[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004028997A1 - フェライト材料 - Google Patents

フェライト材料 Download PDF

Info

Publication number
WO2004028997A1
WO2004028997A1 PCT/JP2003/009735 JP0309735W WO2004028997A1 WO 2004028997 A1 WO2004028997 A1 WO 2004028997A1 JP 0309735 W JP0309735 W JP 0309735W WO 2004028997 A1 WO2004028997 A1 WO 2004028997A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
ferrite material
ferrite
flux density
magnetic flux
Prior art date
Application number
PCT/JP2003/009735
Other languages
English (en)
French (fr)
Inventor
Kenya Takagawa
Eiichiro Fukuchi
Taku Murase
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002382476A external-priority patent/JP4281990B2/ja
Priority claimed from JP2003195398A external-priority patent/JP2005029417A/ja
Priority claimed from JP2003195397A external-priority patent/JP2005029416A/ja
Priority to US10/526,427 priority Critical patent/US20060118756A1/en
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to EP03798373A priority patent/EP1547988A4/en
Publication of WO2004028997A1 publication Critical patent/WO2004028997A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2616Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing lithium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate or hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/727Phosphorus or phosphorus compound content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Definitions

  • the present invention relates to a filament material suitably used for electronic components such as a transformer, a reactor, and a choke coil.
  • transformers and reactors used in power supply lines must be able to use large currents at high temperatures.
  • Materials used for these transformers and reactors include soft magnetic metal materials and ferrite materials. Furite materials are further classified into MnZn-based ferrite and Ni-based ferrite.
  • Soft magnetic metallic materials have higher saturation magnetic flux density than ferrite, so they do not cause magnetic saturation even when a larger current is applied.
  • soft magnetic metal materials generally have problems such as high loss, high cost, high specific gravity, and poor protection.
  • ferrite has excellent cost performance and has the advantage of low loss in the frequency band from several 10 kHz to several 100 kHz.
  • the MnZn-based ferrite has a higher saturation magnetic flux density than the Ni-based ferrite. Because of this, For current transformers and choke coils (both are sometimes collectively referred to as “transformers, etc.”), MnZn-based ferrite is generally used. However, in recent years, a ferrite material exhibiting a high saturation magnetic flux density has been required even when used in a higher temperature range, specifically, near 100 ° C.
  • the MnZn-based ferrite exhibits a higher saturation magnetic flux density than the Ni-based ferrite, the saturation magnetic flux density is not high in the high temperature region around 100 ° C (hereinafter sometimes simply referred to as “high temperature region”). Was enough.
  • Japanese Patent Application Laid-Open No. 2000-159523 discloses that the content of iron oxide is 60 to 75 mol%, the content of zinc oxide is 0 to 20 mol% (however, 0 is not included), and the balance is manganese oxide. Is disclosed.
  • the ferrite sintered body, the saturation magnetic flux density at 100 ° C is not less 45 OMT or more and the measurement conditions at 50 kHz, 1 50 mT, the minimum core loss is 15 00 kW / m 3 or less .
  • Japanese Patent Publication No. 63-59241 discloses that the content of manganese oxide is 13-50mo 1%, the content of zinc oxide is 0-2mo 1% (excluding 0), nickel oxide, magnesium oxide.
  • a ferrite core driven at high temperature in a magnetic field of 500 G or more having a basic composition of 0 to 26 mo 1% of at least one of lithium oxide and the balance of iron oxide 45mo 1% or more is disclosed. Have been.
  • the sintered compact disclosed in Japanese Patent Application Laid-Open No. 2000-159523 obtains a high saturation magnetic flux density even in a high temperature range by increasing the amount of iron in the MnZn-based ferrite. However, the loss value of this ferrite sintered body is still at a high level.
  • Japanese Patent Application Laid-Open No. 2000-159523 discloses a material having a relatively low loss at which the temperature at which the loss value shows a minimum (referred to as the bottom temperature in this specification) is around 20 ° C. Have been. However, in this material, the temperature dependence of the loss has a positive slope in the temperature range of 60 to 130 ° C, which is the temperature range where general transformer and reactor cores are used. This material therefore carries the risk of thermal runaway due to self-heating.
  • the above-mentioned ferrite core disclosed in Japanese Patent Publication No. 63-59241 aims to reduce loss in a temperature range of 150 ° C. or higher.
  • Japanese Patent Publication No. Sho 63-59241 only discusses the reduction of loss, but does not discuss the improvement of the saturation magnetic flux density.
  • the bottom temperature of the ferrite core disclosed in JP-B-63-59241 is 150 ° C or higher. For this reason, in the temperature range (60 to 130 ° C) where general transformers are used, the initial permeability deteriorates and the loss also increases.
  • the ferrite materials disclosed in Japanese Patent Application Laid-Open Nos. 6-310321 and 11-3813 also failed to combine the characteristics related to the saturation magnetic flux density and the low loss at high temperatures.
  • the present invention has been made based on such a technical problem, and an object of the present invention is to provide a ferrite material having a high saturation magnetic flux density and a low loss in a high temperature range around 100 ° C. Another object of the present invention is to provide a ferrite material having a bottom temperature in a temperature range (60 to 130 ° C) in which a general transformer or the like is used. Disclosure of the invention
  • the present inventor has succeeded in obtaining a ferrite material having a high saturation magnetic flux density in a high temperature range and a low loss by selecting the components constituting the ferrite material and the amounts thereof.
  • the ferrite material is, F e 2 0 3: 62 ⁇ 68mo 1%, Z ⁇ : 12 ⁇ 20 mo 1%, N i O: 0. 2 ⁇ 5 mo 1%, and the main component balance substantially M Itashita With a saturation magnetic flux density of 450 mT or more at 100 ° C (measurement magnetic field: 1194 A / m) and a minimum core loss of 1200 kW / m 3 or less (measurement conditions: 100 kHz, 200 mT).
  • the present inventor has found that the saturation magnetic flux density in a high temperature region is improved by including a predetermined amount of Li as a component constituting the ferrite material. That is, the present invention is, F e 2 0 3: 6 2 ⁇ 6 8mo l%, ZnO: 1 2 ⁇ 2 Omo 1%, L I_ ⁇ . . 5: 4Mo less than 1% (not inclusive of 0), to provide a ferrite material which is characterized by comprising a sintered body composed mainly of balance substantially being MnO.
  • the saturation magnetic flux density at room temperature is reduced by including Li.
  • the inclusion of Li within the range recommended by the present invention improves the saturation magnetic flux density at high temperatures.
  • L i oxide is denoted as L i 2 ⁇ , to calculate the composition by L i terms, the L i oxide in the present invention referred to as "L i O 0. 5".
  • the present invention also provides a MnZnNiLi ferrite material characterized by containing a predetermined amount of both Ni and Li as components constituting the fluoride material.
  • This MnZnNiLi ferrite material has Fe 2 ⁇ 3 : 6 2 to 68 mo 1%, ⁇ : 12 to 20 mol%, NiO: 5 mo 1% or less (however, 0 nOT iNCLUDED), L i O 0 5: . 4mo less than 1% (not inclusive of 0), a sintered body mainly composed of the balance substantially MnO.
  • the saturation magnetic flux density can be improved while suppressing an increase in core loss by including Ni and Li in combination.
  • the ferrite material of the present invention in the ferrite material of the present invention described above, as a first subcomponent, 2 5 0 p pm or less S i in S I_ ⁇ 2 equivalent (and ⁇ not inclusive of 0) and 2 C a in C a C0 3 in terms It is desirable to include 500 ppm or less (however, not including 0).
  • the content of the first sub-component is also affected by the displacement of the MnZnNi-based ferrite material, MnZnLi-based ferrite material, and MnZnNiLi-based ferrite material of the present invention. It is valid.
  • Mn Zn containing Ni or / and / or Li as a main component
  • the Ni-based ferrite material, MnZnLi-based ferrite material, and MnZnNiLi-based ferrite material have been described, but the content of the first subcomponent described above indicates that the main component does not contain Ni. It is also effective for the base filler material.
  • the present invention is, F e 2 ⁇ 3: 62 ⁇ 68mo l%, ZnO: 12 ⁇ 23mo l%, balance substantially of a sintered body mainly composed of MnO, and, as a first subcomponent, the S i with containing 800 to 2500 p pm to 80 to 250 p pm and C a in S I_ ⁇ 2 terms in C a C0 3 terms, the saturation magnetic flux density at 100 ° C is 45 OMT or more (measurement magnetic field: 1 194A / m) and a core loss of 1200 kW / m 3 or less (measurement conditions: 100 kHz, 20 OmT).
  • the A ferrite material having a high saturation magnetic flux density and a low loss can be obtained.
  • S i and C a are contained as the first subcomponent
  • S i and C a are converted into S i 0 2 and C a C 0 3 , respectively, where S i 0 2 / C a C 0 3 ( It is effective to set the weight ratio) to be between 0.04 and 0.25.
  • MnZnNi-based ferrite material MnZnLi-based ferrite material, MnZnNiLi-based ferrite material, MnZn-based ferrite material of the present invention
  • the ferrite material of the present invention Nb 2 0 5: 400 p pm or less (not inclusive of 0)
  • Z r 0 2 1 000 p pm or less (not inclusive of 0)
  • T a 2 0 5 1000 ppm or less ( , not including 0)
  • Sn0 2 10000 p pm or less (by ⁇ not inclusive of 0) and T i O. : L OOOO p pm
  • Sn0 2 10000 p pm or less (by ⁇ not inclusive of 0)
  • T i O. L OOOO p pm
  • One or two of the following (but not including 0) can be included.
  • firing at a relatively low temperature of 1350 ° C or less, or even near 1300 ° C becomes possible.
  • the fourth subcomponent within the range recommended by the present invention, even when firing at 1350 ° C or lower, a saturated magnetic flux density in a high temperature region and a low-loss fan are obtained. It becomes possible to obtain the light source material.
  • the above ferrite material of the present invention has a bottom temperature of 60 to 130 at which the core loss shows the minimum value. Exists in the range of C. That is, the bottom temperature of the ferrite material of the present invention can be set in a temperature band in which a general transformer or the like is used.
  • the ferrite material according to the present invention can have a characteristic that the saturation magnetic flux density at 100 ° C. is 480 mT or more (measured magnetic field: 1194 A / m). Further, the ferrite material according to the present invention can reduce the saturation magnetic flux density at 100 ° C.
  • the minimum value of core loss is 1 200 kWZm 3 or less (measurement condition: 100 kHz, 200 mT), and 1 100 kWZm 3 or less (measurement condition: 48 OmT or more (measurement magnetic field: 1194 A / m)) 100 kHz, 20 OmT).
  • the ferrite material of the present invention it is possible to combine the characteristic of high saturation magnetic flux density in a high temperature range and the characteristic of low loss.
  • the filler material according to the present invention is provided as a sintered body having a high relative density of 93% or more and a fine crystal structure having an average crystal grain size of 5 to 30 ⁇ .
  • the ferrite material according to the present invention has a saturation magnetic flux density of 50 OmT or more at 100 ° C (measurement magnetic field: 1194 A / m) and a minimum core loss of 1000 kW nom 3 or less (measurement conditions: 100 kHz) , 20 OmT), the bottom temperature, which is the temperature at which the core loss shows the minimum value, is 80 to 120 ° C, and the initial permeability at room temperature is 800 or more.
  • FIG. 1 is a table showing the composition and magnetic properties of the ferrite core manufactured in the first embodiment.
  • FIG. 2 is a table showing the composition and magnetic properties of the ferrite core manufactured in the second embodiment.
  • FIG. 3 is a chart showing the composition and magnetic properties of the ferrite core produced in the third embodiment,
  • FIG. 4 is a chart showing the composition and magnetic properties of the ferrite core produced in the fourth embodiment, and
  • FIG. 6 is a chart showing the composition and magnetic properties of the ferrite core manufactured in the fifth embodiment
  • FIG. 6 is a chart showing the composition and magnetic properties of the ferrite core manufactured in the sixth embodiment, and
  • FIG. Fig. 8 shows the composition and magnetic properties of the ferrite core manufactured in the eighth example, and Fig.
  • FIG. 9 shows the composition and magnetic properties of the ferrite core manufactured in the eighth example.
  • Composition and magnetic properties of ferrite cores Table showing the sex and the like the graph FIG. 10 showing the relationship between the saturation magnetic flux density in L i O 0. 5 amount and 100 ° C, first 1 Figure composition and magnetic ferrite core prepared in the tenth embodiment Table showing characteristics, etc.
  • FIG. 12 shows the composition of the ferrite core manufactured in Example 11 and the magnetic characteristics, etc.
  • FIG. 13 is a chart showing the composition and magnetic properties of the ferrite core manufactured in the twelfth embodiment.
  • FIG. 14 is a chart showing the composition and magnetic properties of the ferrite core manufactured in the 12th embodiment.
  • FIG. 15 is a chart showing the composition and magnetic properties of the fiber core manufactured in the 13th embodiment
  • FIG. 16 is a chart showing the composition and magnetic properties of the fiber core manufactured in the 14th embodiment
  • FIG. 17 shows the composition and magnetic properties of the ferrite core manufactured in the fifteenth embodiment
  • FIG. 18 shows the composition and magnetic properties of the ferrite core manufactured in the fifteenth embodiment. It is a chart. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention is a F e 2 ⁇ 3 62 ⁇ 68m ol%. In this range, the bottom temperature with increasing F e 2 0 3 amount is high temperature side Heshifuto.
  • the amount of the desired F e 2 0 3 is 63 ⁇ 67mo 1%, the amount of further preferably F e 2 ⁇ 3 is 1% 63 ⁇ 66mo.
  • Z ⁇ also affects the saturation flux density and core loss. If ZnO is less than 12%, the saturation magnetic flux density decreases and the loss increases. Also, even if ZnO exceeds 20 mo 1%, the saturation magnetic flux density decreases and the loss increases. Therefore, in the present invention, Z ⁇ is set to 12 to 2 Omo 1%. In this range, the bottom temperature shifts to a higher temperature with an increase in the amount of ZnO. Desirable amount of ZnO is 13 to 19mo1%, and more preferable amount of ZnO is 14 to 18mo1%. N i ⁇ is effective in improving the saturation magnetic flux density with an increase in the Curie temperature.
  • the ferrite material of the present invention contains 1 ⁇ 10 at 0.2 mol% or more. However, if the NiO content exceeds 5 mol%, the loss increases. Therefore, in the present invention, the amount of NiO is set to 0.2 to 5 mol%. Desirable amount of NiO is 0.5 to 4 mol%, more preferable amount of NiO is 2 to 4 mol%.
  • the ferrite material of the present invention contains M ⁇ as a main component and a substantial balance other than the above.
  • the reason for limiting the composition when the ferrite of the present invention is of the MnZnNi type has been described above.
  • the addition of the first to fourth subcomponents described in detail below is not limited to MnZnNi-based ferrite, but includes MnZnNi-based ferrite, MnZnNiLi-based ferrite, and Ni as a main component. It is also effective in the case of no MnZn ferrite.
  • F e 2 ⁇ 3 amounts to 62 ⁇ 68mo 1%
  • Z n O amounts.
  • Mn Z n system desired amount of F e 2 ⁇ 3 in the case of a ferrite as a main component is 6 2 ⁇ 67mo 1%, the desired ZnO amount 13 ⁇ 22mo 1%, the F e 2 0 3 have more desirable
  • the amount is about 63-67mo 1%, and more preferably, the amount of Z ⁇ is 15-2 lmo 1%.
  • the amount of F e 2 ⁇ 3 62 ⁇ 68mo l%, 1 2 ⁇ 23 mo 1% the amount of Z n O, L I_ ⁇ 0 The amount of 5 is less than 4mo 1% (less than 0), and the substantial balance is MnO. L i O. . 5 is effective in improving the saturation magnetic flux density at 100 ° C. However, if the content exceeds 4%, the loss increases and the temperature increases to 100 ° C. Magnetic flux density decreases to a level equal to or lower than that before addition. desirable
  • the amount of L i O 0. 5 is 0. 2 ⁇ 3. 5 mo 1%, further preferably L i O 0. The amount of 5 0. 5 ⁇ 3mo 1%.
  • the Mn Z nN i L i system 62 ⁇ 68mo 1% the amount of F e 2 ⁇ 3, 12 ⁇ 23mo 1% the amount of Z ⁇ , the amount of N i O 5MO 1% or less (not inclusive of 0), L i O 0. less than the amount of 5 4Mo 1% (however, not including 0), and the substantial balance and MnO. N i O and L i 0. .
  • Si and Ca segregate at grain boundaries to form a high-resistance layer and contribute to low loss.
  • Si and Ca have the effect of improving the sintering density as a sintering aid.
  • S i is greater than 250 p pm in S I_ ⁇ 2 conversion calculation, or the C a is obtain ultra the 2500 p pm at C a C_ ⁇ 3 basis, occurs discontinuous abnormal grain growth, a large deterioration of the loss.
  • the S i below 250 ppm in the S i O 2 terms, the C a and C a C_ ⁇ equivalent to 3 2500 ppm or less.
  • S i is 80 p less than pm in S i 0 2 terms, or C a is C a C0 3 because in terms of less than 800 p pm which can not be obtained sufficiently above effect, S i is S i 0 2 It is desirable to contain 80 ppm or more in terms of conversion and 800 ppm or more of Ca in terms of CaCO 3 .
  • the content of the desired S i and C a is S i is 80 to 200 p pm in S i 0 2 conversion, C a 1000 to a C A_ ⁇ _ ⁇ 3 terms: 1800 p pm, more preferably S i and C a the content of S i is 80 in S i 0 2 conversion: 150 p pm, C a is 1 200 at C A_ ⁇ _ ⁇ 3 terms: 1 Ru 700 ppm der.
  • the content of S i 0 2 and C a C_ ⁇ 3 0.
  • the weight ratio between the content is from 04 to 0.25, and more preferably set to be in the range of 0.05 to 0.2 Is effective.
  • Nb 2 0 5 400 p pm or less (not inclusive of 0)
  • Z R_ ⁇ 2 1000 p pm or less (not inclusive of 0)
  • T a 2 O s 1000 p pm or less (not inclusive of 0)
  • I n 2 O s 1000 ppm or less (not inclusive of 0)
  • G a 2 0 5 1000 p pm or less (not inclusive of 0) Or one or more of these.
  • S N_ ⁇ 2: 10000 (and ⁇ , 0-containing first) p pm or less and T i 0 2: 10000 p pm or less (including not a 0) is also one of the two Species can be included.
  • S n ⁇ 2 and T i 0 2 are present in crystal grains and at crystal grain boundaries, and have an effect of reducing loss.
  • S n0 2 and T i 0 2 when the containing chromatic weight exceeds 10000 p pm, lowering the degradation or saturation magnetic flux density loss caused by discontinuous abnormal grain growth.
  • 10000 p pm Sn0 2 upper limit and T i 0 2 of an upper limit in order to respectively 10000 p pm Sn0 2 upper limit and T i 0 2 of an upper limit.
  • the third subcomponent in order to fully enjoy the effect of reducing the loss described above, it is desirable to include the third subcomponent at 500 ppm or more. More preferably the content of the third subcomponent, SnO 2: 100 0 ⁇ 8000 p pm , T i O 2: is 1,000 to 8,000 p pm. The content of the third subcomponent have more desirable is Sn_ ⁇ 2: 1000 ⁇ 7000 p pm, T i 0 2: a 1 000 ⁇ 7000 p pm. When the third subcomponent is added in combination, the total amount of addition is desirably 10,000 ppm or less.
  • a compound of P in terms of P 35 ppm or less (however, excluding 0), Mo03: 3 ⁇ ⁇ ⁇ ⁇ pm or less (however, 0 is not included) , V 2 O s: 1 0 0 0 p pm or less (not inclusive of 0), G e 0 2: ⁇ ⁇ ⁇ ⁇ ⁇ pm or less (by ⁇ , not including 0), B i 2 0 3 : B ⁇ ⁇ ⁇ ⁇ ⁇ m or less (excluding ⁇ , 0), Sb 2 3 3 : 3 0 0 0 ppm or less (excluding ⁇ , 0) .
  • the fourth subcomponent has the effect of improving the sintering density as a sintering aid and also contributes to low-temperature sintering. Specifically, by including the fourth subcomponent within the range recommended by the present invention, when firing is performed at a relatively low temperature of 140 ° C. or less, or even about 130 ° C. also, 95% or more of the relative density, 4 5 OMT or more saturation magnetic flux density (measured magnetic field: 1 1 94 a / m), and the minimum value of core loss 1 0 0 0 kW Zm 3 below (measurement conditions: 1 0 0 kHz, 20 OmT).
  • V 2 0 5 , G e 0 2, B i 2 0 3, S b 2 0 3 is 5 0 p pm or more.
  • a desirable content of the P compound in terms of P is 5 ppm or more. More preferably containing Yuryou is, Mo 0 3, 7 0 0 p pm or less for V 2 0 5, G E_ ⁇ 2, B i 2 0 3 in For 5 0 0 p pm or less, the compound of P in P conversion 2 5 ppm or less for about S b 2 0 3 is not more than 2 5 0 0 p pm.
  • M o 0 3 1 0 0 ⁇ 6 0 0 p pm
  • V 2 O s 1 0 0 ⁇ 6 0 0 p pm
  • G e 0 2 1 0 0 ⁇ 4 0 0 p pm
  • B i 2 0 3 1 0 0 ⁇ 4 0 0 p pm
  • S b 2 O 3 is 2 0 0 ⁇ 2 0 0 0 ppm .
  • the fourth subcomponent is added in combination, it is desirable that the total amount of addition be 250 ppm or less.
  • the ferrite material of the present invention has a saturation magnetic flux density of more than 45 OmT at 100 ° C (measured magnetic field: 1194 A / m) and a minimum value of core loss by appropriately selecting the above composition.
  • the following characteristics can be obtained: 1200 kW / ni 3 or less (measurement conditions: 100 kHz, 20 OmT).
  • the saturation flux density at 100 ° C is 48 OmT or more (measurement magnetic field: 119 AZm), and the minimum core loss force S i 100 kWZm 3 or less (measurement condition: 100 (kHz, 20 OmT) You can also.
  • the saturation magnetic flux density of 50 OMT or more at 100 ° C (measured magnetic field: 1 1 94A / m), the minimum value of core loss 1 000 kWZm 3 below (measuring conditions: 100 kHz, It is possible to obtain a characteristic of 20 OmT, which cannot be obtained conventionally.
  • the ferrite material of the present invention can set the bottom temperature in the range of 60 to 130 ° C, and more preferably in the range of 80 to 120 ° C. Therefore, the bottom temperature of the ferrite component using the ferrite material of the present invention exists in a practical use temperature range. Moreover, the ferrite material of the present invention has a high initial magnetic permeability at room temperature of 700 or more, and even 800 or more.
  • a manufacturing method suitable for the filler material according to the present invention will be described.
  • a raw material of the main component powder of an oxide or a compound which becomes an oxide by heating is used. Specifically, it is possible to have use of F e 2 ⁇ 3 powder, Mn 3 ⁇ 4 powder Oyobi Zn_ ⁇ powder.
  • the main component is of the MnZnNi type (the same applies to the case of the MnZnNiLi type), further prepare NiO powder or the like.
  • the case where the main component M n Z n L i system (same applies to the case of the Mn Z nN i L i system), providing a L i 2 CO 3 powder and the like to further.
  • the average particle size of each raw material powder should be appropriately selected in the range of 0.1 to 3.0 ⁇ .
  • the calcining temperature may be selected within the range of 800 to 1000 ° C.
  • the calcining atmosphere may be N 2 or atmospheric.
  • the calcining stabilization time may be appropriately selected within the range of 0.5 to 5.0 hours.
  • the calcined body is ground, for example, to an average particle size of about 0.5 to 2.0 ⁇ m.
  • the powder of the composite oxide containing two or more metals is not limited to the above-mentioned raw material of the main component, and the raw material of the main component may be used.
  • a composite oxide powder containing Fe and Mn can be obtained.
  • the powder of the composite oxide and Zn powder may be mixed to be used as a main component material. In such a case, calcining is unnecessary.
  • an oxide or a compound which becomes an oxide by heating Powders can also be used.
  • S i 0 2 , C a C 0 3 , Nb 2 0 5 , Z r 0 2 , T a 2 0 5 , In 2 0 5 , G a 2 0 5 , S n 0 2 , T i ⁇ 2, Mo0 3, V 2 0 5) Ge_ ⁇ 2, B i 2 ⁇ 3, can be used S b 2 0 3 and the like.
  • powder P compound is obtained by heating, if example embodiment (Ca 3 (P0 4) 2 ) or the like can be used.
  • the raw material powders of these subcomponents are mixed with the main component powder pulverized after calcining.
  • the mixed powder can be calcined.
  • the mixed powder composed of the main component and the subcomponent is granulated into granules so that the subsequent molding step can be smoothly performed.
  • Granulation can be performed using, for example, a spray dryer.
  • a small amount of a suitable binder, for example, polyvinyl alcohol (PVA) is added to the mixed powder, and the mixture is spray-dried and dried.
  • PVA polyvinyl alcohol
  • the thus obtained granules preferably have an average particle size of about 80 to 200 ⁇ .
  • the obtained granules are formed into a desired shape using, for example, a press having a mold having a predetermined shape. Then, in the next firing step, the compact is fired.
  • the firing temperature can be appropriately selected from the range of 1250 to 1450 ° C. However, in order to sufficiently bring out the effects of the ferrite material of the present invention, it is desirable that the molded body be fired in the range of 1300 to 1400 ° C.
  • the ferrite material according to the invention can achieve a relative density of 93% or more, more preferably 95% or more.
  • the ferrite material according to the present invention desirably has an average crystal grain size in the range of 5 to 30 im. If the average grain size is smaller than 5 ⁇ , the hysteresis loss increases. On the other hand, if the average grain size exceeds 30 ⁇ , the eddy current loss increases. Desirable average crystal grain size is 10 to 20 ⁇ .
  • the first to sixth embodiments and the eighth embodiment described below relate to an MnZnNi-based funilite.
  • the seventh embodiment is an MnZn-based
  • the embodiment relates to a MnZnLi-based ferrite
  • the thirteenth to fifteenth embodiments relate to a MnZnNiLi-based ferrite.
  • a ferrite core having the composition shown in FIG. 1 was produced.
  • the main component material F e 2 ⁇ 3 powder, MnO powder, ZnO powder and N i O powder. After wet mixing these powders, they were calcined at 900 ° C for 2 hours. Next, the calcined product of the main component material and the subcomponent material were mixed.
  • the subcomponent materials using S i 0 2 powder, Ca C0 3 powder, Nb 2 0 5 powder. The raw material of the sub-component was added to the calcined material of the main component and mixed with the powder frame. Crushing was performed until the average particle size of the calcined product was about 1.5 Aim. The obtained mixture was added with pinda, granulated, and then molded to obtain a toroidal molded body.
  • the obtained molded body was fired at a temperature of 1350 ° C. (a stable part for 5 hours and a stable part oxygen partial pressure of 1%) under oxygen partial pressure control to obtain a ferrite core.
  • the ferrite material according to the present invention has a saturation magnetic flux density of 45 OmT or more equivalent to that of Conventional Examples 1 to 4.
  • the core loss of the ferrite material according to the present invention is 1000 kW / m 3 or less, and it can be seen that the core loss is significantly reduced as compared with Conventional Examples 1 to 4.
  • saturation magnetic flux density of 50 OmT or more And 8 0 0 kWZm 3 can be combine the following core losses.
  • Comparative Example 1 Sample N o. 1, sample N o. 2, the sample N o. 3 and Comparative Example 2, the F e 2 0 3 in this order is increasing. Among them, F e 2 0 if 3 is less than the range of 6 0. Omo l% and the present invention (Comparative Example 1), and 7 when 0.0 greater than the range of mo 1% and the present invention (Comparative Example 2 It is clear that the saturation magnetic flux density is low and the core loss is large.
  • the amount of NiO When the amount of NiO is 2.Omo 1%, when the amount of NiO is 4.Omol%, it shows a particularly high saturation magnetic flux density.
  • the core loss of a comparative example 5 in consideration of the fact that more than 1 3 0 0 kWZm 3, it is necessary to set the amount of N i O.
  • the amount of Ni N added should be around 2 to 4 mol%.
  • the ferrite material according to the present invention can set the pot temperature within the range of 80 to 120 ° C. Also, it can be seen that the sample according to the present invention has the same initial permeability i) as the conventional example.
  • a ferrite core having the composition shown in FIG. 2 was produced through the same steps as in the first example.
  • magnetic properties and the like were measured under the same conditions as in the first example. The results are shown in FIG.
  • the core loss (P cv) can be reduced by adding predetermined amounts of Si and Ca as the first subcomponents.
  • S i the core loss increases when the added amount is 300 p pm in S i 0 2 conversion.
  • C a when the addition amount of the addition amount of 3000 ppm at C a C0 3 terms, the core loss increases.
  • Nb 2 0 5 is in the second sub-component, Z r 0 2, Ta 2 ⁇ 5, is in the fourth subcomponent G E_ ⁇ 2, a large effect of reducing the core loss.
  • the Nb 2 0 5, 400 because p added in an amount exceeding pm and is rather increased core loss, it is desirable that the following amount 400 p pm.
  • a ferrite core having the composition shown in FIG. 4 was produced through the same steps as in the first example.
  • magnetic properties and the like were measured under the same conditions as in the first example. The results are shown in FIG.
  • a ferrite core having the composition shown in FIG. 5 was produced in the same process as in the first example except that the firing temperature and the oxygen partial pressure during firing were set to the conditions shown in FIG. In addition, magnetic properties and the like were measured under the same conditions as in the first example. The results are shown in Fig. 5.
  • the saturation magnetic flux density (Bs) tends to improve as the firing temperature increases.
  • the core loss (P c V) tends to increase, and the initial permeability ⁇ i) tends to decrease. Therefore, it is desirable to set the firing temperature at 1380 ° C or less, more specifically, in the range of 1300 to 1380 ° C.
  • the relative densities of the sample Nos. 35 to 37 and 40 to 43 were measured. In addition, for Sample No. 35 and Sample Nos. 40 to 43, the average crystal grain size was also measured. The results are shown in FIG. The relative densities of the ferrite cores obtained in Sample Nos. 35 to 37 and Sample Nos. 40 to 43 were all over 95%. The ferrite cores obtained in Sample No. 35 and Sample Nos. 40 to 43 had an average crystal grain size in the range of 10 to 25 m. Also, from the results of Sample Nos. 36 to 39, Mo O 3 and P as the fourth subcomponents can obtain a high saturation magnetic flux density even at a relatively low firing temperature of 1300 ° C. It turns out that it is an effective additive.
  • P is the firing temperature 1340 ° C or less, still more is inferred that can be set at about 12 80 to 1,330 ° C.
  • Samples other than Sample Nos. 38 and 39 also contain P as impurities at about 7 ppm.
  • a sixth example shows an experiment performed to confirm a change in magnetic properties and the like when low-temperature sintering is performed on a MnZnNi-based ferrite with a fourth subcomponent added.
  • the magnetic properties and the like were measured under the same conditions as in the first example. The results are shown in FIG. The fourth subcomponent except P was added as an oxide. P was added as calcium phosphate. In Fig. 6, for P, the amount of P added is shown. Further, JP 'raw fourth ferrite core without added accessory ingredients firing temperature and 1300 ° C Suruga (Sample No. 35), a fourth ferrite cores (sample No addition of Mo 0 3 as subcomponent 36, 37) are also shown in Fig. 6 for convenience of comparison. The firing time for sample Nos. 44 to 57 was 5 hours.
  • the addition of the fourth subcomponent improved the saturation magnetic flux density (B s).
  • Sample Nos. 36, 37, and 44-57, to which the fourth subcomponent was added all had a core loss (P cv) of 1000 kW / m 3 or less. Therefore, it can be said that the addition of the fourth subcomponent is effective in improving the saturation magnetic flux density (B s) while suppressing an increase in the core loss (P cv).
  • the ferrite material according to the present invention can set the bottom temperature within the range of 80 to 120 ° C. Further, it can be seen that the ferrite material according to the present invention also obtains an initial magnetic permeability ⁇ ⁇ ⁇ i) equivalent to that of the conventional example. In addition, all of the ferrite materials according to the present invention exhibited a relative density of 95% or more.
  • a ferrite core having the composition shown in FIG. 7 was produced by the same steps as in the first example except that the NiO powder was not used as the main component material and the fourth subcomponent was added.
  • magnetic properties and the like were measured under the same conditions as in the first example. The results are shown in Fig. 7. The firing time and oxygen partial pressure during firing of Sample Nos. 58 to 61 are also shown in FIG.
  • the addition of the fourth subcomponent contributes to the improvement of the saturation magnetic flux density (B s) and the low-temperature sintering even when Ni is not contained as a main component. It was also found that the bottom temperature could be set in the range of 100 to 110 ° C. even when Ni was not contained as a main component.
  • a ferrite core having the composition shown in FIG. 8 was produced by the same steps as in the first embodiment except that the firing temperature and the oxygen partial pressure during firing were set to the conditions shown in FIG.
  • the magnetic properties and the like were measured under the same conditions as in the first example. The results are shown in Fig. 8.
  • Li amount As shown in FIG. 9 and FIG. As the amount of 5 (hereinafter simply referred to as “Li amount”) increases, the saturation magnetic flux density at 100 ° C gradually increases, and when the Li amount exceeds 1% lmo, it exceeds 50 OmT. Shows the saturation magnetic flux density of. However, the saturation magnetic flux density gradually decreases from the peak of the Li amount 1 to 2mo 1%, and when the Li amount becomes 4mo 1%, the same value as when no Li is contained is shown. From the above results, L i 0. . 5 amount that is contained in the range of less than 41110 1%, 100 ° saturation magnetic flux density of 49 OMT or in C, further it was confirmed that it can be at least 50 OMT. Preferably L i O 0. 5 weight 0. 2 ⁇ 3. 5 mol%, more preferably L i O 0. 5 amount is 0. 5 ⁇ 3mo l%.
  • FIG. 9 shows the saturation magnetic flux density at room temperature as well as the saturation magnetic flux density at 100 ° C.
  • the case where no Li is contained exhibits the highest saturation magnetic flux density, and the saturation magnetic flux density gradually decreases as the Li amount increases.
  • the fluctuation of the saturation magnetic flux density at room temperature due to the inclusion of Li shows a different tendency from that at 100 ° C described above.
  • the bottom temperature shifts to a higher temperature side due to the inclusion of Li.
  • the filler material of the present invention containing a predetermined amount of Li, the bottom It was confirmed that the temperature could be set within the range of 80 to 120 ° C, and that the minimum value of core loss in that temperature range could be 1200 kW / m 3 or less.
  • the bottom temperature is as low as 40 ° C.
  • the Li amount becomes 4 mol%, it is possible to set the bottom temperature within the range of 80 to 120 ° C, but the core loss becomes as large as 1800 kWZm 3 or more.
  • Sample Nos. 67 and 68 according to the present invention have a high initial magnetic permeability of 700 or more.
  • a ferrite core having the composition shown in FIG. 11 was produced through the same steps as in the ninth embodiment, and the characteristics and the like were measured in the same manner as in the ninth embodiment. The results are also shown in FIG.
  • the filler material according to the present invention can set the bottom temperature within the range of 80 to 120 ° C., and at least 48 OmT or higher than the conventional examples 1 to 3. Of the saturation magnetic flux density.
  • the ferrite material according to the present invention has a core loss of 1200 kW / m 3 or less, which indicates that the core loss is reduced as compared with the conventional example.
  • the ferrite material according to the present invention can have a saturation magnetic flux density of 48 OmT or more, a core loss of 1200 kW / m 3 or less, and an initial magnetic permeability of 600 or more.
  • Comparative Example 1 1, sample N o. 69, sample N o. 68, sample N o. 70 and Comparative Example 12, F e 2 0 3 is increased in this order. Among them, if F e 2 0 3 is less than the range of 60. 0 mo 1% and the present invention, and 70. Omo l% and much! / From the scope of the present invention, the saturation magnetic flux density and low in the case Koa It can be seen that the loss is large.
  • Comparative Example 13 SN No. 71, Sample No. 72, and Comparative Example 14, Z ⁇ increases in this order. It can be seen that the core loss is large when ZnO is 11.0 mol%, which is less than the range of the present invention. On the other hand, when ZnO is 21.0mo 1%, which is more than the range of the present invention, the bottom temperature cannot be set within the range of 80 to 120 ° C.
  • a ferrite core having the composition shown in FIG. 12 was produced through the same steps as in the ninth embodiment. Magnetic properties and the like were measured under the same conditions as in the ninth example. The results are shown in Fig. 12.
  • the sample Nos. 86 to 91 to which the fourth subcomponent was added all had a relative density of 95% or more and a relative density of 49 OmT or more even at a relatively low firing temperature of 1300 ° C. It achieves a saturation magnetic flux density (B s) and a core loss (P cv) of 1100 kWZm 3 or less.
  • the bottom temperature (B.Terap.) Is set within a desired temperature range (60 to 130 ° C.). be able to. (Thirteenth embodiment)
  • Example 1 was the same as Example 1 except that Li 2 C ⁇ 3 powder was further used as the main component material. Through the same steps, a ferrite core having the composition shown in FIG. 15 was produced. In addition, magnetic properties and the like were measured under the same conditions as in the first example. The results are shown in Fig. 15. For convenience of comparison, FIG. 15 shows the characteristics and the like of the MnZn-based ferrite material disclosed in Japanese Patent Application Laid-Open No. 2000-159523 as Conventional Examples 1-4. The characteristics of the MnZn-based ferrite material disclosed in JP-B-63-59241 are shown.
  • any of the ferrite materials according to the present invention can set the bottom temperature within the range of 80 to 120 ° C.
  • the ferrite material according to the present invention may be a 1 300 kWZm 3 below core loss, and low have value than the conventional example.
  • the ferrite material according to the present invention can have both a high saturation magnetic flux density of 480 mT or more and an initial magnetic permeability of 600 or more.
  • NiO content is 6.
  • the content of NiO is most preferably in the range of 0.2 to 5 mol%, more preferably in the vicinity of 2 to 4 mol%.
  • FIG. 15 shows, as Conventional Example 5, the bottom temperature of a MnZnNi-based ferrite material containing Ni in the main composition.
  • Conventional Example 6 the bottom temperature of a MnZnLi-based ferrite material containing Li in the main composition is shown.
  • the N I_ ⁇ 5MO 1% or less (not inclusive of 0) and L I_ ⁇ 0.5 to 4Mo 1% In the sample Nos. 92 to 97 of the present invention containing less than (but not including 0), the bottom temperature could be set within the range of 80 to 120 ° C, while the conventional example The bottom temperature was as high as 240 ° C or more, and the bottom temperature could not be set within the range desired by the present invention (60 to 130 ° C). From this, it can be seen that not only the selection of the components constituting the main composition, but also the combination and the content of each component greatly affect characteristics such as the bottom temperature.
  • a ferrite core having the composition shown in FIGS. 17 and 18 was produced by the same steps as in the thirteenth embodiment. Magnetic properties and the like were measured under the same conditions as in the thirteenth example. The results are shown in FIGS. 17 and 18.
  • the second subcomponent (Nb 2 0 5, Z R_ ⁇ 2, Ta 2 ⁇ 5, I n 2 0 5, Ga 2 ⁇ 5), the third subcomponent (Sn_ ⁇ 2, T i 0 2 ) or the fourth subcomponent (G e O
  • the core loss (P cv) is also less than 49 OmT and the saturation magnetic flux density is less than 1300 kW / m 3 .
  • the bottom temperature (B. Temp.) Is set within the desired temperature range (60 to 130 ° C.).
  • the bottom temperature can be set in a temperature range (60 to 130 ° C) where a general transformer or the like is used, and the saturation magnetic flux density in the temperature range is high and the loss is low.
  • a ferrite material can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

明 細 書 フェライ ト材料 技術分野
本発明は、 トランス、 リアクタ、 チョークコイル等の電子部品に好適に用い られるフヱライ ト材料に関する。 背景技術
近年、 電子機器の小型化、 高出力化が進んでいる。 それに伴い各種部品の高 集積化、 高速処理化が進み、 電力を供給する電源ラインの大電流化が要求され ている。
また、 高温下においても所定の性能を保つ電源ラインが要求されている。 こ れは、 電源ラインが、 部品 (例えば C P U) などからの発熱にさらされる場合 があるためである。 また、 電源ラインは、 自動車用電子回路のように使用環境 温度の高レ、条件においても、 所定の性能を保つ必要がある。
したがって、 電源ラインに用いられるトランスやリアクタにも、 高温下にお いて大電流で使用できるものが求められる
これらトランスやリアクタに使用される材料としては、 軟磁性金属材料とフ エライ ト材料がある。 さらにフヱライ ト材料は、 M n Z n系フェライ トと N i 系フェライトに分類される。
. 軟磁性金属材料はフェライトに比べて飽和磁束密度が高いため、 より大きな 電流を流しても磁気飽和をおこさない。 し力 しながら、 軟磁性金属材料は、 一 般的に損失が高い、 値段が高い、 比重が高い、 防鲭性に劣るといった問題があ る。
一方、 フェライ トはコストパフォーマンスに優れ、 数 1 0 k H zから数 1 0 0 k H zの周波数帯域において損失が低いという利点がある。 また、 M n Z n 系フェライ トは、 N i系フェライトよりも飽和磁束密度が高い。 このため、 大 電流用のトランスおよびチョークコイル(以下、両者を総称して、 「トランス等」 ということがある) には、 Mn Z n系フヱライトが一般的に使用されている。 しかしながら、 近年、 より高温度域、 具体的には 100°C近傍で使用される場 合にも、 高い飽和磁束密度を示すフェライト材料が求められている。 上述のよ うに、 MnZn系フェライトは N i系フェライトよりも高い飽和磁束密度を示 すものの、 100°C近傍の高温域 (以下、 単に 「高温域」 ということがある) では飽和磁束密度が不十分であった。
そこで、 高温域における飽和磁束密度を向上するために、 様々な検討が行わ れている。 例えば、 特開 2000— 159523号公報には、 酸化鉄の含有量 が 60〜 75 m o 1 %、 酸化亜鉛の含有量が 0〜 20 m o 1 % (但し、 0を含 まず)および残部が酸化マンガンからなるフェライト焼結体が開示されている。 このフェライト焼結体は、 100°Cでの飽和磁束密度が 45 OmT以上であり、 かつ 50 kHz、 1 50 mTでの測定条件において、 コア損失の最小値が 15 00 kW/m3以下である。
一方で、 Mn Z n系フェライ トの損失を低下するためにも、 様々な提案がな されている(特公昭 63-59241号公報、特開平 6 _ 310321号公報、 特開平 1 1— 3813号公報等参照)。 例えば、 特公昭 63-59241号公報 には、 酸化マンガンの含有量が 13〜50mo 1 %、 酸化亜鉛の含有量が 0〜 2 Omo 1 % (但し、 0を含まず)、 酸化ニッケル、 酸化マグネシウム、 酸ィ匕リ チウムのうち少なくとも一種を 0〜 26 m o 1 %、 残部が酸化鉄 45mo 1 % 以上からなる基本組成を有する 500 G以上の磁界中にて高温下駆動されるフ ェライト磁心が開示されている。
特開 2000— 1 59523号公報に開示されたフヱライト焼結体は、 Mn Z n系フェライトの鉄量を増加することにより、 高温度域でも高い飽和磁束密 度を得ている。 し力 しながら、 このフェライト焼結体の損失値は、 未だ高いレ ベノレにある。
特開 2000— 159523号公報には、 損失値が最小を示す温度 (本明細 書中でボトム温度という) が 20°C近傍にある、 比較的損失が低い材料が開示 されている。 し力 しながら、 この材料は、 一般的なトランス、 リアクタ用コア が使用される温度帯域である 60〜130°Cでは、 損失の温度依存性が正の傾 きになる。 このため、 この材料は、 自己発熱による熱暴走の危険性を含んでい る。
前述した特公昭 63— 59241号公報に開示されたフヱライト磁心は、 1 50°C以上の温度域での低損失化を図っている。 し力 しながら、 特公昭 63— 59241号公報では、 低損失化に対する検討にとどまり、 飽和磁束密度を向 上させるための検討はなされていない。 また、 特公昭 63-59241号公報 に開示されたフェライト磁心は、ボトム温度が 150°C以上である。このため、 一般的なトランス等が使用される温度帯域 (60〜130°C) では、 初透磁率 が劣化してしまうとともに、 損失も増大してしまう。 特開平 6 _ 310321 号公報、 特開平 1 1— 3813号公報に開示されたフェライト材料も、 高温域 における飽和磁束密度と低損失に関する特性とを兼備することができなかった。 本発明は、 このような技術的課題に基づいてなされたもので、 100°C近傍 の高温域における飽和磁束密度が高く、 かつ損失が低いフェライト材料の提供 を課題とする。 さらに本発明は、 ボトム温度が一般的なトランス等が使用され る温度帯域 (60〜130°C) の範囲にあるフェライト材料の提供を課題とす る。 発明の開示
本発明者は、 フェライト材料を構成する成分およびその量を選択することに より、 高温域における飽和磁束密度が高く、 かつ低損失のフヱライト材料を得 ることに成功した。 このフェライト材料は、 F e 203 : 62〜68mo 1 %、 Z ηθ: 12〜 20 m o 1 %、 N i O: 0. 2〜 5 m o 1 %、 残部実質的に M ηθを主成分とする焼結体からなり、 100 °Cにおける飽和磁束密度が 450 mT以上 (測定磁界: 1194 A/m) 、 かつコア損失の最小値が 1200 k W/m3以下 (測定条件: 100 kHz、 200 mT) であることを特徴として いる。 また、 本発明者は、 フェライト材料を構成する成分として、 所定量の L iを 含有させることにより、 高温域における飽和磁束密度が向上することを知見し た。 すなわち、 本発明は、 F e 203 : 6 2〜6 8mo l %、 ZnO : 1 2〜2 Omo 1 %、 L i〇。. 5: 4mo 1 %未満 (但し、 0を含まず)、 残部実質的に MnOを主成分とする焼結体からなることを特徴とするフェライト材料を提供 する。 本発明者の検討によると、 L iを含有させることで、 室温における飽和 磁束密度は低下する。 ところが、 驚くべきことに、 本発明が推奨する範囲内で の L iの含有は、 高温域における飽和磁束密度を向上させるのである。 なお、 L i酸化物は、 L i 2〇と表記されるが、 L i換算にて組成を計算するために、 本発明では L i酸化物を 「L i O0. 5」 と表記する。
本発明の Mn Z n L i系フェライト材料において、焼結体中の L i〇。.5量が 0. 2〜3mo 1 %であることが望ましい。 L i O0. 5量を 0. 2〜3mo l % の範囲とすることで、 高温域における飽和磁束密度をより一層向上させること ができる。
さらに、 本発明は、 フヱライト材料を構成する成分として、 所定量の N iお よび L iをともに含有したことを特徴とする Mn Z nN i L i系フェライト材 料も提供する。 この Mn Z nN i L i系フェライト材料は、 F e 23 : 6 2〜 68 mo 1 %, Ζ ηθ: 1 2〜20mo l %、 N i O : 5 m o 1 %以下 (但し、 0を含まず)、 L i O0. 5: 4mo 1 %未満 (但し、 0を含まず)、残部実質的に MnOを主成分とする焼結体からなる。 本発明者の検討によると、 N iおよび L iを複合して含有させることで、 コア損失の増加を抑制しつつ、 飽和磁束密 度を向上させることができる。
以上の本発明のフェライト材料において、第 1副成分として、 S iを S i〇2 換算で 2 5 0 p pm以下 (伹し、 0を含まず) および C aを C a C03換算で 2 500 p pm以下 (但し、 0を含まず) を含むことが望ましい。 この第 1副成 分の含有は、 本発明の Mn Z nN i系フェライト材料、 Mn Z n L i系フェラ ィト材料、 Mn Z nN i L i系フェライト材料の!/、ずれに対しても有効である。 以上では、 本発明のうち、 主成分に N iまたは/および L iを含む Mn Z n N i系フェライト材料、 Mn Z n L i系フヱライト材料、 Mn Z nN i L i系 フェライト材料について示したが、 上述した第 1副成分の含有は、 主成分に N iを含まない Mn Z n系フヱライト材料においても有効である。 すなわち、 本 発明は、 F e 23 : 62〜68mo l %、 ZnO : 12〜23mo l %、 残部 実質的に MnOを主成分とする焼結体からなり、 かつ、 第 1副成分として、 S iを S i〇 2換算で 80〜250 p pmおよび C aを C a C03換算で 800〜 2500 p pmを含むとともに、 100 °Cにおける飽和磁束密度が 45 OmT 以上 (測定磁界: 1 194A/m)、 かつコア損失の最小値が 1200 kW/m 3以下 (測定条件: 100 kHz、 20 OmT) であることを特徴とするフェラ イト材料を提供する。 主成分の量を上記範囲内にするとともに、 S iおよび C aをフェライト材料に所定量含有させることで、 主成分として N iまたは/お よび L iを含まない組成系においても、 高温域における飽和磁束密度が高く、 かつ低損失のフェライト材料を得ることができる。
ここで、 第 1副成分として、 S iおよび C aを含有させる場合には、 S i、 C aをそれぞれ S i 02換算、 C a C03換算で S i 02/C a C03 (重量比) が 0. 04〜0. 25になるように設定することが有効である。
上述した本発明の Mn ZnN i系フェライト材料、 MnZnL i系フェライ ト材料、 Mn Z nN i L i系フェライト材料、 Mn Z n系フヱライト材料 (以 下、 Mn Z nN i系フェライト材料、 Mn Z n L i系フェライト材料、 Mn Z nN i L i系フェライト材料、 Mn Z n系フェライト材料を特に区別する場合 を除き、 「本発明のフェライト材料」 と総称する。) において、 さらに、 第 2副 成分として、 Nb 205: 400 p pm以下 (但し、 0を含まず)、 Z r 02: 1 000 p pm以下(但し、 0を含まず)、 T a 205: 1000 p p m以下(但し、 0を含まず)、 I n 205: 1000 p pm以下(但し、 0を含まず)、 G a 2Os: l O O O p pm以下 (伹し、 0を含まず) の一種または二種以上を含むことが 望ましい。
さらにまた、本発明のフェライト材料において、第 3副成分として、 Sn02: 10000 p pm以下 (伹し、 0を含まず) および T i O。: l O O O O p pm 以下 (但し、 0を含まず) の一種または二種を含むことができる。
ところで、 フェライト材料において高い飽和磁束密度を得るためには、 主組 成中の F e量を増加させることが有効である。 その一方で、 F e量の増加に伴 レ、、焼結が進みにくくなる。 よって、 F e— r i c h組成を選択した場合には、 焼成温度を上昇させる必要がある。 ところが、 焼成温度を上昇させると、 Zn 成分が蒸発してしまい、 コア損失が大きくなつてしまう。 さらに、 焼成温度を 上昇させることは、 使用エネルギーの増大、 使用炉材のコスト上昇等を招き、 工業的にデメリットとなりうる。 こうしたデメリットを排除しつつ、 高温域に おける飽和磁束密度が高く、 かつ低損失のフェライ ト材料を得るため、 本発明 者は様々な検討を行った。 その結果、 以下に述べる第 4副成分が、 低温焼成に 有効に寄与することを知見した。すなわち、本発明のフェライト材料において、 第 4副成分として、 P換算での Pの化合物: 35 p pm以下 (但し、 0を含ま ず)、 Mo〇3 : 1000 p pm以下 (但し、 0を含まず)、 V 2 O 5: 1000 p pm以下 (但し、 0を含まず)、 Ge〇2 : 1000 p p m以下 (但し、 0を含 まず)、 B i 23 : 1000 p pm以下 (但し、 0を含まず)、 S b 203: 30 O O p pm以下 (伹し、 0を含.まず) の一種または二種以上を含むことが望ま しい。 これらの第 4副成分を含有させることで、 1 350°C以下、 さらには 1 300°C近傍という比較的低温での焼成が可能となる。 詳しくは後述するが、 第 4副成分を本発明が推奨する範囲で含有させることによって、 1 350°C以 下で焼成した場合にも、 高温域における飽和磁束密度が高く、 かつ低損失のフ ェライ ト材料を得ることが可能となる。
以上の本発明のフェライ ト材料は、 コア損失が最小値を示す温度であるボト ム温度が 60〜130。Cの範囲に存在する。 つまり、 本発明のフェライト材料 は、 一般的なトランス等が使用される温度帯域にボトム温度を設定することが できる。
また、 本発明によるフェライ ト材料は、 100°Cにおける飽和磁束密度が 4 80mT以上(測定磁界: 1 194A/m) という特性を備えることができる。 さらに、 本発明によるフェライ ト材料は、 100°Cにおける飽和磁束密度を 48 OmT以上 (測定磁界: 1 1 94 A/m) としつつ、 コア損失の最小値を 1 200 kWZm3以下 (測定条件: 100 kH z、 200mT)、 さらには 1 100 kWZm3以下 (測定条件: 100 kH z、 20 OmT) とすることがで きる。 このように、 本発明のフェライト材料によれば、 高温域における高飽和 磁束密度という特性と、 低損失という特性を兼備することができる。
さらにまた、 本発明によるフヱライト材料は、 93%以上という高い相対密 度を有し、 しかも平均結晶粒径が 5〜30 μιηという微細な結晶組織を有する 焼結体として提供される。
そして、 本発明によるフェライト材料は 100°Cにおける飽和磁束密度が 5 0 OmT以上 (測定磁界: 1 194 A/m)、 コア損失の最小値が 1000 kW ノ m3以下 (測定条件: 100 kH z、 20 OmT), コア損失が最小値を示す 温度であるボトム温度が 80〜120°C、 室温での初透磁率が 800以上とい う従来にない特性を得ることもできる。 図面の簡単な説明
第 1図は第 1実施例で作製したフェライトコアの組成および磁気特性等を示 す図表、 第 2図は第 2実施例で作製したフェライトコアの組成おょぴ磁気特性 等を示す図表、 第 3図は第 3実施例で作製したフヱライトコアの組成および磁 気特性等を示す図表、 第 4図は第 4実施例で作製したフェライトコアの組成お よび磁気特性等を示す図表、 第 5図は第 5実施例で作製したフェライトコアの 組成および磁気特性等を示す図表、 第 6図は第 6実施例で作製したフヱライト コアの組成および磁気特性等を示す図表、 第 Ί図は第 7実施例で作製したフエ ライトコアの組成および磁気特性等を示す図表、 第 8図は第 8実施例で作製し たフェライトコアの組成および磁気特性等を示す図表、 第 9図は第 9実施例で 作製したフェライトコアの組成および磁気特性等を示す図表、 第 10図は L i O0.5量と 100°Cにおける飽和磁束密度との関係を示すグラフ、第 1 1図は第 10実施例で作製したフェライトコアの組成および磁気特性等を示す図表、 第 1 2図は第 1 1実施例で作製したフェライトコアの組成おょぴ磁気特 14等を示 す図表、 第 13図は第 12実施例で作製したフェライトコアの組成おょぴ磁気 特性等を示す図表、 同じく第 14図は第 1 2実施例で作製したフェライトコア の組成および磁気特性等を示す図表、 第 1 5図は第 1 3実施例で作製したフヱ ライトコアの組成および磁気特性等を示す図表、 第 16図は第 14実施例で作 製したフヱライトコアの組成および磁気特性等を示す図表、 第 1 7図は第 15 実施例で作製したフヱライトコアの組成およぴ磁気特性等を示す図表、 同じく 第 18図は第 15実施例で作製したフェライトコアの組成および磁気特性等を 示す図表である。 発明を実施するための最良の形態
以下に本発明の実施の形態について説明する。
はじめに、 本発明のフェライトを Mn Z nN i系とする場合の組成の限定理 由を説明する。
F e 203の量を増加すると高温域における飽和磁束密度が向上する一方、 コ ァ損失が劣化する傾向にある。 F e 23が 62mo 1%より少ないと高温域に おける飽和磁束密度が低下する。 一方、 F e 23が 68mo 1 %を超えるとコ ァ損失の増大が顕著となる。 したがって、 本発明では F e 23を 62〜68m o l %とする。 この範囲では、 F e 203量の増加に伴ってボトム温度は高温側 ヘシフトする。 望ましい F e 203の量は 63〜67mo 1 %、 さらに望ましい F e 23の量は 63〜66mo 1 %である。
Z ηθの量も飽和磁束密度おょぴコア損失に影響を与える。 ZnOが 12m o 1 %より少ないと飽和磁束密度が低下するとともに、 損失が大きくなる。 ま た、 ZnOが 20 mo 1 %を超えても飽和磁束密度が低下するとともに、 損失 が大きくなる。 したがって本発明では Z ηθを 1 2〜2 Omo 1 %とする。 こ の範囲では、 Z n O量の増加に伴ってボトム温度は高温側へシフトする。 望ま しい ZnOの量は 1 3〜1 9m o 1 %、 さらに望ましい Z n Oの量は 14〜1 8mo 1 %である。 N i〇は、 キュリー温度の上昇に伴い飽和磁束密度を向上させるのに有効で ある。 その効果を享受するために、 本発明のフェライト材料は、 1^ 10を0. 2mo l %以上含有する。 し力 し、 N i Oの含有量が 5mo 1 %を超えると、 損失が大きくなる。 したがって本発明では、 N i Oの量を 0. 2〜5mo l % とする。 望ましい N i Oの量は 0. 5〜4mo l %、 さらに望ましい N i Oの 量は 2〜4mo 1 %である。
本発明のフェライト材料は主成分として、 上記以外に実質的な残部として M ηθを含む。
以上、 本発明のフェライ トを Mn Z nN i系とする場合の組成の限定理由に ついて述べた。 以下に詳述する第 1〜第 4副成分の添加は、 MnZnN i系フ ヱライ トに限らず、 Mn Z n L i系フェライ ト、 MnZnN i L i系フェライ ト、主成分として N iを含まない Mn Z n系フェライトの場合にも有効である。 本発明のフェライトを主成分として N iを含まない Mn Z n系とする場合に は、 F e 23の量を 62〜68mo 1 %、 Z n Oの量を 12〜 23 m o 1 %、 そして実質的な残部を MnOとするとともに、第 1副成分として S iを S i 02 換算で 250 p pm以下 (但し、 0を含まず) および C aを C a C03換算で 2 500 p pm以下 (伹し、 0を含まず) の範囲で含むことが望ましい。 第 1副 成分を含有させることで、 N iを含まない Mn Z n系フェライトにおいても、 コァ損失の増加を抑制しつつ、 飽和磁束密度を増加させることが可能となる。 Mn Z n系フェライ トを主成分とする場合における望ましい F e 23の量は 6 2〜67mo 1 %、 望ましい ZnOの量は 13〜22mo 1 %、 さらに望まし い F e 203の量ほ 63〜67mo 1 %、 さらに望ましい Z ηθの量は 15〜2 lmo 1 %である。
本発明のフェライ トを Mn Z n L i系とする場合には、 F e 23の量を 62 〜68mo l %、 Z n Oの量を 1 2〜 23 m o 1 %、 L i〇0. 5の量を 4mo 1 %未満 (伹し、 0は含まず)、 そして実質的な残部を MnOとする。 L i O。. 5は、 100°Cにおける飽和磁束密度を向上させるのに有効である。 伹し、 4m o 1 %以上を超えて含有させると、 損失が大きくなるとともに、 100°Cにお ける飽和磁束密度が添加前と同等以下のレベルまで低下してしまう。 望ましい
L i O0.5の量は 0. 2〜3. 5 mo 1 %、さらに望ましい L i O0.5の量は 0. 5〜3mo 1 %である。
本発明のフェライトを Mn Z nN i L i系とする場合には、 F e 23の量を 62〜68mo 1 %、 Z ηθの量を 12〜23mo 1 %、 N i Oの量を 5mo 1 %以下 (但し、 0を含まず)、 L i O0.5の量を 4mo 1 %未満 (但し、 0は 含まず)、 そして実質的な残部を MnOとする。 N i Oおよび L i 0。.5の合計 量は、 0. 2〜 5 mo 1 %とすることが望ましい。 より望ましい N i〇および L i〇0. 5の合計量は、 0. 5〜4mo 1 %、 さらに望ましい N i〇および L i O0. 5の合計量は、 :!〜 3mo l %である。
つぎに、 副成分の限定理由について説明する。
本発明のフェライト材料は、第 1副成分として S iを S i〇2換算で 250 p pm以下 (但し、 0を含まず) および C aを C a C〇3換算で 2500 p p m以 下 (但し、 0を含まず) の範囲で含むことができる。 S iおよび C aは、 結晶 粒界に偏析して高抵抗層を形成して低損失に寄与する。 それに加え、 S iおよ ぴ C aは、焼結助剤として焼結密度を向上する効果を有する。 S iが S i〇2換 算で 250 p pmを超え、あるいは C aが C a C〇3換算で 2500 p pmを超 えると、 不連続異常粒成長が生じ、 損失の劣化が大きい。 そこで本発明では、 S iを S i O 2換算で 250 p p m以下、 C aを C a C〇 3換算で 2500 p p m以下とする。 一方、 S iが S i 02換算で 80 p pm未満、 あるいは C aが C a C03換算で 800 p pm未満では上記効果を十分に得ることができないた め、 S iは S i 02換算で 80 p pm以上、 C aは C a C O 3換算で 800 p p m以上、 含有させることが望ましい。 さらに望ましい S iおよび C aの含有量 は S iは S i 02換算で 80〜200 p pm、 C aは C a〇〇3換算で1000 〜: 1800 p pm、より望ましい S iおよび C aの含有量は S iは S i 02換算 で 80〜: 150 p pm、 C aは C a〇〇3換算で1 200〜: 1 700 p p mであ る。
また、 S iと C aを複合添カ卩する場合には、 S i 02の含有量と C a C〇3の 含有量との重量比 (S i 02の含有量/ C a C03の含有量) が 0. 04〜0. 25、 より望ましくは 0. 05〜0. 2の範囲になるように設定することが有 効である。
本発明は第 2副成分として、 Nb 205 : 400 p pm以下 (但し、 0を含ま ず)、 Z r〇2: 1000 p pm以下 (但し、 0を含まず)、 T a 2Os : 1000 p pm以下 (但し、 0を含まず)、 I n2Os: 1000 p p m以下 (但し、 0を 含まず)、 G a 205: 1000 p pm以下 (但し、 0を含まず) の一種または二 種以上を含むことができる。 これらの第 2副成分を含有することによって、 飽 和磁束密度の向上および/または損失低減という効果を得ることができる。 そ の効果を十分に享受するために、 Nb25, Z r〇2, T a 205, l n 205, G a 205についての望ましい含有量は 50 p pm以上である。 さらに望ましい 含有量は、 Nb205 : 80〜300 p pm、 Z r 02 : 200〜800 p pm、 Ta 2O5 : 200〜800 p pm、 I n2O5 : 200〜800 p pm、 G a 2 O5: 200〜800 p pmである。なお、第 2副成分を複合して添加する場合、 添加量の合計は 1000 p pm以下とすることが望ましい。
本発明は第 3副成分として、 S n〇2: 10000 p pm以下 (伹し、 0を含 まず) および T i 02: 10000 p pm以下 (但し、 0を含まず) の一種また は二種を含むことができる。 S n〇2および T i 02は、 結晶粒内および結晶粒 界に存在し、 損失低減の効果がある。 但し、 S n02および T i 02は、 その含 有量が 10000 p pmを超えると、 不連続異常粒成長を原因とする損失の劣 化や飽和磁束密度の低下を招く。 そのために本発明では、 Sn02の上限値およ び T i 02の上限値をそれぞれ 10000 p pmとする。 一方、上述した損失低 減という効果を十分享受するためには、 第 3副成分を 500 p pm以上含有さ せることが望ましい。 さらに望ましい第 3副成分の含有量は、 SnO2 : 100 0〜8000 p pm、 T i O2 : 1000〜8000 p pmである。 より望まし い第 3副成分の含有量は、 Sn〇2 : 1000〜7000 p pm、 T i 02 : 1 000〜7000 p pmである。 なお、 第 3副成分を複合して添加する場合、 添加量の合計は 10000 p pm以下とすることが望ましい。 ' 本発明は第 4副成分として、 P換算での Pの化合物: 3 5 p pm以下(但し、 0を含まず)、 Mo 03: Ι Ο Ο Ο ρ pm以下 (但し、 0を含まず)、 V2Os: 1 0 0 0 p pm以下(但し、 0を含まず)、 G e 02: Ι Ο Ο Ο ρ pm以下(伹し、 0を含まず)、 B i 203: Ι Ο Ο Ο ρ ρ m以下(伹し、 0を含まず)、 S b 23: 3 0 0 0 p p m以下 (伹し、 0を含まず) の一種または二種以上を含むことが できる。 第 4副成分は、 焼結助剤として焼結密度を向上する効果を有するとと もに、 低温焼成に寄与する。 具体的には、 第 4副成分を本発明が推奨する範囲 内で含めることにより、 1 3 4 0°C以下、 さらには約 1 3 0 0°Cという比較的 低温で焼成を行った場合にも、 9 5 %以上の相対密度、 4 5 OmT以上の飽和 磁束密度 (測定磁界: 1 1 94 A/m)、 かつコア損失の最小値を 1 0 0 0 kW Zm3以下 (測定条件: 1 0 0 kH z、 2 0 OmT) とすることが可能となる。 その効果を十分に享受するために、 Mo 03, V205, G e 02, B i 203, S b 203についての望ましい含有量は 5 0 p pm以上である。 また、 P換算での Pの化合物についての望ましい含有量は 5 p pm以上である。 より望ましい含 有量は、 Mo 03, V205については 7 0 0 p pm以下、 G e〇2, B i 203に ついては 5 0 0 p pm以下、 P換算での Pの化合物については 2 5 p p m以下、 S b 203については 2 5 0 0 p pm以下である。 さらに望ましい含有量は、 M o 03 : 1 0 0〜6 0 0 p pm、 V2Os: 1 0 0〜6 0 0 p pm、 G e 02: 1 0 0〜4 0 0 p pm、 B i 203: 1 0 0〜4 0 0 p pm、 P換算での Pの化合 物: 5〜2 0 p pm、 S b 2O3 : 2 0 0〜2 0 0 0 p p mである。 なお、 第 4 副成分を複合して添加する場合、 添加量の合計は 2 5 0 0 p p m以下とするこ とが望ましい。
本発明のフェライト材料は、 上述した組成を適宜選択することにより、 1 0 0°Cにおける飽和磁束密度が 4 5 OmT以上 (測定磁界: 1 1 94 A/m)、 か つコア損失の最小値が 1 2 0 0 k W/ni3以下 (測定条件: 1 0 0 kH z、 2 0 OmT) という特性を得ることができる。 さらには、 1 0 0°Cにおける飽和磁 束密度が 4 8 OmT以上 (測定磁界: 1 1 9 4 AZm)、 かつコア損失の最小値 力 S i 1 0 0 kWZm3以下 (測定条件: 1 00 kH z、 20 OmT) とすること もできる。 特に望ましい組成を選択することにより、 100°Cにおける飽和磁 束密度が 50 OmT以上 (測定磁界: 1 1 94A/m)、 コア損失の最小値が 1 000 kWZm3以下 (測定条件: 100 kHz、 20 OmT) という従来では 得ることのできなかつた特性を得ることもできる。
本発明のフェライト材料は、 以上の特性に加えて、 ボトム温度を 60〜1 3 0°C, さらには 80〜1 20°Cの範囲に設定することができる。 したがって、 本発明のフユライト材料を用いたフェライト部品は、 その実用的な使用温度帯 域にボトム温度が存在することになる。 しかも本発明のフェライト材料は、 室 温における初透磁率が 700以上、 さらには 800以上という高い値を有して いる。
次に、 本発明によるフヱライト材料にとって好適な製造方法を説明する。 主成分の原料としては、 酸化物または加熱により酸化物となる化合物の粉末 を用いる。 具体的には、 F e23粉末、 Mn34粉末ぉょびZn〇粉末等を用 いることができる。 なお、 主成分を Mn Z nN i系とする場合 (MnZnN i L i系とする場合も同様) には、 さらに N i O粉末等を用意する。 主成分を M n Z n L i系とする場合 (Mn Z nN i L i系とする場合も同様) には、 さら に L i 2 C O 3粉末等を用意する。 各原料粉末の平均粒径は 0. 1〜 3. 0 μ ΐΆ の範囲で適宜選択すればょ 、。
主成分の原料粉末を湿式混合した後、 仮焼きを行う。 仮焼きの温度は、 80 0〜1000°Cの範囲内で選択すればよい。 また仮焼き雰囲気は、 N2または大 気とすればよい。 仮焼きの安定時間は 0. 5〜5. 0時間の範囲内で適宜選択 すればよい。 仮焼き後、 仮焼き体を例えば、 平均粒径 0. 5〜 2. 0 μ m程度 まで粉砕する。 なお、 本発明では、 上述の主成分の原料に限らず、 2種以上の 金属を含む複合酸化物の粉末を主成分の原料としてもよい。 例えば、 塩化鉄お よび塩化マンガンを含有する水溶液を酸化培焼することにより、 F eおよび M nを含む複合酸化物の粉末が得られる。 この複合酸化物の粉末と Z n〇粉末を 混合して主成分原料としてもよい。このような場合には、仮焼きは不要である。 同様に副成分の原料として、 酸化物または加熱により酸化物となる化合物の 粉末を用いることもできる。 具体的には、 S i 02, C a C03, Nb 205, Z r 02, T a 205, I n 205, G a 205, S n02, T i〇2, Mo03, V20 5) Ge〇2, B i 23, S b 203等を用いることができる。 また、 第 4副成分 として P化合物を選択する場合には、 加熱により P化合物が得られる粉末、 例 えば(Ca3 (P04) 2)等を用いることができる。これら副成分の原料粉末は、 仮焼き後に粉砕された主成分の粉末と混合される。 但し、 副成分'の原料粉末と 主成分の原料粉末とを混合した後に、その混合粉末を仮焼きすることもできる。 主成分および副成分からなる混合粉末は、 後の成形工程を円滑に実行するた めに顆粒に造粒される。 造粒は例えばスプレードライヤを用いて行うことがで きる。 混合粉末に適当な結合材、 例えばポリビニルアルコール (PVA) を少 量添加し、 これをスプレードライヤで嘖霧、 乾燥する。 このようにして得られ る顆粒は、 その平均粒径が 80〜200 ιη程度であることが望ましい。
得られた顆粒は、 例えば所定形状の金型を有するプレスを用いて所望の形状 に成形される。 そして、 次の焼成工程で、 成形体は焼成される。
焼成工程においては、 焼成温度と焼成雰囲気を制御する必要がある。
焼成温度は 1 250〜1450°Cの範囲から適宜選択することができる。 但 し、本発明のフェライト材料の効果を十分引き出すには、 1300〜 1400°C の範囲で成形体を焼成することが望ましい。
本発明によるフェライト材料は、 93%以上、 さらに望ましくは 95%以上 の相対密度を得ることができる。
本発明によるフェライト材料は、 平均結晶粒径は 5〜 30 imの範囲とする ことが望ましい。 平均結晶粒径が 5 μπιより小さいと、 ヒステリシス損失が大 きくなる。 一方、 平均結晶粒径が 30 μπιを超えるほど大きいと、 渦電流損失 が大きくなるからである。 望ましい平均結晶粒径は、 10〜20 μΐηである。 次に、 具体的な実施例を挙げて本発明を更に詳細に説明する。 以下に示す第 1実施例〜第 6実施例およぴ第 8実施例は M n Z n N i系フニライトに関する ものである。 また、 第 7実施例は Mn Z n系フヱライト、 第 9実施例〜第 12 実施例は MnZnL i系フヱライト、 第 1 3実施例〜第 15実施例は MnZn N i L i系フェライトに関するものである。
(第 1実施例)
MnZnN i系フヱライトの望ましい組成を確認するために行った実験を、 第 1実施例として示す。
第 1図に示す組成を有するフェライトコァを作製した。
主成分の原料として、 F e 23粉末、 MnO粉末、 ZnO粉末および N i O 粉末を用いた。 これらの粉末を湿式混合した後、 900°Cで 2時間仮焼した。 次いで、 主成分の原料の仮焼物と副成分の原料とを混合した。 副成分の原料 として、 S i 02粉末、 Ca C03粉末、 Nb 205粉末を用いた。 主成分原料の 仮焼物に副成分の原料を添加して、 粉枠しながら混合した。 粉碎は、 仮焼物の 平均粒径が約 1. 5 Ai mとなるまで行った。得られた混合物にパインダを加え、 顆粒化した後、 成形してトロイダル形状の成形体を得た。
得られた成形体を酸素分圧制御下において、温度 1 350 °C (安定部 5時間、 . 安定部酸素分圧 1%) で焼成することにより、 フェライトコアを得た。
また、 このフェライトコァを用いて、 100°Cにおける飽和磁束密度(B s, 測定磁界: 1 194 A/m), コア損失の最小値 (P c v, 測定条件: 100 k Hz, 20 OmT)、 初透磁率 i, 測定温度: 25°C、 測定周波数: 100 kHz) を測定した。 その結果を第 1図に併せて示す。 また、 第 1図中、 従来 例:!〜 4は、 特開 2000- 1 59523号公報に開示された Mn Z n系フエ ライト材料の特性等を示している。
第 1図に示すように、本発明によるフェライト材料(試料 No. :!〜 8) は、 従来例 1〜4と同等の 45 OmT以上の飽和磁束密度を有している。 その上、 本発明によるフェライト材料はコア損失が 1000 kW/m3以下であり、従来 例 1〜4と比較すると、 コア損失が大幅に低減されていることがわかる。 本発 明によれば、 50 OmT以上の飽和磁束密度および 900 kWZm3以下のコア 損失を兼備することも可能である。 さらには、 50 OmT以上の飽和磁束密度 および 8 0 0 kWZm3以下のコア損失を兼備することも可能である。
比較例 1、 試料 N o . 1、 試料 N o. 2、 試料 N o. 3および比較例 2は、 この順に F e 203が増加している。 その中で、 F e 203が 6 0. Omo l %と 本発明の範囲より少ない場合 (比較例 1 )、 および 7 0. 0 m o 1 %と本発明の 範囲より多い場合 (比較例 2) に飽和磁束密度が低くかつコア損失が大きいこ とがわ力る。
次に、 比較例 3、 試料 N o . 4、 試料 N o . 5および比較例 4は、 この順に Z n〇が増加している。 その中で、 Z nOが 1 0. 0mo l %と本発明の範囲 より少ない場合 (比較例 3)、 および 2 1. 1 %と本発明の範囲より多い 場合 (比較例 4) に飽和磁束密度が低くコア損失が大きいことがわかる。
以上の結果より、 本発明を Mn Z nN i系に適用する場合において、 高い飽 和磁束密度、 かつ低いコア損失を確保するために、 〇3を6 2〜6 8 1 %の範囲、 Z n Oを 1 2〜2 0m o l %の範囲に設定することが重要である こと力 sゎカゝる。
試料 N o . 6、 試料 N o . 7、 試料 N o . 8および比較例 5は、 この順に N i Oが増加している。 本発明による試料および比較例を見ると、 N i O量の変 動により、 コア損失や飽和磁束密度が変動することがわかる。
N i O量が 2. Omo 1 %の場合、 N i O量が 4. Om o l %の場合に、 特 に高い飽和磁束密度を示していること、 N i O量が 6. Omo 1 %である比較 例 5のコア損失が 1 3 0 0 kWZm3を超えることを考慮して、 N i Oの添加量 を設定する必要がある。 N i〇の添加量は 2〜4mo 1 %近傍とすることが最 も望ましい。
ボトム温度 (B.Temp. ) に着目すると、 本発明によるフェライト材料は、 ポト ム温度を 8 0〜1 2 0°Cの範囲内に設定することができることがわかる。 また、 初透磁率 i ) についても、 本発明による試料は、 従来例と同等の値を得て いることがわかる。
(第 2実施例) MnZnN i系フェライトにおいて、 第 1副成分の望ましい添加量を確認す るために行った実験を、 第 2実施例として示す。
第 1実施例と同様の工程により、 第 2図に示す組成を有するフェライトコア を作製した。 また、 第 1実施例と同様の条件で、 磁気特性等を測定した。 その 結果を第 2図に併せて示す。
第 2図に示すように、 第 1副成分としての S iおよび C aを所定量添加する ことによって、 コア損失 (P c v) を低減できることがわかる。 但し、 S iの 場合には、その添加量が S i 02換算で 300 p pmになるとコア損失が大きく なる。 一方、 C aの場合には、 その添加量が C a C03換算で 3000 p p mの 添加量になると、 コア損失が大きくなる。
(第 3実施例)
MnZnN i系フェライトにおいて、 第 2副成分または第 4副成分の添加に 伴う磁気特性等の変動を確認するために行った実験を、第 3実施例として示す。 第 1実施例と同様の工程により、 第 3図に示す組成を有するフヱライトコア を作製した。 また、 第 1実施例と同様の条件で、 磁気特性等を測定した。 その 結果を第 3図に併せて示す。
第 3図に示すように、 第 2副成分 (Nb 205, Z r〇2, T a 205, I η20 5, G a 205) または第 4副成分 (V205, Ge〇2) を添加しても、 500m T近傍の飽和磁束密度 (B s) を有していながら、 1200 kW/m3以下のコ ァ損失 (P c v) が得られることがわかった。 第 2副成分の中では Nb 205、 Z r 02、 Ta 25、 第 4副成分の中では G e〇 2が、 コア損失を低減させる効 果が大きい。 その Nb 205について言えば、 400 p pmを超える量の添加は かえってコア損失を増大させるので、 400 p pm以下の添加量とすることが 望ましい。
(第 4実施例)
MnZnN i系フェライトにおいて、 第 3副成分の添加に伴う磁気特性等の 変動を確認するために行った実験を、 第 4実施例として示す。
第 1実施例と同様の工程により、 第 4図に示す組成を有するフェライトコア を作製した。 また、 第 1実施例と同様の条件で、 磁気特性等を測定した。 その 結果を第 4図に併せて示す。
第 4図に示すように、 第 3副成分として S n〇2または T i 02を添加するこ とにより、 コア損失 (P c v) を低減できることがわかる。 但し、 その添加量 が多くなると飽和磁束密度 (B s) が低下する傾向にある。 よって、 第 3副成 分として S n〇2または T i 02を添加する場合には、 それぞれの添加量を 10 000 p pm以下の量とすることが望まれる。
(第 5実施例)
Mn Z nN i系フェライトにおいて、 焼成条件を変化させた場合の磁気特性 等の変動を確認するために行った実験を、 第 5実施例として示す。
焼成温度と焼成時の酸素分圧を第 5図に示す条件とする以外は第 1実施例と 同様の工程により、 第 5図に示す組成を有するフェライトコアを作製した。 ま た、 第 1実施例と同様の条件で磁気特性等を測定した。 その結果を第 5図に併 せて示す。
第 5図に示すように、 焼成温度が高くなるにつれて飽和磁束密度 (B s) は 向上する傾、向にある。その一方で、焼成温度が高くなるにつれて、 コア損失(P c V) が高くなり、 また初透磁率 μ i ) が低下する傾向にある。 したがって、 焼成温度は 1 380°C以下、 より具体的には 1 300〜 1 380°Cの範囲で設 定することが望ましい。
試料 No. 35〜37、 試料 No. 40〜 43については、 相対密度を測定 した。 また、 試料 No. 35、 試料 No. 40〜43については、 平均結晶粒 径も測定した。 その結果を第 5図に併せて示す。 試料 No. 35〜37、 試料 No. 40〜43で得られたフェライトコアは、 いずれも相対密度が 95%以 上であった。 また、 試料 No. 35、 試料 No. 40〜43で得られたフェラ イトコアは、 平均結晶粒径が 10〜 25 mの範囲にあった。 また、試料 N o. 36〜39の結果から、第 4副成分としての Mo O 3、 Pは、 1300°Cという比較的低温の焼成温度であっても、 高い飽和磁束密度を得る ことができる有効な添加物であることがわかる。 よって、 Mo03、 P等の第 4 副成分を所定量添加した場合には、 焼成温度を 1340°C以下、 さらには 12 80〜1330°C程度に設定することができると推察される。なお、試料 No. 38、 39以外の試料も不純物として Pを 7 p pm程度含んでいる。
(第 6実施例)
MnZnN i系フェライトにおいて、 第 4副成分を添加して低温焼成を行つ た場合の磁気特性等の変動を確認するために行った実験を、 第 6実施例として 示す。
焼成温度を 1300 °C、 焼成時の酸素分圧を 0. 5 %とし、 かつ第 4副成分 を添加した以外は第 1実施例と同様の工程により、 第 6図に示す組成を有する フェライトコアを作製した。 また、 第 1実施例と同様の条件で磁気特性等を測 定した。 その結果を第 6図に併せて示す。 なお、 Pを除く第 4副成分は酸化物 として添加した。 Pについてはリン酸カルシウムとして添加した。 第 6図中、 Pについては P換算での添加量を示している。 また、 焼成温度を 1300°Cと するが第 4副成分を添加していないフェライトコア(試料 No. 35)の特'生、 第 4副成分としての Mo 03を添加したフェライトコア(試料 No. 36、 37) の特性も、 比較の便宜のために第 6図に併せて示す。 なお、 試料 No. 44〜 57の焼成時間はいずれも 5時間である。
第 6図に示すように、第 4副成分を添加することによって、飽和磁束密度(B s) が向上した。 しかも、 第 4副成分を添カ卩した試料 No. 36、 37、 44 〜57は、 いずれも 1000 kW/m3以下のコア損失 (P c v) を得ている。 よって、 第 4副成分の添加は、 コア損失 (P c v) の上昇を抑えつつ、 飽和磁 束密度 (B s) を向上させる上で有効であるといえる。
また、ボトム温度(B.Temp.)に着目すると、本発明によるフェライト材料は、 ボトム温度を 80〜120°Cの範囲内に設定することができることがわかる。 さらに、 初透磁率 ίμ i ) についても、 本発明によるフェライト材料は、 従来 例と同等の値を得ていることがわかる。また、本発明によるフェライト材料は、 いずれも 95%以上の相対密度を示した。
以上の結果から、第 4副成分を添加することによって、焼成温度が 1300°C の場合であっても、 49 OmT以上の飽和磁束密度 (B s) および 1000k WZm3以下のコア損失 (P c v) を達成することができることがわかった。 ま た、 ボトム温度については 80〜 120°Cの範囲内、 さらには 90〜100°C の範囲内に設定することができることも確認できた。 (第 7実施例)
N iを主成分として含有しない Mn Z n系フェライトにおいても、 第 4副成 分の添加が有効であることを確認するために行った実験を、 第 7実施例として 示す。
主成分の原料として N i O粉末を用いず、 かつ第 4副成分を添加した以外は 第 1実施例と同様の工程により、 第 7図に示す組成を有するフェライトコアを 作製した。 また、 第 1実施例と同様の条件で、 磁気特性等を測定した。 その結 果を第 7図に併せて示す。 なお、 試料 No. 58〜61の焼成時間、 焼成時の 酸素分圧も、 第 7図に併せて示す。
第 7図に示すように、 試料 N o. 58と試料 No. 59は、 試料 No. 59 が第 4副成分としての Mo 03を添加されたものであることを除き、同一の条件 で作製されたものである。 試料 No. 58と試料 No. 59を比較すると、 M o O 3を添カ卩した試料 N o. 59の方が高い相対密度および飽和磁束密度(B s ) を示している。 よって、 N iを主成分として含有しない場合においても、 第 4 副成分としての Mo 03を添加することにより、 相対密度および飽和磁束密度 (B s) が向上することがわかった。
ここで、 ともに Mo〇3を 100 p pm添加されたものであるが、 その焼成温 度が相違する試料 No. 59 (焼成温度: 1350°C) と試料 No. 61 (焼 成温度: 1300°C) を比較すると、 試料 No. 61は 51.lmTという高レヽ 飽和磁束密度 (B s) を示しつつ、 試料 No. 59よりも低いコア損失 (P c V) を示した。 よって、 N iの有無に拘わらず、 第 4副成分の添加は、 130 0 °Cという比較的低温での焼成を可能にする上で有効であることが確認された。 以上説明の通り、 N iを主成分として含有しない場合においても、 第 4副成 分の添加が飽和磁束密度 (B s) の向上おょぴ低温焼成に寄与することがわか つた。 また、 N iを主成分として含有しない場合においても、 ボトム温度を 1 00〜1 10°Cの範囲内に設定することができることがわかった。
(第 8実施例)
MnZnN i系フェライトにおいて、 焼成時の酸素分圧と磁気特性等の関係 を確認するために行った実験を、 第 8実施例として示す。
焼成温度および焼成時の酸素分圧を第 8図に示す条件とする以外は第 1実施 例と同様の工程により、第 8図に示す組成を有するフェライトコァを作製した。 また、 第 1実施例と同様の条件で磁気特性等を測定した。 その結果を第 8図に 併せて示す。
第 8図において、 試料 No. 62〜66を見ると、 焼成時の酸素分圧が変動 するとコア損失 (P c v) が変動する。 そして、 より低いコア損失を得たい場 合には、 焼成時の酸素分圧を 1 %以上にすることが望ましいことがわかる。 (第 9実施例)
Mn Z n L i系フヱライトにおける、 望ましい L i量を確認するために行つ た実験を、 第 9実施例として示す。
主成分の原料として、 N i O粉末を用いずに L i 2C03粉末を用いた以外は、 第 1実施例と同様の工程により、第 9図に示す組成を有するフェライトコア(試 料 No. 67、 68、 比較例 9 ) を作製した。 なお、 比較例 10は、 主成分の 原料として L i 2C03粉末を用いなかった点を除けば、試料 No. 67、 68、 比較例 9と同様の条件で作製されている。
これらのフェライトコァを用いて、 室温おょぴ 100°Cにおける飽和磁束密 度( B s, 測定磁界: 1 194 A/m)、 コァ損失の最小値( P c v, 測定条件: 100 kHz、 200mT)、 ボトム温度 (B.Temp.)、 初透磁率 (μ i, 測定温 度: 25° (、 測定周波数: 100 kHz) を測定した。 その結果を第 9図に併 せて示す。また、 L i O0. 5量と 100°Cにおける飽和磁束密度との関係を第 1 0図に示す。
まず、 100°Cにおける飽和磁束密度に着目する。
第 9図および第 10図に示すように、 L i〇。.5量(以下、 単に 「L i量」 と いう場合がある) が増加するにつれて、 100°Cにおける飽和磁束密度が徐々 に向上し、 L i量が lmo 1 %以上になると、 50 OmT以上の飽和磁束密度 を示す。 但し、 L i量 l〜2mo 1 %をピークとして、 飽和磁束密度は徐々に 低下し、 L i量が 4mo 1 %になると、 L i含有なしの場合と同じ値を示す。 以上の結果から、 L i 0。.5量を41110 1 %未満の範囲内で含有させることで、 100°Cにおける飽和磁束密度を 49 OmT以上、 さらには 50 OmT以上と することができることが確認された。望ましい L i O0. 5量は 0. 2〜3. 5 m o l %、 さらに望ましい L i O0. 5量は 0. 5〜3mo l %である。
ここで、 第 9図には、 100°Cにおける飽和磁束密度とともに、 室温におけ る飽和磁束密度も示している。
第 9図に示すように、 室温では、 L i含有なしの場合が最も高い飽和磁束密 度を示し、 L i量が増加するにつれて飽和磁束密度が徐々に低下する。つまり、 L iの含有に伴う、 室温における飽和磁束密度の変動は、 上述した 100°Cに おける場合と異なる傾向を示す。
室温における飽和磁束密度と、 10 o°cにおける飽和磁束密度の比較から、 所定量の L i含有による飽和磁束密度の向上という効果は、 高温域で得られる 特異な効果であることが確認された。
次に、 第 9図のコア損失の最小値 (P c v) およびボトム温度 (B. Temp. ) に 着目する。
第 9図に示すように、 L iの含有により、ボトム温度が高温側にシフトする。 そして、 L iを所定量含有する本発明によるフヱライト材料によれば、 ボトム 温度を 80〜 120 °Cの範囲内に設定することができること、 その温度範囲に おけるコア損失の最小値を 1200 kW/m3以下にすることができることが 確認された。
L iを含有しない場合には、 ボトム温度が 40°Cと低い。 一方、 L i量が 4 mo l %になると、 ボトム温度を 80〜120°Cの範囲内に設定することは可 能であるが、 コア損失が 1800 kWZm3以上と大きくなつてしまう。
第 9図の初透磁率 ( i i ) に着目すると、 本発明による試料 No. 67、 6 8は、 700以上という高い初透磁率を得ていることがわかる。
以上の結果から、フ-ライト焼結体に L 100.5を41!101 %未満の範囲内で 含有させることで、 10 o°cにおける飽和磁束密度を向上させることができる ことがわかった。 また、 所定量の L iの含有は、 ボトム温度を 80〜120°C の範囲内に設定すること、 およびこの温度範囲におけるコア損失の最小値を 1 200 kWZm3以下とする上でも有効であることがわかった。 (第 10実施例)
MnZnL i系フェライ トの望ましい組成を確認するために行った実験を、 第 10実施例として示す。
第 9実施例と同様の工程により、 第 11図に示す組成を有するフェライトコ ァを作製するとともに、 第 9実施例と同様に特性等を測定した。 その結果を第 11図に併せて示す。
また、 第 1 1図中、 従来例:!〜 4は、 特開 2000— 159523号公報に 開示された Mn Z n系フェライト材料の特性等を示している。
第 11図に示すように、 本発明によるフヱライト材料は、 いずれもボトム温 度を 80〜120°Cの範囲内に設定することが可能であるとともに、 従来例 1 〜3よりも高い 48 OmT以上の飽和磁束密度を有している。 その上、 本発明 によるフェライト材料は、 コア損失が 1200 kW/m3以下となっており、従 来例と比べて、 コァ損失が低減されていることがわかる。
従来例 4は 503 mTという高い飽和磁束密度を得ているものの、 コア損失 が 1800 kW/πι3以上と大きく、 また初透磁率も 500未満の値を示す。 こ れに対し、 本発明によるフェライト材料によれば、 48 OmT以上の飽和磁束 密度および 1200 kW/m3以下のコア損失、 600以上の初透磁率を兼備す ることが可能である。
比較例 1 1 , 試料 N o. 69, 試料 N o . 68, 試料 N o . 70および比較 例 12は、 この順に F e 203が増加している。 その中で、 F e 203が 60. 0 mo 1 %と本発明の範囲より少ない場合、 および 70. Omo l %と本発明の 範囲より多!/、場合に飽和磁束密度が低くかつコァ損失が大きいことがわかる。 次に、 比較例 1 3, SN o. 71, 試料 N o. 72および比較例 14は、 この順に Z ηθが増加している。 その中で、 ZnOが 1 1. 0mo l %と本発 明の範囲より少ない場合に、 コア損失が大きいことがわかる。 一方、 ZnOが 21. 0mo 1 %と本発明の範囲より多い場合には、 ボトム温度を 80〜 12 0 °Cの範囲内に設定することができない。
以上の結果より、 ボトム温度を 80〜120°Cの範囲内に設定しつつ、 高い 飽和磁束密度および低いコア損失という効果を享受するためには、 F e 203を 62〜68mo 1 %の範囲、 ZnOを 12〜20mo l %の範囲に設定するこ とが重要であることが確認された。 また、 初透磁率 (μ i) についても、 本発 明による試料はいずれも 700以上という高い値を示す。 (第 1 1実施例) '
MnZ nL i系フェライトにおいて、 第 1副成分の望ましい添加量を確認す るために行った実験を、 第 1 1実施例として示す。
第 9実施例と同様の工程により、 第 12図に示す組成を有するフェライトコ ァを作製した。 また、 第 9実施例と同様の条件で、 磁気特性等を測定した。 そ の結果を第 12図に併せて示す。
第 12図において、 試料 No. 73〜75を見ると、 第 1副成分としての S iおよび C aの添加量の変動に伴い、 飽和磁束密度、 コア損失おょぴ初透磁率 が変動する。 試料 No. 73と試料 No. 74を比較すると、 S iは、 飽和磁 束密度を向上させる上で有効であるといえる。 また、 試料 No. 73と試料 N o. 75の特性を比較すると、 S iおよび C aの添加量がいずれも試料 N o. 75よりも少ない試料 N o. 73の方が、 高い飽和磁束密度および低いコア損 失を示すことから、 S iおよび C aを複合添加する場合にも適切な添加量があ ると推察される。
(第 12実施例)
Mn Z n L i系フェライトにおいて、 第 2副成分、 第 3副成分および第 4副 成分の添加に伴う磁気特性等の変動を確認するために行った実験を、 第 12実 施例として示す。 第 9実施例と同様の工程により、 第 13図おょぴ第 14図に 示す組成を有するフヱライトコアを作製した。 また、 第 9実施例と同様の条件 で、磁気特性等を測定した。その結果を第 13図および第 14図に併せて示す。 第 13図に示すように、 第 2副成分 (Nb 25, Z r〇2, Ta 205, I n2 05, Ga 205)、 第 3副成分 (Sn02, T i Oz) または第 4副成分 (G e O 2, V205) を添加しても、 48 OmT以上の飽和磁束密度 (B s) および 12 00 kWZm3以下のコア損失 (P c v) を兼備している。
また、 第 14図に示すように、 第 4副成分を添加した試料 No. 86〜91 はいずれも 1300°Cという比較的低温な焼成温度においても、 95%以上の 相対密度、 49 OmT以上の飽和磁束密度 (B s) および 1100 kWZm3以 下のコア損失 (P c v) を達成している。
さらに、 第 13図および第 14図に示すように、 第 4副成分を添加した場合 にも、 ボトム温度 (B.Terap.) を所望の温度範囲内 (60〜130°C) に設定す ることができる。 (第 13実施例)
Mn Z nN i L i系フェライ トの望ましい組成を確認するために行った実験 を、 第 13実施例として示す。
主成分の原料として、 さらに L i 2C〇3粉末を用いた以外は、 第 1実施例と 同様の工程により、 第 15図に示す組成を有するフェライ トコァを作製した。 また、 第 1実施例と同様の条件で、 磁気特性等を測定した。 その結果を第 15 図に併せて示す。 なお、 比較の便宜のために、 第 15図中には、 従来例 1〜4 として特開 2000-1 59523号公報に開示された Mn Z n系フェライト 材料の特性等を、 従来例 5、 6として特公昭 63— 59241号公報に開示さ れた MnZn系フェライト材料の特性等を示している。
第 1 5図に示すように、 本発明によ フェライ ト材料は、 いずれもボトム温 度を 80〜120°Cの範囲内に設定することが可能である。 その上、 本発明に よるフェライト材料は、 コア損失を 1 300 kWZm3以下と、 従来例よりも低 い値とすることができる。 さらに、 本発明によるフェライ ト材料は、 480m T以上という高い飽和磁束密度と 600以上の初透磁率を兼備することが可能 である。
比較例 15, 試科 No. 92, 試料 No. 93および比較例 16は、 この順 に F e 23が増加している。 その中で、 F e 203が 60. 0mo l %と本発明 の範囲より少ない場合、 および 70. Omo 1 %と本発明の範囲より多い場合 には、 48 OmT以上の高い飽和磁束密度が得ることができず、 かつコア損失 が大きいことがわかる。
次に、 比較例 17 , 試料 N o. 94, 試料 N o. 95および比較例 1 8は、 この順に Z ηθが増加している。 その中で、 ZnOが 10. Omo 1 %と本発 明の範囲より少ない場合に、 コア損失が大きいことがわかる。 一方、 ZnOが 21. Omo 1 %と本発明の範囲より多い場合には、 ボトム温度を 80〜 12 0 °Cの範囲内に設定することができない。
試料 N o . 93, 試料 N o . 96および比較例 1 9は、 この順に N i Oが增 加している。 これらの特性に着目すると、 N i〇量の変動により、 コア損失や 飽和磁束密度が変動することがわかる。 また、 N i〇量の増加に伴い、 ボトム 温度が高温側にシフトすることがわかる。
N i〇量が 0. 5 m o 1 %の試料 N o . 93、 N i O量が 4. 0 m o 1 %の 試料 No. 96力 特に高い飽和磁束密度を示していること、 N i O量が 6. Omo 1 %の比較例 1 9のコア損失が 1 300 k WZm3を超えることを考慮 して、 N i Oの含有量を設定する必要がある。 N i Oの含有量は0. 2〜5m o 1 %、 さらには 2〜4mo 1 %近傍とすることが最も望ましい。
試料 N o . 93, 試料 N o . 97および比較例 20は、 この順に L i O 0. 5 量が増加している。 これらの特性に着目すると L i〇。. 5量の変動により、飽和 磁束密度やコア損失およびボトム温度が変動することがわかる。
まず、 ボトム温度に着目すると、 L i O0. 5量の増加に伴い、 ボトム温度が高 温側にシフトすることがわかる。 L i O0.5量が 4. Omo 1 %の比較例 20は、 ボトム温度を所望の範囲内 (60~1 30°C) に設定することができない。 ま た比較例 20は、 コア損失が 1600 kW/m3以上と大きいことを考慮して、 L i O0. 5量は 4 mo 1 %未満とする。
—方、 L i 0。. 5量が 0. 5mo l %の試料 No. 93および L i O。. 5量が 2. Omo 1 %の試料 No. 97によれば、 ボトム温度を 80〜: L 00°Cと、 所望の範囲内とすることができる。 しかも、 試料 No. 93およぴ試料 No. 97はいずれもコア損失を 1200 kW/m3以下としつつ、 50 OmT以上と いう高い飽和磁束密度を得ている。 よって、 L i 0。. 5の含有量は 4 mo 1 %未 満、 さらには 0. 2〜3mo 1 %程度とすることが望ましい。
以上の結果より、 ボトム温度を 60〜1 30°C、 さらには 80〜120°Cの 範囲内に設定しつつ、 高い飽和磁束密度およぴ低レヽコァ損失という効果を享受 するためには、 F e 23を 62〜68mo 1 %の範囲、 Z nOを 12〜20m o 1 %の範囲、 N i Oを 5mo 1 %以下 (但し、 0を含まず)、 L i O0. 5を 4 mo l %未満 (伹し、 0を含まず) の範囲に設定することが重要であることが 確認された。 また、 初透磁率 (μ i ) についても、 本発明による試料はいずれ も 700以上という高い値を示す。
ここで、 第 15図には、 従来例 5として、 主組成に N iを含有する Mn Z n N i系フェライ ト材料のボトム温度を示している。 また、 従来例 6として、 主 組成に L iを含有する Mn Z n L i系フェライ ト材料のボトム温度を示してい る。 N i〇を 5mo 1 %以下(但し、 0を含まず)および L i〇0.5を 4mo 1 % 未満 (但し、 0を含まず) の範囲内で含有する本発明の試料 No. 92〜97 では、ボトム温度を 80〜120°Cの範囲内に設定することができたのに対し、 従来例 5、 6は!/、ずれもボトム温度が 240 °C以上と高く、 本発明が所望とし ている範囲内(60〜130°C)にボトム温度を設定することができていない。 このことからも、 主組成を構成する成分の選択のみならず、 その組合せ、 およ び各成分の含有量がボトム温度等の特性を大きく左右していることがわかる。
(第 14実施例)
Mn Z nN i L i系フェライトにおいて、 第 1副成分の望ましい添加量を確 認するために行った実験を、 第 14実施例として示す。
第 13実施例と同様の工程により、 第 16図に示す組成を有するフヱライト コアを作製するとともに、 第 13実施例と同様に特性等を測定した。 その結果 を第 16図に併せて示す。
第 16図から、 第 1副成分としての S iおよび C aの添加量の変動に伴い、 飽和磁束密度、 コア損失および初透磁率が変動することがわかる。 そして、 S iおよび C aの添加量を適切な範囲とすることにより、 コア損失を 1 200 k WZm3以下としつつ、 50 OmT以上という高い飽和磁束密度を得ることがで さる。 (第 15実施例)
Mn Z nN i L i系フヱライトにおいて、 第 2副成分、 第 3副成分および第 4副成分の添カ卩に伴う磁気特性等の変動を確認するために行った実験を、 第 1 5実施例として示す。
第 1 3実施例と同様の工程により、 第 1 7図および第 18図に示す組成を有 するフェライトコァを作製した。 また、 第 1 3実施例と同様の条件で、 磁気特 性等を測定した。 その結果を第 17図および第 18図に併せて示す。
第 17図に示すように、 第 2副成分 (Nb 205, Z r〇2, Ta25, I n2 05, Ga 25)、 第 3副成分 (Sn〇2, T i 02) または第 4副成分 (G e O 2, V205) を添加しても、 49 OmT以上の飽和磁束密度おょぴ 1300 kW /m3以下のコア損失 (P c v) を兼備している。
また、 第 18図に示すように、 第 4副成分を添カ卩した試料 No 1 1 1〜1 1 6はいずれも 1300°Cという比較的低温な焼成温度においても、 95%以上 の相対密度、 49 OmT以上の飽和磁束密度 (B s) および 1200 kW/m3 以下のコア損失 (P C V) を達成している。
さらに、 第 1 7図および第 18図に示すように、 第 4副成分を添加した場合 にも、 ボトム温度 (B. Temp. ) を所望の温度範囲内 (60〜130°C) に設定す ることができる。 産業上の利用可能性
以上詳述したように、 本発明によれば、 100°C近傍の高温域における飽和 磁束密度が高く、 かつ損失が低いフェライト材料の提供を得ることができる。 さらに本発明によれば、 一般的なトランス等が使用される温度帯域 (60〜1 30°C) にボトム温度が設定可能であり、 かつその温度帯域における飽和磁束 密度が高く、 かつ損失が低いフェライト材料を得ることができる。

Claims

請 求 の 範 囲
1. F e 203 : 62〜68mo l %、 ZnO : 12〜20mo l 0/o、 N i O : 0. 2〜5mo 1 %、 残部実質的に MnOを主成分とする焼結体からなり、 100°Cにおける飽和磁束密度が 45 OmT以上 (測定磁界: 1 1 94 A/ m)、 かつコア損失の最小値が 1200 kWZm3以下 (測定条件: 100 kH z、 20 OmT) であることを特徴とするフェライト材料。
2. F e 23 : 62〜68mo l %、 Z nO : 1 2〜20mo l %、 L i〇0 5: 4mo 1 %未満 (但し、 0を含まず)、 残部実質的に MnOを主成分とする 焼結体からなることを特徴とするフェライト材料。
3.前記焼結体中の L i O0. 5量が 0. 2〜3mo 1 %であることを特徴とする 請求項 2に記載のフェライ ト材料。
4. F e 2O3 : 62〜68mo /0、 ZnO : 12〜20mo l %、 N i O : 5mo 1 %以下 (但し、 0を含まず)、 L i O0. 5: 4mo 1 %未満 (伹し、 0 を含まず)、残部実質的に M n Oを主成分とする焼結体からなることを特 ί敷とす るフェライト材料。
5. 第 1副成分として、 S iを S i 02換算で 250 p pm以下 (但し、 0を含 まず) および C aを C a C〇3換算で 2500 p pm以下 (但し、 0を含まず) 含むことを特徴とする請求項 1〜 4のレ、ずれかに記載のフ: ライト材料。
6. F e 203: 62〜68mo l %、 ZnO : 12〜23mo 1 %、 残部実質 的に MnOを主成分とする焼結体からなり、 かつ、
第 1副成分として、 S iを S i 02換算で 80〜250 p pmおよび C aを C a CO 3換算で 800〜2500 p p m含むとともに、 100°Cにおける飽和磁束密度が 45 OmT以上 (測定磁界: 1 1 94 m)、 かつコア損失の最小値が 1200 kWZm3以下 (測定条件: 100 kH z、 20 OmT) であることを特徴とするフェライト材料。
7.前記 S i 02の含有量と前記 C a C〇3の含有量との重量比(S i 02の含有 量/ Ca C〇3の含有量) が 0. 04〜0. 25であることを特敷とする請求項 5または 6に記載のフェライト材料。
8. 第 2副成分として、 Nb 205: 400 p pm以下 (但し、 0を含まず)、 Z r 02 : Ι Ο Ο Ο ρ ρ m以下 (伹し、 0を含まず)、 T a 205 : l O O O p pm 以下(但し、 0を含まず)、 I n2Os: 1000 p pm以下(但し、 0を含まず)、 G a 205 : l O O O p pm以下 (但し、 0を含まず) の一種または二種以上を 含むことを特徴とする請求項 1、 2、 4、 6のいずれかに記載のフェライト材 料。
9. 第 3副成分として、 Sn〇2 : Ι Ο Ο Ο Ο ρ p m以下 (但し、 0を含まず) および T i〇2: 10000 p pm以下 (但し、 0を含まず) の一種または二種 を含むことを特徴とする請求項 1、 2、 4、 6のいずれかに記載のフェライト 材料。
10. 第 4副成分として、 P換算での Pの化合物: 35 p pm以下 (伹し、 0 を含まず)、 Mo〇3: 1000 p pm以下 (但し、 0を含まず)、 V2Os: 10 00 p pm以下 (但し、 0を含まず)、 Ge〇2 : 1000 p p m以下 (但し、 0を含まず)、 B i 203: 1000 p pm以下(但し、 0を含まず)、 S b 203 : 3000 p pm以下 (伹し、 0を含まず) の一種または二種以上を含むことを 特徴とする請求項 1、 2、 4、 6のいずれかに記載のフェライト材料。
1 1. コア損失が最小値を示す温度であるボトム温度が 60〜130°Cの範囲 に存在することを特徴とする請求項 1、 2、 4、 6のいずれかに記載のフェラ ィト材料。
12. 100°Cにおける飽和磁束密度が 48 OmT以上 (測定磁界: 1194 A/m) であることを特徴とする請求項 1、 2、 4、 6のいずれかに記載のフ エライト材料。
13. 室温における初透磁率が 700以上であることを特^¾とする請求項 12 に記載のフェライト材料。
14. 相対密度が 93 %以上、 平均結晶粒径が 5〜 30 mである焼結体から 構成されることを特徴とする請求項 1、 2、 4、 6のいずれかに記載のフェラ ィト材料。
15. 100°Cにおける飽和磁束密度が 48 OmT以上 (測定磁界: 1194 A/m), かつコア損失の最小値が 1100 kWZm3以下 (測定条件: 100 kHz, 20 OmT) であることを特徴とする請求項 1、 2、 4、 6のいずれ かに記載のフェライト材料。
16. 100°Cにおける飽和磁束密度が 500 mT以上 (測定磁界: 1194 A/m), コア損失の最小値が 1000 kW/m3以下 (測定条件: 100 kH z、 20 OmT), コア損失が最小値を示す温度であるボトム温度が 80〜12 0°C、 室温での初透磁率が 800以上であることを特徴とする請求項 1、 2、 4、 6のいずれかに記載のフェライト材料。
PCT/JP2003/009735 2002-09-26 2003-07-31 フェライト材料 WO2004028997A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/526,427 US20060118756A1 (en) 2002-09-26 2003-07-21 Ferrite material
EP03798373A EP1547988A4 (en) 2002-09-26 2003-07-31 FERRITE

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2002280545 2002-09-26
JP2002-280545 2002-09-26
JP2002382476A JP4281990B2 (ja) 2002-09-26 2002-12-27 フェライト材料
JP2002-382476 2002-12-27
JP2003-195398 2003-07-10
JP2003195398A JP2005029417A (ja) 2003-07-10 2003-07-10 フェライト材料
JP2003-195397 2003-07-10
JP2003195397A JP2005029416A (ja) 2003-07-10 2003-07-10 フェライト材料

Publications (1)

Publication Number Publication Date
WO2004028997A1 true WO2004028997A1 (ja) 2004-04-08

Family

ID=32046008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009735 WO2004028997A1 (ja) 2002-09-26 2003-07-31 フェライト材料

Country Status (6)

Country Link
US (1) US20060118756A1 (ja)
EP (1) EP1547988A4 (ja)
KR (1) KR100627117B1 (ja)
CN (1) CN1662470A (ja)
TW (1) TWI256380B (ja)
WO (1) WO2004028997A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807463A (zh) * 2010-03-31 2010-08-18 苏州天铭磁业有限公司 一种兼有高起始磁导率和低损耗的MnZn铁氧体材料及其制备方法
CN113149630A (zh) * 2021-04-08 2021-07-23 电子科技大学 一种高磁导率高Bs高Tc的MnZn铁氧体材料及其制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032338A1 (ja) * 2005-09-13 2007-03-22 Hitachi Metals, Ltd. フェライト材料
JP2007238429A (ja) * 2006-02-08 2007-09-20 Tdk Corp フェライト材料
JP2008247675A (ja) * 2007-03-30 2008-10-16 Tdk Corp MnZn系フェライトの製造方法
JP4623183B2 (ja) * 2008-09-25 2011-02-02 Tdk株式会社 MnZnLi系フェライト
CN102969113B (zh) * 2012-11-20 2015-12-02 江苏高博智融科技有限公司 一种硬质磁性合金及其制备
KR101408617B1 (ko) * 2012-11-20 2014-06-17 삼성전기주식회사 적층형 코일 부품
CN103848620B (zh) * 2012-12-06 2015-07-22 北京有色金属研究总院 一种LiMnZn铁氧体材料及其制备方法
CN103214233B (zh) * 2013-01-31 2014-10-15 电子科技大学 高T c、宽温超高B s MnZn铁氧体材料及制备方法
CN103172358B (zh) * 2013-03-21 2014-10-15 电子科技大学 高Bs高Tc MnZn铁氧体材料及制备方法
CN104211385B (zh) * 2013-05-28 2016-05-04 Tdk株式会社 铁氧体和变压器
JP2015006972A (ja) * 2013-05-28 2015-01-15 Tdk株式会社 フェライト及びトランス
JP6032379B2 (ja) * 2015-04-02 2016-11-30 Tdk株式会社 フェライト組成物および電子部品
CN104867641B (zh) * 2015-06-09 2017-01-18 苏州天铭磁业有限公司 高频变压器用高电感值高磁导率铁氧体磁芯
JP2017061402A (ja) * 2015-09-25 2017-03-30 Tdk株式会社 MnZnLiNi系フェライト、磁心およびトランス
CN105503170A (zh) * 2015-12-23 2016-04-20 苏州冠达磁业有限公司 一种宽温低损耗高磁导率软磁铁氧体及其制备方法
CN107216139A (zh) * 2017-05-08 2017-09-29 中国计量大学 高饱和磁通密度MnZn铁氧体
CN112028619A (zh) * 2020-09-16 2020-12-04 无锡斯贝尔磁性材料有限公司 一种高Bs低功耗锰锌软磁铁氧体材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252610A (ja) * 1985-05-01 1986-11-10 Tohoku Metal Ind Ltd 低損失酸化物磁性材料
JPH06310321A (ja) * 1993-04-22 1994-11-04 Matsushita Electric Ind Co Ltd 酸化物磁性体材料
JPH0845725A (ja) * 1994-07-29 1996-02-16 Sumitomo Special Metals Co Ltd 低損失酸化物磁性材料
US5518642A (en) * 1992-01-14 1996-05-21 Matsushita Electric Industrial Co., Ltd. Oxide magnetic material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565331A (en) * 1979-06-26 1981-01-20 Tdk Corp Oxide type magnetic material of low electric power loss for use in high temperature range
JPS60137830A (ja) * 1983-12-24 1985-07-22 Sumitomo Special Metals Co Ltd Mn−Ζn系フエライトの製造方法
JPS60262405A (ja) * 1984-06-11 1985-12-25 Sumitomo Special Metals Co Ltd Mn−Znフエライトの製造方法
JPS60262404A (ja) * 1984-06-11 1985-12-25 Sumitomo Special Metals Co Ltd Mn−Znフエライトの製造方法
JPS61256967A (ja) * 1985-05-08 1986-11-14 住友特殊金属株式会社 Mn−Zn系フエライトの製造方法
JP2917706B2 (ja) * 1992-10-07 1999-07-12 松下電器産業株式会社 酸化物磁性体材料
US5779930A (en) * 1996-03-22 1998-07-14 Tdk Corporation Ferrite core for line filters
JP2001068326A (ja) * 1999-08-30 2001-03-16 Tdk Corp MnZn系フェライト
JP3607203B2 (ja) * 2000-03-31 2005-01-05 Tdk株式会社 MnZn系フェライトの製造方法、MnZn系フェライト、および電源用フェライトコア
US7481946B2 (en) * 2003-01-10 2009-01-27 Tdk Corporation Method for producing ferrite material and ferrite material
JP4244193B2 (ja) * 2004-01-30 2009-03-25 Tdk株式会社 MnZnフェライトの製造方法及びMnZnフェライト

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252610A (ja) * 1985-05-01 1986-11-10 Tohoku Metal Ind Ltd 低損失酸化物磁性材料
US5518642A (en) * 1992-01-14 1996-05-21 Matsushita Electric Industrial Co., Ltd. Oxide magnetic material
JPH06310321A (ja) * 1993-04-22 1994-11-04 Matsushita Electric Ind Co Ltd 酸化物磁性体材料
JPH0845725A (ja) * 1994-07-29 1996-02-16 Sumitomo Special Metals Co Ltd 低損失酸化物磁性材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1547988A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807463A (zh) * 2010-03-31 2010-08-18 苏州天铭磁业有限公司 一种兼有高起始磁导率和低损耗的MnZn铁氧体材料及其制备方法
CN113149630A (zh) * 2021-04-08 2021-07-23 电子科技大学 一种高磁导率高Bs高Tc的MnZn铁氧体材料及其制备方法
CN113149630B (zh) * 2021-04-08 2022-11-08 电子科技大学 一种高磁导率高Bs高Tc的MnZn铁氧体材料及其制备方法

Also Published As

Publication number Publication date
KR100627117B1 (ko) 2006-09-25
TW200415134A (en) 2004-08-16
EP1547988A1 (en) 2005-06-29
KR20050039755A (ko) 2005-04-29
US20060118756A1 (en) 2006-06-08
EP1547988A4 (en) 2007-12-05
TWI256380B (en) 2006-06-11
CN1662470A (zh) 2005-08-31

Similar Documents

Publication Publication Date Title
JP5332254B2 (ja) フェライト焼結体
JP4244193B2 (ja) MnZnフェライトの製造方法及びMnZnフェライト
WO2004028997A1 (ja) フェライト材料
US6077453A (en) Ferrite, and transformer and method for driving it
JP4623183B2 (ja) MnZnLi系フェライト
JP2007238429A (ja) フェライト材料
JP4129917B2 (ja) フェライト材料およびその製造方法
JP3584439B2 (ja) Mn−Znフェライトおよびその製造方法
JP2007197245A (ja) MnCoZnフェライトおよびトランス用磁心
JP4281990B2 (ja) フェライト材料
JP2007238339A (ja) Mn−Zn系フェライト材料
JP3588693B2 (ja) Mn−Zn系フェライトおよびその製造方法
WO2004063117A1 (ja) フェライト材料の製造方法及びフェライト材料
JP5019023B2 (ja) Mn−Zn系フェライト材料
JP3418827B2 (ja) Mn−Znフェライトおよびその製造方法
JP2004247370A (ja) MnZnフェライト
JPH08169756A (ja) 低損失Mn−Znフェライトコアおよびその製造方法
JP4750563B2 (ja) MnCoZnフェライトおよびトランス用磁心
JP3446082B2 (ja) Mn−Znフェライトおよびその製造方法
JP2004247371A (ja) MnZnフェライト
JP4089970B2 (ja) フェライト材料の製造方法
JP5845137B2 (ja) Mn−Zn系フェライトの製造方法
JP7406022B1 (ja) MnZnCo系フェライト
JP3584437B2 (ja) Mn−Znフェライトの製造方法
JP7117447B1 (ja) ジルコニア質セッタおよびMnZn系フェライトの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB NL

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047020370

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038139219

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003798373

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047020370

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003798373

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006118756

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10526427

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10526427

Country of ref document: US