[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004039881A1 - ポリオレフィン樹脂組成物およびその製造方法 - Google Patents

ポリオレフィン樹脂組成物およびその製造方法 Download PDF

Info

Publication number
WO2004039881A1
WO2004039881A1 PCT/JP2003/013792 JP0313792W WO2004039881A1 WO 2004039881 A1 WO2004039881 A1 WO 2004039881A1 JP 0313792 W JP0313792 W JP 0313792W WO 2004039881 A1 WO2004039881 A1 WO 2004039881A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
polyamide
resin composition
component
silica particles
Prior art date
Application number
PCT/JP2003/013792
Other languages
English (en)
French (fr)
Inventor
Shinji Yamamoto
Makoto Egashira
Kiyoshi Yagi
Hitoshi Ushijima
Original Assignee
Yazaki Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corporation filed Critical Yazaki Corporation
Priority to US10/533,159 priority Critical patent/US20060241221A1/en
Priority to MXPA05004599A priority patent/MXPA05004599A/es
Priority to EP03759007A priority patent/EP1577342A4/en
Publication of WO2004039881A1 publication Critical patent/WO2004039881A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • C08J5/048Macromolecular compound to be reinforced also in fibrous form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/14Macromolecular compounds according to C08L59/00 - C08L87/00; Derivatives thereof
    • C08L2666/20Macromolecular compounds having nitrogen in the main chain according to C08L75/00 - C08L79/00; Derivatives thereof

Definitions

  • the present invention relates to a polyolefin resin composition and a method for producing the same.
  • Polyolefin resins are widely used because they are light and easy to mold and have some mechanical strength. When strength and elastic modulus are required, glass fiber, talc, clay, tanker, etc. are added, but workability and lightness may be impaired, and the appearance of molded products may deteriorate. There has been a demand for a polyolefin resin that has improved such disadvantages.
  • a lightweight composite fiber without separation at the interface between polypropylene and polyamide has been disclosed (for example, page 2 of JP-A-3-279419, JP-A-4-1272722). No. 2, page 2; Japanese Patent Application Laid-Open No. 2181015, page 2). It aims to improve the dyeability of polypropylene with core-sheath fibers. These methods and fibers are extruded from a small-diameter spinning nozzle, and are spun at high speed, treated with a solvent, or otherwise melted to obtain ultrafine fibers with a thickness of 0.1 to 1 denier (d). Therefore, productivity is low and it cannot be said that it is an economical production method.
  • these fibers are continuous fibers of ultrafine fibers and are excellent as materials for woven fabrics and synthetic leathers with good gloss and texture, but they are kneaded because they are continuous fibers when filled and kneaded with rubber or resin. Was difficult to disperse.
  • Japanese Patent Application Laid-Open No. 11-304264 discloses a composition containing 99 to 90 parts by weight of polyolefin and 1 to 10 parts by weight of polyamide fiber. .
  • This composition is excellent in moldability, lightness, strength, elastic modulus, and dimensional stability.
  • the composition disclosed in this publication has not been improved in abrasion resistance. Summary of disclosure
  • an object of the present invention is to provide a polyolefin resin composition having excellent abrasion resistance and flame retardancy and further improved properties such as strength and elastic modulus, and a method for producing the same.
  • a polyolefin resin composition comprising a polyolefin, a polyamide fiber, a silane coupling agent, and silica particles.
  • the polyamide fiber contains silica particles.
  • the content of the silica particles is 1 to 100 parts by weight based on 100 parts by weight of the polyolefin.
  • the content ratio of the polyolefin and the polyamide fiber is in the range of 5: 5 to 9: 1 (polyolefin: polyamide). Where the abundance ratio is 8: 2 (Polyolefin: polyamide).
  • the average fiber diameter of the polyamide fiber is 1 ⁇ or less, and the aspect ratio is 20 or more and 1,000 or less.
  • At least preparing a resin composition comprising polyolefin, polyamide fibers and a silane coupling agent
  • a composition comprising a step of kneading the resin composition and the silica particles is also provided.
  • the addition amount of the silica particles is 1 to 100 parts by weight based on 100 parts by weight of the polyolefin.
  • At least preparing a resin composition comprising polyolefin, a silane coupling agent and silicic acid particles,
  • the addition amount of the silica particles is preferably 1 to 60 parts by weight based on 100 parts by weight of the polyolefin.
  • the addition ratio of the polyolefin and the polyamide is 5: 5 to 9: 1 (polyolefin: polyamide).
  • the addition ratio is preferably 8: 2 (polyolefin: polyamide).
  • a Banbury type mixer kneader, kneader extruder, open roll, single-screw kneader, or twin-screw kneader to determine the melting point of polyolefin.
  • Kneading is sufficiently performed at a temperature of 1 ° C. or more and a melting point of polyamide fiber or polyamide.
  • abrasion resistance, flame retardancy, strength, elastic modulus, and the like can be improved as compared with a resin composition comprising polyolefin, polyamide fiber, and a silane coupling agent.
  • the mechanism of this action is not clear, but by kneading a mixture of polyolefin, polyamide, silane coupling agent and silica particles, etc., each component in the mixture receives heat history and pressure history, and As shown in Fig.
  • FIG. 1 is a conceptual diagram showing an estimated action mechanism of the polyolefin resin composition of the present invention.
  • 2A to 2C are conceptual diagrams illustrating a method for evaluating the abrasion resistance of the polyolefin resin composition of the present invention.
  • the polyolefin resin used in the present invention is not particularly limited. Those with a melting point in the range of 50 ° C are preferred. Such preferred examples include homopolymers and copolymers of C2 to C8 olefins, copolymers of C2 to C8 olefins with vinyl acetate, and C2 to C8 olefins. A copolymer of olefin with acrylic acid or its ester, a copolymer of olefin having 2 to 8 carbon atoms with methacrylic acid or its ester, and a copolymer of olefin with 2 to 8 carbon atoms and a vinylsilane compound. It is mentioned as what is preferably used.
  • high-density polyethylene low-density polyethylene, linear low-density polyethylene, poly-Elpyrene, .—X-tylene-propylene block copolymer, .ethylene ⁇ propylene random copolymer, poly 4-methylpentene-1, Polybutene 1-1, polyhexene 1-1, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-acrylic acid copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer Polymer, ethylene 'propyl acrylate copolymer', ethylene 'butyl acrylate copolymer, ethylene ⁇ 2-ethylhexyl acrylate copolymer, ethylene' hydroxyethyl acrylate copolymer, ethylene ' Vinyltrimethoxysilane copolymer, ethylene'vinyltriethoxysilane
  • polystyrene resin particularly preferred are high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (L LDPE), polypropylene (PP), ethylene-propylene block copolymer (EP BC), ethylene-propylene random copolymer (EP RC), ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA), and ethylene-vinyl alcohol copolymer Among them, those with a Meltov mouth index (MF I) in the range of 0.2 to 50 gZI 0 minutes are most preferred. It is mentioned as a thing. These may be used alone or in combination of two or more.
  • MF I Meltov mouth index
  • the polyamide used in the present invention is not particularly limited, and is a thermoplastic polyamide having an amide group in the main chain (hereinafter, polyamide), and has a melting point of 135 to 350 ° C. It is used and has a melting point of at least 20 ° C. higher than the melting point of the polyolefin, and a melting point in the range of 160-265 ° C. is particularly preferable.
  • polyamide thermoplastic polyamide having an amide group in the main chain
  • polyamides include nylon 6, nylon 66, nylon 6-nylon 66 copolymer, nylon 610, nylon 612, nylon 46, nylon 11, nylon 12, nylon MXD 6.
  • nylon 6 PA 6
  • PA66 Nylon 66
  • PA12 nylon 12
  • nylon 6-nylon 66 copolymer one or more of these may be used.
  • These polyamides preferably have a molecular weight in the range of 10,000 to 200,000.
  • the silane coupling agent used in the present invention is not particularly limited, and specific examples include vinyl trimethoxy silane, vinyl triethoxy silane, vinyl tris ( ⁇ -methoxy ethoxy) silane, vinyl triacetyl silane, ⁇ - Methacryloxy propyl trimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyl trimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane , ⁇ -glycidoxypropylethyldimethoxysilane, ⁇ -glycidoxypropylethylhexethoxysilane, ⁇ - ⁇ - (aminoethyl) aminobutyral trimethoxysilane, ⁇ - ⁇ - (aminoethyl) aminobutyral trime
  • the silane coupling agent is preferably in the range of 0.1 to 5.5 parts by weight, more preferably in the range of 0.2 to 3.0 parts by weight, based on 100 parts by weight of the total amount of the polyolefin component and the polyamide component. (In the case of simultaneous addition of silica: 0.1 to 8 parts by weight (preferably 0.2 to 4 parts by weight)), in the case of post addition of silica: 0.1 to 5.5 and Silane coupling treatment to force). If the amount of the silane coupling agent is less than 0.1 part by weight, a composition having high abrasion resistance, flame retardancy and strength cannot be obtained, and the amount of the silane coupling agent is more than 5.5 parts by weight. And a composition excellent in elastic modulus cannot be obtained.
  • the amount of the silane coupling agent is less than 0.1 part by weight, a strong bond is not formed between the polyolefin component, the polyamide component and the silica particles, and only a composition having a low strength can be obtained.
  • the amount of the silane coupling agent is more than 5.5 parts by weight, the polyamide component does not turn into fine fibers, so that only a composition having an inferior elastic modulus can be obtained. .. _
  • an organic peroxide can be used in combination. This is because, when an organic peroxide is used in combination, a radical is formed in the molecular chain of the polyolefin component and reacts with the silane coupling agent, thereby promoting the reaction between the polyolefin component and the silane coupling agent.
  • the amount of the organic peroxide to be used is 0.01 to 1.0 part by weight based on 100 parts by weight of the polyolefin component.
  • Organic peroxides with a one-minute half-life temperature that is the same as the higher of the melting point of the polyolefin component or the melting point of the silane coupling agent component or a temperature range that is 30 ° C higher than this temperature Is preferably used. Specifically, those having a one-minute half-life temperature of about 110 to 200 ° C. are preferably used.
  • organic peroxides include di- ⁇ -cumyl peroxide, 1,1-di-t-butylperoxy-1,3,3,5-trimethylcyclohexane, and 1,1-di-t-butylperoxycyclo.
  • the one-minute half-life temperature is in the range of the melt-kneading temperature or a temperature higher than this temperature by about 30 ° C, specifically, the one-minute half-life temperature is about 80 to 260 ° C. Is preferably used.
  • the silica particles (including those surface-treated by a surface treatment agent, a treatment method, etc., such as coupling treatment and CVD method) used in the present invention are not particularly limited, but the particle size is preferably 1%. nm ⁇ 1 ⁇ , particularly preferably 1 nm ⁇ 100 nm.
  • the content of the silica particles in the polyolefin resin composition of the present invention is not particularly limited, but is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the polyolefin resin composition. Preferably it is 1 to 60 parts by weight.
  • the amount is less than 1 part by weight, the hydrogen bonding portion between the silane coupling agent and the silica particles is reduced, so that desired abrasion resistance and strength cannot be obtained.
  • the preferable content of the silica particles varies depending on the kneading conditions and the like at the time of producing the polyolefin resin composition of the present invention, and thus the preferable amount may be appropriately selected at the time of the kneading.
  • Most of the polyamide component in the polyolefin resin composition of the present invention is uniformly dispersed as fine fibers in the matrix. Specifically, 70% by weight, preferably 80% by weight, particularly preferably 90% by weight or more are dispersed as fine fibers.
  • the fibers of the polyamide component preferably have an average fiber diameter of 1 or less and an average fiber length of 10 Om or less.
  • the aspect ratio ratio of fiber length Z fiber diameter
  • the polyolefin component is bonded to the polyamide component at the interface.
  • Polyolefin component and polyamide in polyolefin resin composition of the present invention The component ratio is not particularly limited, but is preferably 5: 5 to 9: 1 (polyolefin: polyamide), and more preferably 8: 2 (polyolefin: polyamide).
  • the abundance ratio of the polyolefin component is less than 5, elongation decreases, which is not preferable.
  • the abundance ratio of the polyamide component is less than 1, the effect of improving the elastic modulus or strength is small.
  • the method for producing the polyolefin resin composition of the present invention is roughly classified into the following two modes.
  • a resin composition comprising a polyolefin, a polyamide fiber and a silane coupling agent, which has been prepared in advance, is kneaded with silicic acid particles.
  • the method for producing a resin composition comprising a polyolefin, a polyamide fiber and a silane coupling agent in the production method form (A) is not particularly limited, but is produced, for example, from the following steps.
  • a polyolefin component (component 1) and a silane coupling agent (component 2) are melt-kneaded and chemically modified.
  • the melt-kneading temperature is a temperature above the melting point of component 1 (30 ° C higher than the melting point).
  • a device usually used for kneading resin or rubber As such a device, a Banbury type mixer, a kneader, a kneader extruder, an open roll, a single-screw kneader, a twin-screw kneader or the like is used.
  • a twin-screw kneader is most preferable because melt kneading can be performed in a short time and continuously (the same applies to each of the following steps. 1—Step A 2 will be described. It is a temperature higher than or equal to the melting point of component 3 (10 ° C higher than the melting point) If the melt-kneading temperature is lower than the melting point of component 3, it cannot be kneaded and does not disperse in a fiber form. Melt and knead at 0 ° C higher temperature.
  • Step A3 The kneaded product obtained in the extruding step is extruded from a spinneret, an inflation die or a T-die. Both spinning and extrusion must be performed at a temperature higher than the melting point of component 3. Specifically, it is preferable to carry out the reaction at a temperature higher by 30 ° C. than this melting point. Even if the melt-kneading is performed at a temperature lower than the melting point of component 3 in this step, the kneaded material does not have a structure in which the fine fibers of component 3 are dispersed in the matrix composed of component 1. Therefore, even if the kneaded product is spun and drawn, the component 3 cannot be turned into fine fibers.
  • Step A4 The extruded string-like or thread-like spinning is performed by continuously cooling, stretching, or rolling.
  • the cooling, stretching or rolling treatment is performed at a temperature lower than the melting point of component 3 by 10 ° C or less.
  • the stretching or rolling for example, the kneaded material is extruded from a spinneret to be spun into a string or a thread, and is wound around a hobbin while being drafted. Or off It can be carried out by a method such as cutting into pellets. Draft here means that the rewinding speed is higher than the spinneret speed. Winding speed Spinneret speed ratio
  • the (draft ratio) is preferably in the range of 1.5 to 100, more preferably in the range of 2 to 50, and particularly preferably in the range of 3 to 30.
  • Step A5 By pelletizing, a resin or a rubber component can be added and uniformly kneaded, and therefore, it is preferable to use a pellet-like polyamide fiber reinforced polyolefin resin composition. If a pellet-shaped resin composition is used, the resin composition can be uniformly kneaded with rubber or resin, and a polyamide fiber-reinforced resin composition in which fine fibers are uniformly dispersed can be easily obtained.
  • each step has a plurality of supply ports capable of supplying each component and an organic peroxide and the like, and a plurality of kneading zones corresponding to each supply port one-to-one. It is also possible to collectively process in a continuous process using a shaft kneader. Doing so results in an economical, stable, and safe manufacturing method.
  • the method for kneading the silica particles and the resin composition comprising polyolefin, polyamide fiber, and silane coupling agent obtained as described above is not particularly limited.
  • polyolefin, polyamide fiber, and silane coupling may be used.
  • the pellets of the resin composition (component 4) and the silica particles (component 5) are mixed with a Banbury mixer, kneader, kneader extruder, open roll, -shaft kneader, twin-shaft kneader, or the like.
  • component 5 or higher from the melting point of polyolefin and lower than the melting point of polyamide may be used. It is presumed that a hydrogen bond is formed between component 5 and the silane coupling agent contained in component 4 due to the above heated mixed herring. It is preferable to extrude, stretch or roll, and pelletize the mixture that has been heated and mixed as described above.
  • the production method of the resin composition comprising polyolefin, polyamide fiber, silane coupling agent, and silica particles in the production method form (B) is not particularly limited. However, for example, it is manufactured from the following steps.
  • component 3 Melt and knead the polyamide component (component 3) and the silica particles (component 5) at the melting point of component 3 or higher with component 1 chemically modified by component 2.
  • (B3) Melt and knead the polyamide of component 3 with the component 1 chemically modified by component 2 at the melting point or higher, extrude by chemical modification.
  • the melt-kneading temperature is a temperature above the melting point of component 1 (30 ° C higher than the melting point).
  • melt kneaded at a temperature 30 ° C higher than the melting point it reacts with the silane coupling agent of component 2 and is chemically modified.
  • Melt kneading can be carried out by a device usually used for kneading resin or rubber.
  • a Banbury type mixer, a kneader, a kneader extruder, an open roll, a single-screw kneader, a twin-screw kneader, or the like is used.
  • melt kneading temperature is a temperature above the melting point of component 3 (10 ° C higher than the melting point). If the melt-kneading temperature is lower than the melting point of the component 3, kneading is not possible and the fibers are not dispersed in a fibrous state.
  • Step B3 The kneaded product obtained in the extruding step is extruded from a spinneret, an inflation die or a T-die. Both spinning and extrusion It must be carried out at a temperature above the melting point of component 3. Specifically, it is preferable to carry out the reaction at a temperature higher by 30 ° C. than this melting point. Even if the melt-kneading is performed at a temperature lower than the melting point of component 3 in this step, the kneaded material does not have a structure in which the fine fibers of component 3 are dispersed in the matrix composed of component 1. Therefore, even if the kneaded product is spun and drawn, the component 3 cannot be turned into fine fibers.
  • Step B4 The extruded string-like or thread-like spinning is performed by continuously cooling, stretching, or rolling.
  • the cooling or stretching or rolling treatment is performed at a temperature lower than the melting point of the component 3 by 10 ° C. or less.
  • the kneaded material is extruded from a spinneret, spun into a string or a thread, and wound around a hobbin while being drafted.
  • it can be carried out by a method such as cutting into pellets.
  • To draft means to take up the winding speed higher than the spinneret speed. Winding speed
  • the ratio of the spinneret speed is preferably in the range of 1.5 to 100, more preferably in the range of 2 to 50, and particularly preferably in the range of 3 to 30. is there.
  • Step B5 Pelletization makes it possible to add and knead the resin and rubber components uniformly, so that it is preferable to use a pellet-like polyamide fiber reinforced polyolefin resin composition. If a pellet-shaped resin composition is used, the resin composition can be uniformly kneaded with rubber or resin, and a polyamide fiber-reinforced resin composition in which fine fibers are uniformly dispersed can be easily obtained.
  • each step has a plurality of supply ports capable of supplying each component and an organic peroxide and the like, and a plurality of kneading zones corresponding to each supply port one-to-one. It is also possible to collectively process in a continuous process using a shaft kneader. Doing so results in an economical, stable, and safe manufacturing method.
  • component 1 reacts with component 2 to be chemically modified, and component 3 is formed. It has a structure in which the fine fibers of the component 3 are dispersed in the matrix composed of the components 1. Furthermore, a beard fiber of the component 1 that is finer than the fine fiber of the component 3 may form on the fiber surface of the component 3. At this time, the component 3 is also chemically modified with the component 2.
  • Component 5 is presumed to be chemically bonded to the part chemically modified with Component 2 to form a partially cross-linked state between Component 1 and Component 3.The gel fraction is higher than when Component 5 is not added. Thus, various characteristics are improved.
  • the polyolefin resin composition of the present invention further includes carbon black, white carbon, activated calcium carbonate, ultrafine magnesium silicate, magnesium hydroxide, ferrite, zeolite, high styrene resin, phenol resin, lignin, and modified melamine.
  • Auxiliaries such as resin, coumarone indene resin, petroleum resin, various fillers such as calcium carbonate, basic magnesium carbonate, clay, talc, mica, zinc white, montmorillonite, wollastonite, barium sulfate, amine and aldehyde And stabilizers such as amines, amines, amines, amines, phenols, imidazoles, sulfur-containing antioxidants, and phosphorus-containing antioxidants, and various pigments.
  • fillers such as calcium carbonate, basic magnesium carbonate, clay, talc, mica, zinc white, montmorillonite, wollastonite, barium sulfate, amine and aldehyde
  • stabilizers such as amines, amines, amines, amines, phenols, imidazoles, sulfur-containing antioxidants, and phosphorus-containing antioxidants, and various pigments.
  • Gel fraction The resin composition was placed in a stainless steel mesh container and immersed in xylene at 120 ° C. for 24 hours. The weight was expressed as a percentage of the weight before immersion.
  • Fiber shape (morphology ⁇ dispersibility and average fiber diameter): Dissolve the resin composition in xylene, take out the fiber, wash it, observe it with a scanning electron microscope, and disperse if it is dispersed with fine fibers. Good flocculation and aggregation in the form of fine fibers or films were evaluated as poor dispersion. When the dispersibility was good, the fiber diameter of 200 dispersed fine fibers was measured with the above-mentioned scanning electron microscope, and the average was determined to be the average fiber diameter. Bow I Tensile strength 'Tensile modulus. Elongation: Tensile strength, tensile modulus and elongation were determined at a temperature of 23 ° and a tensile speed of 50 mmZin according to ASTM 0638.
  • the oxygen index at a temperature of 23 ° C was determined according to JIS K7201-2.
  • the type of test piece used was IV (length: 80 to 15 Omm, width: 6.5 ⁇ 0.5 mm, thickness: 3 ⁇ 0.25 mm).
  • the ignition method was A method (top surface ignition).
  • Abrasion resistance As shown in Fig. 2A, a sample sheet 1 (formed to a thickness of 0.3 mm) is placed on the sheet fixing lower jig 2, and the sheet fixing upper jig 3 is covered from above. Fix the sheet 1 and apply the following treatment to the sample sheet 1 visible from the hole of the upper jig 3.
  • the wear length shall be 15 mm, and the number of reciprocations when the piano wire 4 contacts the lower jig 2 shall be recorded.
  • Piano wire 4 is replaced every time and measured three times, and the minimum value of the three times is taken as the abrasion resistance value.
  • silane coupling agent Component 2
  • Component 2 1.0 part by weight of ⁇ -methacryloxypropyl trimethoxysilane and 0.5 part by weight of antioxidant ilganox 1010 and 0.5 part by weight of di- ⁇ -cumyl peroxide (40% concentration) as a peroxide
  • the total amount of the obtained silane-modified polyethylene and polya As a amide (component 3), 50 parts by weight of nylon 6 (manufactured by Ube Industries, Ltd., 1030B, melting point: 215-225 ° C) and 0.5 parts by weight of ilganox 11010 were set to 235 ° C by 3 mm Put into a twin-screw extruder equipped with a D-die and knead it.
  • the pellets were 1 mm in diameter and 3 mm in length Polyethylene was eluted from the resulting pellets with hot toluene The insolubles did not cling to the stirring blades and the suspension was uniform Observation of the insoluble matter with a scanning electron microscope revealed that the fine particles had a diameter of 0 .__ 3 ⁇ .
  • a polyolefin resin composition was obtained in the same manner as in Formulation Example 1 except that the mixing ratio of Component 1 and Component 3 was changed as shown in Table 1 below.
  • the total amount of the silane-modified polyethylene obtained by the same operation as in Example 1 above and the component 5 (the same silica particles as those used in Example 1 above) were mixed with 10 parts by weight and heated to 140 ° C. 2
  • the polyolefin resin composition in which the silica particles were dispersed in the roll mill was kneaded, kneaded and pelletized.
  • Example 1 20 parts by weight of Component 3 (same as that used in Example 1 above) and 0.5 part by weight of Irganox 11010 in the obtained silica particle-dispersed polyolefin resin composition were added to Example 1 above. Similarly, it is charged into a twin-screw extruder equipped with a 3 mml5 die set at 235 ° C and kneaded. 1.5 times at room temperature between
  • the total amount of the silane-modified polyethylene obtained by the same operation as in Example 1 and the component 5 (the same silica particles as those used in Example 1 above) 10 parts by weight and the component 3 (the same as those used in Example 1 above) 20 parts by weight and further 0.5 parts by weight of ilganox 11010 were supplied to a twin-screw extruder equipped with a 3 mm D die set at 235 ° C in the same manner as in Example 1 above. Put in, knead, extrude into a wristland shape from a die, cool with air and take it out. Draft it at 0 °. Take it out at a specific ratio. The mixture was pelletized to obtain a polyolefin resin composition.
  • a polyolefin resin composition was obtained in the same manner as in Example 4, except that the addition amount of Component 5 [the same silica particles as used in Example 1 above] was changed as shown in Table 1 below.
  • a polyolefin resin composition was obtained in the same manner as in Examples 3 and 4, except that Component 5 (the same silica particles as used in Example 1 above) was not added.
  • the pellet of the polyolefin resin composition obtained by the above formulation was kneaded with a Brabender plastograph heated to 150 ° C for 5 minutes, and pressed to a thickness of 2 mm at 120 ° C. And subjected to a tensile test and the like.
  • Table 1 below shows the component blends of Formulation Examples 1 to 12 and the obtained characteristic values.
  • the polyolefin resin composition containing polyolefin, polyamide fiber, silane coupling agent and silicic acid particles has a higher gel fraction than those not containing all of them, and therefore has excellent wear resistance. It is also expected that flame retardancy, strength and elastic modulus have been improved. table 1
  • fine polyamide fibers having an average fiber diameter of 1 ⁇ m or less and silica particles are uniformly dispersed in a polyolefin matrix, and polyolefin, polyamide fibers, and silica particles are a silane coupling agent.
  • polyolefin, polyamide fibers, and silica particles are a silane coupling agent.
  • the polyolefin resin composition of the present invention can be suitably used for industrial products and the like as it is or as a masterbatch added to other resins or rubbers as a reinforcing material / modifying material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

ポリオレフィン、ポリアミド繊維、シランカップリング剤及びシリカ粒子を含有することを特徴とし、ポリオレフィン、ポリアミド繊維及びシランカップリング剤からなる樹脂組成物とシリカ粒子とを混練するか、ポリオレフィン、シランカップリング剤及びシリカ粒子からなる樹脂組成物とポリアミドとを混練するか、または、ポリオレフィン、ポリアミド、シランカップリング剤及びシリカ粒子を混錬することにより得られる。そのまま、あるいは、さらに他の樹脂やゴムに強化材料・改質材料として添加するマスターバッチとして用いることで、工業製品などの用途に好適に使用できる。

Description

明細書 ポリオレフイン樹脂組成物およびその製造方法 技術分野
本発明は、 ポリオレフイン樹脂組成物およびその製造方法に関する。 背景技術
ポリオレフイン樹脂は軽く成形が容易である程度の機械的強度を備えているの で広い範囲に使用されている。 し力、し、 強度や弾性率が必要な場合はガラス繊維 、 タルク、 クレー、 タンカル等を添加するが、 加工性や軽量性が損なわれたり、 成形品の外観が悪くなる場合があり、 このような欠点を改良したポリオレフイン 樹脂が求められていた。
例えば、 ポリプロピレンとポリアミドの界面での剥離のない軽量複合繊維が開 示されている (例えば、 特開平 3— 2 7 9 4 1 9号公報の第 2頁、 特開平 4一 2 7 2 2 2 2号公報の第 2頁、 特開平 4一 2 8 1 0 1 5号公報の第 2頁参照) 。 芯 鞘繊維でポリプロピレンの染色性を改善を目的としている。 し力、し、 これらの方 法や繊維は口径の小さな紡糸ノズルから押し出し、 高速紡糸したり溶媒処理、 そ の他溶融して太さ 0 . 1 ~ 1デニール (d ) の極細繊維を得るのが目的であった ので生産性が悪く経済的な製法とは言えない。 またこれらの繊維は極細繊維の連 続繊維であって光沢や風合の良い織物、 合成皮革の素材として優れているがゴム や樹脂に充填して混練する場合には連続繊維であるために混練による分散が困難 であった。
高分子化学, 2 9 , 3 2 4 , 2 6 5 ( 1 9 7 2 ) 及び高分子論文集, 4 7, 4 , 3 3 1 ( 1 9 9 0 ) には無水マレイン酸変性ポリプロピレンを少量介在させた ナイ口ン Zポリプロピレンプレンド系では両者の相溶性が向上して分散粒子径を 極めて小さくして機械的性質 (耐衝撃性, 引張強度) を向上させている。 しかし プレンド比が 5 0 κ 5 0付近で機械的性質が著しく低下した。 ポリアミド繊維が 微細にポリオレフインマトリックス中に分散した組成物が開示された (例えば、 特開平 1 1一 1 0 6 5 7 0号公報の第 1頁参照) 。 この組成物はゴムや樹脂の強 化材料として有望でありポリオレフインを加えると加工性、 強度及び弾性率が向 上する。
また、 特開平 1 1一 3 0 2 4 6 4公報 (第 1頁) には、 ポリオレフインを 9 9 〜9 0重量部、 ポリアミド繊維を 1〜 1 0重量部含有する組成物が開示されてい る。 この組成物は成形加工性、 軽量性に優れると共に強度や弾性率、 寸法安定性 も良好である。 しかしながら、 この公報に開示の組成物には、 耐磨耗性について は改善がなされていない。 開示の概要
よって本発明は、 耐磨耗性、 難燃性に優れ、 かつ強度や弾性率等の特性が更に 向上したポリオレフィン樹脂組成物およびその製造方法を提供することを目的と する。
上記目的を達成するために、 本発明によれば、 ポリオレフイン、 ポリアミド繊 維、 シランカップリング剤及びシリカ粒子を含有することを特徴とするポリオレ フィン樹脂組成物が提供される。
好ましくは、 前記ポリアミド繊維中にシリカ粒子を含有している。
好ましくは、 前記シリカ粒子の含有量が、 前記ポリオレフイン 1 0 0重量部に 対して 1〜 1 0 0重量部である。
好ましくは、前記ポリオレフィンと前記ポリアミド繊維の存在比が 5: 5〜 9 : 1 (ポリオレフイン:ポリアミド) の範囲内である。 ここで前記存在比が 8 : 2 (ポリオレフイン:ポリアミド) であることが好ましい。
好ましくは、前記ポリアミド繊維の平均繊維径が 1 μΓη以下であり、 ァスぺク卜 比が 2 0以上、 1, 0 0 0以下である。
本発明によれば、 ポリオレフイン樹脂組成物の製造方法であって、
少なくとも、 ポリオレフイン、 ポリアミ ド繊維及びシランカップリング 剤からなる樹脂組成物を用意するステップと、
シリカ粒子を用意するステップと、
前記樹脂組成物と前記シリカ粒子を混練するステツ.プとを具備して成る. ものも提供される。
この場合、 前記シリカ粒子の添加量が、 前記ポリオレフイン 1 0 0重量部に対 して 1〜1 0 0重量部であることが好ましい。
本発明によれば、 ポリオレフイン樹脂組成物の製造方法であって、
少なくとも、 ポリオレフイン、 シランカツプリング剤及びシリ力粒子か らなる樹脂組成物を用意するステップと、
ポリアミドを用意するステップと、
前記樹脂組成物と前記ポリアミドを混練するステツプとを具備して成る ものも提供される。
本発明によれば、 ポリオレフイン樹脂組成物の製造方法であって、
ポリオレフイン、 ポリアミド、 シランカップリング剤及びシリカ粒子を 用意するステップと、
前記ポリオレフイン、 前記ポリアミド、 前記シランカップリング剤及び 前記シリカ粒子を混練するステップとを具備して成るものも提供される。
これらの場合、 前記シリカ粒子の添加量が、 前記ポリオレフイン 1 0 0重量部 に対して 1〜6 0重量部であることが好ましい。
好ましくは、 前記ポリオレフインと前記ポリアミ ドの添加量比が 5 : 5〜9 : 1 (ポリオレフイン:ポリアミド) である。 ここで前記添加量比が 8 : 2 (ポリ ォレフィン:ポリアミド) であることが好ましい。
好ましくは、 バンバリ一型ミキサー、 ニーダー、 ニーダーエキストルーダー、 オープンロール、 一軸混練機、 二軸混練機を用いて、 ポリオレフインの融点より
1 o°c以上、ポリアミド繊維、ポリアミドの融点以下の温度で混練を十分に行う。 本発明のポリオレフイン樹脂組成物により、 ポリオレフイン、 ポリアミド繊維 及びシランカップリング剤からなる樹脂組成物よりも、 耐磨耗性、 難燃性、 強度 や弾性率等を向上させることが出来る。 この作用機構は、 明確ではないが、 ポリ ォレフィン、 ポリアミド、 シランカップリング剤及びシリカ粒子の混合物等を混 練することにより、 該混合物中の各成分が、 熱履歴、 圧力履歴を受けて、 図 1に 示すように、 シランカップリング剤 Cによるポリオレフイン P oのシラン変性部 とポリアミド繊維 P Aのアミド結合部の水素との結合に加えて、 かかるポリオレ フィン P Oのシラン変性部とシリ力粒子 Sとの結合が生じているためと考えられ る。 図面の簡単な説明
図 1は、 本発明におけるポリオレフイン樹脂組成物の推定作用機構を示す概念 図である。
図 2 A〜 Cは、 本発明におけるポリォレフィン樹脂組成物の耐磨耗性の評価方 法を示す概念図である。 発明を実施するための最良の形態
以下、 本発明のポリオレフイン樹脂組成物およびその製造方法について詳細に 説明する。
本発明に用いられるポリオレフイン樹脂としては、 特に限定されず、 8 0〜2 50°Cの範囲の融点のものが好ましい。 このような好適な例としては、 炭素数 2 〜 8のォレフィンの単独重合体や共重合体及び、 炭素数 2〜 8のォレフインと酢 酸ビニルとの共重合体、 炭素数 2〜 8のォレフインとァクリル酸或いはそのエス テルとの共重合体、 炭素数 2〜 8のォレフインとメタァクリル酸或いはそのエス テルとの共重合体、 及び炭素数 2〜 8のォレフインとビニルシラン化合物との共 重合体が好ましく用いられるものとして挙げられる。
具体例としては、 高密度ポリエチレン、 低密度ポリエチレン、 線状低密度ポリ エチレン、 ポリプ Elピレン、.— Xチレン -プロピレンブロック共重合体、. エチレン ■プロピレンランダム共重合体、 ポリ 4ーメチルペンテン一 1、 ポリブテン一 1 , ポリへキセン一 1、 エチレン '酢酸ビニル共重合体、 エチレン■ ビニルアルコ —ル共重合体、 エチレン■アクリル酸共重合体、 エチレン .アクリル酸メチル共 重合体、 エチレン■アクリル酸ェチル共重合体、 エチレン 'アクリル酸プロピル 共重合体、 エチレン 'アクリル酸ブチル共重合体、 エチレン■アクリル酸 2—ェ チルへキシル共重合体、 エチレン 'アクリル酸ヒドロキシェチル共重合体、 ェチ レン ' ビニルトリメトキシシラン共重合体、 エチレン ' ビニル卜リエトキシシラ ン共重合体、 エチレン ' ビニルシラン共重合体などがある。 また、 塩素化ポリエ チレンや臭素化ポリエチレン、 クロロスルホン化ポリエチレンなどのハロゲン化 ポリオレフインも好ましく用いられる。
これらポリオレフィンのなかで特に好ましいものとしては、 高密度ポリエチレ ン (HDPE) 、 低密度ポリエチレン (LDPE) 、 線状低密度ポリエチレン ( L LDPE) 、 ポリプロピレン (PP) 、 エチレン■プロピレンブロック共重合 体 (E P BC) 、 エチレン■プロピレンランダム共重合体 (E P RC) 、 ェチレ ン '酢酸ビニル共重合体 (EVA) 、 エチレン■アクリル酸ェチル共重合体 (E EA) 及ぴエチレン ' ビニルアルコール共重合体が挙げられ、 中でもメルトフ口 一インデックス (MF I ) が 0. 2〜50 gZI 0分の範囲のものが最も好まし いものとして挙げられる。 これらを 1種のみ用いてもよく、 2種以上を組合せて もよい。
本発明に用いられるポリアミドは、 特に限定されず、 主鎖中にアミド基を有す る熱可塑性ポリアミド (以下、 ポリアミド) であり、 融点 1 3 5〜 3 5 0 °Cの範 囲のものが用いられ、 しかも前記ポリオレフインの融点より 2 0 °C以上高いもの であり、 中でも融点 1 6 0〜2 6 5 °Cの範囲のものが好ましい。 かかるポリアミ ドとしては、 押出し及び延伸によって強靱な繊維を与えるものが好ましいものと して挙げられる。
ポリアミドの具体例としてはナイロン 6、 ナイロン 6 6、 ナイロン 6—ナイ口 ン 6 6共重合体、 ナイロン 6 1 0、 ナイロン 6 1 2、 ナイロン 4 6、 ナイロン 1 1、 ナイロン 1 2、 ナイロン M X D 6、 キシリレンジァミンとアジピン酸との重 縮合体、 キシリレンジァミンとピメリン酸との重縮合体、 キシリレンジァミンと スペリン酸との重縮合体、 キシリレンジァミンとァゼライン酸との重縮合体、 キ シリレンジァミンとセバシン酸との重縮合体、 テトラメチレンジァミンとテレフ タル酸の重縮合体、 へキサメチレンジァミンとテレフタル酸の重縮合体、 ォクタ メチレンジァミンとテレフタル酸の重縮合体、 卜リメチルへキサメチレンジアミ ンとテレフタル酸の重縮合体、 デカメチレンジァミンとテレフタル酸の重縮合体 、 ゥンデカメチレンジァミンとテレフタル酸の重縮合体、 ドデカメチレンジアミ ンとテレフタル酸の重縮合体、 テトラメチレンジァミンとイソフタル酸の重縮合 体、 へキサメチレンジァミンとイソフタル酸の重縮合体、 ォクタメチレンジアミ ンとイソフタル酸の重縮合体、 トリメチルへキサメチレンジァミンとイソフタル 酸の重縮合体、 デカメチレンジァミンとイソフタル酸の重縮合体、 ゥンデカメチ レンジァミンとイソフタル酸の重縮合体及びドデカメチレンジァミンとイソフタ ル酸の重縮合体などが挙げられる。
これらのポリアミドの内、 特に好ましい具体例としては、 ナイロン 6 ( P A 6 ) 、 ナイロン 66 (PA66) 、 ナイロン 1 2 (PA 1 2) 、 ナイロン 6—ナイ ロン 66共重合体などが挙げられる。 これらの 1種又は 2種以上でもよい。 これ らのポリアミドは、 1 0, 000〜200, 000の範囲の分子量を有している ことが好ましい。
本発明に用いられるシランカップリング剤は、 特に限定されず、 具体例として は、 ビニル卜リメ トキシシラン、 ビニル卜リエ卜キシシラン、 ビニルトリス (β ーメ 卜キシエトキシ) シラン、 ビニル卜リアセチルシラン、 γ—メタクリロキシ プロビルトリメ トキシシラン、 β— (3, 4一エポキシシクロへキシル) ェチル トリメ トキシシラン、 γ—グリシドキシプロピル卜リメ トキシシラン、 γ—グリ シドキシプロピルメチルジメ トキシシラン、 γ—グリシドキシプロピルメチルジ エトキシシラン、 γ—グリシドキシプロピルェチルジメ トキシシラン、 γ—グリ シドキシプロピルェチルジェトキシシラン、 Ν— β— (アミノエチル) アミノブ 口ビルトリメトキシシラン、 Ν—β— (アミノエチル) ァミノプロピルトリエト キシシラン、 Ν—β— (アミノエチル) ァミノプロピルメチルジメ トキシシラン 、 Ν—β— (アミノエチル) ァミノプロピルェチルジメ トキシシラン、 Ν— β—
(アミノエチル) ァミノプロピルェチルジェトキシシラン、 γ—ァミノプロピル トリエトキシシラン、 Ν—フエ二ルー γ—ァミノプロビルトリメ トキシシラン、 γ— 〔Ν— (β—メタクリロキシェチル) 一 Ν, Ν—ジメチルアンモニゥム (ク 口ライド) 〕 プロピルメ トキシシラン及ぴスチリルジアミノシランなどが挙げら れる。 中でも、 アルコキシ基などから水素原子を奪って脱離し易い基及び又は極 性基とビニル基とを有するものが特に好ましく用いられる。
シランカップリング剤は、 ポリオレフイン成分とポリアミド成分の合計量 1 0 0重量部に対し、 0. 1〜5. 5重量部の範囲が好ましく、 特に好ましくは 0. 2〜3. 0重量部の範囲である (シリカ同時添加の場合: 0. 1 ~8重量部 (好 ましくは 0. 2〜4重量部) 、 シリカ後添加の場合: 0. 1〜5. 5およびシリ 力にシランカップリング処理) 。 シランカップリング剤の量が 0 . 1重量部より も少ないと、 耐磨耗性、 難燃性、 強度の高い組成物が得られず、 シランカツプリ ング剤の量が 5 . 5重量部よりも多いと弾性率に優れた組成物が得られない。 シ ランカップリング剤の量が 0. 1重量部より少ないと、 ポリオレフイン成分とポ リアミド成分とシリカ粒子との間に強固な結合が形成されず、 強度の低い組成物 しか得られない。 一方、 シランカップリング剤の量が 5 . 5重量部より多いと、 ポリアミド成分は良好な微細繊維にならないので、 やはり弾性率に劣る組成物し か得られない。 . . . . _
シランカップリング剤を用いる場合は、 有機過酸化物を併用することができる 。 有機過酸化物を併用することによりポリオレフィン成分の分子鎖にラジカルが 形成されシランカップリング剤と反応することによりポリオレフイン成分とシラ ンカップリング剤の反応は促進されるからである。 有機過酸化物の使用量はポリ ォレフィン成分 1 0 0重量部に対して 0. 0 1〜1 . 0重量部である。 有機過酸 化物としては 1分間の半減期温度が、 ポリオレフィン成分の融点或いはシランカ ップリング剤成分の融点のいずれか高い方と同じ温度ないし、 この温度よリ 3 0 °C程高い温度範囲であるものが好ましく用いられる。 具体的には 1分間の半減期 温度が 1 1 0〜 2 0 0 °C程度のものが好ましく用いられる。
有機過酸化物の具体例としてはジ—α—クミルパ一ォキサイド、 1, 1ージ一 t一ブチルパーォキシ一 3 , 3, 5—卜リメチルシクロへキサン、 1, 1ージー t一ブチルパーォキシシクロへキサン、 2, 2—ジー t一ブチルパーォキシブタ ン、 n—ブチル 4, 4ージ一 t一ブチルパーォキシバレリネー卜、 2, 2—ビス ( 4, 4ージ一 t一ブチルパーォキシシクロへキサン) プロパン、 2 , 2 , 4一 トリメチルペンチルバ一ォキシネオデカネ一卜、 α—クミルパーォキシネオデカ ネート、 t一ブチルパーォキシネオへキサネート、 t一ブチルパーォキシピパレ ート、 t一ブチルパーォキシァセート、 t一ブチルパーォキシラウレート、 t一 ブチルパーォキシベンゾエー卜、 t一ブチルパーォキシイソフタレートなどが挙 げられる。 中でも 1分間の半減期温度が溶融混練温度ないしこの温度よリ 3 0 °C 程高い温度の範囲であるもの、 具体的には 1分半減期温度が 8 0〜 2 6 0 °C程度 のものが好ましく用いられる。
本発明に用いられるシリカ粒子 (カップリング処理、 C V D法等、 表面処理剤 、 処理方法等により表面処理されたものを含む) としては、 特に限定されないが 、 その粒径サイズとしては、 好ましくは 1 n m〜1 Ο Ο μΓΠであり、 特に好まし くは 1 nm〜1 O O nmである。 . ... 本発明のポリオレフイン樹脂組成物における該シリカ粒子の含有量としては、 特に限定されないが、 該ポリオレフイン樹脂組成物 1 0 0重量部に対して 1 ~ 1 0 0重量部が好ましく、 より好ましくは 1〜 6 0重量部である。
6 0重量部を超えると、 強度が得られないことがある。
また、 1重量部未満であると、 前述のシランカップリング剤とシリカ粒子間の 水素結合部分が少なくなるため、 やはり、 所望の耐磨耗性、 強度が得られない。 し力、し、 実際には、 該シリカ粒子の好ましい含有量は、 本発明のポリオレフィ ン樹脂組成物の製造時における混練条件等によって異なるため、 該混練時に適宜 好ましい量を選択すればよい。
本発明のポリオレフイン樹脂組成物におけるポリアミド成分は、 その殆どが微 細な繊維として上記マトリックス中に均一に分散している。 具体的にはその 7 0 重量パーセント、 好ましくは 8 0重量パーセン卜、 特に好ましくは 9 0重量パー セント以上が微細な繊維として分散している。 ポリアミド成分の繊維は、 平均繊 維径が 1 以下で平均繊維長が 1 0 O m以下であることが好ましい。 ァスぺク 卜比 (繊維長 Z繊維径の比) は 2 0以上であり 1, 0 0 0以下であことが好まし い。 そして、 ポリオレフイン成分はポリアミド成分と界面で結合している。
本発明のポリオレフィン樹脂組成物におけるポリオレフィン成分とポリアミド 成分の存在比は、 特に限定されないが、 5 : 5〜9 : 1 (ポリオレフイン:ポリ アミド) が好ましく、 より好ましくは、 8 : 2 (ポリオレフイン:ポリアミド) である。
ポリオレフィン成分の存在比が 5未満であると伸びが低下するので、 好ましく ない。 ポリアミド成分の存在比が 1未満であると弾性率或いは強度の向上効果が 少なく、 また 5より多いと成形品の伸びが悪い。
次に本発明のポリオレフィン樹脂組成物の製造方法について説明する。
本発明のポリオレフィン樹脂組成物の製造方法は以下の 2形態に大別される。
(A) 予め作成された、 ポリオレフイン、 ポリアミド繊維及びシランカツプリ ング剤からなる樹脂組成物とシリ力粒子とを混練する。
(B) ポリオレフイン、 ポリアミド、 シランカップリング剤及びシリカ粒子を 混練する。
(A) の製造方法形態における、 ポリオレフイン、 ポリアミド繊維及びシラン カップリング剤からなる樹脂組成物の製造方法は、 特に限定されないが、 例えば 以下の工程から製造される。
(A 1 ) ポリオレフイン成分 (成分 1 ) とシランカップリング剤 (成分 2) とを 溶融混練して化学変成する。
(A2) 成分 2で化学変成した成分 1にポリアミド成分 (成分 3) をその融点以 上で溶融混練する。
(A3) 成分 2で化学変成した成分 1に成分 3のポリアミ ドをその融点以上で溶 融混練■化学変成して押出す。
(A4) 溶融混練■化学変成した押出物を成分 1の融点以上でしかも成分 3の融 点以下でドラフトをかけつつ延伸又は圧延する。
(A5) 延伸又は圧延した組成物を室温に冷却してペレタイズする。
(A6) 必要なら得られたペレツ卜に残余の成分 1のポリオレフインを追加して 成分 3の融点以下で溶融混練して冷却してペレタイズする。
工程 A 1について説明する。溶融混練温度は成分 1の融点以上(融点より 3 0 °C 高い) の温度である。 融点より 3 0 °C高い温度で溶融混練すると成分 2のシラン カップリング剤と反応して化学変成される。 溶融混練は樹脂やゴムの混練に通常 用いられている装置で行うことができる。 このような装置としてはバンバリ一型 ミキサー、ニーダー、ニーダーエキス卜ルーダー、オープンロール、一軸混練機、 二軸混練機などが用いられる。 これらの装置の中では短時間で且つ連続的に溶融 混練が行える点で二軸混練機が最も好ましい (以下の各工程でも.同様である 1。— 工程 A 2について説明する。溶融混練温度は成分 3の融点以上(融点より 1 0 °C 高い) の温度である。 溶融混練温度が成分 3の融点より低いと混練できず、 繊維 状に分散しないので、 融点より高い温度、 特に好ましくは 2 0 °C高い温度で溶融 混練する。
工程 A 3について説明する。 押出しする工程において得られた混練物を紡糸口 金或いはインフレーションダイ又は Tダイから押出す。 紡糸、 押出しのいずれも 成分 3の融点より高い温度で実施する必要がある。 具体的には、 この融点より 3 0 °C高い温度の範囲で実施することが好ましい。 本工程で成分 3の融点より低い 温度で溶融■混練を行っても、 混練物は成分 1からなるマトリックス中に成分 3 の微細な繊維が分散した構造にはならない。 従って、 かかる混練物を紡糸 "延伸 しても、 成分 3は微細な繊維にはなり得ない。
工程 A 4について説明する。 押出された紐状乃至糸状紡糸は、 連続的に冷却、 延伸、 又は圧延処理して行われる。 冷却,延伸又は圧延処理は、 成分 3の融点よ リ 1 0 °C以下の低い温度で行われる。 延伸及び圧延することにより、 より強固な 繊維が形成されるので繊維強化樹脂組成物としての特性がよリ発揮できるのでよ リ好ましい。 延伸又は圧延は、 例えば混練物を紡糸口金から押し出して紐状ない し糸状に紡糸し、 これをドラフ卜を掛けつつホビンなどに巻き取る。 または、 切 断してペレツ卜にするなどの方法で実施できる。 ここでドラフトを掛けるとは、 紡糸口金速度よリ卷取速度を高くとることを言う。 卷取速度 紡糸口金速度の比
(ドラフト比) は、 1 . 5〜 1 0 0の範囲とすることが好ましく、 更に好ましく は 2〜 5 0の範囲、 特に好ましくは 3〜 3 0である。
工程 A 5について説明する。 ペレツ卜化することにより樹脂やゴム成分などを 追加して均一に混練できるから、 ポリアミド繊維強化ポリオレフイン樹脂組成物 としてはペレツ卜状のものを用いることが好ましい。 ペレツト状の樹脂組成物を 用いれば、 樹脂組成物はゴムや樹脂と均一に混練でき、 微細な繊維が均一に分散 したポリアミド繊維強化樹脂組成物が容易に得られるからである。
上記各工程は工程毎に分離して説明したが、 各成分及び有機過酸化物などを 各々供給できる複数の供給口を有し、 且つ各供給口に一対一対応する複数の混練 帯を有する二軸混練機を用いて一括して連続的なプロセスで処理することも可能 である。 そうすることにより経済的、 安定した、 安全な製造方法になる。
上記のようにして得られた、 ポリオレフイン、 ポリアミド繊維及びシランカツ プリング剤からなる樹脂組成物とシリカ粒子とを混練する方法としては、 特に限 定されないが、 例えば、 ポリオレフイン、 ポリアミド繊維及びシランカップリン グ剤からなる樹脂組成物 (成分 4 ) のペレットとシリカ粒子 (成分 5 ) とを、 バ ンバリー型ミキサー、 ニーダー、 ニーダーエキストルーダー、 オープンロール、 —軸混練機、 二軸混練機などを用いて、 ポリオレフインの融点より 1 o °c以上、 ポリアミド融点以下で加熱混練する方法等が挙げられる。 上記の加熱混鰊によ リ成分 5が、 成分 4に含まれるシラン力ップリング剤との間で水素結合が形成さ れるものと推測される。 上記のように加熱混鰊されたものは、 押出し、 延伸又は 圧延、 ペレタイズすることが好ましい。
( B) の製造方法形態における、 ポリオレフイン、 ポリアミド繊維及ぴシラン カップリング剤、 シリカ粒子からなる樹脂組成物の製造方法は、 特に限定されな いが、 例えば以下の工程から製造される。
(B 1 ) ポリオレフイン成分 (成分 1 ) とシランカップリング剤 (成分 2) とを 溶融混練して化学変成する。
(B2) 成分 2で化学変成した成分 1にポリアミド成分 (成分 3) とシリカ粒子 (成分 5) を成分 3の融点以上で溶融混練する。
(B3) 成分 2で化学変成した成分 1に成分 3のポリアミドをその融点以上で溶 融混練■化学変成して押出す。
(B4).溶融混練■化学変成した押出物を成分 1の融点以上でしかも成分 の融 点以下でドラフ卜をかけつつ延伸又は圧延する。
( B 5 ) 延伸又は圧延した組成物を室温に冷却してペレタイズする。
(B6) 必要なら得られたペレツ卜に残余の成分 1のポリオレフインを追加して 成分 3の融点以下で溶融混練して冷却してペレタイズする。
工程 B 1について説明する。溶融混練温度は成分 1の融点以上(融点より 30°C 高い) の温度である。 融点より 30 °C高い温度で溶融混練すると成分 2のシラン カップリング剤と反応して化学変成される。 溶融混練は樹脂やゴムの混練に通常 用いられている装置で行うことができる。 このような装置としてはバンバリ一型 ミキサー、ニーダー、ニーダ一エキス卜ルーダー、オープンロール、一軸混練機、 二軸混練機などが用いられる。 これらの装置の中では短時間で且つ連続的に溶融 混練が行える点で二軸混練機が最も好ましい (以下の各工程でも同様である) 。 工程 B 2について説明する。溶融混練温度は成分 3の融点以上(融点より 1 0°C 高い) の温度である。 溶融混練温度が成分 3の融点より低いと混練できず、 繊維 状に分散しないので、 融点より高い温度、 特に好ましくは 20°C高い温度で溶融 混練する。
工程 B 3について説明する。 押出しする工程において得られた混練物を紡糸口 金或いはインフレーションダイ又は Tダイから押出す。 紡糸、 押出しのいずれも 成分 3の融点より高い温度で実施する必要がある。 具体的には、 この融点より 3 0 °C高い温度の範囲で実施することが好ましい。 本工程で成分 3の融点より低い 温度で溶融■混練を行っても、 混練物は成分 1からなるマトリックス中に成分 3 の微細な繊維が分散した構造にはならない。 従って、 かかる混練物を紡糸,延伸 しても、 成分 3は微細な繊維に l なり得ない。
工程 B 4について説明する。 押出された紐状乃至糸状紡糸は、 連続的に冷却、 延伸、 又は圧延処理して行われる。 冷却 '延伸又は圧延処理は、 成分 3の融点よ リ 1 0°C以下の低い温度で行われる。 延伸及び圧延することにより、 ょリ強固な 繊維が形成されるので繊維強化樹脂組成物としての特性がよリ発揮できてより好 ましい。 延伸又は圧延は、 例えば混練物を紡糸口金から押し出して紐状ないし糸 状に紡糸し、 これをドラフトを掛けつつホビンなどに巻き取る。 または、 切断し てペレツ卜にするなどの方法で実施できる。 ここでドラフトを掛けるとは、 紡糸 口金速度より巻取速度を高くとることを言う。 卷取速度 Z紡糸口金速度の比 (ド ラフ卜比) は、 1 . 5〜 1 0 0の範囲とすることが好ましく、 更に好ましくは 2 〜 5 0の範囲、 特に好ましくは 3〜 3 0である。
工程 B 5について説明する。 ペレット化することにより樹脂やゴム成分などを 追加して均一に混練できるから、 ポリアミド繊維強化ポリオレフイン樹脂組成物 としてはペレツト状のものを用いることが好ましい。 ペレツ卜状の樹脂組成物を 用いれば、 樹脂組成物はゴムや樹脂と均一に混練でき、 微細な繊維が均一に分散 したポリアミド繊維強化樹脂組成物が容易に得られるからである。
上記各工程は工程毎に分離して説明したが、 各成分及び有機過酸化物などを 各々供給できる複数の供給口を有し、 且つ各供給口に一対一対応する複数の混練 帯を有する二軸混練機を用いて一括して連続的なプロセスで処理することも可能 である。 そうすることにより経済的、 安定した、 安全な製造方法になる。
上記の加熱混練により、 成分 1が成分 2と反応して化学変性され、 成分 3が成 分 1からなるマトリックス中に成分 3の微細な繊維が分散した構造になる。 さら に成分 3の微細な繊維より微細な成分 1のひげ状繊維が、 成分 3の繊維表面に形 成する場合がある。また、このとき成分 3も成分 2で化学変性される。成分 5は、 成分 2で化学変性された部分と化学結合し成分 1と成分 3を部分的に架橋した状 態を作り上げると推察され、 ゲル分率が成分 5を添加しない場合よリも高い値と なり、 種々の特性を向上させている。
本発明のポリオレフイン樹脂組成物には、 このほかカーボンブラック、 ホワイ トカーボン、 活性炭酸カルシウム、 超微粒子珪酸マグネシウム、.水酸化マグネシ ゥム、 フェライト、 ゼォライ卜、 ハイスチレン樹脂、 フエノール樹脂、 リグニン 、 変成メラミン樹脂、 クマロンインデン樹脂、 石油樹脂などの補助剤、 炭酸カル シゥム、 塩基性炭酸マグネシウム、 クレー、 タルク、 雲母、 亜鉛華、 モンモリロ ナイ卜、 ワラストナイ卜、 硫酸バリウムなど各種の充填剤、 アミン ·アルデヒド 類、 ァミン 'ケトン類、 アミン類、 フ: cノール類、 イミダゾール類、 含硫黄系酸 化防止剤、 含燐系酸化防止剤などの安定剤及び各種顔料を含んでいてもよい。 以下に、 本発明を数値例により説明するが、 本発明はこれらに限定されるもの ではない。
実施例及び比較例において、 ポリオレフイン樹脂組成物の物性は以下のように して測定した。
ゲル分率:樹脂組成物をステンレス製のメッシュ容器に入れ、 キシレン中に 1 2 0 °C、 2 4時間浸潰した後の重量を、 浸漬前の重量の百分率で示した。
繊維形状 (形態■分散性と平均繊維径) :樹脂組成物をキシレンに溶解して繊 維分を取り出し洗浄した後、 走査型電子顕微鏡で観察し、 微細な繊維で分散して いる場合は分散性良好、 微細な繊維やフィルム状で凝集した場合は分散不良と評 価した。 分散性良好な場合は、 分散した微細繊維 2 0 0本について、 上記の走査 型電子顕微鏡で繊維径を測定し、 その平均を求めて平均繊維径とした。 弓 I張強度 '引張弾性率.伸び: AS TM 0638に準じて温度23° 引張速 度 50mmZm i nで、 引張強度、 引張弾性率及び伸びを求めた。
難燃性: J I S K7201— 2に準じて温度 23 °Cでの酸素指数を求めた。 試験片の型は IV (長さ : 80〜 15 Omm、 幅: 6. 5±0. 5mm、 厚さ : 3± 0. 25mm) を用いた。 点火方法は A法 (上端表面点火) を用いた。
耐磨耗性 (スクレープ特性) :図 2Aに示す通り、 シート固定下治具 2にサン プルシート 1 (0. 3 mm厚に成形) を乗せ、 その上からシート固定上治具 3を かぶせてサンプルシート 1を固定し、 シート固定上治具 3の穴から見えてぃるサ . ンプルシート 1に以下の処置をする。
1 ) 0. 45±0. 01 mmのピアノ線 4を治具の長手方向に対して直角になる ように設置する。
2) ピアノ線 4を 55±5サイクル 分 ( 1サイクルは 1往復運動からなる) とな るように動かす。
3) その際、 7±0. 05 Nの荷重をピアノ線 4にかける。
4) 磨耗長さは 1 5mmとし、 ピアノ線 4が下治具 2に接触したときの往復回数 を記録する。 ピアノ線 4は 1回毎に取り替えて 3回測定し、 3回の最小値を耐磨 耗性値とする。
〔実施例 1〕
ポリオレフイン (成分 1) として低密度ポリエチレン 〔宇部興産社製, F52 2, 融点 1 1 0°C, MFR=5. 0 (gZI Om i n) 〕 100重量部に、 シラ ンカップリング剤(成分 2) として γ—メタクリロキシプロピル卜リメ トキシシラ ン 1. 0重量部と酸化防止剤のィルガノックス 1010を 0. 5重量部及び過酸 化物としてジー α—クミルパーオキサイド (濃度 40%) を 0. 5重量部を混合し て 1 70°Cに加熱した Φ45mmの二軸押出機に投入し混練してペレット化した シラン変性ポリエチレンを得た。 得られたシラン変性ポリエチレン全量とポリア ミド (成分 3) としてナイロン 6 (宇部興産社製, 1 030B, 融点 21 5〜2 25°C) 50重量部と更にィルガノックス 1 01 0を 0. 5重量部を 235°Cに 設定した 3mm(D のダイスを付けた二軸押出機に投入して混練、 ダイスよリスト ランド状に押し出し、 空気で冷却して引き取りロールでドラフ卜比 7で引取り 5 インチロール間で室温で 1. 5倍延伸してペレタイズした。 ペレット化した形状 は径 1 mm, 長さ 3mmであった。 得られたペレットを熱トルエンでポリエチレ ンを溶出した。 不溶分は攪拌羽根にまとわりつかず, 懸濁液は均一であった。 不 溶分を走査型電子顕微鏡で観察すると径が 0. _ 3 μτηの微級な」繊維状であった.。..... 又、 上記得られたペレット全量とシリカ粒子 (成分 5) として 〔日本ァエロジ ル社製, ァエロジル R972, 粒径 1 6 nm〕 1 0重量部を混合して 1 40°Cに 加熱した 2本ロールミルに投入し混練してシート化し、 ペレタイザ一を用いてぺ レット化したポリオレフィン樹脂組成物を得た。
〔実施例 2〜5〕
成分 1と成分 3の配合比を下記表 1の通りに変更した以外は、 上記処方例 1と 同様にポリオレフィン樹脂組成物を得た。
〔実施例 6〕
上記実施例 1と同じ操作で得られたシラン変性ポリエチレン全量と成分 5 〔上 記実施例 1で用いたものと同じシリカ粒子〕 1 0重量部を混合して 1 40°Cに加 熱した 2本ロールミルに投入し混練してペレット化したシリ力粒子分散ポリオレ フィン樹脂組成物を得た。
上記の得られたシリカ粒子分散ポリオレフイン樹脂組成物に成分 3 〔上記実施 例 1で用いたものと同じ〕 20重量部と更にィルガノックス 1 01 0を 0. 5重 量部を、 上記実施例 1と同様に、 235°Cに設定した 3mml5 のダイスを付けた 二軸押出機に投入して混練、 ダイスよリストランド状に押し出し、 空気で冷却し て引き取りロールでドラフト比 7で引取り 5インチロール間で室温で 1. 5倍延
1 伸してペレタイズし、 ポリオレフイン樹脂組成物を得た。
〔実施例 7〕
上記実施例 1と同じ操作で得られたシラン変性ポリエチレン全量と成分 5 〔上 記実施例 1で用いたものと同じシリカ粒子〕 1 0重量部と成分 3 〔上記実施例 1 で用いたものと同じ〕 2 0重量部と更にィルガノックス 1 0 1 0を 0 . 5重量部 を、 上記実施例 1と同様に、 2 3 5 °Cに設定した 3 mm D のダイスを付けた二軸 押出機に投入して混練、 ダイスよリストランド状に押し出し、 空気で冷却して引 き取り 0—ルでドラフト.比 .フ.で引取り 5インチロ了ル間で室温で 1 . 5倍延伸し. てペレタイズし、 ポリオレフイン樹脂組成物を得た。
〔実施例 8〜 1 0〕
成分 5 〔上記実施例 1で用いたものと同じシリカ粒子〕 の添加量を下記表 1の 通リに変更した以外は、 実施例 4と同様にポリオレフィン樹脂組成物を得た。
〔比較例 1 1、 1 2〕
成分 5 〔上記実施例 1で用いたものと同じシリカ粒子〕 を添加しなかったこと 以外は、 実施例 3、 4と同様にポリオレフイン樹脂組成物を得た。
なお、 上記の処方により得られたポリオレフイン樹脂組成物のペレツ卜を、 1 5 0 °Cに加熱したブラベンダープラストグラフで 5分混練し 2 mmの厚さに 1 2 0 °Cでプレスする等の成形処理を行い、 引張試験等に供した。
処方例 1〜 1 2の成分配合と得られた特性値を下記表 1に示す。
表 1より、 ポリオレフイン、 ポリアミ ド繊維、 シランカップリング剤及びシリ 力粒子を含有するポリオレフイン樹脂組成物は、 それらを全て含まないものに較 ベ、 ゲル分率が高いため、 耐磨耗性に優れることが期待され、 また、 難燃性、 強 度や弾性率が向上したものであることが判る。 表 1
Figure imgf000021_0001
9 処方例 9 1 0 1 1 1 2 ポリオレフイン:ポリアミド 8 : 2 8 : 2 8 : 2 7 : 3 配合
シリカ粒子 (重量部) 6 0 1 0 0 0 0 シリカ粒子の添加時期 後添加 後添加
繊維分散性 良 良 良 良 平均粒子径 ( m) 1 1 1 1
. ゲル分率 (%) .一 . 5 2 6 2 2 3 . 3 5. 一 特性値 難燃性 (酸素指数) 2 0 . 6 2 1 . 8 1 9 . 2 1 9 . 6
引張強度 (M P a ) 2 0 2 2 1 9 2 8 伸び (%) 1 0 8 8 0 4 0 耐摩耗性 (回) 4 2 0 4 8 0 6 0 8 0
本発明のポリオレフィン樹脂組成物はポリオレフインマトリックス中に平均繊 維径が 1 μΓ 以下の微細なポリアミド繊維とシリカ粒子が均一に分散していると 共に、 ポリオレフイン、 ポリアミド繊維、 シリカ粒子がシランカップリング剤を 介して結合している。 その結果として、 耐磨耗性、 難燃性に優れ、 かつその他の 強度や弾性率等が更に向上したポリォレフィン樹脂組成物を提供できる。
本発明のポリオレフイン樹脂組成物は、 そのまま、 あるいは、 さらに他の樹脂 やゴムに強化材料■改質材料として添加するマスターバッチとして用いることで 、 工業製品などの用途に好適に使用できる。

Claims

請求の範囲
1 . ポリオレフイン、 ポリアミド繊維、 シランカップリング剤及びシリカ粒 子を含有することを特徴とするポリォレフィン樹脂組成物。
2 . クレーム 1に記載のポリオレフイン樹脂組成物であって、
前記ポリアミド繊維中にシリカ粒子を含有している。
3 . クレーム 1に記載のポリオレフイン樹脂組成物であって、
前記シリカ粒子の含有量が、 前記ポリオレフイン 1 0 0重量部に対して 1〜 1 0 0重量部である。
4 . クレーム 1に記載のポリオレフイン樹脂組成物であって、
前記ポリオレフインと前記ポリアミド繊維の存在比が 5: 5〜9: 1 (ポ リオレフイン:ポリアミド) の範囲内である。
5 . クレーム 4に記載のポリオレフイン樹脂組成物であって、
前記存在比が 8 : 2 (ポリオレフイン:ポリアミド) である。
6 . クレーム 1に記載のポリオレフイン樹脂組成物であって、
前記ポリアミド繊維の平均繊維径が 1 Mm以下であり、ァスぺクト比が 2 0以上、 1 , 0 0 0以下である。
7 . ポリオレフィン樹脂組成物の製造方法であって、
少なくとも、 ポリオレフイン、 ポリアミ ド繊維及びシランカップリング 剤からなる樹脂組成物を用意するステップと、
シリカ粒子を用意するステップと、
前記樹脂組成物と前記シリカ粒子を混練するステップとを具備して成る。
8 . ポリオレフィン樹脂組成物の製造方法であって、
少なくとも、 ポリオレフイン、 シランカップリング剤及びシリカ粒子か らなる樹脂組成物を用意するステップと、
ポリアミドを用意するステップと、
前記樹脂組成物と前記ポリアミ ドを混練するステツプとを具備して成る。
9 . ポリオレフィン樹脂組成物の製造方法であって、
ポリオレフイン、 ポリアミド、 シランカップリング剤及びシリカ粒子を 用意するステップと、
前記ポリオレフイン、 前記ポリアミド、 前記シランカップリング剤及び 前記シリカ粒子を混練するステップとを具備して成る。
1 0. クレーム 7に記載の製造方法であって、
前記シリカ粒子の添加量が、 前記ポリオレフイン 1 0 0重量部に対して 1〜 1 0 0重量部である。
1 1 . クレーム 8に記載の製造方法であって、
前記シリカ粒子の添加量が、 前記ポリオレフイン 1 0 0重量部に対して 1〜 6 0重量部である。
1 2 . クレーム 9に記載の製造方法であって、
前記シリカ粒子の添加量が、 前記ポリオレフイン 1 0 0重量部に対して 1〜 6 0重量部である。
1 3 . クレーム 7に記載の製造方法であって、
前記ポリオレフインと前記ポリアミドの添加量比が 5 : 5〜9 : 1 (ポ リオレフイン:ポリアミド) である。
1 4 . クレーム 1 3に記載の製造方法であって、
前記添加量比が 8 : 2 (ポリオレフイン:ポリアミド) である。
1 5 . クレーム 8に記載の製造方法であって、
前記ポリオレフインと前記ポリアミドの添加量比が 5 : 5〜9 : 1 (ポ リオレフイン:ポリアミド) である。
1 6 . クレーム 1 5に記載の製造方法であって、
前記添加量比が 8 : 2 (ポリオレフイン:ポリアミド) である。
1 7 . クレーム 9に記載の製造方法であって、
前記ポリオレフインと前記ポリアミドの添加量比が 5 : 5〜9 : 1 (ポ リオレフイン:ポリアミド) である。
1 8 . クレーム 1 7に記載の製造方法であって、
前記添加量比が 8 : 2 (ポリオレフイン:ポリアミド) である。
PCT/JP2003/013792 2002-10-29 2003-10-28 ポリオレフィン樹脂組成物およびその製造方法 WO2004039881A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/533,159 US20060241221A1 (en) 2002-10-29 2003-10-28 Polyolefin resin composition and processes for the production thereof
MXPA05004599A MXPA05004599A (es) 2002-10-29 2003-10-28 Composicion de resina de poliolefina y metodo para producirla.
EP03759007A EP1577342A4 (en) 2002-10-29 2003-10-28 POLYOLEFIN RESIN COMPOSITION AND METHOD OF MANUFACTURING THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-314846 2002-10-29
JP2002314846A JP2004149635A (ja) 2002-10-29 2002-10-29 ポリオレフィン樹脂組成物およびその製造方法

Publications (1)

Publication Number Publication Date
WO2004039881A1 true WO2004039881A1 (ja) 2004-05-13

Family

ID=32211629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013792 WO2004039881A1 (ja) 2002-10-29 2003-10-28 ポリオレフィン樹脂組成物およびその製造方法

Country Status (8)

Country Link
US (1) US20060241221A1 (ja)
EP (1) EP1577342A4 (ja)
JP (1) JP2004149635A (ja)
KR (1) KR100730421B1 (ja)
CN (1) CN1317323C (ja)
MX (1) MXPA05004599A (ja)
PL (1) PL375107A1 (ja)
WO (1) WO2004039881A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4201573B2 (ja) * 2002-10-29 2008-12-24 矢崎総業株式会社 電線被覆用樹脂組成物およびそれを用いた電線
JP2007145922A (ja) * 2005-11-25 2007-06-14 Japan Petroleum Exploration Co Ltd 冷媒組成物
WO2011000816A1 (de) * 2009-07-03 2011-01-06 Basf Se Nanokompositblends enthaltend polyamide und polyolefine
JP2012025872A (ja) * 2010-07-26 2012-02-09 Daimaru Sangyo Kk 繊維強化熱可塑性樹脂組成物及び繊維強化熱可塑性樹脂組成物の製造方法
JP2012077223A (ja) * 2010-10-04 2012-04-19 Daimaru Sangyo Kk 繊維強化弾性体及びその製造方法
CN103772798B (zh) * 2012-10-20 2016-08-17 中国石油化工股份有限公司 耐滑擦性的滚塑制品及其制备方法
EP3146002B1 (en) 2014-05-21 2020-03-25 Canon Production Printing Netherlands B.V. Ink composition
CN105256395A (zh) * 2015-11-24 2016-01-20 马海燕 一种纳米改性的大直径共聚聚酰胺单丝及其生产方法
WO2019190407A1 (en) 2018-03-29 2019-10-03 Agency For Science, Technology And Research A reinforced polyolefin composite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179945A (ja) * 1987-01-21 1988-07-23 Ube Ind Ltd 強化ゴム組成物及びその製造方法
JPH11166064A (ja) * 1997-12-02 1999-06-22 Ube Ind Ltd ポリアミド繊維強化ポリオレフィン系無架橋発泡体組成物とその製造法
JPH11302464A (ja) * 1998-04-24 1999-11-02 Ube Ind Ltd ポリアミド繊維強化ポリオレフィン樹脂組成物とその製 造方法
JP2000007842A (ja) * 1998-06-19 2000-01-11 Ube Ind Ltd ポリアミド繊維強化ポリオレフィン樹脂組成物とその製造法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3328339A (en) * 1963-08-28 1967-06-27 Monsanto Co Reinforced plastics containing base treated, calcined particulate fillers and organosilane coupling agents
US4207373A (en) * 1973-04-25 1980-06-10 Allied Chemical Corporation Highly filled polyolefin compositions
US3830777A (en) * 1973-12-17 1974-08-20 Du Pont Reinforced polyamides containing fibrous alkali metal titanates
US4748197A (en) * 1984-06-27 1988-05-31 Allied Corporation Fiber for reinforcing plastic composites and reinforced plastic composites therefrom
DE3773608D1 (de) * 1986-09-26 1991-11-14 Ube Industries Mit fasern verstaerkte kautschukmischung, verfahren zu deren herstellung und deren verwendung.
JPH07224189A (ja) * 1994-02-15 1995-08-22 Ube Ind Ltd 耐摩耗性ゴム組成物
US6058994A (en) * 1997-05-19 2000-05-09 The Yokohama Rubber Co., Ltd. Rubber composition for tire-tread having high frictional force on ice and pneumatic tire using same
JP3661736B2 (ja) * 1997-09-30 2005-06-22 宇部興産株式会社 ポリオレフィン−ポリアミド樹脂組成物の製造方法
NO309484B1 (no) * 1998-11-09 2001-02-05 Elkem Materials Resinsammensetninger og fremgangsmåte for fremstilling av resinsammensetninger
JP2002097311A (ja) * 2000-09-25 2002-04-02 Bridgestone Corp タイヤトレッド用ゴム組成物及びこれを用いたタイヤ
JP2002121331A (ja) * 2000-10-11 2002-04-23 Sumitomo Chem Co Ltd 充填剤を含有するポリオレフィン樹脂組成物の製造方法
JP4987184B2 (ja) * 2000-11-10 2012-07-25 東レ・ダウコーニング株式会社 ポリオレフィン系樹脂組成物およびその製造方法
US6605656B2 (en) * 2000-11-29 2003-08-12 Visteon Global Technologies, Inc. Surface properties in thermoplastic olefin alloys
JP2002201361A (ja) * 2000-12-28 2002-07-19 Wakoo Jushi Kk 難燃性樹脂組成物
JP4736194B2 (ja) * 2001-01-31 2011-07-27 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂組成物および成形品
JP2002260451A (ja) * 2001-03-02 2002-09-13 Kanegafuchi Chem Ind Co Ltd ポリオレフィン系平形電源コードおよび平形電源コード被覆用樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179945A (ja) * 1987-01-21 1988-07-23 Ube Ind Ltd 強化ゴム組成物及びその製造方法
JPH11166064A (ja) * 1997-12-02 1999-06-22 Ube Ind Ltd ポリアミド繊維強化ポリオレフィン系無架橋発泡体組成物とその製造法
JPH11302464A (ja) * 1998-04-24 1999-11-02 Ube Ind Ltd ポリアミド繊維強化ポリオレフィン樹脂組成物とその製 造方法
JP2000007842A (ja) * 1998-06-19 2000-01-11 Ube Ind Ltd ポリアミド繊維強化ポリオレフィン樹脂組成物とその製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1577342A4 *

Also Published As

Publication number Publication date
JP2004149635A (ja) 2004-05-27
EP1577342A1 (en) 2005-09-21
EP1577342A4 (en) 2008-10-08
US20060241221A1 (en) 2006-10-26
PL375107A1 (en) 2005-11-28
KR100730421B1 (ko) 2007-06-19
KR20050088282A (ko) 2005-09-05
MXPA05004599A (es) 2006-04-27
CN1317323C (zh) 2007-05-23
CN1708547A (zh) 2005-12-14

Similar Documents

Publication Publication Date Title
US5948503A (en) Fine fiber reinforced thermoplastic elastomer composition and process for producing same
JP2004152547A (ja) 電線被覆用樹脂組成物およびそれを用いた電線
WO2012046519A1 (ja) 繊維強化弾性体及びその製造方法
WO2012014676A1 (ja) 繊維強化熱可塑性樹脂組成物及び繊維強化熱可塑性樹脂組成物の製造方法
JP3661736B2 (ja) ポリオレフィン−ポリアミド樹脂組成物の製造方法
WO2004039881A1 (ja) ポリオレフィン樹脂組成物およびその製造方法
US7041726B2 (en) Insulating member using abrasion-resistant resin composition
JP5183046B2 (ja) 繊維強化弾性体
JPH11209516A (ja) ポリアミド繊維強化ゴム組成物とその製造法
JP3326957B2 (ja) 繊維強化熱可塑性組成物及びその製造方法
JPH11302464A (ja) ポリアミド繊維強化ポリオレフィン樹脂組成物とその製 造方法
JP2000007842A (ja) ポリアミド繊維強化ポリオレフィン樹脂組成物とその製造法
JPH0987434A (ja) 伝動ベルト用ゴム組成物
JP3453760B2 (ja) ポリアミド繊維強化弾性体組成物及びその製造方法
JP3120711B2 (ja) 繊維強化熱可塑性樹脂組成物の製造法
WO1999048973A1 (fr) Composition de resine renforcee par des fibres de polyamide et procede de fabrication associe
JP2007238752A (ja) ポリアミド樹脂組成物
JP3622491B2 (ja) ポリアミド繊維強化スチレン系樹脂組成物
JP3154390B2 (ja) 繊維強化弾性体組成物の製造法
KR100196545B1 (ko) 미세 섬유-보강된 열가소성 탄성체 조성물 및 이의 제조 방법
JP3624488B2 (ja) ホース用ゴム組成物
JPH11181162A (ja) 高溶融張力ポリオレフィン組成物とその製造法
WO2005065908A1 (ja) ポリオレフィン−ポリアミド樹脂組成物の製造方法
JPH11209535A (ja) ポリアミド繊維強化熱可塑性エラストマー組成物とその製造法
JP2000143875A (ja) 短繊維補強ゴム組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID KR LT MX PH PL PT SK US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1-2005-500710

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 1200500480

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 2003759007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 375107

Country of ref document: PL

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/004599

Country of ref document: MX

Ref document number: 1020057007343

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A24821

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057007343

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003759007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006241221

Country of ref document: US

Ref document number: 10533159

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10533159

Country of ref document: US