[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004013361A1 - 白金族元素の回収法および装置 - Google Patents

白金族元素の回収法および装置 Download PDF

Info

Publication number
WO2004013361A1
WO2004013361A1 PCT/JP2003/009876 JP0309876W WO2004013361A1 WO 2004013361 A1 WO2004013361 A1 WO 2004013361A1 JP 0309876 W JP0309876 W JP 0309876W WO 2004013361 A1 WO2004013361 A1 WO 2004013361A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum group
group element
furnace
copper
molten metal
Prior art date
Application number
PCT/JP2003/009876
Other languages
English (en)
French (fr)
Inventor
Koji Yamada
Masahiko Ogino
Nobuyasu Ezawa
Hiroshi Inoue
Original Assignee
Dowa Mining Co., Ltd.
Tanaka Kikinzoku Kogyo K.K.
Kosaka Smelting & Refining Co., Ltd.
Nippon Pgm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co., Ltd., Tanaka Kikinzoku Kogyo K.K., Kosaka Smelting & Refining Co., Ltd., Nippon Pgm Co., Ltd. filed Critical Dowa Mining Co., Ltd.
Priority to EP03766725A priority Critical patent/EP1553193B1/en
Priority to US10/521,818 priority patent/US7815706B2/en
Priority to AT03766725T priority patent/ATE471994T1/de
Priority to DE60333111T priority patent/DE60333111D1/de
Publication of WO2004013361A1 publication Critical patent/WO2004013361A1/ja
Priority to US12/883,729 priority patent/US8366991B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/02Obtaining noble metals by dry processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/02Obtaining noble metals by dry processes
    • C22B11/021Recovery of noble metals from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/02Obtaining noble metals by dry processes
    • C22B11/021Recovery of noble metals from waste materials
    • C22B11/026Recovery of noble metals from waste materials from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0054Slag, slime, speiss, or dross treating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering platinum group elements from various substances containing platinum group elements, for example, used petrochemical catalysts, used automobile exhaust gas purification catalysts, used electronic substrates and lead frames, and the like. About. Conventional technology
  • the molten metal containing the platinum group element obtained in this way is further oxidized and phase separated into molten oxide and molten metal in which the platinum group element is further concentrated.
  • the platinum group element can be recovered with high yield and low cost, and has the advantage that the wet method is not an economical resource recovery method. Problems the invention is trying to solve
  • the above-mentioned dry recovery method of transferring the platinum group element into the molten metal is a very excellent method in terms of high recovery rate and low cost. It took some settling time to transfer to molten metal.
  • a platinum group element-containing substance such as a waste catalyst for automobiles and a copper source material are put into an electric furnace in a solid state, the platinum group element migrates into the molten metal while melting down.
  • the phase separation of metal and metal occurs, it is necessary to have a timing at which the platinum group element can move to the metal side, and it is difficult to determine whether or not this has been completed. For this reason, it was necessary to provide a relatively long settling time (standing time) in view of safety.
  • the conditions in the furnace may change each time the material is charged, and this may miss the timing at which the platinum group element is sufficiently transferred into the molten metal.
  • An object of the present invention is to satisfy such a demand, and it is possible to efficiently and stably transfer a platinum group element to a molten metal side even if the settling time is shortened in the above-mentioned dry recovery method. It is intended to be improved. Disclosure of the invention
  • a substance to be treated containing a platinum group element and a copper source material containing copper oxide are mounted in a closed electric furnace together with a flux component and a reducing agent.
  • the molten metal mainly composed of metallic copper is settled below the molten slag layer mainly composed of oxide, and the platinum group elements are concentrated in the molten metal settled below.
  • a method for recovering a platinum group element which comprises discharging molten slag whose amount has dropped to 3.0% by weight or less from the electric furnace.
  • the copper source material to be charged into the electric furnace is preferably a granular material having an average particle size of 0.1 mm or more and 1 Omm or less. It is preferred to maintain the pressure below atmospheric pressure until slag discharge.
  • a substance to be treated containing a platinum group element and copper oxide are contained.
  • the platinum-group element is concentrated in the molten metal, the molten metal enriched with the platinum-group element is separated from the molten slag, transferred to another furnace in a molten state, and the molten metal is oxidized in the other furnace.
  • the molten slag layer in which the copper content is reduced to 3.0% by weight or less is obtained.
  • the molten slag produced in the other furnace is water-cooled from a high temperature state to contain the above-mentioned copper oxide composed of particulate matter having a diameter of 0.1 mm or more and 10 mm or less.
  • Copper source material To provide a method of recovering platinum group elements, wherein the Rukoto.
  • a furnace having an inner volume substantially isolated from the outside air, and a furnace provided in the upper body of the furnace are provided.
  • Material inlet and exhaust ports, at least two fluid outlets of different height levels provided in the lower body of the furnace body, a material inlet chute connected to the material inlet, and the exhaust port An exhaust system connected to the furnace, and electrodes for conducting and heating the material charged in the furnace, consisting of an oxide-based material accompanied by a platinum group element, copper oxide, a solid reducing agent, and flux Under a reducing atmosphere in which the charged material is substantially cut off from the outside air, and while the gas generated in the furnace is exhausted by the exhaust device, the charged material is melted in the furnace, and the platinum group element is discharged from the lower fluid outlet.
  • High-concentration metal-based fluid Providing recovery apparatus platinum group elements to take out the lower slag system fluid of the platinum group element concentration from the outlet.
  • FIG. 1 is a schematic sectional view showing an example of an apparatus for performing the method of the present invention.
  • FIG. 2 is a diagram showing the relationship between the copper content and the platinum group element content in slag when the present invention is implemented. Preferred embodiments of the invention
  • the substance to be treated containing a platinum group element in the present invention includes, for example, platinum, palladium, Used petrochemical waste catalysts containing platinum, palladium, and rhodium, as well as waste catalysts for purifying automotive exhaust gases, as well as lot-out products and scraps obtained from the manufacturing process of those catalysts. Also included are used electronic boards, dental parts, lead frames, etc. that contain paradigms. Such a substance containing a platinum group element is usually in a state where a trace amount of the platinum group element is supported on metal oxides or ceramics.
  • the basic structure of the method of the present invention is that the molten metal layer mainly composed of metallic copper is settled and the platinum group element is concentrated in the molten metal layer settled downward.
  • the copper source material containing copper oxide to be charged into the electric furnace use a granular material having a particle size of 0.1 mm or more and 1 O mm or less,
  • the characteristic treatment method is adopted.
  • Fig. 1 shows an example of equipment for implementing the method of the present invention.
  • reference numeral 1 denotes a closed electric furnace which occupies a major part of the equipment of the present invention.
  • the closed electric furnace 1 has a furnace body 3 having a furnace volume 2 substantially isolated from the outside air, a material input port 4 and an exhaust port 5 provided in the upper body of the furnace body 3, and At least two fluid outlets 6 and 7 having different height levels provided in the lower body portion of the furnace body 3, a material input chute 8 connected to the material input port 4, and connected to the exhaust port 5 It consists of an exhaust device 9 and electrodes 10a, 10b, and 10c for electrically heating the material charged in the furnace.
  • Furnace body 3 in the figure is a furnace with a circular ⁇ wall lined with refractory, and a material charging shot 8 is arranged at almost the center of the ceiling surface.
  • the three electrodes 10a, 10b, and 10c are arranged on the concentric circle with the center at equal intervals, vertically, and from the ceiling plane. In other words, the positions of the vertical electrodes 10a, 10b, and 10c are at the vertices of the equilateral triangle, and the material charging shot 8 is located almost at the center of the equilateral triangle.
  • the closed electric furnace 1 thus configured includes a granular substance to be treated containing a platinum group element 11, a granular copper source material containing copper oxide 12, and a solid reducing material (powder coke). 13 and powdered flux 14 are mixed and charged. That is, these charged raw materials are measured and cut out from the respective hoppers, and are fed to the material charging shot 8 of the electric furnace 1 while being mixed and conveyed by the screw conveyor 15.
  • the material input chute 8 is provided with upper and lower two-stage shutters 16 and 17 so that airtightness is maintained when the material is injected into the furnace. First, the upper shutter 16 is opened, the lower shutter 17 is closed, and only one batch of material is charged into the chute 8.
  • the upper shutter 16 is closed, and the lower shirt 17 is opened, and the chute is opened.
  • the upper and lower shutters 16 and 17 are closed to prepare for the next charging operation.
  • the branch member 18 is attached to the lower end of the chute 8 (below the material input port 4), so that the material falling from the chute 8 into the furnace connects the three electrodes 10a, 10b, and 10c in a triangular shape. Landing is performed in the vicinity of each side, and more preferably, near the midpoint of each of the three sides. As a result, new material is deposited at the shortest distance connecting the electrodes 10a, 10b, and 10c, and the melting efficiency is increased.
  • the electrodes 10a, 10b, and 10c are energized, the material charged into the furnace starts to melt while the exhaust gas generated in the furnace by the operation of the exhaust device 9 passes through the exhaust port 5 through the dust removal device. After being processed, the exhaust gas is discharged out of the system.
  • the furnace space 2 which is substantially isolated from the outside air, is maintained at a pressure lower than the atmospheric pressure.
  • the metal oxides especially the copper oxide in the copper source material, are reduced to metal copper by the reducing agent (copper powder), forming the molten metal copper.
  • the reducing agent copper powder
  • This metal melt has a higher specific gravity than the oxide melt (slag), so it descends in the slag and sinks below the furnace to form a pool 20 of molten metal.
  • an oxide melt that is, a slag layer 21 is formed.
  • the platinum group elements present in the slag are incorporated into the metal copper melt. That is, it is dissolved. As a result, the platinum group elements are collected in a molten state in the molten metal 20, and the molten metal 20 having a high platinum group element concentration is obtained. On the other hand, the concentration of the platinum group element in the slag 21 decreases as much as the platinum group element is dissolved in the molten metal 20. Therefore, the slag 21 having a lower concentration of the platinum group element is separated from the higher fluid outlet 6 and the molten metal 20 having a higher concentration of the platinum group element is separated from the lower fluid outlet 7 while being separated from the furnace. If it is discharged into the furnace, a molten metal with a high platinum group element concentration (metal in which the platinum group element is dissolved in metallic copper) can be collected.
  • One of the features of the method of the present invention is that in recovering the platinum group elements using such a closed electric furnace, molten slag having a copper content of 3.0% by weight or less is removed from the electric furnace. The point is to discharge. As shown in the examples below, about 0.3 ton of copper oxide is used for 1 ton of the substance containing the platinum group element, and a sufficient amount of reducing agent is added to reduce all of this copper oxide.
  • the smelting reduction treatment is carried out in a closed electric furnace, the content of the platinum group element remaining in the slag remains in the slag under the mixed raw material composition (the flux component is also mixed to nearly 1 ton). It has been found to be closely related to the copper content.
  • Fig. 2 shows the relationship.
  • the Pt As shown in Fig. 2, if the Cu content in the slag is, for example, 1% by weight, the Pt,? The values of Pt, Pd, and Rh tend to decrease to about 5 ppm, about 3 ppm, and about 1 ppm, respectively, and to decrease as the Cu content further decreases. It turns out that there is. However, in the region where the Cu content exceeds 3.0% by weight, the contents of Pt, Pd, and Rh The recovery rate of platinum group elements also shows a rapid increase, and the recovery of platinum group elements rapidly decreases.
  • the molten slag when discharging the molten slag from the electric furnace, it is desirable to discharge the molten slag whose copper content has been reduced to 3.0% by weight or less, preferably to 2.0% by weight or less.
  • the copper content in the molten slag can be determined in real time by sampling the slag in the furnace during operation and analyzing it by equipment.
  • the copper content in the slag was measured, and the slag content exceeded 3.0% by weight. If this is the case, it is preferable that the contents of the furnace ⁇ be allowed to stand at a predetermined temperature without performing the discharge operation. During this standing, the copper content in the slag gradually decreases, and along with this, the platinum group elements in the slag also move toward the molten metal.
  • a granular material having a particle size of 0.1 mm or more and 10 mm or less is used as a copper source material containing copper oxide to be charged into an electric furnace.
  • the platinum group element in the material to be treated becomes molten metal when the material to be treated and the copper source material are heated and melted. It turned out that it was easy to move inside.
  • the platinum group element-containing substances to be mixed with the copper source material is a granular material having a particle size of 10 mm or less.
  • Both the substance to be treated and the copper source material are granular materials having appropriate particle sizes, and when they are charged into the furnace with being mixed with the carbonaceous reducing agent and flux, the copper oxide in the copper source material melts. ⁇ It becomes easy to be reduced, and the generated molten metal copper comes into contact with the platinum group element in the substance to be treated in the vicinity more frequently, so that the platinum group element becomes more incorporated into the molten metal copper.
  • the flux is preferably a mixture of silica, calcium oxide, calcium carbonate, etc. in an appropriate ratio.
  • the mixing ratio of the composition of the slag after different but heating and melting the composition of the raw material of the flux component A 1 2 0 3: 2 0 ⁇ 4 0 wt%, S i 0 2: 2 5 ⁇ 3 5 wt%, C a It is preferable to mix the flux component with the charge so that 0: 20 to 30% by weight and Fe :: 5 to 30% by weight.
  • a reducing agent for reducing the copper oxide in the copper source material to obtain a molten metal of metallic copper preferably a compounding agent for a coatus
  • a base metal containing a valuable metal having a reducing action in addition to a coke or a carbon source Resin-based materials, activated carbon, etc. can also be used.
  • valuable metals (noble metals and platinum group elements) contained in these reducing agents can be simultaneously recovered.
  • a mixture of a substance to be treated, a copper source material, a flux and a reducing agent was charged into a closed electric furnace, and the furnace pressure was kept slightly lower than the atmospheric pressure. While heating and melting at a temperature of 110 ° C. to 170 ° C., more preferably 130 ° C. to 150 ° C. to melt oxides in the charged material; Reduces copper oxide in the charge to copper. If the heating and melting temperature is lower than 1100 ° C, the molten state of the slag is not perfect and the viscosity increases, and the recovery rate of platinum group elements may decrease. Waste is of course a cause of damage to the furnace body of the electric furnace. By maintaining the furnace under reduced pressure, the reducing atmosphere is maintained, the reduction of copper oxide to copper proceeds well, and the absorption efficiency of platinum group elements into the molten metal increases.
  • the material to be treated is a glassy molten oxide layer (slag layer). Copper oxide is reduced by a reducing agent to form molten metal copper. Both spontaneously separate into two layers due to the difference in specific gravity, forming a slag layer on the upper layer and a molten metal layer on the lower layer. At this time, the platinum group element in the raw material to be processed is transferred to the lower molten metal layer and absorbed there. As described above, the particle size of the copper source material reduces the settling time and the platinum absorbed by the molten metal layer. This has a significant effect on the improvement of the group element yield, and when the particle size of the copper source material is set to 0.1 mm or more and less than 10 mm, a remarkable effect appears for the improvement.
  • the platinum group elements in the material are dispersed in the slag having an appropriate viscosity when the material to be treated melts down together with the flux.
  • the co-added copper oxide is also reduced, it is dispersed as molten metal in the slag, and the slag cannot be absorbed without absorbing the platinum group elements dispersed and suspended in the slag having appropriate viscosity. Descend down the layer.
  • the inventors have studied the behavior of this molten metal (copper metal) absorbing platinum group elements.
  • the inventors' experience if 50% by weight or more, preferably 80% by weight or more of the copper source material has a particle size in this range, there is substantially no problem in recovering the platinum group element.
  • the particle size was less than 50% by weight, it was necessary to increase the recovery time of the platinum group elements by allowing them to stand, that is, to increase the settling time.
  • to stand still, that is, to settle means to apply electricity as it is to maintain the molten slag at a predetermined temperature after charging the material into the electric furnace. During this time, the pressure in the closed electric furnace is preferably maintained under reduced pressure.
  • the platinum-metal-enriched molten metal which is separated from the molten slag and removed from the closed electric furnace, is transferred to the oxidation furnace in a molten state, and the platinum-group element is further concentrated in the molten metal. It is better to do the processing.
  • the molten metal is oxidized in a molten state, and the molten oxide (copper oxide) generated on the molten metal surface is discharged outside the furnace, leaving the molten metal further enriched with platinum group elements.
  • the platinum group element hardly migrates to the molten oxide layer formed on the molten metal surface and remains in the lower molten metal layer, so that every time the generated molten oxide layer is discharged, the molten metal layer Has a higher platinum group element concentration.
  • the oxidation treatment in this oxidation furnace is performed while maintaining the material temperature at a temperature of 110 ° C to 170 ° C, preferably at a temperature of 1200 ° C to 150 ° C.
  • the temperature is lower than 110 ° C., solidification of the molten oxide or molten metal occurs, which inhibits the progress of oxidation. If it exceeds 170 ° C, the furnace body will be damaged.
  • the content of the platinum group element in the molten metal layer enriched with the platinum group element is reduced to 10 to 75% by weight. Can be enhanced. After taking it out of the oxidation furnace, it is sent to the next step of platinum group element recovery and purification, where metallic copper and platinum group elements are separated and purified.
  • the molten oxide layer (oxide mainly composed of copper oxide) discharged from the oxidation furnace can be reused as a copper source material to be charged into the electric furnace.
  • the oxide layer discharged in a molten state from the oxidation furnace is poured into water, that is, granulated, so that the particle size is 0.1 mm or more and 10 mm and the granular material is 50% by weight. % Or more, preferably 80% by weight or more.
  • the obtained granulated powder is dried, and then sized with a sieve or the like to obtain a copper source material having a particle size suitable for the treatment of the present invention.
  • this platinum source element is inevitably entrained in the copper source material, the recycling of this element causes the entrained platinum group element to migrate into the molten metal layer, which further increases the recovery rate of the platinum group element. Become.
  • 300 kg of the copper source material containing this granular material was mixed with 100 kg of the substance to be treated, and Ca 0 600 kg, Fe 2 O 3 2 0 ⁇ ⁇ ⁇ Yobi 3 10 2 4 00 k, and mixed coke 3 0 kg as the reducing agent.
  • This mixture was placed in a closed electric furnace as shown in Fig. 1, and heated and melted at 135 ° C. In the electric furnace at the time of charging the mixture, the molten metal melted last time and the molten slag remaining on top of it remain. The molten slag is the remaining one after the previous molten amount of about 3 Z4 has been discharged. / 4 remains.
  • Example 1 The procedure was performed except that copper oxide containing 50% by weight of granular material having a particle size of 0.1 mm or more and 10 mm or less (the remainder was massive copper oxide having a particle size of more than 10 mm) was used as the copper source material.
  • Example 1 was repeated.
  • the copper content at the time of slag discharge was 0.9% by weight, and the platinum group elements in the slag were Pt: 0.9ppm, Pd: 0.2ppm, Rh: 0-1pm. It was as follows.
  • Example 1 (2) Example 1 was repeated except that the amount of coke powder used as the reducing agent was 15 kg. As a result, the content of copper in the slag at the time of slag discharge was 3.2% by weight, and the platinum group elements in the slag were Pt: 20 ppm, Pd: 12 ppm, and Rh: It was 2 ppm.
  • Example 1 was repeated except that copper oxide containing 60% by weight of powder having a particle size of less than 0.1 mm (the remainder was copper oxide having a particle size of 0.1 mm or more) was used as a copper source material. Repeated. As a result, the platinum group elements in the slag were Pt: 3.8ppm, Pd: 1.2ppm, and Rh: 0.2ppm.
  • Example 1 As the copper source material, a lump-shaped copper oxide containing 30% by weight of granular material having a particle size of 0.1 mm or more and 1 Omm or less and the remaining 70% by weight having a diameter exceeding 10 mm was used. Example 1 was repeated except for the above. As a result, the platinum group elements in the slag were Pt: 4.2 ppm, Pd: 1.6ppm, and Rh: 0.2 ppm.
  • the molten metal was poured from the lower part of the electric furnace by about 2 Z 3 of the whole and charged into the oxidation furnace in a molten state.
  • oxygen-enriched air with an oxygen concentration of 40% was blown from the top blowing lance onto the surface of the molten metal.
  • the furnace was tilted to allow the oxide (copper oxide) layer to flow out of the furnace and to enter a water tank through which a large amount of water flows.
  • the molten metal existing in the lower part of the electric furnace after the waste of the second embodiment is discharged onto the molten metal layer remaining in the oxidation furnace (2). And was charged. Then, oxidation treatment was performed in the same manner as in Example 3 to obtain water.
  • the crushed oxide (substance mainly composed of copper oxide) was found to have 99% by weight of particulate matter having a particle size of 0.1 mm or more and 10 mm or less.
  • the entire molten metal layer present in the lower layer of the oxidation furnace was removed, solidified by cooling, and 10 kg of metallic copper enriched with platinum group elements was collected.
  • the content of the platinum group element in the metallic copper was Pt: 23% by weight, Pd: 8.5% by weight, and Rh: 1.5% by weight.
  • Example 1 was repeated, except that the copper oxide of Example 1 was replaced with the granulated oxide (a substance mainly composed of copper oxide) obtained in Example 3.
  • the copper content at the time of slag discharge was 0.8% by weight, and the content of platinum group elements in the obtained slag was Pt: 0.7 ppm, Pd: 0.1 ppm, Rh: 0 It was less than 1 ppm.
  • the furnace operation can be streamlined by the dry treatment in which the platinum group element is concentrated in the molten metal copper from the platinum group element-containing substance to be treated, such as a waste catalyst for purifying automobile exhaust gas. Since the platinum group element can be recovered in high yield, the platinum group element can be recovered economically and advantageously from waste resources.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Catalysts (AREA)

Abstract

白金族元素を含有する被処理物質と,酸化銅を含有する鋼源材料とを,フラックス成分および還元剤と共に密閉型電気炉に装入して溶融し,酸化物主体の溶融スラグ層の下方に金属銅主体の溶融メタルを沈降させ,下方に沈降した溶融メタル中に白金族元素を濃縮させる白金族元素の回収法において,銅含有量が3.0重量%以下に低下した溶融スラグを該電気炉から排出すること,また前記の銅源材料として,径が0.1以上10mm以下の粒状銅源材料を用いることを特徴とする白金族元素の乾式回収法である。

Description

白金族元素の回収法および装置 技術分野
本発明は, 白金族元素を含有する各種の物質, たとえば使用済みの石油化学系 触媒, 使用済みの自動車排ガス浄化用触媒, 使用済みの電子基板やリードフレー ム等から白金族元素を回収する方法に関する。 従来技術
従来より, 使用済みの自動車排ガス浄化用触媒 (排ガスコンバータのセラミツ ク担体触媒やメタル担体触媒など: これらを 「自動車用廃触媒」 とよぶ) 等から 白金族元素を回収する方法として, 王水などの酸に酸化剤を加えた溶液で白金族 元素を抽出する方法や逆に硫酸等を用いて担体を溶かし, 未溶解の白金族元素と 分離する方法があるが, これらの湿式法では白金族元素の抽出率が悪かつたり, 担体を溶かすのに多量の酸を用いたりして回収率ゃコストの問題があり, 実用的 ではなかった。
これに対し, 本出願人らによる特開平 4一 3 1 7 4 2 3号公報ゃ特開 2 0 0 0 - 2 4 8 3 2 2号公報に記載された回収法は, 自動車用廃触媒等の白金族元素含 有物質を炉内で銅源材料 (酸化銅および Ζまたは金属銅) と共に溶融処理するこ とによって, 溶融メタル (溶融銅メタル) 中に白金族元素を移行させるという特 徴的な乾式処理を行うものであり, このようにして得られた白金族元素を含む溶 融メタルをさらに酸化処理して溶融酸化物と白金族元素がさらに濃縮した溶融メ タルとに相分離するという濃縮工程を組み合わせることによって, 高収率で且つ 低コス卜で白金族元素を回収することができるものであり, 経済的な資源回収法 として湿式法にはない利点を有している。 発明が解決しょうとする課題
前記の溶融メタル中に白金族元素を移行させる前記の乾式回収法は, 高回収率 および低コス卜の点で非常に優れる方法であるが, その溶融処理の操業において, 白金族元素を十分に溶融メタルに移行させるには, ある程度のセッ トリング時間 を要した。 すなわち, 自動車用廃触媒等の白金族元素含有物質と銅源材料が固体 状態のまま電気炉に投入された場合, それらがメルトダウンしつつ白金族元素が 溶融メタル中に移行するには, スラグとメタルの相分離が起きる段階で白金族元 素がメタル側に移動できるタイミングが必要であり, それが完全に行われたか否 かの判断が難しい。 このため, 安全を見て比較的長いセッ トリング時間 (静置時 間) を設けることが必要であった。 また, 炉内状況は材料投入毎に変化すること もあり, このために, 白金族元素が溶融メタル中に十分に移行するタイミングを 逸することもあった。
このようなことから, 効率よく白金族元素を溶融メタル中に移行させるには, その溶融の挙動を解析したうえで, 適切な対応を行うことが必要となっていた。 本発明はこのような要望を満たすことを課題としたものであり, 前記の乾式回収 法においてセッ トリング時間を短くしても, 効率よく且つ安定して白金族元素を 溶融メタル側に移行できるように改善することを目的としたものである。 発明の開示
前記の目的を達成せんとしてなされた本発明によれば, 白金族元素を含有する 被処理物質と, 酸化銅を含有する銅源材料とを, フラックス成分および還元剤と 共に密閉型電気炉に装入して溶融し, 酸化物主体の溶融スラグ層の下方に金属銅 主体の溶融メタルを沈降させ, 下方に沈降した溶融メタル中に白金族元素を濃縮 させる白金族元素の回収法において, 銅含有量が 3 . 0重量%以下にまで低下し た溶融スラグを該電気炉から排出することを特徴とする白金族元素の回収法を提 供する。 本法において, 電気炉に装入される銅源材料は, 平均粒径が 0 . 1 mm 以上 1 O mm以下の粒状物であるのがよく, 電気炉内は, 装入物の溶融から溶融 スラグ排出に至るまで大気圧より低い圧力に維持するのが好ましい。
さらに, 本発明によれば, 白金族元素を含有する被処理物質と, 酸化銅を含有 g する銅源材料とを, フラックス成分および還元剤と共に密閉型電気炉に装入して 溶融し, 酸化物主体の溶融スラグ層の下方に金属銅主体の溶融メタルを沈降させ, 下方に沈降した溶融メタル中に白金族元素を濃縮させ, この白金族元素が濃縮し た溶融メタルを溶融スラグから分別して別の炉に溶融状態のまま移し替え, この 別の炉において該溶融メタルを酸化処理することにより酸化物主体のスラグ層と 白金族元素がさらに濃縮した溶融メタル層に層分離する白金族元素の乾式回収法 において, 銅の含有量が 3 . 0重量%以下にまで低下した溶融スラグ層を該電気 炉から排出すること, 該別の炉で生成した溶融スラグを高温状態から水冷するこ とにより径が 0 . 1 m m以上 1 0 m m以下の粒状物からなる前記の酸化銅を含有 する銅源材料を得ることを特徴とする白金族元素の回収法を提供する。
また, この白金族元素の回収法を実施するのに好適な装置として, 本発明によ れば, 外気と実質的に遮断された内容積をもつ炉体と, この炉体の上半身部分に 設けられた材料投入口および排気口と, この炉体の下半身部分に設けられた高さ レベルの異なる少なくとも 2個の流体排出口と, 該材料投入口に連結された材料 投入シュートと, 該排気口に連結された排気装置と, 炉内に装入された材料を通 電加熱するための電極とからなり, 白金族元素同伴の酸化物系原料, 酸化銅, 固 形還元材ぉよびフラックスからなる装入材料を外気と実質的に遮断された還元雰 囲気下で且つ炉内発生ガスを該排気装置で排気しながら該炉体内で融解し, 高さ の低い方の流体排出口から白金族元素濃度の高いメタル系流体を, 高さの高い方 の流体排出口から白金族元素濃度の低いスラグ系流体を取り出すようにした白金 族元素の回収装置を提供する。 図面の簡単な説明
第 1図は, 本発明法を実施する装置の例を示す略断面図である。
第 2図は, 本発明を実施した場合のスラグ中の銅含有量と白金族元素含有量と の関係を示す図である。 発明の好ましい態様
本発明でいう白金族元素含有の被処理物質とは, たとえばプラチナ, パラジゥ ム等を含有する使用済み石油化学系廃触媒, プラチナ, パラジウムさらにロジゥ ム等を含有する使用済みの自動車排ガス浄化用廃触媒はもとより, それらの触媒 の製造工程から得られるロッ トアウト品やスクラップ等も含まれ, その他, パラ ジゥム等を含有する使用済みの電子基板, デンタル部品, リードフレーム等も含 まれる。 このような白金族元素含有の被処理物質は, 通常は金属酸化物やセラミ ックスに微量の白金族元素が担持された状態にある。
これら白金族元素含有の被処理物質を, 酸化銅含有の銅源材料, フラックスお よび炭素質還元剤と共に電気炉に装入して溶融し, 形成される酸化物主体の溶融 スラグ層の下方に金属銅主体の溶融メタル層を沈降させ, 下方に沈降した溶融メ タル層に白金族元素を濃縮させることが本発明法の基本的な構成であるが, その さい, 本発明においては,
1 . 電気炉として密閉型電気炉を使用する,
2 . 銅含有量が 3 . 0重量%以下, 好ましくは 2 . 0重量%にまで低下した溶融 スラグを該電気炉から排出する,
3 . 電気炉に装入する酸化銅含有の銅源材料として粒径が 0 . l mm以上 1 O m m以下の粒状体を使用する,
4 . 装入物の溶融から溶融スラグ排出に至るまでは電気炉内の圧力を大気圧より 低い圧力に維持する,
という特徴的な処法を採用する。
以下, 本発明で特定するこれらの事項について説明する。
第 1図に本発明法を実施する設備の例を示した。 第 1図において, 1は本発明 設備の主要部を占める密閉型電気炉を示している。 この密閉型電気炉 1は, 外気 と実質的に遮断された炉內容積 2をもつ炉体 3と, この炉体 3の上半身部分に設 けられた材料投入口 4および排気口 5と, この炉体 3の下半身部分に設けられた 高さレベルの異なる少なくとも 2個の流体排出口 6および 7と, 該材料投入口 4 に連結された材料投入シュート 8と, 該排気口 5に連結された排気装置 9と, 炉 内に装入された材料を通電加熱するための電極 10a, 10b, 10c と, からなる。 図例の炉体 3は耐火物で内張りされた円形の內壁をもつ炉であり, その天井面 のほぼ中央に材料投入シユート 8が配置されており, この材料投入シユート 8を r
5
中心とした同心円上に 3本の電極 10a,10b, 10c 力 互いに等間隔に, 垂直に, 天 井面から配置されている。 換言すれば, 垂直な電極 10a,10b,10c の配置位置は正 三角形の各頂点にあり, この正三角形のほぼ中心に材料投入シュ一ト 8が存在し ている。
このように構成された密閉型電気炉 1には, 白金族元素を含有する粒状の被処 理物質 11, 酸化銅を含有する粒状の銅源材料 12, 固形還元材 (粉状コ—クス) 13 および粉状のフラックス 14が混ぜ合わされて装入される。 すなわち, これらの装 入原料は, それぞれのホ一パーから計量して切り出され, スクリューコンベア 15 によって混合搬送されつつ電気炉 1の材料投入シュ一ト 8に送り込まれる。 材料 投入シュート 8には, 材料の炉内への投入時に気密が保たれるように, 上下二段 のシャッター 16と 17が設けられている。 まず, 上段シャッター 16を開, 下段シ ャッタ一17を閉にして, シュート 8内に材料を 1バッチ分だけ投入し, 次いで上 段シャッター 16を閉, 下段シャツ夕一 17を開にして, シュート 8内に貯溜してい るバッチ分を炉内に投入する。 このバッチの炉内への投入を終えると, 上下の シャッター 16と 17を閉じて次の投入操作に備える。 図例の設備では, シュート 8 の下端 (材料投入口 4の下方) に分岐部材 18を取付けることによって, シュート 8から炉内に落下する材料が 3本の電極 10a, 10b, 10c を結ぶ 3角形の各辺の近傍 に, より好ましくは, 各三辺のそれぞれの中点位置近くに着地するようにしてあ る。 これにより, 各電極 10a,10b,10c を結ぶ最短距離に新たな投入材料が堆積す ることになり, 溶融効率が高まる。
新たな材料が投入される炉の操業初期には, 炉体 3の下半身部分に設けられた 高さレベルの異なる少なくとも 2個の流体排出口 6および 7はいずれも閉塞され ている。 各電極 10a,10b, 10c に通電することによって, 炉內の装入された物質は 溶融し始めるが, その間, 排気装置 9の駆動により炉內で発生する排ガスは排気 口 5から粉塵除去装置 19に導かれ, 排ガスの処理を終えたうえで系外に排出され る。 排気装置 9の連続した稼働により, 外気と実質的に遮断されている炉内空間 2は大気圧よりも低い圧力に保持されることになる。
炉內に装入された材料が溶融し始めると, 金属酸化物とくに銅源材料中の酸化 銅が還元材 (粉コ一クス) によってメタル銅に還元され, 溶融したメタル銅を形 成する。 このメタルの融解物は, 酸化物の融解物 (スラグ) よりも比重が重いの でスラグ中を下降し, 炉の下方に沈降してメタル溶湯のプール 20を形成する。 こ のメタル溶湯 20の上には酸化物の融解物すなわちスラグ層 21が形成される。
酸化銅が還元されて生成したメタル銅の融液がスラグ中を下降する過程で, ス ラグ中に存在する白金族元素をそのメタル銅の融液中に取り込む。 すなわち, 溶 け込ませる。 これによつて, メタル溶湯 20中に白金族元素が溶け込んだ状態で収 集され, 白金族元素濃度が高くなつたメタル溶湯 20が得られる。 他方, 白金族元 素がメタル溶湯 20に溶け込んだ分だけ, スラグ 21の中の白金族元素の濃度は低下 する。 したがって, 高い方の流体排出口 6から白金族元素の濃度が低くなつたス ラグ 21を, また, 低い方の流体排出口 7から白金族元素濃度の高いメタル溶湯 20 を互いに分別しながら炉外に流出させると, 白金族元素濃度の高いメタル溶湯 (金属銅中に白金族元素が溶け込んだメタル) を採取することができる。
このようにして, 密閉型電気炉 1を用いてこの白金族元素の回収処理を行うこ とにより, 炉內雰囲気を還元雰囲気に維持した状態で且つ高い熱効率のもとで白 金族元素のメタル溶湯の側への移行処理が実現でき, その結果, 処理時間の短縮 と白金族元素の回収率を向上させることができる。
本発明法の一つの特徴は, このような密閉型電気炉を用いて白金族元素の回収 を図るさいに, 銅含有量が 3 . 0重量%以下にまで低下した溶融スラグを該電気 炉から排出する点にある。 後述の実施例に示したように, 白金族元素含有の被処 理物質 1 トンに対し酸化銅約 0 . 3 トンを使用し, この酸化銅の全てを還元でき るに十分な還元材を配合する原料配合のもとで (フラックス成分も 1 トン近く配 合す) , 密閉型電気炉での溶融還元処理を実施した場合, スラグ中に残存する白 金族元素の含有量はスラグ中に残存する銅の含有量と密接に関連性を有すること が判明した。 その関係を第 2図に示した。
第 2図に見られるように, スラグ中の C u含有量が例えば 1重量%であるとス ラグ中の P t, ? 0ぉょび は, それぞれ約 5 p p m, 約 3 p p mおよび約 1 p p mにまで低下し, C u含有量がさらに低くなるにつれて P t , P dおよび R hの含有量もいずれもさらに低下する傾向があることがわかる。 しかし, C u含 有量が 3 . 0重量%を超える領域では, P t, P dおよび R hの含有量はいずれ 了 も急に増加する傾向を示し, 白金族元素の回収率が急激に低下するようになる。 したがって, 溶融スラグを電気炉から排出するさいには, 銅含有量が 3 . 0重 量%以下, 好ましくは 2 . 0重量%以下にまで低下した溶融スラグを排出するの が望ましい。 溶融スラグ中の銅の含有量は, 操業中の炉内のスラグをサンプリン グしてこれを機器分析することにより, リアルタイムで知ることができる。
本発明の実施にあたり, 溶融スラグの量が増加し, これを炉外に排出すること が必要になった場合には, そのスラグ中の銅含有量を測定し, 3 . 0重量%を超 えていれば, その排出操作を行わずに炉內の内容物を所定の温度条件下で静置す るのが好ましい。 この静置の間にスラグ中の銅含有量は徐々に低下し, これに 伴ってスラグ中の白金族元素もメタル溶湯の側に移行する。
このようにして, 銅含有量が低いスラグを炉外に排出しても, 白金族元素がこ れに同伴して炉外に流出するのを避けることができ, ひいては白金族元素濃度の 高いメタル溶湯を回収することができる。
本発明法のいま一つの特徴は, 電気炉に装入する酸化銅含有の銅源材料として 粒径が 0 . 1 mm以上 1 0 mm以下の粒状体を使用する点にある。 銅源材料とし て粒径が 0 . 1 mm以上 1 Q mm以下の粒状体を用いると, 被処理物質と銅源材 料が加熱溶融する段階で, 被処理物質中の白金族元素が溶融メタル中に移行しや すくなることがわかった。 とくに銅源材料は粒径が 0 . 1 mm以上 1 0 mm以下 のものが 5 0重量%以上存在することが望ましく, その条件が満たされるのであ れば, それ以外のものは 1 0 mm以上の塊状物であってもよく, 場合によっては, 0 · 1 mm未満の粉体が混入していても構わない。
白金族元素含有の被処理物質についても, 銅源材料との混合性を良好にするた めに, その少なくとも 5 0重量%以上が粒径 1 0 mm以下の粒状体であるのが好 ましい。 被処理物質と銅源材料がともに適切な粒度をもつ粒状体であり, これが 炭素質還元材およびフラックスと共に混合された状態で炉内に装入されると, 銅 源材料中の酸化銅が溶融 ·還元されやすくなり, 生成した溶融メタルの銅がその 近傍に存在する被処理物質中の白金族元素と接触する機会が多くなつて, 白金族 元素が溶融メタル銅に多く取り込まれるようになる。
被処理物質と銅源材料のメルトダウンを促進し且つ生成するスラグの流動性を 改善するために, フラックスを装入原料中に同時に添加するのが望ましい。 フ ラックスとしては, シリカ, 酸化カルシウム, 炭酸カルシウム等を適当な比率で 混合したものがよい。 フラックス成分の混合比は原料の組成により異なるが加熱 溶融後のスラグの組成として, A 1 2 0 3 : 2 0〜4 0重量%, S i 0 2 : 2 5 〜3 5重量%, C a 0 : 2 0〜3 0重量%, F e◦ : 5〜 3 0重量%となるよう にフラックス成分を装入原料に配合するのが好ましい。
銅源材料中の酸化銅を還元して金属銅の溶融メタルを得るために還元剤として 好ましくはコータスを配合する力 コ一クス以外にも還元作用のある有価金属を 含有する卑金属や, 炭素源としての樹脂系材料, 活性炭等も使用することができ る。 これらの還元剤の中に含有されている有価金属 (貴金属類や白金族元素) も 本発明によれば同時に回収することができる。
本発明法の実施にさいしては, 密閉型電気炉に, 被処理物質, 銅源材料, フ ラックスおよび還元剤を混合したものを装入し, 炉内圧を大気圧より若干低い圧 力に維持しながら 1 1 0 0 °C〜 1 7 0 0 °C , さらに好ましくは 1 3 0 0 °C〜 1 5 0 0 °Cの温度で加熱溶融し, 装入材料中の酸化物を溶融し, 装入材料中の酸化銅 を銅に還元する。 加熱溶融温度が 1 1 0 0 °C未満ではスラグの溶融状態が完全で なく粘性も高まって白金族元素の回収率が低下する恐れがあり, 1 7 0 0 °Cを越 えるとエネルギ一の浪費はもちろん電気炉の炉体の破損を招く要因となる。 炉內 を減圧下に維持することにより, 還元雰囲気が保持され, 酸化銅の銅への還元が 良好に進行し, 白金族元素のメタル溶湯への吸収効率も高まる。
装入物質のメルトダウンの状態では, 被処理物質の殆どはガラス状の溶融した 酸化物層 (スラグ層) となる。 酸化銅は還元剤によって還元されて溶融メタル銅 となる。 両者は比重差により自然に 2層に分離し, 上層にスラグ層, 下層に溶融 メタル層を形成する。 このとき被処理原料中の白金族元素は下層の溶融メタル層 に移行し吸収される力 前記のように, 銅源材料の粒径がそのセッ トリング時間 の短縮および溶融メタル層に吸収される白金族元素の収率の向上に大きく影響を 及ぼし, 銅源材料の粒径を 0 . 1 m m以上 1 0 m m未満とした時に, それらの向 上に対して顕著な効果が現れる。
その理由は必ずしも明確ではないが, 次のように考えることができる。 被処理 物質中の白金族元素は, その被処理物質がフラックスと共にメルトダウンした時 点で適度な粘性を有するスラグ中に分散される。 また, 同時に添加された酸化銅 も還元された直後ではスラグ中に溶融メタルとなって分散され, 適度な粘性を有 するスラグ中に分散浮遊している白金族元素を吸収しなカ ら, スラグ層中を下降 する。 発明者らはこの溶融メタル (銅メタル) が白金族元素を吸収する挙動を
「銅のシャワリング効果」 と名付けた。 初期に投入された銅源材料の粒径が 0 . 1 m m未満の粉体であると, スラグ中に分散された溶融メタル銅も微粒であるた めに下層のメタル層にまで沈降するのに多くの時間がかかり, 銅のシャヮリング 効果が十分に作用しない。 一方, 初期に投入される銅源材料の径が 1 O m mを越 えるような塊状であると, スラグ中に分散している白金族元素を十分に吸収する 前に, 溶融メタル銅が下層のメタル層にまで沈降してしまって, この場合にも, 銅のシャワリング効果が十分に機能しない。 また, スラグ中に分散した白金族元 素を, 降下する溶融メタル銅が吸収するにはそれなりの表面積および断面積が必 要である。 すなわち, 投入する銅源材料の重量が同じでも表面積および断面積が 大きいほど吸収効率が挙がる。 このような理由により, 初期に投入する銅源材料 の粒径が 0 . 1 m m以上 1 0 m m以下であるときに銅のシャヮリング効果が最も 効率よく作用することになり, メルトダウンした被処理物質から溶融メタル中へ の白金族元素の移行が良好に行われるようになると考えられる。
発明者らの経験によれば, 銅源材料の 5 0重量%以上, 好ましくは 8 0重量% 以上がこの範囲の粒径を有していれば, 白金族元素の回収に実質上問題はなく, この粒径のものが 5 0重量%未満の場合には, 白金族元素の回収率を高くするに は静置すなわちセッ トリング時間を長くとる必要があった。 ここで, 静置すなわ ちセッ トリングとは, 電気炉に材料投入後に既に融解したスラグを所定温度に維 持するためにそのまま通電することを意味する。 その間, 密閉型電気炉内の圧力 は減圧下に維持しておくのが好ましい。
この静置後, 上層のスラグは, 前記のように銅含有量が 3 . 0重量%以下に なった時点で, その一部を炉内に残す状態で, 大半を炉外に排滓する。 炉内の下 層に存在する白金族元素を吸収した溶融メタル層も, その一部は炉内に残したま ま炉外にタツビングする。 炉内には溶融スラグおよび溶融メタルの他部が残存す 1 Q るが, この状態で次ヒートの装入材料を炉内に装入し, 再び同じ操業を繰り返す ことができる。
密閉型電気炉から, 溶融スラグとは分別して取り出された白金族元素が濃縮し た溶融メタルは, これを溶融状態のまま酸化炉に移して, さらに白金族元素を溶 融メタル中に濃縮する処理を行うのがよい。
酸化炉ではこの溶融メタルを溶融状態のまま酸化処理し, 湯面上に生成した溶 融酸化物 (酸化銅) は炉外に排出し, 白金族元素がさらに濃縮した溶融メタルを 残す。 すなわち, 湯面上に生成する溶融酸化物層には白金族元素は殆ど移行せず, 下層の溶融メタル層に残存するので, 生成した溶融酸化物層を排出する度に, 溶 融メタル層中の白金族元素濃度は高くなる。 この酸化炉での酸化処理は材料温度 を 1 1 0 0 °C〜 1 7 0 0 °C, 好ましくは 1 2 0 0 °C〜 1 5 0 0 °Cの温度に維持し ながら, 酸素ガスまたは酸素含有ガスの導入して行うのがよい。 1 1 0 0 °C未満 では溶融酸化物または溶融メタルの凝固が起こって酸化の進行を阻害するように なる。 また 1 7 0 0 °Cを越すと炉体の破損が生じる。
このようにして, 酸化炉において, 酸化処理と酸化物層の排出処理を繰り返す ことにより, 白金族元素が濃縮した溶融メタル層は, 白金族元素の含有量を 1 0 〜7 5重量%にまで高めることができる。 これを酸化炉から取り出したあと, 次 工程の白金族元素回収精製に送り, 金属銅と白金族元素を分離精製する。
他方, 酸化炉から排出された溶融酸化物層 (酸化銅が主体の酸化物) は, 電気 炉に装入する銅源材料として再利用することができる。 そのさい, 酸化炉から溶 融状態で排出された酸化物層を水中に投入することにより, すなわち水砕化する ことによって, 粒径が 0 . 1 m m以上 1 0 m mが粒状体が 5 0重量%以上好まし くは 8 0重量%以上含有した銅源材料とすることができる。 得られた水砕は, 乾 燥後, さらに篩等によって整粒化し, 本発明の処理に適した粒度の銅源材料とす ることができる。 この銅源材料には, 白金族元素が不可避的に同伴するが, これ の再利用によって, 同伴する白金族元素もやがて溶融メタル層中に移行するので 白金族元素の回収率がさらに高まることになる。
以下に本発明の実施例を挙げて, 本発明をさらに説明する。 実施例
〔実施例 1〕
被処理物質として, P.t : 1 2 0 0 p p m, P d : 4 5 0 p p m, R h : 9 0 P pm含有した自動車排ガス浄化用廃触媒 (A 1203 : 3 6.5重量%, S i O 2 : 4 0.6重量%, Mg 0 : 1 0.5重量%を含有する) を 1 0 mm以下に 破砕した。 また, 銅源材料として粒径が 0. l mm以上 1 O mm以下の粒状体を 8 0重量%含有する酸化銅 (残りは粒径が 1 0 mmを超える塊状の酸化銅) を準 備した。 前記の被処理物質 1 0 0 0 k gに対してこの粒状体を含む銅源材料 3 0 O k gを混合し, さらに, フラックス成分として C a 06 0 0 k g, F e 2 O 3 2 0 0 ぉょび3 102 4 00 k , そして還元剤としてコークス 3 0 k gを 混合した。
この混合物を, 第 1図に示したような密閉型電気炉に投入し, 1 3 5 0 °Cで加 熱溶融した。 混合物を投入した時点の電気炉には, 前回溶融した溶融メタルとそ の上部に溶融スラグが残存しており, 溶融スラグは, 前回溶融分の約 3 Z4が排 滓された後の残りの 1 /4が残存している状態にある。
該混合物を投入したあと, 排気装置を駆動して炉內を減圧に維持しながら装入 物を 1 3 5 0 °Cで加熱溶融し, スラグ表面に浮いていた投入混合物が溶融した時 点でスラグをサンプリングし, 銅の含有量を分析したところ, 0.8重量%で あった。 このため, 直ちに, スラグ層の約 3 Z4を電気炉の側面より排滓した。 排滓し且つ冷却固化したスラグ中の白金族元素の量を分析したところ, P t : 0. 7 p pm, P d : 0.1 p pm, Rh : 0 · 1 p pm以下であった。 すなわち, 白金族元素の殆どは電気炉下層の溶融メタル層に移行した。
〔実施例 2〕
銅源材料として, 粒径が 0.1 mm以上 1 0 mm以下の粒状体を 5 0重量%含 有する酸化銅 (残りは粒径が 1 0 mmを超える塊状の酸化銅) を用いた以外は, 実施例 1を繰り返した。 その結果, スラグ排出時点の銅の含有量は 0.9重量% であり, スラグ中の白金族元素は, P t : 0 · 9 p pm, P d : 0 · 2 p pm, Rh : 0 - 1 pm以下となった。
〔比較例 1〕 χ 2 還元材としてのコークス粉を 1 5 Kgとした以外は, 実施例 1を繰り返した。 その結果, スラグ排出時点でのスラグ中の銅の含有量は 3.2重量%であり, ス ラグ中の白金族元素は, P t : 2 0 p pm, P d : 1 2 p pm, R h : 2 p p m となった。
〔比較例 2〕
銅源材料として, 粒径が 0. 1 mm未満の粉体を 6 0重量%含有する酸化銅 (残りは粒径が 0. 1 mm以上の酸化銅) を用いた以外は, 実施例 1を繰り返し た。 その結果, スラグ中の白金族元素は P t : 3 · 8 p pm, P d : 1 · 2 p p m, R h : 0.2 p p mとなった。
〔比較例 3〕
銅源材料として, 粒径が 0.1 mm以上 1 O mm以下の粒状体を 3 0重量%含 有し, 残りの 7 0重量%Ίま径が 1 0 mmを越える塊状である酸化銅を用いた以外 は, 実施例 1を繰り返した。 その結果, スラグ中の白金族元素は P t : 4.2 p ρ m, P d : 1 · 6 p p m, R h : 0.2 p p mとなった。
〔実施例 3〕
実施例 1の排滓後, その電気炉の下部から溶融メ夕ルをその全体の約 2 Z 3だ け出湯し, これを溶融状態のまま酸化炉に装入した。 この酸化炉において, 上吹 きランスから酸素濃度 4 0 %の酸素富化空気を溶融メタルの表面に吹き付けた。 溶融メタルの表面に酸化物層が約 1 c mの厚さに生成した時点で, 炉を傾けて酸 化物 (酸化銅) の層を炉から流出させ, 大量の水の流れる水槽内に投入した。 引き続き, 酸化炉中の溶融メタル層には酸素富化空気を吹き付け, 酸化物の層 が約 1 cmに生成したところで炉を傾けて同様にその酸化物を流出させ, 水槽へ 投入する操作を繰り返した。 その後, 水砕された酸化物 (酸化銅主体の物質) を 水槽から取り出し, 乾燥後, サンプリングし, 篩で粒径および組成を測定した。 その結果, 粒径が 0.1 mm以上 1 O mm以下の粒状物が 9 9重量%であった。 〔実施例 4〕
実施例 3において酸化炉から酸化銅を流出させたあと, その酸化炉內に残存す る溶融メタル層の上に, 実施例 2の排滓後においてその電気炉下部に存在する溶 融メタルを出湯して装入した。 そして, 実施例 3と同様に酸化処理を行って, 水 砕された酸化物を得たところ, 水砕された酸化物 (酸化銅主体の物質) は, その 粒径が 0 . 1 mm以上 1 0 m m以下の粒状物が 9 9重量%であつた。
酸化炉の下層に存在する溶融メタル層全量を取り出して冷却固化し, 白金族元 素が濃縮した金属銅 1 0 k gを採取した。 当該金属銅中の白金族元素の含有率は, P t : 2 3重量%, P d : 8 . 5重量%, R h : 1 . 5重量%であつた。
〔実施例 5〕
実施例 1の酸化銅に代えて, 実施例 3で得られた水砕された酸化物 (酸化銅主 体の物質) を用いた以外は, 実施例 1を繰り返した。 スラグ排出時点の銅の含有 量は 0 . 8重量%であり, 得られたスラグ中の白金族元素の含有量は P t : 0 . 7 p p m, P d : 0 . 1 p p m, R h : 0 . 1 p p m以下であつた。
以上説明したように, 本発明によると, 自動車排ガス浄化用廃触媒などの白金 族元素含有の被処理物質から溶融メタル銅中に白金族元素を濃縮するという乾式 処理によって, 炉操業を合理化しながら白金族元素を高い収率で回収することが できるので, 廃資源から経済的有利に白金族元素を回収することができる。

Claims

請求の範囲
1 . 白金族元素を含有する被処理物質と, 酸化銅を含有する銅源材料とを, フ ラックス成分および還元剤と共に密閉型電気炉に装入して溶融し, 酸化物主体の 溶融スラグ層の下方に金属銅主体の溶融メタルを沈降させ, 下方に沈降した溶融 メタル中に白金族元素を濃縮させる白金族元素の回収法において, 銅含有量が 3 . 0重量%以下に低下した溶融スラグを該電気炉から排出することを特徴とする白 金族元素の回収法。
2 . 電気炉に装入される銅源材料は, 平均粒径が 0 . 1 mm以上 1 0 mm以下の 粒状物である請求の範囲 1に記載の白金族元素の回収法。
3 . 電気炉内は, 装入物の溶融から溶融スラグ排出に至るまで大気圧より低い圧 力に維持される請求の範囲 1に記載の白金族元素の回収法。
4 . 白金族元素を含有する被処理物質と, 酸化銅を含有する銅源材料とを, フ ラックス成分および還元剤と共に密閉型電気炉に装入して溶融し, 酸化物主体の 溶融スラグ層の下方に金属銅主体の溶融メタルを沈降させ, 下方に沈降した溶融 メタル中に白金族元素を濃縮させ, この白金族元素が濃縮した溶融メタルを溶融 スラグから分別して別の炉に溶融状態のまま移し替え, この別の炉において該溶 融メタルを酸化処理することにより酸化物生体のスラグ層と白金族元素がさらに 濃縮した溶融メタル層に層分離する白金族元素の乾式回収法において, 銅の含有 量が 3 . 0重量%以下に低下した溶融スラグ層を該電気炉から排出すること, 該 別の炉で生成した溶融スラグを高温状態から水冷することにより径が 0 . 1 mm 以上 1 0 mm以下の粒状物からなる前記の酸化銅を含有する銅源材料を得ること を特徴とする白金族元素の回収法。
5 . 外気と実質的に遮断された内容積をもつ炉体と, この炉体の上半身部分に設 けられた材料投入口および排気口と, この炉体の下半身部分に設けられた高さレ ベルの異なる少なくとも 2個の流体排出口と, 該材料投入口に連結された材料投 入シュートと, 該排気口に連結された排気装置と, 炉内に装入された材料を通電 加熱するための電極とからなり, 白金族元素同伴の酸化物系原料, 酸化銅, 固形 還元材およびフラックスからなる装入材料を外気と実質的に遮断された還元雰囲 気下で且つ炉内発生ガスを該排気装置で排気しながら該炉体内で融解し, 高さの 低い方の流体排出口から白金族元素濃度の高いメタル系流体を, 高さの高い方の 流体排出口から白金族元素濃度の低いスラグ系流体を取り出すようにした白金族 元素の回収装置。
6 . 粒状の白金族元素同伴の酸化物系原料, 粒状の酸化銅, 粉状の固形還元材ぉ よび粉状のフラックスの混合物が材料投入シユートに導かれる請求の範囲 5に記 載の白金族元素の回収装置。
7 . 高さの低い方の流体排出口から白金族元素濃度の高いメタル系流体の一部だ けを取り出し, 高さの高い方の流体排出口から白金族元素濃度の低いスラグ系流 体の一部だけを取り出したあと, 炉内に他部の流体が残存した状態で材料投入 シュ一卜から新たな装入材料を投入し, 融解を続行する請求の範囲 5に記載の白 金族元素の回収装置。
PCT/JP2003/009876 2002-08-05 2003-08-04 白金族元素の回収法および装置 WO2004013361A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP03766725A EP1553193B1 (en) 2002-08-05 2003-08-04 Method of recovering platinum group element
US10/521,818 US7815706B2 (en) 2002-08-05 2003-08-04 Method and apparatus for recovering platinum group elements
AT03766725T ATE471994T1 (de) 2002-08-05 2003-08-04 Verfahren zur rückgewinnung eines platingruppenelement
DE60333111T DE60333111D1 (de) 2002-08-05 2003-08-04 Verfahren zur rückgewinnung eines platingruppenelement
US12/883,729 US8366991B2 (en) 2002-08-05 2010-09-16 Apparatus for recovering platinum group elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002227847A JP3734779B2 (ja) 2002-08-05 2002-08-05 白金族元素の乾式回収法
JP2002-227847 2002-08-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10521818 A-371-Of-International 2003-08-04
US12/883,729 Division US8366991B2 (en) 2002-08-05 2010-09-16 Apparatus for recovering platinum group elements

Publications (1)

Publication Number Publication Date
WO2004013361A1 true WO2004013361A1 (ja) 2004-02-12

Family

ID=31492230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009876 WO2004013361A1 (ja) 2002-08-05 2003-08-04 白金族元素の回収法および装置

Country Status (8)

Country Link
US (2) US7815706B2 (ja)
EP (1) EP1553193B1 (ja)
JP (1) JP3734779B2 (ja)
KR (1) KR100976715B1 (ja)
CN (2) CN101121963B (ja)
AT (1) ATE471994T1 (ja)
DE (1) DE60333111D1 (ja)
WO (1) WO2004013361A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203351A (zh) * 2013-04-23 2013-07-17 河北辛集腾跃实业有限公司 一种分离金属与非金属复合产品的方法与生产线
CN106244812A (zh) * 2016-08-29 2016-12-21 金川集团股份有限公司 一种从一次、二次资源中联合提取铂族金属的方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196095B2 (ja) * 2006-06-20 2013-05-15 三菱マテリアル株式会社 貴金属回収方法および回収貴金属
JP4984123B2 (ja) * 2006-09-29 2012-07-25 Dowaメタルマイン株式会社 SiC系物質からの金または白金族元素の回収方法
JP4984122B2 (ja) * 2006-09-29 2012-07-25 Dowaメタルマイン株式会社 SiC系物質からの金または白金族元素の回収方法
KR100858551B1 (ko) * 2006-11-13 2008-09-25 진인수 전기화학적 방법에 의해 폐촉매로부터 백금족 금속을추출하는 방법
JP5127034B2 (ja) * 2007-07-26 2013-01-23 大同特殊鋼株式会社 白金属元素の回収方法
KR101037324B1 (ko) * 2009-04-20 2011-05-26 한국지질자원연구원 산화백금이 함유되어 있는 폐 촉매로부터 백금의 회수방법
CN102428194A (zh) * 2009-05-14 2012-04-25 尤米科尔公司 从废均相催化剂中回收贵金属
JP5713697B2 (ja) * 2011-01-18 2015-05-07 Dowaメタルマイン株式会社 Pgmの回収方法
JP5804546B2 (ja) * 2011-02-10 2015-11-04 Dowaメタルマイン株式会社 Pgmを含有する被処理部材からのpgmの回収方法
JP5689340B2 (ja) 2011-03-11 2015-03-25 田中貴金属工業株式会社 白金族元素の回収方法
DE102011016860A1 (de) * 2011-04-13 2012-10-18 Umicore Ag & Co. Kg Verfahren zur Bereitstellung edelmetallhaltiger Stoffgemische für die Rückgewinnung von Edelmetallen
CN104178634A (zh) * 2014-08-19 2014-12-03 昆明贵金属研究所 从失效汽车催化剂中高效清洁回收铂族金属的方法
FR3026110B1 (fr) 2014-09-24 2016-11-18 Commissariat Energie Atomique Procede de recuperation du platine present dans un assemblage membrane-electrode.
CN104988314A (zh) * 2015-05-11 2015-10-21 昆明贵金属研究所 基于铜捕集回收铂族金属的方法
CN108866342B (zh) * 2018-08-29 2023-11-17 兰州有色冶金设计研究院有限公司 一种处理含贵金属废催化剂的装置和方法
CN109136532B (zh) * 2018-09-30 2020-10-16 上海交通大学 废弃线路板与汽车尾气废催化剂协同资源化的方法
TWI704232B (zh) * 2019-04-11 2020-09-11 日商日本製鐵股份有限公司 高效率的熔融鐵合金之精煉方法
CN113528828B (zh) * 2021-07-01 2022-06-10 昆明贵研新材料科技有限公司 一种废氧化铝载体铂族金属催化剂的富集方法
CN115323188B (zh) * 2022-07-27 2023-11-07 中南大学 一种铜捕集失效催化剂中铂族金属的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1896807A (en) 1929-01-24 1933-02-07 Bauer Georg Process for the recovery of platimum and its bymetals from mattes
DE3143966A1 (de) 1980-11-05 1982-06-03 Engelhard Corp., 08830 Iselin, N.J. "verfahren und vorrichtung zum wiedergewinnen von metallen"
JPH07243080A (ja) * 1994-03-09 1995-09-19 Sumitomo Metal Mining Co Ltd 自動車廃触媒から白金族金属を吸収して回収された白金族金属含有銅の脱Fe、脱P方法
JPH08325649A (ja) * 1995-05-30 1996-12-10 Hyuga Seirensho:Kk 白金族含有廃触媒からの白金族金属の濃縮方法
JP2002030357A (ja) * 2000-07-14 2002-01-31 Sumitomo Metal Mining Co Ltd イリジウム、ルテニウム、ロジウムの分離方法およびこれらの−括定量方法。

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2744944A (en) * 1954-12-17 1956-05-08 Tennessee Valley Authority Rotating electric phosphorus furnace
US3936588A (en) * 1972-03-20 1976-02-03 Elkem-Spigerverket Control system for electrical furnaces
AU7738275A (en) * 1974-01-23 1976-07-22 Intercont Dev Corp Pty Ltd Electro-pyrolytic upright shaft type solid refuse disposal and conversion process
US4060409A (en) * 1976-02-23 1977-11-29 Kennecott Copper Corporation Mechanically stirred furnace for pyrometallurgical operations and processes
JPS53148125A (en) * 1977-05-31 1978-12-23 Nippon Steel Corp High strength subbase course material
US4685963A (en) * 1978-05-22 1987-08-11 Texasgulf Minerals And Metals, Inc. Process for the extraction of platinum group metals
DE3279625D1 (en) * 1981-09-16 1989-05-24 Matthey Rustenburg Refines Recovery of platinum group metals from scrap and residues
NO150774C (no) * 1982-05-03 1984-12-12 Elkem As Fremgangsmaate og anordning ved chargering av en elekrotermisk smelteovn.
US4451925A (en) * 1982-09-13 1984-05-29 Hylsa, S.A. Charging system for electric arc furnaces
US4870655A (en) * 1987-11-16 1989-09-26 Ward Vincent C Apparatus for recovery of metallics and non-metallics from spent catalysts
DE4211164C2 (de) * 1992-03-31 1995-02-16 Mannesmann Ag Verfahren und Vorrichtung zum Behandeln von riesel- oder fließfähigem Material
JP3222894B2 (ja) 1991-04-10 2001-10-29 田中貴金属工業株式会社 白金族金属回収方法
US5572544A (en) * 1994-07-21 1996-11-05 Praxair Technology, Inc. Electric arc furnace post combustion method
EP0694623A3 (en) * 1994-07-29 1996-04-17 Teruhisa Ogihara Method for the treatment of metalliferous waste
DE60000574D1 (de) * 1999-02-26 2002-11-14 Mintek Randburg Behandlung von metallsulfidkonzentraten durch rösten und reduzierende schmelzung im lichtbogenofen
JP3516604B2 (ja) 1999-02-26 2004-04-05 同和鉱業株式会社 メタル基体触媒からの白金族元素の回収法
DE10102027A1 (de) * 2000-02-15 2001-08-16 Luk Lamellen & Kupplungsbau Vorrichtung zur Erfassung der Betätigungsstellung eines Aktuators eines automatisierten Schaltgetriebes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1896807A (en) 1929-01-24 1933-02-07 Bauer Georg Process for the recovery of platimum and its bymetals from mattes
DE3143966A1 (de) 1980-11-05 1982-06-03 Engelhard Corp., 08830 Iselin, N.J. "verfahren und vorrichtung zum wiedergewinnen von metallen"
JPH07243080A (ja) * 1994-03-09 1995-09-19 Sumitomo Metal Mining Co Ltd 自動車廃触媒から白金族金属を吸収して回収された白金族金属含有銅の脱Fe、脱P方法
JPH08325649A (ja) * 1995-05-30 1996-12-10 Hyuga Seirensho:Kk 白金族含有廃触媒からの白金族金属の濃縮方法
JP2002030357A (ja) * 2000-07-14 2002-01-31 Sumitomo Metal Mining Co Ltd イリジウム、ルテニウム、ロジウムの分離方法およびこれらの−括定量方法。

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203351A (zh) * 2013-04-23 2013-07-17 河北辛集腾跃实业有限公司 一种分离金属与非金属复合产品的方法与生产线
CN106244812A (zh) * 2016-08-29 2016-12-21 金川集团股份有限公司 一种从一次、二次资源中联合提取铂族金属的方法

Also Published As

Publication number Publication date
EP1553193A4 (en) 2006-11-08
EP1553193A1 (en) 2005-07-13
CN100350062C (zh) 2007-11-21
CN101121963A (zh) 2008-02-13
JP2004068071A (ja) 2004-03-04
US20050166707A1 (en) 2005-08-04
US7815706B2 (en) 2010-10-19
KR100976715B1 (ko) 2010-08-19
CN101121963B (zh) 2010-06-09
KR20050032112A (ko) 2005-04-06
ATE471994T1 (de) 2010-07-15
DE60333111D1 (de) 2010-08-05
JP3734779B2 (ja) 2006-01-11
US20110001279A1 (en) 2011-01-06
EP1553193B1 (en) 2010-06-23
CN1675385A (zh) 2005-09-28
US8366991B2 (en) 2013-02-05

Similar Documents

Publication Publication Date Title
US8366991B2 (en) Apparatus for recovering platinum group elements
JP5074332B2 (ja) 白金族元素の回収装置
JP2018145479A (ja) 白金族金属の回収方法
WO2004081243A1 (ja) 白金族元素の回収法
JP5355977B2 (ja) 白金族元素、レニウム及び砒素を含有する被処理物質の処理法
CN102649999A (zh) 回收铂族金属元素的等离子体弧熔融富集方法及其设备
JP2010077470A (ja) 白金族元素とレニウム及び又は砒素を含有する被処理物質の処理法
JP4284124B2 (ja) 白金族元素の回収法
CN112176202B (zh) 一种采用富氧侧吹有柱熔炼的锑冶炼方法
JP3903141B2 (ja) 白金族元素の回収法
JP4984123B2 (ja) SiC系物質からの金または白金族元素の回収方法
JP3906333B2 (ja) 貴金属の回収方法
JP2008001917A (ja) 貴金属回収方法および回収貴金属
JP4210729B2 (ja) 金または白金族元素の濃縮方法
JP4370401B2 (ja) 製錬炉およびこれを用いた白金族元素の回収法
JP3843075B2 (ja) 白金族元素の乾式回収法
KR100877090B1 (ko) 동 제련 조업 방법
JP2023019519A (ja) 白金族元素の回収方法
JP2003064427A (ja) 銅製錬炉の操業方法
JP3817601B2 (ja) 銅製錬における錬銅炉のカラミ処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003766725

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10521818

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057002014

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038188031

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057002014

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003766725

Country of ref document: EP