でも 、第 2電気系(120A)は動作可能であることを特徴とする。
[0009] 本発明によれば、第 1電気系が液体の漏出に起因して停止した場合でも、第 2電気 系は動作可能であるので、第 2機器の駆動を継続することができる。また、復帰作業 を行う場合にも第 1機器を含む第 1電気系のみに対して復帰作業を施せばよい。した がって、復帰作業時間や露光装置が復帰するまでの時間を短くすることができ、露光 装置の稼働率の低下を防止することができる。
[0010] 本発明の露光装置 (EX)は、投影光学系 (PL)と液体 (LQ)とを介して基板 (P)上 に露光光 (EL)を照射して基板 (P)を露光する露光装置にお!、て、第 1の方向(X)に 移動する基板 (P)上に液体 (LQ)を供給する供給口(12)を備え、供給口(12)は、 第 1の方向 (X)に関して投影光学系 (PL)の投影領域 (AR1)の両側にそれぞれ設 けられ、基板 (P)の第 1の方向 (X)への移動距離を Ll、供給口(12)どうしの間の距 離を L2としたとき、
LI≥L2の条件を満足することを特徴とする。
[0011] 本発明によれば、上記条件を満足するように液体供給口を設けたり、あるいは基板 の移動距離を設定することで、露光光の光路上に、液体供給口より供給されたフレツ シュな液体で液浸領域を良好に形成して露光処理することができる。
[0012] 本発明の露光装置 (EX)は、投影光学系 (PL)と液体 (LQ)とを介して基板 (P)上 に露光光 (EL)を照射して基板 (P)を露光する露光装置において、供給管(13)に接 続し、第 1の方向 (X)に移動する基板 (P)上に液体 (LQ)を供給する供給口(12)を 備え、供給管(13)より供給口(12)に供給される単位時間あたりの液体供給量を Q、 供給口(12)の面積を S、第 1の方向(X)における供給口(12)の幅を H、供給口(12 )より基板 (P)上に供給される液体 (LQ)の流速を U、基板 (P)の移動速度を V、投影 光学系(PL)と基板 (P)との間の距離を WDとしたとき、
H X U≥WD XV (但し U = QZS)の条件を満足することを特徴とする。
[0013] 本発明によれば、上記条件を満足するように液浸露光条件を設定することで、露光 光の光路上に、液体供給口より供給された液体で液浸領域を良好に形成して露光 処理することができる。
[0014] 本発明の露光装置 (EX)は、液体 (LQ)を介して基板 (P)上に露光光 (EL)を照射 して基板 (P)を露光する露光装置にお!ヽて、基板 (P)を保持して移動可能な基板ス テージ (PST)と、液体 (LQ)を供給する液体供給機構 (10)とを備え、液体供給機構 (10)は、基板ステージ (PST)と対向するように配置され、複数の液体供給孔(71)を 形成された板状部材 (72)を有することを特徴とする。
[0015] 本発明によれば、複数の液体供給孔を介して基板ステージ上に液体を均一に供給 することができる。したがって、液浸領域を良好に形成して露光処理することができる
[0016] 本発明のデバイス製造方法は、上記記載の露光装置を用いることを特徴とする。本 発明によれば、液体の漏出や漏出した液体の拡散を防止することができるので、漏 出した液体による不都合の発生を防止しつつ、露光処理することができる。また本発 明によれば、液浸領域を良好に形成して、露光精度を低下させることなく露光処理す ることができる。したがって、所望の性能を有するデバイスを製造することができる。 発明の効果
[0017] 本発明によれば、露光装置の稼働率の低下を防止することができ、この装置を用い ることで、製造コストを抑えたデバイス製造を行うことができる。また本発明によれば、 良好に液浸領域を形成して基板の露光処理を行うことができ、この装置を用いること によって、高い歩留まりを維持しつつデバイス製造を行うことができる。
図面の簡単な説明
[0018] [図 1]本発明の露光装置の一実施形態を示す概略構成図である。
[図 2]基板ステージを上方力も見た平面図である。
[図 3]液体供給機構及び液体回収機構を示す図である。
[図 4]第 1ベース部材及び第 2ベース部材の位置関係を示す平面図である。
[図 5]第 1ベース部材と第 2ベース部材との相対位置を計測する計測装置を示す斜視 図である。
[図 6]漏出した液体が流れる様子を説明するための模式図である。
[図 7]第 1ベース部材と第 2ベース部材との間に流れた液体を回収する液体回収機構 の一実施形態を示す模式図である。
[図 8]液体供給口及び液体回収口の位置関係を示す図である。
[図 9]液体供給機構の条件を説明するための模式図である。
[図 10]液体供給機構及び液体回収機構の別の実施形態を示す断面図である。
[図 11]液体供給機構及び液体回収機構の別の実施形態を示す平面図である。
[図 12]半導体デバイスの製造工程の一例を示すフローチャート図である。
符号の説明
[0019] 3…メインコラム (本体フレーム)、 4…ギャップ、 7…防振ユニット(防振系)、 8…鏡筒 定盤 (本体フレーム)、 9· ··防振ユニット (防振系)、 10· ··液体供給機構、 12· ··液体供 給口、 20· · ·液体回収機構、 22· · ·液体回収口、 47、 48…リニアモータ(駆動系)、 60 …液体受け部材 (液体回収機構)、 71· ··液体供給孔、 72· ··供給用板状部材、 73— 液体回収孔、 74· ··回収用板状部材、 82· ··レーザ干渉計 (第 2計測装置)、 90…計 測装置 (第 1計測装置)、 100Α· ··主電源 (第 1電源)、 100Β· ··ステージ用電源 (第 2 電源)、 120A…メイン電気系(第 2電気系)、 120Β· ··ステージ電気系(第 1電気系)、 130…無線装置、 400…照度ムラセンサ(センサ系)、 500…空間像計測センサ(セ ンサ系)、 AR1…投影領域、 AR2"'液浸領域、 BP1…第 1ベース部材、 ΒΡ2· ··第 2 ベース部材、 CONT…主制御装置、 EL…露光光、 EX…露光装置、 LQ…液体、 M …マスク、 MST…マスクステージ (マスク保持部材)、 P…基板、 PL…投影光学系、 P ST…基板ステージ、 PSTC…ステージ制御装置、 S1— S24"'ショット領域 発明を実施するための最良の形態
[0020] 以下、本発明の露光装置について図面を参照しながら説明する。図 1は本発明の 露光装置の一実施形態を示す概略構成図である。
図 1において、露光装置 EXは、マスク Mを支持するマスクステージ MSTと、基板 P を支持する基板ステージ PSTと、マスクステージ MSTに支持されて!、るマスク Mを露 光光 ELで照明する照明光学系 ILと、露光光 ELで照明されたマスク Mのパターンの 像を基板ステージ PSTに支持されて ヽる基板 P上に投影する投影光学系 PLと、露 光装置 EX全体の動作を統括制御する主制御装置 CONTとを備えている。更に、露 光装置 EXは、マスクステージ MST及び投影光学系 PLを支持するメインコラム 3を備 えている。
メインコラム 3は、床面 FDに水平に載置された第 1ベース部材 BP1上に設けられて いる。メインコラム 3には、内側に向けて突出する上側段部 3A及び下側段部 3Bが形 成されている。
[0021] 本実施形態の露光装置 EXは、露光波長を実質的に短くして解像度を向上するとと もに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、 基板 P上に液体 LQを供給する液体供給機構 10と、基板 P上の液体 LQを回収する 液体回収機構 20とを備えている。本実施形態において、液体 LQには純水が用いら れる。露光装置 EXは、少なくともマスク Mのパターン像を基板 P上に転写している間 、液体供給機構 10から供給した液体 LQにより投影光学系 PLの投影領域 AR1を含 む基板 P上の少なくとも一部に、投影領域 AR1よりも大きく且つ基板 Pよりも小さい液 浸領域 AR2を局所的に形成する。具体的には、露光装置 EXは、投影光学系 PLの 像面側先端部の光学素子 2と基板 Pの表面 (露光面)との間に液体 LQを満たし、この 投影光学系 PLと基板 Pとの間の液体 LQ及び投影光学系 PLを介してマスク Mのパタ 一ン像を基板 P上に投影することによって、基板 Pを露光する。
[0022] ここで、本実施形態では、露光装置 EXとしてマスク Mと基板 Pとを走査方向(所定 方向)における互いに異なる向き(逆方向)に同期移動しつつマスク Mに形成された パターンを基板 Pに露光する走査型露光装置 (所謂スキャニングステツパ)を使用す る場合を例にして説明する。以下の説明において、水平面内においてマスク Mと基 板 Pとの同期移動方向(走査方向、所定方向)を X軸方向、水平面内において X軸方 向と直交する方向を Y軸方向(非走査方向)、 X軸及び Y軸方向に垂直で投影光学 系 PLの光軸 AXと一致する方向を Z軸方向とする。また、 X軸、 Y軸、及び Z軸まわり の回転 (傾斜)方向をそれぞれ、 0 X、 0 Y、及び 0 Z方向とする。なお、ここでいう「 基板」は半導体ウェハ上にレジストを塗布したものを含み、「マスク」は基板上に縮小 投影されるデバイスパターンを形成されたレチクルを含む。
[0023] 照明光学系(照明系) ILは、メインコラム 3の上部に固定された支持コラム 5により支 持されている。したがって、照明光学系 ILは、メインコラム 3及び支持コラム 5を介して 第 1ベース部材 BP 1上に支持された構成となつて 、る。
[0024] 照明光学系 ILは、マスクステージ MSTに支持されているマスク Mを露光光 ELで照 明するものであり、露光用光源、露光用光源から射出された光束の照度を均一化す るオプティカルインテグレータ、オプティカルインテグレータからの露光光 ELを集光 するコンデンサレンズ、リレーレンズ系、露光光 ELによるマスク M上の照明領域をスリ ット状に設定する可変視野絞り等を有している。マスク M上の所定の照明領域は照 明光学系 ILにより均一な照度分布の露光光 ELで照明される。照明光学系 IL力 射 出される露光光 ELとしては、例えば水銀ランプ力も射出される輝線 (g線、 h線、 i線) 及び KrFエキシマレーザ光(波長 248nm)等の遠紫外光(DUV光)や、 ArFエキシ マレーザ光(波長 193nm)及び Fレーザ光(波長 157nm)等の真空紫外光 (VUV
2
光)などが用いられる。本実施形態では、 ArFエキシマレーザ光が用いられる。上述 したように、本実施形態における液体 LQは純水であって、露光光 ELが ArFエキシ マレーザ光であっても透過可能である。また、純水は輝線 (g線、 h線、 i線)及び KrF エキシマレーザ光 (波長 248nm)等の遠紫外光 (DUV光)も透過可能である。
[0025] マスクステージ(マスク保持部材) MSTは、マスク Mを移動可能に保持するものであ つて、その中央部にマスク Mのパターン像を通過させる開口部 34Aを備えている。メ インコラム 3の上側段部 3Aには、防振ユニット 6を介してマスク定盤 31が支持されて いる。防振ユニット 6は、エアダンバなどの受動的除振機構と電力によって駆動する ァクチユエータ (電磁式ァクチユエータなど)とを有しており、マスク定盤 31とメインコラ ム 3との間の振動の伝達を能動的に抑制している。また、防振ユニット 6は少なくとも 3 箇所に設けられており、主制御装置 CONTの指令に基づいてそれぞれが駆動する ことにより、マスク定盤 31の位置(姿勢)を調整可能である。マスク定盤 31の中央部に も、マスク Mのパターン像を通過させる開口部 34Bが形成されている。マスクステー ジ MSTの下面には非接触軸受である気体軸受(エアベアリング) 32が複数設けられ ている。マスクステージ MSTはエアベアリング 32によりマスク定盤 31の上面(ガイド 面) 31 Aに対して非接触支持されており、リニアモータ等のマスクステージ駆動系に より、投影光学系 PLの光軸 AXに垂直な平面内、すなわち XY平面内で 2次元移動 可能及び Θ Z方向に微小回転可能である。
[0026] ここで上述したように、マスクステージ MSTはメインコラム 3の上側段部 3Aに支持さ れたマスク定盤 31上に支持されているため、メインコラム 3及びマスク定盤 31を介し て第 1ベース部材 BP 1上に支持された構成となつている。
[0027] マスクステージ MST上の +X側の所定位置には移動鏡 35が設けられている。また 、移動鏡 35に対向する位置にはレーザ干渉計 36が設けられている。同様に、不図 示ではあるが、マスクステージ MST上の +Y側にも移動鏡が設けられ、これに対向 する位置にはレーザ干渉計が設けられて 、る。マスクステージ MST上のマスク Mの 2次元方向の位置、及び θ Z方向の回転角(場合によっては Θ X、 θ Y方向の回転角 も含む)はレーザ干渉計 36によりリアルタイムで計測され、計測結果は主制御装置 C ONTに出力される。
主制御装置 CONTは、レーザ干渉計 36の計測結果に基づ 、てマスクステージ駆 動系を駆動することでマスクステージ MSTに支持されているマスク Mの位置決めを 行う。
[0028] 投影光学系 PLは、マスク Mのパターンを所定の投影倍率 13で基板 Pに投影露光 するものであって、基板 P側の先端部に設けられた光学素子 (レンズ) 2を含む複数の 光学素子で構成されており、これら光学素子は鏡筒 PKで支持されている。本実施形 態において、投影光学系 PLは、投影倍率 j8が例えば 1Z4あるいは 1Z5の縮小系 である。なお、投影光学系 PLは等倍系及び拡大系のいずれでもよい。また、本実施 形態の投影光学系 PLの先端部の光学素子 2は鏡筒 PKに対して着脱 (交換)可能に 設けられている。また、先端部の光学素子 2は鏡筒 PKより露出しており、液浸領域 A R2の液体 LQは光学素子 2に接触する。これにより、金属からなる鏡筒 PKの腐蝕等 が防止されている。
[0029] 光学素子 2は蛍石で形成されて 、る。蛍石は純水との親和性が高!、ので、光学素 子 2の液体接触面 2Aのほぼ全面に液体 LQを密着させることができる。すなわち、本 実施形態にぉ 、ては光学素子 2の液体接触面 2Aとの親和性が高 、液体 (水) LQを 供給するようにして ヽるので、光学素子 2の液体接触面 2Aと液体 LQとの密着性が高 ぐ光学素子 2は水との親和性が高い石英であってもよい。また光学素子 2の液体接 触面 2Aに親水化 (親液化)処理を施して、液体 LQとの親和性をより高めるようにして ちょい。
[0030] 鏡筒 PKの外周部にはフランジ部 FLGが設けられている。また、メインコラム 3の下 側段部 3Bには、防振ユニット 7を介して鏡筒定盤 8が支持されている。防振ユニット 7 は、エアダンバなどの受動的除振機構と電力によって駆動するァクチユエータ (電磁 式ァクチユエータなど)とを有しており、鏡筒定盤 8とメインコラム 3との間の振動の伝 達を能動的に抑制している。また、防振ユニット 7は少なくとも 3箇所に設けられており 、主制御装置 CONTの指令に基づいてそれぞれが駆動することにより、鏡筒定盤 8 の位置 (姿勢)を調整可能である。そして、フランジ部 FLGが鏡筒定盤 8に係合するこ とによって、鏡筒 PKが鏡筒定盤 8に支持される。
[0031] ここで上述したように、投影光学系 PLの鏡筒 PKはメインコラム 3の下側段部 3Bに 支持された鏡筒定盤 8上に支持されている。したがって、投影光学系 PLは、メインコ ラム 3及び鏡筒定盤 8を介して第 1ベース部材 BP1上に支持された構成となっている
[0032] 基板ステージ PSTは、基板ホルダ PHを介して基板 Pを移動可能に保持するもので あり、その下面には複数の非接触軸受である気体軸受(エアベアリング) 42が設けら れて 、る。基板ステージ PSTはエアべァリング 42により基板定盤 41の上面 (ガイド面 ) 41 Aに対して非接触支持されて 、る。ガイド面 41Aに対して非接触支持されて 、る 基板ステージ PSTは、ガイド面 41Aに沿って移動可能である。基板ステージ PSTは 、リニアモータ等の基板ステージ駆動系により、投影光学系 PLの光軸 AXに垂直な 平面内、すなわち XY平面内で 2次元移動可能及び θ Z方向に微小回転可能である 。更に、基板ステージ PSTは、 Z軸方向、 Θ X方向、及び Θ Y方向にも移動可能に設 けられている。
[0033] そして、基板定盤 41は、防振ユニット 9を介して、第 1ベース部材 BP1とは別の第 2 ベース部材 BP2上に支持されている。防振ユニット 9は、エアダンバなどの受動的除 振機構と電力によって駆動するァクチユエータ (電磁式ァクチユエータなど)とを有し ており、基板定盤 41と第 2ベース部材 BP2 (床面 FD)との間の振動の伝達を能動的 に抑制している。また、防振ユニット 9は少なくとも 3箇所に設けられており、主制御装 置 CONT (又は後述するステージ制御装置 PSTC)の指令に基づいてそれぞれが駆 動することにより、基板定盤 41の位置 (姿勢)を調整可能である。基板ステージ PST は、基板定盤 41を介して第 2ベース部材 BP2上に支持された構成となっている。
[0034] メインコラム 3を介して照明光学系 IL、マスクステージ MST、及び投影光学系 PLを 支持する第 1ベース部材 BP1と、基板定盤 41を介して基板ステージ PSTを支持する 第 2ベース部材 BP2とは分離しており、互いに独立した部材である。第 1ベース部材 BP1と第 2ベース部材 BP2との間には隙間(ギャップ) 4が形成されている。
[0035] 第 2ベース部材 BP2は液体受け部材 60上に載置されており、液体受け部材 60は 床面 FD上に設けられている。すなわち、第 2ベース部材 BP2は液体受け部材 60を 介して床面 FD上に設けられている。液体受け部材 60は、第 1ベース部材 BP1と第 2 ベース部材 BP2との間のギャップ 4に流れた液体 LQを回収するものであって、第 2 ベース部材 BP2よりも大きい底板 60Aと、その底板 60Aの周りを囲む周壁 60Bとを 備えている。
[0036] なお、液体受け部材 60は、予想される漏出液体の最大量よりも 10— 20%程度多 い量の液体を保持できるようにしておくとよい。また、第 2ベース部材 BP2上に液体受 け部材を配置するとともに、さらにその上に防振ユニット 9を介して基板定盤 41を配 置するようにしてもよい。この場合、第 2ベース部材 BPの下の液体受け部材 60は省 略しても良いし、併用してもよい。 [0037] また、ギャップ 4の上方には、ギャップ 4に向けて気体を流す気体供給系 150が設け られている。気体供給系 150は、少なくとも基板ステージ PSTよりも上方、更には液 体供給口 12よりも上方に設けられている。
[0038] 基板ステージ駆動系は、基板ステージ PSTを X軸方向に移動自在に支持する Xガ イドステージ 44を備えている。基板ステージ PSTは、 Xガイドステージ 44に案内され つつ Xリニアモータ 47により X軸方向に所定ストロークで移動可能である。 Xリニアモ ータ 47は、 Xガイドステージ 44に X軸方向に延びるように設けられた固定子 47Aと、 この固定子 47Aに対応して設けられ基板ステージ PSTに固定された可動子 47Bとを 備えている。そして、可動子 47Bが固定子 47Aに対して駆動することで基板ステージ PSTが X軸方向に移動する。ここで、基板ステージ PSTは、 Xガイドステージ 44に対 して Z軸方向に所定量のギャップを維持する磁石及びァクチユエ一タカ なる磁気ガ イドにより非接触で支持されて 、る。基板ステージ PSTは Xガイドステージ 44に非接 触支持された状態で Xリニアモータ 47により X軸方向に移動する。
[0039] Xガイドステージ 44の長手方向両端には、この Xガイドステージ 44を基板ステージ PSTとともに Y軸方向に移動可能な一対の Yリニアモータ 48、 48が設けられている。 γリニアモータ 48のそれぞれは、 Xガイドステージ 44の長手方向両端に設けられた 可動子 48Bと、この可動子 48Bに対応して設けられた固定子 48Aとを備えて 、る。 そして、可動子 48Bが固定子 48Aに対して駆動することで Xガイドステージ 44が基 板ステージ PSTとともに Y軸方向に移動する。また、 Yリニアモータ 48、 48のそれぞ れの駆動を調整することで Xガイドステージ 44は θ Z方向にも回転移動可能となって いる。したがって、この Yリニアモータ 48、 48により基板ステージ PSTが Xガイドステ ージ 44とほぼ一体的に Y軸方向及び θ Z方向に移動可能となっている。
[0040] 基板定盤 41の X軸方向両側のそれぞれには、 Xガイドステージ 44の Y軸方向への 移動を案内するガイド部 49が設けられている。ガイド部 49はベースプレート 4上に支 持されている。一方、 Xガイドステージ 44の下面の長手方向両端部のそれぞれには 凹形状の被ガイド部材 45が設けられて 、る。ガイド部 49は被ガイド部材 45と係合し、 ガイド部 49の上面 (ガイド面)と被ガイド部材 45の内面とが対向するように設けられて V、る。ガイド部 49のガイド面には非接触軸受である気体軸受(エアベアリング) 46が 設けられており、 Xガイドステージ 44はガイド部 49のガイド面に対して非接触支持さ れている。
[0041] 基板ステージ PST (基板ホルダ PH)上の +X側の所定位置には移動鏡 80が設け られ、鏡筒 PKの +X側の所定位置には参照鏡(固定鏡) 81が設けられている。また 、移動鏡 80に対向する位置にはレーザ干渉計 82が設けられている。レーザ干渉計 8 2は、移動鏡 80に測長ビーム (測定光)を照射するとともに、参照鏡 81に参照ビーム (参照光)をミラー 83A、 83Bを介して照射する。照射した測長ビーム及び参照ビー ムに基づく移動鏡 80及び参照鏡 81それぞれからの反射光はレーザ干渉計 82の受 光部で受光され、レーザ干渉計 82はこれら光を干渉し、参照ビームの光路長を基準 とした測長ビームの光路長の変化量、ひいては、参照鏡 81を基準とした移動鏡 80の 位置 (座標)や変位を計測する。参照鏡 81は投影光学系 PLの鏡筒 PKに支持され、 移動鏡 80は基板ステージ PSTに支持されているため、レーザ干渉計 82は、鏡筒 PK を基準とした基板ステージ PSTの位置を計測する。そして、投影光学系 PLの鏡筒 P Kは鏡筒定盤 8に支持されているため、レーザ干渉計 82は、投影光学系 PLを支持 する鏡筒定盤 8 (ひ ヽてはメインコラム 3)と基板ステージ PSTとの位置関係を計測す る。なお、参照鏡 81を鏡筒 PKに設ける代わりに、鏡筒定盤 8に設けてもよい。
同様に、不図示ではあるが、基板ステージ PST上及び鏡筒 PKの +Y側にも移動 鏡及び参照鏡が設けられ、これらに対向する位置にはレーザ干渉計が設けられてい る。
[0042] 基板ステージ PST上の基板 Pの 2次元方向(XY方向)の位置、及び回転角はレー ザ干渉計 82によりリアルタイムで計測される。基板ステージ駆動系は、レーザ干渉計 82の計測結果に基づ 、て、レーザ干渉計 82で規定される 2次元座標系内で基板ス テージ PSTを移動することで、基板ステージ PSTに支持されて ヽる基板 Pの X軸方 向及び Y軸方向における位置決めを行う。
[0043] また、露光装置 EXは、基板 P表面の面位置情報を検出するフォーカス検出系(不 図示)を有している。フォーカス検出系は、液体 LQを介して基板 P表面 (露光面)に 斜め方向から検出光を投射するとともに、その基板 Pからの反射光を液体 LQを介し て受光することによって、基板 P表面の面位置情報を検出する。そして、フォーカス検 出系は、所定基準面 (例えば像面)に対する基板 P表面の z軸方向における位置 (フ オーカス位置)を検出する。また、基板 P表面における複数の各点での各フォーカス 位置を求めることにより、フォーカス検出系は基板 Pの傾斜方向の姿勢を求めることも できる。なお、フォーカス検出系の構成としては、例えば特開平 8— 37149号公報に 開示されているものを用いることができる。また、フォーカス検出系は液体 LQを介さ ずに検出光を基板 P表面に投射し、その反射光を受光するものであってもよ 、。
[0044] 基板ステージ駆動系は、基板ステージ PSTに保持されて ヽる基板 Pの Z軸方向に おける位置(フォーカス位置)、及び Θ X、 Θ Y方向における位置を制御する。すなわ ち、基板ステージ駆動系は、フォーカス検出系の検出結果に基づいて基板ステージ PSTを駆動し、基板 Pのフォーカス位置 (Z位置)及び傾斜角を制御して基板 Pの表 面 (露光面)を投影光学系 PL及び液体 LQを介して形成される像面に合わせ込む。
[0045] 基板ステージ PST上には凹部 55が設けられており、基板ホルダ PHは凹部 55に配 置されている。そして、基板ステージ PSTのうち凹部 55以外の上面 51は、基板ホル ダ PHに保持された基板 Pの表面とほぼ同じ高さ(面一)になるような平坦面 (平坦部) となって!/、る。基板ステージ PSTの上面 51は撥液ィ匕処理されて撥液性を有して!/、る 撥液化処理としては、例えばフッ素系榭脂材料あるいはアクリル系榭脂材料等の撥 液性材料を塗布、あるいは前記撥液性材料カゝらなる薄膜を貼付する。撥液性にする ための撥液性材料としては液体 LQに対して非溶解性の材料が用いられる。基板 P の周囲に基板 P表面とほぼ面一の上面 51を設けたので、基板 P表面のエッジ領域を 液浸露光するときにお 、ても、投影光学系 PLの像面側に液体 LQを保持して液浸領 域 AR2を良好に形成することができる。ただし、液浸領域 AR2が良好に保持できる ならば、基板 Pの表面と上面 51とに段差があっても力まわない。また、基板 Pのエッジ 部とその基板 Pの周囲に設けられた平坦面 51との間には 0. 1— 2mm程度の隙間が ある力 液体 LQの表面張力によりその隙間に液体 LQが流れ込むことはほとんどなく 、基板 Pのエッジ領域を露光する場合にも、投影光学系 PLの下に液体 LQを保持す ることがでさる。
[0046] 図 2は基板 Pを保持して移動可能な移動体である基板ステージ PSTを上方から見 た平面図である。図 2において、平面視矩形状の基板ステージ PSTの互いに垂直な 2つの縁部に移動鏡 80が配置されている。
[0047] また、基板ステージ PST上にぉ 、て、基板 Pの外側の所定位置には、基準部材 30 0が配置されている。基準部材 300には、例えば特開平 4 65603号公報に開示さ れているような基板ァライメント系(不図示)により液体を介さずに非液浸状態で検出 される基準マーク PFMと、例えば特開平 7— 176468号公報に開示されているような マスクァライメント系(不図示)により液体を介して液浸状態で検出される基準マーク MFMとが所定の位置関係で設けられている。基準部材 300の上面 301 Aはほぼ平 坦面となっており、基板ステージ PSTに保持された基板 P表面、及び基板ステージ P STの上面 51とほぼ同じ高さ(面一)に設けられている。
[0048] また、前記基板ァライメント系は、基板 P上に形成されたァライメントマーク 1も検出 する。図 2に示すように、基板 P上にはマトリクス状に配置された複数のショット領域 S 1一 S24が設けられており、ァライメントマーク 1は複数のショット領域 S1— S24に対 応して基板 P上に複数設けられている。
[0049] また、基板ステージ PST上のうち、基板 Pの外側の所定位置には、計測用センサと して例えば特開昭 57-117238号公報に開示されているような照度ムラセンサ 400 が配置されて 、る。照度ムラセンサ 400は平面視矩形状の上板 401を備えて 、る。 上板 401の上面 401Aはほぼ平坦面となっており、基板ステージ PSTに保持された 基板 P表面、及び基板ステージ PSTの上面 51とほぼ同じ高さ(面一)に設けられてい る。上板 401の上面 401Aには、光を通過可能なピンホール部 470が設けられてい る。上面 401 Aのうち、ピンホール部 470以外はクロムなどの遮光性材料で覆われて おり、投影光学系 PLと液体 LQとを介して、露光光 ELの照度分布を計測する。
[0050] また、基板ステージ PST上のうち、基板 Pの外側の所定位置には、計測用センサと して例えば特開 2002— 14005号公報に開示されているような空間像計測センサ 50 0が設けられている。空間像計測センサ 500は平面視矩形状の上板 501を備えてい る。上板 501の上面 501Aはほぼ平坦面となっており、基板ステージ PSTに保持され た基板 P表面、及び基板ステージ PSTの上面 51とほぼ同じ高さ(面一)に設けられて いる。上板 501の上面 501Aには、光を通過可能なスリット部 570が設けられている。 上面 501Aのうち、スリット部 570以外はクロムなどの遮光性材料で覆われており、投 影光学系 PLと液体 LQとスリット部 570とを介して露光光 ELを受光し、その受光結果 に基づ!/、て各種の結像特性を計測する。
[0051] また、不図示ではあるが、基板ステージ PST上には、例えば特開平 11— 16816号 公報に開示されているような照射量センサ (照度センサ)も設けられており、その照射 量センサの上板の上面は基板ステージ PSTに保持された基板 P表面や基板ステー ジ PSTの上面 51とほぼ同じ高さ(面一)に設けられている。
[0052] そして、基準部材 300、及び上板 401、 501などは基板ステージ PSTに対して脱着 可能(交換可能)となっている。なお、移動鏡 80の上面も、基板ステージ PSTの上面 51とほぼ同じ高さ(面一)となるように配置されて 、る。
[0053] 図 1に戻って、基板ステージ PSTを移動するための基板ステージ駆動系は、主制 御装置 CONTとは別に設けられたステージ制御装置 PSTCによって制御される。ス テージ制御装置 PSTCは、基板ステージ駆動系を介して基板ステージ PSTの移動を 制御する。ステージ制御装置 PSTCは、主制御装置 CONTの指令のもとで基板ステ ージ PSTの移動を制御することもできるし、主制御装置 CONTの指令によらずに単 独で基板ステージ PSTの移動を制御することもできる。
[0054] また、露光装置 EXは、主制御装置 CONTとステージ制御装置 PSTCとを無線で通 信するための無線装置 130を備えている。無線装置 130によって、主制御装置 CO NTとステージ制御装置 PSTCとは無線で通信可能となっている。
[0055] 第 1ベース部材 BP1上に支持された電気機器は、主電源 100Aから供給される電 力によって駆動される。一方、第 2ベース部材 BP2上に支持された電気機器は、主 電源 100Aとは独立して、ステージ用電源 100B力も供給される電力によって駆動さ れる。
そして、第 1ベース部材 BP1上の電気機器と、第 2ベース部材 BP2上の電気機器と は電気的に独立している。
[0056] ここで、第 1ベース部材 BP1上の電気機器 (第 2機器)としては、メインコラム 3を介し て支持された、マスクステージ MSTやこのマスクステージ MSTを移動するためのマ スクステージ駆動系、照明光学系 ILを構成する光学部材を駆動する駆動系、投影光 学系 PLを支持する鏡筒定盤 8を支持する防振ユニット (防振系) 7、及び投影光学系 PLを構成する光学部材を駆動する駆動系などが挙げられる。更に、第 1ベース部材 BP1上の電気機器としては、主電源 100A及び主制御装置 CONTも含まれる。また 、電気機器としては、上記駆動系を構成するリニアモータ、各種ケーブル類、及び制 御基板等も含まれる。そして、これら第 1ベース部材 BP1上に支持され、主電源 100 Aから供給される電力によって駆動する電気機器によってメイン電気系 120Aが構成 されている。なお、主電源 100Aから電力が供給される電気機器は、上述したものに 限られず、上述したものをすベて含む必要もない。
[0057] 一方、第 2ベース部材 BP2上の電気機器 (第 1機器)としては、基板ステージ PST やこの基板ステージ PSTを、 X、 Υ、 Ζ、 Θ Χ, 0 Υ、 0 Ζ方向に移動するためのリニア モータ 47、 48などを含む基板ステージ駆動系、基板ステージ PSTを基板定盤 41を 介して支持する防振ユニット(防振系) 9、及び基板ステージ PST上に配置された照 度ムラセンサ 400や空間像計測センサ 500などを含むセンサ系などが挙げられる。 更に、第 2ベース部材 ΒΡ2上の電気機器としては、ステージ用電源 100B及びステー ジ制御装置 PSTCも含まれる。また、電気機器としては、上記駆動系を構成するリニ ァモータ、上記センサ系を構成する受光素子、各種ケーブル類、及び制御基板等も 含まれる。
そして、これら第 2ベース部材 ΒΡ2上に支持され、ステージ用電源 100B力も供給さ れる電力によって駆動する電気機器によってステージ電気系 120Bが構成されて ヽ る。なお、ステージ用電源 100B力も電力が供給される電気機器は、上述したものに 限られず、上述したものをすベて含む必要もない。
[0058] また、主制御装置 CONTは、主に第 1ベース部材 BP1上の電気機器を含むメイン 電気系 120Aを制御するものであり、ステージ制御装置 PSTCは、主に第 2ベース部 材 ΒΡ2上の電気機器を含むステージ電気系 120Βを制御する。
[0059] 本実施形態において、ステージ電気系 120Bを構成する電気機器のうち、ステージ 駆動系を構成するリニアモータ、ステージ用電源 100Β、ステージ制御装置 PSTCを 構成する制御基板、及びこれらを接続するケーブル類 (不図示)などは、基板ステー ジ PSTよりも下方に配置されている。また、上述したように、センサ系などは基板ステ ージ PST上に配置されている。一方、メイン電気系 120Aを構成する例えば主制御 装置 CONTや主電源 100Aは、基板ステージ PSTよりも上方、更に具体的には後述 する液体供給口 12よりも上方に設けられている。
[0060] 図 3は、液体供給機構 10、液体回収機構 20、及び投影光学系 PL先端部近傍を示 す拡大図である。
液体供給機構 10は、所定の液体 LQを投影光学系 PLの像面側に供給するための ものであって、液体 LQを送出可能な液体供給部 11と、液体供給部 11にその一端部 を接続する供給管 13とを備えている。液体供給部 11は、液体 LQを収容するタンク、 加圧ポンプ、及び供給する液体 LQの温度を調整する液体温調装置等を備えて ヽる 。液体供給部 11の液体供給動作は主制御装置 CONTにより制御される。基板 P上 に液浸領域 AR2を形成する際、液体供給機構 10は液体 LQを投影光学系 PLと基 板ステージ PST上の基板 Pとの間に供給する。なお、液体を供給するためのタンク、 加圧ポンプ、温調装置などは、その全てを露光装置 EXで備えている必要はなぐ少 なくとも一部を露光装置 EXが設置される工場などの設備で代替することもできる。
[0061] 液体回収機構 20は、投影光学系 PLの像面側の液体 LQを回収するためのもので あって、液体 LQを回収可能な液体回収部 21と、液体回収部 21にその一端部を接 続する回収管 23とを備えている。液体回収部 21は例えば真空ポンプ等の真空系( 吸引装置)、回収された液体 LQと気体とを分離する気液分離器、及び回収した液体 LQを収容するタンク等を備えている。なお真空系として、露光装置 EXに真空ポンプ を設けずに、露光装置 EXが配置される工場の真空系を用いるようにしてもよい。また 、気液分離器や回収タンクも工場などの設備を代用してもよい。液体回収部 21の液 体回収動作は主制御装置 CONTにより制御される。基板 P上に液浸領域 AR2を形 成するために、液体回収機構 20は液体供給機構 10より供給された基板 P上の液体 LQを所定量回収する。
[0062] 投影光学系 PLを構成する複数の光学素子のうち、液体 LQに接する光学素子 2の 近傍には流路形成部材 70が配置されている。流路形成部材 70は、基板 P (基板ステ ージ PST)の上方において、光学素子 2の側面を囲むように設けられた環状部材で ある。流路形成部材 70と光学素子 2との間には隙間が設けられており、流路形成部 材 70は光学素子 2に対して振動的に分離されるように所定の支持機構で支持されて いる。
[0063] 流路形成部材 70は、基板 P (基板ステージ PST)の上方に設けられ、その基板 P表 面に対向するように配置された液体供給口 12を備えている。液体供給口 12は流路 形成部材 70の下面 70Aに設けられている。また、流路形成部材 70は、その内部に 液体供給口 12に対応した供給流路を有して!/ヽる。
[0064] 更に、流路形成部材 70は、基板 P (基板ステージ PST)の上方に設けられ、その基 板 P表面に対向するように配置された液体回収口 22を備えている。液体回収口 22は 流路形成部材 70の下面 70Aに設けられている。また、流路形成部材 70は、その内 部に液体回収口 22に対応した回収流路を有している。
[0065] 本実施形態にぉ ヽて、流路形成部材 70は、液体供給機構 10及び液体回収機構 2 0それぞれの一部を構成している。そして、液体供給機構 10を構成する液体供給口 12は、少なくとも投影光学系 PLの投影領域 AR1を挟んだ X軸方向両側のそれぞれ の位置に設けられている。液体回収機構 20を構成する液体回収口 22は、投影光学 系 PLの投影領域 AR1に対して液体供給機構 10の液体供給口 12の外側に設けら れている。なお、本実施形態における投影光学系 PLの投影領域 AR1は、 Y軸方向 を長手方向とし、 X軸方向を短手方向とした平面視矩形状に設定されている。
[0066] 供給管 13の他端部は、流路形成部材 70の供給流路を介して液体供給口 12に接 続されている。供給管 13は、複数設けられた液体供給口 12のそれぞれに対応して 設けられている。同様に、回収管 23の他端部は、流路形成部材 70の回収流路を介 して液体回収口 22に接続されて 、る。
[0067] 供給管 13の途中には、供給管 13の流路を開閉するバルブ 15が設けられている。
バルブ 15の開閉動作は主制御装置 CONTにより制御されるようになっている。なお 、本実施形態におけるバルブ 15は、例えば停電等により露光装置 EX (主制御装置 CONT)の駆動源 (電源)が停止した場合に供給管 13の流路を機械的に閉塞する 所謂ノーマルクローズ方式となって 、る。
[0068] また、供給管 13の途中には、液体供給部 11から送出され、液体供給口 12に対す る単位時間あたりの液体供給量を制御するマスフローコントローラと呼ばれる流量制 御器 16が設けられている。流量制御器 16による液体供給量の制御は主制御装置 C ONTの指令信号の下で行われる。
[0069] 液体供給部 11及び流量制御器 16の動作は主制御装置 CONTにより制御される。
基板 P上に液体 LQを供給する際、主制御装置 CONTは、液体供給部 11より液体 L Qを送出し、供給管 13、及び流路形成部材 70の供給流路を介して、基板 Pの上方 に設けられている液体供給口 12より基板 P上に液体 LQを供給する。このとき、液体 供給口 12は少なくとも投影光学系 PLの投影領域 AR1を挟んだ両側のそれぞれ〖こ 配置されており、その液体供給口 12を介して、投影領域 AR1の両側から液体 LQを 供給可能である。
また、液体供給口 12から基板 P上に供給される液体 LQの単位時間あたりの量は、 供給管 13に設けられた流量制御器 16により制御可能である。
[0070] 液体回収部 21の液体回収動作は主制御装置 CONTにより制御される。主制御装 置 CONTは液体回収部 21による単位時間あたりの液体回収量を制御可能である。 基板 Pの上方に設けられた液体回収口 22から回収された基板 P上の液体 LQは、流 路形成部材 70の回収流路、及び回収管 23を介して液体回収部 21に回収される。
[0071] 投影光学系 PLの光学素子 2の液体接触面 2A、及び流路形成部材 70の下面 (液 体接触面) 70Aは親液性 (親水性)を有している。本実施形態においては、光学素子 2及び流路形成部材 70の液体接触面に対して親液処理が施されており、その親液 処理によって光学素子 2及び流路形成部材 70の液体接触面が親液性となっている 。換言すれば、基板ステージ PSTに保持された基板 Pの被露光面 (表面)と対向する 部材の表面のうち少なくとも液体接触面は親液性となって!/、る。本実施形態における 液体 LQは極性の大きい水であるため、親液処理 (親水処理)としては、例えばアルコ ールなど極性の大き!/、分子構造の物質で薄膜を形成することで、この光学素子 2や 流路形成部材 70の液体接触面に親水性を付与する。すなわち、液体 LQとして水を 用いる場合には OH基など極性の大き ヽ分子構造を持ったものを前記液体接触面に 設ける処理が望ましい。あるいは、 MgF、 Al O 、 SiOなどの親液性材料を前記液
2 2 3 2
体接触面に設けてもよい。
[0072] 流路形成部材 70の下面 (基板 P側を向く面) 70Aはほぼ平坦面であり、光学素子 2 の下面 (液体接触面) 2Aも平坦面となっており、流路形成部材 70の下面 70Aと光学 素子 2の下面 2Aとはほぼ面一となつている。これにより、広い範囲で液浸領域 AR2 を良好に形成することができる。なお、例えば国際公開第 2004Z053955号パンフ レットに開示されている液浸機構や、欧州特許公開第 1420298号公報に開示され ている液浸機構も本実施形態の露光装置に適用することができる。
[0073] 図 4は、第 1ベース部材 BP1と、基板ステージ PSTを基板定盤 41を介して支持する 第 2ベース部材 BP2との位置関係を示す平面図である。 図 4に示すように、本実施 形態においては、第 2ベース部材 BP2は平面視略矩形状に形成されており、第 1ベ 一ス部材 BP1は第 2ベース部材 BP2を囲む枠状に形成されている。なお第 1ベース 部材 BP1を平面視 U字状に設けるなど、第 1、第 2ベース部材 BP1、 BP2の形状を、 所望の強度を維持できる範囲で任意に設けることができる。
[0074] そして、第 2ベース部材 BP2の所定の位置には、第 1ベース部材 BP1と第 2ベース 部材 BP2との相対位置を計測する計測装置 90が設けられて 、る。本実施形態にお いては、計測装置 90は、第 2ベース部材 BP2上において互いに離れた 2つの位置の それぞれに設けられている。
[0075] 図 5は、計測装置 90の一例を示す斜視図である。計測装置 90は、顕微鏡を有する マーク検出部 91を有しており、マーク検出部 91は支持部 92を介して第 2ベース部材 BP2上に支持されている。一方、第 1ベース部材 BP1上には、位置検出用マーク 93 が設けられている。支持部 92は、マーク検出部 91と位置検出用マーク 93とを対向す るようにマーク検出部 91を支持している。位置検出用マーク 93は、 Y軸方向を長手 方向とし、 X軸方向に複数並んだライン 'アンド'スペースマーク 93Xと、 X軸方向を長 手方向とし、 Y軸方向に複数並んだライン 'アンド'スペースマーク 93Yとを有している 。なお、計測装置 90を第 1ベース部材 BP1上に設け、位置検出用マーク 93を第 2ベ 一ス部材 BP2上に設けてもょ 、。
[0076] 計測装置 90はマーク検出部 91を使って位置検出用マーク 93を検出し、その位置 検出結果に基づいて、第 1ベース部材 BP1と第 2ベース部材 BP2との水平方向(XY 方向)に関する相対位置を求める。具体的には、計測装置 90は、マーク検出部 91で 検出した位置検出用マーク 93の画像情報に基づいて、検出したマーク位置の初期 設定位置に対するずれ量を求め、求めたずれ量に基づいて、第 1ベース部材 BP1と 第 2ベース部材 BP2との XY方向に関する相対位置 (位置ずれ量)を求める。
[0077] なお図 4では、計測装置 90は 2箇所に設けられているが、 1箇所に設けられる構成 であっても、第 1ベース部材 B1と第 2ベース部材 BP2との相対位置を計測することが できる。一方、計測装置 90を 2箇所以上の複数位置にそれぞれ設け、主制御装置 C ONTがこれら複数の計測装置 90の計測結果を演算処理して第 1ベース部材 BP1と 第 2ベース部材 BP2との相対位置情報 (相対的な回転情報を含む)を求めることによ り、前記相対位置情報をより高精度に求めることができる。
[0078] 次に、上述した構成を有する露光装置 EXを用いてマスク Mのパターンの像を基板 Pに露光する方法について説明する。
まず、マスク Mがマスクステージ MSTに搬入(ロード)されるとともに、被露光対象で ある基板 Pが基板ステージ PSTに搬入 (ロード)される。そして、基板 Pを露光する前 に、主制御装置 CONTは、計測装置 90を使って、第 1ベース部材 BP1と第 2ベース 部材 BP2との相対位置情報を求める。主制御装置 CONTは、求めた前記相対位置 情報に基づ 、て、投影光学系 PLを介したマスク Mのパターン像と基板 Pとの位置関 係を調整するための補正量を求める。そして主制御装置 CONTは、求めた補正量に 基づいて、マスクステージ MST、基板ステージ PST、及び防振ユニット 6、 7、 9等を 駆動し、マスクステージ MSTや基板ステージ PST等の露光開始時における初期位 置を調整する。
[0079] 本実施形態においては、メインコラム 3を支持する第 1ベース部材 BP1と基板ステ ージ PSTを支持する第 2ベース部材 BP2とは分離して 、るので、例えば経時的に相 対位置が変動する可能性がある。特に、露光装置 EXの立ち上げ時などにおいては 、第 1ベース部材 BP1と第 2ベース部材 BP2との相対位置関係が所望の相対位置関 係に対して大きくずれている可能性がある。相対位置関係が大きくずれている場合、 例えばメインコラム 3に取り付けられたレーザ干渉計 82の計測可能領域内に基板ス テージ PST上の移動鏡 80が配置されないなどの不都合が生じる。同様に、上述した 基板ァライメント系がメインコラム 3に取り付けられている構成であると、基板ステージ PST上の基準マーク PFMや基板 P上のァライメントマーク 1を基板ァライメント系の検 出領域内に配置できないなどの不都合が生じる。したがって、計測装置 90を使って 第 1ベース部材 BP1と第 2ベース部材 BP2との相対位置関係(ひいてはメインコラム 3 と基板ステージ PSTとの相対位置関係)を大まかに計測し、その計測結果に基づ!ヽ て、例えば基板ステージ PSTの位置を補正することで、上記不都合の発生を防止す ることができる。具体的には、計測装置 90の計測結果に基づいて、主制御装置 CO NT (あるいはステージ制御装置 PSTC)は、レーザ干渉計 82の計測可能領域内に 移動鏡 80を配置するためや基板ァライメント系の検出領域内に基準マークを配置す るために基板ステージ PSTを移動し、基板ステージ PSTの大まかな位置合わせを行
[0080] なおここでは、計測装置 90を使って第 1ベース部材 BP1と第 2ベース部材 BP2との 水平方向 (XY方向)における相対位置を計測し、その計測結果に基づいて、基板ス テージ PSTの XY方向における位置を調整して 、るが、計測装置 90に Z軸方向に関 する相対位置を計測する機能を持たせ、その計測結果に基づいて、基板ステージ P STの Z軸方向における位置を調整するようにしてもょ 、。
[0081] なお、ここでは基板ステージ PST上に配置されて 、るセンサなどを用いた計測やそ の計測結果に基づく装置の較正などはすでに完了しているものとする。また、レーザ 干渉計 82で規定される座標系内におけるベースライン情報 (投影光学系 PLによって 形成されるパターン像の投影位置と基板ァライメント系の検出基準位置との位置関 係)も、基準部材 300を用いてすでに計測されているものとする。
[0082] 次に、基板 Pに対するァライメント計測が行われる。主制御装置 CONTは、基板 P 上の露光対象領域であるショット領域 S1— S24に形成されているァライメントマーク 1 を基板ァライメント系で液体 LQを介さずに(ドライ状態で)検出する。基板ァライメント 系がァライメントマーク 1の検出を行っているときの基板ステージ PSTの位置はレー ザ干渉計 82で計測されており、その計測結果は主制御装置 CONTに出力される。 主制御装置 CONTは、基板ァライメント系の検出基準位置に対するショット領域 S1 一 S24の位置情報(ずれ)を求め、そのときの基板ステージ PSTの位置からショット領 域 S1— S24のァライメント情報 (配列情報)を求める。
[0083] 基板 P上のァライメントマーク 1を基板ァライメント系で検出した後、主制御装置 CO NTは、基板 Pの液浸露光を行うために、液体供給機構 10を駆動して基板 P上に液 体 LQを供給するとともに液体回収機構 20を駆動して基板 P上の液体 LQを所定量 回収する。これにより、投影光学系 PLの先端部の光学素子 2と基板 Pとの間に液体 L Qの液浸領域 AR2が形成される。
[0084] 主制御装置 CONTは、液体供給機構 10による基板 P上に対する液体 LQの供給と 並行して、液体回収機構 20による基板 P上の液体 LQの回収を行いつつ、基板 Pを 支持する基板ステージ PSTを X軸方向(走査方向)に移動しながら、マスク Mのパタ 一ンの像を投影光学系 PLと基板 Pとの間の液体 LQ及び投影光学系 PLを介して基 板 P上に投影露光する。このとき、先に求められたベースライン情報とショット領域 S1 一 S24のァライメント情報とに基づ 、て、マスク Mと基板 Pとの位置合わせが行われる 。また、基板 Pの露光時においても、主制御装置 CONT (又はステージ制御装置 PS TC)は、レーザ干渉計 82の計測結果に基づいて、基板ステージ PSTの移動を制御 する。
[0085] 液浸領域 AR2を形成するために液体供給機構 10の液体供給部 11から供給され た液体 LQは、供給管 13を流通した後、流路形成部材 70内部に形成された供給流 路を介して液体供給口 12より基板 P上に供給される。液体供給口 12から基板 P上に 供給された液体 LQは、投影光学系 PLの先端部 (光学素子 2)の下端面と基板 Pとの 間に濡れ拡がるように供給され、投影領域 AR1を含む基板 P上の一部に、基板 Pより も小さく且つ投影領域 AR1よりも大きい液浸領域 AR2を局所的に形成する。
[0086] 本実施形態における露光装置 EXは、マスク Mと基板 Pとを X軸方向(走査方向)に 移動しながらマスク Mのパターン像を基板 Pに投影露光するものであって、走査露光 時には、液浸領域 AR2の液体 LQ及び投影光学系 PLを介してマスク Mの一部のパ ターン像が投影領域 AR1内に投影され、マスク Mがー X方向(又は +X方向)に速度 Vで移動するのに同期して、基板 Pが投影領域 AR1に対して +X方向(又は X方向 )に速度 β ·ν ( βは投影倍率)で移動する。基板 Ρ上には複数のショット領域 S1— S 24が設定されており、 1つのショット領域への露光終了後に、基板 Ρのステッピング移 動によって次のショット領域が走査開始位置に移動し、以下、ステップ'アンド'スキヤ ン方式で基板 Ρを移動しながら各ショット領域 S1— S24に対する走査露光処理が順 次行われる。
[0087] 基板 Pの液浸露光中や、液体 LQを介した計測処理中、基板ステージ PST上に供 給した液体 LQが基板ステージ PSTの外側に漏出する可能性がある。液体 LQが漏 出すると、基板ステージ PST周辺の金属部品等の部材、制御基板、ケーブル類、電 源等の電気機器に被害がおよび、鲭びゃ漏電あるいは故障などといった不都合が 生じる。特に、基板ステージ PSTに設けられたセンサ系をはじめとする電気機器や、 その基板ステージ PSTの下方に配置された基板ステージ駆動系や防振ユニット等の 電気機器に対する被害が顕著となる。また、漏出した液体 LQが拡散すると、例えば メインコラム 3に支持されている各種電気機器に対しても被害が拡大し、復帰作業に も多くの時間と手間を要することとなり、露光装置 ELの稼働率の低下を招く。
[0088] ところが、本実施形態においては、第 1ベース部材 BP1と、基板ステージ PSTを支 持する第 2ベース部材 BP2とは分離されて 、るので、基板ステージ PST上力 第 2ベ 一ス部材 BP2に液体 LQが漏出しても、図 6の模式図に示すように、第 2ベース部材 BP2上に漏出した液体 LQは、第 1ベース部材 BP1と第 2ベース部材 BP2との間のギ ヤップ 4に流れ、第 1ベース部材 BP 1へは拡散しない。
[0089] このように、基板 P上やその基板 Pを保持する基板ステージ PST上カゝら液体 LQが 第 2ベース部材 BP2上に漏出しても、第 1ベース部材 BP 1への拡散が防止されて ヽ るので、漏出した液体 LQによる第 1ベース部材 BP1に支持された電気機器などへの 被害の拡大を防止できる。また、漏出した液体 LQの拡散を防止して被害の拡大を抑 えることで、復帰作業を円滑に行って復帰までの時間を短くすることができる。したが つて、露光装置 EXの稼働率の低下を招くことなく露光処理することができる。
[0090] 更に、ギャップ 4に液体 LQが流出したとしても、ギャップ 4に流れた液体 LQは、第 2 ベース部材 BP2を載置した液体受け部材 60に回収されるので、液体 LQの拡散を効 果的に防止できる。このように、液体受け部材 60は、照明系などを支持する第 1ベー ス部材 BP1とは分離して配置されているので、液体 LQの漏出の被害の拡大を防止 することができる。
[0091] また、図 6に示すように、気体供給系 150は、基板ステージ PSTから漏出した液体 L Qを第 1ベース部材 BP1と第 2ベース部材 BP2との間のギャップ 4へ導くように気体を 流しているので、漏出した液体 LQの拡散を防止し、漏出した液体 LQを液体受け部 材 LQで円滑に回収することができる。
[0092] また、気体供給系 150から吹き出される気体を、基板ステージ PSTを取り囲むよう に流すことで、しずくなどの飛散を防止することもできる。
[0093] 本実施形態においては、基板 P上に液体 LQを局所的に設けた状態で露光する局 所液浸方式であって、特に基板 P上や基板ステージ PST上から液体 LQが漏出する 可能性が高い。したがって、その基板ステージ PSTを支持する第 2ベース部材 BP2 を、露光装置 EXを構成する複数の機器のうち基板ステージ PST以外の機器を支持 する第 1ベース部材 BP1とは分離して設けることで、第 1ベース部材 BP1への液体 L Qの拡散を防止し、第 1ベース部材 BP1上に支持されている機器への液体 LQの浸 入 (拡散)を防止することができる。
[0094] そして、基板ステージ PSTを含む第 2ベース部材 BP2上に設けられた各種電気機 器に対しては、主電源 100Aとは独立したステージ用電源 100B力も電力を供給する ようにし、第 2ベース部材 BP2上の電気機器と第 1ベース部材 BP1上の電気機器とを 電気的に独立したので、仮に漏出した液体 LQに起因して第 2ベース部材 BP2上の 電気機器やこの電気機器を含むステージ電気系 120Bが漏電や故障などで停止し た場合でも、第 1ベース部材 BP 1上の電気機器を含むメイン電気系 120Aは動作可 能である。したがって、露光装置 EX全体の電気系の故障や停止といった大きな被害 を被ることを防止できる。また、復帰作業を行う場合にも第 2ベース部材 BP2上の電 気機器を含むステージ電気系 120Bのみに対して復帰作業を施せばよい。したがつ て、復帰作業時間を短くすることができ、露光装置 EXの稼働率の低下を防止するこ とがでさる。
[0095] また、ステージ電気系 120Bが液体 LQの漏出に起因して停止した場合でも、メイン 電気系 120Aは動作可能であるので、第 1ベース部材 BP1上の電気機器の駆動を 継続することができ、例えば第 2ベース部材 BP2上の電気機器に対する復帰作業と 並行して、第 1ベース部材 BP 1上の電気機器ゃ部材に対する例えばメンテナス作業 を行うことができ、作業効率を向上することができる。この場合において、主制御装置 CONTはステージ制御装置 PSTCとは電気的に独立して 、るので、ステージ制御装 置 PSTCが故障や停止した場合でも、主制御装置 CONTは動作可能であるため、ス テージ電気系 120Bが停止して 、るときにも、主制御装置 CONTの指令に基づ 、て 、メイン電気系 120Aを駆動することができる。
[0096] また、主制御装置 CONTを含む第 1ベース部材 BP1上の電気機器と、ステージ制 御装置 PSTCを含む第 2ベース部材 BP2上の電気機器とをケーブルなどを介して信 号伝達や電力伝達などの通信を行った場合、その漏出した液体 LQが前記ケーブル にかかり、漏電等の不都合を引き起こす可能性がある。また、例えば第 2ベース部材 BP2上の電気機器が漏出した液体 LQに起因して漏電したとき、そのケーブルを介し て第 1ベース部材 BP1上の電気機器にも電気的な被害を及ぼす可能性がある。とこ ろ力 本実施形態のように、主制御装置 CONTを含む第 1ベース部材 BP1上の電気 機器と、ステージ制御装置 PSTCを含む第 2ベース部材 BP2上の電気機器とを無線 で通信することで、第 1ベース部材 BP1上の機器と第 2ベース部材 BP2上の機器とを 物理的及び電気的に分離することができ、上記不都合の発生を防止することができ る。
[0097] なお、図 1には、第 2ベース部材 BP2上のステージ制御装置 PSTCと第 1ベース部 材 BP 1上の主制御装置 CONTとが無線装置 130によって無線通信可能であるよう に示されて 、るが、ステージ制御装置 PSTCや主制御装置 CONT以外の電気機器 どうしが無線で通信されるようにしてもょ 、。
[0098] また、図 1に示すように、基板ステージ PSTの側面などの所定位置に、基板ステー ジ PST上力も漏出した液体 LQを検出する液体センサ 160を設けておき、液体セン サ 160が予め設定された許容値以上の液体量を検出したとき、液体供給機構 10の バルブ 15が供給管 13の流路を閉じるようにしてもよい。また、液体センサ 160の検出 結果に基づいて、バルブ 15が供給管 13の流路を閉じた後において、液体供給口 1 2とバルブ 15との間の液体流路の容積にほぼ等しい量の液体 LQに基板ステージ P ST上で液浸領域 AR2を形成する液体の量をカ卩えた液体 LQ力 基板ステージ PST 上力 漏出し、液体受け部材 60に流れる可能性がある。したがって、液体受け部材 6 0は、少なくとも予想される漏出液体の最大量を収容可能な程度の大きさを有してい る必要があり、その予想最大量の 110— 120%程度を収容可能な程度であることが 望ましい。
[0099] また、上述した実施形態にお!ヽては、メイン電気系 120Aを構成する例えば主制御 装置 CONTや主電源 100Aは、基板ステージ PSTよりも上方、更に具体的には液体 供給口 12よりも上方に設けられているため、液浸領域 AR2から液体 LQが飛散したり 、基板ステージ PST上力も液体 LQが漏出しても、それら液体 LQが主制御装置 CO NTを構成する例えば制御基板や主電源 100Aにカゝかる不都合が抑制されている。
[0100] なお、上述した実施形態においては、基板定盤 41と鏡筒定盤 8とは互いに異なる ベース部材 BP1、 BP2上にそれぞれ支持されているため、基板定盤 41と鏡筒定盤 8 との相対位置関係を確認するために、例えば国際公開第 00Z14779号パンフレット に開示されて 、るような、第 1ベース部材 BP 1に対する基板定盤 41の位置を計測す る基板定盤位置センサと、第 1ベース部材 BP1に対する鏡筒定盤 8の位置を計測す るコラム位置センサとを設けるようにしてもよい。前記基板定盤位置センサは、少なく とも第 1ベース部材 BP1を基準とする基板定盤 41の X方向、 Y方向、 Z方向、 Θ X、 θ Υ、 θ Ζ方向の位置を計測する。同様に、前記コラム位置センサは、第 1ベース部 材 BP1を基準とする鏡筒定盤 8の X方向、 Υ方向、 Ζ方向、 0 Χ、 0 Υ、 0 Ζ方向の位 置を計測する。したがって、主制御装置 CONTは、基板定盤位置センサの計測結果 に基づいて第 1ベース部材 BP1と基板定盤 41との 6自由度方向の相対位置を求め ることができるとともに、コラム位置センサの計測結果に基づいて第 1ベース部材 BP1 と鏡筒定盤 8との 6自由度方向の相対位置を求めることができる。主制御装置 CONT は、基板定盤位置センサの計測値に基づ 、て基板定盤 41の第 1ベース部材 BP1に 対する 6自由度方向の相対位置を求め、この相対位置の情報を用いて防振ユニット 9を制御することにより、基板定盤 41を第 1ベース部材 BP1を基準として定常的に安 定した位置に維持することができる。また、主制御装置 CONTは、コラム位置センサ の計測値に基づいて鏡筒定盤 8の第 1ベース部材 BP1に対する 6自由度方向の相 対位置を求め、この相対位置の情報を用いて防振ユニット 7を制御することにより、鏡 筒定盤 8を第 1ベース部材 BP1を基準として定常的に安定した位置に維持することも できる。
[0101] なお、上述した実施形態においては、ギャップ 4に流れた液体 LQを回収する液体 回収機構は液体受け部材 60によって構成されているが、図 7に示すように、ギャップ 4の下方に、ギャップ 4の形状及び大きさに応じて設けられた樋部材 61を配置する構 成であってもよい。図 7において、第 1ベース部材 BP1と第 2ベース部材 BP2との間 に流れた液体 LQを回収する液体回収機構 64は、ギャップ 4に対応して配置された 樋部材 61と、真空系(吸引装置) 63と、樋部材 61と真空系 63との間に設けられた気 液分離器 62などを備えている。樋部材 61と気液分離器 62とは流路 62Aを介して接 続され、気液分離器 62と真空系 63とは流路 63Aを介して接続されている。第 2ベー ス部材 BP2上に漏出した液体 LQはギャップ 4に流れる。ギャップ 4に流れた液体 LQ は樋部材 61で回収される。樋部材 61に回収された液体 LQは、真空系 63による吸 引動作によって流路 62Aを介して気液分離器 62に送られる。気液分離器 62は流路 62Aを介して回収された液体成分と気体成分とを分離する。気液分離器 62で分離さ れた気体成分は真空系 63に吸引され、液体成分は排出流路 62Bを介して排出され る。
[0102] 次に、本発明に係る液体供給口 12について図 8を参照しながら説明する。図 8は 流路形成部材 70の下面 70Aを下から見た図である。
図 8において、流路形成部材 70の下面 70Aのうち、 X軸方向(走査方向)に関して 投影光学系 PLの投影領域 AR1の両側には、基板 P上に液体 LQを供給する液体供 給口 12A、 12Bがそれぞれ設けられている。液体供給口 12A、 12Bは、 Y軸方向を 長手方向とするスリット状である。また、流路形成部材 70の下面 70Aのうち、 Y軸方 向(非走査方向)に関して投影光学系 PLの投影領域 AR1の両側には、基板 P上に 液体 LQを供給する液体供給口 12C、 12Dがそれぞれ設けられている。液体供給口 12C、 12Dは、 X軸方向を長手方向とするスリット状である。また、流路形成部材 70 の下面 70Aには、投影光学系 PLの投影領域 AR1、及び液体供給口 12A— 12Dを 囲むように形成された環状の液体回収口 22が設けられて 、る。
[0103] 上述したように、基板 Pの各ショット領域 S1— S24のそれぞれを走査露光するときは 、基板 Pを X軸方向に移動させつつ、液体 LQの供給及び回収を行いながら露光光 E Lを基板 P上に照射する。そして、 1つのショット領域を走査露光するために必要な X 軸方向への移動距離を Ll、液体供給口 12A、 12Bどうしの間の距離を L2としたとき L1≥L2 …ひ)の条件を満足するように設定されている。ここで、 X軸方向(走査 方向)への移動距離 L1とは、走査露光時の基板 P (基板ステージ PST)の等速区間 と加速及び減速区間とを含む距離である。
[0104] また、基板 P上の 1つのショット領域を露光後の、次のショット領域を露光するための Y軸方向へのステップ移動距離を L3、液体供給口 12C、 12Dどうしの間の距離を L4 としたとき、
L3≥L4 · · · (2)の条件を満足するように設定されて!、る。
[0105] 上記(1)式の条件を満足することにより、基板 P上に良好に液浸領域 AR2を形成で きるとともに、液浸領域 AR2の液体 LQに温度分布 (温度むら)が生じる不都合を防 止できる。
[0106] 基板 P上に供給される液体 LQは、液体供給部 11に設けられた温調装置により温 度管理されているものの、基板 P上に供給された後、温度分布を生じる可能性がある 。基板 P上に形成された液浸領域 AR2の液体 LQに温度分布が生じる要因の 1つと して、露光光 ELの照射による発熱が挙げられる。そして、液浸領域 AR2に露光光 E Lが照射されて 、るとき、液浸領域 AR2の液体 LQの移動量が小さ 、と (液体 LQが 滞留していると)、液体 LQは局所的に温度上昇し、温度分布が顕著となる。そこで、 少なくとも露光光 ELの光路上に配置された液体 LQを十分に移動し (入れ替えを行 い)、液体 LQの滞留を抑制することで、温度分布の発生を防止することができる。そ して、上記(1)式の条件を満足することにより、液体 LQの滞留を抑制することができ る。
[0107] 基板 Pを X軸方向に移動しつつ走査露光する場合において、投影領域 AR1とは離 れた液体供給口 12から供給された液体 LQのうち露光光 ELの光路上に配置される 液体 LQとしては、投影光学系 PLと基板 Pとの間を濡れ拡がるようにして露光光 ELの 光路上に配置される第 1の成分と、基板 Pの移動に伴ってその基板 Pに引き寄せられ るようにして露光光 ELの光路上に配置される第 2の成分とが挙げられる。そして、露 光光 ELの光路上における液体 LQの滞留を防止するためには、基板 Pの移動に伴 つて配置される前記第 2の成分の比率を多くすることが有効であると考えられる。例え ば基板を +X方向に移動しつつ走査露光する場合、 X側の液体供給口 12Aから供 給された液体 LQを、基板 Pの移動に伴って +X側に移動し、露光光 ELの光路上に 配置することが有効である。逆に、基板を X方向に移動しつつ走査露光する場合、 +X側の液体供給口 12B力も供給された液体 LQを、基板 Pの移動に伴って X側に 移動し、露光光 ELの光路上に配置することが有効である。上記(1)式の条件を満足 しない場合、上記第 2の成分が減少し、露光光 ELの光路上における液体 LQの移動 量が少なくなるが、上記(1)式の条件を満足することで、液体 LQの滞留を防止し、液 浸領域 AR2に温度分布が生じる不都合を防止できる。
[0108] 同様に、基板 Pのステップ移動方向に関しても、上記(2)式を満足することで、液体 LQの滞留を防止することができる。
[0109] また、液体 LQを滞留させな 、ようにし、常にフレッシュな液体 LQを露光光 ELの光 路上に配置することで、滞留に起因する液浸領域 AR2の液体 LQの清浄度の低下を 防止でき、また外部力も混入した異物を除去することもできる。
[0110] なお、液体供給口 12A— 12Dの形成位置を調整したり、基板 Pの移動距離を調整 することで、上記(1)式、(2)式の条件を達成することができる。
[0111] なお、投影領域 AR1の両側のそれぞれに液体供給口 12A、 12Bを設けた場合、 当然のことながら液体供給口 12A、 12Bどうしの間の距離 L2は投影光学系 PLの先 端部の光学素子 2の直径 (又は X軸方向に関する大きさ) Φよりも大きく設定される。 したがって、
LI≥L2≥ Φ - (3)の条件を満足するように設定される。
[0112] 同様に、投影光学系 PLの先端部の光学素子 2の直径 (又は Y軸方向に関する大き さ)を Φ 'としたとき、
L3≥L4≥ Φ, …(4)の条件を満足するように設定される。
[0113] ところで、液浸領域 AR2を良好に形成するためには、液浸領域 AR2に気体部分が 形成されたり、気体成分 (気泡)が混入することを防止する必要がある。そこで、図 9に 示す模式図にお ヽて、基板 Pを X軸方向に移動しながら液体 LQを供給して液浸領 域 AR2を形成するとき、供給管 13より液体供給口 12に供給される単位時間あたりの 液体供給量を Q、液体供給口 12の面積を S、 X軸方向における液体供給口 12の幅 を H、液体供給口 12より基板 P上に供給される液体 LQの流速を U、基板 Pの移動速 度を V、投影光学系 PLの先端部と基板 Pとの間の距離 (ワーキングディスタンス)を W Dとしたとき、 H X U≥WD XV (但し U = QZS) …(5)の条件を満足すること が好ましい。上記 (5)式の条件を満足することにより、投影光学系 PLと基板 Pとの間 を液体 LQで良好に満たすことができる。
[0114] 次に、本発明に係る液体供給機構及び液体回収機構の一部を構成する流路形成 部材の別の実施形態について説明する。以下の説明において、上述した実施形態 と同一又は同等の構成部分については同一の符号を付し、その説明を簡略もしくは 省略する。図 10は本発明の別の実施形態に係る流路形成部材 70'を示す断面図、 図 11は流路形成部材 70 'を下方から見た図である。
[0115] 図 10及び図 11において、流路形成部材 70'は、基板ステージ PSTと対向するよう に配置され、複数の液体供給孔 71を形成された供給用板状部材 72を備えている。 また、流路形成部材 70'は、基板ステージ PSTと対向するように配置され、複数の液 体回収孔 73を形成された回収用板状部材 74を備えている。
[0116] 供給用板状部材 72は平面視略扇状であって、投影光学系 PLの投影領域 AR1を 囲むように複数 (4つ)設けられて 、る。回収用板状部材 74は供給用板状部材 72の 外側を囲むように複数 (4つ)設けられている。流路形成部材 70'は枠部材 (支持部 材) 75を有しており、板状部材 72、 74は枠部材 75に支持されている。流路形成部材 70'のうち基板ステージ PSTと対向する下面 70Aは、複数の供給用板状部材 72と 複数の回収用板状部材 74とによって、複数の液体供給領域及び複数の液体回収領 域に分けられた構成となって 、る。
[0117] 本実施形態において、液体供給孔 71は略円形状に形成されており、液体回収孔 7 3も略円形状に形成されている。複数の液体供給孔 71のそれぞれはほぼ同じ大きさ に形成されており、その径は 0. 1— 3mm程度に設けられている。但し、液体供給孔 71の径は、基板 P上に供給する液体量の目標値に応じて適宜変更可能である。そし て、液体供給孔 71は、その孔の径とほぼ同じピッチで供給用板状部材 72に一様に 形成されている。同様に、複数の液体回収孔 73のそれぞれの大きさはほぼ同じ大き さに形成されており、その径は 0. 1— 3mm程度に設けられている。但し、液体回収 孔 73の径は、基板 P上から回収する液体量の目標値に応じて適宜変更可能である。 そして、液体回収孔 73は、その孔の径とほぼ同じピッチで回収用板状部材 74に一 様に形成されている。
[0118] 流路形成部材 70'は、供給管 13に接続する供給用空間部 76を有している。供給 用空間部 76は、供給用板状部材 72と枠部材 75とで囲まれた空間部であって、供給 用板状部材 71に対応して複数 (4つ)形成されて!ヽる。複数の供給用空間部 76はそ れぞれ独立した空間である。また、流路形成部材 70'は、回収管 23に接続する回収 用空間部 77を有している。回収用空間部 77は、回収用板状部材 74と枠部材 75とで 囲まれた空間部であって、回収用板状部材 74に対応して複数 (4つ)形成されて!ヽる 。複数の回収用空間部 77もそれぞれ独立した空間である。
[0119] 供給管 13から供給された液体 LQは、供給用空間部 76に満たされた後、複数の液 体供給孔 71のそれぞれより基板 P上に供給される。液体 LQは、供給用板状部材 72 に一様に形成された液体供給孔 71を介して供給されることで、基板ステージ PSTと 対向する供給用板状部材 72の表面から均一に供給される。また、基板 P上の液体 L Qは、回収用板状部材 74に一様に形成された液体回収孔 73を介して回収される。 液体回収孔 73から回収された液体 LQは、回収用空間部 77を介して回収管 23に回 収される。基板 P上の液体 LQは、回収用板状部材 74に一様に形成された液体回収 孔 73を介して回収される。
[0120] このように、一様に形成された液体供給孔 71より液体 LQを供給することで、複数の 液体供給孔 71のそれぞれ力もほぼ同じ圧力で、供給用板状部材 72の表面から均一 に液体 LQを供給することができる。これにより、液浸領域 AR2を良好に形成した状 態で露光処理を行うことができる。特に、供給管 13から供給された液体 LQは、空間 部 76に一時的に溜められた後、液体供給孔 71を介して基板 P上に供給される構成 であるため、複数の液体供給孔 71のそれぞれから供給する液体 LQの圧力を良好に 均一化することができる。
[0121] なお、空間部 76に液体 LQの圧力を検出する圧力検出器を設けることもできる。液 体供給機構 10は、前記圧力検出器の検出結果に基づいて、液体供給部 11から供 給管 13を介して空間部 76に供給する単位時間あたりの液体供給量を調整し、ひい ては基板 P上に対する単位時間あたりの液体供給量を調整することができる。
[0122] なお、本実施形態においては、液体供給孔 71は略円形状であるが、矩形状ゃスリ ット状など、任意の形状を採用可能である。同様に、液体回収孔 73も任意の形状を 採用可能である。また、供給用板状部材 71は 4つ設けられているが、その数は任意 である。更には、供給用板状部材 71は 1枚であってもよい。同様に、回収用板状部 材 73の数も任意に設けることができる。
[0123] 上述したように、本実施形態における液体 LQは純水により構成されている。純水は 、半導体製造工場等で容易に大量に入手できるとともに、基板 P上のフォトレジストや 光学素子 (レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する 悪影響がないとともに、不純物の含有量が極めて低いため、基板 Pの表面、及び投 影光学系 PLの先端面に設けられている光学素子の表面を洗浄する作用も期待でき る。なお工場等力 供給される純水の純度が低い場合には、露光装置が超純水製 造器を持つようにしてもよい。
[0124] そして、波長が 193nm程度の露光光 ELに対する純水(水)の屈折率 nはほぼ 1. 4 4と言われており、露光光 ELの光源として ArFエキシマレーザ光(波長 193nm)を用 いた場合、基板 P上では lZn、すなわち約 134nmに短波長化されて高い解像度が 得られる。更に、焦点深度は空気中に比べて約 n倍、すなわち約 1. 44倍に拡大され るため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、 投影光学系 PLの開口数をより増カロさせることができ、この点でも解像度が向上する。
[0125] なお、上述したように液浸法を用いた場合には、投影光学系の開口数 NAが 0. 9 一 1. 3になることもある。このように投影光学系の開口数 NAが大きくなる場合には、 従来から露光光として用いられて!/、るランダム偏光光では偏光効果によって結像性 能が悪ィ匕することもあるので、偏光照明を用いるのが望ましい。その場合、マスク (レ チクル)のライン 'アンド'スペースパターンのラインパターンの長手方向に合わせた 直線偏光照明を行い、マスク(レチクル)のパターンからは、 S偏光成分 (TE偏光成 分)、すなわちラインパターンの長手方向に沿った偏光方向成分の回折光が多く射 出されるようにするとよい。投影光学系 PLと基板 P表面に塗布されたレジストとの間が 液体で満たされて ヽる場合、投影光学系 PLと基板 P表面に塗布されたレジストとの 間が空気 (気体)で満たされている場合に比べて、コントラストの向上に寄与する s偏 光成分 (TE偏光成分)の回折光のレジスト表面での透過率が高くなるため、投影光 学系の開口数 NAが 1. 0を越えるような場合でも高い結像性能を得ることができる。 また、位相シフトマスクゃ特開平 6— 188169号公報に開示されているようなラインパ ターンの長手方向に合わせた斜入射照明法 (特にダイポール照明法)等を適宜組み 合わせると更に効果的である。
[0126] また、例えば ArFエキシマレーザを露光光とし、 1Z4程度の縮小倍率の投影光学 系 PLを使って、微細なライン 'アンド'スペースパターン(例えば 25— 50nm程度のラ イン 'アンド'スペース)を基板 P上に露光するような場合、マスク Mの構造 (例えばパ ターンの微細度やクロムの厚み)によっては、 Wave guide効果によりマスク Mが偏光 板として作用し、コントラストを低下させる P偏光成分 (TM偏光成分)の回折光より S 偏光成分 (TE偏光成分)の回折光が多くマスク M力 射出されるようになるので、上 述の直線偏光照明を用いることが望ましいが、ランダム偏光光でマスク Mを照明して も、投影光学系 PLの開口数 NAが 0. 9-1. 3のように大きい場合でも高い解像性能 を得ることができる。また、マスク M上の極微細なライン 'アンド'スペースパターンを 基板 P上に露光するような場合、 Wire Grid効果により P偏光成分 (TM偏光成分)が S 偏光成分 (TE偏光成分)よりも大きくなる可能性もあるが、例えば ArFエキシマレー ザを露光光とし、 1Z4程度の縮小倍率の投影光学系 PLを使って、 25nmより大きい ライン 'アンド'スペースパターンを基板 P上に露光するような場合には、 S偏光成分( TE偏光成分)の回折光が P偏光成分 (TM偏光成分)の回折光よりも多くマスク Mか ら射出されるので、投影光学系 PLの開口数 NAが 0. 9-1. 3のように大きい場合で も高 、解像性能を得ることができる。
[0127] 更に、マスク(レチクル)のラインパターンの長手方向に合わせた直線偏光照明(S 偏光照明)だけでなぐ特開平 6-53120号公報に開示されているように、光軸を中 心とした円の接線 (周)方向に直線偏光する偏光照明法と斜入射照明法との組み合 わせも効果的である。特に、マスク(レチクル)のパターンが所定の一方向に延びるラ インパターンだけでなぐ複数の異なる方向に延びるラインパターンが混在する場合 には、同じく特開平 6— 53120号公報に開示されているように、光軸を中心とした円の 接線方向に直線偏光する偏光照明法と輪帯照明法とを併用することによって、投影 光学系の開口数 NAが大き ヽ場合でも高!ヽ結像性能を得ることができる。
[0128] 本実施形態では、投影光学系 PLの先端に光学素子 2が取り付けられており、この レンズにより投影光学系 PLの光学特性、例えば収差 (球面収差、コマ収差等)の調 整を行うことができる。なお、投影光学系 PLの先端に取り付ける光学素子としては、 投影光学系 PLの光学特性の調整に用いる光学プレートであってもよい。あるいは露 光光 ELを透過可能な平行平面板であってもよ ヽ。
[0129] なお、液体 LQの流れによって生じる投影光学系 PLの先端の光学素子と基板 Pと の間の圧力が大きい場合には、その光学素子を交換可能とするのではなぐその圧 力によって光学素子が動かな 、ように堅固に固定してもよ 、。
[0130] なお、本実施形態では、投影光学系 PLと基板 P表面との間は液体 LQで満たされ ている構成であるが、例えば基板 Pの表面に平行平面板力もなるカバーガラスを取り 付けた状態で液体 LQを満たす構成であってもよ ヽ。
また、上述の液浸法を適用した露光装置では、投影光学系 PLの光学素子 2の光 射出側の光路空間を液体 (純水)で満たして基板 Pを露光する構成になっているが、 国際公開第 2004Z019128号に開示されているように、投影光学系 PLの光学素子 2の光入射側の光路空間も液体 (純水)で満たすようにしてもょ 、。
[0131] なお、本実施形態の液体 LQは水である力 水以外の液体であってもよ 、、例えば 、露光光 ELの光源が Fレーザである場合、この Fレーザ光は水を透過しないので、
2 2
液体 LQとしては Fレーザ光を透過可能な例えば、過フッ化ポリエーテル (PFPE)や
2
フッ素系オイル等のフッ素系流体であってもよい。この場合、液体 LQと接触する部分 には、例えばフッ素を含む極性の小さ!ヽ分子構造の物質で薄膜を形成することで親 液化処理する。また、液体 LQとしては、その他にも、露光光 ELに対する透過性があ つてできるだけ屈折率が高ぐ投影光学系 PLや基板 P表面に塗布されているフオトレ ジストに対して安定なもの(例えばセダー油)を用いることも可能である。この場合も表 面処理は用いる液体 LQの極性に応じて行われる。
[0132] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミック ウェハ、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリ コンウェハ)等が適用される。
[0133] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターンを走 查露光するステップ ·アンド'スキャン方式の走査型露光装置 (スキャニングステツパ) の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、基 板 Pを順次ステップ移動させるステップ ·アンド ·リピート方式の投影露光装置 (ステツ ノ にも適用することができる。また、本発明は基板 P上で少なくとも 2つのパターンを 部分的に重ねて転写するステップ 'アンド'ステイッチ方式の露光装置にも適用できる
[0134] また、第 1パターンと基板 Pとをほぼ静止した状態で第 1パターンの縮小像を投影光 学系 (例えば 1Z8縮小倍率で反射素子を含まない屈折型投影光学系)を用いて基 板 P上に一括露光し、その後に、第 2パターンと基板 Pとをほぼ静止した状態で第 2パ ターンの縮小像をその投影光学系を用いて、第 1パターンと部分的に重ねて基板 P 上に一括露光するスティツチ方式の一括露光装置にも適用できる。
また、投影光学系を持たないタイプの露光装置、例えば、プロキシミティ型露光装 置や干渉縞をウェハ上に形成することによってウェハを露光する二光束干渉型の露 光装置を使用することもできる。
[0135] また、本発明は、特開平 10— 163099号公報、特開平 10— 214783号公報、特表 2 000— 505958号公報などに開示されているツインステージ型の露光装置にも適用 できる。
なお、露光装置が基板 Pを保持するステージとは別に、測定用の部材ゃセンサを 搭載して投影光学系の像面側で移動する測定ステージを備えて 、てもよ 、。この場 合、測定ステージについても基板 Pを保持するステージと同様に、第 1移動情報と第 2移動情報とを取得して、第 1移動情報と第 2移動情報とに基づいて測定ステージの 移動を制御するようにしてもよい。なお、測定ステージを備えた露光装置は、例えば 特開 2000— 164504号 (対応米国出願第 09Z593, 800号)に開示されており、本 国際出願で指定した指定国 (又は選択した選択国)の国内法令が許す限りにおいて 、上記公報及びこれに対応する米国出願における開示を援用して本明細書の記載 の一部とする。
[0136] また、上述の実施形態においては、投影光学系 PLと基板 Pとの間に局所的に液体 を満たす露光装置を採用しているが、例えば特開平 6— 124873号公報、特開平 10 —303114号公報、米国特許第 5, 825, 043号などに詳細に記載されているように、 露光対象の基板の表面全体が液体で覆われる液浸露光装置にも本発明を適用可 能である。
[0137] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置や、薄膜磁気ヘッド、撮像素子 (CCD)あるいはレチクル又はマスクなどを 製造するための露光装置などにも広く適用できる。
[0138] 基板ステージ PSTやマスクステージ MSTにリニアモータ(USP5,623,853または
USP5,528,118参照)を用いる場合は、エアベアリングを用いたエア浮上型およびロー レンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもよい。また、各 ステージ PST、 MSTは、ガイドに沿って移動するタイプでもよぐガイドを設けないガ イドレスタイプであってもよ 、。
[0139] 各ステージ PST、 MSTの駆動機構としては、二次元に磁石を配置した磁石ュ-ッ トと、二次元にコイルを配置した電機子ユニットとを対向させ電磁力により各ステージ PST、 MSTを駆動する平面モータを用いてもよい。この場合、磁石ユニットと電機子 ユニットとのいずれか一方をステージ PST、 MSTに接続し、磁石ユニットと電機子ュ ニットとの他方をステージ PST、 MSTの移動面側に設ければよ!、。
[0140] 基板ステージ PSTの移動により発生する反力は、投影光学系 PLに伝わらないよう に、特開平 8— 166475号公報(USP5,528,118)に記載されているように、フレーム部 材を用いて機械的に床 (大地)に逃がしてもよい。
マスクステージ MSTの移動により発生する反力は、投影光学系 PLに伝わらないよ うに、特開平 8— 330224号公報(USP5,874,820)に記載されているように、フレーム 部材を用いて機械的に床 (大地)に逃がしてもよい。
[0141] 以上のように、本願実施形態の露光装置 EXは、本願特許請求の範囲に挙げられ た各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的 精度を保つように、組み立てることで製造される。これら各種精度を確保するために、 この組み立ての前後には、各種光学系については光学的精度を達成するための調 整、各種機械系については機械的精度を達成するための調整、各種電気系につい ては電気的精度を達成するための調整が行われる。各種サブシステム力 露光装置 への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接 続、気圧回路の配管接続等が含まれる。この各種サブシステム力 露光装置への組 み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない 。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ 、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およ びクリーン度等が管理されたクリーンルームで行うことが望ましい。
半導体デバイス等のマイクロデバイスは、図 12に示すように、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に露光する基板処理ステップ 204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージェ 程を含む) 205、検査ステップ 206等を経て製造される。

Claims

請求の範囲
[1] 液体を介して基板上に露光光を照射して前記基板を露光する露光装置において、 第 1ベース部材と、
前記基板を移動可能に保持する基板ステージと、
前記基板ステージを支持する第 2ベース部材とを備え、
前記第 2ベース部材上に漏出した液体の前記第 1ベース部材への拡散が防止され て!ヽることを特徴とする露光装置。
[2] 前記第 2ベース部材が、前記第 1ベース部材とは分離していることを特徴とする請 求項 1記載の露光装置。
[3] 前記第 1ベース部材と前記第 2ベース部材との相対位置を計測する第 1計測装置 を備えたことを特徴とする請求項 2記載の露光装置。
[4] 前記第 2ベース部材上に漏出した液体は、前記第 1ベース部材と前記第 2ベース部 材との間に流れることを特徴とする請求項記載の露光装置。
[5] 前記第 1ベース部材と前記第 2ベース部材との間に流れた液体を回収する液体回 収機構を備えたことを特徴とする請求項 4記載の露光装置。
[6] 前記第 1ベース部材上の機器と、前記第 2ベース部材上の機器とは電気的に独立 して 、ることを特徴とする請求項 1記載の露光装置。
[7] 前記第 1ベース部材上の機器に電力を供給する第 1電源と、
前記第 1電源とは独立して、前記第 2ベース部材上の機器に電力を供給する第 2電 源とを備えたことを特徴とする請求項 6記載の露光装置。
[8] 投影光学系をさらに備え、
前記露光光は前記投影光学系と液体とを介して前記基板上に照射される請求項 1 一 7の 、ずれか一項記載の露光装置。
[9] 前記第 1ベース部材は、前記投影光学系を支持することを特徴とする請求項 8記載 の露光装置。
[10] 前記投影光学系を支持する本体フレームと、
前記本体フレームと前記基板ステージとの位置関係を計測する第 2計測装置とを 備えたことを特徴とする請求項 8記載の露光装置。
[11] 前記第 2計測装置の計測結果に基づいて、前記基板ステージの移動を制御する制 御装置を備えたことを特徴とする請求項 10記載の露光装置。
[12] 前記投影光学系は、マスクのパターンの像を前記基板上に投影し、
前記第 1ベース部材に支持され、前記マスクを照明する照明系を更に備えたことを 特徴とする請求項 8記載の露光装置。
[13] 前記投影光学系は、マスクのパターンの像を前記基板上に投影し、
前記第 1ベース部材に支持され、前記マスクを移動可能に保持するマスク保持部 材を更に備えたことを特徴とする請求項 8記載の露光装置。
[14] 液体を介して基板上に露光光を照射して前記基板を露光する露光装置において、 第 1機器を含む第 1電気系と、 第 2機器を含み、前記第 1電気系とは独立した第 2 電気系とを備え、
前記第 1電気系が液体の漏出に起因して停止した場合でも、前記第 2電気系は動 作可能であることを特徴とする露光装置。
[15] 前記第 1電気系は、前記第 1機器に電力を供給する第 1電源を有し、 前記第 2電 気系は、前記第 1電源とは独立して前記第 2機器に電力を供給する第 2電源を有す ることを特徴とする請求項 14記載の露光装置。
[16] 前記基板を保持する基板ステージを更に備え、 前記液体は、前記投影光学系と 前記基板ステージとの間に供給されることを特徴とする請求項 14記載の露光装置。
[17] 前記第 1機器は、前記基板ステージ、もしくは前記基板ステージよりも下方に配置さ れていることを特徴とする請求項 16記載の露光装置。
[18] 前記第 1機器は、前記基板ステージを移動するための駆動系を含むことを特徴とす る請求項 17記載の露光装置。
[19] 前記第 1機器は、前記基板ステージに配置されたセンサ系を含むことを特徴とする 請求項 17記載の露光装置。
[20] 前記第 1機器は、前記基板ステージを支持する防振系を含むことを特徴とする請求 項 17記載の露光装置。
[21] 前記第 1機器と前記第 2機器とは無線で通信可能であることを特徴とする請求項 14 記載の露光装置。
[22] 投影光学系をさらに備え、
前記露光光は前記投影光学系と液体とを介して前記基板上に照射される請求項 1
4一 21のいずれか一項記載の露光装置。
[23] 前記投影光学系を支持する本体フレームを更に備え、 前記第 2機器は、前記本 体フレームを支持する防振系を含むことを特徴とする請求項 22記載の露光装置。
[24] 投影光学系と液体とを介して基板上に露光光を照射して前記基板を露光する露光 装置において、
第 1の方向に移動する前記基板上に前記液体を供給する供給口を備え、 前記供給口は、前記第 1の方向に関して前記投影光学系の投影領域の両側にそ れぞれ設けられ、 前記基板の第 1の方向への移動距離を Ll、前記供給口どうしの 間の距離を L2としたとき、
LI≥L2の条件を満足することを特徴とする露光装置。
[25] 前記移動距離 L1は、前記基板上の 1つのショット領域を露光後の、次のショット領 域を露光するためのステップ移動距離を含むことを特徴とする請求項 24記載の露光 装置。
[26] 前記基板上の各ショット領域は、前記第 1の方向へ前記基板を移動しながら走査露 光され、 前記移動距離 L1は、前記基板上の 1つのショット領域を走査露光するため に必要な距離であることを特徴とする請求項 24記載の露光装置。
[27] 前記供給口は、前記第 1の方向の交差する第 2の方向を長手方向とするスリット状 であることを特徴とする請求項 24記載の露光装置。
[28] 前記基板を移動可能に保持する基板ステージと、
露光用の液体の拡散を防止するための液体受け部材と、
前記液体受け部材上に配置され、前記基板ステージを支持する支持部材とを備え た請求項 24記載の露光装置。
[29] 投影光学系と液体とを介して基板上に露光光を照射して前記基板を露光する露光 装置において、
供給管に接続し、第 1の方向に移動する前記基板上に液体を供給する供給口を備 え、 前記供給管より前記供給口に供給される単位時間あたりの液体供給量を Q、前記 供給口の面積を S、前記第 1の方向における前記供給口の幅を H、前記供給口より 前記基板上に供給される前記液体の流速を U、前記基板の移動速度を V、前記投 影光学系と前記基板との間の距離を WDとしたとき、 H X U≥WD XV (但し U = Q/S)の条件を満足することを特徴とする露光装置。
[30] 前記基板を移動可能に保持する基板ステージと、
露光用の液体の拡散を防止するための液体受け部材と、
前記液体受け部材上に配置され、前記基板ステージを支持する支持部材とを備え た請求項 29記載の露光装置。
[31] 液体を介して基板上に露光光を照射して前記基板を露光する露光装置において、 前記基板を保持して移動可能な基板ステージと、
液体を供給する液体供給機構とを備え、
前記液体供給機構は、前記基板ステージと対向するように配置され、複数の液体 供給孔を形成された板状部材を有することを特徴とする露光装置。
[32] 前記液体供給孔の径は、 0. 1一 3mmであることを特徴とする請求項 31記載の露 光装置。
[33] 前記液体供給孔は、その孔の径とほぼ同じピッチで前記板状部材に形成されてい ることを特徴とする請求項 31記載の露光装置。
[34] 前記液体供給機構は、前記基板ステージと対向する前記板状部材の表面から均 一に液体の供給を行うことを特徴とする請求項 31記載の露光装置。
[35] 前記基板上から液体を回収する液体回収機構を備え、 前記液体回収機構は、前 記基板ステージと対向するように配置され、複数の液体回収孔を形成された板状部 材を有することを特徴とする請求項 31記載の露光装置。
[36] 請求項 1, 14, 24, 29,及び 31のいずれか一項記載の露光装置を用いることを特 徴とするデバイス製造方法。
PCT/JP2005/002228 2004-02-19 2005-02-15 露光装置及びデバイス製造方法 WO2005081290A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510195A JP4797984B2 (ja) 2004-02-19 2005-02-15 露光装置及びデバイス製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-042929 2004-02-19
JP2004042929 2004-02-19

Publications (1)

Publication Number Publication Date
WO2005081290A1 true WO2005081290A1 (ja) 2005-09-01

Family

ID=34879275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002228 WO2005081290A1 (ja) 2004-02-19 2005-02-15 露光装置及びデバイス製造方法

Country Status (2)

Country Link
JP (3) JP4797984B2 (ja)
WO (1) WO2005081290A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012954A (ja) * 2005-07-01 2007-01-18 Canon Inc 露光装置
JP2008147652A (ja) * 2006-12-07 2008-06-26 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2009141355A (ja) * 2007-12-03 2009-06-25 Asml Netherlands Bv リソグラフィ装置、及びデバイス製造方法
JP2009272640A (ja) * 2008-05-08 2009-11-19 Asml Netherlands Bv 流体ハンドリング構造、リソグラフィ装置及びデバイス製造方法
JP2011023749A (ja) * 2006-04-14 2011-02-03 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2012009853A (ja) * 2010-06-03 2012-01-12 Asml Netherlands Bv ステージ装置およびそのようなステージ装置を備えるリソグラフィ装置
US8345218B2 (en) 2008-05-08 2013-01-01 Asml Netherlands B.V. Immersion lithographic apparatus, drying device, immersion metrology apparatus and device manufacturing method
US8351018B2 (en) 2008-05-08 2013-01-08 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US8634053B2 (en) 2006-12-07 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9013673B2 (en) 2009-12-02 2015-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9268231B2 (en) * 2012-04-10 2016-02-23 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
JP6493481B2 (ja) * 2017-10-18 2019-04-03 株式会社ニコン 露光装置及びデバイス製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297239A (ja) * 1988-09-30 1990-04-09 Canon Inc 露光装置用電源装置
JPH10340846A (ja) * 1997-06-10 1998-12-22 Nikon Corp 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
WO1999049504A1 (fr) * 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2005019864A (ja) * 2003-06-27 2005-01-20 Canon Inc 露光装置及び露光方法
JP2005101468A (ja) * 2003-09-26 2005-04-14 Kyocera Corp 半導体素子及びその製造方法
JP2005109426A (ja) * 2003-02-26 2005-04-21 Nikon Corp 露光装置、露光方法及びデバイス製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101713932B (zh) * 2002-11-12 2012-09-26 Asml荷兰有限公司 光刻装置和器件制造方法
JP2005150290A (ja) * 2003-11-13 2005-06-09 Canon Inc 露光装置およびデバイスの製造方法
WO2005071491A2 (en) * 2004-01-20 2005-08-04 Carl Zeiss Smt Ag Exposure apparatus and measuring device for a projection lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297239A (ja) * 1988-09-30 1990-04-09 Canon Inc 露光装置用電源装置
JPH10340846A (ja) * 1997-06-10 1998-12-22 Nikon Corp 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
WO1999049504A1 (fr) * 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2005109426A (ja) * 2003-02-26 2005-04-21 Nikon Corp 露光装置、露光方法及びデバイス製造方法
JP2005019864A (ja) * 2003-06-27 2005-01-20 Canon Inc 露光装置及び露光方法
JP2005101468A (ja) * 2003-09-26 2005-04-14 Kyocera Corp 半導体素子及びその製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012954A (ja) * 2005-07-01 2007-01-18 Canon Inc 露光装置
JP2011023749A (ja) * 2006-04-14 2011-02-03 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
US8634053B2 (en) 2006-12-07 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2008147652A (ja) * 2006-12-07 2008-06-26 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2011097107A (ja) * 2006-12-07 2011-05-12 Asml Netherlands Bv リソグラフィ投影装置
US10268127B2 (en) 2006-12-07 2019-04-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9645506B2 (en) 2006-12-07 2017-05-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009141355A (ja) * 2007-12-03 2009-06-25 Asml Netherlands Bv リソグラフィ装置、及びデバイス製造方法
JP2012044186A (ja) * 2007-12-03 2012-03-01 Asml Netherlands Bv リソグラフィ装置
US8351018B2 (en) 2008-05-08 2013-01-08 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US8421993B2 (en) 2008-05-08 2013-04-16 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
JP2009272640A (ja) * 2008-05-08 2009-11-19 Asml Netherlands Bv 流体ハンドリング構造、リソグラフィ装置及びデバイス製造方法
JP2014099655A (ja) * 2008-05-08 2014-05-29 Asml Netherlands Bv 流体ハンドリング構造及び方法、並びにリソグラフィ装置
US8345218B2 (en) 2008-05-08 2013-01-01 Asml Netherlands B.V. Immersion lithographic apparatus, drying device, immersion metrology apparatus and device manufacturing method
US9013673B2 (en) 2009-12-02 2015-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8587769B2 (en) 2010-06-03 2013-11-19 Asml Netherlands B.V. Stage apparatus and lithographic apparatus comprising such stage apparatus
JP2012009853A (ja) * 2010-06-03 2012-01-12 Asml Netherlands Bv ステージ装置およびそのようなステージ装置を備えるリソグラフィ装置

Also Published As

Publication number Publication date
JP5447086B2 (ja) 2014-03-19
JP2010161406A (ja) 2010-07-22
JPWO2005081290A1 (ja) 2007-10-25
JP5360088B2 (ja) 2013-12-04
JP4797984B2 (ja) 2011-10-19
JP2011097114A (ja) 2011-05-12

Similar Documents

Publication Publication Date Title
US10048597B2 (en) Exposure apparatus and device fabrication method
JP6512252B2 (ja) 露光装置、露光方法、及びデバイス製造方法
JP5447086B2 (ja) 露光装置、制御方法、及びデバイス製造方法
JP4506674B2 (ja) 露光装置及びデバイス製造方法
US20060250593A1 (en) Exposure apparatus and device fabricating method
JP4872916B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
US20080043210A1 (en) Exposure Apparatus and Device Manufacturing Method
JP2010118714A (ja) 露光装置、露光方法及びデバイス製造方法
JP5541252B2 (ja) 露光装置及び液体回収方法
JP4655763B2 (ja) 露光装置、露光方法及びデバイス製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510195

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase